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Abstract

When using our sense of vision, lightrays that are reflected by the objects positioned

in the 3D world form a 2D image on the retinas of our eyes. This image is perceived

and processed by the human brain through the primary visual cortex V1, a part of the

occipital lobe which is highly specialized in processing information about orientation,

motion and is of vital importance for pattern recognition. The orientation sensitivity in

particular helps us to perceive depth and superposition of objects, detect obstructions

in the field of view (corruption), and up to a certain extent, intrinsically fill gaps in the

image we perceive. This last process is what in the field of Image Processing is called

image inpainting: the process of restoring an image by filling the missing information in a

region by using information from the rest of the image. The digital image that is acquired

by the sensor of a camera can be regarded (without color information) as a real valued

function of 2 variables f(x, y) that maps the position of a pixel in a rectangular domain

to the intensity of the light that corresponds to that pixel. In this setting the perceived

orientation is just the orientation of the level curves of the image, which can be easily

computed as the gradient of the function f(x, y) rotated by an angle of π
2
. In this work

we model the neurons of the visual cortex V1 as points of the Lie group SE(2) ' R2×S1,

introducing a lifting function L : R2 → SE(2) together with a projection π : SE(2)→ R2

to link the space of digital images to the space of representations of images in the visual

cortex V1. On SE(2) it is possible to define a sub-Riemannian geometry with differential

operators analogous to the ones of classical calculus, and therefore model the neural

activity as a partial differential equation with L(f)(x, y, θ) as its initial condition. The

diffusion equation on SE(2) with a sub-Laplacian defined in such a way to propagate

neural activity in the direction of the level curves of the image seems to be particularly

natural and effective at restoring corrupted images. Ultimately we can ask ourselves the

question: ”how do we evaluate the effectiveness of a restoration algorithm?”. At a first

glance, without taking into account the subjectivity of human perception, this might

seem like a mathematically trivial task. But after a deeper analysis on what a good

restoration means we can see how the problem is in fact non that trivial, and does not

admit a single solution.
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The main new results that are presented within this work are an example-based analysis

of the current state of the art in PDE-based image restoration methods, a novel PDE-

based algorithm for image inpainting that appears to be more stable while producing

sharper results, and the introduction of two new metrics to assess the quality of an image

restoration process.
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Chapter 1

Introduction

1.1 Motivation

Image inpainting is a conservation process that aims to restore an image that has been

damaged in a way so that in a certain region of the canvas all the information is lost.

This process has its roots in physical artworks, such as paintings and film photography,

where a professional performs a manual process in order to fix a deteriorated medium.

The modern use of inpainting can be traced back to 18th century’s Venice, a city that

inherited an immense art collection produced during the Italian Renaissance and needed

a more scientific and procedural approach in the restoration process of its art, especially

in the form of paintings [16].

With the advent of computers and the diffusion of digital images the need of proper

algorithms to reconstruct missing or damaged areas of digital photography and videos

started to rise. Watermarks removal, text removal, image compression, super resolution

and red-eye removal are just some of the many applications that digital inpainting

addresses.

There are different techniques currently used for image inpainting that can be roughly

divided in families of methods: patch-based substitutions, PDE methods and machine

learning models (more recently in the form of deep neural networks).
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Figure 1.1: Example of deep neural network inpainting, courtesy of Liu et al. [34]

The motivation behind this work is to study a specific PDE-based method that takes

inspiration from the primary visual cortex V1 in mammals. This portion of the brain,

located in the occipital lobe, is particularly sensitive to orientation, among other things,

and is considered responsible for the ability of the brain to fill-in the disruptions in the

field of view due to obstructions.

The main new results that are presented within this work are:

• an example-based analysis of the current state of the art in PDE-based image

restoration methods

• a novel PDE-based algorithm for image inpainting that appears to be more stable

while producing sharper results

• the introduction of two new metrics to assess the quality of an image restoration

process

1.2 Overview

The content of this work is divided into chapters according to topic and source of the

material.

The mathematical background in geometry that the reader might not be well acquainted

with is introduced in Chapter 2. The basics in Lie groups, Lie algebras, Riemannian

geometry and sub-Riemannian geometry are presented. Afterwards a few examples

of sub-Riemannian manifolds are introduced, among which are PTR2 and SE(2),

commonly named orientation scores. These examples in particular will be relevant in

the following chapters as a good mathematical model for the visual cortex V1.
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In Chapter 3 the basics in Image Processing are introduced in order to establish a

notation and formally build the foundation on top of which the main results of this work

are developed.

The mathematical model of the primary visual cortex V1 and the derived algorithms

for image restoration are presented in Chapter 4. In addition, a detailed overview of

the work produced so far on the subject and the current state-of-the-art in PDE-based

image restoration is discussed.

The author’s contribution is presented in Chapters 5 and 6.

In Chapter 5 a new lifting technique based on PTR2 and a novel diffusion algorithm are

introduced. These two combined produce an approach to image restoration that appears

extremely versatile and empirically very stable.

In Chapter 6 the problem of quantitatively assessing the quality of the obtained

restoration is discussed and new metrics inspired by the neural activation in the cortex

V1 are introduced.

1.3 Prerequisites

Although most of the theory required to follow the discussion in this work is presented

either as a dedicated chapter, or along the way when needed, the basics in calculus

(in particular the basics of partial differential equations), linear algebra, measure and

integration theory, topology and manifolds are taken for granted and will not be

introduced.

A previous knowledge of differential geometry in the form of Riemannian manifolds,

image processing and algorithms and data structures is recommended but not required,

as all the tools strictly needed are introduced as to make this work as self-contained as

possible.
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Chapter 2

Geometric tools

The contents of this section have been heavily inspired by the work of [41], [30] and

[33]. It is assumed that the reader has a basic knowledge of algebraic structures and

manifolds. A thorough introduction to manifolds can be found at [41]. In the last section

of this chapter, a geometric application to optimal control problems is introduced.

2.1 Lie Groups

Lie groups originate between 1874 and 1884 from a series of papers due to Sophus Lie.

The original motivation behind the initial study of Lie groups was to apply them to

unify the whole area of ordinary differential equations through the study of symmetry.

This application didn’t quite result in the success that Lie had hoped for, but created a

foundation that was inspirational to Riemann and Klein[22]. The theory of Lie groups

rapidly spread up to the point that it appeared in the list of problems by David Hilbert at

position number 5 [24].

Definition 1 (Lie Group)

A structure G is a Lie Group if it is a smooth manifold and it is a group such

that the operation G×G→ G induced by the group structure is smooth.

To discuss the specific case of matrix Lie groups, we need a notion of differentiability of

a matrix. Let I be an open interval of R, and let A(t) be an n ×m matrix for t ∈ R.

If each entry of the matrix A(t) is a differentiable function of t then A is said to be

differentiable and the derivative of A is defined componentwise.
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The vector space of n× n matrices Mn can be endowed with a norm

‖X‖ =
(∑

x2
ij

) 1
2

Example 2

(Rn,+)

It is trivially a manifold because it is isomorphic to itself.

Summation + : Rn ×Rn → Rn is a smooth operation componentwise, and therefore

smooth as a whole. Hence it is a Lie group.

Example 3

GL(n)

Recall that GL(n) := {A ∈ Mn | detA 6= 0} = det−1(R\{0}). Mn can also be

written as Rn×n which is clearly isomorphic to Rn2
. We also know from calculus that

polynomials are continuous functions, and we can characterize the determinant of a

matrix as a polynomial. Since the set {0} is closed in R under the euclidean topology,

then the inverse is also closed since it is the inverse of a continuous function. Thus

the set of matrices that have zero determinant is closed, and therefore the set of

matrices with non-zero determinant (which corresponds to GL(n)) is open. Hence

GL(n) is a manifold by the following theorem:

Theorem 4

If M is a manifold, and U ∈ M is an open subset of M , then U is also a

manifold.

Ref: [41] at 5.12 on pg. 54

Moreover, for A,B ∈ GL(n) it holds componentwise that

(AB)ij =
n∑
k=1

aikbkj

which is a polynomial in the coordinates of A and B. Therefore matrix-multiplication

is a C∞ map.

Using Cramer’s rule for computing the entry of the inverse matrix A−1 one can obtain

(A−1)ij =
1

detA
(−1)i+j((j, i)− minor of A)

which is well defined for detA 6= 0. Since the inverse is a polynomial division, it is
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C∞ when the denominator is non-zero, which is always the case in GL(n).

Thus GL(n) is a Lie group.

Another fundamental Lie group is SL(n). In the following example the proof of SL(n)

being a Lie group is done by considering only results on smooth manifolds, such as the

regular value theorem and the theory of regular submanifolds. Later on in this chapter

more powerful tools and theorems on Lie groups will be developed, which will produce

a simpler proof for SL(n) being a Lie group. More in general closed matrix subgroups

of GL(n) will be shown to always be Lie subgroups.

Example 5

SL(n)

Recall that SL(n) := {A ∈ GL(n) | detA = 1} = det−1({1}) and that SL(n) ⊂
GL(n). SL(n) is a manifold by the following theorem:

Theorem 6 (Regular value theorem)

Let f : M → R be a smooth function and let M be an n−dimensional

manifold. Then if f−1(c) is non-empty, it is an n− 1 regular submanifold of

M .

Ref: [41] at 9.8 on pg. 104

Since SL(n) is a regular submanifold of GL(n), we can now consider the inclusion

i : SL(n)× SL(n)→ GL(n)×GL(n)

which is C∞ by the following theorem:

Theorem 7

If N is a regular submanifold of M , then the inclusion i : N → M , i(p) = p

is an embedding.

Ref: [41] at Thm 11.14 on pg. 124

To see that the inverse map is C∞ we just compose the inclusion map in GL(n) with

the inverse of GL(n) to obtain a C∞ map SL(n) → GL(n). We can now conclude

the proof by noticing that if A is a matrix with det(A) = 1 then det(A−1) = 1 and

therefore the map is actually SL(n)→ SL(n).

It is useful, in the context of Lie groups, to fix in the group operation µ : G × G → G

either the left or the right element and introduce the maps Lax = µ(a, x) = ax and

Rax = µ(x, a) = xa, respectively the left multiplication and right multiplication. These
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maps are often called translations, and since the group operation is smooth by definition

of Lie group, these maps are smooth.

Definition 8

Two Lie groups G and H are isomorphic if ∃ F : G → H which is a group

isomorphism and a diffeomorphism.

As in the study of manifolds it is necessary to study some structures as submanifolds,

the analogous case happens in Lie groups, with the introduction of Lie subgroups.

Definition 9 (Lie subgroup)

Let G be a Lie group. A Lie subgroup is an abstract (in the algebraic sense)

subgroup H of G, which is also an immersed submanifold via the inclusion map

such that the group operations of G are smooth on H.

The definition makes use of the concept of an immersed submanifold rather than a

regular one, because in a regular submanifold the Lie operation map H ×H → H and

the group inverse H → H would be automatically smooth.

Proposition 10

If H is an abstract subgroup and a regular submanifold of a Lie group G, then

H is a Lie subgroup of G.

Ref: [41] at Prop. 15.11 on pg. 168

Since in the setting of the previous proposition the inclusion map i : H → G is an

embedding, H is called an embedded Lie subgroup.

And now we can introduce a powerful theorem that, especially in the case of matrix

groups, simplifies the operation of determining if a subgroup of a Lie group is a Lie

subgroup.

Theorem 11 (Closed subgroup theroem)

Let G be a Lie group, and A be a closed subgroup in the abstract sense. Then A

has a unique manifold structure which makes it into a Lie subgroup of G.

Ref: [43] at Thm. 3.42 on pg. 110
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Example 12

The special linear group SL(n) and the orthogonal group O(n) are the zero sets of

polynomial equations on GL(n) (in particular for Q ∈ O(n) we can write Q·Qᵀ−In =

0 and forK ∈ SL(n) we can write det(K)−1 = 0). As such, they are closed subsets of

GL(n) and, by the closed subgroup theorem, they are both embedded Lie subgroups

of GL(n).

2.2 Matrix Lie groups and the Exponential map

Many Lie groups of interest, as we have already seen when citing a few examples, can

be expressed as matrix groups with the usual matrix multiplication as group operation.

In the case of an n× n matrix Lie group G, both an element A ∈ G and XA ∈ TAG can

be expressed as n× n matrices.

Let G be a matrix Lie group and A ∈ G an element. Then the tangent space in A is

defined as

TAG = {Ḃ(t)|t=0|B : (−ε, ε)→ G, B(0) = A})

Example 13

In the case (R2,+) we can represent the group as a matrix group endowed with the

classic matrix multiplication as operation, by the isomorphism

ϕ : (R2,+)→ (M3, ·)

ϕ(x) =

1 0 x

0 1 y

0 0 1


The identity element in (R2),+) is mapped to In and in this representation the basis

vectors ∂x = (1, 0) and ∂y = (0, 1) for TeG become

∂x =

0 0 1

0 0 0

0 0 0

 , ∂y =

0 0 0

0 0 1

0 0 0


by taking ϕ((t, 0)) and ϕ((0, t)) and evaluating the derivative at t = 0.

By taking curves on the manifolds we are able to compute the tangent space at every

point. But this operation is actually redundant, as in the specific case of a matrix Lie
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groups the computation of every tangent space can be brought back to the computation

of the tangent space at the identity TIG.

Let G be a matrix Lie group, and consider a curve in G defined as

B : (−ε, ε)→ G

B(0) = A

Define now

B̃ := A−1B : (−ε, ε)→ G

B̃(0) = A−1B(0) = I

Then we can compute the derivative of B(t) and evaluate it at t = 0 as

d

dt
B(t)

∣∣
t=0

=
d

dt
(AA−1B(t))

∣∣
t=0

= A
d

dt
(A−1B(t))

∣∣
t=0

= A
d

dt
B̃(t)

∣∣
t=0

The consequence of this brief computation is that, if we want to compute X ∈ TAG there

exists Y ∈ TIG so that we can write X = AY ”shifting” the computation back to the

tangent space at the identity by using a left multiplication by A.

