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Abstract

This doctoral thesis focuses on three topics: (1) modeling of unsaturated flow in fractured
porous media, (2) a posteriori error estimation for mixed-dimensional elliptic equations,
and (3) contributions to open-source software for complex multiphysics processes in
porous media.

In our first contribution, following a Discrete-Fracture Matrix (DFM) approach, we
propose a model where Richards’ equation governs the water flow in the matrix, whereas
fractures are represented as lower-dimensional open channels, naturally providing a cap-
illary barrier to the water flow. Therefore, water in the matrix is only allowed to imbibe
the fracture if the capillary barrier is overcome. When this occurs, we assume that the
water inside the fracture flows downwards without resistance and, therefore, is instanta-
neously at hydrostatic equilibrium. This assumption can be justifiable for fractures with
sufficiently large apertures, where capillary forces play no role. Mathematically, our
model can be classified as a coupled PDE-ODE system of equations with variational
inequalities, in which each fracture is considered a potential seepage face.

Our second contribution deals with error estimation for mixed-dimensional (mD) el-
liptic equations, which, in particular, model single-phase flow in fractured porous media.
Here, based on the theory of functional a posteriori error estimates, we derive guaran-
teed upper bounds for the mD primal and mD dual variables, and two-sided bounds
for the mD primal-dual pair. Moreover, we improve the standard results of the func-
tional approach by proposing four ways of estimating the residual errors based on the
conservation properties of the approximations, that is, (1) no conservation, (2) subdo-
main conservation, (3) local conservation, and (4) pointwise conservation. This results in
sharper and fully-computable bounds when mass is conserved either locally or exactly.
To our knowledge, to date, no error estimates have been available for fracture networks,
including fracture intersections and floating subdomains.

Our last contribution is related to the development of open-source software. First, we
present the implementation of a new multipoint finite-volume-based module for unsatu-
rated poroelasticity, compatible with the Matlab Reservoir Simulation Toolbox (MRST).
Second, we present a new Python-based simulation framework for multiphysics pro-
cesses in fractured porous media, named PorePy. PorePy, by design, is particularly well-
suited for handling mixed-dimensional geometries, and thus optimal for DFM models.
The first two contributions discussed above were implemented in PorePy.
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Abstrakt

Denne avhandlingen tar for seg tre emner: (1) modellering av flyt i umettet porøst
medium med sprekker, (2) a posteriori feilestimater for blandet-dimensjonale elliptiske
ligninger, og (3) bidrag til åpen kildekode for komplekse multifysikk-prosesser i porøse
medier.

I det første bidraget anvender vi en Discrete-Fracture Matrix (DFM) (Diskret-Sprekk
Matrise) metode til å sette opp en modell hvor Richard ́s ligning modellerer vann-
flyt i matrisen, og sprekkene representeres som lavere-dimensjonale åpne kanaler, som
naturlig virker som kapillærbarrierer til vann-flyten. Derfor vil vann i matrisen kun få
tilgang til sprekken når kapillærbarrieren blir brutt. Når det inntreffer, antar vi at vannet
i sprekken flyter nedover uten motstand, og at hydrostatisk ekvilibrium derfor inntr-
effer øyeblikkelig. Slike antakelser kan rettferdiggjøres for sprekker med tilstrekkelig
stor apertur (åpning), hvor kapillærkrefter ikke har noen innvirkning. Fra et matema-
tisk standpunkt kan modellen klassifiseres som en sammenkoblet PDE-ODE med vari-
asjonelle ulikheter hvor hver sprekk behandles som en filtreringsfase.

Det andre bidraget tar for seg feilestimater for blandet-dimensjonale elliptiske
ligninger, som modellerer en-fase flyt i porøse medier med sprekker. Her anvender vi
teorien for “funksjonal a posteriori feilestimater” til å finne øvre skranker for primær og
dual variablene, samt øvre og nedre skranker for primær-dual paret. Dessuten viser vi
at vi kan forbedre standardresultatene fra “funksjonal a posteriori feilestimater” ved å
foreslå fire måte å estimere residualfeilen basert på bevaringsegenskapene til diskretis-
eringen. De fire forskjellige bevaringsegenskapene er; ingen bevaringsegenskap, under-
domene bevaring, lokal bevaring og punktvis bevaring. Dette fører til skarpere skranker
som er mulige å beregne når masse er bevart enten lokalt, eller eksakt. Vi kjenner ikke
til andre tilgjengelige feilestimater for sprekknettverk som inkluderer snitt av sprekker
og sprekkrender som ligger innenfor domenets rand.

Det siste bidraget omhandler utvikling av åpen kildekode. Først presenterer vi imple-
menteringen av en multipunktfluks-basert modul for flyt i umettet deformerbart porøst
medium som er kompatibelt med “Matlab Reservoir Simulation Toolbox” (MRST). I til-
legg presenterer vi et nytt Python-basert rammeverk for simulering av multifysikkpros-
esser i porøse medier med sprekker, som heter PorePy. Dette rammeverket er designet
for å håndtere geometrier med blandede dimensjoner og er derfor optimalt for DFM
modeller. De to første bidragene i avhandlingen (nevnt over) er implementert i PorePy.
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Outline

This work is made up of two parts. The first part provides the mathematical background
for the thesis, whereas the second contains the scientific production.

Part I, containing five chapters, is organized as follows. Chapter 1 provides an
overview of the thesis. We focus on the available current models and error estimation
techniques, analyze their limitations, and motivate the need for our contributions. In
Chapter 2, we introduce standard mathematical models describing flow and deformation
processes in nonfractured porous media. In Chapter 3, we extend the flow equations pre-
sented in the preceding chapter to account for fractures in the domain. Chapter 4 deals
with the fundamentals of a posteriori error techniques of the functional type. Finally,
in Chapter 5, we present a summary of the papers and propose further extensions of the
current work.

Part II contains the scientific results, consisting of the following four papers:

Paper A VARELA, J., GASDA, S. E., KEILEGAVLEN, E., AND NORDBOTTEN, J. M.
(2021). A Finite-Volume-Based Module for Unsaturated Poroelasticity.
In K. Lie and O. Møyner (editors), Advanced Modeling with the MATLAB
Reservoir Simulation Toolbox, 515–548. Cambridge: Cambridge Univer-
sity Press. doi: 10.1017/9781009019781.019.

Paper B KEILEGAVLEN E., BERGE R., FUMAGALLI A., STARNONI M., STEFANSSON
I., VARELA J., BERRE I. (2021). Porepy: an open-source software for sim-
ulation of multiphysics processes in fractured porous media. Computa-
tional Geosciences 25(1), 243–265. doi: 10.1007/s10596-020-10002-5.

Paper C VARELA J., AHMED E., KEILEGAVLEN E., NORDBOTTEN J. M., RADU, F. A.
(2021). A posteriori error estimates for hierarchical mixed-dimensional
elliptic equations. Submitted to the Journal of Numerical Mathematics.

Paper D VARELA J., KEILEGAVLEN E., NORDBOTTEN J. M., RADU, F. A. (2022). A
model of unsaturated flow in the presence of fractures acting as capillary
barriers. In preparation.
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Chapter 1

Introduction

This thesis deals with modeling of unsaturated flow and error estimation. The first topic
refers to the derivation of a system of differential equations describing the simultaneous
flow of water and air in a porous medium. The second topic refers to the mathematical
procedure in which the difference between the exact solution to a mathematical problem
and some given function (most of the time derived from approximations to the model
problem) is estimated. Both topics are highly relevant to numerous applications, ranging
from nuclear waste storage to the design of efficient simulators.

Understanding how water flows in unsaturated systems (see Figure 2.2) is important
for several processes such as groundwater management, aquifer remediation, agricul-
ture, evaporation and evapotranspiration, transport of nutrients, nuclear waster storage,
design and operation of dams, structural analysis, and the mining industry [137]. The
flow in partially saturated media is often described by Richards’ equation [114], which
is a simplification of the two-phase flow equations [33] based on the assumption of in-
viscid air [90, 91]. To this date, Richards’ equation remains one of the most challenging
equations to solve [45]. In fact, a great deal of effort has been invested to provide robust,
stable, economical and mass-conservative solutions [6, 31, 56, 60, 72, 94, 123, 143].
Many of these topics are still a matter of ongoing research.

Although unsaturated systems have been extensively studied in the case of non-
fractured domains, the unsaturated flow in fractured porous media is far less mature. The
study of unsaturated fractured systems started to receive more attention in the early 80s,
when the U.S. Department of Energy considered the possibility of storing spent nuclear
fuel and high-level radioactive waste in the Yucca mountain, Nevada. The Yucca moun-
tain is made up of alternating layers of highly fractured anisotropic volcanic tuff [119].
The fact that there is an aquifer below the intended storage repository [46], raised con-
cerns for the potential leakage of radioactive waste into the groundwater system. This
motivated the development of new conceptual models to better understand the dynamics
of unsaturated flow in the presence of fractures [138].

Models for fractured flow can generally be classified into two groups [16, 48]: (1)
equivalent continuum models, and (2) models representing the fractures explicitly. In
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the first group, matrix and fractures are represented either as a single continuum, or as
different continua coupled via transfer terms. In the second group, fractures are rep-
resented explicitly as separate lower-dimensional geometric objects embedded in the
matrix. The link between matrix and fractures takes place via coupling conditions. This
thesis employs the second approach. The reader is referred to Section 3.1 and the refer-
ences therein for a more detailed discussion about the two approaches.

In the context of unsaturated fractured flow, examples of continuum-type models
include: dual-porosity models [28, 65], dual-permeability models [62, 116], and more
general multiscale multi-continua models [120]. Models with explicit representation of
fractures, such as Discrete Fracture Matrix (DFM) models, were also successfully de-
rived and applied. In [122], Therrien and Sudicky proposed a DFM model based on
Richards’ equation in the matrix and an extension of the cubic law to the partially sat-
urated case in the fracture. Applications of unsaturated flow and transport, including
fractured rocks in the context of aquifer pollution [77] and mining [2] were later based
on this model. More recently, [69] employed a DFM model for saturated-unsaturated
seepage analysis in the presence of fractures, and [61] proposed a DFM model in which
Richard’s equation is used in both the matrix and the fractures, and the resulting set of
equations is solved using mixed hybrid finite element methods in space, a high-order
integration scheme in time, and a novel mass lumping technique.

Although proven useful, the above-mentioned DFM models were derived as exten-
sions of the saturated case, and as such, they lacked a formal mathematical ground. This
issue was recently circumvented in [71] and [64], where the authors, using rigorous and
formal upscaling, respectively, derived a catalog of reduced models depending on the
porosity and permeability ratios between the fracture and the matrix.

Indeed, the previously mentioned DMF models correspond to the case where frac-
tures are capable of storing and conducting water at comparable time scales as in the
matrix. In this work, however, we are interested in a less studied type of setting, which
takes place when the fracture permeability is so large compared to the matrix that cap-
illary effects are essentially absent. This allows us to assume that water moves down-
wards at infinite speed inside the fracture, and hydrostatic equilibrium is achieved in-
stantaneously. However, we remark that this assumption is only valid for fractures with
sufficiently large apertures where capillary forces play no role.

In this context, our representation of fractures in unsaturated systems consists of ide-
alized open channels. The fractures will then act as capillary barriers, diverging the flow
of water in the matrix tangentially to the fracture. Only when near-saturation conditions
at the fracture-matrix interface are achieved (and the capillary barrier is overcome) is
water allowed to imbibe the fracture. Depending on the wetting conditions, fractures can
then potentially serve as zero-resistance flow paths.

Mathematically, the previously described system can be classified as a coupled PDE-
ODE system with variational inequalities. The PDE part corresponds to Richards’ equa-
tion in the matrix, the ODE part to a water volume balance in the fractures, and the
variational inequalities are included to model the conditional imbibition and drainage
scenarios, where each fracture can be seen as a potential seepage face. Naturally, solving
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these types of systems is non-trivial, primarily due to the large gradients in heads and the
lost of continuity of the water phase in the matrix/fracture interface. Paper D presents
this model, including its generalization to fracture networks and solution strategies.

In general, the vast majority of mathematical models cannot be solved exactly, and
therefore one has to resort to numerical approximations. Currently, a large array of nu-
merical methods are available, e.g.: Finite Difference Method (FDM) [37, 67], Finite El-
ement Method (FEM) [25, 27, 41], Mimetic Finite Difference Method (MFDM) [8, 36],
Virtual Element Method (VEM) [13], Mixed Finite Element Method (MFEM) [21, 52],
Mixed Virtual Element Method (MVEM) [50, 51], Discontinuous Galerkin (DG) [38,
115], Cell-Centered Finite Volume Method (CCFVM) [1, 58, 81, 82], just to name some
of the most popular discretization techniques in porous media.

Provided an approximate solution to a model is available, two natural questions
arise [136]: (1) How close is our approximation to the true solution? (2) Where are
the errors localized? If we count with the exact solution, this can be easily accomplished
by measuring the difference between the exact and the approximate solutions in a suit-
able norm —-in this case, however, we would not need an approximation in the first
place. The more realistic situation corresponds to the case where the exact solution is
not available and one can only hope for an estimation of the error.

The error between the exact and approximate solutions can be estimated a priori or
a posteriori. The former provides information about the rate at which the error will de-
cay, and as such it can be known before obtaining the approximate solution. The latter,
which is the one considered in this thesis, is employed after the approximation has been
obtained, and aims at providing a quantitative measure of the difference between the ap-
proximate and the exact solutions in terms of known quantities, e.g., the approximations
themselves, the domain of interest, material properties, external sources, etc. Indeed, a
good estimator should [136]: (1) be directly computable from the approximate solution,
(2) go to zero as the computational effort increases, (3) be independent of the material
parameters, and (4) be computationally inexpensive.

In this thesis, we are interested in derive a posteriori error estimates for approxima-
tions of the set of equations that model the incompressible single-phase flow in fractured
porous media [23, 83]. More generally, we are interested in the types of models that can
be represented as hierarchical mixed-dimensional elliptic equations [22], where matri-
ces, fractures, intersections between fractures, and intersections between intersections
can be hierarchically represented as different geometric objects of codimension one. For
the 3d case, this corresponds to a matrix composed of simply connected 3d domains,
fractures are simply connected planar 2d surfaces, the intersection between these frac-
tures are 1d segments, and the intersection between fracture intersections are 0d points
(see, e.g., Figure 3.3 for a two-dimensional example).

Although a posteriori error techniques for mono-dimensional domains are well-
established (see the introductory part of Chapter 4 and the references therein), error
bounds for mixed-dimensional geometries are far more scarce. Indeed, the ones avail-
able exist in the context of mortar/multiscale methods [14, 89, 140, 142] and fractured
porous media [32, 53, 78] with far less geometric generality than the ones presented
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here.
The lack of a posteriori error bounds for mixed-dimensional elliptic problems is

due to the inherent difficulty associated with working with several subdomains, some
of them intersecting and some potentially floating. Indeed, deriving such bounds can
rapidly become cumbersome and highly technical. These issues can be circumvented by
deriving the bounds based on the theory of functional a posteriori error estimates [105]
(see also Chapter 4) together with the introduction of a compact mixed-dimensional
notation [22].

Although the bounds obtained with standard functional a posteriori error estimates
provide guaranteed upper bounds, they require constants (in particular, the mixed-
dimensional Poincaré constant) that are often hard to determine. To avoid such con-
strain, we exploit the fact that Poincaré-type inequalities imply weighted norms [88, 95],
unlocking the possibility to derive sharper bounds when mass is conserved at the
subdomain-level, grid-level, or exactly. We refer to Paper C for further details.

Ultimately, approximations to mathematical models, as well as a posteriori error
bounds, need to be implemented in a computational framework. As science advanced
and more complex processes required to be analyzed using simulation tools, the demand
for more robust simulation frameworks also increased.

This is the case of the Matlab Reservoir Simulation Toolbox (MRST) [70] and
the Python-based multiphysics simulation framework PorePy [57]. Both programs are
open source, rapid prototyping-oriented alternatives for simulating complex processes
in porous media. MRST is primarily oriented towards multiphase multicomponent pro-
cesses on monodimensional domains, whereas PorePy is particularly well-suited for
DFM-type processes on mixed-dimensional geometries.

The fact that both software are designed as rapid prototyping tools allows the pos-
sibility of extending existing models with relatively little effort. Two aspects are key to
achieve this: (1) access to standard discretization techniques and (2) an automatic dif-
ferentiation (AD) framework.

Indeed, this thesis greatly benefits from the rapid-prototyping capabilities of MRST
and PorePy. In particular, we can mention the following instances:

Paper A: Extension of the equations of linear poroelasticity (Section 2.3) to the non-
linear unsaturated case (Section 2.4) based on multipoint finite volume discretiza-
tions.

Paper C: Possibility of effortlessly validating the derived error bounds for three fami-
lies of locally mass-conservative approximations; MFEM, MVEM, and CCFVM.

Paper D: Extension of the implemented monodimensional Richards’ equation from Pa-
per A, to the fractured case, accounting for the ODE coupling.

We remark that all implemented models (including validations and numerical exam-
ples) obtained as a result of this thesis are completely open source. The reader is referred
to Section 1.1 for the links to the respective repositories.
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1.1 Main contributions
In the following, we summarize the main contributions of this doctoral thesis:

Mathematical modeling: A new model for unsaturated fractured flow has been pro-
posed. Contrary to standard models where Richards’ equation is used to model
both the flow in the matrix and in the fractures, we consider the fractures to be
open channels. The fractures act as capillary barriers for the water flow in the
matrix, which is only allowed to imbibe the fractures if such barrier is over-
come. The resulting model is a coupled PDE-ODE system where each fracture
represents a potential seepage face. The reader is referred to Paper D for fur-
ther details. The implementation of the model, together with conceptual simu-
lations are available through unsat-frac, a PorePy extension package available
at https://github.com/jhabriel/unsat-frac.

A posteriori error estimation: A posteriori error estimates for mixed-dimensional el-
liptic equations were derived. In particular, our bounds can be applied to approxi-
mations to the set of equations modeling the incompressible single-phase flow in
fracture networks. To the best of our knowledge, error bounds were only available
for a single fracture embedded in a matrix (or various nonintersecting fractures)
or approximations to mortar-type models with considerable less geometric gen-
erality compared to what we have obtained here. Thus, until now, error bounds
for generic fracture networks (including intersecting fractures and floating sub-
domains) have essentially not been available. The reader is referred to Paper C
for further details. We also refer to the PorePy extension package mdestimates,
available at https://github.com/jhabriel/mixdim-estimates.

Open-source software for complex processes: fv-unsat, an open-source multipoint
finite-volume-based solver for unsaturated flow and unsaturated poroelasticity
compatible with MRST was developed. Paper A contains the complete descrip-
tion of the module. The software is available as an add-on module to MRST, see
also https://github.com/pmgbergen/fv-unsat.
Moreover, we proposed a new Python-based simulation framework for multi-
physics problems in fractured porous media named PorePy; see Paper B and
https://github.com/pmgbergen/porepy. Since Paper B is a multi-authored ef-
fort, we would like to emphasize the specific contributions of this thesis: (1) im-
plementation and writing of the validation of the poroelastic code for Mandel’s
problem (Section 5.2), (2) generation of figures in IPE [118], (3) generation of
code snippets using the LATEX package listings [54], and (4) writing and coor-
dination of the electronic supplementary material.
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Chapter 2

Flow and deformation in non-fractured
porous media

This chapter is devoted to introducing the governing equations in non-fractured domains.
We start with the description of the flow equations for single-phase and unsaturated
systems and later incorporate deformation effects. The models presented in this chapter
are particularly relevant for Paper A and Section 5.2 of Paper B. However, the reader will
find that the models from Section 2.1 and Section 2.2 are later extended in Chapter 3,
and that the exposition from Chapter 4 is based on the model from Section 2.1.

Throughout this chapter, we consider a single open bounded domain Ω ⊂ ℝ𝑛, 𝑛 ∈
{2, 3}, with a smooth boundary 𝜕Ω. We let x = [𝑥1, … , 𝑥𝑛] ∈ Ω denote the vector of
spatial coordinates, with 𝑧 = 𝑥𝑛 denoting the vertical coordinate considered positive,
pointing upwards. For time-dependent problems, we let 𝑡 represent the time variable,
𝑇 > 0 the final time, and (0, 𝑇 ) the time interval of interest.

Our exposition will not consider derivations. The interested reader, however, is re-
ferred to [35, 117] and the references therein for further details.

2.1 Single phase flow

Let us start by stating the steady-state mass conservation equation for an incompressible
fluid in a nondeformable porous medium [11]:

∇ ⋅ (𝜙v𝑓,𝑠) =
�̇�𝑓
𝜌𝑓

, in Ω. (2.1)

Here, 𝜙 is the porosity of the porous medium, 𝜌𝑓 is the density of the fluid, v𝑓,𝑠 is the
velocity of the fluid relative to the solid particles, and �̇�𝑓 is the external rate of addition
or subtraction of the fluid mass.

The product between 𝜙 and v𝑓,𝑠 is given by Darcy’s law, which, in the absence of
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Figure 2.1: Pressure, elevation, and hydraulic heads for a saturated water column in
hydrostatic equilibrium.

inertial effects, is given by

q𝑓 = 𝜙v𝑓,𝑠 = − k𝑠
𝜇𝑓

(∇𝑝𝑓 − 𝜌𝑓 g), in Ω, (2.2)

where q𝑓 is the Darcy velocity or specific discharge of the fluid 𝑓 , k𝑠 is a symmetric
positive-definite 𝑛 × 𝑛 tensor denoting the intrinsic permeability of the solid particles,
𝜇𝑓 is the fluid dynamic viscosity, ∇𝑝𝑓 is the gradient of the fluid pressure, and g is the
gravitational acceleration.

In hydrogeology, it is more common to express Darcy’s law (2.2) in terms of the
gradients of the hydraulic heads. The hydraulic head (or total head) ℎ𝑓 is given by

ℎ𝑓 = ∫
𝑝𝑓

𝑝𝑟𝑒𝑓

𝑑𝑝′

𝜌𝑓 𝑔 − ∫
𝑧

𝑧𝑟𝑒𝑓

g ⋅ e𝑛
𝑔 𝑑𝑧′, (2.3)

where 𝑝𝑟𝑒𝑓 and 𝑧𝑟𝑒𝑓 are reference values of 𝑝𝑓 and 𝑧, and e𝑛 is the unit vector in the
𝑥𝑛-axis [90].

Note that the density of the fluid 𝜌𝑓 in (2.3) could depend on the pressure of the
fluid, the temperature of the fluid and even the concentration of chemical species [91].
Even though the definition of ℎ𝑓 still makes perfect sense in this more general case, in
practice, one only employs (2.3) when the first integral can be computed easily. In the
particular case where 𝜌𝑓 is constant, we have

ℎ𝑓 =
𝑝𝑓 − 𝑝𝑟𝑒𝑓

𝜌𝑓 𝑔 + (𝑧 − 𝑧𝑟𝑒𝑓 ), (2.4)

where we used g ⋅e𝑛 = −𝑔. The first term of (2.4) is often referred to as the pressure head
𝜓𝑓 , while the second term is called the elevation head 𝜁 . The usual practice is to set the
reference pressure as the atmospheric pressure 𝑝𝑟𝑒𝑓 = 𝑝𝑎𝑡𝑚 and 𝑧𝑟𝑒𝑓 = minx∈Ω x ⋅ e𝑛.
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Figure 2.2: The unsaturated zone. A zoom at the pore-scale shows the three phases in-
volved in an unsaturated system; the solid phase (solid particles) and the fluid phases
(water and air).

By properly computing the derivatives of ℎ𝑓 [91], it is straightforward to see that
Darcy’s law (2.2), in the incompressible case, can be written equivalently as

q𝑓 = −K𝑓 ∇ℎ𝑓 , in Ω, (2.5)

where K𝑓 = k𝑠𝜌𝑓 𝑔/𝜇𝑓 is the hydraulic conductivity of the porous medium.

2.2 Unsaturated flow
Unsaturated flow refers to the simultaneous flow of water 𝑤 and air 𝑎 in a porous
medium. Here, we employ the usual assumption of inviscid air. This assumption es-
tablishes that, based on the contrast in physical properties between the fluid phases (i.e.,
the air being three orders of magnitude less dense and two orders of magnitude less vis-
cous than water at normal conditions), the air phase flows without any of resistance in
the soil [90].

This assumption and the fact that the air in the unsaturated zone is connected to the
atmosphere justifies setting the air pressure equal to the atmospheric pressure, 𝑝𝑎 = 𝑝𝑎𝑡𝑚.

A statement of mass conservation for water, assuming both water and solid particles
as incompressible, can be written as

𝜕(𝜙𝑆𝑤)
𝜕𝑡 + ∇ ⋅ (𝜙𝑆𝑤v𝑤,𝑠) =

�̇�𝑓
𝜌𝑓

, in Ω × (0, 𝑇 ), (2.6)

where 𝑆𝑤 is the water saturation. The product 𝜙𝑆𝑤 is a measure of the amount of water in
the void spaces of the porous medium, and therefore receives the name of water content
𝜃𝑤. The quantity 𝜙𝑆𝑤v𝑤,𝑠 is now given by the extended, multiphase version of Darcy’s
law

q𝑤 = 𝜙𝑆𝑤v𝑤,𝑠 = −k𝑠𝑘𝑟𝑤
𝜇𝑤

(∇𝑝𝑤 − 𝜌𝑤g) , in Ω × (0, 𝑇 ), (2.7)
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where 𝑘𝑟𝑤 ∈ [0, 1] is the relative permeability of the water, incorporating the effects of
the reduction in the effective pore space due to the presence of multiple phases at the
pore-scale.

Analogously to the single-phase case, (2.7) can also be written in terms of hydraulic
heads

q𝑤 = −K𝑤𝑘𝑟𝑤∇ℎ𝑤, in Ω × (0, 𝑇 ), (2.8)

Substitution of (2.8) into (2.6) gives the well-known 𝑛-dimensional Richards’ equa-
tion in mixed-form

𝜕𝜃𝑤
𝜕𝑡 − ∇ ⋅ [K𝑤𝑘𝑟𝑤∇(𝜓𝑤 + 𝜁)] = �̇�𝑤

𝜌𝑤
, in Ω × (0, 𝑇 ). (2.9)

Although slightly confusing for those familiar with mixed-finite element methods, in
this context, the name “mixed-form” simply reflects the fact that both the water content
𝜃𝑤 and the pressure head 𝜓𝑤 appear explicitly in equation (2.9).

2.3 Biot’s equations of poroelasticity
So far, we have only considered the flow of fluids under incompressible conditions.
However, in some processes, it is important to account for the possibility that the porous
medium will deform. Clear examples when mechanical effects must be included are the
ones involving large external loads, such as the consolidation or the subsidence of soils.

Maurice A. Biot [20] proposed a general framework for representing the flow of
a fluid accounting for the deformation of the porous medium assuming linear elastic
properties of the solid particles. Since then, Biot’s equations were extensively applied in
numerous fields, including but not limited to geomechanics, tissue mechanics, material
engineering, and hydrogeology.

Let us start by introducing the mechanical equations. The linear momentum conser-
vation equation, under quasi-static conditions, is given by

∇ ⋅ 𝜎 − [(1 − 𝜙)𝜌𝑠 + 𝜙𝜌𝑤] g = 0, in Ω × (0, 𝑇 ), (2.10)

where 𝜎 is the total stress tensor and the second term denotes the body forces. For poroe-
lastic systems, the total stress is given by the principle of effective stress

𝜎 = 𝜎𝑒 − 𝛼𝑝𝑤I, in Ω × (0, 𝑇 ), (2.11)

where 𝜎𝑒 is the effective stress tensor, 𝛼 is the Biot’s coupling coefficient, and I is the
identity tensor. Equation (2.11) states that the total stress in a poroelastic media has two
contributions: (1) the effective part that causes the actual deformation of the medium,
and (2) the fluid contribution. The negative sign in (2.11) follows from the convention
that the tensile forces are positive and the compressive forces negative.

Substituting (2.11) into (2.10) gives the linear momentum balance equation

∇ ⋅ 𝜎𝑒 − 𝛼∇𝑝𝑤 − [(1 − 𝜙)𝜌𝑠 + 𝜙𝜌𝑤] g = 0, in Ω × (0, 𝑇 ). (2.12)
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Assuming small deformations and isotropic elastic properties for the solid, the ef-
fective stress 𝜎𝑒 can be related to the displacement field u via the generalized Hooke’s
law:

𝜎𝑒 = 𝜇𝑠 (∇u + (∇u)𝑇 ) + 𝜆𝑠 (∇ ⋅ u) I, in Ω × (0, 𝑇 ), (2.13)

where 𝜆𝑠 and 𝜇𝑠 are the first and second Lamé parameters [74].
The so-called storage equation can be derived with the help of the mass conserva-

tion equations for the fluid and solid phases together with relevant constitutive relation-
ships [68]

𝐶𝜀
𝜕𝑝𝑤
𝜕𝑡 + 𝛼 𝜕

𝜕𝑡 (∇ ⋅ u) + ∇ ⋅ q𝑤 = �̇�𝑤
𝜌𝑤

, in Ω × (0, 𝑇 ). (2.14)

Here, 𝐶𝜀 = (𝛼 − 𝜙)𝐶𝑠 − 𝜙𝐶𝑤 is the storativity (a parameter depending on the compress-
ibility of the solid particles 𝐶𝑠 and water phase 𝐶𝑤) and the Darcy velocity q𝑤 is given
by (2.2)

Equation (2.14) suggests that there are four mechanisms that influence the flow of a
fluid in a poroelastic medium: (1) compressibility effects, (2) deformation of the porous
medium due to mechanical effects, (3) gradients in pressure and elevation, and (4) ex-
ternal sources or sinks of water.

2.4 Unsaturated poroelasticity
For some processes, such as operations of dams or soil desiccation, Biot’s equations of
poroelasticity are insufficient, since they are only valid for a single fluid phase saturat-
ing the entirety of the domain. Indeed, following [35, 68], it is possible to extend the
equations of poroelasticity to account for the extra air phase.

The linear momentum balance and the principle of effective stress [49, 117] can be
extended to the multiphase case

∇ ⋅ 𝜎 − [(1 − 𝜙)𝜌𝑤 + 𝑆𝑤𝜙𝜌𝑤] g = 0, in Ω × (0, 𝑇 ), (2.15)
𝜎 = 𝜎𝑒 − 𝛼𝑆𝑤𝑝𝑤I, in Ω × (0, 𝑇 ), (2.16)

where (2.15) and (2.16) differ respectively from (2.10) and (2.11) in that only a part of
the total amount of fluid within the porous media contributes to the body forces and the
total stress; this effect is incorporated via 𝑆𝑤 in both equations.

Substitution of (2.16) into (2.15) results in the unsaturated momentum balance equa-
tion:

∇ ⋅ 𝜎𝑒 − 𝛼∇ (𝑆𝑤𝑝𝑤) − [(1 − 𝜙)𝜌𝑠 + 𝑆𝑤𝜙𝜌𝑤] g = 0, in Ω × (0, 𝑇 ). (2.17)

Note that since 𝜎𝑒 takes into account only the stresses associated with the solid skeleton,
(2.13) is still valid in the unsaturated case.

Finally, we extend the storage equation (2.14) to obtain the unsaturated storage equa-
tion

𝐶𝑝,𝜀
𝜕𝑝𝑤
𝜕𝑡 + 𝐶𝑆,𝜀

𝜕𝑆𝑤
𝜕𝑡 + 𝛼𝑆𝑤

𝜕
𝜕𝑡 (∇ ⋅ u) + ∇ ⋅ q𝑤 = �̇�𝑤

𝜌𝑤
, in Ω × (0, 𝑇 ), (2.18)
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Figure 2.3: Soil-Water Retention Curves for a soil sample from New Mexico [90] with
𝛼𝑣𝐺 = 0.0335 [1/cm], 𝑛𝑣𝐺 = 2, 𝑚𝑣𝐺 = 0.5, 𝜃𝑤,𝑠𝑎𝑡 = 0.368, and 𝜃𝑤,𝑟𝑒𝑠 = 0.102.

where 𝐶𝑝,𝜀 = (𝛼 − 𝜙)𝐶𝑠𝑆2
𝑤 − 𝜙𝐶𝑤𝑆𝑤 and 𝐶𝑆,𝜀 = (𝛼 − 𝜙)𝐶𝑠𝑆𝑤𝑝𝑤 + 𝜙 are compressibility-

like terms, and q𝑤 is given by (2.7).

2.5 Soil-water retention curves

In unsaturated systems, we have to provide relations for 𝜃𝑤 (or 𝑆𝑤) and 𝑘𝑟𝑤. This is
usually achieved by means of Soil-Water Retention Curves (SWRC). The most widely
used set of relations is the one proposed by van Genuchten and Mualem [79, 127]:

𝜃𝑤(𝜓𝑤) =
{

𝜃𝑤,𝑟𝑒𝑠 + (𝜃𝑤,𝑠𝑎𝑡 − 𝜃𝑤,res) [1 + (𝛼𝑣𝐺|𝜓𝑤|)
𝑛𝑣𝐺 ]

−𝑚𝑣𝐺 𝜓𝑤 < 0
𝜃𝑤,𝑠𝑎𝑡 𝜓𝑤 ≥ 0

, (2.19)

Θ𝑤(𝜃𝑤) =
𝜃𝑤 − 𝜃𝑤,𝑟𝑒𝑠

𝜃𝑤,𝑠𝑎𝑡 − 𝜃𝑤,𝑟𝑒𝑠
, (2.20)

𝑘𝑟𝑤(Θ𝑤) = √Θ𝑤 [1 − (1 − Θ𝑤)
1

𝑚𝑣𝐺 ]
2

. (2.21)

Here, 𝛼𝑣𝐺, 𝑛𝑣𝐺, and 𝑚𝑣𝐺 are fitting parameters, 𝜃𝑤,𝑟𝑒𝑠 is the residual water content, 𝜃𝑤,𝑠𝑎𝑡
is the water content at saturated conditions, and Θ𝑤 is the effective saturation, i.e., the
normalized water content. In Figure 2.3, we show the SWRC for a soil sample from New
Mexico [90].

2.6 Boundary and initial conditions

Boundary and initial conditions have to be specified in order to close the previously
presented system of equations. For a coupled flow-mechanical problem, the boundary
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conditions are given by

𝑝𝑤 = 𝑔f
𝐷, on 𝜕f

𝐷Ω × (0, 𝑇 ), (2.22)
q𝑤 ⋅ n = 𝑔f

𝑁 , on 𝜕f
𝐷Ω × (0, 𝑇 ), (2.23)

u = gm
𝐷, on 𝜕m

𝐷 Ω × (0, 𝑇 ), (2.24)
𝜎 ⋅ n = gm

𝑁 , on 𝜕m
𝑁 Ω × (0, 𝑇 ), (2.25)

where n denotes the normal vector facing outward on the corresponding Neumann part
of the boundary [24]. We require the boundary partitions to satisfy 𝜕f

𝐷Ω ∪ 𝜕f
𝑁 Ω = 𝜕m

𝐷 Ω ∪
𝜕m

𝑁 Ω = 𝜕Ω. Finally, the initial conditions are given by

𝑝𝑤 = 𝑔f
0, in Ω × {0}, (2.26)

u = gm
0 , in Ω × {0}. (2.27)

where 𝑔f
0 and gm

0 are the initial pressure and displacement distributions.
Naturally, for Richards’ equation (Section 2.2) one only needs boundary conditions

(2.22), (2.23), and the initial condition (2.26). For the incompressible single-phase flow
model (Section 2.1) only boundary conditions have to provided, and it is required 𝜕𝐷Ω ≠
∅ to ensure a unique solution.

Modeling evaporation processes in porous media often requires switching between
boundary conditions (2.22) and (2.23) [93]. Indeed, the so-called atmospheric boundary
condition imposes a Neumann boundary condition on the soil surface with the outflow
set to the maximum evaporation rate 𝐸𝑚𝑎𝑥 as long as the soil is sufficiently wet, oth-
erwise, the boundary condition on the soil surface switches to a Dirichlet type, with
the pressure value given by the minimum allowable pressure 𝑝𝑤,𝑚𝑖𝑛 on the soil surface;
which can be approximated by the psychometric conditions of the surroundings.

Let us denote the soil boundary 𝜕𝑡𝑜𝑝Ω = {x ∈ 𝜕Ω ∶ maxx∈𝜕Ω x ⋅ e𝑛} ⊂ 𝜕Ω. Then, the
atmospheric boundary condition can be written as: On 𝜕𝑡𝑜𝑝Ω × (0, 𝑇 ), set

{
q𝑤 ⋅ n = 𝐸𝑚𝑎𝑥, 𝑝𝑤 > 𝑝𝑤,𝑚𝑖𝑛
𝑝𝑤 = 𝑝𝑤,𝑚𝑖𝑛, otherwise

. (2.28)

The reader with an engineering background might recognize (2.28) as a system-
dependent boundary condition, whereas a mathematician will classify (2.28) as a vari-
ational inequality. An interesting study case in which atmospheric boundary conditions
are applied in the context of unsaturated poroelasticity can be found in Paper A.
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Chapter 3

Flow in fractured porous media

In this chapter, we present the mathematical models for single-phase and unsaturated
flow in fractured porous media. The former is relevant to Papers B and C, whereas the
latter is relevant to Paper D.

We start with a brief discussion of the current conceptual models available for repre-
senting fractures. Then, we present the governing equations for the case of a single frac-
ture embedded in a matrix. Extension to fracture networks are considered next, where
we first introduce the mixed-dimensional decomposition of the domain of interest, and
then present the models valid for fracture networks.

3.1 Representation of fractures and the different con-
ceptual models

In the last decades, a great deal of effort have been invested in developing accurate
models for representing fractures in porous media. This responds to the important role
that fractures play in the extraction of oil and gas, geothermal engineering, deep nuclear
waste storage, and CO2 sequestration, just to name a few relevant applications.

The major decision that one has to make when including fractures in the model is
whether to represent them implicitly or explicitly [16].

Within the first category, we find the single-continuum model [40, 73] and the multi-
continuum model [9, 139]. In the former, fractures and the surrounding medium are
represented as a single continuum, and their distinction is therefore achieved by assign-
ing a different permeability where the fractures are located (including possibly orien-
tation effects). The latter is based on the super-imposition of several mediums, each
medium having its own conservation law and constitutive relationship. The most com-
mon multi-continuum model is the dual-continuum model, where the surrounding ma-
trix and the fracture are different continua. The communication between these continua
is achieved via transfer terms that enter the conservation equations; ultimately, the lim-
itation of multi-continuum models is associated with the difficulty in obtaining such
transfer terms.
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Figure 3.1: Different conceptual models used for the representation of fractures. Image
borrowed from [16] under Creative Common License v.4.0.

Unlike models that represent fractures implicitly, models that represent fractures
explicitly establish a geometric distinction between the fractures and the surrounding
matrix. Within this category, the two most popular models are the Discrete Fracture
Network (DFN) [47] and Discrete Fracture Matrix (DFM) models [23, 76, 83]. The first
represents only the fracture network and neglects the flow in the matrix (and thus effec-
tively considers the matrix as impermeable) whereas the second considers both the flow
in “relevant” fractures and in the matrix. To what extent a fracture might be considered
relevant or not will depend on its size relative to the size of the matrix. In principle, all
fractures could be represented explicitly, but this will not be feasible from a computa-
tional standpoint; the fractures that are not represented explicitly are generally upscaled
and replaced by average quantities within the host medium [16].

Figure 3.1 from [16] presents the conceptual models and their accuracy in represent-
ing the host medium and the fractures. In this thesis, we are interested in representing
the processes both in the matrix and in the fractures, thus, Papers B, C, and D employ
the DFM paradigm.

3.2 Flow equations for a single fracture
Before introducing the model equations valid for generic fracture networks, we first
present the simpler setting of a single fracture embedded in a matrix. We start with
the equations describing the single-phase flow and then move to the unsaturated case.
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Figure 3.2: A one-dimensional fracture embedded in a two-dimensional matrix. Left:
The matrix Ω2 hosting the fracture Ω1. Center: Interfaces Γ1 and Γ2 at both sides of
Ω1 establish the link with Ω2. Right: External (Neumann and Dirichlet) and internal
boundary conditions. Note that 𝜕1Ω2, Γ1, Ω1, Γ2, and 𝜕2Ω2 all coincide spatially. However,
for illustrative purposes, they are placed in different locations.

3.2.1 Single-phase flow equations for a single fracture
Let us start by considering the case of a single one-dimensional fracture Ω1 embedded
in a two-dimensional matrix Ω2, as shown in the left panel of Figure 3.2.

We let each side of Ω1 be coupled with Ω2 via the interfaces Γ1 and Γ2 (see the cen-
ter Figure 3.2). The coupling takes place through the internal boundaries of Ω2, namely
𝜕1Ω2 and 𝜕2Ω2; numbered such that the first sub-index corresponds to the interface num-
ber and the second to the matrix number (see right Figure 3.2). It is worth mentioning
that, in physical space, 𝜕1Ω2 = Γ1 = Ω1 = Γ2 = 𝜕2Ω2. However, their distinction as
separate entities will be key when we generalize the model to fracture networks.

We assume steady-state conditions and incompressibility of the solid and fluid
phases. For the sake of compactness, we will drop the subscript denoting the water phase
and define 𝑓 ∶= �̇�/𝜌.

