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Abstract

Changes in motor activity are core symptoms of mood episodes in bipolar disorder. The

manic state is characterized by increased variance, augmented complexity and irregular cir-

cadian rhythmicity when compared to healthy controls. No previous studies have compared

mania to euthymia intra-individually in motor activity. The aim of this study was to character-

ize differences in motor activity when comparing manic patients to their euthymic selves.

Motor activity was collected from 16 bipolar inpatients in mania and remission. 24-h record-

ings and 2-h time series in the morning and evening were analyzed for mean activity, vari-

ability and complexity. Lastly, the recordings were analyzed with the similarity graph

algorithm and graph theory concepts such as edges, bridges, connected components and

cliques. The similarity graph measures fluctuations in activity reasonably comparable to

both variability and complexity measures. However, direct comparisons are difficult as most

graph measures reveal variability in constricted time windows. Compared to sample

entropy, the similarity graph is less sensitive to outliers. The little-understood estimate Brid-

ges is possibly revealing underlying dynamics in the time series. When compared to euthy-

mia, over the duration of approximately one circadian cycle, the manic state presented

reduced variability, displayed by decreased standard deviation (p = 0.013) and augmented

complexity shown by increased sample entropy (p = 0.025). During mania there were also

fewer edges (p = 0.039) and more bridges (p = 0.026). Similar significant changes in variabil-

ity and complexity were observed in the 2-h morning and evening sequences, mainly in the

estimates of the similarity graph algorithm. Finally, augmented complexity was present in

morning samples during mania, displayed by increased sample entropy (p = 0.015). In con-

clusion, the motor activity of mania is characterized by altered complexity and variability

when compared within-subject to euthymia.
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Introduction

Change in energy, expressed as either retarded or agitated psychomotor activity, is a core

symptom of mood episodes in bipolar disorder [1–3]. Psychomotor activity can be measured

using wrist-worn piezoelectric accelerometers, recording acceleration in the three-dimensional

space [4]. The foundation for the treatment of bipolar disorder is to avoid future relapses [5].

Patients typically experience changes in sleep and energy in the beginning of new episodes,

often without subjectively recognizing these changes [6]. However, if such changes can be

identified as they happen, effective interventions can be established to inhibit new mood epi-

sodes of a severity requiring hospitalization [5]. The objective information contained in motor

activity data has great potential for early detection of emerging mood episodes, improving the

management of the disorder and reducing the burden of disease [7–9].

According to systematic reviews [1,2], the bipolar manic state is associated with increased vari-

ability and complexity in psychomotor activity patterns when compared to healthy controls. The

depressed state is associated with reduced mean motor activity, increased variability and simplic-

ity in activity patterns when compared to healthy controls, and reduced mean activity compared

to the manic state. Overall, people with a bipolar disorder diagnosis have reduced mean motor

activity compared to healthy controls. Few studies of bipolar manic psychomotor energy have

used modern equipment to record motor activity [2–4]. One group [10] found increased variance

and reduced mean activity when comparing hospitalized manic patients to healthy controls. A

subsequent case series study [11], comparing mood episodes from a single patient, reported ele-

vated activity levels and patterns of amplified complexity in mania compared to depression.

Another group [12] reported irregular circadian rhythms in a group of euthymic bipolar patients

compared to healthy controls, and attenuated circadian cycles for an essential matching patient

group in a manic or mixed state. A similar trend was observed in a study of ecological accelerom-

eter recordings [13], reporting a correlation between manic symptom severity and diminishment

of diurnal rhythmicity. Furthermore, a study of circadian rhythmicity in bipolar disorder found

no difference in physical activity when comparing hospitalized manic patients to healthy controls

and depressed patients [14]. However, patients in a manic episode did wake up significantly ear-

lier compared to when they were in remission, and they had significantly poorer sleep quality

when manic. These previous studies were all group wise comparisons or had few participants,

substantiating the need for more studies on motor activity and circadian rhythms in bipolar

patients. Especially for studies of change in motor activity related to change in mood state, a

within subject design, where subjects are their own controls, are in demand [15].

Disrupted circadian rhythms are characteristic symptoms of mood episodes in bipolar dis-

order [16,17], and disturbed sleep-wake cycles are typical symptoms of mood episodes [18].

The circadian system is best described as a complex system of recurring interlocked rhythms,

mainly harmonized by the suprachiasmatic nucleus in the anterior hypothalamus, but also

cued by hormones and adjusted by external synchronizers such as light exposure and social

life patterns [19]. Interlocked with the 24-h circadian rhythm is a 4-hour ultradian clock,

which regulates rest-activity patterns [20]. Increased dopamine function results in a disturbed

cyclical clock out of sync with the circadian rhythm, and is associated with manic symptoms

[21]. Increased dopamine levels are also associated with arousal of the behavioral activation

system [22], a system associated with increased goal directed activity triggering energy and

euphoria. Evidence suggests mania is linked to a hypersensitivity in the behavioral activation

system [23]. Consequently, motor activity recordings register the complex dynamic interplay

of circadian and ultradian biological cycles in interaction with social rhythms.

There is no general standardized method for analyzing accelerometer data [4], nonetheless,

non-linear dynamic analyses are considered the most useful method to sufficiently disclose the
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information contained in motor activity [24]. Simple linear models are found to be incapable

of revealing the variability and complexity characterizing the activity patterns of bipolar disor-

der [2,10,11]. Recently, the similarity graph algorithm, a method based on evaluating patterns

of compounds in time series, has revealed a promising ability to discriminate between diagnos-

tic groups in motor activity recordings. The method has successfully differentiated between

depression, schizophrenia and healthy controls [25], as well as patients with ADHD from clini-

cal controls (depression/anxiety) and healthy controls [26].

The aim of this study was to characterize motor activity patterns of the bipolar manic state

by comparing manic patients intra-individually to their euthymic selves, applying common

linear and non-linear mathematical models, as well as the similarity graph algorithm.