As it will be shown later in this chapter this is possible in every Lie group by computing

the differential of the group product. However, in the case of a subgroup of GL(n) a

curve A(t) of non-singular matrices is needed. The exponential map is well suited for

this purpose, as it happens to be intrinsically non-singular.

Definition 14 (Matrix exponential and logarithm)

The matrix exponential of a matrix X ∈Mn is defined as

eX = In +X +
1

2!
X2 +

1

3!
X3 + · · ·+ 1

k!
Xk + . . .

which is essentially how the exponential of a real number is defined using Taylor

expansions. This construction is well defined as the series converges (see [41] at

chpt. 15.3 ).

Given a matrix Y , another matrix X is said to be the matrix logarithm of Y if

eX = Y .

A formula for the matrix logarithm can be defined in terms of a power series for
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X ∈ GL(n) if ‖X − In‖ < 1 as

logX = (X − In)− (X − In)2

2
+ · · ·+ (−1)k−1

k
(X − In)k + · · ·

The matrix exponential retains some of the properties of the scalar exponential, but is

intrinsically different: although e0 = In and d
dt
etX = XetX as we are accustomed to, it

is however not true in general that eAeB = eA+B.

A proof of the second property can be found in [41] (Prop 15.17 ), whereas a

counterexample to the third property is A =

[
1 0

0 0

]
, B =

[
0 1

0 0

]
.

We can immediately see an application of the matrix exponential in the following

exercise:

Exercise 15

Let G = R3 with the product defined as

(x, y, z) ·
G

(x̃, ỹ, z̃) = (x+ x̃, y + ỹ, z + z̃ +
1

2
(xỹ − x̃y))

and H ⊂ GL(3) the Heisenberg group with the classic matrix multiplication ·
M

H =


1 a c

0 1 b

0 0 1

∣∣∣∣∣a, b, c ∈ R


Show that G and H are isomorphic.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us re-arrange the elements of R3 in a matrix form, endowed with the same

product rule ·
G

, so that

G =


0 x z

0 0 y

0 0 0

 ∣∣∣∣∣x, y, z ∈ R


Applying now the exponential map defined above to an element of G it is clear that

exp


0 x z

0 0 y

0 0 0


 =

1 x z + 1
2
xy

0 1 y

0 0 1


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where z + 1
2
xy ∈ R so that the exponential map is a map G→ H.

With the following computation

exp


0 x z

0 0 y

0 0 0


 ·M exp


0 x̃ z̃

0 0 ỹ

0 0 0


 =

1 x z + 1
2
xy

0 1 y

0 0 1

 ·M
1 x̃ z̃ + 1

2
x̃ỹ

0 1 ỹ

0 0 1



=

1 x+ x̃ z + z̃ + xỹ + 1
2
(xy + x̃ỹ)

0 1 y + ỹ

0 0 1



= exp


0 x+ x̃ z + z̃ + 1

2
(xỹ − x̃y)

0 0 y + ỹ

0 0 0




we can see that the exponential map is exactly the isomorphism we were looking for.

Hence (G, ·
G

) and (H, ·
M

) are isomorphic.

2.3 Lie algebras

If one takes the concept of a Lie group G, and endows the tangent space at the identity

TeG with a Lie bracket operation

[·, ·] : TeG× TeG→ TeG

we obtain what is called the Lie algebra of the Lie group, a structure that encodes much

information about the Lie group itself. Let us now introduce formally the definition

of a Lie algebra, and build up the theory that will allow us to study some of its

applications.

Definition 16 (Lie algebra)

A Lie algebra is a vector space g over some field F (R or C)together with a bracket

operation [·, ·] : g× g→ g s.t. the following properties hold:

(i) bilinearity : [aA+bB,C] = a[A,C]+b[B,C] and [C, aA+bB] = a[C,A]+b[C,B]

for a, b ∈ F and A,B,C ∈ g

(ii) skew-symmetry : [A,A] = 0 for A ∈ g

(iii) Jacobi identity : [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 for A,B,C ∈ g
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One can notice that the definition of Lie bracket is not unique. A trivial definition can

be to set [X, Y ] = 0 for all X, Y ∈ g. This particular case takes the name of Abelian

Lie algebra. For vector fields the Lie bracket of vector fields, also called the Jacobi-Lie

bracket or commutator of vector fields, is defined pointwise as [X, Y ]pf = (XpY −YpX)f

for a C∞ germ function f . As p varies over the chart (U,ϕ), [X, Y ] becomes a vector field

on U and if both X and Y are smooth it follows that [X, Y ] is also smooth. Endowed

with such Lie bracket the set of all C∞ vector fields, X(G), is a Lie algebra.

A Lie subalgebra of a Lie algebra g is a vector subspace h ⊂ g that is closed under the

bracket operation defined on g.

Let F : N → M be a smooth map of manifolds. A vector field X on N is said to be

F -related to a vector field X̄ on M if for all p ∈ N

F∗,p(Xp) = X̄F (p)

which in other words means that two vector fields are F -related if at every point we

obtain the same result if we first move to the tangent space on N and then apply the

differential map of F or if we apply first F and then we move to the tangent space on

M .

We can apply the definition of F -relatedness to study the group operation of a Lie group,

in particular the left-translation. We define a vector field that is La-related to itself to

be left-invariant. The formal definition is:

Definition 17 (Left-invariant vector field)

Let G be a Lie group. A vector field X ∈ X(TG) is called left-invariant if

for f ∈ C∞(G,R), p ∈ G then (Xf)(Lap) = (X(f ◦ La))(p). Equivalently, if

La∗X = X ∀a ∈ G.

Proposition 18

Any left-invariant vector field X on a Lie Group is C∞.

Ref: [41] at 16.8 on pg. 181

We denote the set of all left-invariant vector fields of a Lie group G as L(G). Since this

is a vector subspace that is closed under the bracket operation (Ref: [41] at 16.9 on

pg. 182) it is a Lie algebra, which is of great interest as it happens to be isomorphic to

TeG.
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Proposition 19

There is a one-to-one correspondence Te(G)↔ L(G)

Proof. A left-invariant vector field X is completely defined by its value at the identity

Xe. In fact, for every g ∈ G

Xg = Xge = Lg∗(Xe)

Conversely, given a tangent vector A ∈ Te(G), we can define a left invariant vector

field Ã s.t. Ãg = Lg∗A. Now

Lg∗(Ãh) = Lg∗Lh∗(Ãe) = Lg∗Lg∗(A) = (Lg ◦ Lh)∗A = LghA = Ãgh

This relationship is more profound than a simple one-to-one correspondence, but it is in

fact a vector space isomorphism, as we shall now see.

Consider the bijection ϕ : TeG → L(G), and given A,B ∈ TeG define the Lie bracket

[A,B] ∈ TeG as [A,B] := [Ã, B̃]e for Ã = ϕ(A), B̃ = ϕ(B). The following proposition

completes the discussion, showing that ϕ preserves the group structure as

ϕ([A,B]) = [ϕ(A), ϕ(B)]

Proposition 20

If A,B ∈ TeG and Ã, B̃ are the left-invariant vector fields they generate through

ϕ then

[̃A,B] = [Ã, B̃]

Ref: [41] at 16.10 on pg. 183

For the general linear group GL(n) we can identify the point derivations at the identity

with Mn via ∑
aij

∂

∂xij

∣∣∣∣
I

↔ [aij]

Let A,B ∈ TIG such that

A =
∑

aij
∂

∂xij

∣∣∣∣
I

B =
∑

bij
∂

∂xij

∣∣∣∣
I
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and let Ã, B̃ be the left invariant vector fields generated by A,B respectively:

Ãg = (Lg)∗A = gA =
∑
i,j

(gA)ij
∂

∂xij

∣∣∣∣
g

B̃g = (Lg)∗B = gB =
∑
i,j

(gB)ij
∂

∂xij

∣∣∣∣
g

therefore ÃI = A and B̃I = B. Applying now the bracket [Ã, B̃]I to elements of the

standard basis xij yields

[Ã, B̃]Ixij = ÃIB̃xij − B̃IÃxij = AB̃xij −BÃxij

AB̃xij =
∑
p,q

apq
∂

∂xpq

∣∣∣∣
I

(∑
k

bkjxik

)
=
∑
p,q,k

apqbkjδipδkq =
∑
k

aikbkj = (AB)ij

Therefore

[Ã, B̃]Ixij = (AB)ij − (BA)ij

Denote TIGL(n) with its Lie algebra structure by gl(n).

Now that we have expanded on the concept of Lie groups endowing the tangent space

with a Lie bracket one could ask themselves if there is a canonical mapping between

a group and its tangent space at the origin. In matrix Lie groups such mapping is

provided by the exponential map, previously defined in Definition 14. Consider the

following proposition:

Proposition 21

For X ∈Mn, the matrix exponential e : Mn → GL(n) satisfies

d

dt
etX = XetX = etXX

Ref: [41] at Prop 15.17 on pg. 171

Then for X ∈Mn, A ∈ GL(n) and

γ : (−ε, ε)→ GL(n)

γ(t) = AetX

is a smooth curve in GL(n) starting at γ(0) = A. From manifold theory (Ref: [41] at

8.6 on pg. 92)) we know that the velocity vector of the curve at t = 0 is d
dt

∣∣
t=0
γ(t) =

AXetX
∣∣
t=0

= AX. Therefore we are able to write the expression of curves starting at
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point A and initial velocity AX.

This special class of curves is called exponential curves and can be denoted as

γXA (t) := A exp(tX)

This discussion allows us to give an equivalent definition for the commutator [A,B] which

has a more practical geometrical definition:

[A,B] = lim
t→0

1

t2
ln(γ(t))

with

γ(t) = exp(−tB) exp(−tA) exp(tB) exp(tA)

Intuitively the commutator can be seen as ”the infinitesimal displacement obtained by

following the path of γ(t)”.

exp(tX3)

exp(−tX3)

γ(t)

exp(tX2)

exp(−tX2)

[X3, X2] = X1

Figure 2.1: Example of displacement in SE(2). The group structure and properties will
be formally introduced in section 2.8. For now, assume this is a simplified model of a
car with X1 being forward movement, X2 being left translation and X3 being counter-
clockwise rotation. By doing a left translation, a counter-clockwise rotation, a right
translation of the same magnitude as the left one and a clockwise rotation of the same
angle we define a path γ(t) such that the resulting infinitesimal displacement is forward
movement.

Such equivalent definition is due to the following lemma:
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Lemma 22

Let G be a Lie group with Lie algebra g, and let exp be the exponential mapping

of g into into G. Then, if X, Y ∈ g

1. exp(tX) exp(tY ) = exp
(
t(X + Y ) + t2

2
[X, Y ] +O(t3)

)
2. exp(−tX) exp(−tY ) exp(tX) exp(tY ) = exp (t2[X, Y ] +O(t3))

3. exp(tX) exp(tY ) exp(−tX) = exp (tY + t2[X, Y ] +O(t3))

Ref: [23] at Lemma 1.8 on pg. 106

2.4 Riemannian geometry

The branch of differential geometry that studies smooth manifolds endowed with a metric,

i.e. an inner product on the tangent space, takes the name of Riemannian Geometry.

Originated by the work of Bernhard Riemann it is a generalization of geometry of surfaces

embedded in R3. This branch of mathematics has been instrumental in the last two

centuries to develop several applications, for instance the theory of general relativity.

Definition 23 (Riemannian manifold)

A Riemannian manifold is a smooth manifold M together with a metric

g ∈ T 2(M) that is symmetric and positive definite.

Within the scope of this work we assume all the manifolds to be connected. Since a

smooth manifold is locally euclidean, it follows that it is also path-connected.

Example 24

The Euclidean space Rn is the simplest example of Riemannian manifold. Let

x1, . . . , xn be the standard coordinates on Rn. Then, in standard coordinates, a

vector assumes form
∑

i ai
∂
∂xi

and the space can be endowed with the metric

g

(∑
i

ai
∂

∂xi
,
∑
i

bi
∂

∂xi

)
=
∑
i

aibi

The availability of a metric on the tangent bundle allows the computation of lengths of

tangent vectors.

Let γ(t) be a curve in M , with γ(0) = p for a certain p ∈M . The length of the tangent
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vector γ̇(0) ∈ TpM is given by

|γ̇(0)| =
√
g(γ̇(0), γ̇(0))

With such definition we are able to introduce a distance functional between any two

points in the manifold.

Definition 25 (Riemannian distance)

The Riemannian distance between any two points p, q in manifold M is given by

d(p, q) = inf
γ

∫ 1

0

√
g(γ̇(τ), γ̇(τ))dτ

γ(0) = p

γ(1) = q

This definition is well defined when a manifold is connected, which we have assumed

to be the case within the scope of this work. It could be easily extended by setting

d(p, q) =∞ when there exists no curve connecting two points p, q ∈M .

Definition 26 (Geodesic)

The curve minimizing the Riemannian distance as measured by the metric g is

called geodesic.

2.5 Sub-Riemannian geometry

It is not always possible to model a space in terms of Riemannian geometry. If one tries

to model, for example, how a car moves on the 2D plane, one has to allow only a certain

type of movements. A car cannot move translating laterally and therefore the tangent

bundle does not reflect all the possible directions that a curve follows. This is exactly

the type of situation in which the problem of Dubin’s car [17] is set. For this reason the

concept of a distribution, a subset of the tangent bundle, is introduced. The model space

for sub-Riemannian geometry is the Heisemberg geometry, with whom we are already

familiar with, having introduced it a few pages ago and that will make a more detailed

comeback later in this chapter.
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Definition 27 (Sub-Riemannian manifold)

A sub-Riemannian metric on M is a fiber metric defined on a linear subbundle

H ⊂ TM .