With these considerations, we present the governing equations for the matrix, frac-
ture, and interfaces. We remark that the following set of equations are well-established
in the literature [15, 23, 57, 76, 83]. In the matrix Ω2, the governing equations are

∇2 ⋅ q2 = 𝑓2, in Ω2, (3.1)
q2 = −K2∇2ℎ2, in Ω2, (3.2)

q2 ⋅ n2 = 𝜆1, on 𝜕1Ω2, (3.3)
q2 ⋅ n2 = 𝜆2, on 𝜕2Ω2, (3.4)
q2 ⋅ n2 = 𝑔𝑁,2, on 𝜕𝑁 Ω2, (3.5)

ℎ2 = 𝑔𝐷,2, on 𝜕𝐷Ω2. (3.6)

We recognize equations (3.1) and (3.2) as the mass conservation equation and the single-
phase Darcy’s law written in terms of hydraulic head (see Section 2.1). In addition,
equations (3.3) and (3.4) enforce the normal Darcy velocities on 𝜕1Ω2 and 𝜕2Ω2 to
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match the interface fluxes 𝜆1 and 𝜆2 (to be defined later), respectively. Note that the
normal vector n2 on the internal boundaries, by construction, points from Ω2 to Ω1.
Finally, equations (3.5) and (3.6) impose Neumann and Dirichlet boundary conditions,
respectively.

In Ω1, the governing equations are given by

∇1 ⋅ q1 − (𝜆1 + 𝜆2) = 𝑓1, in Ω1, (3.7)
q1 = −K1∇1ℎ1, in Ω1, (3.8)

q1 ⋅ n1 = 𝑔𝑁,1, on 𝜕𝑁 Ω1, (3.9)
ℎ1 = 𝑔𝐷,1, on 𝜕𝐷Ω1. (3.10)

Equation (3.7) is the mass conservation equation in the fracture, where ∇1 denotes the
del-operator in the tangential direction and the term in parentheses represents the jump
in interface fluxes onto Ω1. The tangential velocity q1 is given by Darcy’s law (3.8), and
equations (3.9) and (3.10) establish the Neumann and Dirichlet boundary conditions at
the bottom and top tips of the fracture.

The usual practice when the boundary of a fracture touches the ambient boundary
is to inherit the ambient boundary value. On the other hand, on immersed tips, it is
accustomed to prescribing null-flux, which is justifiable by the small mass transfer rate
through the tips due to the large ratio between the fracture length and its aperture [7, 23].

The coupling between Ω1 and Ω2 takes place through the interface fluxes 𝜆1 and 𝜆2
on Γ1 and Γ2, respectively. Since interface fluxes act as coupling agents, they are also
referred to as mortar fluxes. Following [76], we assume that mortar fluxes are linearly
related to the jump in hydraulic heads, and thus follow a Darcy-type law

𝜆1 = −2𝑘1
𝑎1

(ℎ1 − ℎ2) , on Γ1, (3.11)

𝜆2 = −2𝑘2
𝑎1

(ℎ1 − ℎ2) , on Γ2, (3.12)

where 𝑘1 and 𝑘2 are the normal hydraulic conductivity on Γ1 and Γ2, and 𝑎1 is the aperture
of the fracture.

3.2.2 Unsaturated flow equations for a single fracture
Let us now consider the unsaturated flow in fractured porous medium. Here, we as-
sume that the matrix can be represented as a porous media (typically some type of soil)
whereas the fractures are represented as lower-dimensional thin open channels.

This allows us to describe the flow of water in the matrix using Richard’s equation
(see Section 2.2). However, since air-filled fractures provide a natural capillary barrier,
water in the matrix can only break through the fracture if the capillary barrier is over-
come. This typically occurs when saturated (or nearly saturated) conditions are present
in the matrix-fracture interface.

Inside the fracture, the water travels downwards, primarily due to the action of grav-
ity. And, since the fracture is an open channel, its velocity usually exceeds the velocity
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under saturated conditions in the matrix [121, 141]. Therefore, one can assume that wa-
ter travels at infinite speed in the fracture, and that at any given time 𝑡, is in instantaneous
hydrostatic equilibrium. By accepting this premise, the volumetric changes in the frac-
ture are given by an ordinary differential equation (ODE). We note that this coupled
PDE-ODE system of equations was recently obtained via formal and rigorous upscal-
ing [64, 71].

In practice, the water inside the fracture travels at finite speed. The precise mech-
anism in which this occurs is not yet fully understood. However, there is experimental
evidence that this takes place in the form of thin films [39, 124, 126]. It is important
to mention that thanks to our mixed-dimensional decomposition (which treats matrix,
fractures, and interfaces as different objects), one can, with relatively low effort, cou-
ple more complex models for the water distribution in the fractures. This is, however,
beyond the scope of the current work.

In the following, we present the governing equations for a single vertical fracture Ω1
embedded in a two-dimensional matrix Ω2, as shown in the left Figure 3.2. Let us start
by presenting the governing equations in the matrix Ω2:

𝜕𝜃2
𝜕𝑡 + ∇ ⋅ q2 = 𝑓2, in Ω2 × (0, 𝑇 ), (3.13)

q2 = −K2 𝑘𝑟𝑤,2∇ℎ2, in Ω2 × (0, 𝑇 ), (3.14)
q2 ⋅ n2 = 𝜆1, on 𝜕1Ω2 × (0, 𝑇 ), (3.15)
q2 ⋅ n2 = 𝜆2, on 𝜕2Ω2 × (0, 𝑇 ), (3.16)
q2 ⋅ n2 = 𝑔𝑁,2, on 𝜕𝑁 Ω2 × (0, 𝑇 ), (3.17)

ℎ2 = 𝑔𝐷,2, on 𝜕𝐷Ω2 × (0, 𝑇 ), (3.18)
ℎ2 = 𝑔0,2, in Ω2 × {0}. (3.19)

Here, (3.13) and (3.14) are the mass conservation equation and multiphase Darcy’s
law, respectively (see also Section 2.2). Equations (3.15) and (3.16) are the internal
boundary conditions, which, as in the preceding model, are required to match the mortar
fluxes 𝜆1 and 𝜆2 (defined below). Equations (3.17) and (3.18) impose the usual Neumann
and Dirichlet boundary conditions, and (3.19) the initial conditions. We use 𝜃2 = 𝜃(ℎ2 −
𝜁2) and 𝑘𝑟𝑤,2 = 𝑘𝑟𝑤(ℎ2 − 𝜁2) to denote the water content and the relative permeability in
the bulk. Recall that 𝜃 and 𝑘𝑟𝑤 are given by (2.19) and (2.21), respectively.

The governing equations in the fracture Ω1 are given by
d𝑉1
d𝑡 = ∫Ω1

(𝜆1 + 𝜆2) dx + ∫Ω1
𝑓1dx, in Ω1 × (0, 𝑇 ), (3.20)

ℎ1 = 𝑔0,1, in Ω1 × {0}. (3.21)

where 𝑉1 is water volume in the fracture, and 𝑓1 is an external source or sink of water,
which can be employed to mimic direct infiltration or evaporation scenarios. The water
volume 𝑉1 can generally be written as a function of the hydraulic head ℎ1 in the fracture

𝑉1(ℎ1) = ∫Ω1
𝑧≤ℎ1

𝑎1 dx, (3.22)
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Equation (3.20) is an ODE that keeps track of the volumetric changes of water inside
the fracture, requiring the rate of change of water volume to match the amount of wa-
ter exchanged via the mortar fluxes (in the direction normal to the fracture) plus the
source terms. Note that, in contrast to the single-phase case, boundary conditions are
not imposed in the fracture.

At interfaces Γ1 and Γ2, the mortar fluxes 𝜆1 and 𝜆2 are given by the multiphase
extension of (3.11) and (3.12):

𝜆1 = −𝛾1
2𝑘1
𝑎1

𝑘𝑟𝑤,1 (ℎ1 − ℎ2) , on Γ1 × (0, 𝑇 ), (3.23)

𝜆2 = −𝛾2
2𝑘2
𝑎1

𝑘𝑟𝑤,2 (ℎ1 − ℎ2) , on Γ2 × (0, 𝑇 ). (3.24)

Here, 𝛾1 and 𝛾2 are threshold functions that control the flow through the interfaces:

𝛾𝑗(ℎ1, ℎ2, 𝜓𝐿) =
⎧⎪
⎨
⎪⎩

1, ℎ2 − 𝜁2 > 𝜓𝐿
1, ℎ1 − 𝜁1 > 𝜓𝐿
0, otherwise

, on Γ𝑗 × (0, 𝑇 ), 𝑗 ∈ {1, 2}, (3.25)

where 𝜓𝐿 is the capillary pressure head threshold; that is, the minimum pressure head
necessary to break the capillary barrier. In practice, 𝜓𝐿 takes values very close to zero.
However, values below zero are also possible [125].

Furthermore, 𝑘𝑟𝑤,1 and 𝑘𝑟𝑤,2 are the mortar relative permeabilities given by a classi-
cal potential-based upstream weighting [33]:

𝑘𝑟𝑤,𝑗(ℎ1, ℎ2) =
{

𝑘𝑟𝑤(ℎ2 − 𝜁2), ℎ2 ≥ ℎ1
𝑘𝑟𝑤(ℎ1 − 𝜁1), ℎ2 < ℎ1,

, on Γ𝑗 × (0, 𝑇 ), 𝑗 ∈ {1, 2}. (3.26)

Equations (3.23) and (3.24) complemented by (3.25) and (3.26) establish that: (1)
interfaces act as impervious barriers unless the capillary barrier is overcome, and (2) if
the capillary barrier is overcome, interfaces become conductive with the direction of the
flow given by the upstream direction.

An important point to consider is that, in practice, one does not know a priori which
part of the interfaces will be blocking and which will be conductive, since the hydraulic
heads needed for the evaluation of 𝛾1 and 𝛾2 are part of the solution. Thus, solution
strategies based on regularization or active level sets must be employed. The former is
computationally efficient but prone to mass conservation errors (situations where wa-
ter leaks into the fracture before overcoming the capillary barrier are not uncommon)
whereas the latter is more costly but conserves mass exactly. In Paper D, we employ a
strategy based on active level sets.

3.3 Extension to fracture networks
The aim of this section will be to generalize the results from the previous section to
fracture networks. To do that, we first introduce a mixed-dimensional decomposition of
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Figure 3.3: Decomposition of a domain 𝑌 ⊂ ℝ2. Left: Subdomains. Center: Interfaces.
Right: Internal boundaries.

the domain of interest, then proceed to write the generic model for the single-phase case,
and finally present the generic model for the unsaturated case.

3.3.1 Mixed-dimensional geometric decomposition
Let 𝑌 ⊂ ℝ𝑛, 𝑛 ∈ {2, 3}, represent a domain decomposed into 𝑚 flat open-bounded sub-
domains Ω𝑖 of know dimensionality 𝑑𝑖 = 𝑑(𝑖), such that 𝑌 = ∪𝑚

𝑖=1Ω𝑖. We assume all 𝑑–
dimensional subdomains to be strictly disjointed; for the case 𝑛 = 3, this means that the
bulk is composed by simply connected three-dimensional subdomains, fractures are sim-
ply connected two-dimensional subdomains, the intersection between fractures are one-
dimensional lines, and the intersection between intersection lines are zero-dimensional
points. In other words, we consider only the case where there is a dimension-one gap
between subdomains; this excludes cases such as one-dimensional lines embedded in a
three-dimensional host.

Subdomains separated from one dimension are allowed to be connected via inter-
faces Γ𝑗 , for 𝑗 ∈ {1, … , 𝑀} (see center Fig. 3.3). To be precise, we use ̂𝚥 ∈ {1, … , 𝑚}
and ̌𝚥 ∈ {1, … , 𝑚} to denote the indices of the higher and lower dimensional neighbor-
ing subdomains of the interface with the index 𝑗. Furthermore, the internal boundary of
Ω ̂𝚥 spatially coinciding with Γ𝑗 is denoted by 𝜕𝑗Ω ̂𝚥; which in turn coincides with Ω ̌𝚥 (see
the right Figure 3.3).

To keep track of the connection between subdomains and interfaces, we introduce
the index sets ̂𝑆𝑖 and ̌𝑆𝑖, containing the indices of the higher-dimensional (respectively
lower-dimensional) neighboring interfaces of Ω𝑖. As an example, consider Ω3 from the
left Figure 3.3, where ̂𝑆3 = {6, 7} and ̌𝑆3 = {2}.

We shall then consider the disjointed unions of subdomains and interfaces as

Ω =
𝑚

⨆
𝑖=1

Ω𝑖 and Γ =
𝑀

⨆
𝑗=1

Γ𝑗 .

Moreover, we decompose the boundary of the domain Ω into its Neumann, Dirichlet,
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and internal parts. To be precise:

𝜕Ω = 𝜕𝑁 Ω ∪ 𝜕𝐷Ω ∪ 𝜕𝐼 Ω, (3.27)

where 𝜕𝑁 Ω = ∪𝑚
𝑖=1𝜕𝑁 Ω, 𝜕𝐷Ω = ∪𝑚

𝑖=1𝜕𝐷Ω, and 𝜕𝐼 Ω = ∪𝑚
𝑖=1 ∪𝑗∈ ̌𝑆𝑖

𝜕𝑗Ω𝑖.
In Paper C, the reader will encounter a more formal mixed-dimensional geometry

decomposition. In particular, the theory requires fully embedded tips to be represented
as separate (in this case zero-dimensional) subdomains. Since the aim of this section is
to introduce models valid for fracture networks based on physical principles, we prefer
to avoid such a formalism.

3.3.2 Single-phase flow equations for fracture networks
We are now in a position to write the set of equations valid for a generic fracture net-
works. We shall assume that a domain is decomposed into 𝑚 subdomains of dimension-
ality 0 to 𝑛, and 𝑀 interfaces of dimensionality of 0 to 𝑛 − 1. The set of equations, in
strong form, is then given by

∇𝑖 ⋅ q𝑖 − ∑
𝑗∈ ̂𝑆𝑖

𝜆𝑗 = 𝑓𝑖, in Ω𝑖, 𝑑𝑖 = 0, … , 𝑛, (3.28)

q𝑖 = −K𝑖∇𝑖 ℎ𝑖, in Ω𝑖, 𝑑𝑖 = 1, … , 𝑛, (3.29)

𝜆𝑗 = −
2𝑘𝑗
𝑎 ̌𝚥

(ℎ ̌𝚥 − ℎ ̂𝚥) , on Γ𝑗 , 𝑑𝑗 = 0, … , 𝑛 − 1, (3.30)

q ̂𝚥 ⋅ n ̂𝚥 = 𝜆𝑗 , on 𝜕𝑗Ω ̂𝚥, 𝑑𝑗 = 0, … , 𝑛 − 1, (3.31)
q𝑖 ⋅ n𝑖 = 𝑔𝑁,𝑖, on 𝜕𝑁 Ω𝑖, 𝑑𝑖 = 1, … , 𝑛, (3.32)

𝑝𝑖 = 𝑔𝐷,𝑖, on 𝜕𝐷Ω𝑖, 𝑑𝑖 = 1, … , 𝑛. (3.33)

Equation (3.28) is the mass conservation equation valid for all subdomains. Note,
however, that the first term is void for 0-dimensional domains (since 0-dimensional
Darcy fluxes are nonphysical), whereas the second term is void for 𝑛-dimensional do-
mains (since 𝑛-dimensional mortar fluxes are also nonphysical). Moreover, note that the
summation term now allows for multiple higher-dimensional adjacent interfaces, which
can be seen as a generalization of the second term in (3.7).

The rest of the equations are straightforward extensions of the preceding section, and
do not require further explanation.

3.3.3 Unsaturated flow equations for fracture networks
Let us now present the extension of the model introduced in Section 3.2.2 to fracture
networks.

A key point to stress is that, contrary to what is required by the generic single phase
flow model from Section 3.3.2, due to our hypothesis of instantaneous equilibration, the
generic unsaturated model does not employ the full mixed-dimensional decomposition.
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Figure 3.4: Local fracture networks and the distribution phase. Left: A local fracture net-
work with members Ω1, Ω2, and Ω3 fully embedded in a matrix Ω4. Right: Schematic
representation of the distribution phase. Before equilibration Ω3 is in hydrostatic equilib-
rium, but the LFN is not. The distribution algorithm enforces equilibrium by distributing
the water volume from top to bottom in an LFN.

In particular, fracture intersections (nor intersection of intersections) are included in the
model, and therefore governing equations are not required for these subdomains.

This simplification is easily justifiable by the negligible volumetric contribution of
(𝑛 − 2)-dimensional objects relative to the total volume of (𝑛 − 1)-dimensional fractures.
The same argument holds true for intersections of intersections. Nonetheless, we still
require each 𝑛-dimensional object to be disjointed. As shown in the left Figure 3.4, we
refer to a cluster of (𝑛 − 1)-dimensional objects as a Local Fracture Network (LFN).

With these considerations, the complete set of equations, valid for subdomains of
dimensionality 𝑛 − 1 to 𝑛, and interfaces of dimensionality 𝑛 − 1, is given by

𝜕𝜃𝑖
𝜕𝑡 + ∇ ⋅ q𝑖 − 𝑓𝑖 = 0, in Ω𝑖 × (0, 𝑇 ), 𝑑𝑖 = 𝑛, (3.34)

d𝑉𝑖
d𝑡 − ∫Ω𝑖

∑
𝑗∈ ̂𝑆𝑖

𝜆𝑗 dx − ∫Ω𝑖
𝑓𝑖 dx = 0, in Ω𝑖 × (0, 𝑇 ), 𝑑𝑖 = 𝑛 − 1, (3.35)

q𝑖 + K𝑖𝑘𝑟𝑤,𝑖∇ℎ𝑖 = 0, in Ω𝑖 × (0, 𝑇 ), 𝑑𝑖 = 𝑛, (3.36)

𝜆𝑗 + 𝛾𝑗
2𝑘𝑗
𝑎 ̌𝚥

𝑘𝑟𝑤,𝑗 (ℎ ̌𝚥 − ℎ ̂𝚥) = 0, on Γ𝑗 × (0, 𝑇 ), 𝑑𝑗 = 𝑛 − 1, (3.37)

q ̂𝚥 ⋅ n ̂𝚥 − 𝜆𝑗 = 0, on 𝜕𝑗Ω ̂𝚥 × (0, 𝑇 ), 𝑑𝑗 = 𝑛 − 1, (3.38)
q𝑖 ⋅ n𝑖 − 𝑔𝑁,𝑖 = 0, on 𝜕𝑁 Ω𝑖 × (0, 𝑇 ), 𝑑𝑖 = 𝑛, (3.39)

ℎ𝑖 − 𝑔𝐷,𝑖 = 0, on 𝜕𝐷Ω𝑖 × (0, 𝑇 ), 𝑑𝑖 = 𝑛, (3.40)
ℎ𝑖 − 𝑔0,𝑖 = 0, in Ω𝑖 × {0}, 𝑑𝑖 = 𝑛 − 1, 𝑛, (3.41)

and complemented with relevant constitutive relationships.
We remark that the above model guarantees hydrostatic equilibrium in each (𝑛 − 1)-

dimensional individual fracture and not in an LFN. Naturally, this might lead to non-
equilibrium states. Thus, to ensure that an LFN is in equilibrium before proceeding to
the next time step, hydrostatic equilibrium must be enforced between time-steps using a
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water redistribution algorithm. A schematic representation of this process, for an equili-
bration phase k, where equal distribution in a top-to-bottom fashion is enforced, is shown
in the right Figure 3.4. Naturally, a more intricate LFN will demand for a more robust
redistribution algorithm. This is an interesting problem on its own which might benefit
from a graph-like approach. The reader is referred to Paper D for further ideas in this
direction.



Chapter 4

Functional a posteriori error estimates
for linear elliptic problems

Thus far, we have introduced mathematical models in non-fractured (Chapter 2) and
fractured (Chapter 3) domains based on physical principles, and as such, only the strong
forms of such models were required. In this chapter, however, we will need a slightly
more involved mathematical language. Indeed, the aim of this chapter is to introduce
the basic idea of functional a posteriori error estimates, which provides the basis for
Paper C. However, unlike Paper C where we derive error estimates for approximations to
the single-phase flow equations in fracture networks (see Section 3.3.2), in this chapter,
we limit our exposition to a single domain (see Section 2.1) for the sake of simplicity.

To avoid confusion, from now on we will use 𝑢 to refer to the potential (i.e., the
hydraulic head). We consider the linear elliptic problem with homogeneous Dirichlet
boundary conditions in the strong mixed dual form: Find (q, 𝑢) such that

∇ ⋅ q = 𝑓, in Ω, (4.1a)
q = −K∇𝑢, in Ω, (4.1b)
𝑢 = 0, on 𝜕Ω. (4.1c)

The model problem can also be written only in terms of the potential by substituting
(4.1b) into (4.1a). The resulting set of equations is referred to as the strong primal form
and reads: Find 𝑢 such that

−∇ ⋅ K∇𝑢 = 𝑓, in Ω, (4.2a)
𝑢 = 0, on 𝜕Ω. (4.2b)

To be able to perform the mathematical analysis, we further require 𝑓 ∈ 𝐿2(Ω) and K
to be symmetric, bounded, and uniformly positive definite, such that

𝑐2
1,Ω|𝜉|2 ≤ K𝜉 ⋅ 𝜉 ≤ 𝑐2

2,Ω|𝜉|2 ∀𝜉 ∈ ℝ𝑛. (4.3)

Solutions to the problems (4.1) and (4.2) are required to hold pointwise, which can
often be too restrictive. The usual practice is then to test the governing equations against
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smooth functions and with this to relax the pointwise regularity needed to guarantee
the existence of the derivatives in the classical sense. This can be achieved by replacing
the classical derivatives by the distributional (weak) derivatives [25]. From this point
forward, whenever we use ∇(⋅) and ∇ ⋅ (⋅), these will denote the weak gradient and weak
divergence, respectively. The reformulated problems are then referred to weak problems
(or forms) and the resulting solutions are called weak solutions.

Before writing the weak forms of the model problems, we need to introduce the
spaces in which we will search for the weak solutions. In particular, we will need the
energy space:

𝐻1(Ω) = {𝑣 ∈ 𝐿2(Ω) ∶ ∇𝑣 ∈ L2(Ω)} , (4.4)

and the energy space with vanishing functions on the boundary of Ω:

𝐻1
0 (Ω) = {𝑣 ∈ 𝐻1(Ω) ∶ 𝑣 = 0 on 𝜕Ω} . (4.5)

Furthermore, we will need the vector space

H(div, Ω) = {r ∈ L2(Ω) ∶ ∇ ⋅ r ∈ 𝐿2(Ω)} , (4.6)

Throughout this chapter, ⟨⋅, ⋅⟩ will denote the 𝐿2 inner-product in Ω and ‖⋅‖ its corre-
sponding norm.

With the above spaces formally introduced, we are now in position to write the weak
versions of the primal and dual problems. The primal weak form reads: Find 𝑢 ∈ 𝐻1

0 (Ω)
such that

⟨K∇𝑢, 𝑣⟩ = ⟨𝑓 , 𝑣⟩ ∀ 𝑣 ∈ 𝐻1
0 (Ω), (4.7)

whereas the dual-mixed primal form reads: Find (q, 𝑢) ∈ H(div, Ω) × 𝐿2(Ω) such that

⟨K−1q, r⟩ − ⟨𝑢, ∇ ⋅ r⟩ = 0 ∀ r ∈ H(div, Ω), (4.8a)
⟨∇ ⋅ 𝑢, 𝑣⟩ = ⟨𝑓 , 𝑣⟩ ∀ 𝑣 ∈ 𝐿2(Ω). (4.8b)

The reader is referred to [92] for the proof that the primal and mixed dual forms are
indeed equivalent.

Throughout this chapter, we aim at obtaining computable majorants for the difference
between the exact primal solution 𝑢 ∈ 𝐻1

0 (Ω) and an arbitrary approximation 𝑣 ∈ 𝐻1
0 (Ω),

such that
|||𝑢 − 𝑣||| ≤ ℳ(𝑣, r, 𝒟) ∀ 𝑣 ∈ 𝐻1

0 (Ω), r ∈ H(div, Ω), (4.9)

where |||⋅||| ∶ 𝐻1
0 (Ω) → ℝ+ is the energy norm (4.18) and 𝒟 is the set of given data;

which includes the domain Ω, the source term 𝑓 , and the material coefficient K.
Indeed, we say that a majorant is computable and continuous if

ℳ(𝑣, r, 𝒟) → 0 when (𝑣, r) → (𝑢, q). (4.10)

Majorants ℳ(𝑣, r, 𝒟) can be derived using purely functional methods via variational
methods [80, 96, 96–98, 113] or transformation of integral identities [99, 102, 105]. For
linear elliptic problems, both methods result in the same majorants [101].
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More generally, functional a posteriori error estimates were successfully applied to
numerous problems in the last decades. A non-exhaustive list includes: elasto-plastic
problems [113], the Stokes problem [100], the heat equation [99], the Poisson equation
with mixed boundary conditions [108], the reaction-diffusion problem [107], Maxwell’s
equation [103], mixed-dual approximations of elliptic problems [109], problems with
non-linear boundary conditions [111], elliptic problems in exterior domains [86], dis-
continuous Galerkin approximations to elliptic problems [66], electro-magnetostatic
problems [85], non-conforming approximations of elliptic problems [110], variational
problems with obstacles [112], and the Biot’s equations [63].

However, we remark that several other methods are available in the literature. The
reader is referred to the following references for further details: for residual methods
[10, 131], for gradient-recovery methods [10, 144], for goal-oriented estimates [84],
and for methods based on local flux/stress equilibration [4, 5, 17–19, 26, 42–44, 59, 75,
134, 135].

The rest of this chapter is organized as follows: In Section 4.1, we introduce im-
portant tools from functional analysis that are needed in the a posteriori estimation.
Guaranteed upper bounds for the primal variable are derived in Section 4.2. In Sec-
tion 4.3, we improve the bounds obtained in the preceding section by exploiting locally
mass-conservative properties of the approximations. To provide concrete approxima-
tions, in Section 4.4, we introduce the finite element spaces and two families of locally
mass-conservative approximations. In Section 4.5, we discuss flux and potential recon-
struction techniques necessary to obtain energy-conforming functions starting from lo-
cally mass-conservative approximations. Finally, in Section 4.6, we briefly comment on
extending the error bounds from monodimensional to mixed-dimensional geometries.

4.1 Tools from functional analysis

In this section, we summarize the standard results from functional analysis that will be
needed to later derive the a posteriori bounds.

Green’s theorem

For any pair (𝑣, 𝑟) ∈ 𝐻1
0 (Ω) × H(div, Ω), there holds

⟨∇𝑣, r⟩ + ⟨𝑣, ∇ ⋅ r⟩ = 0. (4.11)

Friedrich inequality

There exists a constant 𝐶F,Ω, dependent only on Ω, such that

‖𝑣‖ ≤ 𝐶F,Ω‖∇𝑣‖ ∀ 𝑣 ∈ 𝐻1
0 (Ω). (4.12)
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Local Poincaré inequality [133, 135]

Let 𝐾 ⊂ Ω be a convex subdomain. Then, there exists a constant 𝐶P,𝐾 dependent only
on 𝐾 , such that

‖𝑣 − {𝑣}𝐾 ‖𝐾 ≤ 𝐶P,𝐾 ‖∇𝑣‖𝐾 ∀𝑣 ∈ 𝐻1(𝐾), (4.13)

where {𝑣}𝐾 = 1
|𝐾| ⟨𝑣, 1⟩𝐾 denotes the mean quantity of 𝑣 over 𝐾 . Furthermore, due to

the convexity of 𝐾 , there holds [12, 87]

𝐶P,𝐾 ≤ diam(𝐾)
𝜋 = ℎ𝐾

𝜋 . (4.14)

Bilinear forms and energy norms [135]

Let the bilinear ℬ form acting on scalars be defined so that

ℬ(𝑣, 𝑤) = ⟨K∇𝑣, ∇𝑤⟩, ∀ 𝑣, 𝑤 ∈ 𝐻1
0 (Ω), (4.15)

and the bilinear form 𝒜 acting on the vectors be defined such that

𝒜(r, s) = ⟨K−1r, s⟩, ∀ r, s ∈ L2(Ω), (4.16)

which are related via

ℬ(𝑣, 𝑤) = 𝒜(K∇ 𝑣, K∇ 𝑤) ∀ 𝑣, 𝑤 ∈ 𝐻1
0 (Ω). (4.17)

The bilinear form ℬ induces the energy norm

|||𝑣||| = ℬ(𝑣, 𝑣)1/2 = ‖K1/2∇𝑣‖, ∀ 𝑣 ∈ 𝐻1
0 (Ω), (4.18)

whereas the bilinear form 𝒜 induces the energy norm

|||r|||∗ = 𝒜(r, r)1/2 = ‖K−1/2r‖, ∀ r ∈ L2(Ω). (4.19)

4.2 Guaranteed upper bound for the primal variable
Let us now present the a posteriori error bounds for the primal error in the energy norm
[105]. The main result is given in the following theorem:

Theorem 1: Let 𝑢 ∈ 𝐻1
0 (Ω) be the solution to the primal weak form (4.7) and

𝑣 ∈ 𝐻1
0 (Ω) arbitrary. Then, for any function r ∈ H(div, Ω), there holds

|||𝑢 − 𝑣||| ≤ |||r + K∇𝑣|||∗ +
𝐶F,Ω
𝑐1,Ω

‖𝑓 − ∇ ⋅ r‖ ∶= ℳ1(𝑣, r, 𝑓 ), (4.20)

where ℳ1(𝑞, r, 𝑓 ) is the majorant for the primal error measured in the energy norm.
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Proof : Start by measuring the difference between the weak primal solution 𝑢 ∈ 𝐻1
0 (Ω)

and an arbitrary function 𝑣 ∈ 𝐻1
0 (Ω) in the energy norm (4.18):

|||𝑢 − 𝑣|||2 = ℬ(𝑢 − 𝑣, 𝑢 − 𝑣)
= ⟨K∇(𝑢 − 𝑣), K∇(𝑢 − 𝑣)⟩
= ⟨K∇𝑢, K∇(𝑢 − 𝑣)⟩ + ⟨−K∇𝑣, K∇(𝑢 − 𝑣)⟩
= ⟨𝑓 , 𝑢 − 𝑣⟩ + ⟨−K∇𝑣, K∇(𝑢 − 𝑣)⟩. (4.21)

Here, we used (4.18), (4.15), and the weak primal form (4.7) for the test function 𝑢−𝑣 ∈
𝐻1

0 (Ω). Now, we fix an arbitrary function r ∈ H(div, Ω) and use Green’s theorem (4.11)
on the pair (𝑢 − 𝑣, r) ∈ 𝐻1

0 (Ω) × H(div, Ω) to obtain the following identity

− ⟨∇ ⋅ r, 𝑢 − 𝑣⟩ − ⟨r, ∇(𝑢 − 𝑣)⟩ = 0, (4.22)

which is added to (4.21), to obtain

|||𝑢 − 𝑣|||2 = ⟨𝑓 − ∇ ⋅ r, 𝑢 − 𝑣⟩ + ⟨−(r + K∇𝑢), K∇(𝑢 − 𝑣)⟩
= ⟨𝑓 − ∇ ⋅ r, 𝑢 − 𝑣⟩ + ⟨−K−1/2 (r + K∇𝑢), K1/2∇(𝑢 − 𝑣)⟩. (4.23)

The first term of (4.23) can be bounded applying the Cauchy-Schwarz inequality,
the Friedrich-inequality (4.12), assumption (4.3), and the definition of the energy norm
(4.18):

⟨𝑓 − ∇ ⋅ r, 𝑢 − 𝑣⟩ ≤ ‖𝑓 − ∇ ⋅ r‖ ‖𝑢 − 𝑣‖
≤ 𝐶F,Ω‖𝑓 − ∇ ⋅ r‖ ‖∇(𝑢 − 𝑣)‖

≤
𝐶F,Ω
𝑐1,Ω

‖𝑓 − ∇ ⋅ r‖ ‖K1/2∇(𝑢 − 𝑣)‖

=
𝐶F,Ω
𝑐1,Ω

‖𝑓 − ∇ ⋅ r‖ |||𝑢 − 𝑣|||. (4.24)

The second term of (4.23) can be bounded by applying the Cauchy-Schwarz inequal-
ity and the definition of the energy norms (4.18) and (4.19)

⟨−K−1/2 (r + K∇𝑣), K1/2∇(𝑢 − 𝑣)⟩ ≤ ‖K−1/2 (r + K∇𝑞)‖ ‖K1/2∇(𝑢 − 𝑣)‖
= |||r + K∇𝑣|||∗ |||𝑢 − 𝑣|||. (4.25)

Substituting (4.24) and (4.25) into (4.23), we get

|||𝑢 − 𝑣|||2 ≤ |||𝑢 − 𝑞||| (|||r + K∇𝑣|||∗ +
𝐶F,Ω
𝑐1,Ω

‖𝑓 − ∇ ⋅ r‖) , (4.26)

from which the assertion follows.

The majorant ℳ1(𝑣, r, 𝑓 ) from (4.20) has two clear contributions: 1) a diffusive error
𝜂DF(𝑣, r) = |||r + K∇𝑣|||∗ measuring the difference between the approximated flux r
and the flux obtained from the 𝐻1

0 (Ω)-potential 𝑣, and 2) a residual error 𝜂R(r, 𝑓 ) =
𝐶F,Ω
𝑐1,Ω

‖𝑓 − ∇ ⋅ r‖ measuring how close ∇ ⋅ r is to the exact source 𝑓 .
The upper bound (4.20) is said to be sharp, in the sense that no constant 𝑐DF < 1 can

multiply the first term and no constant 𝑐R < 𝐶F,Ω
𝑐1,Ω

can multiply the second term [105].
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4.3 Improving the bounds using mass-conservative
properties

The big limitation of the upper bound from Theorem 1 is that the Friedrich constant 𝐶F,Ω
is only available for a small set of geometries [30, 106, 132]. However, if one employs
approximations that satisfy mass conservation in some convex partition 𝐾 of the domain
Ω, it is possible to obtain sharper, and fully computable upper bounds (4.31). The aim
of this section is to derive such bounds following, e.g., [104]. We remark that similar
bounds can be obtained with a slightly different approach [133, 135, 136].

Let us start by considering the decomposition of the domain,

Ω = ⋃
𝐾∈𝒯ℎ

𝐾, (4.27)

where 𝐾 denotes a strictly non-overlapping subdomain of dimension 𝑛.
Now, we require the approximated fluxes r entering the a posteriori error estimation

to be in U ⊂ H(div, Ω), where

U = {r ∈ H(div, Ω) ∶ ⟨𝑓 , 1⟩𝐾 = ⟨∇ ⋅ r, 1⟩𝐾 ∀ 𝐾 ∈ 𝒯ℎ}. (4.28)

We will also need the equivalence between the continuous and broken norms

‖𝑣‖2 = ∑
𝐾∈𝒯ℎ

‖𝑣‖2
𝐾 ∀ 𝑣 ∈ 𝐿2(Ω), (4.29)

|||𝑣|||2 = ∑
𝐾∈𝒯ℎ

‖K1/2∇𝑣‖
2
𝐾 ∀ 𝑣 ∈ 𝐻1

0 (Ω). (4.30)

Below, we present the improved upper bound:

Theorem 2: Let 𝑢 ∈ 𝐻1
0 (Ω) be the solution to the weak primal form (4.7) and

𝑣 ∈ 𝐻1
0 (Ω) arbitrary. Then, for any function r ∈ U, there holds

|||𝑢 − 𝑣||| ≤ |||r + K∇𝑣|||∗ +
⎛
⎜
⎜
⎝

∑
𝐾∈𝒯ℎ

ℎ2
𝐾

𝜋2𝑐2
1,𝐾

‖𝑓 − ∇ ⋅ r‖2
𝐾

⎞
⎟
⎟
⎠

1/2

∶= ℳ2(𝑣, r, 𝑓 ). (4.31)

Proof: The proof closely follows the previous case, modulo the treatment of the residual
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term. Indeed, the first term of (4.23) can now be bounded as

⟨𝑓 − ∇ ⋅ r, 𝑢 − 𝑣⟩ = ∑
𝐾∈𝒯ℎ

⟨𝑓 − ∇ ⋅ r, 𝑢 − 𝑣⟩𝐾

= ∑
𝐾∈𝒯ℎ

⟨𝑓 − ∇ ⋅ r, (𝑢 − 𝑣) − {𝑢 − 𝑣}𝐾 ⟩𝐾

≤ ∑
𝐾∈𝒯ℎ

‖𝑓 − ∇ ⋅ r‖𝐾 ‖(𝑢 − 𝑣) − {𝑢 − 𝑣}𝐾 ‖𝐾

≤ ∑
𝐾∈𝒯ℎ

𝐶P,𝐾 ‖𝑓 − ∇ ⋅ r‖𝐾 ‖∇(𝑢 − 𝑣)‖𝐾

≤ ∑
𝐾∈𝒯ℎ

𝐶P,𝐾
𝑐1,𝐾

‖𝑓 − ∇ ⋅ r‖𝐾 ‖K1/2∇(𝑢 − 𝑣)‖𝐾

≤
⎛
⎜
⎜
⎝

∑
𝐾∈𝒯ℎ

ℎ2
𝐾

𝜋2𝑐2
1,𝐾

‖𝑓 − ∇ ⋅ r‖2
𝐾

⎞
⎟
⎟
⎠

1/2 ⎛
⎜
⎜
⎝

∑
𝐾∈𝒯ℎ

‖K1/2∇(𝑢 − 𝑣)‖
2
𝐾

⎞
⎟
⎟
⎠

1/2

≤
⎛
⎜
⎜
⎝

∑
𝐾∈𝒯ℎ

ℎ2
𝐾

𝜋2𝑐2
1,𝐾

‖𝑓 − ∇ ⋅ r‖2
𝐾

⎞
⎟
⎟
⎠

1/2

|||𝑢 − 𝑣|||, (4.32)

where we used the equivalence (4.29), the locally mass-conservative property of the
fluxes r ∈ U, the Cauchy-Schwarz inequality, the local Poincaré inequality (4.13), the
ellipticity assumption (4.3) on 𝐾 ⊂ Ω, the Cauchy-Swchwarz inequality once again, and
finally the equivalence (4.30).

By substituting (4.25) and (4.32) into (4.23), we obtain

|||𝑢 − 𝑣|||2 ≤ |||𝑢 − 𝑣|||
⎛
⎜
⎜
⎝
|||r + K∇𝑣|||∗ +

⎛
⎜
⎜
⎝

∑
𝐾∈𝒯ℎ

ℎ2
𝐾

𝜋2𝑐2
1,𝐾

‖𝑓 − ∇ ⋅ r‖2
𝐾

⎞
⎟
⎟
⎠

1/2⎞
⎟
⎟
⎠

, (4.33)

from which the assertion clearly follows.

The bound (4.31) is superior to (4.20) in two important aspects: (1) it is fully com-
putable in the sense that only constants associated with the mesh size ℎ𝐾 and the mate-
rial parameter 𝑐1,𝐾 are involved, and (2) the residual estimators are super-convergent for
r|𝐾 ∈ RTN𝑠(𝐾) (Raviart-Thomas-Nédélec elements of degree 𝑠 ≥ 0) due to the local
Poincaré constants 𝐶P,𝐾 instead of the Friedrich constant 𝐶F,Ω.

Thanks to this super-convergent property of the residual estimator, there holds

ℳ2(𝑣, r, 𝑓 ) ≤ ℳ1(𝑣, r, 𝑓 ). (4.34)

4.4 Locally mass-conservative approximations
Naturally, one does not count with arbitrary approximations but rather approximations
obtained with numerical methods. Here, we are mainly interested in deriving computable
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Figure 4.1: Basis functions v𝑒 (left) and degrees of freedom for a two-dimensional sim-
plex (right) associated with the space RTN0(𝒯ℎ).

estimates for locally mass-conservative approximations of the lowest order. Classical ex-
amples of such methods are the Cell-Centered Finite Volume Methods (CCFVM) and
the Mixed-Finite Element Method (MFEM).

To write the concrete approximations, we first need to introduce some further nota-
tion, as well as the discrete finite element spaces.

For each 𝐾 ∈ 𝒯ℎ, we will use 𝜕𝐾 to denote the boundary of the simplex 𝐾 . Let
𝑒 ∈ ℰ𝐾 denote an edge in the set of edges of 𝐾 . Consider now the following discrete
spaces defined on the partition 𝒯ℎ,

ℙ𝑠(𝒯ℎ) = {𝑞ℎ ∈ 𝐿2(Ω) ∶ 𝑣ℎ|𝐾 ∈ ℙ𝑠(𝐾) ∀ 𝐾 ∈ 𝒯ℎ} (4.35)
RTN0(𝒯ℎ) = {rℎ ∈ H(div, Ω) ∶ rℎ|𝐾 ∈ RTN0(𝐾) ∀ 𝐾 ∈ 𝒯ℎ} (4.36)

where
RTN0(𝐾) = [ℙ0(𝐾)]𝑛 + xℙ0(𝐾), (4.37)

satisfying

∇ ⋅ rℎ ∈ ℙ0(𝐾) ∀ 𝐾 ∈ 𝒯ℎ and rℎ ⋅ n𝑒 ∈ ℙ0(𝑒) ∀ 𝑒 ∈ ℰ𝐾 .

In Figure 4.1 we show the basis functions v𝑒 associated with the space RTN0(𝒯ℎ) in
triangles and the degrees of freedom associated with the simplex 𝐾 .