Materials and methods

Participants

The participants eligible for this experiment (n = 16) were patients admitted to Haukeland

University Hospital, Bergen, Norway, diagnosed with a bipolar disorder according to ICD-10,

and in an ongoing manic episode (ICD-10 diagnosis F31.1 and F31.2; current episode manic

without/with psychotic symptoms). The clinical psychiatrists residing at the hospitals’ two

closed wards for affective disorders suggested potential candidates. Patients considered unable

to consent by the referring psychiatrist were not invited to participate. Inclusion criteria were

Norwegian speaking individuals between 18 and 70 years diagnosed with bipolar disorder,

able to comply with instructions and with an IQ clinically evaluated to be above 70. Exclusion

criteria were previous head trauma needing hospital treatment, having an organic brain disor-

der, substance dependence (excluding nicotine), or being in a withdrawal state (see Table 1 for

participant details). The study protocol was approved by The Norwegian Regional Medical

Research Ethics Committee West (2017/937). Informed, written consent was obtained from all

participants, and no compensations for participating in the study were given.

Clinical assessments

Patient mood state was evaluated at two assessments points by the Young Mania Rating Scale

(YMRS) [27]. YMRS rates the severity of mania based on clinical observation of the patients,

as well as the patients’ subjective description of their clinical condition during the past 48

hours. The total score spans from 0 to 60, and YMRS scores below 10 is considered as being in

remission, or in a euthymic state [28]. The severity of depressive symptoms were rated on the

Montgomery Asberg Depression Rating Scale (MADRS) [29]. Diagnosis was validated at the

second assessment point by research personnel trained in the use of the Norwegian translation

of the Mini International Neuropsychiatric Interview (MINI) version 6.0.0 [30].

Recordings of motor activity

Motor activity was recorded for 24 hours using the Empatica E4 wristband containing several

integrated sensors [31], worn on the participants’ dominant hand [32]. The participants were

assessed twice, first at inclusion and later in remission, at discharge from the hospital or after

hospitalization.

The 3-axis accelerometer module integrated within the wristband measured acceleration in

gravitational force equivalents (g), with a detection sensitivity of 0.0156 g, and a sampling fre-

quency of 32 Hz. The raw data files were processed in RStudio version 1.2.1335. The absolute

mean of the 3-axis’ activity counts per minute was calculated for each time series of motor activ-

ity, by the formula | SQRT (x2 + y2 + z2)–Gravity|, then 1920 lines (the sum of 32 Hz multiplied
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by 60 seconds) were summed and divided by 1920. The calculated outputs are comparable to

the motor activity data analyzed in previous studies of bipolar disorder [2,3,11,15,25].

The devices recorded motor activity for an average of 1535 (220) (mean (standard deriva-

tion)) minutes, range 1190 to 2067 minutes. As all sequences need to be of similar length for the

similarity graph approach, 1190 minutes was defined as the time series length to be analyzed.

The average starting time for the recordings was around midday (13:04 (1:25), range 09:52 to

15:52). There were no significant differences (t-test) in starting time, and for that reason, the

first 1190 minutes were used from all recordings. A threshold of less than 5% missing data in

the specific time series was considered acceptable [33], and missing values were replaced with

the mean of the relevant time series. Two participants were excluded from the analysis due to

Table 1. Patients characteristics and demographics (N = 16).

Mean age (SD) 44 (12)

Range age (minimum—maximum) 21–65

Sex (male / female) 8 / 8

Marital status:

Single / Divorced (%) 56

Married / Cohabiting (%) 44

Employment status:

Employed /Student (%) 37

Unemployed (%) 19

Disability benefit /Retired (%) 44

Highest level of education completed:

Junior high school (%) 12

High school / Vocational studies (%) 31

University / higher education (%) 57

Mean age at first hypomanic/manic episode (SD) 26 (11)

Mean age at first depressive episode (SD) 26 (13)

Psychotic symptoms in mood episodes, lifetime (%) 81

Manic episode (No psychosisa / Psychosisb) 7 / 9

YMRS manic episode, mean (SD) 22 (6)�

YMRS when in remission, mean (SD) 3 (2)�

MADRS manic episode, mean (SD) 6 (4)

MADRS when in remission, mean (SD) 5 (5)

Percent activity recorded in summer (manic/euthymic)c 44 / 38

Psychopharmacological treatment (n):

Mood Stabilizers:

Lithium (manic / euthymic) 5 / 6

Valproate (manic / euthymic) 7 / 6

Lamotrigine (manic / euthymic) 2 / 3

Antipsychotics (manic / euthymic) 14 / 13

Antidepressant (manic / euthymic) 2 / 2

Benzodiazepines (manic / euthymic) 5 / 1

Abbreviations: SD = standard deviation.
a ICD-10 diagnosis: F31.1, current episode manic without psychotic symptoms.
b ICD-10 diagnosis: F31.2, current episode manic with psychotic symptoms.

� Mania vs euthymia–YMRS significantly different (p < 0.001), Paired Samples t-test.
c Summer defined as the half-year period between the vernal and autumnal equinoxes.

https://doi.org/10.1371/journal.pone.0262232.t001
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missing data, attributed to removing the sensor-wristband before sleep. A visual presentation of

all included motor activity time series are available in the supporting information, with the

manic recordings presented in S1 Fig. and the euthymic recordings in S2 Fig.