A sub-Riemannian manifold is a triplet (M,H, g) with M a manifold, H ⊂ TM

a linear subbundle and g = 〈·, ·〉 a sub-Riemannian metric.

We call H ⊂ TM in the previous definition the horizontal distribution.

The analogous of a curve in sub-Riemannian geometry is an horizontal curve, which

differs from a smooth curve allowing γ̇(t) to only assume values in H. γ : [a, b] → M

is called horizontal if γ̇(t) ∈ Hγ(t) for any t ∈ [a, b]. Analogously to smooth curves, we

define the length of an horizontal curve as

L(γ) =

∫ b

a

‖γ̇‖dt

which induces a distance (between points that can be connected)

d(x, y) = inf
γ horizontal
γ(a)=x
γ(b)=y

L(γ)

Example 28

Let M = R3 and H = {∂x, ∂y} an orthonormal basis of elements of the standard

basis.

〈∂x, ∂x〉 = 〈∂y, ∂y〉 = 1

〈∂x, ∂y〉 = 0

If we consider any curve γ in M , the condition on γ̇ ∈ H means that such curve

cannot change z−coordinate along its path. The distance between two points

becomes therefore:

d((x, y, z), (x̃, ỹ, z̃)) =


√

(x− x̃)2 + (y − ỹ)2 z = z̃

∞ z 6= z̃

hence 〈·, ·〉 is not induced by a sub-Riemannian metric.

Definition 29 (Bracket-generating distribution)

A distribution H ⊂ TM is called bracket generating if any local frame Xi for H,

together with all its iterated brackets [Xi, Xj], [Xi, [Xj, Xk]], . . . , spans the whole

tangent bundle TM .



20 Geometric tools

A Bracket-generating distribution, also equivalently said to satisfy the Hörmander

condition, is a crucial hypothesis in most of the sub-Riemannian spaces, due to the

following theorem:

Theorem 30 (Chow–Rashevskii)

If H ⊂ TM is bracket-generating then the set of points connected to p ∈ M by

horizontal paths is the same as the connected component of M containing p. If M

is path-connected then any pair of points in M can be connected by a horizontal

curve and in particular for p, q ∈M it holds that d(p, q) <∞ and d(·, ·) is a well

defined metric distance.

Ref: [33] at Thm. 1.17 on pg. 10

Recall that within the scope of this work all the manifolds are assumed to be connected,

thus path-connected. This means that the Chow-Rashewskii theorem allows us to

connect any two points in a bracket-generating sub-Riemannian manifold. This however

does not tell us anything on the existence of geodesics, which requires a deeper discussion.

Theorem 31 (Local existence)

If M is a manifold with a bracket-generating distribution then any point p ∈ M
is contained in a neighborhood U such that p is horizontally connected to any

q ∈ U by a minimizing geodesic.

Ref: [33] at Thm. 1.18 on pg. 10

Theorem 32 (Hopf-Rinow)

If M is a connected manifold with a bracket-generating distribution and M is

complete relative to the sub-Riemannian distance function, then any two points

p, q ∈M can be joined by a minimizing geodesic.

Ref: [33] at Thm. 1.19 on pg. 10

2.6 Invariant sub-Riemannian structures on Lie groups

A natural question that one could ask themselves is if every Lie group admits a

distribution and a metric such that it becomes a sub-Riemannian geometry. In this

section we answer this question.

Let G be a Lie group and g be its Lie algebra. Let h ⊂ g be a Lie bracket generating

subspace. Define a positive definite quadratic form 〈·, ·〉 on h. A natural sub-Riemannian

structure on G is given by:
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• The distribution H is the left-invariant distribution defined as

H(g) := g · h

for g ∈ G.

• The metric on the distribution is given by

g(v1, v2) := (g−1v1, g
−1v2)

for v1, v2 ∈ H, g ∈ G.

In this case we say that (G,H,g) is a left-invariant sub-Riemannian manifold.

2.7 The Heisenberg group H

We return now to the Heisenberg groupH as a first example of sub-Riemannian geometry.

Recall that the left translation in H is defined as

L(x̃,ỹ,ỹ)(x, y, z) = (x̃+ x, ỹ + y, z̃ + z +
1

2
(x̃y − xỹ))

We can compute locally its differential in the form of a Jacobian ([41] Prop. 8.11 )

L(x,y,z),∗ =

 1 0 0

0 1 0

−1
2
y 1

2
x 1


which yields a triplet of left invariant vector fields

X =
∂

∂x
− 1

2
y
∂

∂z

Y =
∂

∂y
+

1

2
x
∂

∂z

Z =
∂

∂z

that form an orthonormal frame.

Let H = {X, Y }. It is easy to check that [X, Y ] = Z, [X,Z] = 0 and [Y, Z] = 0 thus H
is a bracket-generating distribution.
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We can write an explicit expression for a curve γ(t) : [0, T ]→ H as

γ(t) = exp


0 x(t) z(t)

0 0 y(t)

0 0 0


 =

1 a(t) c(t)

0 1 b(t)

0 0 1


for x(t), y(t), z(t) curves in R.

To define a sub-Riemannian distance set ds2 = dx2 + dy2, and define the length of an

horizontal path in R3 to be
∫
γ
ds, which corresponds to the usual length of its planar

projection. The metric ds2 can be restricted to the distribution H defining a family of

smoothly varying inner products, so that for any v, w ∈ H(x,y,z) the scalar product is

〈v, w〉 = v1w1 + v2w2. If we endow the manifold with such family of inner products then

the Heisenberg group is a non-trivial example of sub-Riemannian geometry.

In this setting geodesics in the Heisenberg group γ(t) = (x(t), y(t), z(t)) end up being

circular spirals with the projection being an arc of a circle c(t) = (x(t), y(t)), and

z(t) =
1

2

∫
c

xdy − ydx

Intuitively, the height of the curve is proportional to the area of the circle subtended by

the circular arc projected.

R 2

Figure 2.2: A geodesic curve in the Heisenberg group, starting at (0, 0) with initial
velocity vector (1, 0).
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2.8 The special Euclidean group SE(2)

Definition 33 (Special Euclidean group)

The special Euclidean group SE(2) is a matrix group defined as

SE(2) =


cos θ − sin θ x

sin θ cos θ y

0 0 1

 ∣∣∣∣∣x, y ∈ R, θ ∈ [0, 2π)


We can also admit a matrix representation for the general case SE(n)

SE(n) =

{[
A a

0ᵀ
n 1

] ∣∣∣∣∣A ∈ SO(n), a ∈ Rn

}

The group SE(2) represents all transformations on R which preserve distances,

orientations and angles (rigid transformations). Any such transformation can be written

as a rototranslation

T : R2 → R2

T (x) = Ax + b

for A ∈ SO(2) a rotation and b ∈ R2 a translation. It has therefore three degrees of

freedom: two for translation and one for rotation.

Proposition 34

SE(2) is isomorphic to R2 × S1

Proof. Let ϕ : SE(2)→ R2 × S1 such thatcos θ − sin θ x

sin θ cos θ y

0 0 1

 7→ ((x, y), θ)

which admits inverse

((x, y), θ) 7→

cos θ − sin θ x

sin θ cos θ y

0 0 1


Both ϕ and its inverse are continuous componentwise (they are actually smooth), so

they are continuous. Thus ϕ is a isomorphism.

Since S1 ' R/(2πR) we can model SE(2) as R3/(0, 0, 2πR) and intuitively see it as a

torus with a ”rectangular” base (figure 2.3).
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θ

R 2 R 2 R 2

Figure 2.3: Intuitive visualization of the fibers of SE(2) in a closed bounded rectangular
region of R2. This visualization is particularly useful when dealing with the mathematical
model of the visual cortex V1 presented in chapter 4.

Proposition 35

SE(n) endowed with the matrix multiplication[
A a

0ᵀ
n 1

]
·

[
B b

0ᵀ
n 1

]
=

[
AB Ab + a

0ᵀ
n 1

]

where AB is the usual matrix multiplication, is a Lie group.

Proof. We treat the proof for the specific case n = 2, as this will be the setting we

will be working with. This proof can be easily extended to any dimension n with

the appropriate changes.

Let X ∈ GL(3) so that

X =

X11 X11 X12

X21 X22 X23

X31 X32 X33


and consider the following maps GL(3)→ R and GL(3)→ GL(2).

ϕ1 = X31

ϕ2 = X32

ϕ3 = X33 − 1

ϕ4 =

[
X11 X12

X21 X22

]
·

[
X11 X12

X21 X22

]ᵀ
− I2

All these maps are C∞, as matrix multiplication is smooth.
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The kernels of these maps are regular submanifolds, according to the regular value

theorem (Theorem 6) and the regular level set theorem

Theorem 36 (Regular level set theorem)

Let F : N → M be a C∞ map of manifolds with dimN = n and dimM =

m. Then a nonempty regular level set F−1(c), where c ∈ M , is a regular

submanifold of N of dimension equal to n−m.

Ref: [41] at 9.9 on pg. 105

Notice now how

kerϕ1 ∩ kerϕ2 ∩ kerϕ3 ∩ kerϕ4 = SE(2)

and therefore by constructing the function

F : GL(n)→ R× R× R×GL(2)

X 7→ (ϕ1(X), ϕ2(X), ϕ3(X), ϕ4(X))

we can now use the regular level set theorem to say that SE(2) is a regular

submanifold of GL(3) with dimension 9− 1− 1− 1− 4 = 3.

Proposition 37

The Lie algebra of SE(n) is

se(n) =

{[
X x

0ᵀ
n 0

] ∣∣∣∣∣X ∈ so(n), x ∈ R2

}

where so(n) is the subset of skew-symmetric square real matrices.

Proof. We know that there exists an isomorphism between Te(G) of a Lie group and

the Lie algebra of the group. The objective is therefore to characterize such tangent

space and prove it is isomorphic to so(n).

Let Ã(t) be a differentiable curve in SE(2) starting at the identity defined on a

neighborhood of t = 0. Then we can describe it in matrix form as

Ã(t) =

(
A(t) a(t)

0ᵀ
n 1

)

for

A : (−ε, ε)→ SO(n)

a : (−ε, ε)→ Rn
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with

A(0) = In

a(0) = 0n

Differentiate now Ã(t) to obtain

d

dt
Ã(t) =

(
Ȧ(t) ȧ(t)

0n 0

)

Consider now

Ã(t)ᵀ · Ã(t) =

(
A(t)ᵀ · A(t) A(t)ᵀ · a(t)

0ᵀ
n 1

)
=

(
In A(t)ᵀ · a(t)

0ᵀ
n 1

)

where the second equality follows by the fact that A(t) lies in SO(n). Evaluating

the derivative of Ã(t)ᵀ · Ã(t) at t = 0 yields

d

dt
(Ã(t)·Ã(t))

∣∣
t=0

=

(
d
dt

(A(t)ᵀ · A(t))
∣∣
t=0

d
dt

(A(t)ᵀȧ(t))|t=0

0ᵀ
n 1

)∣∣∣∣∣
t=0

=

(
0n×n

d
dt

(A(t)ᵀȧ(t))|t=0

0ᵀ
n 0

)

By looking at the top-left entry we can see that

0n×n =
d

dt
(A(t)ᵀ·A(t))

∣∣
t=0

= Ȧ(0)ᵀA(0)+A(0)ᵀȦ(0) = Ȧ(0)ᵀIn+IᵀnȦ(0) = Ȧ(0)ᵀ+Ȧ(0)

Hence Ȧ(0) = −Ȧ(0)ᵀ and Ȧ(0) ∈ so(n).

Proposition 38

A basis for the Lie algebra se(2) is

p1 =

0 0 1

0 0 0

0 0 0

 , p2 =

0 −1 0

1 0 0

0 0 0

 , p3 =

0 0 0

0 0 1

0 0 0



Proof. The proof is trivial knowing the result of proposition 37, as a basis for SO(n)

is [
0 −1

1 0

]
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2.8.1 Sub-Riemannian structure on SE(2)

Define the following vector fields on T SE(2):

X1 = cos(θ)∂x + sin(θ)∂y

X2 = ∂θ

X3 = − sin(θ)∂x + cos(θ)∂y

and let
#»

X1,
#»

X2 and
#»

X3 be the sections associated to the vector fields X1, X2 and

X3 respectively. Then the Hörmander condition is satisfied, as shown in the next

proposition

Proposition 39

SE(2) with T (SE(2)) = span{X1, X2, X3} and H = {X1, X2} is bracket-

generating.

Proof.

[X2, X1] = X2X1 −X1X2 = ∂θ(cos θ∂x+ sin θ∂y)− (cos θ∂x+ sin θ∂y)(∂θ)

= − sin θ∂x+ cos θ∂y = X3

therefore the Chow-Rashevskii theorem (Theorem 30) holds and it is possible to connect

any two points on SE(2) through horizontal curves.

2.8.2 Integral curves and metric of SE(2)

The aim of this subsection is to show a way to form integral curves, parametric curves

that are solution to an ODE, in order to connect tangent vectors in the case of specific

Cauchy problems related to the field of perceptual completion.

Consider the following Cauchy problemγ′(t) =
#»

X1(γ(t)) + k
#»

X2(γ(t))

γ(0) = (x0, y0, θ0)

where k ∈ R is fixed. The coefficient k expresses the curvature of the projection of the

curve γ on the xy-plane [36].
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Parametrize a solution γ(t) = (x(t), y(t), θ(t)) (assuming for now it exists) and then by

plugging in the definition of γ′ in terms of X1 and X2 it is possible to obtain

x′(t) = cos(θ(t)) y′(t) = sin(θ(t)) θ′(t) = k(t)

From the first two relations it follows that

θ(t) = arctan

(
y′(t)

x(t)

)
Differentiating with respect to t (and dropping the parameter to lighten the notation)

we obtain

k(t) = θ′(t) =
y′′x′ − x′′y′

(x′)2 + (y′)2

which in the case of arc-length parametrization corresponds to the usual notion of

curvature

Kγ =
y′′x′ − x′′y′

((x′)2 + (y′)2)
3
2

Up until now we have assumed that a solution for the Cauchy problem exists, but we

can easily see it always does by providing a closed formula for any given fixed k

γ(t) = exp(t(
#»

X1 + k
#»

X2))(x0, y0, θ0)

where exp is the exponential map for a Lie group which, in the case of a matrix Lie

group, corresponds to the exponential of a matrix.