4.4.1 Cell-Centered Finite Volume Methods
The general principle of cell-centered finite volume approximations is based on inte-
grating the conservation equation (4.1a) in all 𝐾 ∈ 𝒯ℎ, such that

∫𝐾
∇ ⋅ q d𝑥 = ∫𝜕𝐾

q ⋅ n d𝑆 = ∑
𝑒∈ℰ𝐾

q𝑒 ⋅ n𝑒 𝐴𝑒 = ∑
𝑒∈ℰ𝐾

𝑄𝑒 = ∫𝐾
𝑓 d𝑥, (4.38)

where 𝑄𝑒 are the exact normal fluxes on the edges of 𝐾 .
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The exact flux is approximated using a discrete version of Darcy’s law, where, on
each edge, the fluxes are linearly related to a given number of neighboring (cell-center)
potentials 𝑢ℎ|𝐾 , such that

𝑄𝑒 ≈ 𝐹𝑒 = ∑
𝐾∈ℱ𝑒

𝑡𝐾,𝑒𝑢ℎ,𝐾 ∀ 𝑒 ∈ ℰ𝐾 , ∀ 𝐾 ∈ 𝒯ℎ. (4.39)

Here, ℱ𝑒 denotes the set of neighboring potentials associated with the edge 𝑒 and 𝑡𝐾,𝑒 are
the transmissibility coefficients [1]. Note that we slightly abused of notation and used
𝐾 also as an index. In general, we can write the approximated problem for a CCFVM
method as follows [136]: Find 𝑢ℎ ∈ ℙ0(𝒯ℎ) such that

∑
𝑒∈ℰ𝐾

⟨𝐹𝑒, 1⟩𝐾 = ⟨𝑓 , 1⟩𝐾 , ∀ 𝐾 ∈ 𝒯ℎ. (4.40)

4.4.2 Lowest order Mixed-Finite Element Method
Lowest order MFEM is based on solving the approximated version of the dual weak
mixed form (4.8). We look simultaneously for approximated fluxes qℎ and approximated
potentials 𝑢ℎ.

The approximated problem reads [136]: Find (qℎ, 𝑢ℎ) ∈ RTN0(𝒯ℎ) × ℙ0(𝒯ℎ) such
that

⟨K−1qℎ, rℎ⟩ − ⟨𝑢ℎ, ∇ ⋅ rℎ⟩ = 0 ∀ rℎ ∈ RTN0(𝒯ℎ) (4.41a)
⟨∇ ⋅ 𝑢ℎ, 𝑣ℎ⟩ = ⟨𝑓 , 𝑣ℎ⟩ ∀ 𝑣ℎ ∈ ℙ0(𝒯ℎ). (4.41b)

We will use “RT0-P0” to denote method (4.41).

4.5 Concrete bounds
Recall that Theorem 1 and Theorem 2 require the arbitrary flux in H(div, Ω) and the arbi-
trary potential in 𝐻1

0 (Ω). Note that RT0-P0 satisfies only the first of those requirements
(qℎ ∈ RTN0(𝒯ℎ) ⊂ H(div, Ω)) whereas an CCFVM fulfill none of them.

Thus, to obtain computable estimates, we need to enhance the regularity of the ap-
proximated potential 𝑢ℎ and obtain a reconstructed version ̃𝑢ℎ with higher regularity.
Additionally, for a CCFVM, we have to extend the normal fluxes 𝐹𝑒 with the help of
RTN0(𝐾) basis functions in each 𝐾 ∈ 𝒯ℎ. We will refer, respectively, to these proce-
dures as potential reconstruction and extension of normal fluxes.

4.5.1 Extension of normal fluxes
Assume that 𝐹𝑒 ∈ ℙ0(𝑒) on each 𝑒 ∈ ℰ𝐾 for all 𝐾 ∈ 𝒯ℎ are available. Then, the recon-
struction procedure reads: Obtain uℎ ∈ RTN0(𝒯ℎ) such that

⟨uℎ ⋅ n𝑒, 1⟩𝑒 = 𝐹𝑒 ∀ 𝑒 ∈ ℰ𝑘, ∀ 𝐾 ∈ 𝒯ℎ. (4.42)
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Figure 4.2: Left: A patch associated with the internal node 𝑉 of a two-dimensional grid.
In black, the physical nodes. In red, the cell-centers. Center: ℙ1(𝐾)-Lagrangian nodes
for a two-dimensional simplex 𝐾 . Right: ℙ2(𝐾)-Lagrangian nodes for a two-dimensional
simple 𝐾 .

4.5.2 Potential reconstruction
The last ingredient to make our upper bounds computable is to obtain an approximated
potential in 𝐻1

0 (Ω). In general, we look for an interpolant of the form

𝒢 ∶ ℙ0(𝒯ℎ) → ℙ𝑠(𝒯ℎ) ∩ 𝐻1
0 (Ω), 𝑠 > 0. (4.43)

In the following techniques, we use 𝑉 to denote a Lagrangian node of 𝐾 . Moreover,
𝒯𝑉 is the set of elements 𝐾 associated with the Lagrangian node 𝑉 , see, e.g. the left
Figure 4.2 for a two-dimensional example.

Potential reconstruction I (PRI) [34]

Assume 𝑢ℎ ∈ ℙ0(𝒯ℎ) is available. Then, find ̃𝑢ℎ ∈ ℙ1(𝒯ℎ) ∩ 𝐻1
0 (Ω) such that

̃𝑢ℎ(𝑉 ) =
⎧⎪
⎨
⎪⎩

∑𝐾∈𝒯𝑉 |𝐾|𝑢ℎ|𝐾
∑𝐾∈𝒯𝑉 |𝐾| , 𝑉 ∈ Ω,

0, 𝑉 ∈ 𝜕Ω.
(4.44)

This technique is arguably the simplest way to reconstruct the potential 𝑢ℎ ∈ ℙ0(𝒯ℎ).
It consists in performing an average of the cell-center potentials to obtain the ℙ1(𝐾)-
Lagrangian nodes in each 𝐾 ∈ 𝒯ℎ.

Potential reconstruction II (PRII)

Assume 𝑢ℎ ∈ ℙ0(𝒯ℎ) and qℎ ∈ RTN0(𝒯ℎ) are available. Let s|𝐾 ∈ [ℙ0(𝐾)]
𝑛 + xℙ0(𝐾)

be such that,
s|𝐾 = −K−1|𝐾 qℎ|𝐾 ∀ 𝐾 ∈ 𝒯ℎ. (4.45)

Moreover, let d𝐾,𝑉 be the vector constructed from the barycenter b𝐾 (x) of 𝐾 to the node
𝑉 . Then, find ̃𝑢ℎ ∈ ℙ1(𝒯ℎ) ∩ 𝐻1

0 (Ω) such that

̃𝑢ℎ(𝑉 ) =
⎧⎪
⎨
⎪⎩

∑𝐾∈𝒯𝑉 |𝐾|(𝑢ℎ,𝐾 +s(b𝐾 )⋅d𝐾,𝑉 )
∑𝐾∈𝒯𝑉 |𝐾| , 𝑉 ∈ Ω,

0, 𝑉 ∈ 𝜕Ω.
(4.46)
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Unlike PRI, this technique uses local flux information qℎ|𝐾 ∈ RTN0(𝐾) to approxi-
mate the gradient of the potential s|𝐾 , locally. Then, s|𝐾 is evaluated in the barycenter of
𝐾 and projected onto the Lagrangian node 𝑉 . The projected quantity is added to the cell
center value 𝑢ℎ,𝐾 , resulting in a Taylor-like expansion truncated to the first derivative.

Potential reconstruction III (PRIII) [133, 135]

Assume 𝑢ℎ ∈ ℙ0(𝒯ℎ) and qℎ ∈ RTN0(𝒯ℎ) are available. First, find 𝑢′
ℎ ∈ ℙ2(𝒯ℎ) such

that

⟨−K∇𝑢′
ℎ, 1⟩𝐾 = ⟨qℎ, 1⟩𝐾 ∀ 𝐾 ∈ 𝒯ℎ, (4.47)

1
|𝐾|⟨𝑢′

ℎ, 1⟩𝑘 = 𝑢ℎ|𝐾 ∀ 𝐾 ∈ 𝒯ℎ. (4.48)

Now, find ̃𝑢ℎ ∈ ℙ2(𝒯ℎ) ∩ 𝐻1
0 (Ω) such that

̃𝑢ℎ(𝑉 ) =
⎧⎪
⎨
⎪⎩

1
|𝒯𝑉 |

∑𝐾∈𝒯𝑉
𝑢′

ℎ|𝐾 (𝑉 ) 𝑉 ∈ Ω
0, 𝑉 ∈ 𝜕Ω

(4.49)

This technique is based on first obtaining a post-processed potential 𝑢′
ℎ ∈ ℙ2(𝒯ℎ)

whose mean value in each 𝐾 ∈ 𝒯ℎ matches the values of 𝑢ℎ ∈ ℙ0(𝒯ℎ). This poten-
tial is non-conforming, in the sense that 𝑢′

ℎ ∉ 𝐻1
0 (Ω). Thus, in a subsequent step, the

conformity is enforced using an averaging operator (Oswald interpolator) that takes the
average of 𝑢′

ℎ|𝐾 ∈ ℙ2(𝐾) at the Lagrangian nodes 𝑉 [3, 29, 55].

4.6 Extension to mixed-dimensional geometries
In Paper C, we extend the results presented in this chapter to fracture networks such as
that in Section 3.3.2. To be precise, we propose guaranteed upper bounds for approxi-
mations to the primal and dual variables, and two-sided bounds for the primal-dual pair.

The reader will appreciate that such extensions are non-trivial. In particular, since we
are required to deal with mixed-dimensional function spaces, in addition to the inherent
complexity associated with working with several subdomains (some of them potentially
floating, e.g., Ω2 in Figure 3.3) and interfaces. In Paper C, we address these challenges
by recasting the model problem into a compact mixed-dimensional elliptic model with
the help of tools from exterior calculus [22]. Indeed, this allows us to perform the a
posteriori analysis, following very closely the monodimensional case.

However, we remark that the main idea of measuring the deviation between the exact
weak solutions with arbitrary energy-conforming functions prevails even in this most
general setting.
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Chapter 5

Summary and outlook

This chapter provides a summary of the papers and the outlook of the doctoral thesis.

5.1 Summary of papers
In the following, we present a brief summary of the papers included in Part II. The papers
are presented in chronological order. For completeness, in Figure 5.1, we also show the
interdependence between the papers.

5.1.1 Paper A [129]: A finite-volume-based module for unsatu-
rated poroelasticity

This book chapter provides a description of fv-unsat, a multipoint finite-volume-based
MRST module for simulating the equations of unsaturated poroelasticity. The set of
equations corresponds to a coupled flow/mechanical problem that is obtained as a natu-
ral extension of Biot’s equations of poroelasticity, cf. Section 2.4. We discretize the set
of equations using backward Euler in time. Moreover, in space, the flow sub-problem is
discretized with the Multi-Point Flux Approximation (MPFA) method whereas the me-
chanical sub-problem is discretized with the Multi-Point Stress Approximation (MPSA)
method.

We solve the coupled flow/mechanical problem fully implicitly and use a modified
Picard iteration to linearize the system of equations. We provide two converge tests,
one neglecting deformation effects (in this case the set of equations reduces to the well-
known Richards’ equation, cf. Section 2.2) and another accounting for deformation. In
both cases, we obtain similar convergence rates as the ones reported for single-phase
flow (Section 2.1) and saturated poroelasticity (Section 2.3), respectively. The rest of the
chapter is devoted to providing examples on how to use the module, including a water
infiltration process in an initially dry soil and the evaporation process from a saturated
clayey sample subjected to atmospheric boundary conditions (see e.g. Section 2.6).
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Paper B Paper D Paper CPaper A

Figure 5.1: Relations between the papers. Paper C and Paper D are implemented in
PorePy (Paper B). Additionally, Paper D is partially based on the results obtained in
Paper A. The suggested reading order is: Paper A, Paper B, Paper D, and Paper C.

5.1.2 Paper B [57]: Porepy: an open-source software for simula-
tion of multiphysics processes in fractured porous media

In this article, we present a new tool for simulating multiphysics processes in fractured
porous media named PorePy. We start by discussing the design principles when mixed-
dimensional geometries are required to be included in the processes, in particular, we
discuss the permissible types of geometries and allowable coupling structures. We then
move on to introduce the models available in a strong form, including (1) flow in frac-
tured media, (2) coupled flow and transport in fractured media, and (3) poroelastic frac-
ture deformation by contact mechanics.

Implementation aspects are discussed next. In particular, we discuss the overall ar-
chitecture of PorePy, mixed-dimensional geometrical aspects, gridding strategies, pa-
rameter specification, declaration of primary variables, discretization classes, and the
global assembly of equations. Then, we present numerical validations including a two-
dimensional flow benchmark problem, Mandel’s problem, and Sneddon’s problem. Fi-
nally, we present applications of multiphysics processes, including a fully coupled flow
and transport example using matching and nonmatching grids, and a three-dimensional
poroelasticity and fracture deformation simulation.

5.1.3 Paper C [128]: A posteriori error estimates for hierarchical
mixed-dimensional elliptic equations

In this article, we derive a posteriori error estimates for approximations to hierarchical
mixed-dimensional elliptic equations, which, in particular, model the single-phase flow
in fractured media as introduced in Section 3.3.2. To be more precise, we obtain guar-
anteed upper bounds for the primal and dual variables, and two-sided bounds for the
primal-dual pair.

The bounds are based on error estimates of the functional type (see Chapter 4) and as
such are valid for any conforming approximation in the energy space. However, unlike
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the standard functional approach that does not exploit the conservation properties of
the approximations (and thus assumes no-conservation), we exploit these conservation
properties to obtain sharper bounds when mass-conservation can be satisfied either in
the subdomain level, the grid level, or point-wise (exactly).

Moreover, by recasting the model using a compact mixed-dimensional notation and
exploiting the fact that Poincaré-type inequalities imply weighted norms, we are able to
encompass the four aforementioned cases into a unified abstract framework. Therefrom,
different majorants depending upon the level at which residual balances can be satisfied
are presented in terms of local quantities. This results not only in guaranteed but also in
fully computable estimates when mass is conserved either locally or exactly.

Concrete bounds are then obtained for MFEM approximations of the lowest order,
and the applicability to other locally mass-conservative schemes is discussed. Finally,
the bounds are validated for four locally mass-conservative approximations (RT0-P0,
MVEM-P0, MPFA, and TPFA) both with two- and three-dimensional manufactured so-
lutions and two- and three-dimensional applications based on benchmark problems in
fractured media.

5.1.4 Paper D [130]: A model for unsaturated flow in the pres-
ence of fractures acting as capillary barriers

This paper deals with modeling of unsaturated flow (i.e., simultaneous flow of water and
air in a porous media) accounting for fractures which naturally act as capillary barriers
for the water flow in the vadose zone. We adopt the DFM paradigm where Richards’
equation is used to model the unsaturated flow in the matrix, whereas instantaneous
hydrostatic equilibration is assumed in the fractures.

Due to the presence of capillary barriers, the water phase in the matrix is allowed to
break into the fractures only if a pressure threshold is exceeded at the matrix-fracture
interface. Thus, each interface essentially represents a potential seepage face. Indeed, the
fact that the pressure head on a given interface is unknown (i.e., is part of the solution)
adds a non-trivial layer of complexity to the problem. The resulting model can therefore
be classified as a nonlinear coupled PDE-ODE system with variational inequalities.

The resulting set of equations is discretized with MPFA in space and backward Euler
in time. Variational inequalities are solved using active level set methods. Moreover, due
to the instantaneous equilibration hypothesis, when local fracture networks are present
in the domain, equilibrium is enforced between time steps using a water redistribution
algorithm.

Finally, we provide numerical examples for the case of a single fracture and the case
of a local fracture network.

5.2 Outlook
This thesis has made contributions to three important fields of mathematics, namely:
mathematical modeling, computational mathematics, and numerical analysis. Topics
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ranging from water evaporation in clayey materials under atmospheric conditions to
superconvergence properties of residual estimators were discussed.

We strongly believe that our contributions, not only build upon previous work, but
also provided a robust ground for further extensions. In the following, we summarize
what we believe to be natural extensions of this current work.

Extensions to Paper A: The natural extension for this case is to include fractures in the
domain. This will allow us to study processes such as desiccation cracking, which
are of high relevance for arid zones. This extension is nontrivial, since fractures are
usually not static. Indeed, the common scenario takes place when cracks initiate
at some point in the domain (usually a small region of inhomogeneity) and then
propagate due to the increase in internal tensile forces in response to desaturation.
The fracture propagation problem will then need to be addressed using phase fields
or some type of discrete-fracture propagation approach.

Extensions to Paper C: The extensions that one can propose for monodimensional el-
liptic problems, are also valid for error bounds derived for the case of mixed-
dimensional elliptic problems. The mixed-dimensional heat equation being the
most natural one. Other extensions, such as the derivation of error bounds for ap-
proximations to the mixed-dimensional linear elastic and poroelastic equations,
are also possible but considerably more challenging.

Extensions to Paper D: Extensions for this case can be made in several aspects. On
the modeling side, the instantaneous hydrostatic equilibrium in the fractures can
be replaced with a more realistic dynamical process such as water film flow. On
the algorithmic side, a robust and generic water redistribution algorithm could be
developed. From the solver side, one can consider solving the set of equations fully
implicitly, for which robust mass-conservative regularization techniques must be
developed. Finally, a less trivial task would be to extend the model equations to
account for mechanical effects.
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A Finite-Volume-Based Module
for Unsaturated Poroelasticity

jhabriel varela, sarah e. gasda, e ir ik keilegavlen,
and jan martin nordbotten

Abstract

In this chapter, we present fv-unsat, a multipoint finite-volume-based solver
for unsaturated flow in deformable and nondeformable porous media. The latter
is described using the mixed form of Richards’ equation, whereas the former by
the equations of unsaturated linear poroelasticity. The module aims at flexibility,
relying heavily on discrete operators and equations, exploiting the automatic dif-
ferentiation framework provided by the MATLAB Reservoir Simulation Toolbox
(MRST). Our examples cover two numerical convergence tests and two three-
dimensional practical applications, including the water infiltration process in a
nondeformable soil column and a realistic desiccation process of a deformable clay
sample using atmospheric boundary conditions. The resulting convergence rates
are in agreement with previously reported rates for single-phase models, and the
practical applications capture the physical processes accurately.

13.1 Introduction

The unsaturated zone has been a constant focus of attention by the industrial and
research communities due to its high relevance in areas such as environmental sci-
ences, hydrogeology, soil mechanics, and agriculture. Relevant natural and anthro-
pogenic processes take place in this zone; transmission of water from the atmo-
sphere to the saturated zone via infiltration or precipitation, support of plants via
root uptake, active return of water from the subsurface to the atmosphere via evap-
otranspiration, drying of soils during drought seasons, extraction of groundwater
via wells, construction and operations of dams, etc. [46].

Although many of these processes can be studied by only taking into account
the simultaneous flow of water and air, some of them, such as the desiccation
of muddy soils, require the incorporation of the deformation effects due to the
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strong coupling between flow and mechanics. This gives rise to a nonlinear cou-
pled flow/mechanical set of partial differential equations. Under the assumption of
small deformations and linear constitutive relations for the mechanical behavior of
the soils, this set of equations can be expressed as a natural extension of Biot’s
equations of poroelasticity [26], for which recently global existence of the weak
solution has been proven [9].

Given the complexity of the resulting model, it is imperative to use robust dis-
cretization techniques in a flexible computational setting. The fully coupled system
is not commonly treated by numerical software, and the few available codes are
limited to the use of finite-element methods [26] or mixed finite-element methods
[7]. In this module, we propose the use of finite-volume methods (FVM), which
are inherently conservative while keeping the advantages of robust discretization
schemes; i.e., flexibility in representing complex domains.

In the FVM framework, two-point flux approximation (TPFA) is the most widely
used method for discretizing scalar equations. However, TPFA is only consistent
for K-orthogonal grids [1] and cannot be directly applied to vector equations.
The first of these issues can be addressed with the multipoint flux approxima-
tion (MPFA) method [1], and the second with the multipoint stress approximation
(MPSA) method [33]. Both methods are currently well established in academia and
slowly taking hold in industry.

As we mentioned before, computational flexibility is an important aspect of a
module when it comes to solving a broad range of applications. With this goal in
mind, we have written fv-unsat taking advantage of the high-level coding capac-
ities of the MATLAB Reservoir Simulation Toolbox (MRST), such as automatic
differentiation [24]. This module is based on the work of [44] and requires the
module fvbiot, which provides the discrete MPFA and MPSA operators, along
with the coupling operators for the flow/mechanical problem.1

The existing implementation of fv-unsat does not cover the full width of mod-
eling options of the governing equations; e.g., mixed and time-dependent boundary
conditions for the mechanical problem. If the interested user needs to include these
setups, we recommend the Python-based framework PorePy [20], which provides
a more general implementation of MPSA for poroelastic problems.

Our notation follows MRST’s conventions [28]. In physical space, x represents
a scalar, �x a vector, and x a tensor. In a discrete sense, x is a vector and ope(x) is
a discrete operator acting on x; i.e., the matrix–vector product between ope and x.

The chapter is structured as follows: in Section 13.2 we provide the continuous
formulations for the unsaturated flow in nondeformable (Richards’ equation) and

1 After this chapter was written, mpsaw, a new and improved implementation of the MPSA-W method has been
released with the core MRST distribution. The module can also be downloaded separately at https://
bitbucket.org/mrst/mpsaw/src/master/.
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deformable (unsaturated poroelasticity) porous media; in Section 13.3 we intro-
duce the MPFA and MPSA methods, together with the discrete operators and the
discrete equations; in Section 13.4 we present two numerical convergence tests and
two practical applications with in-depth explanation regarding the module; and in
Section 13.5 we draw the conclusions.

13.2 Governing Equations

In this section, we provide the set of equations that governs the physical processes
in the continuous domain. We do not attempt to provide detailed derivations of
these equations; for that matter we refer to [13, 26, 37].

13.2.1 Richards’ Equation

Richards’ equation models the flow of water in partially saturated porous media,
and it is based on the assumption of inviscid air. This assumption is supported
by the contrast in physical properties between water and air; e.g., at atmospheric
conditions air is three orders of magnitude less dense and two orders less viscous
than water [37]. Because the unsaturated zone is connected to the atmosphere, it is
reasonable to assume that the air remains at atmospheric pressure. This is usually
referred to as the Richards assumption and it was first proposed in [40].

We start the derivation by stating the mass-balance equation for the water phase

∂ (ρwSwn)

∂t
+ ∇ · (ρwSwn�vw) = ṁw. (13.1)

Here, ρw and Sw are the density and saturation, n is the porosity of the porous
medium, �vw is the water velocity, and ṁw is the rate of external addition/subtraction
of fluid mass per volume of representative elementary volume [5]. If water and solid
phases are assumed to be incompressible, we can rewrite (13.1) as

nρw

∂Sw

∂t
+ ρw∇ · (Swn�vws) = ṁw, (13.2)

where �vws := �vw − �vs is the velocity of the water with respect to the solids [26].
We recognize the term Swn�vws as the Darcy velocity of the water phase, given by

�qw = Swn�vws = − k
μw

krw (∇pw − ρw �g) , (13.3)

where k is the intrinsic permeability tensor,μw is the water dynamic viscosity, pw is
the water pressure, and �g is the gravity acceleration considered positive downwards.
The relative permeability krw ∈ [0,1] is included to account for the simultaneous
flow of water and air.
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In hydrology, it is common to express Darcy’s law (13.3) in terms of heads,

�qw = −Ksat
w krw∇ (ψw + ζ ) . (13.4)

Here,ψw = (pw−pa)/(ρwg) is the water pressure head (relative to the atmospheric
pressure pa), ζ = z − z0 is the elevation head (e.g., the height from a reference to
the measurement point), and Ksat

w := ρwgk/μw is the hydraulic conductivity at
saturated conditions [17, 37].

If Richards’ assumption holds true, the air pressure is constant and equal to pa ,
which is assumed to be zero. This allows us to write the equations purely in terms
of the water phase. Note that the capillary pressure is still present; i.e., pc =pa −
pw = − pw. To get to the final expression, we substitute (13.4) into (13.2) and
divide by ρw:

∂θw

∂t
− ∇ · (Ksat

w krw∇ (ψw + ζ )
) = ṁw

ρw

, (13.5)

where we introduce the water content θw := nSw and use the fact that the porosity
is constant. Equation (13.5) is referred to as the mixed-based form of Richards’
equation. The term “mixed” suggests that both the water content and the pressure
head appear explicitly in the equation. Alternative formulations include the pres-
sure head–based and the water content–based forms [37]. On a continuous level,
all forms of Richards’ equation are equivalent under strictly unsaturated conditions.
However, on a discrete level, theψ-based lacks conservative properties [12] and the
θ -based fails to converge when Sw → 1 [38]. Therefore, in this module, we employ
the mixed-based formulation.

In unsaturated systems, the usual practice is to express krw and θw in terms
of ψw. These relationships are called soil/water retention curves (SWRCs). One
such family of curves is the van Genuchten–Mualem (vG-M) model, originally
proposed in [43]. For the vG-M model, the water content is given by

θw =

⎧⎪⎨⎪⎩
θs
w − θr

w

[1+ (αv |ψw|)nv ]mv
+ θr

w, ψw < 0,

θw
s , ψw ≥ 0,

(13.6)

where θs
w and θr

w are the water content at saturated and residual conditions and αv,
nv, andmv are fitting parameters. Note thatψw < 0 denotes unsaturated conditions.
The relative permeability is given by

krw =

⎧⎪⎨⎪⎩
{
1− (αv |ψw|)nv−1 [1+ (αv |ψw|)nv ]−mv

}2
[1+ (αv |ψw|)nv ]mv/2

, ψw < 0,

1, ψw ≥ 0.

(13.7)
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We also introduce the specific moisture capacity Cψ := dθw/dψw:

Cψ =

⎧⎪⎨⎪⎩−mvnvψw

(
θs
w − θr

w

)
(αv |ψw|)nv

|ψw|2
[
(αv |ψw|)nv + 1

]mv+1 , ψw < 0,

0, ψw ≥ 0.

(13.8)

13.2.2 Unsaturated Poroelasticity

Herein, we present the equations that govern an unsaturated poroelastic medium as
a natural extension of Biot’s equations [26]. The momentum conservation for an
unsaturated poroelastic medium reads

∇ · σ t +
(
(1− n)ρs + nSwρw

)�g = 0, (13.9)

where σ t is the total stress tensor and ρs the density of the solids, with the second
term representing the body forces. For a poroelastic medium, the total stress has
two contributions: the part that acts on the solid skeleton and the part that acts on
the fluid. The relation is given by the extended principle of effective stress [16],

σ t = σ e − αpwSwI. (13.10)

The term σ e is the effective stress tensor, and it is responsible for causing the actual
deformation of the material; thus the name “effective” [45]. The second term affects
the pore pressure of the fluid, where α is the Biot coupling coefficient and I is the
identity tensor. The negative sign follows the convention that tensile forces are
positive whereas compressive forces are negative [31]. Substitution of (13.10) into
(13.9) gives the final version of the unsaturated momentum balance equation,

∇ · σ e − α∇ (Swpw) + (
(1− n)ρs + nSwρw

)�g = 0. (13.11)

Assuming small deformations and a linear stress–strain relation, the effective
stress σ e can be related to the displacement field �u employing the generalized
Hooke’s law

σ e = C : 1
2

(∇�u+ (∇�u)
T
)
, (13.12)

where C is the stiffness matrix, a fourth-order tensor in its most general form. For
the particular case of an isotropic medium, (13.12) can be written as

σ e = μs

(∇�u+ (∇�u)
T
)+ λs (∇ · �u) I, (13.13)

where λs and μs are the first and second Lamé parameters [30].
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A statement of the mass conservation principle for both phases (water and solid
skeleton) can be used to derive the unsaturated storage equation (see [44] for a
detailed derivation):

ξ(Sw)
∂pw

∂t
+ χ(Sw,pw)

∂Sw

∂t
+ αSw

∂

∂t
(∇ · �u) +∇ · �qw = ṁw

ρw

, (13.14)

where ξ := (α − n) CsS
2
w + nCwSw and χ := (α − n) CsSwpw + n are

compressibility-like terms. In (13.14), the first two terms represent accumulation
terms, the third term is the change of strain at constant saturation, the fourth term
is the divergence of the Darcy velocity, and the last terms are sources or sinks of
water [41].

Note that the above set of equations is written in terms of (pw,Sw) instead of
(ψw,θw). Because the SWRC is expressed in terms of the latter variables, we have
to adapt the original vG-M model to be consistent with the (pw,Sw) representation.
This can be easily achieved using the following relations:

ψw = pw

ρwg
, θw = nSw, Cψ = nρwgCp,

where all of the terms have been previously introduced, except the specific satura-
tion capacity Cp := ∂Sw/∂pw.

13.2.3 Boundary and Initial Conditions

To close the systems of partial differential equations, we must provide boundary
and initial conditions for the flow and mechanical problems. For the flow problem,
two types of conditions can be specified: pressure (or pressure head) and fluxes. For
the mechanical problem, we can impose displacement and traction force vectors.
Denoting � the domain of interest and ∂� its boundary, the boundary conditions
are given by

pw = gp,D on �p,D, (13.15)

�qw · �n = gp,N on �p,N, (13.16)

�u = g�u,D on ��u,D, (13.17)

σ t · �n = g�u,N on ��u,N, (13.18)

where �n is the normal vector pointing outwards, and the subindicesD andN denote
Dirichlet and Neumann boundary conditions. The boundary of the domain is given
by ∂� = �D ∪ �N with �D ∩ �N = ∅.

The initial conditions are specified as

pw = pw,0 for t = 0, (13.19)

�u = �u0 for t = 0. (13.20)
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13.3 Discretization and Implementation

This section is devoted to the discretization techniques and computational imple-
mentation. First, we briefly introduce the numerical methods; e.g., MPFA/MPSA
finite-volume (FV) schemes. Then, we employ the discrete operators to derive
the discrete version of the governing equations. Finally, we describe the general
strategy for solving the resulting nonlinear set of equations. In particular, we discuss
the workflow of the iterative solver and the timestepping algorithm.

13.3.1 MPFA and MPSA

Before writing the discrete version of the governing equations, we briefly introduce
the MPFA and MPSAmethods. From an implementation standpoint, the discretiza-
tion routines for both methods are provided by the third-party module fvbiot.
Nevertheless, we should remark that TPFA is the standard scheme employed in
MRST for the discretization of flow equations. In addition, MRST provides an
alternative MPFA implementation based on the mimetic method available through
the mpfa module (see section 6.4 of the MRST textboox [28] for further details).
Because both techniques (MPFA and MPSA) are well established in the literature
we do not go in-depth. We refer to [1, 4, 23] for an introduction to MPFA and to
[21, 33] for an introduction to MPSA.

MPFA

In an FVM framework applied to the flow problem, we aim to discretize the inte-
grated version of (13.4) over a face. For a cell-centered FVM, we use the cell-
centered pressures to estimate the fluxes across the faces; i.e., Q = ∫

S
�q · �n d�.

Hence, for a given face, we have to define the number of points to be considered
for approximating Q.

The simplest choice is to consider two points, say, 1 and 2 from top Figure 13.1.
This technique is referred to as TPFA, with the flux across the shared face j

given by

Qj ≈ λjTj (p1 − p2), (13.21)

where Qj is the water flux, λj = krw,j /μw is the water mobility, and Tj is the
transmissibility. For readability, we drop the subindices denoting the water phase.

The MPFA method is a generalization of the TPFA method, where instead of
using two points of information, we use a larger set of potentials (see bottom of
Figure 13.1). For the MPFA method, the flux can be approximated as

Qj ≈ λj

∑
i∈I

tijpi, (13.22)
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Figure 13.1 Flux approximations: TPFA (top) relies on first neighbors only,
whereas MPFA (bottom) also includes second neighbors. Adapted from [1]

where tij are the transmissibility coefficients satisfying
∑

i∈I tij = 0, and I is
the set of of cells used to approximate the flux through the face j . The size of
the set I depends on the dimensionality of the problem and the type of element
employed. For quadrilaterals, the set I consists of six neighbors. With this increase
in accuracy, MPFA results in a consistent discretization method compared to TPFA
(which gives nonphysical results when applied to non-K-orthogonal grids) [1]. An
interesting discussion regarding consistency of the numerical methods can be found
in chapter 6 of the MRST textbook [28].

Mobilities λj are evaluated at the faces using either an arithmetic mean or an
upstream weighting of the cell-centered values. The arithmetic mean implies λj =
(λ1 + λ2)/2, whereas the upstream weighting is based on the flux direction; i.e.,
λj = λ1 if

∑
i∈I tijpi > 0 (Tj (p1 − p2) > 0 for TPFA) and λj = λ2 otherwise [1].

Provided that the pressures are known, both problems are reduced to determining
Tj and tij . For TPFA, these are given by the harmonic average; however, finding
tij is more complicated. Several families of MPFA methods obtain tij in different
ways. The key difference among the methods lies in the way interaction regions
are constructed and continuity points selected. Interaction regions are composed
of the relevant neighboring cells and identified using the dual of the mesh (see
Figure 13.2). We refer to [14] for an excellent discussion on the topic. In this
module, we use the MPFA-O method, implemented in the fvbiot module.

MPSA

In recent years, the MPSA method was developed as a generalization of the MPFA
method applied to vector equations, such as the Navier–Lamé equations [21, 33] or
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Figure 13.2 Dual mesh (light gray), conservation cells (black), and interaction
region for the O-method (shaded). Adapted from [33]

the Biot equations [35]. MPSA uses the displacements �u located at the cell centers
as the only primary unknowns with the traction forces �T = ∫

S
σ e · �n d� defined on

the faces. On each face, the traction is linearly approximated by

�Tj ≈
∑
i∈I

sij �ui, (13.23)

where sij = −sij are the stress weight tensors, and I is the set of neighboring
cells to the face j . In essence, (13.23) can be seen as a local version of Hooke’s
law (13.12). Now the problem is reduced to the calculation of the stress weight
tensors sij for each face of the domain. Similar to MPFA, there are several ways to
estimate sij depending on the continuity points. The procedure for calculating the
stress weights is beyond the scope of this chapter; we refer to [21, 33] for further
details. The fvbiot module provides the MPSA-W version from [21], which is
used herein.

13.3.2 Discretization

Herein we introduce the discrete MPFA/MPSA operators and discretize the gov-
erning equations. The way discrete operators are defined in our module is heavily
inspired by MRST’s rapid prototyping philosophy. In particular, they are in agree-
ment with the basic structure of the simulators based on automatic differentiation
utilized in MRST; see, for example, chapter 7 of the MRST textbook [28] for an
excellent introduction. As the reader will note, this enables us to write the discrete
equations in a fairly compact way, while simultaneously providing a concise way
to structure the code.
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Table 13.1 Definition of the MPFA/MPSA operators.

Description Mapping Operator dimension

Flux F : P → F Nf ×Nc

Flux boundaries boundF : F → F Nf ×Nf

Flux divergence divF : F → P Nc ×Nf

Stress S : U → S dNf × dNc

Stress boundaries boundS : S → S dNf × dNf

Stress divergence divS : S → U dNc × dNf

Pressure gradient gradP : P → U dNc ×Nc

Displacement divergence divU : U → P Nc × dNc

Compatibility compat : P → P Nc ×Nc

Discrete MPFA/MPSA Operators

Let d denote the dimensionality of the problem – i.e., d = 2,3 – and let Nc and Nf

represent the number of cells and faces of a nonoverlapping domain �. Each cell
of the domain is identified as �i and its enclosed surface as ∂�i .

We first introduce the discrete version of the variables of interest; i.e., pressure,
displacement, flux, and traction:

p := {p1, · · · ,pNc
}T ∈ P, P = R

Nc, (13.24)

u := {�u1, · · · , �uNc
}T ∈ U, U = R

dNc, (13.25)

Q := {Q1, · · · ,QNf
}T ∈ F, F = R

Nf , (13.26)

T := { �T1, · · · , �TNf
}T ∈ S, S = R

dNf . (13.27)

For vector-valued quantities, such as displacement and traction, the length of the
vector depends on the dimensionality of the problem. For example, for a 2D prob-
lem using two cells, u = {u1,u2,u3,u4}T = {u1x

,u1y
,u2x

,u2y
}T .

Following MRST’s operator-based approach, in Table 13.1 we introduce the
discrete MPFA and MPSA operators along with the coupling operators. The first
three operators are related to the discretization of flow problems: F(·) acts on the
potential and computes the fluxes (by first determining tij and then computing
the gradient of the potential); boundF(·) deals with the boundary conditions; i.e.,
either constant pressure or constant flux. This operator will take care of the mapping
from boundary values to the right discretization, keeping track of how Neumann
and Dirichlet conditions should be treated differently. Finally, divF(·) computes
the divergence of the flux, mapping back from faces to cell centers.
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The next three operators are analogous to the first three, S(·) acting on the dis-
placement, boundS(·) acting on the mechanic boundary conditions, and divS(·)
computing the divergence of the (integrated) stress.

The last three operators are necessary for the coupled mechanics flow setting;
gradP(·) computes the gradient of the pressure, divU(·) takes the divergence of
the displacement, and compat(·) is a compatibility operator. This last operator
(which acts on the pressure) arises naturally from the discretization process. This
term has the physical interpretation of representing the volumetric expansion (or
contraction) of a grid cell in response to the deviation in pressure of the cell rela-
tive to its neighbors. It is especially relevant when small timesteps are employed,
providing stability to the discretized coupled system [35].

Discrete Richards’ Equation

Having defined the discrete operators, we can write the discrete version of the
governing equations. In an FVM framework, we typically integrate the mass con-
servation equation (13.5) over a cell volume,∫

�i

∂θw

∂t
dV +

∫
�i

∇ · �qw dV =
∫

�i

ṁw

ρw

dV, ∀i ∈ [1,Nc] . (13.28)

Assuming that the equation is solved using an iterative strategy (see Subsec-
tion 13.3.3), after applying backward Euler, the accumulation term from (13.28)
becomes

∂θw

∂t
= θn+1,m+1

w − θn
w

�tn
, (13.29)

where n denotes the time level and m the iteration level, and �t is the timestep. As
suggested in [12], to ensure local mass conservation, we use the modified Picard
iteration to Taylor-expand θn+1,m+1

w from (13.29) as a function of ψw,

θn+1,m+1
w = θn+1,m

w + C
n+1,m
ψ

(
ψn+1,m+1

w − ψn+1,m
w

)+H .O.T . (13.30)

Using (13.29) and (13.30) with the higher-order terms neglected and computing
the integral, the accumulation term from (13.28) is given by∫

�i

∂θw

∂t
dV = Vi

�tn

[
θ

n+1,m
w,i + C

n+1,m
ψ,i

(
ψ

n+1,m+1
w,i − ψ

n+1,m
w,i

)
− θn

w,i

]
, ∀i ∈ [1,Nc],

where Vi is the volume of the cell i. Alternatively, we can write the previous
equation in vector form as
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�

∂θw

∂t
dV = V

�tn

(
θn+1,m

w + C
n+1,m
ψ

(
ψn+1,m+1

w − ψn+1,m
w

)− θn
w

)
, (13.31)

where with a slight abuse of notation, we denote∫
�

∂θw

∂t
dV =

{∫
�1

∂θw

∂t
dV, . . . ,

∫
�Nc

∂θw

∂t
dV

}T

.

In (13.31), V := {V1, · · · ,VNc
}T is a vector representing the volumes of each

cell of the domain. Note that the product between vectors should be interpreted as
element-wise multiplications. An analogous procedure gives the expression for the
source term, ∫

�

ṁw

ρw

dV = V
ṁn

w

ρw

. (13.32)

Applying the divergence theorem, the second term of (13.28) can be written as∫
�i

∇ · �qw dV =
∫

∂�i

�qw · �n dA =
∑
j∈Fi

�qw,j · �njAj =
∑
j∈Fi

Qj, ∀i ∈ [1,Nc],

where Fi is the set of faces associated with the cell i. Alternatively, in vector form,∫
�

∇ · �qw dV = divF
(
Qw

)
, (13.33)

where we use the discrete divergence operator divF acting on Qw.
Combining (13.31), (13.32), and (13.33), we can write the discrete version of

mass conservation as

V

�tn

(
θn+1,m

w + C
n+1,m
ψ

(
ψn+1,m+1

w − ψn+1,m
w

)− θn
w

)+ divF
(
Qw

) = V
ṁn

w

ρw

.

(13.34)

The discrete version of the Darcy flux through a face j is given by

Qw,j = ρwg

μw

k̆
n+1,m
rw,j

∑
i∈I

tij

(
ψ

n+1,m+1
w,i + ζi

)
, ∀j ∈ [

1,Nf

]
,

where k̆rw,j denotes the relative permeabilities evaluated at the faces; i.e., obtained
by arithmetic average or upstream weighting. The previous equation written in
vector form reads

Qw = ρwg

μw

k̆
n+1,m
rw

(
F(ψn+1,m+1

w + ζ )+ boundF(bf )
)
, (13.35)
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where bf ∈ F is the vector of flow boundary conditions. Equations (13.34) and
(13.35) represent a closed system of nonlinear algebraic equations, perfectly suited
for an iterative solver. Finally, note that even though the physical model is referred
to as the mixed-based version, the discretized version of the model is solved
only for the pressure head ψn+1,m+1

w , because we can to express θw = θw(ψw)

from (13.6).

Discrete Equations of Unsaturated Poroelasticity

Following the same procedure as in the Richards equation, the unsaturated storage
equation (13.14) in vector form is given by

V ξn
(
pn+1,m+1

w − pn
w

)+ V χn
(
Sn+1,m

w + Cn+1,m
p

(
pn+1,m+1

w − pn+1,m
w

)− Sn
w

)
+ αSn

wdivU
(
un+1,m+1 − un

)+ α2compat
(
Sn

wpn+1,m+1
w

)
+�tndivF

(
Qw

) = V �tn
ṁn

w

ρw

, (13.36)

where the time derivatives are approximated using backward Euler and we
applied the modified Picard iteration to Taylor-expand Sn+1,m+1

w in terms of pw.
The compat operator appears naturally in the MPFA/MPSA discretization of
the coupled system and provides compatibility when �tn " 1. We choose to
evaluate the accumulation-like terms ξ and χ at the time level n to reduce the
nonlinearities; nevertheless, we acknowledge that other choices are possible.