Two shorter 120-minute periods, in the morning and evening, were analyzed in addition to

the 1190 minutes, Time series time-points were decided post-hoc, upon inspection of available

data for each subject. Initially, a fixed tentative morning period was planned between 08.00

and 10.00, as well as an evening period between 20:00 and 22:00. As the mean start of daytime

activity was 7:49 (01:48), the criteria for proposing the specific time series were; being 12 hours

apart and least likely to be biased by circadian sleep-wake cycles. To maximize the amount of

included data from the participants, with minimal missing data in the time series, each time

series was adjusted according to visually observed activation patterns in the motor activity

data, like late awakening and early night sleep. This was to avoid both individual and mood

state related sleep patterns affecting the results. Consequentially, the mean start time for the

2-hour morning epoch and end time of the evening epoch were 08:30 (0:54) and 21:42 (1:46),

respectively. One participant was not included in the morning and evening analyses, as the

participants’ motor activity recording terminated less than two hours after end of sleep, which

led to an exceedance of the acceptable missing data limit. The key information of the analyzed

motor activity files is available in the supportive S1 Table.

Mathematical analyses

The motor activity time series were analyzed for mean activity counts per minute. Two esti-

mates of variance, expressing the stability of the mean in a time series, were calculated for the

mathematical analyses. Standard deviation (SD) is a measure of how dispersed the data are in

relation to the mean. Low standard deviation means data are clustered around the mean, and

high standard deviation indicates data are more spread out. The standard deviation is calcu-

lated as the square root of variance by determining each data point’s deviation relative to the

mean. The coefficient of variation (CV) is obtained by dividing SD to the Mean. It describes

the variability of a sample relative to its mean. This measure is unitless, expressed as a percent-

age, and recommended applied in time series with unstable means [34]. In our experience, this

definitely applies to time series of motor activity. Therefore, in this paper, SD is in fact CV.

The root mean square successive differences (RMSSD) is the root mean square of successive

differences between all the time epochs, and indicates how much a set of data varies within

itself [35]. For the same reason as for SD, RMSSD is given as a ratio to the mean. Finally, the

RMSSD/SD ratio was calculated. Because RMSSD provides the variability between successive

intervals instead of solely variability, as assessed by SD, the RMSSD / SD ratio reveal how scat-

tered the data are in themselves.

An autocorrelation function is a mathematical tool for identifying repeated patterns in time

series by determining the degree of relationship between the time series and an offset copy

[36]. The autocorrelation at lag 1 is the correlation of a time series with itself delayed one inter-

val, and is a common method applied within dynamic system research [37].

Sample entropy is a nonlinear index of complexity in dynamic time series. Higher values

indicate intricacy and randomness in patterns, while smaller values point toward predictability

and regularity. Sample entropy is defined as the negative natural logarithm of the likelihood of

a pointwise matching sequence (m) within a certain tolerance (r) matching the next point [38].

Based on previous studies on nonlinear analysis of motor activity, the following values were

selected: m = 2 and r = 0.2 standard deviation [10].

The Symbolic Dynamics method [39] also gives an indication of the complexity of the time

series [10,40]. The principle of the method is to transform time series into strings consisting of
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numbers between 1 and 6, based on dividing the activity counts into six equal segments, where

maximum and minimum values are limited to mean plus-minus 3 SD to counteract the effect

of outliers. Finally, the number string is divided into overlapping sequences with three conse-

cutive numbers, giving 216 possibilities for different patterns.

The similarity graph algorithm. Before presentation of the similarity graph-based

method applied in this study, some basic definitions of graph theory need to be defined.

Graphs are Mathematical structures which are used to model the relations between objects. A

graph G is an ordered pair (V, E), where V is the set of nodes and E is the set of edges of G.

The ends of an edge are said to be incident with the edge. Two nodes which are incident with a

common edge are neighbors. An induced subgraph of a graph is a graph formed from a subset

of the nodes of G and all the edges connecting pairs of nodes in that subset. A connected com-

ponent of G is an induced subgraph H which is not a proper subgraph of a connected subgraph

of G. Let e be an edge of G. If G-e has more connected components than G, then e is a bridge.

A complete graph is a graph in which any two nodes are connected an edge. A complete sub-

graph of G with k nodes is called a k-clique of G.

In this paper, we apply the nonlinear similarity graph algorithm which is based on work

done by Lacasa et al. [41], and has been comprehensively described [25,26]. This algorithm

transforms a time series S = (x1, x2, . . . xn) into an undirected similarity graph G. Each element

of time series S corresponds to a node u in V = {1, 2, . . . n} and each node u is assigned a

weight equal to the value of xu. The distance between two nodes u and v is |u-v| and when the

distance is 1, the two nodes u and v are defined as direct neighbors. Two arbitrary nodes u and

v are connected by an edge in G if and only if their distance is below a certain threshold k and

max (xu, xv) / min (xu, xv)< 1.2. Clearly, by changing the values of k, different similarity graphs

are obtained. Defining 20% as the threshold for similarity is founded in previous studies of

motor activity with the sample entropy method [10,11], as well as applied in our groups’ previ-

ous studies of motor activity and the similarity graph algorithm [25,26]. We used a selection of

similarity graph parameters to analyze our data. In summary, any node of the graph with few

or no neighbors indicates an alteration in activity. Connected components of the graph indi-

cate substantial shifts in the activity. Bridges expose more subtle activity fluctuations [26]. The

number of cliques represents the smoothness of activity fluctuations in a time series [42]. We

report on 3-cliques, calculated by a method developed by Chiba & Nishizeki [43]. An illustra-

tion of the principles of the similarity graph algorithm presents in Fig 1.

We have calculated the following measures for various distances of k: the mean number of

edges, the summed number of bridges, components, missing edges between direct neighbors,

time points without edges and 3-cliques. We employed k = 2, k = 5 and k = 40 to the 1190 min-

utes series, and k = 2 and k = 5 for the 120 minutes series.