With the Euclidean metric we have that

‖X1 + kX2‖ =
√

1 + k2

so that the length of any curve γ can be expressed as

L(γ) =

∫ b

a

‖γ′(t)‖dt =

∫ b

a

√
1 + k(t)2dt

Chow-Rashevskii’s theorem (Theorem 30) ensures that for every couple of points in

SE(2) there exists an horizontal curve γ which connects them. Consequently we set

d((x, y, θ), (x̄, ȳ, θ̄)) = inf
γ horizontal
γ(a)=x
γ(b)=y

L(γ)
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and define the ball of center (x̄, ȳ, θ̄) and radius r in the classical way as

B((x̄, ȳ, θ̄), r) = {(x, y, θ) : d((x, y, θ), (x̄, ȳ, θ̄)) < r}

2.8.3 Riemannian approximation of the metric

To extend the Euclidean norm to vectors outside the horizontal distribution we can define

a new norm as the projection of the Euclidean one on the horizontal tangent space. For

v ∈ T(x,y,θ)(SE(2)) endowed with standard basis ∂x, ∂y, ∂θ we define

|v|2g =

∥∥∥∥∥∥∥
(

cos θ sin θ 0

0 0 1

)v1

v2

v3


∥∥∥∥∥∥∥

2

E

= ‖(v1 cos θ + v2 sin θ, v3)‖2
E =

= (v1 cos θ + v2 sin θ)2 + v2
3 = v2

1 cos2 θ + v2
2 sin2 θ + 2v1v2 cos θ sin θ + v2

3

and therefore

gij =

 cos2 θ sin θ cos θ 0

sin θ cos θ sin2 θ 0

0 0 1


which has zero determinant and is therefore not invertible to a metric gij.

If we add a viscosity term however, as suggested by [13], we obtain

gijε =

 cos2 θ + ε sin2 θ (1− ε2) sin θ cos θ 0

(1− ε2) sin θ cos θ sin2 +ε2 cos2 θ 0

0 0 1


which is now invertible for ε > 0 and therefore gijε induces a norm on the cotangent space

at every point as follows. If w = (w1, w2, w3) ∈ T ∗x,y,θ(SE(2))

|(w1, w2, w3)| = (cos(θ)w1 + sin(θ)w3)2 + θ2 +
1

ε2
(sin(θ)x− (cos θ)y)2

Proposition 40

The geodesic distance dε associated to gijε tends to the sub-Riemannian one as

ε→ 0.

Ref: [13] at 2.6 on pg. 316
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2.8.4 Lift of a curve R→ SE(2)

Consider a smooth planar curve γ : [a, b]→ R2 and x, y : [a, b]→ R s.t.

γ(t) = (x(t), y(t)). Then we can lift the curve to SE(2) setting the coordinates of the

lifted curve γ̄ to (x(t), y(t), θ(t)) where θ(t) ∈ R/(2πR) is the direction of the vector

(x(t), y(t)) measured w.r.t. the euclidean vector (1, 0) on R2. A closed form for θ(t) is

θ(t)− θ(0) =

arctan
(
ẏ(t)
ẋ(t)

)
mod π ẏ(t) ≥ 0(

arctan
(
ẏ(t)
ẋ(t)

)
mod π

)
+ π ẏ(t) < 0

2.8.5 The projective tangent bundle PTR2

Another interesting example of sub-Riemannian geometry, which arises naturally as

an extension of SE(2) identifying two orientations with same direction as the same

orientation, is PTR2 := R2 × P 1. Since P 1 = S1/Z2, PTR2 can be seen as the quotient

of the group of rototranslations of the plane SE(2) ' R2 × S1 by Z2. The geometric

properties and sub-Riemannian structure on PTR2 are analogous to the ones on SE(2).

If one wants to define explicitly the manifold structure, one can do it by using two charts:

• Chart A: θ ∈ (0 + kπ, π + kπ), k ∈ Z, x, y ∈ R

q̇ = uA1 (t)XA
1 (q) + u2(t)X2(q), XA

1 =

cos(θ)

sin θ

0

 , X2 =

0

0

1


• Chart B: θ ∈ (−π/2 + kπ, π/2 + kπ), k ∈ Z, x, y ∈ R

q̇ = uB1 (t)XB
1 (q) + u2(t)X2(q), XB

1 =

cos(θ)

sin θ

0

 , X2 =

0

0

1



One could argue that the formal expression of XA
1 and XB

1 is the same, but we need to

be careful as the definition on different domains means that there is a change of sign

when passing from Chart A to Chart B (and vice-versa) in R2 × π/2 and R2 × π.

Remark: The lift of a curve from R2 to PTR2 is analogous to the case in SE(2) but with

a simpler expression for the angle θ, as we do not distinguish anymore by orientation. A
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closed form for θ(t) is

θ(t)− θ(0) = arctan

(
ẏ(t)

ẋ(t)

)
mod π

2.9 The problem of completing curves

The problem of completing curves in R2 that have been partially hidden or corrupted

by minimizing a functional depending on length and curvature is one application of the

sub-Riemannian spaces SE(2) and PTR2.

The inspiration for this application is Dubin’s car, a car that can only move forward or

rotate with a constraint on the curvature. Suppose we are driving this car, with the aim

of traveling between two points in the 2D plane given initial and terminal velocities (or

directions), trying to follow the shortest path satisfying the constraints.

In our setting the formal definition of the problem assumes this form: let γ0 : [a, b] ∪
[c, d] → R2 (with a < b < c < d) be a smooth curve that is partially hidden in the

interval t ∈ (b, c). We want to find a curve γ : [b, c]→ R2 that completes γ0 minimizing

a cost J [γ].

When dealing with the objective of ”completing a curve” we generally require that

γ(b) = γ0(b), γ(c) = γ0(c) and, depending on the setting, either γ̇(b) ∼ γ̇0(b), γ̇(c) ∼ γ̇0(c)

if we only consider directions regardless of orientation or γ̇(b) ≈ γ̇0(b), γ̇(c) ≈ γ̇0(c) if we

consider also orientation. Recall that v1 ∼ v2 if there exists α ∈ R+ such that v1 = αv2,

and that v1 ≈ v2 if there exists α ∈ R\{0} such that v1 = αv2.

This problem has been extensively studied for its applications to the fields of image

segmentation and reconstruction of spiral lines, with different definitions of the functional

to minimize. A few examples can be:

E1[γ] =

∫ c

b

|Kγ(s)|2ds

E2[γ] =

∫ c

b

(1 + |Kγ(s)|2)ds

E3[γ] =

∫ c

b

(η + |Kγ(s)|2)ds

E4[γ] =

∫ c

b

√
1 + |Kγ(s)|2ds

where Kγ(t) = ẋÿ−ẏẍ
(ẋ2+ẏ2)

3
2

.
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Of particular interest for this discussion is however the cost

J [γ] =

∫ c

b

√
‖γ̇(t)‖2 + ‖γ̇(t)‖2K2

γ(t)dt

which is an extension of E4[γ] and arises naturally in problems of geometry of vision.

Particularly, it is invariant under rototranslation and reparametrization of the curve.

J [γ] is well defined on the set

D1 =

{
γ ∈ C2([b, c],R2)

∣∣∣∣∣γ̇(t) 6= 0 ∀t ∈ [b, c],
γ(b) = γ0(b), γ(c) = γ0(c)

γ̇(b) ∼ γ̇0(b), γ̇(c) ∼ γ̇0(c)

}

and, by arclength reparametrization, it coincides with E4[γ].

If we extend D1 to

D2 =

{
γ ∈ C2([b, c],R2)

∣∣∣∣∣‖γ̇‖2 + ‖γ̇‖2K2
γ ∈ L1([b, c],R),

γ(b) = γ0(b), γ(c) = γ0(c)

γ̇(b) ∼ γ̇0(b), γ̇(c) ∼ γ̇0(c)

}

then the two functionals do not coincide anymore as γ can’t be always reparametrized

by arclength over the set D2.

Remark: D1 ⊂ D2.

Proposition 41

There exist boundary conditions γ0(b), γ0(c) ∈ R2 with γ0(b) 6= γ0(c) and

γ̇0(b), γ̇0(c) ∈ R2\{0} such that J [γ] does not admit a minimum over neither

D1 nor D2.

Ref: [7] at Prop. 2 on pg. 44

The basic and intuitive problem is that we may have a sequence of admissible minimizing

curves converging to a non-admissible curve. For an example over R2 see figure 2.4, while

for the actual discussion on how to construct such sequence for D1 and D2 see [7].

x0 x1

γ1
γ2

γ3
γ4

γ̄
v0

v1

Figure 2.4: Example of absence of minimizers over the smooth curves with fixed initial
and ending point and velocity in R2 endowed with euclidean metric and usual euclidean
curve length as cost. There is a sequence of admissible curve with strictly decreasing
cost converging to a non-admissible curve.
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Changing the boundary conditions to projective boundary conditions intruduces a third

space of admissible curves

D3 =

{
γ ∈ C2([b, c],R2)

∣∣∣∣∣‖γ̇‖2 + ‖γ̇‖2K2
γ ∈ L1([b, c],R),

γ(b) = γ0(b), γ(c) = γ0(c)

γ̇(b) ≈ γ̇0(b), γ̇(c) ≈ γ̇0(c)

}

on which J [γ] always admits a minimizer.

Proposition 42

For all boundary conditions γ0(b), γ0(c) ∈ R2 with γ0(b) 6= γ0(c) and γ̇0(b), γ̇0(c) ∈
R2\{0} the cost J [γ] has a minimizer over the set D3.

Ref: [7] at Prop. 3 on pg. 45

Finally, notice that all the results of this section can also be applied to the cost

Jβ[γ] =

∫ c

b

√
‖γ̇(t)‖2 + β2‖γ̇(t)‖2K2

γ(t)dt

as considering the homothety (x, y) 7→ (βx, βy) which maps γ to γβ yields

Jβ[γβ] = β2J [γ].
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Chapter 3

Digital Image Processing

The focus of this chapter is to present an introduction to the field of Digital Image

Processing, stating the main concepts and results, which constitute the background

material to discuss the applications of the following chapters. A more in-depth discussion

can be found in [21].

3.1 Image sampling and digital images

We call greyscale images real functions of two variables f : R2 → R, where the scalar

value at a specific coordinate (x, y) has the physical meaning of brightness that reaches

a certain spatial point on the sensing device. Such device could be the retina inside a

human eye, the film of a camera or a sensor array in a digital camera.

In the context of digital computers and digital acquisition devices it makes sense to

introduce a bound on the codomain and allow only values ranging from 0 (absence of

light, black) to 1 (maximum amount of light, white). Let therefore f : R2 → [0, 1] be a

continuous function of two real variables. A digital image is obtained from f by sampling

and quantization. Discretizing the coordinate values (domain) is called sampling, while

discretizing the amplitude values (codomain) is called quantization. For such conversion

a number of M rows and N columns are chosen.
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(a) Original color image, as perceived
by the human retina

(b) Sampled and digitized image, with
a spatial resolution of 64x64 pixel and
a quantization resolution of 256 colors
(shades of gray)

Figure 3.1: An example of an image as perceived from the eye retina (left) being digitized
by a camera sensor to produce a digital grayscale image (right)

The reason why such representation is necessary is tied to the fact that images are

digitally sampled by sensors with a finite resolution and require a finite amount of data

storage in a digital mass storage device.

For notational clarity and convenience x = 0, 1, 2, ...,M − 1 and y = 0, 1, 2, ..., N − 1 are

used to refer to the discrete coordinates, horizontal and vertical respectively. In addition

the notation for a digital image f(x, y) is dropped, in favor of the notation I(x, y) which

is more common in the field. With such notation we can represent a digital image as a

2D matrix, as follows:

I(x, y) =


I(0, 0) I(0, 1) . . . I(0, N − 1)

I(1, 0) I(1, 1) . . . I(1, N − 1)
...

...
...

I(M − 1, 0) I(M − 1, 1) . . . I(M − 1, N − 1)



Each element of the matrix takes the name of an image element, picture element, pixel

or pel. Historically a rectangular mesh of squared pixels has emerged as the canonical

way of representing and storing digital images, although more exotic ways to define a

different pixel geometry have been proposed and implemented (for example, exagonal

pixels [5]).
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3.2 Image filtering

Spatial filtering is a technique used in a broad variety of applications in image processing.

Spatial filtering acts replacing, for every pixel (x, y), the value of the pixel itself with

one determined by a function defined in a neighborhood of (x, y).

In the pixel representation that we have just introduced, a digital image is always

spatially bounded due to computational and storage constraints. It has therefore to be

finite thus having a boundary ∂R. Let I be a digital image with domain R ⊂ R2, then for

every pixel p ∈ R we can define a function on a neighborhood of p, fp : R ⊃ Np → [0, 1]

so that If (p) = fp(Np) is a filtered image, where fp is the filter at p. The function is

defined on a finite neighborhood under the assumption that the intensities of the pixels

are dependent only locally on the image.

Formally we need to define a filter fp at every point as the definition of the neighborhood

Np depends on the vicinity of the pixel we are evaluating to the edge of the image. For

example we cannot define Np simply as the ball centered on the pixel p with a radius

r > 0, as we would incur in a technical issue on the edge pixels. Usually this issue

is addressed by extending the domain of the image by a few rows/columns of either

constant values pixels or by mirroring the image close to the border using the edge as

symmetry axis. Therefore in all following occurrences we will drop the notation fp in

favor of a lighter f assuming one of these techniques is used.