The Darcy flux (integrated version of (13.3)) in terms of pressure reads

Qw = 1

μw

k̆
n+1,m
rw

(
F

(
pn+1,m+1

w + ρwgζ
)+ boundF

(
bf

))
. (13.37)

The (semidiscrete) unsaturated linear momentum equation (13.11) can be inte-
grated over each cell of the domain, giving∫

�i

∇ · σ e dV −
∫

�i

α∇ (
Sn

wpn+1,m+1
w

)
dV

+
∫

�i

[
(1− n)ρs + nSn

wρw

] �g dV = 0, ∀i ∈ [1,Nc] . (13.38)

Applying the divergence theorem, the first term from (13.38) can be written as∫
�i

∇ · σ e dV =
∫

∂�i

σ e · �n dA =
∑
j∈Fi

σ e,j · �nj Aj =
∑
j∈Fi

�Tj, ∀i ∈ [1,Nc] ,
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or in vector form as ∫
�

∇ · σ e dV = divS(T ). (13.39)

The second term of (13.38) is given by∫
�

α∇ (
Sn

wpn+1,m+1
w

)
dV = αgradP

(
Sn

wpn+1,m+1
w

)
, (13.40)

whereas the discretization of the body forces reads∫
�

[
(1− n)ρs + nSn

wρw

] �g dV = dnc(V )
(
(1− n)ρs + ndnc(Sn

w)ρw

)
g.

(13.41)

Here, we have used the dnc(·) operator, which converts a vector of length Nc

to a vector of length dNc by repeating each element of the Nc vector d times.
For example, for a 2D problem with two cells, dnc(V ) = dnc({V1,V2}T ) =
{V1,V2,V1,V2}T .

Combining (13.39), (13.40), and (13.41) gives the discrete version of the
momentum equation in vector form,

divS (T ) − αgradP
(
Sn

wpn+1,m+1
w

)
+ dnc (V )

(
(1− n)ρs + ndnc(Sn

w)ρw

)
g = 0.

(13.42)

Finally, for a generic face j , the traction forces acting on that face are given by

�Tj =
∑
i∈I

sij �un+1,m+1
i , ∀j ∈ [

1,Nf

]
,

or in vector form,

T = S(un+1,m+1) + boundS (bm) , (13.43)

where bm ∈ S is the vector of boundary conditions for the mechanical problem.
Equations (13.36), (13.37), (13.42), and (13.43) represent the complete set of
discrete equations. This set of equations can be solved using a sequential approach
[6, 22] or a monolithic approach [34]. The latter is the preferred method for this
module, with the vector {un+1,m+1

w ,pn+1,m+1
w }T as the only compound primary

variable.



A Finite-Volume-Based Module for Unsaturated Poroelasticity 529

Figure 13.3 Workflow of the iterative solver applied to a generic equation. a a a a
a a a a a a a a

13.3.3 Solving the Equations

To solve the system of equations we implement the modified Picard iteration
method as a part of an iterative solver as presented in the MRST textbook [28].
Other types of linearization schemes have been successfully applied to Richards’
equation and to a lesser extent to unsaturated poroelasticity. Usual schemes include
the classical Newton method, the Picard method, the Picard–Newton method, and
the L-scheme with and without Anderson acceleration (see [8, 19, 29]).

The resulting iterative scheme can be written as

dF

dx
(xm) δxm+1 = −F (x)m, xm+1 ← xm + δxm+1, (13.44)

where F is the residual vector, J := dF/dx is the Jacobian matrix depending on
the current solution xm, and δxm+1 is the updated solution. Generally, the manual
computation of J is a tedious and error-prone process. To avoid such a process, we
exploit the automatic differentiation (AD) interface available in MRST, which in
essence consists of breaking down the computation into nested elementary differen-
tiation operations (see [24, 27, 28]). Figure 13.3 shows a schematic representation
of the workflow of the iterative solver.

The selection of the timestep �t plays a key role in a solver’s performance. As
a general rule, the smaller the timestep the greater the chances of convergence.
However, decreasing the timestep too much could be unfeasible for some simu-
lations due to the increase in computational time. A better strategy is to use an
adaptive timestepping algorithm, such as the one implemented in Hydrus-1D [47].
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Figure 13.4 Workflow of the adaptive time stepping algorithm. a a a a a a a a a a
a a a a a a a

The algorithm determines the next timestep size based on the number of iterations
needed to achieve convergence in the last time level (see Figure 13.4). The idea is
to increase �t in case the number of iterations i is less (or equal) than a lower
optimal iteration range ilow (i.e., 3), decrease �t if i is greater (or equal) than an
upper optimal iteration range iupp (i.e., 7), or keep the same value otherwise. To
increase �t , we multiply �told by a lower multiplication factor klow (i.e., 1.3), and
to decrease it, we multiply �told by an upper multiplication factor kupp (i.e., 0.7).

13.4 Numerical Examples

In this section we present four numerical examples; the first two are numerical
convergence tests and the last two are practical applications. The convergence tests
include Richards’ equation (convAnalysisRE.m) and the equations of unsat-
urated poroelasticity (convAnalysisUnsatBiot.m). The third example is a
well-known problem for unsaturated flow, where we simulate the water infiltration
in a nondeformable initially dry soil (see waterInfiltrationRE.m). The last
example, desiccationUnsatBiot.m, consists of a desiccation process of a
clayey soil under atmospheric evaporation in a Petri dish.

Even though the codes for the convergence tests are included in the module,
in principle they are not meant as tutorials. To start using fv-unsat, we recom-
mend waterInfiltrationRE.m, which offers a step-by-step explanation of
the module.

13.4.1 Numerical Convergence Tests

The first two examples involve numerical convergence tests, one for Richards’
equation and one for the unsaturated poroelastic equations. Before that, we define
the errors used to determine the converge rates.
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We are interested in measuring the errors for the pressure (or pressure head),
displacement, flux, and traction forces. We use the subscript h to denote the numer-
ical approximation and no subscript for the exact solution. We define the following
relative discrete L2-type errors as in [33]:

εh,�t
p =

(∑Nc

i Vi |pi − ph,i |2
)1/2(∑Nc

i Vi |pi |2
)1/2 , ε

h,�t
Q =

(∑Nf

j Aj |Qj −Qh,j |2
)1/2(∑Nf

j Aj |Qj |2
)1/2 ,

ε
h,�t

�u =
(∑Nc

i Vi |�ui − �uh,i |2
)1/2(∑Nc

i Vi |�ui |2
)1/2 , ε

h,�t

�T =
(∑Nf

j Aj | �Tj − �Th,j |2
)1/2(∑Nf

j Aj | �Tj |2
)1/2 ,

where Vi and Aj are the cell volumes and face areas, respectively. For a given
variable, we define the reduction between two successive levels of refinement as
the ratio between the errors obtained by halving the spatial resolution for a fixed
time step. For example, for the pressure, we have the reduction and the convergence
rate given by

Redp = εh,�t
p /εh/2,�t

p , Ratep = log2(Redp).

Richards’ Equation

In this example, we present a numerical convergence analysis of the two-
dimensional incompressible mixed-based formulation of Richards’ equation. This
analysis is performed in a unit square with a final simulation time of 1 and a
timestep �t = 0.1. The computational mesh is a structured Cartesian grid. The
relative permeabilities on the faces are approximated using an arithmetic mean of
the cell centers, and for simplicity, gravity effects are neglected. Moreover, all of
the physical parameters are assumed to be equal to one, except αv = 0.4, θs

w = 0.4,
θr
w = 0.1, nv = 2, and mv = 0.5. We assume the existence of a time-dependent
solution

ψw(x,y,t) = −t (1− x)x sin (πx)(1− y)y cos (πy) − 1,

satisfying ψw(0,y,t)=ψw(1,y,t) = ψw(x,0,t) = ψw(x,1,t) = ψw(x,y,0)=− 1.
With this assumption, it is possible to obtain an exact expression for the source
term ṁw/ρw = fw and compute the errors. We refer to [39] for more details.

Table 13.2 shows the results for five different levels of spatial refinement.
Pressure head and fluxes show quadratic convergence rates. These results are
consistent with reported rates for MPFA schemes on structured-uniform grids
(see, e.g., [2, 3]).

Unsaturated Poroelasticity

In this analysis, we investigate the numerical convergence rates for the unsaturated
poroelastic equations. The domain, final simulation time, timestep, average of krw,
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Table 13.2 Convergence test for Richards’ equation.

h ε
h,�t
ψ Redψ Rateψ ε

h,�t
Q RedQ RateQ

0.1 5.338× 10−4
3.9949 1.9982

2.965× 10−2
3.9823 1.9936

0.05 1.336× 10−4
3.9970 1.9989

7.445× 10−3
4.0207 2.0075

0.025 3.343× 10−5
3.9991 1.9997

1.852× 10−3
4.0182 2.0065

0.0125 8.386× 10−6
3.9998 1.9999

4.608× 10−3
4.0110 2.0040

0.00625 2.090× 10−6 1.149× 10−4

Table 13.3 Convergence test for unsaturated poroelasticity: pressure and
displacement.

h ε
h,�t
p Redp Ratep ε

h,�t
�u Red�u Rate�u

0.2 8.817× 10−4
3.9106 1.9674

9.156× 10−2
4.0877 2.0313

0.1 2.255× 10−4
3.9381 1.9775

2.240× 10−2
4.0017 2.0006

0.05 5.725× 10−5
3.9836 1.9941

5.597× 10−3
3.9859 1.9949

0.025 1.437× 10−5
3.9970 1.9989

1.404× 10−3
3.9852 1.9946

0.0125 3.596× 10−6
3.9992 1.9997

3.524× 10−4
3.9753 1.9911

0.00625 8.991× 10−7 8.864× 10−5

and water retention parameters are the same as in the last example. However, we
now include gravity contributions. The physical parameters different from unity are
Cs = 0.1, n = 0.4, and α = 0.9.

We are interested in convergence rates of pressures and displacements, as well as
fluxes and traction forces. We assume the following time-dependent solutions for
the primary variables:

pw(x,y,t) = −tx(1− x)y(1− y) sin(πx) cos(πy) − 1,

�u(x,y,t) = tx(1− x)y(1− y)
[
sin(πx), cos(πy)

]T
.

We employ Dirichlet boundary conditions for the pressure and displacement satis-
fying the above equations. The initial conditions are obtained by setting t = 0, the
mesh is a structured triangular grid, and the analysis is performed for six different
levels of spatial refinement. The results are shown in Tables 13.3 and 13.4.

Pressures, displacements, and fluxes show quadratic convergence rate. The con-
vergence rate for traction is less uniform. Nevertheless, it is greater than 1.5 and
lower than 2, which is in agreement with previously reported rates on structured
grids for elasticity and (saturated) poroelasticity [21, 35].
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Table 13.4 Convergence test for unsaturated poroelasticity: flux and traction.

h ε
h,�t
Q RedQ RateQ ε

h,�t
�T Red �T Rate �T

0.2 1.025× 10−2
3.6349 1.8619

7.048× 10−2
3.4914 1.8038

0.1 2.821× 10−3
3.8863 1.9584

2.019× 10−2
3.2813 1.7143

0.05 7.258× 10−4
3.9755 1.9911

6.152× 10−3
3.3032 1.7239

0.025 1.826× 10−4
3.9968 1.9989

1.862× 10−3
2.9773 1.5740

0.0125 4.568× 10−5
4.0007 2.0020

6.256× 10−4
3.0802 1.6230

0.00625 1.142× 10−5 2.031× 10−4

13.4.2 Water Infiltration in a Column of Dry Soil

In this example, we solve a water infiltration problem in an initially dry soil column.
The water flows from top to bottom and is modeled using Richards’ equation.
The simplicity of the problem represents an excellent opportunity to introduce the
module (see waterInfiltrationRE.m from the examples folder).

We start by constructing a Cartesian grid consisting of five cells in the x- and
y-directions and 30 cells in the z-direction. The domain is 100 × 100 × 100 cm3.
We refer to chapter 3 of the MRST textbook [28] for more details regarding mesh
generation in MRST.

nx = 5; ny = 5; nz = 30; % cells
Lx = 1; Ly = 1; Lz = 1; % domain lenght [m]
G = cartGrid([nx, ny, nz], [Lx, Ly, Lz]); % create Cartesian grid
G = computeGeometry(G); % compute geometry

% Plotting grid
newplot; plotGrid(G); axis off;
pbaspect([1, 1, 5]); view([-51, 26]);

Next, we declare the hydraulic parameters of the soil. We use the physical param-
eters of a field sample from New Mexico [37]. Most of the properties can be
accessed from our mini-catalog of soils (see getHydraulicProperties.m).
The properties are stored in SI units inside the phys structure, which, in turn,
contains the flow substructure. For coupled problems, the phys structure will also
contain the mech substructure (see next example):

soil = getHydraulicProperties('newMexSample'); % get soil properties
phys = struct(); % create structure to store physical properties

% Flow parameters
phys.flow.rho = 1 * gram / (centi * meter)^3; % density
phys.flow.mu = 0.01 * gram / (centi * meter * second); % viscosity
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phys.flow.g = 980.66 * centi * meter / (second̂ 2); % gravity
phys.flow.gamma = phys.flow.rho * phys.flow.g; % specific gravity
phys.flow.K = soil.K_s; % saturated hydraulic conductivity
phys.flow.perm = (phys.flow.K * phys.flow.mu / phys.flow.gamma) .* ...

ones(G.cells.num, 1); % intrinsic permeability
phys.flow.alpha = soil.alpha / meter; % vGM parameter
phys.flow.n = soil.n; % vGM parameter
phys.flow.m = 1-(1/phys.flow.n); % vGM parameter
phys.flow.theta_s = soil.theta_s; % Water content at saturation conditions
phys.flow.theta_r = soil.theta_r; % Residual water content

Boundary and initial conditions are declared next. For this problem, ψw =
−75 cm is set at the top and ψw,=−1 000 cm at the bottom, and the rest are set
as no flux by default. Initially, we set ψw =−1 000 cm for all cells. Boundary
conditions are declared following the MRST convention (see chapter 5 of the
MRST textbook [28]). In addition, we need to create bcVal (a vector containing
the values of the boundary conditions) for backward compatibility with the
fvbiot module. It is important to mention that if gravity effects are considered,
we must include their contributions to the Dirichlet faces in the bcVal vector:

% Extracting grid information
:

% Creating the boundary structure
psiT = -75 * centi * meter; % Top boundary pressure head
psiB = -1000 * centi * meter; % Bottom boundary pressure head
bc = addBC([], z_min, 'pressure', psiT);
bc = addBC(bc, z_max, 'pressure', psiB);
bcVal = zeros(G.faces.num, 1);
bcVal(z_min) = psiT + zetaf(z_min); % assigning Top boundary
bcVal(z_max) = psiB + zetaf(z_max); % assigning Bottom boundary

The problem is discretized using the mpfa routine from the fvbiot module. The
mpfa function takes as input arguments the G structure, the flow substructure, and
the boundary conditions structure bc. The output contains the discrete operators
that later will be used to construct the model:

%% Discretize the flow problem using MPFA
mpfa_discr = mpfa(G, phys.flow, [], 'bc', bc, 'invertBlocks', 'matlab');

After declaring parameters structures for time/printing (time_param, print_

param) we are in position to construct the model. This is done by calling the
function modelRE (from the models folder) as follows:

%% Call Richards' equation model
modelEqs = modelRE(G, phys, mpfa_discr, bc, bcVal, 'arithmetic', 'on');
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Listing 13.1 The principal parts of the workflow of modelRE.

function model = modelRE(G, phys, mpfa_discr, bc, bcVal, relPermMethod, gEffects)
:

% Soil Water Retention Curves (SWRC) for the theta-psi model
[theta, krw, C_theta] = vGM_theta(phys);

% Discrete mpfa operators
F = @(x) mpfa_discr.F * x; % Flux
boundF = @(x) mpfa_discr.boundFlux * x; % Boundary fluxes
divF = @(x) mpfa_discr.div * x; % Divergence

% Relative permeability at the faces
if strcmp(relPermMethod, 'arithmetic')

krw_faces = @(psi_m) arithmeticAverageMPFA(G, krw, bc, psi_m);
elseif strcmp(relPermMethod, 'upstream')

krw_faces = @(psi_m) upstreamWeightingMPFA(G, krw, bc, bcVal, ...
mpfa_discr, phys, psi_m, 'psi', gEffects);

else
error('Method not implemented. Use either ''arithmetic'' or ''upstream''')

end

% Darcy Flux
Q = @(psi, psi_m) (phys.flow.gamma ./ phys.flow.mu) .* krw_faces(psi_m) .* ...

(F(psi + gravOn * zetac) + boundF(bcVal));

% Mass Conservation Equation
psiEq = @(psi, psi_n, psi_m, dt, source) (V ./ dt) .* (theta(psi_m) ...

+ C_theta(psi_m) .* (psi - psi_m) - theta(psi_n)) ...
+ divF(Q(psi, psi_m)) - V .* source;

:

The function modelRE takes as input arguments the grid structure G, the physi-
cal properties structure phys, the discretized structure mpfa_discr, the bound-
ary conditions structure and vector values bc and bcVal, and two string argu-
ments. The first string argument specifies the way relative permeabilities at the
faces should be calculated (e.g., 'arithmetic' or 'upstream'), and the last
argument is either 'on' or 'off' depending whether gravity effects are included
or neglected.

For completeness, we show the principal parts of the workflow of modelRE
in Listing 13.1. First, we retrieve the SWRC quantities (see (13.6)–(13.8)) using
the utility function vGM_theta. Because the problem is already discretized,
we can create the discrete MPFA operators as introduced in Table 13.1. Next,
we compute the relative permeabilities at the faces using the preferred method.
Finally, we declare the discrete equations as anonymous functions; i.e., Q for the
Darcy flux and psiEq for the mass conservation equation. The function modelRE
returns the model structure containing the discrete equations together with the
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SWRC-related quantities. We remark the straightforward equivalence between the
mathematical and computational equations.

Now, we can solve the nonlinear set of equations using a nested while loop. The
first corresponds to the time loop and the second to the solver solverRE (shown
in a separate code excerpt). Once we exit the solver loop (provided successful con-
vergence), the timestep dt for the next time level is calculated using the adaptive
timestepping routine timeStepping:

while time_param.time < time_param.simTime
psi_n = psi; % current time step (n-index)
time_param.time = time_param.time + time_param.dt; % current time
source = zeros(G.cells.num,1); % source term equal to zero
% Newton loop
[psi,psi_m,iter] = solverRE(psi_n,modelEqs,time_param,solver_param,source);
% Determine next time step
[time_param.dt,print_param.print]=timeStepping(time_param,print_param,iter);
:

end

The solver solverRE is written in such a way that it exploits the capabilities of
the AD framework:

function [psi, psi_m, iter] = solverRE(psi_n, modelEqs, time_param, ...
solver_param, source)

:
psi_ad = initVariablesADI(psi_n); % Initialiazing AD-variable

% Newton loop
while (res > solver_param.tol) && (iter <= solver_param.maxIter)

psi_m = psi_ad.val; % current iteration level (m-index)
eq = modelEqs.psiEq(psi_ad, psi_n, psi_m, time_param.dt, ...

source); % call equation from model
R = eq.val; % residual
J = eq.jac{1}; % Jacobian
Y = J\-R; % solve linear system
psi_ad.val = psi_ad.val + Y; % update
res = norm(R); % compute tolerance
:

end
psi = psi_ad.val; % return updated pressure head

In case the solver does not converge in the prescribed maximum number of
iterations, an error is printed in the console. The options to enforce convergence are
either to increase maxIter or decrease tol. The results can be easily accessed
via the sol object for all printing times. In Figure 13.5, we show the pressure
head and water content distributions corresponding to 21.6 hours. Alternatively, the
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Figure 13.5 Solutions to the water infiltration problem in an initially dry soil.
We show the pressure head (left) and water content (right) after 21.6 hours of
water infiltration from top to bottom. Note that approximately half of the domain
remains in dry conditions.

interested user can explore further plotting functionalities via the plotToolBar
interface from the mrst-gui module.

13.4.3 Desiccation of a Clayey Soil in a Petri Dish

In this numerical experiment, we study the desiccation process of a clayey sample
in a Petri dish using real parameters (see desiccationUnsatBiot.m). The
desiccation is driven by an evaporation process that is modeled using atmospheric
boundary conditions, allowing us to resemble with more precision a realistic evap-
oration scenario. Our main motivation to study soil desiccation is the formation
of cracks. Even if fractures are not included in this model, it is useful to predict
whether the conditions before cracking exist. The desiccation process involves a
gradual reduction of saturation with a simultaneous reduction in the pressure and
soil shrinkage [18].

The domain consists of a standard Petri dish (10 cm in diameter and 1.5 cm
thick) containing a sample of clay. In such a setup, the soil is constrained every-
where but the top, where the evaporation takes place at stress-free conditions (see
Figure 13.6). The evaporation at the top of the Petri dish can be either flux con-
trolled or pressure controlled. In an atmospheric evaporation scenario, the soil
initially dries at a maximum evaporation rate (thus a flux-controlled top boundary
condition is imposed) and then smoothly decreases, approaching zero in the limit
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Figure 13.6 The Petri dish domain showing the boundary and initial conditions.

when Sw → Sr
w (in this second stage a pressure-controlled boundary condition is

used). The criteria can be written as

�
top
flow =

{
Emax, p

top
w ≥ pcrit

w ,

pcrit
w , otherwise,

where �
top
flow is the flow boundary condition at the top of the domain (note that the

word “flow” does not refer to a “flux” boundary condition but rather the subproblem
as in the flow/mechanics coupled problem), Emax is the maximum evaporation rate,
and pcrit

w is the water critical pressure [15]. There are several correlations to estimate
Emax for field-scale applications [25]. In this case, we adopt an experimental value
obtained by Stirling [42] and more recently employed in numerical experiments
in [10]. The critical pressure pcrit

w is the minimum allowed pressure at the soil
surface. This value is a function of the ambient psychrometric conditions and can
be estimated as

pcrit
w = log(φ)RTρw

M
,

where φ is the relative humidity, R is the universal gas constant, T is the absolute
temperature, ρw is the water density, and M is the molecular weight of water [47].

The soil is initially at virtually saturated conditions – i.e., Sw = 0.9996 – and
the final simulation time is 2 hours. Now, we describe each step of the simulation
process. We highly encourage the interested reader to use desiccationUnsat
Biot.m along with this explanation.

As usual, we start by generating the computational grid. First, we create a Delau-
nay triangulation on a circle using the (freely available) mesh generator distemsh
[36]. To add distmesh to MRST, we follow the procedure described in [28]:

pth = fullfile(ROOTDIR,'utils','3rdparty','distmesh'); mkdir(pth)
unzip('http://persson.berkeley.edu/distmesh/distmesh.zip', pth);
mrstPath('reregister','distmesh', pth);
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Listing 13.2 Grid construction for the Petri dish.

% Two-dimensional grid
r = 50 * milli * meter; % radii of the Petri-dish
fd = @(p) sqrt(sum(p.^2, 2)) - r; % circular domain function
min_x = -r; max_x = r; % min and max values in x-axis
min_y = -r; max_y = r; % min and max values in y-axis
h = (2*r)/25; % step size
[p, t] = distmesh2d(fd, @huniform, h, [min_x, min_y; max_x, max_y], []);
p = p + r; % shifting triangulation points
G = triangleGrid(p, t); % creating triangular grid
G = pebi(G); % creaing Voronoi diagram

% Extrude in the z-direction
Lz = 15 * milli * meter; % thickness of the Petri-dish
nz = 5; % number of layers in z-axis
dz = Lz/nz; % thickness of each layer
thick = dz .* ones(nz, 1); % thickness vector
G = makeLayeredGrid(G, thick); % extrude grid
G = computeGeometry(G); % compute geometry

We employ the function distmesh2d to triangulate a circle of radius r, with step
size h. With the triangulation points p and the connectivity map t available, we
can generate the triangular grid using triangleGrid and then apply a Voronoi
diagram using the pebi routine to obtain the hexagonal grid. Finally, to generate
the three-dimensional grid, we extrude the hexagonal grid in the z-direction using
the function makeLayeredGrid2 (see Listing 13.2).

After extracting useful topological data, we declare the physical parameters for
the mechanics and the flow problem using the phys structure:

% Mechanics parameters [Kaolinite]
phys.mech.lambda = 1.229E11 .* ones(Nc, 1) * Pascal; % first Lame parameter
phys.mech.mu = 4.7794E10 .* ones(Nc, 1) * Pascal; % second Lame parameter
phys.mech.C_s = 5.618E-11 / Pascal; % solid compressibility
phys.mech.rho = 1769 * kilo * gram / meter̂ 3; % solid density
phys.mech.stiff = shear_normal_stress(Nc, Nd, ... % stiffnes matrix

phys.mech.mu, phys.mech.lambda, 0 .* phys.mech.mu);

Here, we assume homogeneity in the physical properties. However, the code is
flexible to include heterogeneous permeability and elasticity coefficients. The elas-
tic parameters were taken from [32] for a sample of kaolinite and the hydraulic
properties from [11] for clay. The mechanic discretization requires the construction
of the stiffness matrix. This is done using the function shear_normal_stress
from the fvbiot module.

2 Technically speaking, these grids are referred to as 2.5–dimensional grids.
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We use the soil catalog to get the hydraulic properties of the clay. The critical
pressure is determined using computeCriticalPressure. For this example,
we assume standard laboratory psychometric conditions; i.e., T = 298.15K and
φ= 0.5:

% Flow parameters [Water]
soil = getHydraulicProperties('clay');
:
phys.flow.temperature = 298.15 * Kelvin; % Ambient temperature
phys.flow.relativeHumidity = 0.5; % Ambient relative humidity
p_crit = computeCriticalPressure(phys);

Now, we proceed to declare the boundary conditions. For the mechanics, we set
�u = 0 at the sides and bottom of the domain, whereas the top is assumed to be
stress-free by default (note that the keyword 'pressure' indicates a displacement
condition and 'flux' indicates a traction condition):

% Creating the boundary structure for the mechanics problem
bcMech = addBC([], sides, 'pressure', 0); % u=0 at the sides
bcMech = addBC(bcMech, z_max, 'pressure', 0); % u=0 at the bottom
bcMechVals = zeros(Nd * Nf, 1);

For the flow boundary conditions, we have two scenarios: flux and pressure
controlled. For the flux-controlled scenario we have only flux conditions:

% Creating the boundary structure for flux-controlled BC
bcFlow_f = addBC([], z_min, 'flux', Qtop_f);
bcFlowVals_f = zeros(Nf, 1);
bcFlowVals_f(z_min) = Qtop_f;

whereas for the pressure-controlled, we have zero flux except at the top:

% Creating the boundary structure for pressure-controlled BC
bcFlow_p = addBC([], z_min, 'pressure', p_crit);
bcFlowVals_p = zeros(Nf, 1);
bcFlowVals_p(z_min) = p_crit + phys.flow.gamma .* zetaf(z_min);

For the initial conditions, we assume an initially undeformed sample – that is,
�u(x,y,z,0)=0 m – and a homogeneous pressure field of pw(x,y,z,0) = −0.1 kPa:

u_init = zeros(Nd * Nc, 1) * meter;
p_init = -0.1 * kilo * Pascal * ones(Nc, 1);
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Once the boundary and initial conditions have been declared, we can discretize
the different problems. On one hand, we have the mechanical problem, which is
discretized using the mpsa routine from fvbiot, and, on the other hand, we have
the flow problem which is discretized using mpfa. Note that the flow problem
is divided into the flux- and pressure-controlled subproblems, because different
boundary conditions result in different discrete operators:

% Discretize mechanics problem
mpsa_discr = mpsa(G,phys.mech.stiff,[],'invertBlocks','matlab','bc',bcMech);

% Discretize flow problem for flux-controlled boundary conditions
mpfa_discr_flux = mpfa(G,phys.flow, [],'invertBlocks','matlab','bc',bcFlow_f);

% Discretize flow problem for pressure-controlled boundary conditions
mpfa_discr_pres = mpfa(G,phys.flow, [],'invertBlocks','matlab','bc',bcFlow_p);

After declaring the time and printing parameters, we set up the two different
scenarios (flux and pressure controlled) using the function modelUnsatBiot:

%% Calling the model for the unsaturated poroelastic equations

% Setting up model for flux-controlled problem
modelEqsFlux = modelUnsatBiot(G, phys, mpfa_discr_flux, mpsa_discr, ...

bcFlow_f, bcFlowVals_f, bcMech, bcMechVals, 'upstream', 'on');

% Setting up model for pressure-controlled problem
modelEqsPres = modelUnsatBiot(G, phys, mpfa_discr_pres, mpsa_discr, ...

bcFlow_p, bcFlowVals_p, bcMech, bcMechVals, 'upstream', 'on');

Note that modelUnsatBiot now uses both the mechanics and flow boundary
conditions as well as discretization structures. The last two string arguments are
the same as in modelRE. To avoid being repetitive, and because modelUnsat
Biot is essentially the same as modelRE (structure-wise, not complexity-
wise), we prefer not to show this function and proceed with solving the coupled
systems.

To solve the coupled problem we create two time loops, one for each flow
scenario. The flux-controlled time loop is shown in Listing 13.3. The process is
essentially the same as in waterInfiltrationRE.m, except for some tech-
nicalities. Note that after calling solverUnsatBiot we calculate the value of
the top pressure of the domain using the function computeTopPressure. This
function uses a TPFA discretization to approximate the mean value of the surface
pressure. Next, we check whether the critical pressure is reached or not. If the pres-
sure is higher, we proceed to determine the next timestep using timeStepping.
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Listing 13.3 Flux-controlled time loop.

while (time_param.time < time_param.simTime) && (p_top > p_crit) ...
&& (pControlled == false)

p_n = p; % current time level (n-index)
u_n = u; % current time level (n-index)
time_param.time = time_param.time + time_param.dt; % cumulative time

% Source terms
sourceFlow = zeros(Nc, 1); % no sources for the flow
sourceMech = modelEqsFlux.body(p_n); % sourceMech = body force

% Calling Newton solver
[p, p_m, u, iter] = solverUnsatBiot(G, p_n, u_n, modelEqsFlux, ...

time_param, solver_param, sourceFlow, sourceMech);

% Approximating top pressure
fluxTemp = modelEqsFlux.Q(p, p_m);
p_top = computeTopPressure(G, phys, p, fluxTemp, modelEqsFlux);

% If it is flux controlled, update time step and store solution
if (p_top > p_crit)

% Calling time stepping routine
[time_param.dt, print_param.print] = timeStepping(time_param, ...

print_param, iter);

: % store solution if necessary
else

: % change to pressure controlled loop
end

end

If the pressure is less than (or equal to) the critical pressure, we switch to the
pressure-controlled time loop.

Because the pressure-controlled loop is essentially the same, we show the solver
and the sparsity of the system in Listing 13.4. The Jacobian matrix consists of four
blocks, which are characteristic of the monolithic approach:

– Upper-left: displacement contribution to the momentum equation, eq1.
– Upper-right: pressure contribution to the momentum equation, eq2.
– Lower-left: displacement contribution to the storage equation, eq3.
– Lower-right: pressure contribution to the storage equation, eq4.

The simulation results are shown in Figures 13.7–13.10. In Figure 13.7, we show
the saturation profile for the final simulation time. As expected, the lower saturation
zones are located at the top layer due to the evaporation process, whereas the bottom
layer remains at nearly saturated conditions. In Figure 13.8, we show the variation
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Listing 13.4 Solver for the unsaturated Biot equations.

function [p, p_m, u, iter] = solverUnsatBiot(G, p_n, u_n, modelEqs, ...
time_param, solver_param, sourceFlow, sourceMech)

:
% Initializing AD-variables
p_ad = initVariablesADI(p_n);
u_ad = initVariablesADI(u_n);

% Newton loop
while (res > solver_param.tol) && (iter <= solver_param.maxIter)

% Calling equations
p_m = p_ad.val; % current iteration level (m-index)
eq1 = modelEqs.uEq1(u_ad);
eq2 = modelEqs.uEq2(p_ad, p_n, sourceMech);
eq3 = modelEqs.pEq1(p_n, u_ad, u_n);
eq4 = modelEqs.pEq2(p_ad, p_n, p_m, time_param.dt, sourceFlow);

J = [eq1.jac{1} eq2.jac{1}; eq3.jac{1}, eq4.jac{1}];
R = [eq1.val + eq2.val; eq3.val + eq4.val];
Y = J\-R; % solve linear system
u_ad.val = u_ad.val + Y(1:Nd*Nc); % update u
p_ad.val = p_ad.val + Y(Nd*Nc+1:end); % update p
res = norm(R); % compute tolerance
:

end
p = p_ad.val; % updating pressure value
u = u_ad.val; % updating displacement value

Figure 13.7 Saturation field for the final simulation time. a a a a a a a a a a a a a a
a a a a a a a a.

of the top pressure head and flux with respect to time. The change in boundary
condition modes that takes place at 0.44 hours highly influences the evaporation
process. After this point, the pressure declines abruptly toward the critical value,
whereas the flux smoothly approaches zero as the driven force for the evaporation
vanishes.
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Figure 13.8 Top pressure head (left) and surface flux (right) evolution. a a a a a a
a a a a a a a a a a a a a a a a.

Figure 13.9 Magnitude of the displacement for the final simulation time. The
deformation is maximum where the evaporation takes place.

In Figure 13.9, we show the magnitude of the displacement field for the final
simulation time. Note that the displacement is maximum at the top layer, which
again is in agreement with the expected results. Finally, in Figure 13.10 we show a
closeup of the positive quarter domain of the top layer, where the arrows depict the
direction of the displacement field, demonstrating the tensile nature of the stresses
that eventually cause the rupture of the material.

13.5 Concluding Remarks

In this chapter, we presented a flexible solver based on robust multipoint finite-
volume schemes (MPFA/MPSA) for simulating flow in unsaturated soils. We stud-
ied the case where deformations effects are neglected (Richards’ equation) and the
case where small deformations and linear elastic behavior of the soil are assumed
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Figure 13.10 Positive quarter domain (top layer). The arrows show the character-
istic tensile nature of stresses of clayey soils when subjected to desiccation.

(equations of unsaturated poroelasticity). Numerical tests showed that convergence
rates previously found for saturated media are preserved when the models are
extended to the (nonlinear) unsaturated case. In addition, we provided two numer-
ical applications, a classical water infiltration case using Richards’ equation and a
fairly realistic desiccation process of a clayey soil driven by atmospheric evapora-
tion. In both cases, physically coherent results are obtained. Thanks to the AD-
based approach, the models presented herein can be extended to include other
processes such as scalar transport, chemical reactions, or heat transfer.
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Abstract
Development of models and dedicated numerical methods for dynamics in fractured rocks is an active research field, with
research moving towards increasingly advanced process couplings and complex fracture networks. The inclusion of coupled
processes in simulation models is challenged by the high aspect ratio of the fractures, the complex geometry of fracture networks,
and the crucial impact of processes that completely change characteristics on the fracture-rock interface. This paper provides a
general discussion of design principles for introducing fractures in simulators, and defines a framework for integrated modeling,
discretization, and computer implementation. The framework is implemented in the open-source simulation software PorePy,
which can serve as a flexible prototyping tool for multiphysics problems in fractured rocks. Based on a representation of the
fractures and their intersections as lower-dimensional objects, we discuss data structures for mixed-dimensional grids, formula-
tion of multiphysics problems, and discretizations that utilize existing software. We further present a Python implementation of
these concepts in the PorePy open-source software tool, which is aimed at coupled simulation of flow and transport in three-
dimensional fractured reservoirs as well as deformation of fractures and the reservoir in general. We present validation by
benchmarks for flow, poroelasticity, and fracture deformation in porousmedia. The flexibility of the framework is then illustrated
by simulations of non-linearly coupled flow and transport and of injection-driven deformation of fractures. All results can be
reproduced by openly available simulation scripts.

Keywords Fractured reservoirs . Mixed-dimensional geometry . Numerical simulations . Multiphysics . Discrete fracture matrix
models . Open-source software . Reproducible science

1 Introduction

Simulation of flow, transport, and deformation of fractured
rocks is of critical importance to several applications such as

subsurface energy extraction and storage and waste disposal.
While the topic has received considerable attention in the last
decade, the development of reliable simulation tools remains a
formidable challenge. Many reasons can be given for this; we
here pinpoint four possible causes: First, while natural frac-
tures are thin compared to the characteristic length of the do-
mains of interest, their extent can span the entire domain [1].
The high aspect ratio makes the geometric representation of
fractures in the simulation model challenging. Second, the
strongly heterogeneous properties of fractures compared to
the matrix with respect to flow andmechanics call for methods
that can handle strong parameter discontinuities as well as
different governing physics for the fractures and the matrix,
see for instance [2–4]. Third, phenomena of practical interest
tend to involve multiphysics couplings, such as interaction
between flow, temperature evolution, geo-chemical effects,
and fracture deformation [5]. Correspondingly, there is an
ongoing effort to develop and introduce multiphysics
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couplings within simulation models [6]. Fourth, fracture net-
works have highly complex intersection geometries, which
must be accounted for in the simulation models. Although
the geometry of the walls of individual fractures can be com-
plex by themselves, we will not consider this in any detail, but
rather assume that averaged apertures are available at the scale
of discretizations.

Traditionally, simulation of flow-driven dynamics in frac-
tured media has been based on two conceptual models. The
first is the upscaled representation, where the fracture network
geometry and dynamical processes taking place in the net-
work are replaced by equivalent continuum models, which
resemble those used in non-fractured porous media. As these
models do not resolve the fracture geometry, they are compu-
tationally efficient, and have been extended to cover a wide
range of multiphysics couplings, as exemplified by the
TOUGH2 family of codes [7] as well as PFLOTRAN [8].
The accuracy of the simulations is however highly dependent
on the quality of the upscaledmodel, which in turn depends on
the fractured domain’s resemblance of a continuous medium
with respect to the nature of the physical processes. In prac-
tice, the upscaling process ranges from treatable by analytical
means for simple fracture geometries and dynamics [9, 10], to
extremely challenging in the case of multiphysics couplings
and complex fracture geometries [11, 12].

The second traditional class of models, known as the dis-
crete fracture network (DFN) models, is constructed using an
explicit representation of the fracture network in the simula-
tion model, while ignoring the surrounding rock mass. The
models combine highly accurate representation of dynamics
in the fractures with computational efficiency from not having
to deal with the rock matrix. DFN simulation models with a
high level of sophistication have been developed, notably for
coupled flow and transport, see for instance [13–15]. By them-
selves, DFN models cannot represent processes outside the
fracture network; however, the models can be combined with
continuum models to achieve fracture-matrix couplings.

The respective limitations of continuum and DFN
models have, over the last decade, led to an increased
interest in the class of discrete fracture matrix (DFM)
models. In DFM models, the fractures are sorted in two
classes according to their importance for the dynamics in
question [16]. The most important fractures are represent-
ed explicitly, while upscaled models are applied for the
remaining fractures and the host rock. As such, DFM
models represent a flexible compromise between
upscaling and explicit representations. The models can
represent governing equations in the rock matrix, frac-
tures, and generally also in the intersections between frac-
tures. For computational efficiency, it is common to rep-
resent fractures and their intersections as lower-
dimensional objects embedded in the three-dimensional
rock matrix [17, 18]. We refer to such representation as

a mixed-dimensional model [19], and conversely refer to
a model of a domain where only a single dimension is
considered fixed dimensional.

DFM models can further be divided into two subgroups,
according to whether they explicitly represent the fracture
surfaces in the computational grid [16]. Models that apply
non-conforming gridding include the embedded discrete
fracture matrix model (EDFM) [20], and extended finite
element methods (XFEM) [21, 22]. These methods avoid
the complexities of conforming grid generation discussed
below, but must instead incorporate the fracture-matrix in-
teraction in what becomes complex modifications of the
numerical method for XFEM [23], or by constructing an
upscaled representation, e.g., [24], where the latter ap-
proach faces chal lenges reminiscent of those in
continuum-type models. For this reason, our interest herein
is DFM methods with conforming grids. Construction of
these grids can be challenging for complex fracture net-
works, particularly in 3d, and the high cell count that may
result can put limits in the amount of fractures that can be
explicitly represented. Nevertheless, this type of DFM
models has been developed for flow and transport, as well
as mechanics and poroelasticity, and the explicit represen-
tation is particularly useful when the fractures deform.
Simulation models that incorporate DFM principles include
DuMuX [25], CSMP [26], MOOSE-FALCON [27, 28],
OpenGeoSys [29], and Flow123d [30].

The utility of a rapid prototyping framework is illustrated
by the wide usage of the Matlab Reservoir Simulation
Toolbox (MRST) [31, 32], mainly for non-fractured porous
media. Similarly, research into strongly coupled processes in
mixed-dimensional geometries will benefit from software of
similar flexibility and with a structure tailored to the specific
challenges related to fractured porous media.

The goal of this paper is twofold: First, we review chal-
lenges related to design of simulation frameworks for
multiphysics couplings in mixed-dimensional geometries.
Our aim is to discuss design choices that must be made in
the implementation of any DFM simulator, including data
structures for mixed-dimensional geometries, and representa-
tion and discretization of multiphysics problems. Second, we
describe a framework for integrated modeling, discretization,
and implementation, and an open-source software termed
PorePy adhering to this framework. Key to our approach is a
decomposition of the geometry into separate objects for rock
matrix, individual fractures, and fracture intersections.
Governing equations can then be defined separately on each
geometric object, as well as on the connection between the
objects. This allows for significant code reuse from the
discretization of fixed-dimensional problems; thus, our design
principles are also applicable to more general PDE software
frameworks, such as FEniCS [33], Dune [34], and FireDrake
[35]. Furthermore, for scalar and vector elliptic problems
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(flow and deformation), the models rest on a solid mathemat-
ical formulation [36–38].