Statistics

Tests of significance were performed in SPSS version 26.0. Paired-Samples T-tests were gener-

ally applied, except for the 3-cliques, which were tested using the Related-Samples Wilcoxon

Signed Rank Test. A p-value < 0.05 was considered statistically significant when comparing

mood states in Tables 2 and 3. When comparing mania and euthymia within both state and

subject in the supportive S2 Table, we adjusted the p-value according to a Bonferroni correc-

tion for multiple comparisons to avoid a type 1 error [44]. For these analyses, a p-value less

than 0.0125 was considered statistically significant. A bivariate Pearson’s Correlation test [45]

was performed on the manic morning results to examine potential correlations between vari-

ance estimates, autocorrelation, complexity and the various outputs of the similarity graph

analysis.
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Results

Forty-five patients hospitalized for a manic episode were invited to participate in the study, of

which 34 signed the consent and wore the sensor wristband once for 24 hours. Eighteen of the

included patients repeated the recording when in remission. Two of the 18 had one of the

assessments inadequately recorded. As a result, 16 patients were sufficiently recorded with the

multi-sensor wristband twice. Participant characteristics and demographics are presented in

Table 1.

All participants were on medications. Five participants used lithium in combination with

one other drug: one with a benzodiazepine, two with an antipsychotic, one with an antidepres-

sant and the final one with Valproate. One of the participants discontinued antipsychotics

when euthymic, but the remaining four used the same combination of medications at both

measuring points. Eight participants used a mood stabilizing medication other than lithium:

six used Valproate combined with antipsychotics during hospitalization, and four when in

remission. Of the other two, one participant was started on lithium in addition to valproate

and antipsychotics when discharged from the hospital, and the other was switched to Lamotri-

gine combined with an antipsychotic when in remission. Two participants used Lamotrigine

at both assessment points, one in combination with antipsychotics. Finally, two participants

used solitary antipsychotics and one participant used a combination of an antipsychotic, anti-

depressant and benzodiazepine at both assessment points. All antipsychotics prescribed for the

manic participants were antidopaminergic (Quetiapine, Olanzapine, Risperidone, Aripipra-

zole and Zuclopenthixol). Fig 2 shows an example of 24-hour motor activity recordings

obtained from one patient when manic (A) and euthymic (B).

Analysis of the 1190-minute recordings of all participants showed no significant differences

in mean activity counts per minute between mania and euthymia (Table 2). During mania, SD

Fig 1. The similarity graph algorithm exemplified and explained within a k = 5 time series. In this example the similarity graph algorithm

transforms a time series S = (9,10,10,8,7,8,7,6,5,10,9) into a graph G, where each element of time series S corresponds to a node in V =

{1,2,3,4,5,6,7,8,9,10,11}. The corresponding elements of S and nodes in V are identified as SV in the figure. Two random nodes u and v are connected

by an edge in G if and only if their distance is below a certain threshold k (|u-v|< k), and the ratio of the element values below a threshold defined as

max (xu, xv) / min (xu, xv)< 1.2. In this example k = 5, and edges are drawn as solid lines in the illustration. The output of the time series are 13 edges,

three components (black/white/grey) two bridges (91−84, 1010−911), three missing edges between direct neighbors (103−84, 68−59 and 59−1010), one

time point without edges (59), and six 3-cliques (91−102−103), (84−75−86), (84−75−77), (75−68−77), (84−86−77), (86,77,75).

https://doi.org/10.1371/journal.pone.0262232.g001
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was significantly reduced and the RMSSD/SD ratio was significantly increased. Furthermore,

the participants had significantly higher sample entropy values when manic. The similarity

graph algorithm yielded statistically significant differences for several parameters. For the

k = 2 distance the manic state exhibited reduced occurrence of edges and an increased number

of bridges and missing edges compared to the euthymic state. The number of 3-cliques was

also significantly reduced during mania, regarding both k = 2 and k = 5 distances. For the lat-

ter, mania was associated with an increased number of bridges and missing edges compared to

euthymia. The k = 40 neighborhood analysis revealed significantly less components, more

missing edges and less time points without edges in mania compared to euthymia (Table 2).

The analysis of the 120-minute morning recordings revealed no significant differences for

mean activity, variability or autocorrelation between mood states (Table 3). The complexity

estimates sample entropy and symbol dynamics were significantly augmented for mania. Most

parameters of the similarity graph algorithm differed significantly in the k = 2 neighbors analy-

sis. We found a reduction in edges and 3-cliques, as well as increased numbers of components,

time points without edges and missing edges between direct neighbors, in the manic compared

Table 2. Manic and euthymic states compared within subject (N = 14) in 1190 minutes time series of motor activity recordings.

Mania Euthymia p

Mean 270.7 (60.1) 246.3 (35.9) NS

SD (% of mean) 96.4 (21.0) 116.4 (24.7) 0.013�

RMSSD (% of mean) 69.8 (14.7) 70.0 (12.3) NS

RMSSD / SD 0.73 (0.08) 0.62 (0.14) 0.037�

Symbol Dynamics 130 (16) 115 (21) NS

Sample Entropy § 0.37 (0.14) 0.27 (0.10) 0.025�

Autocorrelation lag 1 0.73 (0.06) 0.80 (0.09) NS

Edges (k = 2) 1.93 (0.31) 2.23 (0.29) 0.039�

Components (k = 2) 448 (82) 380 (73) NS

Bridges (k = 2) 257 (40) 210 (38) 0.012�

Missing edges (k = 2) 578 (95) 485 (88) 0.039�

Points no edges (k = 2) 268 (67) 233 (53) NS

3-Cliques (k = 2) 398 (103) 509 (102) 0.035��

Edges (k = 5) 4.24 (0.75) 4.88 (0.73) NS

Components (k = 5) 258 (56) 240 (46) NS

Bridges (k = 5) 194 (42) 148 (40) 0.026�

Missing edges (k = 5) 581 (95) 488 (87) 0.039�

Points no edges (k = 5) 132 (37) 127 (29) NS

3-Cliques (k = 5) 3253 (964) 4133 (966) 0.041��

Edges (k = 40) 20.80 (5.28) 22.98 (4.84) NS

Components (k = 40) 79 (9) 90 (10) 0.005�

Bridges (k = 40) 51 (7) 47 (8) NS

Missing edges (k = 40) 615 (92) 521 (87) 0.030�

Points no edges (k = 40) 93 (5) 98 (5) 0.021�

3-Cliques (k = 40) 94072 (51195) 115615 (49183) NS

All results are given as mean (standard deviation).