(a) Image preprocessed to have
constant border (with value 0)

(b) Image preprocessed to have
mirrored border

Figure 3.2: An example of the bottom-right corner of a digital image that is preprocessed
before filtering adding a few rows and columns of pixels

If the filter f is a linear function then it is called a linear spatial filter, otherwise it takes
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the name of nonlinear spatial filter.

A linear spatial filter performs a weighted sum of the pixels of the image. Usually, given

the coordinates of a pixel (x, y), it makes sense for practical reasons to consider only a

square neighborhood with odd resolution centered on the pixel as a filter domain.

A kernel w is a square (sometimes rectangular) matrix that is convoluted with the

image during the filtering process. Mathematically, in the discrete case of digital image

processing, this operation takes the form

Iw(x, y) = w ∗ I(x, y) =
a∑

i=−a

b∑
j=−b

w(i, j)I(x+ i, y + j)

where the matrix has width 2a+ 1 and height 2b+ 1. Iw is the filtered image.

Some linear filters can be seen in action in Figure 3.3. Examples of non-linear filters

are the max-filter, the min-filter and the median-filter, where the value of a pixel is

substituted respectively with the value of the max, min or median in a neighborhood.

3.2.1 Gabor filters

A special class of linear filters commonly used for texture analysis, which are dependent

on orientations, are the Gabor filters. They are defined as

G(x, y;λ, θ, ψ, σ, γ) = exp

(
− x̃

2 + γ2ỹ2

2σ2

)
exp

(
i

(
2π
x̃

λ
+ ψ

))
where, with euclidean scalar product

x̃ = x cos θ + y sin θ = 〈x, y〉 · 〈cos θ, sin θ〉

ỹ = −x sin θ + y cos θ = 〈x, y〉 · 〈− sin θ, cos θ〉

The result of applying these filters is an analysis that studies whether in a certain region

of a digital image there is a specific frequency content, with a particular orientation.

In the spatial domain a 2D-Gabor filter is a Gaussian kernel function modulated by

a sinusoidal plane wave with a certain orientation θ. In the expression of the filter λ

represents the wavelength of the sinusoidal factor, θ represents the orientation, ψ is the

phase offset, σ is the standard deviation of the Gaussian envelope and γ is the spatial

aspect ratio.
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These filters are widely used in the field for their versatility in detecting texture and

for their similarity to how the visual cortex V1 of the brain detects the edges and the

orientations in an image, as we will see in Chapter 4.

Original image

Identity filter0 0 0

0 1 0

0 0 0



Box smoothing

filter

1

9

1 1 1

1 1 1

1 1 1



Sharpening filter 0 −1 0

−1 5 −1

0 −1 0


Ridge detector

filter−1 −1 −1

−1 8 −1

−1 −1 −1



Figure 3.3: Examples of some common convolution kernels used in digital image
processing, which produce smoothing, sharpening or ridge detection for image
segmentation.
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Figure 3.4: Examples of Gabor filters used to detect oriented borders. In the first line
a 100x100 input image. In the following lines, in the first column the Gabor kernels
visualized, with a kernel size of 30, σ = 1, λ = π/4, γ = 1, ψ = π/2 and respectively
θ = 0, π/4, π/2, 3π/4. In the second column the result of the convolution (values from
-1 to 1) and in the third column the same image taken in absolute value (from 0 to 1).
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3.3 Noise

An image may experience a certain corruption that varies the intensity value at some

pixels, which can happen for different reasons (discratization, sensor noise, storage

problems. . . ) and in different ways. This corruption takes often the name of noise,

and it is an undesirable by-product of image capture and handling that alters a digital

image in some way. In this section a few types of noise are discussed.

3.3.1 Gaussian noise

Noise may be introduced during the acquisition phase, when the image is being sampled

by the sensor, and processed by the camera circuitry. Any source of photons, including

the radiation effect due to the heat of the camera itself, is a source of Gaussian noise.

The electronic circuitry then injects its own share of circuit noise while handling the

sensor information.

A typical model of Gaussian noise is additive and independent of position and value of

the pixel. It is possible to write it as

IC(x, y) = I(x, y) +G(x, y)

where IC is the corrupted image, I is the original image and G : R2 → R+ is the

additive noise. Since the physical sensor can provide a limited span of values, usually

the corrupted image is capped by a value M , so that a more concrete expression takes

the form

IC(x, y) = min(I(x, y) +G(x, y),M)

3.3.2 Salt and pepper noise

Salt and pepper noise is a form on noise that presents itself as sparsely occurring white

and black pixels. The amount of noise can be easily quantified by percentage with respect

to the total number of pixels of a digital image, and the probability of a pixel being white

or black is a uniform 50-50, but does not depend on the position. An example can be

found in Figure 3.6.
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3.3.3 Missing information

This form of noise can happen during acquisition in presence of physical obstructions in

front of the sensor or when a portion of the sensor is damaged. Also during handling

and processing, especially in the case of physical images, it can happen that a portion of

the image is ruined. This type of noise is very common, for example, in old film-based

cinematography, where film frames can be damaged by the equipment and white vertical

lines start to appear in the frames. When the information regarding the position of the

noise is present, then it is flagged by setting those pixels at their minimum or maximum

value.

(a) Original image (b) The image after corruption

Figure 3.5: An image has been corrupted in a rectangular region, so that all the
information in such region has been lost.

3.4 Image restoration

Image restoration is a process that seeks to recover an image that has been corrupted in

some way, according to a certain type of noise.

The most common and effective techniques used to correct noise are linear and non-linear

convolutions. For example, Gaussian noise is easily reduced with a Gaussian smoothing

kernel. Salt and pepper noise is usually corrected with a median filter. Some types of

noise such as motion blurring, Moiré patterns (due to Nyquist sampling theorem [21])

or missing information are more challenging to handle.
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(a) Corrupted image with salt and
pepper noise

(b) Restored image with a 3x3 median
kernel

Figure 3.6: Example of a restoration process using a median filter

More advanced techniques currently used for image inpainting, that seek to recover

missing information, can be roughly divided in three families of methods: patch-based

substitution, PDE methods and machine learning models (more recently in the form of

deep neural networks).

Patch-based substitution aims to fill the corrupted areas with connected patches of pixels

extracted from the uncorrupted region of the image, in order to produce a restoration

that preserves the original texture.

PDE methods aim to solve a partial differential equation with the corrupted image as

the initial conditions in order to achieve reconstruction. This is usually done with an

equation dependent on time, and iteratively letting the image be altered by the evolution

step of the PDE until the optimal result is achieved.

Deep neural networks are machine learning models inspired by the neural connections in

the brain, that aim to learn from a dataset of features given the corresponding labels by

adjusting how the neurons communicate with each others.

In patch-based inpainting a necessary requirement is to know which parts of the image

are corrupted and which are not. PDE and machine learning methods however can

be constructed in a way as to not require previous knowledge on the position of the

corruption, and therefore can be more suitable for automated applications where the

nature or position of the corruption in unknown.

The study of patch-based methods and neural networks, and more broadly the field of

machine learning, is however out of the scope of this discussion and will therefore not
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be introduced in any more detail. In Chapter 4 we will discuss a particular PDE-based

restoration method, while in Chapter 5 a novel algorithm inspired by such method is

presented.

3.5 Frequency domain filtering

If M and N are respectively the number of rows and columns of an image, m and n

the number of rows and columns of a filter, it takes MNmn operations to apply kernel

convolution to an image. If one uses the Fourier transform to move the operation to

frequency domain, where convolution becomes multiplication, the computational cost

(including Fourier transform and inverse) becomes 2MN log2(MN), thanks to the Fast

Fourier Transform algorithm.

Theorem 43 (Convolution theorem)

Let g(x) and h(x) be two functions with Fourier transforms G = F [g], H = F [h]

then

g ∗ h = F−1[G ·H]

One could also want to directly filter in frequency domain by, for example, excluding a

certain class of frequencies. Consider the following example of Moiré noise, in the form

of repeated black horizontal lines, filtered with a frequency domain technique to exclude

the exact frequencies of the horizontal lines.

(a) Original image (b) Noisy image (c) Restored image

(d) Spectrum of the
original image

(e) Mask in frequency
domain

(f) Spectrum of
restored image

Figure 3.7: Example of reconstruction in frequency domain. Source image (a) courtesy
of [15].
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The current work on PDE-based

image restoration

4.1 The primary visual cortex V1

A branch of the field of image restoration seeks to achieve an optimal result drawing

inspiration from the biological model that drives human perception. Visual information

is processed in the brain by the visual cortex in the occipital lobe, which is located in

the back of the brain. One of the most studied visual areas in the visual cortex is the

primary visual cortex V1, which is highly specialized in processing information about

pattern recognition. From basic neurology we know that a neuron is either active or

inactive. When it gets sufficiently stimulated by an external input (for example a visual

input) it spikes, which is the action of releasing neurotransmitters from its synapses to

connected neurons. If a connected neuron gets sufficiently stimulated, above a certain

threshold summing all its inputs, then it spikes itself. The result of this whole operation

is the thinking process.

There exist two types of synapses: excitatory and inhibitory. The excitatory synapses

promotes spiking in the connected neurons whereas the inhibitory ones prevent it [37].

Upon studying the visual cortex V1 one finds that the neurons are arranged in cells with

elongated receptive fields, which exhibit even or odd symmetric patterns similar to Gabor

filters [32]. In a simplified model the neurons inside V1 are grouped into orientation

columns, each being sensitive to stimuli at a specific point of the retina, corresponding

to the spatial coordinate on the field of view, and a specific orientation. Orientation

columns are themselves grouped together into hypercolumns that are sensitive to stimuli

in a certain position of the retina, regardless of the orientation. Orientation columns
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are connected between themselves in two different ways: vertical (inhibitory) synapses

and horizontal (excitatory) synapses. The vertical connections happen between columns

sensitive to similar directions belonging to the same hypercolumn, whereas horizontal

ones happen between columns belonging to different hypercolumns that are however

spatially close.

The interpretation is that the human brain tries to ”fill-in” the gaps that preserve

a similar orientation, while making more pronounced the contrast between different

directions. A visual example the reader might relate to can be observed in Figure 4.1 by

psychologist Gaetano Kanisza.

Figure 4.1: Kanisza’s triangle, an example of illusory contour that stimulates an high
response of the cortex V1

The task of mathematically modeling the cortex behavior aforementioned was introduced

by Petitot et al. [36] and [35].
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Figure 4.2: A mathematical scheme of the primary visual cortex V1 while ”observing”
a curve, courtesy of Boscain et al. [8]

Neurologists tell us that in the same hypercolumn are also present neurons that are

sensitive to other stimuli properties like colors, displacement directions (motion) and

many others. In this simplified model we will only focus on orientations.

4.2 The CPS model

The Citti-Petitot-Sarti restoration model, published in 2006, is a milestone in exploiting

the mathematical formulation of the visual cortex V1. It makes no assumption on the

position of the corruption, so that it is a ”blind algorithm” that can be applied to any

visual sample. It assumes however that an image is grayscale, with values between 0 and

1, where 0 is regarded as white and 1 as black. Corruption is represented as an area of

constant value 0 (white). The choice of having the intensity values inverted with respect

to what it is usually the norm in the field of image processing is due to the fact that

commonly the details on a picture, which are the high frequency information, are black

rather than white. Additionally it is assumed that the image function I : R2 → [0, 1] is

smooth and with no degenerate critical points (which is not a tricky requirement, as we

will see as a corollary to a result by Boscain et al. [8] introduced later in this chapter).

In this model the visual cortex V1 is modeled by SE(2) ' R2 × S1, where every

hypercolumn located on the R2 euclidean plane corresponds to a fiber S1. In this

representation the retina is R2. The CPS model takes inspiration from the Gabor filters
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(see section 3.2.1) modeling each orientation column as one. It follows the assumption

that the visual cortex V1 acts in a similar way to a stack of Gabor filters. This assumption

was first formulated by Marcelja [32], and was later empirically confirmed by Jones and

Palmer [27].

4.2.1 Lifting procedure

We have discussed in Chapter 2 how to lift a single curve from R2 to SE(2). The

procedure to lift an image is different and, although there appears to be a preferred

procedure (preferred both for simplicity and computational complexity), it is not unique

nor canonical.

The most common lifting procedure links every point to their counterpart in SE(2)

according to the direction of maximum response of the simple cells, and filters out

spurious directions. This is done by computing the gradient of the image in order to

know the orientation of the level curves of the function I : R2 → [0, 1] at every point

(x, y) ∈ R2.

Recall that for an image I : R2 ⊃ R → [0, 1] the directional derivative at an angle θ,

X3(θ)I, takes the form

X3(θ)I = − sin(θ)∂xI + cos(θ)∂yI

which gives the projection of the gradient in the direction of the vector (− sin θ, cos θ).

The maximum is achieved when (− sin θ, cos θ) is the direction of the gradient. Denote

by θ̄ such angle

|X3(θ̄)| = max
θ
|X3(θ)|

Since the gradient is perpendicular to the level curves of the image, it follows that θ̄ is

the direction of the level curves, as (cos θ, sin θ) is perpendicular to (− sin θ, cos θ).

Citti and Sarti [13] then introduce the quantity

O(x, y, θ) :=

I(x, y) |X3(θ̄)| = maxθ|X3(θ)|

0 otherwise

which will have maximum value for each (x, y) at θ̄. A point (x, y) on the image I gets

lifted to the point (x, y, θ̄). The whole image domain is lifted in SE(2) on the domain

Σ0 = {(x, y, θ̄) : |X3(θ̄)I| = max
θ
|X3(θ)I| > 0}
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The lifted set corresponds to the maximum of the activity of the output of simple cells

that are stimulated exclusively by external signals which can be modeled mathematically

as a Dirac mass concentrated on Σ0

Ĩ(x, y, θ) = O(x, y, θ̄)δΣ0

After such definition we have arrived to a point where Ĩ(x, y, θ) corresponds to the image

on the visual cortex V1, where all the neural activity is concentrated on the Dirac mass

δΣ0 . Integrating over a fiber S1 that is non-critical at position (x, y) yields exactly the

intensity of the original image at position (x, y).