Built on the mixed-dimensional geometry, PorePy offers
several discretization schemes for mathematical models of
common processes, such as flow, transport, and mechanical
deformation. Multiphysics couplings are easily formulated,
and their discretization depends on the availability of appro-
priate discretization schemes. Moreover, the framework al-
lows for different geometric objects to have different primary
variables and governing equations. The software can be used
for linear and non-linear problems, with the latter treated by
automatic differentiation. PorePy offers automatic gridding of
fractured domains in 2d and 3d, relying on the third-party
software Gmsh [39] to construct the grid. PorePy is fully
open-source (see www.github.com/pmgbergen/porepy) and
is released under the GNU General Public License (GPL)
version 3.

The paper is structured as follows: In Section 2, we pres-
ent the principles whereupon we have built the mixed-
dimensional framework in PorePy. Section 3 presents
models for physical processes central to fractured porous
media: single-phase flow, heat transport, and poroelastic
rock deformation coupled with fracture deformation
modeled by contact mechanics. The implementation of
PorePy is presented in Section 4. In Section 5, we bench-
mark our approach and the PorePy library against well-
established test cases. In Section 6, we present two complex
applications to illustrate the potential of the framework with
respect to advanced physical processes, followed by con-
clusions in Section 7.

2 Design principles for mixed-dimensional
simulation tools

Developing a simulation model for a specific process in
mixed-dimensional media requires three main ingredients: A
representation of the mixed-dimensional geometry, governing
equations for dynamics within and between the geometric
objects (rock matrix, fractures, and fracture intersections),
and a strategy for discretization and assembly of the equations
on the geometry. This in turn leads to decisions on how much
of the mixed-dimensional geometry to represent, which type
of couplings between different geometric objects to permit,
and how to establish communication between the geometric
objects.

In this section, we discuss principles for modeling of
coupled processes between dimensions in a general context
of fractured rocks, together with representation of the ge-
ometry in a continuous and discrete setting. The general
discussion herein is supplemented by concrete examples
of modeling of the important processes presented in

Section 3, while discretizations and implementation are
discussed in Section 4.

2.1 Representation of a mixed-dimensional geometry

We consider the representation of a fracture network embed-
ded in a 3d domain. The dimension of the fractures is reduced
to 2. Similarly, fracture intersections are reduced to 1d objects
and intersections of intersection lines to 0d, producing a hier-
archy of objects of dimensions 0 to 3. For a fracture network in
a 2d domain, the natural simplification applies, i.e., fractures
will be objects of dimension 1 and intersections objects of
dimension 0. An important modeling choice is which parts
of the geometry to represent in the model. We emphasize that,
as our focus herein is DFM models with explicit fracture rep-
resentation, it is assumed that at least the dominating fractures
and the matrix will be explicitly represented in the simulation
model, and furthermore that the simulation grid will conform
to the fractures.

We distinguish between two approaches for the represen-
tation of the fracture geometry: The first explicitly represents
the full hierarchy of geometric objects (3d–0d). However, for
many processes, one can to a good approximation assume that
the main dynamics take place in the matrix or in the fractures,
while objects of co-dimension more than 1 (intersection lines
and points) mainly act as transition zones between fractures.
This observation motivates the second approach: The matrix
and fractures are represented explicitly, together with some
model for direct fracture-fracture interaction.

Representation only of matrix and fractures and not the
intersections in some sense constitutes the minimal modifica-
tion to an existing fixed-dimensional model and has been a
popular choice, e.g., for flow and transport problems [40]. The
strategy has also been taken a long way towards practical
applications, see for instance [41]. There are however draw-
backs, notably in the treatment of fracture intersections:
Without explicit access to the intersection objects, modeling
of interaction between two fractures can be challenging. As an
example, for flow, the model does not allow for specifying the
permeability of the intersection between two fractures.
Significantly, the difficulties tend to increase with increasing
complexity of the dynamics, such as countercurrent flow due
to gravity and capillary forces, and when transitioning from 2d
domains to 3d, i.e., the dimension of the intersections in-
creases from zero to one. This has important consequences
for model and method development, as issues related to ad
hoc treatment of intersection dynamics may not manifest until
relatively late in the development process. For these reasons,
we prefer the first approach, where all geometric objects are
treated (or “represented”) equally, independent of their
dimension.

To illustrate our geometry representation, consider Fig. 1a
showing three fractures that intersect pairwise along three
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lines, which in turn intersect in a point. The fracture network
thus defines a set of objects of dimensions {0, 1, 2}, while the
surrounding host medium (not shown) is 3d. We shall refer to
each object as a subdomain and denote a generic subdomain
by Ωi. Note that all subdomains of dimension less than 3 are
embedded in at least one subdomain of one dimension more,
for instance, all lines in the geometry lie on at least two frac-
ture surfaces.

Figure 1b shows the computational grid constructed for
each subdomain. The grid on each subdomain conforms to
any lower-dimensional subdomains embedded within it, illus-
trated by the faces in the 3d grid that match the circular

fracture. We will discuss grid construction in more detail in
Section 4.1.

To finalize the description of the geometry, we introduce
the notation for an interface between two subdomains. With
reference to Fig. 2, we denote by Ωh and Ωl two subdomains
one dimension apart so thatΩl is embedded inΩh, and let ∂jΩh

be the part of the boundary ofΩh that geometrically coincides
with Ωl. Furthermore, we introduce the interface Γj on the
boundary between ∂Ωh andΩl. From the dimension reduction,
it follows that Γj, Ωl, and ∂jΩh all coincide geometrically. For
completeness, we note that the mathematical framework [36]
onwhich our models are based considers the two sides ofΩl as

Fig. 1 Conceptual illustration of a fracture network, including grids and lower-dimensional representation. (a) Fracture network, the rockmatrix is not visualized. (b)
Grids of all subdomains. Fracture intersections (1d) are represented by colored lines, the 0d grid by a red circle. The 3d grid is cut to expose the circular fracture
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different interfaces, Γj and Γk. Throughout, we will let Γj

denote a generic interface and use the triplet (Γj, Ωh, Ωl) to
represent an interface and its higher- and lower-dimensional
neighbor.

2.2 Permissible coupling structures for mixed-
dimensional processes

For modeling purposes, it is important to establish which
types of couplings between variables on subdomains and in-
terfaces are permitted. In our framework, we impose the fol-
lowing constraints on the modeling of dynamic processes:

1. There is only coupling between subdomains that are ex-
actly one dimension apart.

2. Interaction between subdomains is formulated as a model
on the interface between the subdomains.

3. A model on an interface can depend on variables on the
interface and the immediate subdomain neighbors, but not
on variables associated with other subdomains or
interfaces.

These choices have two important consequences: First, our
framework explicitly rules out direct 3d-1d couplings.
Second, our model does not permit direct coupling between
objects of the same dimension, say, two fractures; the com-
municationmust go via a lower- or higher-dimensional object.
On the other hand, the imposed constraints make the structure
of the equations on a subdomain relatively simple, as the dy-
namics depend only on variables internal to the subdomain
and on neighboring interfaces.

In some cases, it can be of interest to also consider cou-
plings between subdomains of equal dimension, for in-
stance to implement domain decomposition solvers. This
can be realized by a secondary partitioning of the
subdomains. When such a strategy is applied, the above
constraints should be applied only on the interface between
subdomains of different dimensions. On interfaces between
subdomains of the same dimension, standard continuity
conditions can be applied.

3 Model problems

In this section, we use the modeling framework defined in
Section 2 to present three sets of governing equations, each
of which is of high relevance for fractured porous media: the
elliptic pressure equation, fully coupled flow and transport,
and fracture deformation coupled with poroelastic deforma-
tion of the host medium. Since most of the involved fixed-
dimensional processes are well established, our main purpose
is to apply the modeling framework described in Section 2 to
the mixed-dimensional setting.

We introduce the following notation for variables and
subdomains: Variables in a generic subdomain Ωi are marked
by the subscript i, while the subscript j identifies interface
variables on Γj. For a subdomain Ωi, the set of neighboring
interfaces is split into interfaces towards subdomains of higher

dimensions, denoted bSi, and interfaces towards subdomains of

lower dimensions, denoted by Ši (see Fig. 3).
Communication between an interface and its neighbor-

ing subdomains is handled by projection operators. In the
subsequent parts, we will apply four different classes of
projections. We indicate the mapping from an interface to
the related subdomains by Ξ, with a subscript indicating the
index of the interface and a superscript denoting the index of
the subdomain, as illustrated in Fig. 4.We also introduce the
projection operators from subdomains neighboring of an
interface to the interface itself, denoted by the symbol Π
with the same convention as before for sub- and super-
scripts. The actual definition of these objects is scope-
dependent and will be specified when needed. The construc-
tion of the projection needs to consider the nature of the
variable to project, being of intensive or extensive kind, that
is, whether the projections should average or sum the vari-
ables, respectively.

3.1 Flow in fractured media

We first consider incompressible flow in mixed-dimensional
geometries, where we assume a Darcy-type relation between

Fig. 2 Mixed-dimensional
geometric objects. A higher-
dimensional subdomain Ωh is
connected to a lower-dimensional
subdomain Ωl through the
interface Γj. The part of the
boundary of Ωh geometrically
coinciding with Ωl is denoted by
∂jΩh. The interface Γk on the
lower side of Ωl is not shown
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the flux and the pressure gradient in all subdomains. The
model has been presented several times before, see, e.g., [2,
42, 43].

First, consider a domain with a single interface Γj with
neighboring subdomainsΩh andΩl. In addition to the pressure
pi and flux qi in each subdomain, we denote the flux on Γj by

λj and formally write λ j ¼ Πh
j tr qh � nh, with nh the unit nor-

mal on ∂jΩh pointing from Ωh to Ωl, and tr a suitable trace
operator mapping from Ωh to ∂jΩh, referring to Fig. 4. The
strong form of the Darcy problem for Ωl reads: find (ql, pl)
such that

ql þ
Kl

μl
∇pl ¼ 0;

∇ � ql − Ξl
jλ j ¼ f l

; ð3:1Þ

where the differential operators are defined on the tangent

space of Ωl and Ξl
j maps from Γj to Ωl. We have indicated

with fl a source or sink term, μl is the fluid viscosity, while
Kl represents the effective tangential permeability tensor
scaled by the aperture as described in [42]. An analogous

problem is written for (qh, ph), with the exception that Ξh
jλ j

is mapped to a boundary condition on ∂jΩh,

qh � nh ❘ ∂ jΩh ¼ Ξh
jλ j: ð3:2Þ

The flux λj is given by an interface condition on Γj, which
reads

λ j þ �j

μ j
Πl

jpl −Πh
j tr ph

� �
¼ 0: ð3:3Þ

Here, κj indicates the normal effective permeability.
Equation (3.3) can be seen as a Darcy law in the normal
direction of Γj. Different types of boundary conditions can
be imposed on the external boundary of Ωh and Ωl.
Moreover, we impose null flux if Ωl has an immersed tip
boundary.

The extension to problems with many subdomains is
now immediate: The flux on an interface is still formulated
in terms of variables on its two neighboring subdomains,
while for a subdomain Ωi summation over all neighboring
interfaces gives the problem: Find (qi, pi) so that

qi þ
Ki

μi
∇pi ¼ 0;

∇ � qi − ∑ j∈SΞ
i
jλ j ¼ f i;

qi � ni ❘ ∂ jΩi
¼ Ξi

jλ j ∀ j∈Ši

ð3:4Þ

Fig. 3 Intersecting fractures, interfaces, and types of boundary
conditions. The 2d domain contains three fractures (1d lines) that
intersect in two intersection points (dots). The fractures have three types
of boundaries: internal (green squares), immersed tips (purple squares),
and endings at the external boundary (red squares). A close-up of the

black fracture Ωi shows the interfaces associated with its higher-
dimensional (blue lines) and lower-dimensional (green squares)
neighboring subdomains. The sets of such interfaces are denoted

respectively by bSi and Ši

Fig. 4 Representation of a generic coupling between two subdomains.
An interface Γj is coupled to a higher-dimensional subdomain Ωh and a
lower-dimensional subdomain Ωl. The projection operators are denoted
by Ξ (interface to subdomains) and Π (subdomains to interface) with
subscripts indicating the interface and superscripts indicating the
subdomain. The trace operator tr maps quantities from Ωh to its
boundary ∂jΩh
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In the case of d = 0, most of the above terms are void, and
we are left with the balance between the source term and
fluxes from higher dimensions, while for the case d = 3, the
term involving interface fluxes from higher dimensions is
void.

3.2 Fully coupled flow and transport

We next turn to modeling of fully coupled flow and transport,
as an example of a multiphysics problem with variable cou-
pling within and between subdomains. We consider a single-
phase flow of an incompressible fluid with two components
that mix ideally. We denote by ci the mass fraction of a com-
ponent associated with Ωi; the closure relation for the mass
fractions implies that we can calculate the other value by 1 −
ci. The governing equation of the fluid is given by Darcy’s law
and the fluid mass conservation as in Eq. (3.4). However, we
let the viscosity of the fluid depend on the mass fraction,

μi ¼ μi cið Þ: ð3:5Þ

The conservation equations for the components can be for-
mulated as

ϕi
∂ci
∂t

þ ∇ � ciqi − Di∇cið Þ − ∑ j∈SiΞ
i
j η j þ β j

� �
¼ gi: ð3:6Þ

Here, ϕi represents the effective porosity, Di is the effective
diffusivity, and gi denotes sources and sinks. A sum of
advective, ηj, and diffusive, βj, fluxes from the higher-
dimensional domains is included in the conservation equation.
As for the flow problem, flow over lower-dimensional inter-

faces Γ j; j∈Ši, enters as Neumann boundary conditions. We
note that the governing equations are coupled via the mass
fraction dependency of viscosity and the presence of the
Darcy flux in the advective transport.

Let us now consider the interaction between two neighbor-
ing subdomains Ωh and Ωl via the common interface Γj. The
flow over Γj, denoted by λj, is given by Eq. (3.3), where the
interface viscosity μj is modeled as a function of the mean of
the mass fractions on the two sides,

μ j ¼ μ j

Πl
jcl þ Πh

j tr ch
2

 !
: ð3:7Þ

The component flux over Γj is again governed by an
advection-diffusion relation: The diffusion term βj is, in anal-
ogy with the corresponding term for the Darcy flux, given by

β j þ δ j Πl
jcl −Πh

j tr ch
� �

¼ 0; ð3:8Þ

with δj representing the effective diffusivity over the interface
Γj. For the advective term ηj, we introduce an upstream-like
operator based on the Darcy interface flux:

Up ch; cl;λ j
� � ¼ Πh

j tr ch; if λ j≥0
Πl

jcl; if λ j < 0:

(
ð3:9Þ

With this, the advective interface flux ηj is given by the rela-
tion

η j − λ jUp ch; cl;λ j
� � ¼ 0: ð3:10Þ

Finally, global boundary conditions are imposed in the
standard way for elliptic and advection-diffusion problems,
see, e.g., [44]. Equations (3.5)–(3.10) define the governing
equations in all subdomains and on all interfaces, with the
exception of 0d domains, where the diffusion operator again
is void.

3.3 Poroelastic fracture deformation by contact
mechanics

Our final set of model equations considers poroelastic defor-
mation of a fractured medium, where the fractures may open
or, if the frictional forces are insufficient to withstand tangen-
tial forces on the fracture surface, undergo slip. This process is
important in applications such as geothermal energy extrac-
tion and CO2 storage. Modeling of the process is non-trivial
due to (i) the coupled poroelastic processes, (ii) the heteroge-
neous governing equations between subdomains, (iii) the need
to use non-standard constitutive laws to relate primary vari-
ables during sliding, and (iv) the non-smooth behavior of the
constitutive laws in the transition between sticking and sliding
and between open and closed fractures. Modeling of this pro-
cess is an active research field, see, e.g., [45–47], and thus
represents an example where the availability of a flexible
prototyping framework is highly useful. Due to the complex-
ity in deformation of intersecting fractures, we limit our expo-
sition to media with non-intersecting fractures.

Flow and deformation in the rock matrix, represented by
the subdomain Ωh, are governed by Biot’s equations for
poroelasticity [48].

∇ � Ch∇suh − αhphIð Þ ¼ bh;

αh
∂ ∇ � uhð Þ

∂t
þ θh

∂ph
∂t

− ∇ � Kh

μh
∇ph

� �
¼ f h

ð3:11Þ

Here, the first equation represents conservation of momentum,
with the acceleration term neglected, while the second equa-
tion expresses conservation of mass. The primary variables
are the displacement, uh, and the fluid pressure, ph. The stiff-
ness matrix Ch can for linear isotropic media be expressed
purely in terms of the first and second Lamé parameters, and
the elastic stress can be computed as

σh ¼ Ch∇suh;
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where ∇s is the symmetric gradient. Furthermore, αh is the
Biot constant, I the second-order identity tensor, bh denotes
body forces, and θh the effective storage term.We also assume
boundary conditions are given on the global boundary.

Next, to model relative motion of the fracture walls, it is
necessary to consider both interfaces between Ωh and Ωl. In a
slight abuse of notation, we will let uj denote the displacement
variable on both interfaces. We emphasize that uj is a vector in
ℝn, that is, it represents the displacement in both the tangential
and normal direction of Ωl. We will require continuity be-

tween uh and uj, expressed as Πh
j tr uh ¼ uj, where we recall

that the trace operator maps to ∂jΩh. We also introduce the
jump in displacement,〚uj〛, between the two interfaces on
opposing sides of Ωl (see Fig. 5). The jump is decomposed
into the tangential jump〚uj〛τ and the normal jump〚uj〛n:

The mechanical state in Ωl is described by the contact trac-
tion σl, which also is a vector in ℝ

n, with normal and tangen-
tial components σl,n and σl,τ, respectively. Our model also
includes fluid flow in the fracture Ωl, which is governed by
conservation of mass

∂
∂t

a〚uj〛
� �� �þ θl

∂pl
∂t

− ∇ � Kl

μl
∇pl

� �
− Ξl

jλ j ¼ f l: ð3:12Þ

Here, the time derivative of the aperture a(〚uj〛) = a0 −〚uj〛n
represents changes in the available volume due to changes in
the displacement jump, with a0 denoting the residual hydrau-
lic aperture. The negative sign on the normal jump is related to
the sign convention in (3.14) below. As in the previous sec-
tions, the relation between the fluid pressures in Ωh and Ωl is
governed by a flux law of the type (3.3).

The relation between σl and〚uj〛is modeled by borrowing
techniques from contact mechanics as summarized here (for a
full discussion, see [49]). Balance of tractions between the

poroelastic stress in Ωh and the contact traction in Ωl is for
the two sides expressed as

Πh
j1
nh � σh − αhphIð Þ¼ Πl

j1
σl − Πh

j1
nh

� �
� IΠl

j1
αlpl

� �
Πh

j2
nh � σh − αhphIð Þ¼ − Πl

j2
σl − Πh

j2
nh

� �
� IΠl

j2
αlpl

� �
ð3:13Þ

The contact traction is zero whenever the normal displace-
ment jump is nonzero, that is

〚uj〛n≤0; σl;n≤0; 〚uj〛nσl;n ¼ 0: ð3:14Þ

For closed fractures, the motion in the tangential direction
is controlled by the ratio between the tangential traction σl,τ
and the maximum available frictional traction Fσl,n, where F
is the friction coefficient. The time derivative of the displace-
ment jump is zero until the frictional traction is overcome; for
larger tangential tractions, the time derivative of the displace-
ment jump and tangential traction are parallel:

‖σl;τ‖ ≤ −Fσl;n;

‖σl;τ‖ < −Fσl;n→〚uj〛τ ¼ 0;

‖σl;τ‖ ¼ −Fσl;n→∃γ∈ℝ;σl;τ¼ − γ2〚uj〛τ :

ð3:15Þ

Here ‖ · ‖ represents the Euclidean norm, and〚uj〛τ the sliding
velocity. We emphasize that the tangential contact conditions
are formulated in terms of the contact traction σl, with no
contribution from the fluid pressure pl.

4 Implementation

This section describes the implementation of the mixed-
dimensional simulation framework outlined above in the
open-source simulator PorePy. Our emphasis is on three
topics that are particular to this type of DFM simulation
models: Gridding, discretization of subdomain couplings,
and how to deal with parameters, variables, and linear systems
for multiphysics problems that are defined on an arbitrary
number of subdomains and dimensions. The ability to treat
these components with relatively simple input is the main
distinguishing feature of PorePy, and thus, the section gives
an overview of the important properties of the implemented
simulator.

Figure 6 displays the main components of PorePy, with
emphasis on the mixed-dimensional aspects of the code. The
implementation follows the principles of locality of variables
and equations described in the previous sections. Specifically,
equations and discretizations are assigned on individual
subdomains, and the implementation of specific discretization
schemes closely resembles that applied to fixed-dimensional
problems. Similarly, the stencil of interface couplings is

Fig. 5 Illustration of a lower-dimensional domain, Ωl, that has two
interfaces, Γ j1 and Γ j2 , with a higher-dimensional domain, Ωh
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limited to the interface and the immediate neighboring
subdomains. The connection between the subdomains is han-
dled in a top-down manner and implemented in two core
classes: The GridBucket class keeps track of the relation be-
tween neighboring subdomains and interfaces, and it also acts
as a facility for storage of parameters and variables. The
Assembler class can be considered a global degree of freedom
manager which also has methods for global discretization and
assembly. These core mixed-dimensional components are
supplemented by functionality for grid construction, assisted
by Gmsh, while visualization and linear solvers must be han-
dled by external packages.

A typical workflow for a mixed-dimensional simulation will
consist of the following steps:

1. Specify the problem geometry. Use this to create a
GridBucket object, that is, a mixed-dimensional grid.

2. On the individual subdomains and interfaces in the
GridBucket, specify variables, parameters, and discretizations
(thus implicitly define governing equations).

3. Create an Assembler object, use this for initial discretization
and assembly of linear system.

4. Solve the mixed-dimensional problem.

Depending on the problem characteristics, the last point
can entail non-linear iterations, time stepping, etc.

The rest of this section presents design choices and con-
crete implementation details of the individual steps. As an
illustration of the usage of the resulting simulation framework,
Fig. 7 provides an example PorePy code for the setup,
discretization, and solution of the mixed-dimensional com-
pressible flow problem. We emphasize that to change the
problem geometry, e.g., the fracture network, it is sufficient

to change the pink section, while governing equations, param-
eters, and/or discretization schemes are altered by modifica-
tions to the green section. Several examples of the latter are
given in Section 5.

4.1 Mixed-dimensional geometry and gridding

Grid construction is one of the main technical bottlenecks for
the application of conforming DFM models. The translation of
a geometric description of the fracture network into a compu-
tational grid consists of three steps: Identification of intersection
lines and points, construction of the mixed-dimensional grid,
and post-processing of the grid into a format that is suited for
the discretization approaches described in Section 4.2. The first
and third of these tasks are technically challenging, and one of
the strengths of PorePy is that it provides a robust implementa-
tion with a simple interface. The second item, grid construction,
is a highly advanced research topic in its own; in PorePy, this is
handled by a Gmsh backend.

4.1.1 Geometry processing

In PorePy, fractures are described as lines (for 2d domains) or
convex planar polygons (in 3d). Curved objects are not sup-
ported, as this would significantly complicate the task of iden-
tifying intersections; however, piecewise linear approxima-
tions are possible. The fractures are specified by their end-
points (in 2d) or vertexes (in 3d). Individual fractures are
collected into FractureNetwork2d and FractureNetwork3d
classes.

Before passing the fracture network to a gridding software,
all fracture intersections must be found. In principle, the com-
putation of fracture intersections is straightforward, following

Fig. 6 Outline of the architecture of PorePy: The main mixed-
dimensional components are the GridBucket class, which is a
combined grid and data manager, and the Assembler class, which
acts as a degree of freedom manager. Variables, parameters, and

discretizations are local to subdomains and interfaces. Geometry
specification and grid construction is handled in part by
communication with Gmsh, while visualization is available through
export to Paraview. Green boxes represent external dependencies
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for instance [50]. However, to reduce the complexity of the
grid construction and limit the number of cells in the resulting
grid, it can be useful to alter the geometry to avoid small
details, such as almost intersecting fractures. PorePy automat-
ically merges objects that are closer than a user-specified tol-
erance, and also cuts dangling fracture ends. While such

modifications can alter the connectivity of the network, we
have found that it is a critical ingredient for dealing with frac-
ture networks that originate from sources that have not re-
moved such small details, for instance networks exported
from geological processing software or stochastic fracture net-
work generators.

Fig. 7 Setup of a full PorePy simulation, illustrated by a mixed-dimensional compressible flow problem solved with a single time step. The background
colors indicate different simulation stages, which are discussed in detail in the indicated subsections
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4.1.2 Gridding

The computational grid should conform to all fractures, and
by extension also to their intersection lines and points. This is
a difficult problem; however, algorithms [51–53] and high-
quality implementations [54, 55] are available. PorePy relies
on Gmsh [39] for the grid construction, as this allows for a
unified approach in both 2d and 3d domains. While Gmsh
allows for a nuanced specification of grid sizes, only a limited
set of this functionality is exposed in the PorePy interface: A
grid size can be set for the fracture network and the far field;
more advanced settings can be accessed by direct manipula-
tions in Gmsh. Still, the specified geometry implicitly sets
conditions on the grid size; if the fracture network contains
fractures that are close relative to the specified grid size, Gmsh
will attempt to construct a grid with reasonable quality, and
thereby override the user preferences if necessary.

4.1.3 Construction of grids, mortar grids, and projection
operators

The grids provided by Gmsh must be post-processed to be of
use for our mixed-dimensional simulations. First, grids for
individual subdomains must be extracted. Second, mortar
grids must be constructed on the interface between subdomain
grids, together with projection operators between the grids.
Third, the resulting sets of grids must be arranged in the
mixed-dimensional GridBucket.

Subdomains of different dimensions can be identified from
Gmsh tags that for each cell identify the geometric object to
which the cell belongs (matrix, fracture, or intersection).
However, to avoid direct connection between cells that lie
on different sides of lower-dimensional objects, faces must
be split, and nodes duplicated before the grids are arranged
in the GridBucket. This process is illustrated in Fig. 8, which
also shows the resulting lower-dimensional grids. Note that
while all (d–1)-dimensional faces are split in two, the number
of duplicates of a node depends on whether it is located on an
intersection, a fracture tip or a global boundary, or in the inte-
rior of the subdomain. After this modification, the cells that

belong to the same geometric objects are collected into
subdomain grids. These are implemented as standard fixed-
dimensional grids, so that when a discretization scheme is
applied to a subdomain, this is indistinguishable from the tra-
ditional fixed-dimensional operation. In this spirit, the grid
structure used for individual grids is agnostic to spatial dimen-
sion, with an implementation heavily inspired by that of
MRST [32].

The mortar grids constructed under post-processing of the
Gmsh output are associated with the interfaces. They match
with the lower-dimensional grid, and thereby also with the
split faces of the higher-dimensional grid. The mortar grids
also have methods for the construction of projection matrices
between themselves and the lower- and higher-dimensional
neighboring subdomains, with separate methods for the map-
ping of extensive and intensive quantities. Only the lowest
order projection operators are available in PorePy, which for
matching grids simply identify the split faces of Ωh with cells
in Γj, and cells in Γj with cells in Ωi. However, non-matching
grids can be introduced by replacing individual subdomain
and mortar grids. Specifically, computational speedups can
often be achieved by combining fine grids in fractures, which
are often the main venue for dynamical processes, with rela-
tively coarse grids in the matrix. During the replacement, the
projection operators are automatically updated to account for
the resulting non-matching grids.

The individual subdomains and mortar grids are collected
in theGridBucket class. This is implemented as a graph, where
each subdomain grid Ωi defines a node, while the interface Γj
is represented as an edge in the graph, and is identified by the
pairing of its neighboring subdomains (Ωh,Ωl). In addition to
keeping track of geometric information, the GridBucket also
provides flexible data storage in the form of dictionaries on
subdomains and interfaces. These are used for parameters,
discretizations, simulation results, and other data if relevant.

4.2 Primary variables, parameters, and discretization

To define a problem to be discretized in PorePy, one must
define primary variables, governing equations, and problem

Fig. 8 The process of splitting the
faces and nodes of the grid. The
faces and nodes of the 2d grid that
coincide with the 1d grids (gray
lines) are split and define an
internal boundary of the grid.
Similarly, the faces and nodes of
the 1d grids that coincide with the
0d grid (black dot) are split. Note
that the split nodes and faces
coincide geometrically but have
been shifted in the right figure for
illustrative purposes
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parameters. PorePy is designed to allow for maximum flexi-
bility in these specifications. Variables and parameters are
defined on individual subdomains and interfaces. Governing
equations are specified in terms of their discretizations: Each
variable can be assigned one or several discretizations corre-
sponding to different terms in the equation. As with the vari-
able specification, discretizations are specified locally on
subdomains and interfaces, thus heterogeneous governing
equations or discretization schemes can readily be assigned.
It is up to the user to ensure that the specified combination of
variables, equations, and discretizations is mathematically
well posed on the given mixed-dimensional grid.

In terms of implementation, the data structures for param-
eters and solution vectors are stored locally to each subdomain
and interface. Specifically, variables are represented as numpy
arrays and parameters as a combination of numpy arrays and
dedicated classes.

4.2.1 Discretization classes

For the implementation of discretizations, it is useful to differ
between the schemes themselves, their implementation, and
the application of a discretization object to a specific grid and
parameter set, which produces a discretization matrix. All
discretization schemes are implemented as classes which are
designed to act on individual subdomains or interfaces. In
most cases, there is a one-to-one correspondence between
terms in the governing equations and discretization. As an
example, the compressible flow equation on a subdomain will
be specified by assigning discretizations of the accumulation
and diffusion term to a pressure variable, as is shown in Fig. 7.

A compatible discretization class should implement a
method for discretization, which computes coefficients that
will enter into a discretization matrix. Furthermore, the class
needs a method for assembly of matrix and right-hand side.
The act of discretization and assembly should together pro-
duce a local discretization matrix, usually in the form of a
sparse matrix represented using the SciPy library and a right-
hand side represented as a numpy array.

There are important differences between discretization clas-
ses for subdomains and interfaces: Subdomain discretizations
have access only to the subdomain grid and its associated data
and assemble a matrix local to the subdomain. An interface
discretization is responsible for coupling variables on the neigh-
boring subdomains, and it therefore has access to the relevant
subdomain discretizations and data in addition to information
local to the interface. Thus, an interface discretization may put
additional requirements on a subdomain discretization, see
Section 4.2.2 for an example. The assembly method in the inter-
face discretization should treat both the interface equation and
the discrete couplings of the interface law to the neighboring
subdomains.

In PorePy, subdomain discretization schemes are available
for diffusion, advection, and mechanical deformation, as well
as mass matrices for accumulation terms. Specifically, diffusion
processes can be discretized by the lowest order Raviart-Thomas
mixed finite elements combined with a piecewise constant pres-
sure approximation (RT0-P0) [56], the lowest order mixed vir-
tual element method (MVEM) combined with a piecewise con-
stant pressure approximation [57, 58], and by two finite volume
schemes: the two- and multipoint flux approximations (TPFA
andMPFA, respectively). Advection terms can be discretized by
a first-order upstream scheme. Mechanical deformation is
discretized by the multipoint stress approximation (MPSA)
[59, 60], also extended to poroelasticity [61] and thermo-
poroelasticity [62].

On interfaces, discretization schemes in PorePy cover the
interface diffusion law (3.3), and an upstream scheme for the
advection term (3.9). The discretization of the contact me-
chanics (Eqs. (3.14) and (3.15)) is implemented by a semi-
smooth Newton method to deal with the discontinuities in the
solution, for details we refer to [49, 63]. The available
discretizations on subdomains and interfaces can also be used
as building blocks for more complex problems; for instance,
the simulations of thermo-poroelasticity with fracture defor-
mation reported in [64] utilized several of the discretization
schemes mentioned above.

In the following, we present the implementation of two ex-
amples of combined subdomain and interface discretizations,
allowing us to discuss different aspects in the design and imple-
mentation of mixed-dimensional problems.

4.2.2 Subdomain coupling for discretization
of mixed-dimensional flow

3.1, focusing on the division of responsibilities between
subdomain and interface discretizations. The discretization
of the interface law (3.3) is implemented in the class
RobinInterfaceLaw, which in itself is simple, but has an in-
structive approach to communication with the adjacent
subdomain discretizations. From the model in Section 3.1,
we see that for a discretization on a generic subdomain Ωi to
interact with the interface problem, we need to provide oper-
ators which:

1) Handle Neumann boundary data on the form Ξi
jλ j for all

interfaces Γj for which Ωi is the higher-dimensional
neighbor.

2) Handle source terms Ξi
jλ j from interfaces Γj for whichΩi

is the lower-dimensional neighbor.
3) Provide a discrete operator tr pi to be combinedwithΠi

j to

project the pressure to interfaces Γ j; j∈Ši.
4) Provide a pressure pi that can be projected to interfaces Γ j;

j∈bSi using Πi
j.
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RobinInterfaceLaw assumes that the subdomain discretization
has dedicated methods, with specified names, that handle each of
these four operations. Thus, any discretization class aimed at indi-
vidual subdomains can be made compatible withRobinInterfaceLaw,
and thus applicable to mixed-dimensional problems, provided the
four required methods are implemented. Moreover, all of these are
readily available in any reasonable implementation of a discretization
scheme for elliptic equations. Examples of howRobinInterfaceLaw is
set up to interact with subdomain discretizations can be found in
Figs. 7 and 10.

It is instructive towrite out the structure of the coupled system for
our case with two subdomainsΩh andΩl separated by an interface
Γj. Denote by yh, yl, and ξj the vectors of discrete unknowns inΩh,
Ωl, and on Γj, respectively. As we make no assumptions that the
same discretization scheme is applied in both subdomains, these
may contain different sets of unknowns. The discrete system can
then be represented on the generic form

Ah 0 NhΞ
h
j

0 Al SlΞl
j

−Πh
jPh Πl

jPl M j

0B@
1CA yh

yl
ξ j

0@ 1A¼
f h
f l
0

0@ 1A: ð4:1Þ

Here, Ah and Al are the fixed-dimensional discretizations on the
subdomains and fh and fl the corresponding source and sink terms.
Nh is the discretization ofNeumannboundary conditions onΩh, and
Sl is the discretization of source terms in Ωl. Furthermore, Ph pro-
vides a discrete representation of the pressure trace operator on Ωh

and Pl gives the pressure unknowns in Ωl; the latter is an identity
operator for the integral formulations presented on primal form and
strips away flux unknowns in the dual formulation. Finally, Mj

represents the normal permeability term in (3.3) and is discretized
directly byRobinCoupling. In accordancewith the second constraint
on mixed-dimensional modeling discussed in Section 2.2, there is
no direct coupling betweenΩh andΩl as seen from the 0 entries in
the matrix.

The PorePy implementation of the above method repre-
sents the mortar variable by piecewise constant functions.
Our implementation for the coupled mixed-dimensional prob-
lem relies on the analysis carried out in [39], which provides a
theoretical background to obtain a stable global scheme with
full flexibility in choosing heterogeneous discretization
schemes between the subdomains. We also note that the inter-
face discretization for many other classes of equations, such as
the advection-diffusion problem presented in Section 3.2, fol-
lows a similar approach.

4.2.3 Subdomain couplings for contact mechanics
in poroelastic media

As a second example of the matrix structure produced by a
subdomain and interface coupling, we consider the model for
fracture deformation introduced in Section 3.3. This can be
considered a complex model, in that the traction balance on

the interface involves multiple variables on Ωh, Ωl, and Γj.
Specifically, the equations for the momentum balance present-
ed in Section 3.3 can be represented in matrix form as

Ah Bh DhΞ
h
j

0 0 UlΞ
l
j

Πh
jTh Πh

jGh Πh
jShΞ

h
j

0 0
0 Tl

−Πl
jGl �Πl

j

0B@
1CA

uh
ph
u j

pl
σl

0BBB@
1CCCA¼

bh
r
0

0@ 1A: ð4:2Þ

Here, the first row represents the momentum balance with the
contribution of the mortar displacement variables on the momen-
tum balance in Ωh. In practice, this takes the form of a Dirichlet
boundary condition discretized as Dh, while Ah, Bh, and bh rep-
resent discretization of poroelasticity in Ωh. In the second row,
thematricesUl and Tl represent the linearized fracture conditions,
i.e., the relation between uj and σl stated in Eqs. (3.14) and (3.15),
with contributions from the previous Newton iteration and time
step entering in r= r(uj, σl). The third row represents Newton’s
third law over the interfaces, and thus is a discretization of Eq.
(3.13). The first three terms provide the traction on the two frac-
ture walls reconstructed from the variables on ∂jΩh andΓj, where
Sh represents amapping from theDirichlet boundary condition to
tractions. The two last terms relate these tractions to the variables
in Ωl, where Gl represents nhαl, while the ± in the last term
accounts for the fracture side. We emphasize that neither the
inter-dimensional contributions to mass conservation nor the
coupling for mass conservation is included in (4.2); this is han-
dled by the corresponding internal subdomain discretizations and
additional coupling discretizations in the form discussed in
Section 4.2.2.

In terms of implementation, the interface equations in (4.2) are
in fact split into three different classes: One which handles the
interaction between uh, uj, and σl and two that represent the fluid
traction on Γj from ph and pl, respectively. The most interesting of
these classes is the first, termed PrimalContactCoupling, which is
used for purely mechanical problems; the discretization of the
contact problem that produces the matrices Ul and Tl for the cur-
rent state of〚uj〛and σl is outsourced to a separate class

ColoumbContact. An illustration of how PrimalContactCoupling

is set up to interact with the surrounding variables and
discretizations is given in the context of Sneddon’s problem of
fracture deformation (see Fig. 16 in Section 5.3).

4.3 Global assembly of mixed-dimensional
multiphysics problems

As discussed in Section 4.2, PorePy requires only specification of
variables and discretizations locally on subdomains and interfaces.
The global organization is left to the Assembler class, which has
the following responsibilities: First, to assign a global numbering
of the degrees of freedom of all local variables. Second, to apply
all assigned discretization schemes. Third, to assemble the sparse
global linear system. The user interface to theAssembler is simple;
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numbering of degrees of freedom is handled in the object initial-
ization, while the class has dedicated methods for discretization
and assembly. The underlying implementation of thesemethods is
elaborate and involves nested loops over theGridBucket. For glob-
al discretization, all local discretization objects are identified, and
their respective discretization methods invoked. In the assembly
operation, the local discretization matrices are placed in the global
linear system according to the degree of freedom of the associated
local variable(s).

It is instructive to consider the structure of the global linear
system in the setting of a multiphysics problem with more
than one primary variable. It has a double block structure, with
one set of blocks stemming from the geometric division into
subdomains and interfaces. Within each subdomain and inter-
face, there is a second set of blocks, with one block per vari-
able or variable pair (for off-diagonal blocks). This informa-
tion, which is useful for design of tailored preconditioners and
linear solvers as well as post-processing and visualization, can
be accessed through the Assembler. We emphasize that the
implementation of the Assembler is general in the sense that
it can be applied to new discretizations and governing equa-
tions without modification.

The bottom-up approach to the assembly of variables and
discretizations to some degree favors flexibility over compu-
tational speed. The overhead in construction and manipulation
of matrices, independent of matrix size and separate from the
cost of discretization, is minor but can become notable when
repeated many times, e.g., in time-dependent and non-linear
problems. For problems with many subdomains, the cost in
using local assembly can become prohibitively high.
Specifically, the cost has been pronounced in simulations of
non-linearly coupled flow and transport, as reported in [65]
and also in Section 6.1. As a remedy, which is also compatible
with the automatic differentiation (AD) module in PorePy, the
Assembler also provides methods to construct global discrete
operators.

4.4 Solvers and visualization

PorePy has no native support for linear solvers, but instead
relies on external libraries for solving linear systems. The struc-
ture of the linear systems obtained for mixed-dimensional is
non-standard compared with that of similar fixed-dimensional
problems. Thus, if the linear system is to be solved by iterative
methods, traditional preconditioners cannot be expected to per-
form well, and specialized methods may be preferable.
Preconditioners for mixed-dimensional problems are an imma-
ture research field, see however [66, 67] for examples on how
PorePy can be combined with dedicated solvers for mixed-
dimensional problems.

Finally, visualization is handled by an export filter to the
vtk/vtu format, which can be read for instance by Paraview

[68]. To aid analysis of simulation results, the export preserves
the link between the data and its associated dimensions.

5 Validation

In this section, we validate our modeling framework and its
implementation in PorePy by probing discretization schemes,
multiphysics problems, and time-dependent problems through
three test cases: a benchmark for flow problems in 2d frac-
tured media, Mandel’s problem for poroelasticity, and
Sneddon’s problem for fracture deformation in elastic media.
The cases thus supplement previous testing of PorePy, report-
ed in [38, 69–71]. The supplementary material provides de-
tailed setups, including parameters, for all simulations in
Sections 5 and 6. Scripts that reproduce all results reported
herein can be accessed at [72], see that reference or the sup-
plementary material for installation instructions.

5.1 Flow in 2d fractured porous media

To validate the mixed-dimensional flow discretization, we
consider Benchmark 3 of [73], which describes the incom-
pressible single-phase flow problem in a fractured domain
presented in Section 3.1. The fracture network contains
intersecting and isolated fractures (see Fig. 9). The network
contains both highly conductive and blocking fractures, see
the supplementary material for parameter details.