Abbreviations: SD = standard deviation, RMSSD = root mean square successive difference, NS = not significant.
a Sample Entropy: m = 2, r = 0.2

� Significant at a p < 0.05 level, Paired Samples t-test.

�� Significant at a p < 0.05 level, Related-Samples Wilcoxon Signed Rank Test.

https://doi.org/10.1371/journal.pone.0262232.t002
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to the euthymic morning recordings. The number of bridges did not differ significantly

between mood states. The k = 5 distance analysis revealed a reduced number of edges and

3-cliques, as well as an increased number of missing edges between direct neighbors in mania

compared to euthymia. Similarly to the morning analyses, the 120-minute evening recordings

showed no significant differences between mood states for mean activity, variability, autocor-

relation or complexity. Several parameters of the similarity graph analyses presented statisti-

cally significant differences between the manic and euthymic states. We found a reduced

number of edges in mania for both k = 2 and k = 5 analyses. We also found a significantly

increased number of components and time points without edges for the k = 2 distance, and a

significantly increased number of bridges for the k = 5 distance.

When comparing the 120-minute morning and evening periods within mood states, we

found no significant differences for mania or euthymia. The results are presented in the sup-

portive S2 Table.

Table 4 presents the relationships between the various k = 2 similarity graph estimates and

the estimates of variance, complexity and autocorrelation. The two estimates of variance (SD

and RMSSD) are strongly correlated with each other, as well as negatively correlated with the

similarity graph estimate bridges. Furthermore, SD is strongly negatively correlated with sam-

ple entropy, which in turn is moderately negatively correlated with both 3-cliques and autocor-

relation. The RMSSD/SD estimate presents near perfect negative correlation with

autocorrelation, and is moderately correlated with sample entropy. Number of edges is either

Table 3. Manic and euthymic states compared within subject (N = 15) in 120 minutes time series of motor activity.

Morning Evening

Mania Euthymia p Mania Euthymia p

Mean 411.1 (110.0) 341.6 (117.0) NS 377.1 (128.5) 311.0 (91.4) NS

SD (% mean) 70.8 (15.9) 77.7 (24.8) NS 76.0 (18.8) 85.8 (24.2) NS

RMSSD (% mean) 64.8 (13.3) 66.7 (37.5) NS 68.8 (20.7) 67.6 (26.3) NS

RMSSD / SD 0.93 (0.15) 0.84 (0.21) NS 0.90 (0.12) 0.79 (0.18) NS

Symbol Dynamics 50 (7) 43 (8) 0.014� 47 (9) 41 (14) NS

Sample Entropy a 1.14 (0.36) 0.78 (0.38) 0.015� 1.01 (0.34) 0.78 (0.44) NS

Autocorrelation lag 1 0.56 (0.14) 0.62 (0.18) NS 0.58 (0.10) 0.67 (0.14) NS

Edges (k = 2) 1.15 (0.18) 1.49 (0.34) 0.007� 1.24 (0.36) 1.53 (0.44) 0.032�

Components (k = 2) 65 (7) 55 (11) 0.023� 63 (13) 55 (11) 0.018�

Bridges (k = 2) 35 (7) 33 (10) NS 32 (6) 33 (10) NS

Missing edges (k = 2) 82 (6) 72 (10) 0.006� 78 (11) 71 (14) NS

Points no edges (k = 2) 43 (7) 34 (9) 0.021� 41 (12) 34 (8) 0.036�

3-Cliques (k = 2) 11 (5) 21 (11) 0.009�� 15 (9) 22 (15) NS

Edges (k = 5) 2.56 (0.44) 3.28 (0.85) 0.031� 2.62 (0.78) 3.23 (1.07) 0.047�

Components (k = 5) 40 (9) 36 (9) NS 43 (10) 38 (7) NS

Bridges (k = 5) 26 (5) 22 (9) NS 24 (8) 20 (6) 0.020�

Missing edges (k = 5) 83 (5) 74 (9) 0.009� 81 (11) 74 (14) NS

Points no edges (k = 5) 26 (6) 24 (6) NS 27 (7) 24 (5) NS

3-Cliques (k = 5) 83 (32) 160 (89) 0.012�� 98 (62) 166 (132) NS

All results are given as mean (standard deviation).

Abbreviations: SD = standard deviation, RMSSD = root mean square successive difference, NS = not significant.
a Sample Entropy: m = 2, r = 0.2.

� Significant at a p < 0.05 level, Paired Samples t-test.

�� Significant at a p < 0.05 level, Related-Samples Wilcoxon Signed Rank Test.

https://doi.org/10.1371/journal.pone.0262232.t003
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strongly positively or negatively correlated with all other estimates of the similarity graph,

except for bridges. Likewise, the number of connected components is strongly correlated with

the other similarity graph estimates, except for a moderately negative correlation with both

3-cliques and bridges.

Discussion

The novelty of this study is that our findings provide empirical support of how the agitated

manic psycho motoric activity differs from euthymia intra-individually in humans with bipo-

lar disorder. In the first place, the clinical relevance of this study may appear to be of minimal

importance; however, as an evidence-based foundation for future innovations in clinical aids,

the clinical relevance of this study may be of significant importance.

Our results suggest that the bipolar manic state is associated with distinct deviating motor

activity when compared within subjects to their euthymic selves. Comparing the manic state

to euthymia in the 20-hour (1190 minutes) time series revealed that mania is characterized by

reduced variability, displayed by decreased standard deviation, and increased complexity, dis-

played by augmented sample entropy. We also discovered increased complexity during mania

in the 120-minute morning sequences, displayed by significantly augmented values for both

sample entropy and symbol dynamics. The similarity graph algorithm k = 2 distance appears

Fig 2. 24-hour accelerometer recordings from a study participant. The patient was recorded during mania when hospitalized (A), and later in remission (B).