Notice that if a point is critical for the function I(x, y) then the gradient at that point

is zero and therefore such point will not be part of Σ0.

4.2.2 Differential operators and activity propagation on the

sub-Riemannian space

Up until now we have built up some geometric foundation on the sub-Riemannian space

SE(2) in chapter 2 and defined a lifting procedure that links together 2D images with

the neural representation in the visual cortex V1 modeled by SE(2). In such space we

are able to define curves, connect points and measure lengths. We lack however a way

to introduce propagation of neural activity in the form of partial differential equations.

The first step towards this goal is to define the differential operators used in this setting.

The most basic differential operator is the concept of derivative of a real function.

Definition 44 (Lie derivative in SE(2))

If u : SE(2) → R is a real function, ξ0 ∈ SE(2) and γi(s) = exp(sXi)(ξ0) is an

exponential curve, then we define the Lie derivative of the function u at the point

ξ0 as

LXiu := Xiu(ξ0) :=
d

ds
(u ◦ γ)|s=0

when the right hand term exists and is finite.

Remark: The Lie derivative is defined for functions, vector fields, tensor fields and

differential forms on a manifold. However in this work only the concept of Lie derivative

of functions on the manifolds SE(2) and PTR2 is used and therefore the discussion for

the other cases is omitted. An introduction to such definitions can be found at [41] (chpt.

20).
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Having endowed the space with a derivation we can now produce a notion of other

differential operators in this geometrical setting such as the gradient, the divergence, the

Laplacian and the Hessian of a function.

Definition 45 (Differential operators in SE(2))

Let u : SE(2)→ R be a function for which X1u and X2u exist and are continuous.

Let ν = (ν1, ν2) be a vector field in the horizontal distribution. Then we can define

differential operators in terms of the Lie derivative, in analogy to the classical

differential operators:

∇Ru = (X1u,X2u)

divRν = X1ν1 +X2ν2

∆Ru = divR(∇Ru)

HessR =

(
X2

1u
1
2
(X1X2 +X2X1)u

1
2
(X1X2 +X2X1)u X2

2u

)

Note that the mixed coefficients in the Hessian matrix contain the mean of the mixed

derivatives in order to make it symmetric, as X1 and X2 do not in general commute.

The Laplacian can also be seen as the trace of the Hessian matrix.

We denote as C1
R the set on which X1u and X2u exist and are continuous. In general we

do not require u to be differentiable w.r.t. X3 so that C1 ⊂ C1
R.

Definition 46 (Regular surface for SE(2))

A subset Σ ⊂ R × S1 is called a regular surface if it can be locally described as

the 0-level set of a function u of class C1
R with non vanishing gradient. Precisely

there exists a neighborhood U of every point of Σ and a function u defined on U

such that

Σ ∩ U = {(x, y, θ) ∈ U : u(x, y, θ) = 0,∇Ru(x, y, θ) 6= 0}

In particular the lifting procedure defined by Citti-Petitot-Sarti in [13] lifts an image to

a regular surface Σ0.

If Σ is a regular surface we can define the R-normal vector to such surface as

νR =
(X1u,X2u)√

(X1u)2 + (X2u)2
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and define the curvature of the surface as

HR(Σ) = divR(νR)

At this point we have all the tools to model the neural propagation in the visual cortex

V1. The diffusion equation taken into consideration in the CPS model is a simple linear

diffusion in the geometric structure, which takes the form

∂tu = ∆Ru

Recall that in this setting

∆R = divR(∇Ru) = divR(X1, X2) = X2
1 +X2

2

which takes the name of sub-Laplacian.

Since the associated matrix to ∆R has zero determinant at every point the sub-Labplacian

is a strongly degenerate operator. However the following result makes it suitable for our

application nonetheless:

Theorem 47

Let P be an operator written in the form

P =
r∑
j=1

X2
j +X0 + c

with Xi being the first order homogeneous differential operators with C∞(Ω)

coefficients and c ∈ C∞(Ω) where Ω is an open set of Rn. If among the operators

Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]],. . . there exist n which are linearly independent at

any given point in Ω then P is hypoelliptic.

Ref: [26] at 1.1 on pg. 149

In our specific setting Hörmander’s theroem (thm. 47) takes the form

Theorem 48

Since the Lie algebra generated by X1 and X2 is of maximum rank at every point,

then the sub-Laplacian operator is hypoelliptic. This simply means that for every

initial condition, the solution of the evolution equation is C∞.

Ref: [13] at Thm. 2.1 on pg. 317
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4.2.3 The resulting completion model

The completion model developed by Citti and Sarti joins the work of sub-Riemannian

diffusion (∂tu = ∆Ru) with non maxima suppression, which allows first to propagate

the existing information simulating the physical effect of the visual cortex V1 and then

complete boundaries and surfaces.

The starting point is to consider the lifted function Ĩ(x, y, θ) and introduce a function

with a time variable u : R+ × SE(2)→ R with initial condition

u(0, x, y, θ) = u0(x, y, θ) := Ĩ(x, y, θ)

At this point we proceed by discretizing the time variable. Let h be the length of a time

interval, n be the step and therefore t = nh be the time at step n. The idea of Citti and

Sarti is to fix two natural numbers N1 ≤ N2 and first diffuse the image in a finite time

interval for N1 steps followed by non-maxima suppression for N2−N1 steps. In the ideal

case h→ 0.

The process starts with initial surface Σ0 = {(x, y, θ) : ∂θu0 = 0, ∂2
θu0 < C} for some

constant C. Such surface corresponds to all the points that are critical with respect to θ

and for which u0 restricted to the fiber is either a concave function or has low convexity.

At every step n the resulting diffusion system is∂tu = ∆Ru on SE(2)\Σn for t ∈ [nh, (n+ 1)h]

u(·, nh) = un(·, nh)δΣn

At every step n we get to define a new function un+1 such that

un+1(·, (n+ 1)h) = u(·, (n+ 1)h)

and a new surface Σn+1 such that

Σn+1 = {(x, y, θ) : ∂νΣn
un+1 = 0, ∂2

νΣn
un+1 < 0}

which is choosing the concave critical points according to the derivative along the

direction of the normal vector field to Σn. Intuitively this can be seen as suppressing all

the non-maxima when computing
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u(·, (n+ 1)h) = un+1δΣn+1

In the original work of Citti and Sarti [13] it is presented a proof of convergence to a

minimal surface Σ in the rototranslation space for T → ∞ when h → 0. This means

that it is satisfied

∆Ru− 〈(HessRu)νΣ, νΣ〉 = 0

HR(Σ) = divR(νΣ) = 0

Figure 4.3: The original image (top left) is lifted to SE(2) with missing information
in the center (top right). The algorithm restores the information on SE(2) (bottom).
Courtesy of Citti and Sarti [13].
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Figure 4.4: The original image (top left) is lifted to SE(2) (top right). Both modal and
amodal completion are performed by the algorithm at the same time (bottom). Courtesy
of Citti and Sarti [13].

4.2.4 Numerical scheme

Citti and Sarti used finite differences to approximate the model equations, with a grid

(tn, xl, ym, θq) = (n∆t, l∆x,m∆y, q∆θ)

with

∆x = ∆y, ∆θ = ∆x2, ∆t = ∆x2

Denote by unlmq the value of the function u at the grid point tn, xl, ym, θq.

Citti and Sarti chose to approximate the time derivative with first order forward

differences and the space derivatives with second ordered centered differences.

Denote by Dx, Dy and Dθ the finite difference approximations of ∂x, ∂y and ∂θ.

Analogously denote by D1 and D2 the finite differences approximations for vector fields

X1 and X2. Denote by Dij the second order derivative corresponding to DjDi.
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D1u
n
lmq = cos(θq)Dxu

n
lmq + sin(θq)Dyu

n
lmq

D2u
n
lmq = Dθu

n
lmq

D11u
n
lmq = cos(θq)

2Dxxu
n
lmq + 2 cos(θq) sin(θq)Dxyu

n
lmq + sin(θq)

2Dyyu
n
lmq

D22u
n
lmq = Dθθu

n
lmq

D12u
n
lmq = sin(θq)(Dyθu

n
lmq −Dxu

n
lmq) + cos(θq)(Dyu

n
lmq +Dxθu

n
lmq)

D21u
n
lmq = cos(θq)Dθxu

n
lmq + sin(θq)Dθyu

n
lmq

Therefore the evolution solving the diffusion equation on SE(2) takes the form

un+1
lmq = unlmq + ∆t(D11u

n
lmq +D22u

n
lmq) for 0 ≤ n < N1

vN1
lmq = D2u

N1
lmq at n = N1

un+1
lmq = unlmq + ∆t

(
(D2vnlmq)

2D11unlmq+(D1vnlmq)
2D22unlmq

D11vnlmq+D22vnlmq

− (D12unlmq+D21unlmq)D1vnlmqD2vnlmq
D11vnlmq+D22vnlmq

)
for N1 ≤ n < N2

vn+1
lmq = D2u

n
lmq for N1 ≤ n < N2

with Neumann boundary conditions on x and y and periodic boundary condition on θ.

4.3 The Boscain model

The Boscain model is constructed starting from the CPS model, but built over the sub-

Riemannian structure PTR2 rather than SE(2), thus considering direction regardless of

orientations, and specifically taking into account the fact that when an image is not just

a curve then the sub-Riemannian problem with fixed boundary conditions is insufficient.

The authors came to the diffusion equation

∂tφ(x, y, θ, t) = ∆Hφ(x, y, θ, t)

where

∆H = (X1)2 + β2(X2)2 = (cos(θ)∂x + sin(θ)∂y)
2 + β2∂2

θ

is called the hypoelliptic heat kernel or sub-Laplacian.

The Boscain restoration algorithm is performed in four steps. Let Ic be the corrupted

image.
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1. Smoothing of Ic: The corrupted input image Ic is smoothed by convolution

with a Gaussian of standard deviation σx = σy > 0. Equal standard deviation

on both axes guarantees invariance by rototranslation. The resulting image Is =

Ic ∗G(σx, σy) is generically a Morse function.

Definition 49 (Morse function)

A smooth function f : R2 → R is said to be a Morse function if it has only

isolated critical points with nondegerate Hessian.

Ref: [8] at 2.9 on pg. 1326

Proposition 50

Generically, the convolution of an L2 function over a bounded domainD ∈ R
with a Gaussian G is a Morse function.

Ref: [8] at Appendix on pg. 1331

2. Lift of Is to PTR2: Every point (x, y) is associated with an orientation θ ∈ R/(πZ)

corresponding to the direction of the level set of Is at the point, which is well

defined when ∇Is 6= 0. Where ∇Is = 0 we associate every possible direction. A

lifted support SI is introduced as

SI = {(x, y, θ) ∈ PTR2 : ∇Is(x, y) · (cos θ, sin θ) = 0}

which corresponds to the domain where either ∇Is(x, y) = 0 or θ is the direction

parallel to the level set.

Proposition 51

If Is is a Morse function, then SI is an embedded 2D submanifold of PTR2.

Ref: [8] at prop19 on pg. 1327

3. Lift of Is to a distribution:

Īs(x, y, θ) = Is(x, y)δ(SI)

This step is formally necessary because the support SI of Is has Lebesgue measure

zero, and therefore Is is vanishing almost everywhere on PTR2.

4. Hypoelliptic evolution: Fix T > 0 and compute the solution at time T to the

Cauchy problem ∂tφ(x, y, θ, t) = ∆Hφ(x, y, θ, t)

φ(x, y, θ, 0) = Īs(x, y, θ)
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with

∆H = (X1)2 + β2(X2)2

X1 = cos θ∂x + sin θ∂y

X2 = ∂θ

with a fixed parameter β.

5. Projecting to R2: The reconstructed image is computed as

IT (x, y) = max
θ∈P 1

φ(x, y, θ, T )

From a computational standpoint Boscain [8] presents also a method to disintegrate

the regular representation of SE(2) using the non-commutative Fourier transform with

respect to the space variable x = (x, y). In Fourier space the Cauchy problem becomes

∂tũ(t,x, θ) = β2∂2
θ ũ(t,x, θ)− 4π2(x cos θ + y sin θ)2ũ(t,x, θ)

ũ(0,x, θ) = ˜̄Ic(x, θ)

which is highly parallelizable as it can be solved simultaneously at each point x.

(a) Corrupted image (b) Restored image

Figure 4.5: Example of restoration on an antropomorphic image, where the details
resemble for the most part curves. Courtesy of Boscain et al. [8].
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4.4 Advanced techniques

In a more recent article by Boscain et al. [10] from 2018 a few improvements over the

aforementioned restoration process have been presented. These improvements aim to

exploit the knowledge of the position of the corruption to yield a multi-step algorithm

for highly corrupted image inpainting.

4.4.1 Hypoelliptic diffusion with varying coefficients

The key idea is to exploit the knowledge of the position of the corruption to modify

the restoration procedure, either by applying the hypoelliptic diffusion only to corrupted

regions of the image, or to consider a different final time T for every region.

By modifying the operator ∆H to be

∆H = a(X1)2 + b(X2)2

a, b : R2 → R

we can control the intensity of the diffusion as a function of the position (x, y). The

key idea is to choose small values of a, b at non-corrupted points and larger values at

corrupted points.