The aim of this case is twofold — we benchmark our code
against well-established methods in the literature and illustrate
PorePy’s flexibility in assigning heterogeneous subdomain
discretizations. We consider four groups of discretization
schemes and simulation grids: first, three homogeneous (the
same for all the subdomains) discretizations: TPFA, MPFA,
and RT0-P0. Second, a case with the MVEM, where the cells
of the rock matrix are constructed by a clustering procedure
starting from a more refined simplicial grid, see [70] for details.
Third, two heterogeneous discretizations where RT0-P0 and
MVEM for the rock matrix are combined with TPFA for the
fractures. Fourth, a case where the fracture grid is twice as fine
as the matrix grid, with the mortar grids non-conforming to the
surrounding grids (labeled Non-Matching) discretized using the
RT0-P0 scheme. We use simplex grids in all cases that do not
involve MVEM. A code snippet that highlights the assignment
of heterogeneous discretizations is given in Fig. 10.

Figure 9 shows the domain with fractures, boundary con-
ditions, and a representative numerical solution. The figure
also depicts a plot of the pressure along the line (0, 0.5) − (1,
0.9). We observe good agreement between the solutions ob-
tained in PorePy and the reference solution of [73], which is a
solution of the equi-dimensional problem computed on a very
fine grid. We also perform a refinement study using a se-
quence of three grids to compute the error relative to the
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reference solution, as done in the original benchmark.
Figure 11 shows the decay of the normalized L2 error for the
rock matrix and the union of the fracture subdomains. In the
former, we notice a first order of convergence for all the con-
sidered methods. The convergence rate for the fracture
subdomains is sublinear, as was also observed in the original
benchmark.

5.2 Mandel’s problem in poroelasticity

The next test case considers a poroelastic material, with a setup
defined by Mandel’s problem [74, 75], for which an analytical
solution is available. While the problem geometry does not in-
clude lower-dimensional objects, the case tests the implementation
of the poroelastic code and shows the framework’s flexibility to

Fig. 10 Code snippet of the discretization assignment for the combination of RT0-P0 and TPFA. The code can be used as a partial replacement of the
green section in Fig. 7. Note that the parameter definition is not included in the snippet

Fig. 9 Left: A solution obtained withMPFA on the coarsest grid showing
the fracture network and the problem setup. The red lines represent
conductive fractures whereas the blue lines are blocking fractures. The

yellow line indicates the line of the pressure profile. Right: Pressure
profiles for the discretization schemes used in the validation
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deal with coupled problems and time-dependent mixed boundary
conditions. The original problem consists of an isotropic
poroelastic slab of width 2a and height 2b sandwiched by two
rigid plates (Fig. 12). Initially, two compressive constant loads of
intensity 2F are applied to the slab at y= ± b. At x= ± a, fluid is
free to drain, and edges are stress free. Gravity contributions are
neglected.

The problem is modeled using the quasi-static Biot equations,
as presented in Section 3.3. Exploiting the symmetry of the prob-
lem, we focus on the positive quarter domain Ω′, rather than the
full domain Ω, see Fig. 12 for an illustration and for boundary
conditions. Note that the vertical displacement at the top of the
domain is time-dependent and given by the exact solution, see
[76].

The simulation parameters were taken from [77], see also the
supplementary material for details. The coupled problem is
discretized in space using MPSA and MPFA for the mechanics
and flow, respectively. For the time discretization, we use implicit
Euler. The computational grid is unstructured and composed of
622 triangular elements. The results are shown in Fig. 13 in terms

of dimensionless quantities and are in good agreement with [77]
for both pressure and displacement.

In Fig. 14, we show a code snippet illustrating the assembly of
a generic poroelastic problem using MPSA/MPFA in PorePy.
One primary variable for each subproblem must be specified,
namely displacement for the mechanics (variable 0) and pressure
for the flow (variable 1). There are five terms (plus one stabiliza-
tion term) involved in the discretization of the Biot equations. We
label them with subscripts kl identifying the impact on variable k
from variable l. The numbering also corresponds to the placement
in the 2 × 2 block discretization matrix, with the first row
representing the momentum balance and the second row the mass
balance.

The Mpsa class is used to obtain the divergence of the stress
(term_00), which corresponds to the first diagonal block. For the
second diagonal block, term_11_0 and term_11_1 refer to the
discretization of the fluid accumulation and fluid flux (after apply-
ing implicit Euler) obtained using the classes ImplicitMassMatrix
and ImplicitMpfa, respectively. In addition, term_11_2 is a stabili-
zation term arising naturally from the discretization process [61].

Fig. 12 Mandel’s problem. Left: Schematic representation of the full and positive quarter domains, Ω and Ω′. Right: Quarter domain showing the
boundary conditions

Fig. 11 Left: Convergence of the
pressure unknown for the matrix
subdomain for the simulations
reported in Section 5.1. Right:
Convergence for the pressure
unknown for the fracture
subdomains
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Lastly, term_01 and term_10 are the off-diagonal coupling blocks
representing respectively the terms involving the pressure gradient
(obtained with GradP) and the divergence of the displacement
field (obtained with DivU).

5.3 Sneddon’s problem of fracture deformation

In this example, a square domain with a single fracture located in
the middle is considered. The fracture forms an angle β with the

horizontal direction (see Fig. 15) and is subjected to a constant
pressure p0, which can be interpreted as a pair of normal forces
acting on either side of the fracture. An analytical solution for the
relative normal displacement along the fracture was derived by
Sneddon [78] for an infinite domain, and has the following form:

〚uj〛n d f
� � ¼ 1 − νð Þp0L

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d2f
L
2

� �2
vuut ; ð5:1Þ

Fig. 13 Analytical (solid lines)
and MPSA/MPFA (dots)
solutions to Mandel’s problem.
The dimensionless profiles for the
pressure (left) and the horizontal
displacement (right) are shown
for several times

Fig. 14 Code snippet illustrating the terms involved in the assembly of a poroelastic problem using MPSA/MPFA in PorePy. The snippet highlights
assignment of discretizations for multiphysics problems within a subdomain
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where ν andG are the Poisson’s ratio and shear modulus, respec-
tively, L is the fracture length, and df denotes the distance from the
center of the fracture.

In our calculations, the condition of infinite domain is replaced
with a Dirichlet boundary, where the prescribed displacement is
set equal to the analytical solution calculated using the procedure
illustrated in [79]. The accuracy of the numerical solution is very
sensitive to the discretization, specifically the cell configuration at
the fracture tips [46]. To reduce the dependency on specific grid
realizations, the values of the numerical solution reported in
Fig. 16 are the average of a group of 20 × 7= 140 computations
per level of grid resolution, with 7 different fracture angles β in the
range 0°–30° and 20 grid realizations per fracture. With six levels
of grid refinement, the full study contains 20 × 7 × 6= 840 simu-
lations. Figure 16 summarizes the results in the form of the error in
relative normal displacement between the analytical solution (5.1)
and the numerical solution as a function of the fracture resolution,
i.e., number of fracture elements. The method provides first-order
convergence on average.

Finally, the code snippet in Fig. 16 indicates the key parts of the
variable and discretization assignment for the contact mechanics
problem. The classes to note are ColoumbContact, which repre-
sents Eqs. (3.14) and (3.15), and the interface discretization
PrimalContactCoupling, see also the discussion in Section 4.2.3.

6 Applications: multiphysics simulations

Having established the accuracy of PorePy for central test
cases that involve mixed-dimensional geometries, we proceed
to present two multiphysics cases of high application rele-
vance: A non-linearly coupled flow and transport problem,
and fracture reactivation caused by fluid injection. The moti-
vation for the simulations is to illustrate further capabilities of
the modeling framework and its PorePy implementation, in-
cluding simulations on complex 3d fracture networks, auto-
matic differentiation applied to non-linear problems, non-

matching grids, and simulation of fracture deformation in a
poroelastic setting.

6.1 Fully coupled flow and transport

We consider the injection of a more viscous fluid into a do-
main initially filled with a less viscous fluid. The two fluids
are miscible and have equal densities; thus, they can be
modeled as two components in a single-phase system, as de-
scribed in Section 3.2. The viscosity of the mixture of fluids
given by μi(ci) = exp(ci), for the mass fraction ci ∈ [0, 1],
which is 0 if only the less viscous fluid is present and 1 if only
the more viscous fluid is present. In the parameter regime
studied in this example, the transport in the fractures is advec-
tion dominated, while the transport in the rock matrix is dom-
inated by diffusion, see the supplementary material for details.

The time derivative is approximated using an implicit Euler
method, which gives a fully implicit scheme for the primary
variables pressure and mass fraction. The spatial terms are
discretized by a finite volume method, with simple upstream
for advective terms, and TPFA for fluxes and diffusive terms.
We apply forward automatic differentiation implemented in
PorePy to obtain the Jacobian of the global system of equa-
tions, which is then used in a standard Newton method to
solve the non-linear problem. The convergence criterion is
given by the maximum norm of the residual vector with a
tolerance 10-9.

The mixed-dimensional domain considered in this example
consists of one 3d domain, 15 2d fracture domains, 62 1d
domains, and 9 0d domains. On this geometry, two computa-
tional grids are constructed: The first has matching grids in all
dimensions, with in total 20,812 cells, out of which 16,766 are
3d cells and 3,850 are 2d fracture cells. The second mixed-
dimensional grid has a 3d grid identical to the first grid,
whereas the lower-dimensional objects are assigned refined
grids with in total 13,839 2d fracture cells; thus, the 3d-2d
interfaces have non-matching grids. The combination of the

Fig. 15 Setup and convergence of
Sneddon’s problem. Left:
Schematic representation of the
domain. Right: Average
convergence behavior of the
relative normal displacement
along the fracture. Each dot
corresponds to the average of 140
simulations
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non-linearity and the non-matching grids provides a challeng-
ing test for the robustness of the PorePy implementation of
subdomain couplings and provides an illustration of the
framework’s flexibility.

Figure 17 shows the average mass fraction profile in the
fractures for the two grids. There are no significant differences
between the two cases, indicating the stability of the imple-
mentation of the non-matching case. Figure 18 shows a snap-
shot of the mass fraction in the fractures and the rock matrix at
time t = 20. The diffusive front in the rock matrix has only
moved a few grid cells at the break-through; however, due
to the diffusion and advection from the fractures to the rock
matrix, the mass fraction has increased in considerable parts of
the rock matrix. We observe no irregularities for the solution
produced on the non-matching grid in this case, suggesting
PorePy’s ability to deal with non-standard grid couplings also
for challenging physical regimes.

6.2 Poroelasticity and fracture deformation

The final example aims at demonstrating the modeling frame-
work’s and PorePy’s applicability to non-standard

combinations of physical processes in different domains and
thereby its potential for method development and prototyping.
With the critical events taking place on individual fractures as a
result of processes in the rock matrix, it also serves as an ex-
ample of the importance of incorporating dynamics of both the
matrix and explicitly represented fractures, as done in DFM
models.

Fig. 17 Fully coupled flow and transport: Comparison of average mass
fraction in the fracture network for a simulation with matching grids and a
simulation with non-matching grids

Fig. 16 Code snippet that illustrates variable and discretization assignment for Sneddon’s problem, discretized using the contact mechanics functionality
in PorePy. The code can be used as a partial replacement of the green section in Fig. 7
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Specifically, we consider the model equations for
coupled poroelasticity and fracture deformation presented
in Section 3.3. The poroelastic deformation of the host
rock is discretized with MPSA, while the fluid flow in
the fractures is discretized with MPFA. The discretization
of the contact mechanics follows the structure outlined in
Section 4.2.3, and temporal discretization is performed
using implicit Euler.

We consider a reservoir of idealized geometry containing
three non-intersecting fractures numbered from 1 through 3,
whereof the first contains an injection well (see Fig. 19). On
this geometry, we solve the governing equations presented in
Section 3.3. We impose injection over a 25-day period and an
anisotropic background stress regime, producing a scenario

well suited to demonstrate different fracture dynamics. We
investigate the dynamics both during the injection phase and
during the subsequent 25-day relaxation phase, at the end of
which the pressure has almost reached equilibrium once more.
The full set of parameters may be found in the supplementary
material.

The dynamics on the fractures throughout the simula-
tion are summarized in Fig. 19, while the spatial distribu-
tion of the fracture displacement jumps at the end of the
injection phase is shown in Fig. 20. The figures show how
the simulation captures the complex dynamics both during
and after injection, and thus highlight how the explicit
fracture representation allows for detailed studies of frac-
ture deformation.

Fig. 18 Fully coupled flow and transport: Mass fraction in the fractures
(left) and in the rock matrix (right) for the coupled flow and transport
problem given in Section 3.2 at the end time of the simulation (t = 20). In
the right figure, the rock matrix domain is cropped, and the fractures

removed to reveal the mass fraction inside the domain. The black lines
indicate the domain boundary. Non-matching grids are used with the
fracture grids being much finer than the grid in the rock matrix

Fig. 19 Left: Domain geometry
with numbering of the three
fractures. Fluid is injected in
fracture 1 during the first 25 days,
after which the well is shut. Right:
L2-norm normalized by fracture
area of the normal (dashed lines)
and tangential (solid lines)
displacement jumps for each
fracture
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7 Conclusions

The complexity in modeling and simulation of multiphysics pro-
cesses in fractured porous media, combined with a strong current
research focus and corresponding developments, calls for flexible
simulation tools that facilitate rapid prototyping of models and
discretization methods. This paper presents design principles for
such software together with their implementation in the open-
source simulation tool PorePy. The combined framework for
modeling and simulation is based on the discrete fracture matrix
model, where fractures and their intersections are represented as
separate lower-dimensional geometric objects. The framework fa-
cilitates flexibility for multiphysics dynamics and reuse of existing
code written for non-fractured domains; hence, it is well suited for
extending other software packages to mixed-dimensional
problems.

The open-source software PorePy demonstrates the capa-
bilities of the suggested framework: It provides automatic
gridding of complex fracture networks in two and three di-
mensions, and contains implemented numerical methods for
flow, transport, poroelastic deformation of the rock, and frac-
ture deformation modeled by contact mechanics. The imple-
mentation performs well for benchmark problems in flow,
poroelastic deformation, and fracture deformation.
Furthermore, multiphysics simulations of fully coupled flow
and non-linear transport and of fracture deformation under
poroelastic deformation of a domain demonstrate the versatil-
ity of the software.
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Abstract

Mixed-dimensional elliptic equations exhibiting a hierarchical struc-
ture are commonly used to model problems with high aspect ratio inclu-
sions, such as flow in fractured porous media. We derive general abstract
estimates based on the theory of functional a posteriori error estimates,
for which guaranteed upper bounds for the primal and dual variables and
two-sided bounds for the primal-dual pair are obtained. We improve on
the abstract results obtained with the functional approach by proposing
four different ways of estimating the residual errors based on the extent the
approximate solution has conservation properties, i.e.: (1) no conserva-
tion, (2) subdomain conservation, (3) grid-level conservation, and (4) ex-
act conservation. This treatment results in sharper and fully computable
estimates when mass is conserved either at the grid level or exactly, with
a comparable structure to those obtained from grid-based a posteriori

techniques. We demonstrate the practical effectiveness of our theoretical
results through numerical experiments using four different discretization
methods for synthetic problems and applications based on benchmarks of
flow in fractured porous media.
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Figure 1: Example geometries falling within the context of hierarchical mixed-
dimensional geometries studied herein. Left figure corresponds to a 2d bench-
mark problem [13] while the two remaining correspond to 3d benchmark prob-
lems [14].

1 Introduction

Mixed-dimensional partial differential equations (mD-PDEs) arise when par-
tial differential equations interact on domains of different topological dimen-
sions [1]. Prototypical examples include models of thin inclusions in elastic
materials [2, 3, 4], blood flow in human vasculature [5, 6, 7], root water uptake
systems [8], and flow in fractured porous media [9, 10, 11]. The latter example
has an appealing mathematical structure, in that the model equations allow for
a hierarchical representation where each subdomain (matrix, fractures, fracture
intersections, and intersection points) only has direct interaction with subdo-
mains of topological dimension one higher or one lower [12]. Such hierarchical
mD-PDEs are the topic of the current paper.

mD-PDEs are intrinsically linked to the underlying geometric representation,
which, in a certain sense, generalizes the usual notion of the domain. One can
then define sets of suitable functions (and function spaces) on this geometry, and
these sets are then naturally interpreted as mixed-dimensional (mD) functions.
Exploiting this concept, one can generalize the standard differential operators to
mappings between mD functions and thus obtain an mD calculus. The fact that
this mD calculus inherits standard properties of calculus, particularly partial
integration (relative to suitable inner products), a de Rham complex structure,
and a Poincaré-Friedrichs inequality, was recently established using the language
of exterior calculus on differential forms [15].

The inherent geometric generality of hierarchical mD-PDEs also demand
the same level of abstraction of a posteriori error estimation techniques. This
requirement makes error estimates of the functional type particularly well-suited
for the task [16, 17, 18, 19, 20, 21]. The most attractive feature of this approach
is that error estimates are derived using purely functional methods [20]. The
bounds are therefore agnostic to the way approximated solutions are obtained in
the energy space, and the only undetermined constants arise from Poincaré-type
inequalities [22].

However, unlike other types of error estimates [23, 24, 25, 26, 27], this gener-
ality makes standard functional estimates of limited applicability to hierarchical
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elliptic mD-PDEs due to the following reasons: (1) for general fracture net-
works, the mixed-dimensional Poincaré constant is not easily computable, and
(2) since Poincaré constants are proportional to the diameter of the physical
domain, residual estimators cannot exhibit superconvergent properties.

To circumvent the aforementioned issues, we exploit the fact that Poincaré-
type inequalities imply weighted norms [28, 29], and use spatially-dependent
weights to control the residual norms. We show both theoretically and numer-
ically that this treatment leads to sharper estimates when approximations to
the exact solution satisfy mass conservation in a given partition of the domain.

In view of the preceding discussion, our aim is therefore to obtain a pos-
teriori error estimates for the approximate solution to the mD scalar elliptic
equation [12, 30, 15], where the mD Laplace equation for geometries such as
those illustrated in Figure 1 is described in detail in Section 3.

We remark that while a broad range of a posteriori error techniques are
available for mono-dimensional problems, existing error bounds for mD models
are far more scarce. Moreover, the ones available, are restricted to specific cases
(e.g., in the context of mortar methods [31, 32, 33, 34] and fractured porous
media [35, 36, 37]) with far less geometric generality than what we present here.
Thus, for practical problems, a posteriori error bounds for mD geometries have
until now essentially not been available.

The rest of the paper is structured as follows: Section 2 is devoted to intro-
ducing the model problem, functional spaces, and variational formulations for
the case of a single 1d fracture embedded in a 2d matrix. The section is con-
cluded by providing a first upper bound for the primal variable. In Section 3,
we generalize the results from Section 2 to the case of fracture networks and
introduce the necessary tools to perform the a posteriori analysis in an mD set-
ting. After reviewing necessary tools from functional analysis in Section 4, in
Section 5, we provide our main results starting from a generic abstract esti-
mate and then considering specific cases depending upon the degree of accuracy
at which residual terms are approximated. In Section 6, we introduce the ap-
proximated problem using mixed-finite element methods and thus make the
estimates concrete. Sections 7 and 8 deal, respectively, with numerical valida-
tions and practical applications of the derived bounds. Finally, in Section 9, we
present our concluding remarks.

2 Upper bounds for a single fracture

In this section, we introduce the model problem together with functional spaces
and the variational formulations for the case of a single 1d line embedded in
a 2d matrix, as illustrated in Figure 2. Furthermore, a first upper bound for
the primal variable is derived following the classical functional approach. We
remark that the case of a single fracture embedded in a matrix has been ana-
lyzed before. For example, [35] and [37] proposed error estimators based on the
residual approach, whereas [36] obtained guaranteed a posteriori error estimates
using the approach of Vohraĺık [26].
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Figure 2: A horizontal 1d fracture embedded in a 2d matrix. Left: Subdomains
and interfaces. Right: Boundary conditions. For the fracture, the purple square
denotes a no-flux boundary condition, whereas the green square a Dirichlet
boundary condition. Note that ∂1Ω2, Γ1, Ω1, Γ2, ∂2Ω2, all coincide spatially.
For illustrative purposes, however, they are placed in different locations.

2.1 The model problem for a single fracture

Before writing the set of equations describing general fracture networks, let us
first introduce the governing equations of a simpler configuration; that is, a
unit square domain Y ⊂ R

2 decomposed as a 1d fracture Ω1 embedded in a
2d matrix Ω2 as shown in the left Figure 2. Interfaces Γ1 and Γ2, at each side
of Ω1, establish the link between Ω2 and Ω1. The model presented below is
well-established for these problems, and we point the reader to the references
for further justification of this system [38, 12, 30].

The strong form of the governing equations in Ω2 reads

∇ · u2 = f2, inΩ2, (1a)

u2 = −K2∇ p2, inΩ2, (1b)

u2 · n2 = λ1, on∂1Ω2, (1c)

u2 · n2 = λ2, on∂2Ω2, (1d)

u2 · n2 = 0, on∂NΩ2, (1e)

p2 = gD,2, on∂DΩ2. (1f)

Here, (1a) is the mass conservation equation, u2 is the matrix velocity, and
f2 an external source. The fluid velocity is given by the standard Darcy’s
law (1b), where K2 is the matrix permeability; a bounded, symmetric, and
positive-definite 2× 2 tensor, and p2 is the fluid pressure.

Equations (1c) and (1d) require that at each side of the internal boundary
of Ω2, the normal component of u2 to match the interface (mortar) fluxes λ1

and λ2. To fix the direction of the normal vector on internal boundaries, we
require n2 pointing from the higher- to the lower-dimensional subdomain. No
flux conditions are prescribed in (1e), where u2 ·n2 represents the outer normal
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flux across ∂NΩ2. Finally, Dirichlet boundary conditions are imposed in (1f),
where gD,2 is a prescribed function on the Dirichlet boundary.

In the fracture Ω1, the equations are given by

∇1 · u1 − (λ1 + λ2) = f1, inΩ1, (2a)

u1 = −K1∇1 p1, inΩ1, (2b)

u1 · n1 = 0, on∂NΩ1, (2c)

p1 = gD,1, on∂DΩ1. (2d)

In (2a), ∇1 ·(·) =
d
dx(·) = ∇1(·) are the divergence and gradient operators acting

in the tangent space of Ω1, u1 is the tangential fracture velocity, the term in
parentheses represents the jump in normal fluxes from the adjacent interfaces
Γ1 and Γ2 onto Ω1, and f1 is an external source.

The tangential velocity u1 is again expressed via Darcy’s law (2b), where in
a slight abuse of notation, we use K1 to refer to the tangential component of
the fracture permeability, which is again assumed to be positive and bounded
from above. Finally, (2c) and (2d) are the Neumann and Dirichlet boundary
conditions, respectively. Again, we use gD,1 to denote a prescribed function on
the Dirichlet part of the fracture boundary.

To close the system of equations, we must specify a constitutive relationship
for the interface fluxes. Here, we use a Darcy-type law [38], where mortar fluxes
are linearly related to pressure jumps

λ1 = −κ1 (p1 − p2) , onΓ1, (3a)

λ2 = −κ2 (p1 − p2) , onΓ2, (3b)

with κ1 and κ2 representing the effective normal permeability on Γ1 and Γ2,
respectively. We restrict our analysis to the case where κ1 and κ2 are non-
degenerate. Thus, following [12], we further require the existence of two con-
stants γ1 and γ2 such that 0 < γ1 ≤ κ−1

j ≤ γ2 < ∞ for j ∈ {1, 2}.

2.2 Functional spaces and variational formulations

Let us now present the primal weak formulation of the single fracture model
from the previous section. To this aim, consider first the energy space with
vanishing traces on Dirichlet boundaries

H1
0 (Ωi) = {qi ∈ H1(Ωi) : tr∂DΩi

qi = 0}, (4)

and the product spaces

H1(Ω) = H1(Ω1)×H1(Ω2) and H1
0 (Ω) = H1

0 (Ω1)×H1
0 (Ω2). (5)

Furthermore, let 〈·, ·〉Ωi
and 〈·, ·〉Γj

denote respectively the L2–inner products

on Ωi and Γj , and ‖·‖Ωi
and ‖·‖Γj

the relevant L2–norms. Finally, we denote

by g = [g1, g2] ∈ H1(Ω) two functions extending the boundary data into the
domains, and thus satisfying tr∂DΩi

gi = gD,i. We now state the primal weak
problem as:
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Definition 1 (Primal weak formulation for a single fracture). Let p = [p1, p2]
and g = [g1, g2] ∈ H1(Ω). Then find p ∈ H1

0 (Ω) + g such that

2
∑

i=1

〈Ki∇i pi,∇i qi〉Ωi
+

2
∑

j=1

〈

κj

(

p1 − tr∂jΩ2
p2
)

, q1 − tr∂jΩ2
q2
〉

Γj

=
2

∑

i=1

〈fi, qi〉Ωi
, ∀ q = [q1, q2] ∈ H1

0 (Ω). (6)

Refer to Appendix A.1 for the derivation of the primal weak form from the
strong form in Section 2.1. We see directly from equation (6) that the primal
weak form has a minimization structure subject to the stated conditions on Ki

and κj , and well-posedness follows by standard arguments.
A dual weak form for the model problem, with explicit representation of the

subdomain velocities and mortar fluxes, can also be constructed. We first define
the space H(div; Ωi, ∂XΩ) as the space of L2-vector functions on Ωi with weak
divergence in L2(Ωi) and zero trace on the part of the boundary indicated by
∂XΩ. Then, we denote the product spaces of H(div)-functions that are zero on
Neumann, and on Neumann and internal boundaries as:

V = H(div; Ω1, ∂NΩ1)×H(div; Ω2, ∂NΩ2), (7)

V0 = H(div; Ω1, ∂NΩ1)×H(div; Ω2, ∂NΩ2 ∪ ∂1Ω2 ∪ ∂2Ω2). (8)

Furthermore, we define the L2-product spaces on the domains:

L2(Ω) = L2(Ω1)× L2(Ω2), L2(Γ) = L2(Γ1)× L2(Γ2). (9)

With these spaces in hand, we consider the standard linear extension operators
from internal boundaries onto domains denotedRj := L2(Γj) → H(div; Ω2, ∂NΩ2),
such that Rj satisfies for all λj ∈ L2(Γj)

tr∂jΩ2
(Rj λj) · n2 =

{

λj on∂jΩ2

0 on∂Ω \ ∂jΩ2

. (10)

The precise choice of the extension operator Rj is not important; however,
the natural choice based on the solution of an auxiliary elliptic equation is
reasonable [12]. We naturally extend the definition of Rj to R := L2(Γ) → V
by requiring that for [λ1, λ2] ∈ L2(Γ), then [u1, u2] = Rλ satisfies u1 = 0 and
u2 = R1λ1 +R2λ2.

The above constructions allow us to represent subdomain fluxes as

u = u0 +Rλ, (11)

where u0 ∈ V0 and λ ∈ L2(Γ). This motivates the construction of a compound
H(div)-type spaces, as

H(div; Ω,Γ) = V0 × L2(Γ). (12)

This construction will become key when we generalize to more complex geome-
tries in the next section.
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Remark 1 (On the regularity of H(div; Ω,Γ)). It is worth remarking that the
restriction of space H(div; Ω,Γ) to the domain Ω2 has slightly enhanced regu-
larity relative to the standard space H(div; Ω2), as this latter space has normal
traces which do not lie in L2(Γ1) nor L2(Γ2).

Definition 2 (Dual weak formulation for a single fracture.). Let u0 = [u0,1, u0,2],
λ = [λ1, λ2], p = [p1, p2]. Then find (u0, λ, p) ∈ H(div; Ω,Γ)× L2(Ω) such that

〈

K−1
2 (u0,2 +R1λ1 +R2λ2), v0,2

〉

Ω2
+
〈

K−1
1 u0,1, v0,1

〉

Ω1
−

2
∑

i=1

〈pi,∇i · v0,i〉Ωi

= −
2

∑

i=1

〈gD,i, tr v0,i · ni〉∂DΩi
, ∀ v0 = [v0,1, v0,2] ∈ V0, (13a)

〈

K−1
2 (u0,2 +R1λ1 +R2λ2),R1ν1 +R2ν2

〉

Ω2
− 〈p2,∇2 · (R1ν1 +R2ν2)〉Ω2

+

2
∑

j=1

〈

κ−1
j λj , νj

〉

Γj
+ 〈p1, ν1 + ν2〉Ω1

= 0, ∀ ν = [ν1, ν2] ∈ L2(Γ),

(13b)

〈∇2 · (u0,2 +R1λ1 +R2λ2), q2〉Ω2
+ 〈∇1 · u0,1, q1〉Ω1

− 〈λ1 + λ2, q1〉Ω1

=

2
∑

i=1

〈fi, qi〉Ωi
, ∀ q = [q1, q2] ∈ L2(Ω). (13c)

Refer to Appendix A.2 for the derivation.

Remark 2 (Well-posedness). The variational formulation from Definition 2
can be classified as a saddle point structure, for which well-posedness results
have been established for fracture networks, see e.g. Theorem 2.5 from [12].

2.3 A first a posteriori error estimate for the primal vari-
able

Having the functional spaces and weak formulations formally introduced, in
this section, we provide a first upper bound for an approximation to the primal
variable q = [q1, q2] ∈ H1

0 (Ω) + g for the case of a single fracture in the energy
norm

|||q|||2 :=
2

∑

i=1

∥

∥

∥
K

1
2

i ∇i qi

∥

∥

∥

2

Ωi

+
2

∑

j=1

∥

∥

∥
κ

1
2

j

(

q1 − tr∂jΩ2
q2
)

∥

∥

∥

2

Γj

. (14)

Theorem 1 (A first upper bound for the primal variable). Let p ∈ H1
0 (Ω) + g

be the solution to the primal weak form (6) with ∂DΩ1 non-empty. Then for
any q ∈ H1

0 (Ω) + g, it holds that

|||p− q||| ≤
2

∑

i=1

ηDF,Ωi
+

2
∑

j=1

ηDF,Γj
+

2
∑

i=1

ηR,Ωi
, ∀ [v0, ν] ∈ H(div; Ω,Γ), (15)
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with

ηDF,Ω1
=

∥

∥

∥K
− 1

2

1 (v0,1 +K1∇1 q1)
∥

∥

∥

Ω1

, (16a)

ηDF,Ω2
=

∥

∥

∥
K

− 1
2

2 (v0,2 +R1ν1 +R2ν2 +K2∇2 q2)
∥

∥

∥

Ω2

, (16b)

ηDF,Γ1
=

∥

∥

∥κ
− 1

2

1 (ν1 + κ1 (q1 − tr∂1Ω2
q2))

∥

∥

∥

Γ1

, (16c)

ηDF,Γ2
=

∥

∥

∥κ
− 1

2

2 (ν2 + κ2 (q1 − tr∂2Ω2
q2))

∥

∥

∥

Γ2

, (16d)

ηR,Ω1
= CΩ1

‖f1 −∇1 · v0,1 + ν1 + ν2‖Ω1
, (16e)

ηR,Ω2
= CΩ2

‖f2 −∇2 · (v0,2 +R1ν1 +R2ν2)‖Ω2
, (16f)

where CΩ1
and CΩ2

are the permeability-weighted Poincaré-Friedrichs constants
for Ω1 and Ω2:

CΩi
:= sup

q∈H1
0,D

(Ωi)

‖q‖Ωi
∥

∥

∥K
1
2

i ∇iq
∥

∥

∥

Ωi

. (17)

Proof. Refer to Appendix B for the proof.

Remark 3 (Nature of the estimators). The upper bound (15) is a guaranteed
upper bound for the deviation between the primal solution p ∈ H1

0 (Ω) + g and
an arbitrary approximation q ∈ H1

0 (Ω) + g in the energy space. There are three
types of contributions to the upper bound: (1) diffusive flux estimators (16a) and
(16b) measuring the difference between the approximate fluxes v0+Rν ∈ V and
fluxes obtained from H1

0 (Ω)-potentials q, (2) domain coupling estimators (16c)
and (16d) measuring how close the approximate normal fluxes ν ∈ L2(Γ) are
to the jump in H1

0 (Ω)-potentials q, and (3) residual estimators (16e) and (16f)
measuring the difference between the exact source term and the divergence of
the approximate flux plus the jump in adjacent approximate normal fluxes. An
important detail is that the approximate cross-domain fluxes ν1 and ν2 enter into
the residual estimators of both the higher- and lower-dimensional subdomain.

Remark 4 (Sharpness of the estimates). The estimates above are in principle
sharp, as can be shown by standard arguments [20]. However, in practice, we
will often have access to additional information about the approximate solution
(most commonly if it is derived with a local conservation property). This allows
for improvements in the residual estimators (16f) and (16e), as we will show in
Section 5.2.

It is clear that even for this fairly simple configuration, the variational formu-
lations (and the analysis in general) can be quite cumbersome. The situation
escalates in complexity when intersecting fractures (see Figure 3) are part of
the geometric configuration, in particular as the proof of Theorem 1 relies on
all subdomains having some non-vanishing Dirichlet boundary. Indeed, when
floating subdomains (e.g., fully embedded fractures or isolated rock domains)
are present in the fracture network, the standard procedure used in Theorem 1
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Figure 3: Mixed-dimensional geometric decomposition of a fracture network.
Left: The domain Y is decomposed into two 2d matrices (Ω9 and Ω10), four
1d fractures (Ω5, Ω6, Ω7, and Ω8), one 0d fracture intersection point (Ω4),
and three 0d fracture end-points (Ω1, Ω2, Ω3). Note that we allow fractures
and other lower-dimensional subdomains to form parts of the boundary of the
domain (e.g., Ω5 with its endpoints Ω1 and Ω2). Center: Interfaces between
subdomains. Right: Subdomain boundaries. Internal boundaries are depicted in
red, whereas fracture’s boundaries touching the ambient boundary are depicted
in green.

can no longer be applied directly. Thus, in the remainder of the paper, we deal
with these challenges in a more general framework.

3 Extension to fracture networks

In this section, we extend the single fracture model to account for several subdo-
mains as part of a general fracture network. Our vocabulary is motivated by the
physical case of n = 3, where the surrounding rock is composed of simply con-
nected 3d subdomains, fractures are simply connected planar 2d subdomains,
the intersection between such fractures are 1d lines, and the intersection be-
tween fracture intersections are 0d points (see Figure 3 for an example with
n = 2).

We start with the classical description and then introduce the mD notation.
The rest of the section is devoted to introducing key tools that are necessary to
perform the analysis in an mD setting.

3.1 Mixed-dimensional geometric representation

The derivation of a posteriori estimates for generic fracture networks greatly
benefits from an mD decomposition of the domain of interest, and we therefore
follow the approach of [12]. We start by considering an n–dimensional con-
tractible domain Y ⊂ R

n, n ∈ {2, 3}, decomposed into m planar, open and
non-intersecting subdomains Ωi of different dimensionality di = d(i), such that
Y = ∪m

i=1Ωi (see left Figure 3). The partitioning is constrained such that any
d-dimensional subdomain (for d < n) is always either the intersection of the
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closure of two or more subdomains of dimension d + 1, or a cut in a domain
of dimension d + 1. This hierarchical structure excludes e.g., a 1d line or a 0d
point embedded directly in a 3d domain.

We adopt a structure where neighboring subdomains one dimension apart
are connected via interfaces, denoted by Γj for j ∈ {1, . . . ,M}. To be precise,
let Γj be the interface between subdomains indexed by ̌ and ̂ of dimension d
and d + 1, respectively. Then Γj = Ω̌ (see center Figure 3), and furthermore,
we denote the adjacent boundary of Ω̂ by Γj = ∂jΩ̂. We emphasize that while
the internal boundary ∂jΩ̂ is defined to spatially coincide with the interface
Γj , which in turn coincides with the lower-dimensional subdomain Ω̌, their
distinction is crucial to define variables properly.

To keep track of the connections from subdomains to interfaces, we introduce
the sets Ŝi and Ši, containing the indices of the higher-dimensional (respectively
lower-dimensional) neighboring interfaces of Ωi, as illustrated in the right panel
of Figure 3. These sets are dual to ̌ and ̂ defined in the previous paragraph,
thus for all j ∈ Ŝi, it holds that ̌ = i, while for all j ∈ Ši, it holds that ̂ = i.

We will be interested in defining functions on the above stated partition of
the domain and the interfaces. This motivates us to define the disjoint unions

Ω =

m
⊔

i=1

Ωi and Γ =

M
⊔

j=1

Γj . (18)

A complete mixed-dimensional partitioning, including both subdomain and in-
terfaces, is given by Ω ⊔ Γ.

In order to speak of boundary conditions, we introduce the decomposition
of the boundary of Ω. Let ∂Ω be partitioned into its Neumann, Dirichlet, and
internal parts. That is, we define ∂Ω = ∂NΩ ∪ ∂DΩ ∪ ∂IΩ, where ∂NΩ =
∪m
i=1∂NΩi, ∂DΩ = ∪m

i=1∂DΩi, and ∂IΩ = ∪m
i=1 ∪j∈Ši

∂jΩi. Finally, to ensure
the existence of a unique solution, we require ∂DΩ 6= ∅.

3.2 The model problem for a fracture network

Let us now present the model problem valid for m subdomains of dimensionality
0 to n, and M interfaces of dimensionality 0 to n− 1. Our model summarizes
the derivations given in recent literature [12, 30, 39]. For all domains Ωi, we
consider a scalar pressure pi together with a flux ui in the tangent space of the
domain. On all interfaces Γj, we consider a scalar coupling flux λj , oriented as
positive for flow from the higher dimensional domain Ω̂. We will, in this section,
assume sufficient regularity that the strong form makes sense, and return to the
weak formulation in later sections. The governing equations from the previous
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section then generalize as

∇i · ui −
∑

j∈Ŝi
λj = fi, inΩi, i ∈ {1, . . . ,m}, (19a)

ui = −Ki∇i pi, inΩi, i ∈ {1, . . . ,m}, di 6= 0, (19b)

λj = −κj (p̌ − p̂) , onΓj , j ∈ {1, . . . ,M}, (19c)

û · n̂ = λj , on ∂jΩ̂, j ∈ {1, . . . ,M}, (19d)

ui · ni = 0, on ∂NΩi, i ∈ {1, . . . ,m}, (19e)

pi = gD,i, on ∂DΩi, i ∈ {1, . . . ,m}. (19f)

In (19a), the summation captures the contribution of fluxes from the adjacent
interfaces to Ωi, and can be seen as a generalization of the second term in (2a).
Note that for di = n, the set Ŝi = ∅, and thus the jump operator, evaluates to
zero in the highest-dimensional domains. Conversely, in (19a), the differential
term ∇i ·ui is void whenever di = 0, as there is no tangent space to a point in all
subdomains, and indeed, we will not consider the ui defined on these domains,
which justifies why equation (19b) are not applied to 0d domains.

We are now ready to recast the model problem in mD notation, building on
the product space structures introduced in Section 2.2. Let us start by defining
the mD pressure as the ordered collection of subdomain pressures p := [pi] ∈ CΩ,
i.e., scalar functions on Ω. We now decompose the fluxes as in (11), so that

ui = u0,i +
∑

j∈Ši
Rjλj (20)

such that u0,i satisfies u0,i · ni = 0 for all j ∈ Ši, and where the reconstruction
operator is generalized as Rj : CΓj → CΩ̂ satisfying:

tr∂jΩ̂
(Rj λj) · n̂ =

{

λj on ∂jΩ̂

0 on ∂Ω̂ \ ∂jΩ̂

. (21)

This allows us to define the mD flux as the internal (tangential) domain fluxes
and (normal) interface fluxes u := [u0,i, λj ] ∈ C0TΩ × CΓ, i.e., the pairing of
sections of the tangent bundle TΩ together with scalar functions on Γ. By the
subscript C0TΩ, we indicate that both ui ·ni = 0 on all ∂jΩi, where j ∈ Ši, and
also ui · ni = 0 on ∂NΩi.

We now define a generalized divergence operator D · (·) : C0TΩ×CΓ → CΩ
which acts on the mD flux in accordance with the left-hand side of (19a):

D · u = D · [u0,i, λj ] = q, (22)

where q = [qi] ∈ CΩ is a scalar function for each domain Ωi, defined by:

qi := ∇i ·
(

u0,i +
∑

j∈Ši
Rjλj

)

−
∑

j∈Ŝi
λj (23)

Similarly, we define an mD gradient operator D (·) : CΩ → CTΩ×CΓ acting
on the mD pressure in accordance with the right-hand sides of equations (19b)
and (19c):

D p = D [pi] = v, (24)
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where v = [v0,i, νj ] ∈ CTΩ × CΓ has the same structure as the mD flux (but
without the boundary conditions), such that for all i ∈ {1, . . . ,m} and j ∈
{1, . . . ,M}, it holds that

νj := p̌ − p̂, v0,i := ∇i pi −
∑

j∈Ši
Rjνj . (25)

Recalling that the full flux vi is recovered from equation (20), we note that the
second term above is simply the gradient on each subdomain. We will, in Sec-
tion 3.3, further justify the terminology “divergence” and “gradient” due to the
fact that these operators satisfy an integration-by-parts property with respect
to the suitable inner products, and are thus adjoints (subject to appropriate
boundary conditions).

Material parameters are collected into the mD permeability K : CTΩ×CΓ →
CTΩ× CΓ, defined such that for

− Kv = −K [v0,i, νj ] = u, (26)

then from the model given in equation (19), we recognize the desired relation-
ships

λj = −κjνj , ui = −Kivi. (27)

The second term, corresponding to Darcy’s law, can be rewritten in terms of
the decomposition u = [u0,i, λj ] from equation (20) as:

u0,i = −Ki

(

v0,i +
∑

j∈Ši
Rjνj

)

−
∑

j∈Ši
Rjλj . (28)

The presence of the extra terms arising from the decomposition is analogous to
that in (19).