The figure shows the activity counts (gravitational force equivalents) per minute over 24 hours, from 11 a.m. to 11 a.m. the next day.

https://doi.org/10.1371/journal.pone.0262232.g002

PLOS ONE Motor activity from mania to euthymia

PLOS ONE | https://doi.org/10.1371/journal.pone.0262232 January 21, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0262232.g002
https://doi.org/10.1371/journal.pone.0262232


to possess the strongest discriminating abilities, and we found significant differences between

mania and euthymia for this distance in all three sequences. The manic state was associated

with less edges and an increased number of missing edges between direct neighbors. This indi-

cates increased shifts in activity, causing fewer allied time points due to non-similarity within

the area limits. Nonetheless, the increased number of bridges for the manic state in the

20-hour time series indicates a certain degree of smoothness in the activity shifts, as the time

points are to some extent connected with at least one edge. Furthermore, both 120-minute

sequences revealed significant changes in the connected component estimates, indicating

more roughness in the manic morning and evening motor activity, due to missing edges

caused by non-similarity between time points. Finally, for the morning and 20-hour

sequences, the high number of 3-cliques for euthymia indicates more stable and robust motor

activity patterns compared to the manic activity.

When changing the values of k, different similarity graphs are obtained, and different

results are to be expected [26]. However, the results of the k = 5 neighborhood analyses were to

some extent similar to the k = 2 results for both the 20-hour and the 120-minute evening

sequences. The k = 5 morning sequences only resulted in significant differences in edges, miss-

ing edges and 3-cliques. This was somewhat unexpected, as the morning epoch presented sig-

nificant differences for most of the k = 2 measures. On the other hand, these deviating results

may be a revelation of subtle fluctuations in the morning activity patterns, undetectable when

increasing the value of k [26]. In the evening series the quantity of bridges were significantly

increased solely for the k = 5 graph, while the number of components were increased solely for

the k = 2 graph. This indicates that the similarity graph obtained by increasing values of k,

reduces the non-similarity between time points in the series. For the k = 40 patterns in the

20-hour sequence, three measures were significantly different between states; mania exhibited

increased missing edges, reduced number of components and fewer time points without con-

nected edges compared to euthymia. In other words, mania seems to be associated with unsta-

ble activity patterns, due to increased missing edges, while euthymia seems to be associated

Table 4. Pearson correlation analyses for manic morning variables (n = 15).

SD RMSSD RMSSD

/SD

Autocor-

relation

Sample

Entropy

Symbol

Dynamics

Edges a Comp. a Bridges a Missing Edges a No Edges a

RMSSD 0.782��

RMSSD/SD -0.407 0.244

Autocorrelation 0.429 -0.212 -0.996��

Sample Entropy -0.752�� -0.475 0.515� -0.551�

Symbol

Dynamics

-0.457 -0.369 0.183 -0.169 0.324

Edges a -0.065 -0.113 -0.098 0.086 -0.405 -0.323

Components a 0.291 0.374 0.120 -0.096 0.191 0.311 -0.933��

Bridges a -0.675�� -0.755�� -0.049 0.021 0.392 0.079 0.237 -0.556�

Missing Edges a 0.255 0.346 0.154 -0.138 0.275 0.165 -0.883�� 0.859�� -0.285

Points No Edges a 0.500 0.615� 0.135 -0.100 -0.021 0.221 -0.773�� 0.920�� -0.688�� 0.801��

3-Cliques a 0.185 0.231 0.012 -0.002 -0.560� -0.103 0.847�� -0.615� -0.211 -0.707�� -0.369

Abbreviations: SD = standard derivation, RMSSD = root mean square successive differences.
a k = 2.

�� Correlation is significant at the 0.01 level (2-tailed).

� Correlation is significant at the 0.05 level (2-tailed).

https://doi.org/10.1371/journal.pone.0262232.t004
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with more dramatic shifts in activity, due to a higher number of components and unconnected

time points.

It is well established that variability and complexity analyses are needed to adequately reveal

the information contained in motor activity data [1,2,11]. However, our results suggest that

the similarity graph is a more sensitive and finely calibrated tool for such a task. This is evident

as the variability estimates were mostly insignificantly altered when comparing mood states

for the 120-minute time series, while the similarity graph revealed significant differences in all

sequences, independent of the area limits defined by various sizes of k and length of time

series. This also applies to the complexity measures, although both sample entropy and symbol

dynamics were significantly altered in the morning sequence.

The similarity graph estimates can be regarded as a combination of variability and complex-

ity measures. The patterns of connections and missing connections express fluctuations in

activity similar to other estimates of variance, like SD and RMSSD [26]. However, direct com-

parisons are difficult, as SD reveals the variability of the entire time series, while graph mea-

sures like edges, components and 3-clicks reveal variability in constricted time windows. In

contrast to the other graph estimates, missing edges (between direct neighbors) are calculated

over the complete time series. It provides information quite comparable to RMSSD [35], as

both estimates expresses the relationship between sequential points in the whole time series.

Nevertheless, the relationship between variance and graph estimates appears to be unrelated,

as no correlations are indicated in Table 4, except for bridges. The estimate of bridges exposes

more subtle activity fluctuations and is not fully understood, but suspected to reveal underly-

ing dynamics of the time series [26]. The distinctiveness of bridges is emphasized by the corre-

lation analyses, as it correlates poorly to the other graph estimates, except for a moderate

negative relationship to components and time points without edges. These findings elucidate

novel characteristics of the enigmatic bridge estimate. Finally, bridges provide further evidence

of the similarity graph as a more sensitive and finely calibrated tool than traditional variance

estimates, as no significant differences for SD or RMSSD were found in the evening time

series, while a statistically significant difference between mood states was observed in the brid-

ges (k = 5) comparison (Table 3).