Since Ic = 0 at corrupted points the coefficients a(x, y) and b(x, y) can be chosen to be

a continuous approximation of the indicator function of δC of the corrupted region C.

a(x, y) = a0 + a1 exp

(
−I

2
c (x, y)

σ

)

b(x, y) = b0 + b1 exp

(
−I

2
c (x, y)

σ

)

4.4.2 AHE algorithm

Another algorithm presented in [10] is Averaging and Hypoelliptic Evolution (AHE) which

is a 4-steps algorithm divided as follows

1. Preprocessing: The original image f(x, y) is first divided in two domains: B

(Bad) is the corrupted domain and G (Good) the non-corrupted domain. Then

f(x, y) is preprocessed by filling the corrupted areas with a rough approximation



4.4 Advanced techniques 59

obtained by convolution in a neighbor. The fill-in algorithm takes inspiration

from the Breadth-First Search algorithm (BFS, [11]) by iteratively computing the

discrete boundary of the corrupted area, and substituting every pixel with an

average on a non-corrupted neighborhood.

More precisely, let f 0 = f , G0 = G and B0 = B. If we consider K(xk, yl) a square

neighborhood of the point (xk, yl) then define Gi
kl as K(xk, yl) ∩Gi.

Define now for (xk, yl) ∈ ∂Bi:

f i+1(xk, yl) =
1

|Gi
kl|

∑
(x,y)∈Gikl

f i(x, y)

and for (xk, yl) /∈ ∂Bi:

f i+1(xk, yl) = f i(xk, yl)

Then

Gi+1 = Gi ∪ ∂Bi

Bi+1 = Bi\∂Bi

and proceed until B = ∅. Denote by g(x, y) the image obtained after this step.

2. Main diffusion: Following the preprocessing step those that were previously gaps

in the image are now filled, leaving us with a partially restored image g(x, y)

affected by a strong mosaic effect.

A quantitative way to estimate the intensity of such mosaic effect is to compute

the magnitude of the gradient (MoG) of the image, MoG(x, y) = |∇g(x, y)|. Such

function will have value 0 in regions of constant intensity and high value in regions

where the rate of change of the intensity of the image is high, usually corresponding

to the edges of the mosaic effect.

Once we have established which are the pixels that are to be smoothened we can

lift the image g(x, y) to ḡ(x, y, θ) and apply a round of hypoelliptic diffusion with

varying coefficients, with coefficients a(x, y) and b(x, y) chosen so that the diffusion

is more intense at the points where the MoG is higher. Boscain et al. [10] suggest

to use coefficients

a0 = 0.05, a1 = 0.2, b0 = 0.55, b1 = 5, σ = 0.4

a(x, y) = a0 + a1 exp

(
−ϕ

2(x, y)

σ

)
b(x, y) = b0 + b1 exp

(
−ϕ

2(x, y)

σ

)
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ϕ(x, y) = 1− |∇g(x, y)|
max|∇g(x, y)|

Denote by h(x, y) the image obtained by projecting the result of the hypoelliptic

diffusion with varying coefficients.

3. Synthesis Even by fine-tuning the coefficients a(x, y), b(x, y) a blurring is

introduced as a result of the hypoelliptic diffusion since the pixels with high MoG

are not only the edges of the mosaic effect, but high-frequency details as well.

To restore some of the high frequency details we repeat the BFS procedure in step

1, considering however values in h(x, y).

f i+1(xk, yk) = h(xk, yk)

∑
(x,y)∈Gikl

f i(x, y)−1h(x, y)−1∑
(x,y)∈Gikl

f i(x, y)−2

4. Weak smoothing The last step is a final smoothing to reduce the mosaic effect

partially reintroduced in step 3. To do so we apply the same procedure as in step

2, with smaller coefficients:

a0 = 0.015, a1 = 0.1, b0 = 0.15, b1 = 1.5, σ = 0.3

Figure 4.6: Example of AHE algorithm, courtesy of Boscain et al. [10]



Chapter 5

Own work and further developments

In the previous chapter the current state of PDE-based restoration algorithms exploiting

the SE(2) and PTR2 geometric structures was presented. All the literature on the

subject, which the reader can find listed in the bibliography, has been developed in the

last two decades. As it is a relatively new approach to the problem of image restoration

there is still much work that can be done to improve the results one can obtain with

such methods (especially compared to the state of the art based on Neural Networks).

In this chapter a new lifting method based on PTR2 is presented, together with a novel

algorithm for image restoration.

In the writing of this chapter, as well as the next one, the methods and algorithms

presented by Citti and Sarti [13] and Boscain et al. [8], [9], [10] have been re-implemented

as a Python library based on opencv. The choice of using Python as the programming

language was made for its versatility, availability of libraries and license-wise compliance

with the GNU General Public License (GPL) [39]. All the figures presented in these two

chapters are generated using this new library.

5.1 Examples and tests

While reading the literature on the subject it is noticeable a general lack of examples

and results regarding the simple cases of neural completion: simple straight lines,

circles or other basic shapes. This section aims to cover such lack by producing

intuitive examples of perception completion based on the work presented in the previous

chapter. This step is of fundamental importance as it provides a deep insight in how the

restoration algorithm behaves in the discrete case of digital image processing, providing

inspiration for new techniques and resulting in a way to address possible theoretical or
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implementation bugs as well as numerical oversights in the code.

The simplest possible example is the case of straight lines, by allowing the diffusion

to take place up to a large value T (convergence) with different values of β. We

expect that in the case of clean straight lines a diffusion with β = 0 will produce

almost perfect perception completion while non-zero values of β will diffuse the lines

also perpendicularly.

(a) Original image (b) β = 0, T = 100 (c) β = 0.2, T = 100

(d) Original image (e) β = 0, T = 100 (f) β = 0.2, T = 100

(g) Original image (h) β = 0, T = 100 (i) β = 0.2, T = 100

Figure 5.1: In the first column the original images. Second and third columns are the
results of diffusion with β = 0 and β = 0.2 respectively.

We can notice how our assumption was partially wrong as there is in fact a diffusion that

takes place also perpendicularly to the direction of the lines even when β = 0. Although

the role of the parameter β modulating the angle of diffusion is what we have foreseen.

If we take one of the lines and we zoom in to try to analyze what might be the origin

of the perpendicular component of the diffusion we soon notice that at the edge of the
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corruption for a small portion of pixels the level line of the image function is in fact

perpendicular to line itself, and therefore the model is diffusing the image also in that

direction.

(a) Original image (b) T=1

Figure 5.2: One step of diffusion with β = 0 and dt = 1. dt is chosen to be large in order
to make the effect more visible. The original image (a) is the same as the one in figure
5.1 but only a cropped portion is displayed.

.

As a last example an interrupted circumference is processed (figure 5.3). Choosing β = 0

every point on the circumference is diffused towards the tangent direction. This diffusion

produces a visible distortion as the discrete nature of digital images makes some tangent

vectors predominant with respect to the others. With β = 0.2 the restoration algorithm

produces less distortion as the angle of diffusion is wider, but the smoothing effect is

more extensive and the resulting image appears less sharp.

(a) Original image (b) β = 0, T = 100 (c) β = 0.2, T = 100

Figure 5.3: A corrupted circumference (a) is blurred using a Gaussian filter with σ = 1.8
and afterwards diffusion is applied (b and c).

5.2 Gaussian Lift

In this section a different and yet unexplored approach to a lift over PTR2 is introduced.

The idea is based on ”spreading” the input signal around the orientation of maximum
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response θ̄ of the simple cells, and doing so following a Gaussian distribution centered

on such orientation.

σ = 0.1

σ = 0.5
σ = 1

θ̄

0 π

Figure 5.4: Illustration of the distribution of the neural activation on a specific fiber
P 1 with different values for σ, for θ̄ = π

2
. If σ is small enough the neural activation is

negligible outside a ball centered around θ̄. If on the other hand σ is too large then the
neural activation happens at every point of the fiber resulting in a very blurry image.

Let ∇I be the gradient of the image and θ be the angle of the level curve (perpendicular

to the gradient). The lifting formula takes the form

L(I)(x, y, θ) = I(x, y) · exp

−
〈
∇I(x,y)
|∇I(x,y)| , (cos θ, sin θ)

〉2

2σ2


and we can denote by Ĩ = L(I) the lifted image on PTR2.

To obtain a viable lifting procedure an appropriate corresponding inverse has to be

defined. Introduce the following quantities:

Q(x, y, θ) := −
∫ θ

0

∂

∂θ̃
ln(Ĩ(x, y, θ̃))dθ̃

Qmin(x, y) := min
θ∈[0,π]

Q(x, y, θ)

µ(x, y, θ) := Qmin(x, y)−Q(x, y, θ)

Then the following theorem holds:
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Theorem 52

π : PTR2 → R2 defined as

π(Ĩ)(x, y) =
1

π

∫ π

0

Ĩ(x, y, θ) · e−µ(x,y,θ)dθ

is an inverse for

L(I)(x, y, θ) = I(x, y) · exp

−
〈
∇I
|∇I| , (cos θ, sin θ)

〉2

2σ2



Proof. Compute explicitly Q(x, y, θ) by applying the fundamental theorem of

calculus

Q(x, y, θ) = −
∫ θ

0

∂

∂θ̃
ln(Ĩ(x, y, θ̃))dθ̃

= −
∫ π

0

∂

∂θ̃

ln(x, y)−

〈
∇I
|∇I| , (cos θ̃, sin θ̃)

〉2

2σ2

 dθ
=

∫ π

0

∂

∂θ̃

〈
∇I
|∇I| , (cos θ̃, sin θ̃)

〉2

2σ2
dθ̃

=


〈
∇I
|∇I| , (cos θ̃, sin θ̃)

〉2

2σ2


θ

0

=

〈
∇I
|∇I| , (cos θ, sin θ)

〉2

2σ2
−

〈
∇I
|∇I| , (1, 0)

〉2

2σ2

and compute explicitly its minimum w.r.t. the angle θ knowing that the normalized

gradient of the image is a vector of norm 1 oriented at an angle in [0, π), and that

there will be at least one angle such that (cos θ, sin θ) is parallel to the gradient of
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the image.

Qmin(x, y) = min
θ∈[0,π]


〈
∇I
|∇I| , (cos θ, sin θ)

〉2

2σ2
−

〈
∇I
|∇I| , (1, 0)

〉2

2σ


= min

θ∈[0,π]


〈
∇I
|∇I| , (cos θ, sin θ)

〉2

2σ2

−
〈
∇I
|∇I| , (1, 0)

〉2

2σ2

= 0−

〈
∇I
|∇I| , (1, 0)

〉2

2σ2

= −

〈
∇I
|∇I| , (1, 0)

〉2

2σ2

Now define µ as follows

µ(x, y, θ) = Qmin(x, y)−Q(x, y, θ) =

〈
∇I
|∇I| , (cos θ, sin θ)

〉2

2σ2

and by plugging in these terms the conclusion follows.

π(Ĩ)(x, y) =
1

π

∫ π

0

Ĩ(x, y, θ) · e−µ(x,y,θ)dθ

=
1

π

∫ π

0

I(x, y)e−
〈 ∇I
|∇I| ,(cos θ,sin θ)〉2

2σ2 e
〈 ∇I
|∇I| ,(cos θ,sin θ)〉2

2σ2 dθ

=
1

π

∫ π

0

I(x, y)dθ

= I(x, y)

Although it seems that this whole computation has been done as a mathematical exercise

for its own sake there is a deeper meaning in computing Q, Qmin and µ. If one takes an

image, lifts it to PTR2 and applies a diffusion for T > 0 or actually any operation that

alters it, then the information about the gradient of the original image in R2 loses its

meaning, as it is no longer linked to the information in PTR2. Thus it is fallacious to

project Ĩ using the ”old” gradient map. However µ can be directly computed in PTR2

without knowing the gradient of the image in R2, hence providing an actual well-defined

way to project the neural image back to a digital image.
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(a) Original image (b) Blurred image

(c) CPS lift, T = 0.5 (d) CPS lift, T = 3

(e) Gaussian lift, σ = 10,
T = 3

(f) Gaussian lift, σ = 1,
T = 3

(g) Gaussian lift, σ = 0.5,
T = 3

(h) Gaussian lift, σ = 0.1,
T = 3

Figure 5.5: A corrupted image (a) is blurred with a Gaussian kernel (b) and lifted using
the lift presented by Citti and Sarti (b, c and d) or by Gaussian lift (e, f, g and h).
On the same time interval diffusion performed on a Gaussian lift with higher σ is more
stable than the same diffusion applied on the lift proposed by Citti and Sarti [13].
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(a) Gaussian lift, T = 21
and β = 0.1

(b) Gaussian lift, T = 21
and β = 1

(c) Gaussian lift, T = 21 and
β = 10

Figure 5.6: The same original image as in 5.5 is blurred and lifted through Gaussian lift
with σ = 100 and then diffused with β = 0.1 (a), β = 1 (b) and β = 10 (c). Smaller
values of β produce crisper results.

Remark: The biological justification behind the introduction of this new lifting

procedure takes inspiration yet again from the Gabor filters studied in the work by

Marcelja [32] and Jones and Palmer [27]. In a Gabor filter the signal decays exponentially

away from its orientation θ. If an hypercolumn is modeled as a stack of Gabor filters

with different orientations what this newly introduced lifting procedure actually does is

suppressing the signal of all the non-maxima filters.
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5.3 WaxOn-WaxOff technique

”Wax on, left hand. Wax off, right hand. Wax on, wax off. [. . . ] Don’t

forget to breath....very important!” (Mr. Miyagi, [3])

In this last section a novel technique exploiting the sub-Laplacian ∆H = X2
1 + β2X2

2 is

presented. Image restoration is performed in two steps: an hypoelliptic diffusion followed

by a sharpening process.