We note that the restriction u ∈ C0TΩ × CΓ, implicitly places constraints
(depending on the material constants K and via the definition of D ) on the
admissible pressures p. This space of admissible pressures can be understood as
the domain of the restricted operator KD : CΩ → C0TΩ× CΓ.

In view of the mD variables and operators defined above, and subject to
the right-hand side data f = [fi] ∈ CΩ and the boundary data gD = [gD,i] ∈
C∂DΩ, a straightforward substitution of definitions shows that problem (19) is
equivalent to the concisely stated mD elliptic problem

u = −KD p, inΩ× Γ, (29a)

D · u = f, inΩ, (29b)

p = gD, on∂DΩ, (29c)

defined for u ∈ C0TΩ× CΓ and p ∈ CΩ.

Remark 5 (Internal Neumann boundaries). For simplicity of exposition, the
domain Y is taken as contractible, and Ωi is considered a partitioning of Y .
However, the reader will appreciate that these assumptions can be relaxed. Most
importantly, from the perspective of applications (as discussed in Section 2.1),
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some internal interfaces may be modeled as impermeable, i.e. λj = 0. We refer
to the remaining (permeable) interfaces as Ξ ⊂ {0, . . . ,M}. The impermeable
interfaces are then excluded from the problem, and considered as internal Neu-
mann interfaces. To be precise, we define a reduced disjoint union of interface
domains

Γ =
⊔

j∈Ξ

Γj .

The internal Neumann boundaries may partition the domain into disconnected
parts. We refer to a subdomain as “Dirichlet-connected”, denoted i ∈ ξ if either
(1) ∂DΩi 6= ∅, or (2) there exists some j ∈ Ŝi such that ̂ ∈ ξ, or (3) there exists
some j ∈ Ši such that ̌ ∈ ξ. This allows us to construct a reduced disjoint
union of subdomains

Ω =
⊔

i∈ξ

Ωi.

All the derivations in the continuation are equally valid for these reduced product
domains.

Remark 6 (Extensions to the model equations). The results of this paper can
with minor modifications be extended to non-zero Neumann boundary conditions,
and with some additional effort to the class of non-planar geometries considered
in [15]. However, as this generality is typically not needed for applications, we
restrict the presentation as indicated above.

3.3 Variational formulations in mixed-dimensional nota-
tion

Before writing the variational formulations in mD notation, let us first define the
relevant mD inner products and norms. Consider the following inner-products

〈q, r〉Ω =
m
∑

i=1

〈qi, ri〉Ωi
∀ q = [qi], r = [ri] ∈ L2Ω, (30)

〈v,w〉Ω,Γ =

m
∑

i=1

(

〈(

v0,i +
∑

j∈Ši
Rjνj

)

,
(

w0,i +
∑

j∈Ši
Rjµj

)〉

Ωi

+
∑

j∈Ši

〈νj , µj〉Γj

)

∀ v = [v0,i, νj ],w = [w0,i, µj ] ∈ L2TΩ× L2Γ, (31)

〈q, r〉∂XΩ =
m
∑

i=1

〈qi, ri〉∂XΩi
∀ q = [qi], r = [ri] ∈ L2∂XΩ, (32)

and their respective induced norms

‖q‖2Ω = 〈q, q〉Ω, ‖v‖2Ω,Γ = 〈v, v〉Ω,Γ, ‖q‖2∂XΩ = 〈q, q〉∂XΩ. (33)
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With these inner products, the previously defined mD divergence satisfy the
following integration-by-parts formula [12, 15] whenever v ∈ CTΩ × CΓ and
q ∈ CΩ.

〈q,D · v〉Ω + 〈D q, v〉Ω,Γ = 〈TDq,TDv〉∂DΩ + 〈TNq,TNv〉∂NΩ. (34)

In the above the restriction to the boundary is denoted TX(·) (for X = D,N),
which depending on context acts as the boundary values of pressure variables,
TX(·) : CΩ → C∂XΩ, or the normal component of flux variables, TX(·) :
CTΩ× CΓ → C∂XΩ.

From the product structure in the definition of the C and L2 spaces, the
continuous spaces inherit their density from the individual subdomains to the
product spaces on Ω and Γ. We can thus follow standard procedures to ob-
tain weak extensions of the mD differential operators, the boundary restriction
(trace) operators, and the corresponding function spaces [40, 41, 42]. We elab-
orate this below.

Due to the density of C0TΩ× CΓ in L2TΩ× L2Γ, the mD divergence from
Section 3.2 is a densely defined unbounded linear operator on the latter space
D· : L2Ω → L2TΩ×L2Γ. Let us now (temporarily) use the notation (T, dom(T ))
to emphasize that an operator T has domain of definition dom(T ), and we denote
the adjoint operator with respect to the L2 inner product by an asterisk.

We recall that the Neumann boundary is incorporated into the definition of
the continuous flux spaces C0TΩ × CΓ, thus the last term in the integration-
by-parts formula (34), is zero. Hence, we can define a weak mD gradient and
the corresponding space of weakly mD differentiable functions with zero trace
on the Dirichlet boundary H1

0 by considering the adjoint:

(D , H1
0 (Ω)) := (D·, C0TΩ× CΓ)∗. (35)

Clearly, C0Ω ⊆ H1
0 (Ω), and thus it is appropriate to consider (D , H1

0 (Ω)) as a
weak gradient. Moreover, the domain of definition simply corresponds to the
standard H1

0 (Ωi) on each domain, where the subscript zero indicates zero trace
on all Dirichlet boundaries. Thus H1

0 (Ω) =
∏m

i=1 H
1
0 (Ωi), which generalizes (5).

Considering the integration-by-parts formula again, the weak mD divergence
and the corresponding space of flux functions with divergence in L2 and zero
trace on the Neumann boundary H(div; Ω,Γ) can be defined as

(D·, H(div; Ω,Γ)) := (D , H1
0 )

∗. (36)

Again C0TΩ× CΓ ⊆ H(div; Ω,Γ), and it is appropriate to consider
(D·, H(div; Ω,Γ)) as a weak divergence. This domain of definition of the weak
divergence has the interpretation of H0(div; Ωi) on all subdomains Ωi (where
the subscript zero indicates zero trace on all boundaries except for Dirichlet
boundaries), and L2(Γj) spaces on all interfaces Γj . Thus H(div; Ω,Γ) =
∏m

i=1 H0(div; Ωi)×
∏M

i=1 L
2(Γj), which generalizes (12).

Due to the above identification ofH1(Ω) andH(div; Ω,Γ) in terms of product
spaces of standard function spaces on subdomains, we extend the definition
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of the boundary restriction operators TX(·) to trace operators on the weak
spaces by requiring that they coincide with the standard trace operators on
subdomains.

In the continuation, we will always consider the weak mD gradient and
divergence, and denote these simply by D and D·, respectively. Similarly, we
will always consider the boundary restrictions as trace operators. The above
definitions of weak mD gradient and divergence operators, and their adjoint
property on the above weak spaces, has the following statements of the primal
and dual weak formulations of equations (29) as a direct consequence:

Definition 3 (Mixed-dimensional primal weak form). Let g ∈ H1(Ω). Then
find p ∈ H1

0 (Ω) + g such that

〈KD p,D q〉Ω,Γ = 〈f, q〉Ω ∀ q ∈ H1
0 (Ω). (37)

Definition 4 (Mixed-dimensional dual weak form). Find (u, p) ∈ H(div; Ω,Γ)×
L2(Ω) such that

〈

K−1u, v
〉

Ω,Γ
− 〈p,D · v〉Ω = 〈gD,TDv〉∂DΩ ∀ v ∈ H(div; Ω,Γ), (38a)

〈D · u, q〉Ω = 〈f, q〉Ω ∀ q ∈ L2(Ω). (38b)

The above weak forms of the mixed-dimensional elliptic problem are well-
posed for bounded coefficients [15], in the sense that there exist positive con-
stants K 0 and K∞ such that:

sup
v∈H(div;Ω,Γ)

〈Kv, v〉Ω,Γ

K∞‖v‖2Ω,Γ

≤ 1 ≤ inf
v∈H(div;Ω,Γ)

〈Kv, v〉Ω,Γ

K 0‖v‖
2
Ω,Γ

. (39)

The solutions of the primal and dual weak formulations are equivalent, and
define true solutions p ∈ H1

0 (Ω) + g and u ∈ H(div; Ω,Γ) against which the
approximate solutions will be measured in later sections.

4 Functional analysis tools

In this section, we summarize the main functional analysis tools we will exploit
for the a posteriori analysis.

4.1 Poincaré-type inequalities

We recall the following weighted Poincaré inequalities:

Lemma 1 (Permeability-weighted Poincaré-Friedrichs inequalities). There exist
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constants CΩ ≥ CΩi
≥ CK such that

‖q‖Ω,Γ ≤ CΩ,Γ

∥

∥

∥K
1
2D q

∥

∥

∥

Ω,Γ
∀ q ∈ H1

0 (Ω), (40a)

‖q‖Ωi
≤ CΩi

∥

∥

∥K
1
2

i ∇iq
∥

∥

∥

Ωi

∀ q ∈ H1
0 (Ωi), if ∂DΩi 6= ∅, (40b)

‖q − q̃Ωi
‖Ωi

≤ CΩi

∥

∥

∥K
1
2

i ∇iq
∥

∥

∥

Ωi

∀ q ∈ H1(Ωi), if ∂DΩi = ∅, (40c)

‖q − q̃K‖K ≤ CK

∥

∥

∥K
1
2

i ∇iq
∥

∥

∥

K
∀ q ∈ H1(K), whereK ⊂ Ωi. (40d)

Here, we denote by q̃Ωi
and q̃K the mean value of q over the subdomain Ωi and

an arbitrary di-simplex K ⊂ Ωi, respectively.

We refer to CΩ,Γ as the mixed-dimensional permeability-weighted Poincaré-
Friedrichs constant (whose existence was shown in [15]), CΩi

is the standard
subdomain permeability-weighted Poincaré-Friedrichs constant, and CK is a
local permeability-weighted Poincaré-Friedrichs constant.

It is important to mention that concrete values of CΩi
are available only for

a limited set of geometries, see e.g., [43, 44, 45]. An upper bound exists for
convex domains, and thus for a simplex K ⊂ Ωi we have [46, 47]

CK ≤
diam(K)

πcK
(41)

where cK is the lower bound on the permeability within K:

cK = inf
x∈K

v∈TKx

(Ki(x)v) · v

‖v‖

2

(42)

The importance of this is understood if K is an element of a simplicial
partition of Ωi, in which case CK scales with the mesh size hK = diam(K). This
allows for super-convergent properties of residual estimators for some locally
mass-conservative approximations [26, 48, 49]. We analyze these cases with
further details in Section 5.2 and Remark 15.

4.2 Conforming flux spaces

It is often possible to verify that an approximate solution v ∈ H(div; Ω,Γ)
satisfies some stronger conservation property, that is to say, that there is some
space U ⊆ L2 such that

D · v− f ∈ U (43)

This allows for the construction of stronger a posteriori estimates, and as such,
we formalize this concept as a generalization of H(div; Ω,Γ) to “U -conforming
flux spaces”:

Definition 5 (Conforming mD flux space). Let H(div; Ω,Γ;U) ⊂ H(div; Ω,Γ)
be a U -conforming flux space, in the sense of

H(div; Ω,Γ;U) = {v ∈ H(div; Ω,Γ) : f−D · v ∈ U} . (44)
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To exploit the conforming flux spaces, we must construct certain projected
H1(Ω) spaces. Consider therefore U as some subspace of L2(Ω) and define U⊥

to be its orthogonal complement:

U⊥ := {q ∈ L2(Ω) : 〈q, r〉Ω = 0 ∀ r ∈ U}. (45)

Moreover, let πU⊥ be the L2–projection onto U⊥, such that for any r ∈ L2(Ω),
πU⊥r ∈ U⊥ satisfies the orthogonality property:

〈r− πU⊥r, q〉Ω = 0 ∀ q ∈ U⊥. (46)

Consider now the projected H1
0 (Ω) space denoted W ⊂ L2(Ω), defined as

the range of πW := (I − πU⊥) : H1
0 (Ω) → L2(Ω), and let the norm of W be

defined as a weighted L2-norm with nonnegative weights µ ∈ L∞(Ω)

‖q‖W,µ := ‖µq‖Ω ∀ q ∈ W, (47)

which are defined within the class CW with unit Poincaré constants:

CW =











µ ∈ L∞(Ω) : sup
q∈H1

0 (Ω)

‖πW q‖W,µ
∥

∥

∥K
1
2D q

∥

∥

∥

Ω,Γ

≤ 1











. (48)

Indeed, such classes exist in the literature of Poincaré inequalities for weighted
norms, see e.g., [29, 28]. Note that a trivial member of CW is the inverse of
the permeability-weighted mD Poincaré-Friedrichs constant µ(x) = C−1

Ω,Γ. As
we will see in Sections 5.1 and 5.2, the concrete choice of the space U and the
corresponding weights µ will directly impact the strength of the estimates.

Remark 7 (On the space H(div; Ω,Γ;U)). The conforming mD flux spaces
allow us to obtain sharper estimates in Section 5. However, it is important to
note that the standard case U = L2(Ω) is included in our definition, for which the
orthogonal complement is void, and the projection πW = I; thus W = H1

0 (Ω).
This and other cases are elaborated in more detail in Sections 5.2.1 to 5.2.4.

4.3 Bilinear forms and energy norms

For the a posterior i analysis, we will need the next two mD bilinear forms and
their induced energy norms

B(q, r) = 〈KD q,D r〉Ω,Γ, |||q|||2 = B(q, q) =
∥

∥

∥K
1
2D q

∥

∥

∥

2

Ω,Γ
∀ q, r ∈ H1

0 (Ω),

(49)

A(v,w) =
〈

v,K−1w
〉

Ω,Γ
, |||v|||2∗ = A(v, v) =

∥

∥

∥K− 1
2 v

∥

∥

∥

2

Ω,Γ
∀ v,w ∈ L2TΩ× L2Γ,

(50)

which are related via

|||q||| = |||KD q|||∗ ∀ q ∈ H1
0 (Ω). (51)
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We also define the full norm for a mixed-dimensional pair of primal and dual
variables as

||[q, v]|| := |||q|||+ |||v|||∗+
∥

∥µ−1D · v
∥

∥

Ω
∀ (q, v) ∈ H1

0 (Ω)×H(div; Ω,Γ;U). (52)

Note that the last norm will depend on the eventual choice of µ−1, which we
emphasize must be from the class µ ∈ CW , as defined in the preceding section.

5 A posteriori error estimates

This section is devoted to obtaining the error bounds for our model problem.
First, we provide general abstract estimates, and later we focus on the evaluation
of the different bounds.

5.1 General abstract estimates

Let us now present the general abstract bounds. We formalize the main results
presented in Section 3 and extend the ones presented in Theorem 1 in the
following theorem.

Theorem 2 (General abstract a posteriori error bounds). Let the error majo-
rant be defined as

M(q, v, f, µ) := ηDF(q, v) + ηR(v, f, µ), (53)

where

ηDF(q, v) := |||v+ KD q|||∗ and ηR(v, f, µ) :=
∥

∥µ−1(f−D · v)
∥

∥

Ω
, (54)

valid for all q ∈ H1
0 (Ω) + g and v ∈ H(div; Ω,Γ;U). Then, the following a

posteriori error estimates hold.
(1) Let p ∈ H1

0 (Ω) + g be the solution to (37) and q ∈ H1
0 (Ω) + g be arbitrary.

Then
|||p− q||| ≤ M⊕

p = M(q, v, f, µ) ∀ v ∈ H(div; Ω,Γ;U), (55)

where M⊕
p is the upper bound of the error for the primal variable.

(2) Let u ∈ H(div; Ω,Γ) be the solution to (38) and v ∈ H(div; Ω,Γ;U) be
arbitrary. Then

|||u− v|||∗ ≤ M⊕
u = M(q, v, f, µ) ∀ q ∈ H1

0 (Ω) + g, (56)

where M⊕
u is the upper bound of the error for the dual variable.

(3) Let p ∈ H1
0 (Ω)+g be the solution to (37) and u ∈ H(div; Ω,Γ) be the solution

to (38), and let (q, v) ∈ (H1
0 (Ω) + g)×H(div; Ω,Γ;U) be arbitrary. Then,

M(q, v, f, µ) = M⊖
p,u ≤ ||[p− q, u− v]|| ≤ M⊕

p,u = 2M(q, v, f, µ) + ηR(v, f, µ),
(57)

where M⊖
p,u and M⊕

p,u are the lower and upper bounds of the error for the
primal-dual variable.
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Proof. Due to the construction of mixed-dimensional product spaces and the
adjoint property of the weak differential operators, the proof from the mono-
dimensional case can (to a large extent) be applied directly [19]. A notable
deviation from the standard proofs is the use of conforming flux spaces, and the
inclusion of the Poincaré-constants in the weights CW . The full proof is included
for completeness in Appendix C.

Remark 8 (Non-conforming approximations). Referring again to the general
setting of mD calculus, it has been shown that the differential operators form
part of a cochain complex, and that an mD Helmholtz decomposition exists [15].
Thus, by realizing the above constructions as Hilbert complexes, the above error
bounds can be extended also to non-conforming approximations following, e.g.,
Theorem 4.7 of [21]. However, as a main objective of our work is to obtain
bounds based on conforming properties of the approximations, we will not pursue
non-conforming approximations in this work.

5.2 Evaluation of the majorant

The aim of this section is to provide concrete forms of the majorant M(q, v, f, µ)
from Theorem 2 depending upon the choices of the weights µ. For this purpose,
consider once again the definition of the majorant

M(q, v, f, µ) = ηDF(q, v) + ηR(v, f, µ)

∀ q = [qi] ∈ H1
0 (Ω) + g, v = [v0,i, νj ] ∈ H(div; Ω,Γ;U). (58)

The estimation of the first term ηDF(q, v) is independent of the weights µ.
Indeed, by applying (50), it is straightforward to see that

η2DF(q, v) =
m
∑

i=1







∑

K∈TΩi

∥

∥

∥

∥

∥

∥

K
− 1

2

i

(

v0,i +
∑

j∈Ši

Rjνj

)

+K
1
2

i ∇iqi

∥

∥

∥

∥

∥

∥

2

K

+
∑

j∈Ši

∑

K∈TΓj

∥

∥

∥
κ
− 1

2

j νj + κ
1
2

j (q̌ − tr q̂)
∥

∥

∥

2

K





=

m
∑

i=1





∑

K∈TΩi

η2DF‖,K
+

∑

j∈Ši

∑

K∈TΓj

η2DF⊥,K



 . (59)

The terms ηDF‖,K and ηDF⊥,K measure the diffusive flux error in the tangential
and normal directions associated with the subdomain element K ∈ TΩi

and the
mortar element K ∈ TΓj

, respectively.
To complete the evaluation of the majorant, we are left with the estimation

of ηR(v, f, µ), which depends on the choices of µ. Recall that this term measures
the mismatch in satisfying the conservation equation in each subdomain. To be
precise, there are four main types of conforming fluxes; Standard L2-conforming,
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subdomain conservation, grid level (local) conservation, and point-wise. The
quality of the residual balance can be verified explicitly before applying the a
posteriori estimates, and thus is not considered an assumption in the theory.
Below, we make precise the aforementioned cases.

5.2.1 No mass-conservation

Assume nothing is known about the approximation of the residual terms beyond
the L2 structure. We indicate this case by the abbreviation “NC”, and set
UNC = L2, and v ∈ H(div; Ω,Γ;UNC) = H(div; Ω,Γ). Then U⊥

NC = 0, which
implies that πW = I, and W = H1

0 (Ω). Then, a priori, we only know the global
(mixed-dimensional) Poincaré (40a), i.e., we have no better weight than setting
µ(x) = C−1

Ω,Γ for x ∈ Ω.
Using (49) and the mD Poincaré inequality (40a), one obtains the follow-

ing bound, which is the weakest bound available within the class of bounds
considered in this paper:

η2R ≤ C2
Ω,Γ

m
∑

i=1

∑

K∈TΩi

∥

∥

∥

∥

∥

∥

fi −∇i ·

(

v0,i +
∑

j∈Ši

Rjνj

)

+
∑

j∈Ŝi

νj

∥

∥

∥

∥

∥

∥

2

K

=

m
∑

i=1

∑

K∈TΩi

η2R,K;NC = η2R;NC, (60)

Here, ηR,K;NC denotes the local residual error for non-conservative approxima-
tions. The majorant when mass conservation cannot be guaranteed at any level
is then given by,

MNC(q, v, f) = ηDF(q, v) + ηR;NC(v, f), (61)

and it follows from the above that this is an upper bound, M ≤ MNC.

5.2.2 Subdomain mass-conservation

Due to the structure of the equations, where interface fluxes are stated explicitly,
many approximations will have mass conservation satisfied in a subdomain level,
which is in a sense a compatibility condition on the floating domains Ωi. We
indicate this case by the abbreviation “SC”. In particular, the divergence r =
[ri] = D · v ∈ USC satisfies for all i ∈ {1, . . . ,m} where ∂DΩi = ∅,

〈ri, 1〉Ωi
= 〈fi, 1〉Ωi

. (62)

Thus, by definition U⊥
SC is the space of constants over the floating subdomains

Ωi, and the space W is the space of H̊1(Ωi) functions, with zero mean if ∂DΩi =
∅.

This case represents an improvement relative to the previous one, in the
sense that we can now employ the subdomain Poincaré constants instead of the
mD constant. Let us make this point precise in the following lemma.
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Lemma 2. Let W =
∏m

i=1 H̊
1(Ωi), where

H̊1(Ωi) =
{

qi ∈ H1
0 (Ωi) | 〈qi, 1〉Ωi

= 0 if ∂DΩi = ∅
}

. (63)

Then, µ(x) = C−1
Ωi

for x ∈ Ωi belongs to the class CW , where CΩi
is the

permeability-weighted Poincaré-Friedrichs constants defined in Lemma 1.

Proof. Using the Poincaré inequality (40c) and the fact that the sum of broken
norms is weaker than the full norm, the following result holds

sup
q∈H1

0 (Ω)

‖πW q‖W,µ
∥

∥

∥
K

1
2D q

∥

∥

∥

Ω,Γ

= sup
q∈H1

0 (Ω)
∥

∥

∥
K

1
2 D q

∥

∥

∥

Ω,Γ
=1

‖πWΩ
q‖WΩ,µ

= sup
q∈H1

0 (Ω)
∥

∥

∥
K

1
2 D q

∥

∥

∥

Ω,Γ
=1







m
∑

i=1
∂DΩi 6=∅

∥

∥C−1
Ωi

qi
∥

∥

Ωi
+

m
∑

i=1
∂DΩi=∅

∥

∥

∥

∥

C−1
Ωi

(

qi −
1

|Ωi|
〈qi, 1〉Ωi

)∥

∥

∥

∥

Ωi







≤ sup
q∈H1

0 (Ω)
∥

∥

∥
K

1
2 D q

∥

∥

∥

Ω,Γ
=1

m
∑

i=1

∥

∥

∥K
1
2∇iqi

∥

∥

∥

Ωi

≤ 1.

In view of Lemma 2, ηR can be bounded as

η2R ≤
m
∑

i=1

C2
Ωi

∑

K∈TΩi

∥

∥

∥

∥

∥

∥

fi −∇i ·

(

v0,i +
∑

j∈Ši

Rjνj

)

+
∑

j∈Ŝi

νj

∥

∥

∥

∥

∥

∥

2

K

=

m
∑

i=1

∑

K∈TΩi

η2R,K;SC = η2R;SC, (64)

where ηR,K;SC are the local residual estimators for subdomain mass-conservative
approximations. The majorant for this case is given by

MSC(q, v, f) = ηDF(q, v) + ηR;SC(v, f). (65)

This estimate is sharper than that in the preceding section, since CΩi
≤ CΩ,Γ,

thus whenever the assumptions of this section are satisfied, it holds that M ≤
MSC ≤ MNC.

Note that (65) is identical in structure to the residual estimators (16e) and
(16f) obtained in Theorem 1. However, they are fundamentally different in the
sense that (65) do not require all subdomains to have a non-empty Dirichlet
part but rather mass to be conserved in each subdomain Ωi.
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5.2.3 Local mass-conservation

By choice of numerical method, it is often easy to verify that mass is conserved
on an element basis in a subdomain partition. We indicate this case by the
abbreviation “LC”. As in the preceding section, this implies that the divergence
r = [ri] = D · v ∈ ULC then satisfies for all K ⊂ TΩi

that

〈ri, 1〉K = 〈fi, 1〉K , (66)

where TΩi
denotes a finite partition of Ωi (typically a simplicial grid). In this

case, ULC contain functions having zero mean on each element K ∈ TΩi
, and

from (66) we see that U⊥
LC =

∏m
i=1 P0(TΩi

).
We will consider the slightly weaker case, where (66) is only required to

hold for all “non-Dirichlet boundary” elements, that is for all elements where
∂K ∩∂DΩ = ∅. This is sufficient for the results from Lemma 2 to be extendable
to the grid level by considering the space WΩ =

∏m
i=1

∏

K∈TΩi
H̊1(K), where

H̊1(K) is defined in (63).
Lemma 2 now applies without modification, and weights µ(x) ≥ C−1

K for
x ∈ K are therefore in CW . Moreover, thanks to convexity of simplicial grid
elements, the local permeability-weighted Poincaré-Friedrichs constants are now
fully computable. This allows us to bound ηR,Ω as follows:

η2R,Ω ≤
m
∑

i=1

∑

K∈TΩi

h2
K

π2c2K

∥

∥

∥

∥

∥

∥

fi −∇i ·

(

v0,i +
∑

j∈Ši

Rjνj

)

+
∑

j∈Ŝi

νj

∥

∥

∥

∥

∥

∥

2

K

=

m
∑

i=1

∑

K∈TΩi

η2R,K;LC = η2R,Ω;LC, (67)

where ηR,K;LC are the local residual estimators for locally mass-conservative ap-
proximations. Using the above results, the majorant for locally mass-conservative
approximations reads

MLC(q, v, f) = ηDF(q, v) + ηR;LC(v, f). (68)

The local residual estimates ηR,Ω;LC correspond to the ones previously obtained
by [26, 49] for mono-dimensional problems subject to a flux equilibration step.
Since CK ≤ CΩi

, then, as before, whenever the assumptions of this section are
satisfied, it holds that M ≤ MLC ≤ MSC ≤ MNC.

Remark 9 (Fully computable residual estimators). Unlike estimators obtained
with residual methods (containing unknown constants [50, 51]) or a purely func-
tional approach such as in Sections 5.2.1 and 5.2.2 (containing constants that
are generally difficult to determine [20]), estimators such as (67) contain only
known local constants depending on the mesh size and material parameters. This
justifies the claim that these estimators are fully computable.
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5.2.4 Exact mass-conservation

Methods with local mass conservation, as discussed in the previous section,
when applied to problems where the RHS data f is zero or piecewise constant,
can then often be verified to have an exact (pointwise) conservation property.
We indicate this case by the abbreviation “EC”, for which f = D · v, so that
UEC = 0 and U⊥

EC = L2(Ω). Now, πW = 0 and W = 0. Thus, any finite
weights µ are admissible, yet the choice is immaterial since the residual term
∥

∥µ−1(f−D · v)
∥

∥

Ω
always evaluates to zero. Consequently, only diffusive-type

errors are present in the a posteriori estimation, and the majorant takes the
form

MEC(q, v) = ηDF(q, v). (69)

This case can also be seen as the limiting case of local mass conservation for a
family of grid partitions where hK → 0.

5.2.5 Summary of majorants and subdomain errors

With the obtained majorants, we can define the corresponding upper bounds
for the errors of the primal, dual, and primal-dual variables.

Definition 6. Let α = NC, SC,LC,EC, corresponding to the flux conformity
spaces Uα discussed in the preceding sections. Then, in view of the results from
Theorem 2 and the majorants (61), (65), (68), and (69), the upper bounds for
the error in the primal, dual, and primal-dual pair, for arbitrary approximations
q ∈ H1

0 (Ω) + g and v ∈ H(div; Ω,Γ;Uα), are

M⊕
p;α := Mα, M⊕

u;α := Mα, M⊕
p,u;α := 2Mα + ηR;α. (70)

while the lower bound for the error in the primal-dual pair is

M⊖
p,u;α := Mα. (71)

It is our interest not only to measure local errors, but also to distinguish
between subdomain and interface errors. This motivates the definition of the
following errors estimators.

Definition 7 (Subdomain and interface error indicators). Let α = EC,LC, SC,NC.
Then, we will denote by εΩi;α and εΓj

the subdomain and interface error indi-
cators, defined by

ε2Ωi;α := ε2DF,Ωi
+ ε2R,Ωi;α :=

∑

K∈TΩi

η2DF‖,K
+

∑

K∈TΩi

η2R,K;α,

ε2Γj
:= ε2DF,Γj

:=
∑

K∈TΓj

η2DF⊥,K .

We emphasize that while the majorants provide guaranteed bounds, the
subdomain and interface error indicators can only be expected to correlate with
the error.
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TΓjTΩ̂
TΩ̌

K ∈ TΩ̌
K ∈ TΩ̂

K ∈ TΓj

u0,h ∈ RTN0(K)

λh ∈ P0(K)

ph ∈ P0(K)

Figure 4: Left: Matching coupling between the grids TΩ̂
, TΓj

, and TΩ̌
. Right:

Degrees of freedom involved in the coupling between a 2d higher-dimensional
cell, a 1d mortar-cell, and a 1d lower-dimensional cell. Locally, tangential fluxes
are approximated using RTN0(K), whereas mortar fluxes and pressures using
P0(K).

6 Concrete bounds for locally mass-conservative

approximations

In this section, we will make the evaluation of the bounds concrete by provid-
ing explicit approximations to (38) using the lowest-order mixed-finite element
method (MFEM).

6.1 Grid partitions

Ultimately, a posteriori estimates are primarily applied to approximations that
are defined on computational grids. We therefore, in this section, summarize
the relevant notation for grids and the mapping operators between subdomains
and interfaces.

Let us start by defining the partitions of the domains of interest. To this
aim, denote by TΩi

, TΓj
, and T∂iΩj

the partitions of Ωi, Γj , and ∂jΩi, respec-
tively. Moreover, let TΩ = ∪m

i=1TΩi
, TΓ = ∪M

j=1TΓj
, and T∂IΩ = ∪m

i=1 ∪j∈Ši
∂jΩi

represent the union of all subdomain, mortar, and internal boundary grids.
Here, we only consider simplicial partitions. In particular, we require all

elements K ⊂ Ωi to be strictly non-overlapping simplices of dimension dK = di.
We use hK to denote the diameter of K, and define hΩi

= maxhK
TΩi

, hΓj
=

maxhK
TΓj

, and h∂jΩi
= maxhK

T∂jΩi
.

We will not at this point place any conditions on the grid partitions, although
several aspects of this will be advantageous from the perspective of computation.

6.2 Finite element spaces and the approximated problem

Let us introduce the finite element spaces necessary to write the approximated
problem. We start by defining a local space for the approximated pressures,
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mortar fluxes, and tangential fluxes. They are given, respectively by

Qh,i :=
{

qh,i ∈ L2(Ωi) : qh,i|K ∈ P0(K) ∀K ∈ TΩi

}

, di ∈ {0, . . . , n},

Λh,j :=
{

νh,j ∈ L2(Γj) : νh,j |K ∈ P0(K) ∀K ∈ TΓj

}

, dj ∈ {0, . . . , n− 1},

Vh,i := {vh,i ∈ H(div; Ωi) : vh,i|K ∈ RTN0(K) ∀K ∈ TΩi
} , di ∈ {1, . . . , n},

where P0 and RTN0 denote the spaces of constants and lowest-order Raviart-
Thomas(-Nédélec) spaces of vector functions [52, 53]. See also Figure 4 for
the degrees of freedom involved in the generic coupling between a (higher-
dimensional) triangle, a mortar line segment, and a (lower-dimensional) line
segment.

The composite space for the approximated mD pressure Qh ⊂ L2 (Ω) and
the approximated mD flux Xh ⊂ H(div; Ω,Γ) are defined respectively by

Qh :=

m
∏

i=1

Qh,i and Xh :=

m
∏

i=1



H0(div; Ωi) ∩ Vh,i ×
∏

j∈Ši

Rh,j Λh,j



 .

(72)
While not strictly necessary from a theoretical perspective, in the discrete
setting, it is often useful to choose a finite-dimensional reconstruction oper-
ator based on the discrete spaces, and we allow for this through the nota-
tion Rh,j : Λh,j → H(div; Ωi), which in practice is often further restricted
to Rh,j : Λh,j → Vh,̂. Such discrete reconstruction operators are natural for
matching grids, and can also be constructed in the more general case of non-
matching grids, see e.g., [12, 54, 55]. Here Πh : Λh,j → Λ̃h,j is the L

2 projection
from the mortar grid on Γj to the boundary simplicial partition of Ω̂.

We have now all the elements necessary to write the finite-dimensional ap-
proximation to the dual mixed problem (38).

Definition 8 (Approximated mD dual mixed formulation). Find (uh, ph) ∈
Xh ×Qh such that

〈

K−1uh, vh
〉

Ω,Γ
− 〈ph,D · vh〉Ω = 〈gD,TDvh〉∂DΩ ∀ vh ∈ Xh, (73a)

〈D · uh, qh〉Ω = 〈f, qh〉Ω ∀ qh ∈ Qh. (73b)

Due to the presence of the discrete reconstruction operator, this approx-
imation is conforming whenever Λh,j = Λ̃h,j, i.e., for matching grids. For
non-matching grids, the approximation is still convergent, subject to normal
conditions on the mortar grids [12].

Remark 10 (Conservation properties). Whenever equation (73b) is satisfied
exactly, then equation (66) holds, and we have local mass conservation for
matching grids. Thus, the fluxes lie in the smaller space Xh∩H(div; Ω,Γ;Q⊥

h,i),
and the results from section 5.2.3 apply. Furthermore, if fi ∈ Qh,i and Rh,j :
Λh,j → Vh,̂, then the projection of the source term, and hence the residual error,
onto Q⊥

h,i vanishes. Thus, the local conservation is verified to be pointwise, the
fluxes lie in Xh ∩H(div; Ω,Γ; 0) and the results from Section 5.2.4 apply.
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Remark 11 (Well-posedness and a priori estimates). The stability and a priori
approximation properties of the finite-dimensional system given in (73) has been
previously established [12].

6.3 Pressure reconstruction

Recall that Theorem 2 requires any approximation to the mD flux to be in
H(div; Ω,Γ), whereas approximations to the mD pressure must lie in H1

0 (Ω)+g.
By the condition that uh ∈ Xh ⊂ H(div; Ω,Γ), the solution of equations (73)
by definition satisfy the first condition. On the other hand, the approximated
mD pressure ph is only in L2 (Ω). We therefore need to enhance the regularity
of the approximated pressure and thus obtain a reconstructed pressure.

Definition 9 (Reconstructed pressure). We will call reconstructed pressure p̃h
to any function constructed from the mD pair (ph, uh) ∈ L2 (Ω) ×H(div; Ω,Γ)
such that

p̃h ∈ H1
0 (Ω) + g. (74)

Remark 12 (On potential reconstruction). Several techniques for obtaining
p̃h are available in the literature. Arguably, the simplest option is to perform
an average of the P0(K) pressures on local patches and from there construct
local affine P1(K) functions [56]. Other techniques aim at solving first a local
Neumann problem to obtain a P2(K) post-processed pressure, and then apply
interpolation techniques to get energy-conforming potentials [27, 57, 26, 58, 59].
Any of these choices are compatible with the bounds derived herein.

Remark 13 (Computable estimates). Computable versions of the majorants
are now readily available by setting (q, v) = (p̃h, uh) in (61), (65), (68), and
(69).

Remark 14 (Other locally mass-conservative methods). In addition to the
MFEM scheme of the lowest-order (RT0-P0), other flux-based numerical meth-
ods such as the Mixed Virtual Element Method (MVEM) [60, 61] and Cell Cen-
tered Finite Volume Methods (CCFVM), including the Two-Point Flux Approx-
imation (TPFA) and the Multi-Point Flux Approximation (MPFA) [62, 63],
can be analyzed with our framework provided that the fluxes are interpolated in
Xh and the pressures reconstructed as indicated above. For methods without
an explicit flux representation, an additional flux reconstruction step may be
needed.

Remark 15 (Superconvergence of the residual estimators). Due to Remark
10, the residual estimators ηR,K,LC are superconvergent for lowest-order locally
mass-conservative approximations. This property is guaranteed since: (1) local
Poincaré constants decay as O(hK) for simplicial elements and (2) the norm

of the residual
∥

∥

∥fi −∇i · vi +
∑

j∈Ŝi
νj

∥

∥

∥

K
also decays as O(hK) [64]; leading to

an overall rate of O(h2
K).
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Figure 5: Geometric setups used for the numerical validations. Left: A 1d
fracture embedded in a 2d matrix and the exact pressure solution. Right: A 2d
fracture embedded in a 3d matrix.

7 Numerical validations

In this section, we test the performance of our estimators by conducting an effi-
ciency analysis using four different numerical methods, namely those mentioned
in Remark 14: RT0-P0, MVEM-P0, MPFA, and TPFA. The numerical examples
are implemented in the Python-based open-source software PorePy [39], using
the extension package mdestimates [65], which includes the scripts of all numer-
ical examples considered here. In these numerical validations, we only consider
matching grids, and use a low-order pressure reconstruction (recall Remark 12
for further discussion).

We validate the a posteriori bounds and assess their efficiency on a 1d/2d
problem (Section 7.2) and a 2d/3d problem (Section 7.3), both with manufac-
tured solutions. The geometric configuration for both problems is shown in
Figure 5. Let us denote the fracture as Ω1, the matrix as Ω2, the left interface
as Γ1, and the right interface as Γ2. Further, assume the existence of an exact,
smooth pressure p2(x) in Ω2. Refer to Table 7 and Table 8 from the Appendix D
for the analytical expressions of all variables of interest.

7.1 Efficiency indices

Efficiency indices are used to assess the performance of the approximations
when exact solutions are available. They are defined as the ratio between the
estimated and the exact errors. Here, we consider the following efficiency indices.

Definition 10 (Efficiency indices). Let α = NC, SC,LC,EC and let p ∈ H1
0 (Ω)+

g and u ∈ H(div; Ω,Γ) be the solutions to (37) and (38), respectively. Then, in
view of Theorem 2, the efficiency indices for the primal, dual, and primal-dual
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Table 1: Two-dimensional validation: Majorants and efficiency indices.

hcoup M⊕
p;NC M⊕

p;LC M⊕
p,u;NC M⊕

p,u;LC Ip;NC Ip;LC Iu;NC Iu;LC Ip,u;NC Ip,u;LC

R
T
0
-P

0 0.05 5.86e-02 4.36e-02 1.33e-01 8.83e-02 1.46 1.08 4.09 3.04 1.89 1.59
0.025 3.01e-02 2.17e-02 6.89e-02 4.38e-02 1.49 1.07 4.18 3.02 1.91 1.58

0.0125 1.52e-02 1.08e-02 3.48e-02 2.17e-02 1.50 1.07 4.22 3.00 1.92 1.57
0.00625 7.65e-03 5.37e-03 1.76e-02 1.08e-02 1.52 1.07 4.25 2.98 1.93 1.57

M
V
E
M
-P

0 0.05 6.18e-02 4.68e-02 1.40e-01 9.47e-02 1.42 1.07 4.31 3.26 1.89 1.60
0.025 3.10e-02 2.27e-02 7.08e-02 4.56e-02 1.46 1.07 4.31 3.15 1.91 1.59

0.0125 1.54e-02 1.10e-02 3.53e-02 2.22e-02 1.49 1.07 4.29 3.07 1.92 1.58
0.00625 7.72e-03 5.44e-03 1.77e-02 1.09e-02 1.51 1.06 4.28 3.02 1.92 1.57

M
P
F
A

0.05 5.91e-02 4.41e-02 1.34e-01 8.93e-02 1.46 1.09 4.12 3.07 1.89 1.59
0.025 3.03e-02 2.19e-02 6.92e-02 4.41e-02 1.49 1.08 4.20 3.04 1.91 1.58

0.0125 1.52e-02 1.08e-02 3.49e-02 2.18e-02 1.50 1.07 4.23 3.01 1.92 1.57
0.00625 7.66e-03 5.38e-03 1.76e-02 1.08e-02 1.52 1.07 4.25 2.99 1.93 1.57

T
P
F
A

0.05 6.67e-02 5.17e-02 1.50e-01 1.04e-01 1.54 1.19 3.09 2.39 1.84 1.58
0.025 3.74e-02 2.90e-02 8.35e-02 5.83e-02 1.68 1.31 2.36 1.83 1.78 1.52

0.0125 2.64e-02 2.20e-02 5.73e-02 4.41e-02 1.82 1.52 1.64 1.36 1.63 1.44
0.00625 1.37e-02 1.15e-02 2.98e-02 2.30e-02 1.64 1.37 1.82 1.52 1.64 1.44

The results for M⊕
u;NC

and M⊕
u;LC

are omitted since they are equal to M⊕
p;NC

and M⊕
p;LC

.

pair, for arbitrary approximations q ∈ H1
0 (Ω) + g and v ∈ H(div; Ω,Γ;Uα), are

Ip;α(q) :=
M⊕

p;α

|||p− q|||
, Iu;α(v) :=

M⊕
u;α

|||u− v|||∗
, Ip,u;α(q, v) :=

M⊕
p,u;α

||[p− q, u− v]||
.