The patterns of connections and missing connections express the intricacy or simplicity of

activity alterations within a shorter time series. This resembles both sample entropy and sym-

bolic dynamics, which are also calculated based on the relationship between time points within

a shorter time-series. However, we found no suggestions of a relationship between symbolic

dynamics and any of the similarity graph estimates, and sample entropy displayed only a mod-

erate negative correlation with 3-cliques (Table 4). Nonetheless, sample entropy is sensitive to

outliers, compared to the similarity graph estimates [26]. Outliers increase the standard devia-

tion, which again increases the probability of two points being valued as similar, and the result

comes to be incorrectly reduced complexity. Consequently, as the similarity graph algorithm

handles this ceiling effect, fewer points (nodes) evaluate as similar, resulting in an increased

ability to separate dissimilarities between divergent time series, as presumably exemplified in

our analyses.

We found an increased RMSSD/SD ratio during mania in the 20-hour recordings. This

supports findings reported by Krane-Gartiser et al. [10], comparing hospitalized manic

patients to healthy controls in 24-hour time series. The group reported similar results from

64-minute morning and evening epochs. We found no such RMSSD/SD-ratio differences in

the 120-minutes morning and evening time series. Furthermore, Krane-Gartiser et al. discov-

ered the most significant difference between manic patients and controls in the morning

period by using the Autocorrelation lag 1 variable. Despite this variable being linked to vari-

ability, no such difference was identified in our results. We did, however, find comparable
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differences in both morning and evening time series, although mainly in estimates of the simi-

larity graph algorithm, a method not applied by Krane-Gartiser et al. [10].

Although our results show slightly elevated mean activity levels during mania, we found no

significant differences between mood states. This was to be expected, as systematic reviews

conclude that mania appears better characterized by increased variability and complexity than

increased mean level of activity [2]. Moreover, Krane-Gartiser et al. [10], comparing hospital-

ized manic patients to healthy controls, found significantly lower mean activity levels for the

manic patients, assumed due to the patients being pacified by hospitalization and prescribed

antipsychotic medication [10]. Consequently, it is reasonable to assume that the elevated activ-

ity level in mania compared to depression observed in the previously mentioned case series

study [11], is primarily about the motor retardation associated with depression [1,2].

Another aspect to consider regarding activity levels is the influence and manipulation of the

behavioral activation system. Evidence suggests mania is linked to a hypersensitivity in the

behavioral activation system, a system associated with increased goal directed activity, and

generating energy arousal and euphoria [22]. The internal dopaminergic ultradian oscillator

clock is associated with the rhythmic patterns of rest-activity [20] and linked to the behavioral

activation system [16,22]. The clock is not controlled by the suprachiasmatic nucleus, but

habitually oscillates interlocked with the circadian rhythm. When studying the motor activity

of laboratory mice on methamphetamine, increased dopamine levels were found to be associ-

ated with prolonged dopaminergic cycles out of sync with the circadian rhythm [20]. Further-

more, increased dopamine levels are associated with both the presence of manic symptoms

[21] and to stimulation of the behavioral activation system [22].

Both mood stabilizers, like Lithium and Valproate, as well as anti-dopaminergic antipsychot-

ics inhibit the behavioral activation system [21]. All participants in the current study were on

such behavioral activation system taming medications during manic recordings, except for one

participant on Lamotrigine monotherapy. Altogether, this implies that one can only speculate

about the mean activity levels of an unmedicated manic person prior to hospitalization, when

living in a stimulating and rewarding environment. The current results of equal activity levels

between mood states should be revisited taking these findings into account. Furthermore, as the

second recording of motor activity was conducted when the patient was discharged from the

pacifying hospital environment, this may have influenced the recordings and potentially

reduced differences between mood states. However, the effect of medications must be consid-

ered minimal, as there were minimal changes in prescribed medications between recordings.

When comparing morning and evening recordings within states, we found no significant

differences for neither the manic nor the euthymic state. This was somewhat unexpected, as

existing evidence suggests disrupted circadian and social rhythms as a characteristic of mood

episodes in bipolar disorder [16]. In addition, two studies of the manic states’ motor activity

suggested an association between the manic state and irregular attenuated circadian rhythmic-

ity [12,13], and a study of biochemical rhythms combined with motor activity found shifted

circadian rhythm phases in mania [14]. Furthermore, the hypothesis of bifurcation of biologi-

cal rhythms [46] claims that the master clock in the circadian system, the suprachiasmatic

nucleus, switches from its normal 24-hour cycle to a 12-hour phase in mania. Consequentially,

diurnal sampling of melatonin levels in manic bipolar patients resulted in two observed peaks

in melatonin secretion, as opposed to the normal single peak [47]. However, comparing sta-

tionary morning and evening times is most likely not an appropriate method for investigating

circadian cycles, as it does not take into account individual circadian variations, such as dis-

similar chronotypes and social rhythms [48]. Yet, as a final contradicting point, according to a

systematic review [18] disrupted circadian rhythmicity seems to be a trait marker for bipolar

disorder, not a state marker for mania. Although there is lack of conclusive evidence for this
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assumption, these findings may provide a plausible explanation for the homogeneity in our

results when comparing morning and evening recordings within mood states.

Limitations

There are some structural weaknesses and limitations to this study that may have restricted the

findings. To start, the sample size is rather small, which may affect statistical power. However,

the within-subject design reduces this weakness. Neither gender, age nor body mass index

were controlled for. This may have biased the result as all three variables have previously been

found to impact motor activity in group comparisons [15,26]. However, as our findings are

results of state changes within subjects, the influential effect of these variables can likely be

considered minor. Another possible weakness is the lack of a control group. However, the

within-subject design of the study, where subjects are their own controls, presumably makes

this a minor issue. Furthermore, the observed changes between states are considered too large

to be due to chance. The selection procedure for the 120-minutes morning and evening time

series may be reprehensible. However, collaboration with manic patients can be challenging,

and their circadian disturbances are well-documented [18]. The manic recordings presented

in the supportive S1 Fig and S1 Table illustrate both the noisiness of the data and disrupted cir-

cadian cycles. To avoid our results being biased by individualistic sleep patterns, we followed a

similar but stricter approach for the selection of morning and evening periods than Krane-

Gartiser and colleagues [10] did previously, when analyzing similar patients. Pragmatically,

based on the complexity of the data, our selection procedure for the 120-minutes time series

should be considered satisfactory.