The inspiration comes, yet again, from the heat equation. In a PDE lecture, after learning

about the heat equation, one could wonder if it were possible to reverse the diffusion

produced by the heat equation in order to predict the initial temperature profile at t = 0

given any instantaneous temperature profile at t = T1. Unfortunately the short answer

is no ([18], [40]): the heat flow is an irreversible process and solving the problem of going

backwards in time yields chaos. Although a solution for some t = T0 ∈ [0, T1] clearly

exists.

The problem of going backwards in time reversing the effect of the heat flow is extremely

susceptible to noise and will eventually diverge ”blowing up”. What we can do however

is setting up a numerical approach to reverse the heat diffusion only up to a certain time

T0, and stop it before it blows up.

We can apply the same principle to the diffusion over PTR2 defined by ∆H , and propose

a new algorithm for image restoration: assuming that for small T we can recover the

initial profile of neural activity by reversing the diffusion PDE, we can sharpen the

restored image by applying such reverse diffusion considering a large value of β.

Thus we first ”put the wax on”, diffusing the image alongside the level curves with a

small β, and then ”get the wax off”, sharpening using a larger value for β. In-between

steps the image is projected to R2 and lifted back to PTR2 to avoid noise, which is

mainly generated in the WaxOff phase of the algorithm.

The main differences with the methods proposed by Citti and Sarti [13] and by Boscain

et al. [8] are a different lifting procedure that diffuses the neural activity on a broader

family of association fields, the introduction of two parameters β for both diffusion and

regression, and the replacement of non-maxima suppression in favor of a sharpening

technique based on reversing the diffusion process.
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(a) 1 step WaxOn (b) 1 step WaxOn-WaxOff (c) 2 steps WaxOn-WaxOff

Figure 5.7: Example of diffusion WaxOn on Gaussian lift (a) followed by regression
WaxOff for small T (b). Multiple iterations of WaxOn-WaxOff are sequentially applied
to produce (c)

(a) Original image (b) Step 2 (c) Step 4

(d) Step 6 (e) Step 8 (f) Step 10

Figure 5.8: WaxOn-WaxOff diffusion obtained by iterating WaxOn for T = 5 with
β = 0.1 and WaxOff for T = 0.2 with β = 5. After every iteration a sharpening kernel
and a Gaussian smoothing kernel are used to additionally reduce noise. An arc between
every pair of lines appears and becomes more visible after every iteration. This is the
projection of a geodesic in PTR2 connecting every pair of lifted lines, as opposed to a
geodesic in R2 that would be a straight line.
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An interesting feature of this technique is that in the sharpening part of the algorithm

both modal and amodal completions are clearly highlighted. See Figure 5.9 for an

example.

(a) Original image (b) Final result at T = 10

(c) Modal completion (d) Amodal completion

Figure 5.9: Modal and amodal completion by Gaussian lift with σ = 0.2 and WaxOn-
WaxOff with β1 = 0 and β2 = 0.5 (b). The two completions are obtained by erasing the
neural activity distant from θ = 0 (c) or close to θ = 0 (d). The images are normalized.

Another application of this technique is perception-based image sharpening. By applying

only the WaxOff part of the algorithm to a blurry image a sharpening technique is

obtained.
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(a) Original image (b) Image blurred with 15px
Gaussian kernel with
σ = 1.5

(c) Regression with T = 0.2,
dt = 0.01 after lift with
σ = 0.2

Figure 5.10: A digital image (a) is first blurred with a Gaussian kernel and then
sharpened using the WaxOff component of the WaxOn-WaxOff technique.

Remark: The problem with this approach is that the regression phase tends to blow

up for big enough time intervals T . Additionally convergence and stability are not

guaranteed although empirical results appear promising.



Chapter 6

A perception-based metric for

Image Restoration

Assessing quantitatively the success of a restoration process is a difficult task. In the

previous chapters many examples of convolution filters and image inpainting processes

were shown without proposing a metric to assess the quality of the results. The reader

might have been convinced just by the figures that the restoration process works. After

all the human brain does this assessment intrinsically through neural perception. The

aim of this chapter is however to present a metric that reflects such intrinsic neural

mechanism to produce a quantitative assessment.

In the first two sections a few metrics that are well established in the field of Image

Processing are presented (MSE, SSIM, GSSIM). Afterwords two new metrics are

introduced (WGMSE, MSEσ
Gs), which are part of the author’s contribution and are

presented for the first time in this work. At the end of the chapter a comparison is

drawn on a set of examples that reflect how human perception works.

6.1 MSE

Mean Squared Error is the most common estimator of image quality, to the point that it

is built-in specifically for images in MATLAB as the function immse. MSE is generally

defined on a subset of Rn as

MSE(x,y) =
1

n

n∑
i=0

(xi − yi)2
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In the specific case of N ×M images I, J it is defined as

MSE(I, J) =
1

MN

M−1∑
y=0

N−1∑
x=0

(I(y, x)− J(y, x))2

using the convention of having the first index as the row, and second index as the column.

Although MSE is a good metric to measure the scale of corruption, it is generally not

a good metric to measure the efficacy of restoration because it does not correlate well

with the subjective quality the brain perceives. To see this, simply consider the following

example of an image corrupted with salt and pepper noise, which is subsequently restored

using a median filter (as it was introduced in Chapter 3).

(a) Original image,
MSE=0

(b) Corrupted image,
MSE=0.04

(c) Restored image,
MSE=0.13

Figure 6.1: Example of MSE for image restoration assessment with Salt&Pepper noise:
the original image (a) is corrupted with Salt&Pepper noise (b) which is restored using a
median filter (c). Although (c) looks visually more appealing than (b) the MSE metric
suggests otherwise.

Another example of MSE failing in the detection of a successful restoration can be

presented in the case of a corrupted region with missing information. As seen in the

following example (Figure 6.2) the error according to MSE is higher when considering

a slightly blurred picture (almost imperceptibly) rather than in the case when the

information from a whole region is missing.

Together these two examples aim to show that MSE is a very poor metric when assessing

even very simple cases of image restoration.
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(a) Corrupted image,
MSE<0.01

(b) Gaussian blur σ = 0.6, MSE=0.06

Figure 6.2: The same image as in Figure 6.1 is corrupted with Missing information (a)
and with an almost imperceptible Gaussian noise with σ = 0.6 (b).

6.1.1 SSIM and GSSIM

Other metrics such as SSIM (Structural Similarity Index Measure) and GSSIM (Gradient-

based Structural Similarity Index Measure), which are briefly introduced in this section,

appear to perform better from the point of view of human perception, as studied by Sara

et al. [38].

SSIM was first introduced by Wang et al. [42] in 2004. It works by estimating the

similarity index at each point (x, y) by

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where on a rectangular neighborhood of the point (x, y) the quantities µx, µy are the

sample means, σ2
x, σ

2
y are the sample variances and σxy is the sample correlation coefficient

defined as

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy)

C1 and C2 are small coefficients used to avoid instability around points where the

denominator approaches zero.

The index of the image is the mean of SSIM at all points in the image.

GSSIM was introduced by Chen et al. [12] to address SSIM failing on badly blurred

images. It was developed based on the fact that edge information shall be regarded as
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the most meaningful information when dealing with the Human Visual System.

Its definition is

GSSIM(x, y) =
(2µxµy + C1)(2σx′y′ + C2)

(µ2
x + µ2

y + C1)(σ2
x′ + σ2

y′ + C2)

where x′ and y′ are the maps corresponding to the magnitude of the gradient.

6.1.2 Weighted gradient-based MSE (WGMSE)

In this section a new metric, part of the author’s contribution, is presented.

A different more intuitive approach is to modify the MSE metric to also take into account

the gradient of the image by weighting the difference in intensity and the difference in

gradient. The assumption on which this is done is that our visual cortex is not only

sensitive to the local intensity of the pixels, but also to the contrast that our brain

perceives.

This extension of the MSE can be formulated by computing both the MSE of the intensity

and the MSE of the gradient and weighting the sum, as follows

WGMSE(I, J, α) = αMSE(I, J) +
1− α

2
(MSE(Ix, Jx) +MSE(Iy, Jy))

where the gradient components Ix, Iy, Jx and Jy are normalized with respect to the

magnitude of the gradient.

(a) Original image,
MSE = 0,
WGMSE = 0

(b) Higher exposure,
MSE = 0.04,
WGMSE < 0.01

(c) Malfunctioning sensor,
MSE = 0.02,
WGMSE = 0.47

Figure 6.3: A digital image (a) is corrupted by an acquisition at an higher exposure
(b) or by a malfunctioning sensing device (c). WGMSE appears to be a more effective
metric at assessing corruption in relation to human perception.
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6.1.3 MSEσ
Gs: MSE on the visual cortex V1

In this section another new metric, part of the author’s contribution, is presented.

Since the methods studied in this work are based on a completion model that takes

place in the visual cortex V1 modeled by either SE(2) or PTR2, it does seem natural

to introduce an analogous for the MSE in this setting.

The reader might be tempted to take the classic definition of MSE over R3 and apply it

over two lifted images on SE(2) (or PTR2), but this approach results in a deeply flawed

application: consider as an example two patterns of similar lines, one with smooth edges

and one approximated only using straight vertical or horizontal edges, as it can often

happen due to discretization errors (Figure 6.4). Comparing these two patterns with

MSE over the visual cortex V1 seen as R3 yields maximum error when lifted using the

direction of maximum stimulus as in the CPS model. The pixels at the borders of the

lines are lifted at completely different angles and the error is at those points maximum.

(a) Smooth lines (b) Rough lines

Figure 6.4: Counterexample to the use of MSE as a metric for over SE(2). The angles
of the level curves in (a) are π

4
and 5π

4
whereas in (b) the edges have angles 0, π

2
, π and

3π
2

.

One approach is to change the preferred lifting procedure and, within the scope of this

application, use a lift that intrinsically takes into account the excitatory connections

between hypercolumns. A particularly well suited lift operator is the Gaussian lift which

was introduced in Chapter 5.

Denote by LσGs the Gaussian lift operator with standard deviation σ, then the MSE

adapted to SE(2) takes the form

MSEσ
Gs(I, J) = MSE(LσGs(I),LσGs(J))
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The analogous result can be obtained for PTR2 by taking into consideration LσGs as the

lift to PTR2.

Although we obtain the same exact result when considering the lift over SE(2) or PTR2

for small values of σ, from a computational point of view it is more convenient to adopt

the latter as the number of operations is halved: the interval is reduced from [0, 2π) to

[0, π).

6.2 Comparison of the metrics

(a) Sample A (b) Sample B

(c) Sample C (d) Sample D

Figure 6.5: Four samples intrinsically different. However, at the level of the visual cortex
V1, sample A is similar to sample C and sample B is similar to sample D, whereas all
the other combinations produce a very poor comparison.
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We can compare the metrics on a specifically crafted set of images (figure 6.5) that makes

use of the sensitivity to orientations that the visual cortex V1 provides. To the human

brain (the reader can test this on themselves) sample A will be similar to sample C but

different from samples B and D, and sample B will be similar to sample D but different

from samples A and C. A good metric taking account of human perception should reflect

this.

The results obtained are the following:

MSE A B C D

A 0 · · ·
B 0.48 0 · ·
C 0.20 0.49 0 ·
D 0.50 0.20 0.48 0

SSIM A B C D

A 0 · · ·
B 0.04 0 · ·
C 0.60 0.02 0 ·
D 0.02 0.60 0.04 0

WGMSE A B C D

A 0 · · ·
B 0.78 0 · ·
C 0.30 0.84 0 ·
D 0.84 0.30 0.90 0

MSEσ
Gs A B C D

A 0 · · ·
B 0.48 0 · ·
C 0.20 0.49 0 ·
D 0.50 0.20 0.48 0

By computing the results we can see that all the metrics seem to be somewhat fit for the

purpose, with SSIM being particularly effective. Surprisingly there seems to be almost

no difference (no difference at all when approximating to the second decimal) between

the regular MSE and the modified version MSEσ
Gs with σ = 0.2 that was introduced.
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List of Symbols

R+ [0,+∞)

[aij] Matrix with entries aij

Mn Space of n-dimensional matrices

In Identity of Mn

0n Zero element of Mn

GL(n) General linear group of dimension n with real entries

Tp(M) Tangent space of M at a point p ∈M
TM Tangent space of M

X(M) Space of C∞ vector fields on M

γ(t) Curve on a manifold parametrized by t

F∗,p Differential at a point p
#»

X1 A section on a manifold

X1 Vector field associated to the section
#»

X1

La(b) Left translation

H Heisenberg group

[·, ·] Lie bracket

g A Lie algebra (usually generated by the Lie group G)

Ã Left-invariant vector field generated by A

L(G) Set of left-invariant vector fields of the Lie Group G

exp Exponential map

log Logarithm map

SE(2) Space of rototranslations

PTR2 R2 × P 1, the projective tangent bundle

T k(M) Space of covariant tensor fields

L(I) Lift of the image I to either SE(2) or PTR2

∆R Anisotropic sub-Laplacian [13]

∆H Anisotropic Laplacian [8]

I, J Digital images

Ic Corrupted image
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Is Smoothed image

Ĩ Lifted image (in SE(2) or PTR2)

Σ0 Surface over SE(2) or PTR2

G(x, y) Gaussian noise function

Ei[γ], J [γ] Cost of the curve γ on R2

C[q] Cost of the curve q on SE(2) or PTR2

Di A set of curves

M A manifold

F [g] Fourier transform of the function g

LσGs Gaussian lift with standard deviation σ

MSE Mean Squared Error

MSEσ
Gs Mean Squared Error over PTR2 with lift LσGs

SSIM Structural Similarity Index Measure

GSSIM Gradient-based Structural Similarity Index Measure

∂x, ∂t, . . . Partial derivative

Di First finite differences derivative

Dij Second finite differences derivative

∆x,∆y . . . Discretization interval

divR Divergence in SE(2)

∇R Gradient in SE(2)

HR(Σ) Curvature of the surface Σ in SE(2)

νR Normal vector in SE(2)

HessR Hessian matrix in SE(2)
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