Our results may also have been moderated by a seasonal effect. Humans are seasonal beings,

and both social rhythms and durations of sleep generally follow a seasonal pattern similar to

the annual changes in natural light and length of day [17]. Haukeland University Hospital,

Bergen, Norway is located at latitude 60.4, a location associated with substantial seasonal

change in natural light and length of day. In the data analyzed in this study, the manic episodes

were quite evenly distributed between winter and summer; however, 62 percent of the euthy-

mic recordings were collected during the winter months. Therefore, seasonality may have

impacted our findings to some degree. But at the same time, in a recent Norwegian survey

[49], merely 20% reported a high degree of seasonal variations in mood and behavior, while

approximately 60% reported low impact of seasonality.

Our patient sample is highly educated, even more so than average in the highly educated

Norwegian population [50]. Regarding this, a study has investigated educational levels and

socio-economic status among 257 Norwegian patients diagnosed with bipolar disorder [51].

They found no relationship between educational level and burden of disease. Moreover, our

sample ratios of individuals living alone or on disability pension are comparable to those

reported in the study, although a higher percentage of the patients in our sample had a lifetime

experience of psychosis. A hypothetical explanation for the skewed educational level in our

sample could relate to an association between higher education and an understanding of inno-

vational possibilities within bipolar disorder, as well as a selfless wish to contribute to

enhanced scientific understanding of the disease.

We have investigated hospitalized bipolar patients during an ongoing manic episode, con-

firmed and evaluated using a rating scale (YMRS). However, the YMRS scores could be subject

to moderation due to the patients being hospitalized in a minimally rewarding environment

and being prescribed antipsychotic and mood stabilizing medications.

Euthymia, or remission, was defined as having an YRMS score below 10. This is a slightly

stricter threshold than more commonly used 12 or below [52]. MADRS scores are lightly
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elevated for the group at both measuring points, implying marginal depressive symptoms pres-

ent in the groups [53]. Depressive symptoms in mania can represent dysphoric features, which

are commonly present in manic episodes [54]. For clarification, agitated depressions and

mixed episodes were not included in the study sample. We find it likely that the elevated

MADRS scores in the euthymic group are related to residual symptoms, which are common in

euthymic bipolar patients [55], and should not negatively affect the representability of the

sample.

Despite the declared limitations, our main findings remain robust and well-grounded; a sig-

nificant intra-subject difference in complexity and variability measures of motor activity exists

between manic and euthymic states in bipolar disorder.

Future work

Motor activity data possesses an innovative potential for the development of a tool or device

for early detection of mood episodes in bipolar disorder. To realize this potential, it is neces-

sary to explore the prospects of automatic real-time monitoring through machine learning

[56]. Our research group has previously revealed the promising capabilities of various machine

learning techniques using motor activity data collected from depressed patients [15]. Future

work will further explore the classification capabilities of advanced machine learning models

and the potential of applying automatic, real-time monitoring of motor activity for early detec-

tion of mood episodes in bipolar disorder. Of particular interest are graph neural networks

and Bayesian neural networks. The former is perfectly suited to explore graph-like data struc-

tures and their dependencies [57,58], while the latter can help to understand decisions made

by the model by quantifying its uncertainty [59].

Motor activity recordings are usually recorded at a sampling rates around 32 Hz and ana-

lyzed in one minute epochs, similar to the approach of this study [4]. It is conceivable that hid-

den information may disappear when analyzing the motor activity in one-minute epochs.

Given this, another possible approach is to feed the machines with the absolute mean of the

3-axis’ activity counts per Hz, leaving it up to the algorithms themselves to decide appropriate

epoch sizes.

Conclusion

In the present study we have compared motor activity data collected from hospitalized manic

bipolar patients to motor activity data collected from the same individuals when in remission.

We have applied commonly used linear and non-linear mathematical models, as well as the

similarity graph algorithm. No previous studies have compared mania to euthymia intra-indi-

vidually using such state-of-the-art accelerometer recordings while applying similar methods.

We found that the motor activity patterns of the manic state are associated with altered com-

plexity and variability, when compared to euthymia within subjects. Our findings are robust

and comparable to results from previous studies comparing bipolar manic patients to healthy

controls, and construct a solid evidence-based foundation for future innovations aiming to

improve the management of bipolar disorder and reduce burden of disease.

Supporting information

S1 Fig. Visualization of all manic motor activity time series (n = 16). The figures shows the

activity counts (gravitational force equivalents) per minute during the complete recording.

(PDF)
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S2 Fig. Visualization of all euthymic motor activity time series (n = 16). The figures shows

the activity counts (gravitational force equivalents) per minute during the complete recording.

(PDF)

S1 Table. Description of all time series included in the 120-minute analyzes.

(DOCX)

S2 Table. Morning and evening differences. Mania and euthymia compared within subject

(N = 15) and within mood state in 120 minutes time series of motor activity. All results given

as mean (standard deviation). Abbreviations: SD = standard deviation, RMSSD = root mean

square successive difference. a Sample Entropy: m = 2, r = 0.2. b Paired Samples t-test, except

for 3-Cliques that were tested for significant differences with the Related-Samples Wilcoxon

Signed Rank Test. For both tests, the significance level was set as p< 0.0125, to adjust for mul-

tiple comparisons.

(DOCX)

S1 File.
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