(75)

Remark 16. Optimal efficiency indices (equal to 1) are obtained when the
approximations match the exact solutions. Moreover, in general the efficiency
indices satisfy the bounds:

1 ≤ Ip;α(q), 1 ≤ Iu;α(v), 1 ≤ Ip,u;α(q, v) ≤
M⊕

p,u;α

M⊖
p,u;α

= 2+
ηR;α

Mα
(76)

For the final term, we note that since ηR;α ≤ Mα, then for α = NC, SC the
total efficiency index satisfies Ip,u;α ≤ 3, while for local conservation Ip,u;LC ≤
2 +O(h2) and finally for exact conservation Ip,u;EC ≤ 2.

7.2 Two-dimensional validation

For our first validation, we consider the 1d/2d case as shown in the left Fig-
ure 5. This validation has two purposes: (1) compare the majorants and ef-
ficiency indices obtained using global (no mass-conservation) and local (local
mass-conservation) Poincaré-Friedrichs constants, and (2) show the different
errors associated with subdomains and interfaces.

To this aim, we consider four levels of successively refined combinations of
mesh sizes, characterized by hcoup = h∂1Ω2

= hΓ1
= hΩ1

= hΓ2
= h∂2Ω2

.
The global Poincaré constant is obtained numerically by solving the associated
eigenvalue problem (see e.g., [66]), giving a value of CΩ,Γ ≈ 0.2251.

28



Table 2: Two-dimensional validation: Subdomain and interface errors.

hcoup εDF,Ω2
εR,Ω2;NC εR,Ω2;LC εDF,Ω1

εR,Ω1;NC εR,Ω1;LC εDF,Γ1
εDF,Γ2

R
T
0
-P

0 0.05 4.24e-02 1.41e-02 1.00e-03 2.26e-03 7.99e-03 5.65e-04 1.89e-04 1.89e-04
0.025 2.14e-02 7.73e-03 3.02e-04 1.14e-03 4.01e-03 1.42e-04 9.03e-05 9.15e-05

0.0125 1.07e-02 4.00e-03 7.28e-05 5.70e-04 2.01e-03 3.55e-05 4.41e-05 4.41e-05
0.00625 5.34e-03 2.07e-03 1.91e-05 2.85e-04 1.00e-03 8.87e-06 2.20e-05 2.20e-05

M
V
E
M
-P

0 0.05 4.55e-02 1.41e-02 1.00e-03 3.25e-03 7.99e-03 5.65e-04 2.52e-04 2.52e-04
0.025 2.23e-02 7.73e-03 3.02e-04 1.32e-03 4.01e-03 1.42e-04 1.00e-04 1.03e-04

0.0125 1.09e-02 4.00e-03 7.28e-05 5.98e-04 2.01e-03 3.55e-05 4.50e-05 4.50e-05
0.00625 5.41e-03 2.07e-03 1.91e-05 2.89e-04 1.00e-03 8.87e-06 2.21e-05 2.21e-05

M
P
F
A

0.05 4.29e-02 1.41e-02 1.00e-03 2.52e-03 7.99e-03 5.65e-04 2.05e-04 2.05e-04
0.025 2.15e-02 7.73e-03 3.02e-04 1.18e-03 4.01e-03 1.42e-04 9.24e-05 9.35e-05

0.0125 1.07e-02 4.00e-03 7.28e-05 5.77e-04 2.01e-03 3.55e-05 4.44e-05 4.44e-05
0.00625 5.36e-03 2.07e-03 1.91e-05 2.86e-04 1.00e-03 8.87e-06 2.20e-05 2.20e-05

T
P
F
A

0.05 5.04e-02 1.41e-02 1.00e-03 2.52e-03 7.99e-03 5.65e-04 1.87e-04 1.89e-04
0.025 2.86e-02 7.73e-03 3.02e-04 1.18e-03 4.01e-03 1.42e-04 9.42e-05 9.23e-05

0.0125 2.19e-02 4.00e-03 7.28e-05 5.77e-04 2.01e-03 3.55e-05 4.47e-05 4.46e-05
0.00625 1.14e-02 2.07e-03 1.91e-05 2.86e-04 1.00e-03 8.87e-06 2.20e-05 2.21e-05

Majorants for the primal, dual, and primal-dual variables are shown in Ta-
ble 1. We can see that all majorants reflect the convergence tendency of the
numerical methods, and in particular (as is well-known), we identify that the
TPFA approximation performs relatively poorly on this problem. As expected,
the majorants obtained exploiting the local conservation properties of the meth-
ods are sharper than the ones obtained using global weights, both in absolute
value and in terms of efficiency index.

Further inspection shows that efficiency indices lie within the expected bounds
discussed in Remark 16. In particular, efficiency indices for the primal variable
using local weights are very accurate, and only a ∼ 7% deviation with respect to
the actual error (for the finest grid) is observed in the case of RT0-P0, MVEM-
P0, and MPFA. For TPFA, the efficiency index is worse, as a consequence of
the flux approximation being worse. Efficiency indices for the dual variable
are in general larger than the ones obtained for the primal variable; this is to
be expected for mixed-dual approximations with the relatively simple pressure
reconstruction, where the approximated fluxes have relatively good accuracy
as compared to the reconstructed pressures. Finally, efficiency indices for the
primal-dual variable are less than 2 for all methods in consideration.

Considering now the local error indicators, shown in Table 2, we note that
diffusive errors decrease linearly for the matrix, fracture, and interfaces. Like-
wise, residual errors for the matrix and fracture decrease linearly when the global
Poincaré-Friedrichs constant is used. When the local Poincaré-Freidrich con-
stants are used, the residual estimators for the matrix and the fracture decrease
quadratically, which goes in agreement with the super-convergent properties
discussed in Remark 15.

29



Table 3: Three-dimensional validation: Majorants and efficiency indices.

hcoup M⊕
p;NC M⊕

p;LC M⊕
p,u;NC M⊕

p,u;LC Ip;NC Ip;LC Iu;NC Iu;LC Ip,u;NC Ip,u;LC

R
T
0
-P

0 0.2625 2.85e-01 2.36e-01 6.21e-01 4.73e-01 1.25 1.03 4.14 3.43 1.72 1.43
0.1720 1.94e-01 1.62e-01 4.20e-01 3.24e-01 1.23 1.03 4.22 3.53 1.73 1.50
0.0827 1.07e-01 8.69e-02 2.33e-01 1.74e-01 1.28 1.04 3.61 2.94 1.70 1.48
0.0418 5.62e-02 4.58e-02 1.23e-01 9.16e-02 1.25 1.02 3.16 2.58 1.63 1.43

M
V
E
M
-P

0 0.2625 2.89e-01 2.40e-01 6.28e-01 4.80e-01 1.24 1.03 4.19 3.48 1.72 1.44
0.1720 1.96e-01 1.64e-01 4.24e-01 3.28e-01 1.23 1.03 4.26 3.57 1.73 1.50
0.0827 1.08e-01 8.80e-02 2.35e-01 1.76e-01 1.27 1.04 3.65 2.98 1.70 1.48
0.0418 5.66e-02 4.62e-02 1.24e-01 9.23e-02 1.25 1.02 3.18 2.60 1.63 1.44

M
P
F
A

0.2625 2.90e-01 2.40e-01 6.29e-01 4.82e-01 1.25 1.03 4.08 3.38 1.72 1.43
0.1720 1.98e-01 1.66e-01 4.28e-01 3.32e-01 1.23 1.03 4.22 3.54 1.73 1.50
0.0827 1.09e-01 8.90e-02 2.37e-01 1.78e-01 1.27 1.04 3.64 2.98 1.70 1.49
0.0418 5.69e-02 4.65e-02 1.24e-01 9.30e-02 1.25 1.02 3.18 2.60 1.63 1.44

T
P
F
A

0.2625 3.84e-01 3.35e-01 8.17e-01 6.70e-01 1.24 1.08 2.13 1.86 1.48 1.28
0.1720 2.95e-01 2.63e-01 6.23e-01 5.27e-01 1.38 1.23 1.66 1.48 1.44 1.30
0.0827 2.22e-01 2.02e-01 4.63e-01 4.04e-01 1.62 1.48 1.40 1.28 1.45 1.35
0.0418 2.08e-01 1.97e-01 4.26e-01 3.95e-01 1.76 1.67 1.29 1.23 1.46 1.41

The results for M⊕
u;NC

and M⊕
u;LC

are omitted since they are equal to M⊕
p;NC

and M⊕
p;LC

.

7.3 Three-dimensional validation

For our next numerical validation, we employ the 2d/3d configuration from the
right Figure 5. We repeat the same analysis from the previous section, and
investigate four refinement levels. The mixed-dimensional Poincaré constant
for this configuration corresponds to a value of CΩ,Γ ≈ 0.1838. The results are
shown in Table 3 and Table 4. As in the previous validation, we can see that the
majorants capture the local and global convergence tendency of all numerical
methods. Again, RT0-P0, MVEM-P0, and MPFA give quite similar results,
whereas TPFA showcase larger errors. As expected, efficiency indices again lie
within the stated bounds from Remark 16.

8 Numerical applications

In this section, we apply our estimators to numerical approximations of challeng-
ing problems solving the equations of incompressible flow in fractured porous
media. Importantly, since source terms are zero in both applications, by ap-
plying matching grids the residual errors are zero, and we are in the setting of
having an exact conservation property from the numerical approximation. From
Remark 16, we then know that the efficiency index for the primal-dual error will
be less than 2; even if the exact solution and error are both unknown.

8.1 Two-dimensional application

In this numerical experiment, we consider the benchmark case 3b from [13].
As shown in the left panel of Figure 1, the domain consists of ten (partially
intersecting) fractures embedded in a unit square matrix. The exact fracture

30



Table 4: Three-dimensional validation: Subdomain and interface errors.

hcoup εDF,Ω2
εR,Ω2;NC εR,Ω2;LC εDF,Ω1

εR,Ω1;NC εR,Ω1;LC εDF,Γ1
εDF,Γ2

R
T
0
-P

0 0.2625 2.35e-01 4.73e-02 2.55e-02 4.67e-03 1.56e-02 6.70e-03 5.05e-03 5.00e-03
0.1720 1.62e-01 3.08e-02 1.10e-02 4.53e-03 9.01e-03 2.04e-03 1.37e-03 1.37e-03
0.0827 8.69e-02 1.91e-02 3.91e-03 2.72e-03 5.17e-03 6.70e-04 4.07e-04 4.09e-04
0.0418 4.58e-02 1.01e-02 1.06e-03 1.40e-03 2.64e-03 1.70e-04 1.08e-04 1.09e-04

M
V
E
M
-P

0 0.2625 2.39e-01 4.73e-02 2.55e-02 5.78e-03 1.56e-02 6.70e-03 5.54e-03 5.49e-03
0.1720 1.64e-01 3.08e-02 1.10e-02 5.56e-03 9.01e-03 2.04e-03 1.50e-03 1.50e-03
0.0827 8.79e-02 1.91e-02 3.91e-03 3.05e-03 5.17e-03 6.70e-04 4.40e-04 4.41e-04
0.0418 4.61e-02 1.01e-02 1.06e-03 1.46e-03 2.64e-03 1.70e-04 1.13e-04 1.14e-04

M
P
F
A

0.2625 2.40e-01 4.73e-02 2.55e-02 5.04e-03 1.56e-02 6.70e-03 5.93e-03 5.86e-03
0.1720 1.66e-01 3.08e-02 1.10e-02 4.86e-03 9.01e-03 2.04e-03 1.56e-03 1.55e-03
0.0827 8.89e-02 1.91e-02 3.91e-03 2.82e-03 5.17e-03 6.70e-04 4.61e-04 4.62e-04
0.0418 4.65e-02 1.01e-02 1.06e-03 1.41e-03 2.64e-03 1.70e-04 1.14e-04 1.16e-04

T
P
F
A

0.2625 3.34e-01 4.73e-02 2.55e-02 4.88e-03 1.56e-02 6.70e-03 6.04e-03 5.11e-03
0.1720 2.63e-01 3.08e-02 1.10e-02 4.86e-03 9.01e-03 2.04e-03 1.35e-03 1.29e-03
0.0827 2.02e-01 1.91e-02 3.91e-03 2.85e-03 5.17e-03 6.70e-04 4.50e-04 4.39e-04
0.0418 1.97e-01 1.01e-02 1.06e-03 1.46e-03 2.64e-03 1.70e-04 1.02e-04 1.02e-04

Table 5: Error estimates for the two-dimensional application.

Mesh εΩ2;EC εΩ1;EC,C εΩ1;EC,B εΓ1,C εΓ1,B εΓ0 M⊕
p;EC M⊕

p,u;EC

R
T
0
-P

0 Coarse 7.39e-01 2.93e-01 2.98e-04 3.13e+03 1.52e-01 2.24e+01 9.94e+02 1.99e+03

Intermediate 5.95e-01 1.90e-01 2.77e-04 1.95e+03 1.00e-01 1.79e+01 6.20e+02 1.24e+03

Fine 4.30e-01 1.07e-01 2.78e-04 9.79e+02 5.15e-02 1.22e+01 3.15e+02 6.30e+02

M
V
E
M
-P

0 Coarse 7.29e-01 3.51e-01 1.44e-04 3.10e+03 1.46e-01 4.41e+01 9.84e+02 1.97e+03

Intermediate 5.91e-01 2.23e-01 1.27e-04 1.94e+03 9.43e-02 3.14e+01 6.17e+02 1.23e+03

Fine 4.28e-01 1.24e-01 1.18e-04 9.78e+02 4.80e-02 2.02e+01 3.15e+02 6.29e+02

M
P
F
A

Coarse 7.39e-01 3.13e-01 1.72e-04 3.03e+03 1.43e-01 3.39e+01 9.63e+02 1.93e+03

Intermediate 5.98e-01 2.01e-01 1.54e-04 1.89e+03 9.18e-02 2.55e+01 6.00e+02 1.20e+03

Fine 4.33e-01 1.12e-01 1.46e-04 9.49e+02 4.71e-02 1.68e+01 3.05e+02 6.10e+02

T
P
F
A

Coarse 7.52e-01 3.05e-01 1.76e-04 3.19e+03 1.48e-01 3.67e+01 1.01e03 2.02e+03

Intermediate 6.08e-01 1.96e-01 1.51e-04 1.95e+03 9.41e-02 2.61e+01 6.12e+02 1.22e+03

Fine 4.45e-01 1.09e-01 1.60e-04 1.00e+03 4.84e-02 1.86e+01 3.23e+02 6.46e+02

The results for M⊕
u;EC

are omitted since they are equal to M⊕
p;EC

.
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Figure 6: Two-dimensional benchmark problem and the errors associated with
the matrix and fractures for the coarse (left), intermediate (center), and fine
(right) grid resolutions. Fractures 4 and 5 are blocking, whereas the others
are conductive. The local bounds were obtained using MPFA. The results sug-
gest that subdomain diffusive errors are concentrated around fracture tips and
fracture intersections.

coordinates can be found in Appendix C of [13]. Fractures 4 and 5 represent
blocking fractures (K = 10−4 and κ = 1) whereas the others represent conduc-
tive fractures (K = 104 and κ = 108). The matrix permeability is set to one. A
linear pressure drop is imposed from left (p = 4) to right (p = 1), whereas no
flux is prescribed at the top and bottom of the domain.

The benchmark establishes three refinement levels; coarse, intermediate, and
fine, with approximately 1500, 4200, and 16000 two-dimensional cells. The
structure of the local contributions to the majorant (confer e.g. equation (59))
are shown in Figure 6, based on the approximate solution obtained by the MPFA
discretization.

In Table 5, we show the errors bounds for the three refinement levels. To
avoid numbering domains and interfaces, we refer to the matrix error as εΩ2,EC,
and group the fracture and interface errors by conductive and blocking. For
example, εΩ1,C,EC refers to the sum of the errors of 1d conductive fractures.

An important observation is that the persistent reduction of the majorant
M⊕

p,u;EC, together with the known upper and lower bounds on the efficiency
indexes established in Remark 16, provides a post factum verification of the
convergence of all the numerical methods considered.

The error estimates suggest that the contribution to the overall error bounds
are concentrated, primarily, on highly conductive interfaces (see the column
corresponding to εΓ1,C). On a more qualitative note, Figure 6 suggests that
subdomain diffusive errors are concentrated at the fracture tips and fracture
intersections, which is where singularities may typically be encountered [12].

8.2 Three-dimensional application

Our last numerical application is based on a modified version of the three-
dimensional benchmark 2.1 from [14]. The domain consists of nine intersecting
fractures embedded in a unit cube, as shown in the middle panel of Figure 1.
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Table 6: Error estimates for the three-dimensional application.

Mesh εΩ3;EC εΩ2;EC εΩ1;EC εΓ2 εΓ1 εΓ0 M⊕
p;EC M⊕

p,u;EC

R
T
0
-P

0 Coarse 6.17e-01 5.81e-04 3.16e-04 9.87e+02 3.63e-02 3.31e-02 5.03e+02 1.01e+03

Intermediate 4.55e-01 4.61e-04 1.58e-04 7.75e+01 8.86e-03 8.35e-04 3.40e+01 6.81e+01

Fine 3.86e-01 2.55e-04 9.60e-05 2.26e+01 4.63e-03 4.34e-04 1.07e+01 2.14e+01

M
V
E
M
-P

0 Coarse 6.07e-01 6.99e-04 2.77e-04 9.54e+02 7.48e-02 6.38e-02 4.66e+02 9.33e+02

Intermediate 4.55e-01 4.63e-04 1.65e-04 8.19e+01 9.96e-03 4.59e-03 3.59e+01 7.18e+01

Fine 3.86e-01 2.46e-04 9.17e-05 2.33e+01 4.00e-03 1.75e-03 1.11e+01 2.22e+01

M
P
F
A

Coarse 6.07e-01 7.00e-04 3.15e-04 1.05e+03 4.61e-02 1.69e-02 5.24e+02 1.05e+03

Intermediate 4.46e-01 4.88e-04 1.61e-04 8.42e+01 7.72e-03 2.31e-03 3.71e+01 7.42e+01

Fine 3.77e-01 2.53e-04 9.04e-05 2.37e+01 2.82e-03 9.36e-04 1.12e+01 2.24e+01

T
P
F
A

Coarse 6.32e-01 4.72e-04 2.26e-04 7.92e+02 4.21e-02 1.34e-02 3.76e+02 7.52e+02

Intermediate 4.48e-01 6.27e-04 1.40e-04 1.47e+02 1.56e-02 2.32e-03 6.82e+01 1.36e+02

Fine 4.07e-01 5.82e-04 8.72e-05 4.60e+01 7.97e-03 1.05e-03 2.04e+01 4.08e+01

The results for M⊕
u;EC

are omitted since they are equal to M⊕
p;EC

.

This results in an intricate network with 106 subdomains and 270 interfaces of
different dimensionality.

The original benchmark imposes an inlet flux (purple lower corner u = −1)
and an outlet pressure (pink upper corner p = 1), and for the rest of the ex-
ternal boundaries null flux. Since we have only detailed our results for zero
Neumann boundary conditions, we have replaced the inlet flux by a constant
pressure condition (p = 1) and modified the value of the outlet pressure (p = 0).
The benchmark assigns heterogeneous permeability to the matrix subdomain,
whereas the fractures are assumed to be highly conductive. For the complete
description of the benchmark, we refer to [14], and for an impression on how
the contributions to the majorant are distributed, see Figure 7. Here we show
the error estimates for the whole fracture network obtained with RT0-P0, where
it becomes evident that the subdomain diffusive errors are concentrated at the
inlet and outlet boundaries; refinement efforts should therefore focus on these
regions.

As in Section 8.1, we collect the local errors of subdomains and interfaces of
equal dimensionality. The results are summarized in Table 6. As in the previous
cases, we have local and global convergence for all four numerical methods.
Again, RT0-P0, MVEM-P0, and MPFA show very similar results, while TPFA
show larger errors.

As in the 2d case discussed above, the persistent reduction of the majorant
M⊕

p,u;EC, again serves as a verification of the convergence of all four numerical
methods.
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Figure 7: Subdomain diffusive error contributions to the majorant for the fine
grid resolution obtained with RT0-P0.

9 Conclusion

In this paper, we obtained a posteriori error estimates for mixed-dimensional
elliptic equations. Depending upon the level of accuracy at which residual bal-
ances can be approximated, we have derived four concrete versions of the majo-
rant; i.e.: for no mass-conservative, subdomain mass-conservative, locally mass-
conservative, and point-wise mass-conservative approximations. Furthermore,
we have demonstrated both theoretically and numerically that sharper bounds
can be obtained (for locally mass-conservative methods) using local Poincaré
constants instead of the global ones.

Our bounds have been thoroughly tested with numerical approximations ob-
tained with four locally mass-conservative methods of the lowest-order, namely:
RT0-P0, MVEM-P0, MPFA, and TPFA. We performed a detailed efficiency
analysis comparing the use of global and local Poincaré-Friedrichs constants in
two and three dimensions. In both validations, our upper bounds reflected the
optimal convergence rates of the numerical methods. In addition, we applied our
bounds to two- and three-dimensional community benchmark problems exhibit-
ing challenging fracture networks. Again, in both cases, the bounds reflected
the limitations and the convergence rates of the methods satisfactory.

To the best of our knowledge, the bounds obtained here are the first of their
kind to provide a practical tool to measure the error in numerical approxima-
tions to the equations modeling the incompressible, single-phase flow in generic
fractured porous media.
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mer. Anal., 33(2):652–686, 2013. ISSN 0272-4979. doi: 10.1093/imanum/
drs017.
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conforming approximations of the Sobolev space H1. Numer. Funct.
Anal. Optim., 26(7-8):925–952, 2005. ISSN 0163-0563. doi: 10.1080/
01630560500444533.

[46] L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for
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A Derivation of variational formulations

Here, we present the derivations for the primal and dual variational formulations
for the case of a single fracture immersed in a matrix.

A.1 Derivation of the primal weak form for a single frac-
ture

Substitute (1b) into (1a), multiply each term by q2 ∈ H1
0 (Ω2), and integrate

over Ω2. Similarly, substitute (1b), (3a), and (3b) into (2a), multiply each term
by q1 ∈ H1

0 (Ω1) and integrate over Ω1. Add the resulting equations to obtain

− 〈∇2 · K2∇2 p2, q2〉Ω2
− 〈∇1 · K1∇1 p1, q1〉Ω1

+ 〈κ1 (p1 − tr∂1Ω2
p2), q1〉Ω1

+ 〈κ2 (p1 − tr∂2Ω2
p2), q1〉Ω1

= 〈f2, q2〉Ω2
+ 〈f1, q1〉Ω1

. (77)

Using integration by parts, the first term of (77) can be expressed as

− 〈∇2 · K2∇2 p2, q2〉Ω2

= 〈K2∇2 p2,∇2 q2〉Ω2
−

2
∑

j=1

〈

tr∂jΩ2
(K2∇2 p2) · n2, tr∂jΩ2

q2
〉

∂jΩ2
,

= 〈K2∇2p2,∇2q2〉Ω2
−

2
∑

j=1

〈

λj , tr∂jΩ2
q2
〉

Γj
,

= 〈K2∇2p2,∇2q2〉Ω2
+

2
∑

j=1

〈

κj

(

p1 − tr∂jΩ2
p2
)

, tr∂jΩ2
q2
〉

Γj
. (78)

Here, we use the internal boundary conditions (1c) and (1d) and the definition
of the mortar fluxes (3a) and (3b). Analogously, integration by parts allows us
to write the second term of (77) as

− 〈∇1 · K1∇1 p1, q1〉Ω1
= 〈K1∇1 p1,∇1 q1〉Ω1

. (79)

Note that the boundary terms vanish due to the choice of boundary conditions.
Finally, we note that the third and fourth terms from (77) can be equivalently

written as

〈

κj

(

p1 − tr∂jΩ2
p2
)

, q1
〉

Ω1
=

〈

κj

(

p1 − tr∂jΩ2
p2
)

, q1
〉

Γj
, j ∈ {1, 2}. (80)

The proof is completed by substituting (78), (79), and (80) into (77) and group-
ing common terms.

A.2 Derivation of the dual weak form for a single fracture

Let us start with (13a). Multiply respectively (1b) and (2b) by v0,2 ∈ V0,2 and
v0,1 ∈ V0,1, integrate over the subdomains Ω2 and Ω1, use integration by parts
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to obtain
〈

K−1
2 u2, v0,2

〉

Ω2
=

〈

K−1
2 (u0,2 +R1λ1 +R2λ2), v0,2

〉

Ω2
= −〈∇2 p2, v0,2〉Ω2

= 〈p2,∇2 · v0,2〉Ω2
− 〈gD,2, tr∂DΩ2

v0,2 · n2〉∂DΩ2
. (81)

〈

K−1
1 u1, v0,1

〉

Ω1
=

〈

K−1
1 u0,1, v0,1

〉

Ω1
= −〈∇1 p1, v0,1〉Ω1

= 〈p1,∇1 · v0,1〉Ω1
− 〈gD,1, tr∂DΩ1

v0,1 · n1〉∂DΩ1
. (82)

Adding together (81) and (82) gives (13a). We now focus on (13b). First, we
use (1b) and multiply by the test functions Rjνj with νj ∈ L2(Γj) for j ∈ {1, 2},
integrate over Ω2, and apply integration by parts, to obtain:
〈

K−1
2 u2,Rjνj

〉

Ω2
=

〈

K−1
2 (u0,2 +R1λ1 +R2λ2),Rjνj

〉

Ω2
= −〈∇2 p2,Rjνj〉Ω2

= 〈p2,∇2 · (Rjνj)〉Ω2
−
〈

tr∂jΩ2
p2, tr∂jΩ2

(Rjνj) · n2

〉

∂jΩ2

= 〈p2,∇2 · (Rjνj)〉Ω2
−
〈

tr∂jΩ2
p2, νj

〉

∂jΩ2

= 〈p2,∇2 · (Rjνj)〉Ω2
−
〈

tr∂jΩ2
p2, νj

〉

Γj
. (83)

Next, we multiply the interface laws (3a) and (3b) by ν1 and ν2, respectively,
to get for j = {1, 2}
〈

κ−1
1 λj , νj

〉

Γj
= −〈p1, νj〉Γj

+
〈

tr∂jΩ2
p2, νj

〉

Γj
= −〈p1, νj〉Ω1

+
〈

tr∂jΩ2
p2, νj

〉

Γj
.

(84)
After adding (83) and (84) and canceling common terms, we obtain (13b). Fi-
nally, to obtain (13c), we multiply (1a) by q2 ∈ L2(Ω2) and (2a) by q1 ∈ L2(Ω1),
and integrate over their respective subdomains, and add the resulting equations.

B Proof of Theorem 1

Here, we present the proof of the upper bound of the error for the primal
variable, for the case of a single fracture immersed in a matrix.

Proof. Start by computing the difference between p = [p1, p2] ∈ H1
0 (Ω) + g and

an arbitrary function q = [q1, q2] ∈ H1
0 (Ω) + g in the energy norm (14):

|||p− q|||2 = 〈K2∇2(p2 − q2),∇2(p2 − q2)〉Ω2
+ 〈K1∇1(p1 − q1),∇1(p1 − q1)〉Ω1

+

2
∑

j=1

〈

κj

[

(p1 − q1)− tr∂jΩ2
(p2 − q2)

]

, (p1 − q1)− tr∂jΩ2
(p2 − q2)

〉

Γj
,

= 〈K2∇2p2,∇2(p2 − q2)〉Ω2
+ 〈K1∇1p1,∇1(p1 − q1)〉Ω1

+

2
∑

j=1

〈

κj

[

(p1 − q1)− tr∂jΩ2
(p2 − q2)

]

, (p1 − q1)− tr∂jΩ2
(p2 − q2)

〉

Γj

+ 〈−K2∇2q2,∇2(p2 − q2)〉Ω2
+ 〈−K1∇1q1,∇1(p1 − q1)〉Ω1

+

2
∑

j=1

〈

−κj

(

q1 − tr∂jΩ2
q2
)

, (p1 − q1)− tr∂jΩ2
(p2 − q2)

〉

Γj
. (85)
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By noticing that the first three terms of (85) add up to the right-hand side
of (6), and adding the identity

− 〈v0,2 +R1ν1 +R2ν2,∇2(p2 − q2)〉Ω2
− 〈v0,1,∇1(p1 − q1)〉Ω1

+ 〈∇2 · (v0,2 +R1ν1 +R2ν2), p2 − q2〉Ω2
+ 〈∇1 · v0,1 − ν1 − ν2, p1 − q1〉Ω1

+
2

∑

j=1

〈

νj , (p1 − q1)− tr∂jΩ2
(p2 − q2)

〉

Γj
= 0,

valid for any v0 ∈ V0 and ν ∈ L2(Γ) to (85), we obtain

|||p− q|||2 = 〈− (v0,2 +R1ν1 +R2ν2 +K2∇2q2),∇2(p2 − q2)〉Ω2

+ 〈− (v0,1 +K1∇1p1),∇1(p1 − q1)〉Ω1

+

2
∑

j=1

〈

−
[

νj + κj

(

q1 − tr∂jΩ2
q2
)]

, (p1 − q1)− tr∂jΩ2
(p2 − q2)

〉

Γj

+ 〈f2 −∇2 · (v0,2 +R1ν1 +R2ν2), p2 − q2〉Ω2

+ 〈f1 −∇1 · v0,1 + ν1 + ν2, p1 − q1〉Ω1
. (86)

Recognizing that since K2 is symmetric positive definite, it can be expressed

as K2 =
(

K
1/2
2

)2

, where K
1/2
2 is also symmetric positive definite, and therefore

self-adjoint. The square-root of the material coefficients can therefore be moved
to the second argument of the three first inner products in (86). After applying
the Cauchy-Schwarz inequality to each inner product of (86), one gets

|||p− q|||2 ≤
∥

∥

∥K
− 1

2

2 (v0,2 +R1ν1 +R2ν2 +K2∇2q2)
∥

∥

∥

Ω2

∥

∥

∥K
1
2

2 ∇2(p2 − q2)
∥

∥

∥

Ω2

+
∥

∥

∥K
− 1

2

1 (v0,1 +K1∇1p1)
∥

∥

∥

Ω1

∥

∥

∥K
1
2

1 ∇1(p1 − q1)
∥

∥

∥

Ω1

+
∥

∥

∥κ
− 1

2

1 [ν1 + κ1 (q1 − tr∂1Ω2
q2)]

∥

∥

∥

Γ1

∥

∥

∥κ
1
2

1 [(p1 − q1)− tr∂1Ω2
(p2 − q2)]

∥

∥

∥

Γ1

+
∥

∥

∥κ
− 1

2

2 [ν2 + κ2 (q1 − tr∂2Ω2
q2)]

∥

∥

∥

Γ2

∥

∥

∥κ
1
2

2 [(p1 − q1)− tr∂2Ω2
(p2 − q2)]

∥

∥

∥

Γ2

+ ‖f2 −∇2 · (v0,2 +R1ν1 +R2ν2)‖Ω2
‖p2 − q2‖Ω2

+ ‖f1 −∇1 · v0,1 + ν1 + ν2‖Ω1
‖p1 − q1‖Ω1

Applying the permeability-weighted Poincaré-Friedrichs inequality (40b) to the
terms ‖p1 − q1‖Ω1

and ‖p2 − q2‖Ω2
, the proof of the theorem is completed.

C Proof of Theorem 2

Here, we present the proof of our main theorem, which deals with the general
abstract estimates in a mixed-dimensional setting.
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Proof. (1) The proof for the bounds for the mD primal variable follows the one
presented in Appendix B, modulo its generalization to the mD setting and the
use of weighted norms on the residual terms. Start by computing the difference
between any q ∈ H1

0 (Ω) + g and p ∈ H1
0 (Ω) + g using (49), to get

|||p− q|||2 = 〈KD (p − q),D (p− q)〉Ω,Γ

= 〈KD p,D (p− q)〉Ω,Γ + 〈−KD q,D (p− q)〉Ω,Γ

= 〈f, p− q〉Ω + 〈−KD q,D (p− q)〉Ω,Γ

= 〈f, p− q〉Ω +
〈

−K− 1
2D q,K

1
2D (p− q)

〉

Ω,Γ

= 〈f−D · v, p− q〉Ω +
〈

−K− 1
2 (v+ KD q),K

1
2D (p− q)

〉

Ω,Γ
. (87)

Here, we used (49), (55), and added the fact that D· and D are adjoints.
By exploiting the orthogonality property (46) and then introducing the

weights to the second and third terms, (87) can be equivalently written as:

|||p− q|||2 = 〈f−D · v, πW (p− q)〉Ω +
〈

−K− 1
2 (v+ KD q),K

1
2D (p− q))

〉

Ω,Γ

=
〈

µ−1(f−D · v), µπW (p− q)
〉

Ω
+
〈

−K− 1
2 (v+ KD q),K

1
2D (p− q)

〉

Ω,Γ
.

(88)

Finally, applying the Cauchy-Schwarz inequality to the first and second
terms of (88), and then the norm definitions (49), (50), and (47), we arrive
at the desired bound:

|||p− q|||2 ≤ |||v+ KD q|||∗|||p− q|||+
∥

∥µ−1(f−D · v)
∥

∥

Ω
‖πW (p − q)‖W,µ

≤ |||v+ KD q|||∗|||p− q|||+
∥

∥µ−1(f−D · v)
∥

∥

Ω
|||p− q||| ≤ M(q, v, f, µ)|||p− q|||.

(89)

(2) The proof for the bounds for the dual variable is given next. We remark
that an alternative proof based on a generalized abstract estimate (see [26], The-
orem 6.1) can be used to obtain equivalent upper bounds after its generalization
to the mD setting.

We start by adding the square of the primal and dual error to obtain:

|||p− q|||2 + |||u− v|||2∗ = 〈KD (p − q),D (p− q)〉Ω,Γ +
〈

K−1(u− v), u− v
〉

Ω,Γ

=
〈

u+ KD q,K−1u+ D q
〉

Ω,Γ
+
〈

K−1(u− v), u− v
〉

Ω,Γ

=
〈

u− v+ v+ KD q,K−1u− K−1v+ D q+ K−1v
〉

Ω,Γ
+
〈

K−1(u− v), u− v
〉

Ω,Γ

=
〈

v+ KD q,K−1v+ D q
〉

Ω,Γ
+ 2〈u− v,−D (p− q)〉Ω,Γ

=
〈

K− 1
2 v+ K

1
2D q,K− 1

2 v+ K
1
2D q

〉

Ω,Γ
+ 2〈u− v,−D (p− q)〉Ω,Γ. (90)

Here, we used the norm definitions (49) and (50) together with the mD con-
stitutive relationship (29a).
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Using partial integration, mass conservation (29b), and the orthogonality
property (46), the second term of (90) can be equivalently written as

〈u− v,−D (p− q)〉Ω,Γ = 〈D · (u− v),−(p− q)〉Ω = 〈f−D · v,−(p− q)〉Ω

= 〈f−D · v,−πW (p− q)〉Ω =
〈

µ−1(f−D · v),−µπW (p− q)
〉

Ω
. (91)

Using the Cauchy-Schwarz inequality twice and the definition of the weighted
norms (47), (91) can be estimated as

∣

∣

∣〈u− v,−D (p− q)〉Ω,Γ

∣

∣

∣ ≤
∥

∥µ−1(f−D · v)
∥

∥

Ω
‖πW (p − q)‖W,µ

=
∥

∥µ−1(f−D · v)
∥

∥

Ω
|||p− q||| ≤

1

2

(

∥

∥µ−1(f−D · v)
∥

∥

2

Ω
+ |||p− q|||2

)

. (92)

Substituting (92) into (90) and applying the Cauchy-Schwarz inequality to
the first term, we arrive at,

|||u− v|||2∗ ≤ |||v+ KD q|||2∗ +
∥

∥µ−1(f−D · v)
∥

∥

2

Ω
,

from which we conclude that (56) indeed holds.
(3) To prove the upper bound for the primal-dual pair, we choose an arbitrary

pair (q, v) ∈ (H1
0 (Ω) + g)×H(div; Ω,Γ;U), and measure its difference with the

exact solution (p, u) ∈ (H1
0 (Ω) + g)×H(div; Ω,Γ) in the norm (52), to get

||[(p − q, u− v)]|| = |||p− q|||+ |||u− v|||∗ +
∥

∥µ−1D · (u− v)
∥

∥

Ω

≤ 2M+
∥

∥µ−1D · (u− v)
∥

∥

Ω
,

where we use the bounds (55) and (56).
For the proof of the lower bound, we start from the definition of the majorant,

to get

M = |||v+ KD q|||∗ +
∥

∥µ−1(f−D · v)
∥

∥

Ω

≤ |||u− v|||∗ + |||KD (p − q)|||∗ +
∥

∥µ−1(f−D · v)
∥

∥

Ω
= ||[(p− q, u− v)]||.

This completes the proof for the two-sided bounds and the abstract theorem.

D Exact solutions to numerical validations

Herein, we provide the exact expressions for the pressure, velocities, mortar
fluxes, and source terms for the numerical validations presented in Section 7.

We will conveniently define the following quantities for notational compact-
ness:

α(x) = x1 − 0.50,

β1(x) = x2 − 0.25, β2(x) = x2 − 0.75,

γ1(x) = x3 − 0.25, γ2(x) = x3 − 0.75,

where x = [x1, x2, x3].
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D.1 Exact solutions for the 1d/2d validation

The matrix subdomain Ω2 is decomposed into three regions, i.e. Ω2 = ∪3
k=1Ω

k
2 ,

given by:

Ω1
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25} ,

Ω2
2 = {x ∈ Ω2 : 0.25 ≤ x2 < 0.75} ,

Ω3
2 = {x ∈ Ω2 : 0.75 ≤ x2 < 1.00} .

Let us now define the distance function d(x) from Ω2 to Ω1. That is,

d(x) =











(

α(x)2 + β1(x)
2
)0.5

, x ∈ Ω1
2

(

α(x)2
)0.5

, x ∈ Ω2
2

(

α(x)2 + β2(x)
2
)0.5

, x ∈ Ω3
2

, (93)

and the bubble function ω(x):

ω(x) =

{

β1(x)
2β2(x)

2, x ∈ Ω2
2

0, otherwise
. (94)

In Table 7, we include the exact solutions for all the variables of interest.
Note that the parameter n controls the regularity of the solution. For this
particular validation, a value of n = 1.5 was adopted.

D.2 Exact solutions for the 2d/3d validation

Analogously to the previous case, we decompose the three-dimensional matrix
Ω2 into nine subdomains, i.e. Ω2 = ∪9

k=1Ω
k
2 , given by

Ω1
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25, 0.00 < x3 < 0.25} ,

Ω2
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25, 0.25 ≤ x3 < 0.75} ,

Ω3
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25, 0.75 ≤ x3 < 1.00} ,

Ω4
2 = {x ∈ Ω2 : 0.25 ≤ x2 < 0.75, 0.00 < x3 < 0.25} ,

Ω5
2 = {x ∈ Ω2 : 0.25 ≤ x2 < 0.75, 0.25 ≤ x3 < 0.75} ,

Ω6
2 = {x ∈ Ω2 : 0.25 ≤ x2 < 0.75, 0.75 ≤ x3 < 1.00} ,

Ω7
2 = {x ∈ Ω2 : 0.75 ≤ x2 < 1.00, 0.00 < x3 < 0.25} ,

Ω8
2 = {x ∈ Ω2 : 0.75 ≤ x2 < 1.00, 0.25 ≤ x3 < 0.75} ,

Ω9
2 = {x ∈ Ω2 : 0.75 ≤ x2 < 1.00, 0.75 ≤ x3 < 1.00} .
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Table 7: Exact solutions for the 1d/2d validation.

p2 =
dn+1 + ωd Ω2

2

dn+1
2 Ω2 \ Ω

2
2

u2 =

−dn+1(n+ 1)
[

α β1

]

Ω1
2

−d
[

α−1 (ω + dn(n+ 1)) 2β2
1β2 + 2β1β

2
2

]

Ω2
2

−dn+1(n+ 1)
[

α β2

]

Ω3
2

f2 =

−d−2(n+ 1)
(

2dn+1 + α2dn−1(n− 1) + β2
1d

n−1(n− 1)
)

Ω1
2

−2d (β1(β1 + 2β2) + β2(2β1 + β2))− dn−1n(n+ 1) Ω2
2

−d−2(n+ 1)
(

2dn+1 + α2dn−1(n− 1) + β2
2d

n−1(n− 1)
)

Ω3
2

λ1 = ω Γ1

λ2 = ω Γ2

p2 = 0 ∂1Ω2

p2 = 0 ∂2Ω2

p1 = −ω Ω1

u1 =
[

0 2β2
1β2 + 2β1β

2
2

]

Ω1
∑

j∈Ŝ1
λj = 2ω Ω1

f1 = 8β1β2 + 2(β2
1 + β2

2)− 2ω Ω1

The distance function d2(x) from Ω2 to Ω1 is now given by

d2(x) =







































































(

α(x)2 + β1(x)
2 + γ1(x)

2
)0.5

, x ∈ Ω1
2,

(

α(x)2 + β1(x)
2
)0.5

, x ∈ Ω2
2,

(

α(x)2 + β1(x)
2 + γ2(x)

2
)0.5

, x ∈ Ω3
2,

(

α(x)2 + γ1(x)
2
)0.5

, x ∈ Ω4
2,

(

α(x)2
)0.5

, x ∈ Ω5
2,

(

α(x)2 + γ2(x)
2
)0.5

, x ∈ Ω6
2,

(

α(x)2 + β2(x)
2 + γ1(x)

2
)0.5

, x ∈ Ω7
2,

(

α(x)2 + β2(x)
2
)0.5

, x ∈ Ω8
2,

(

α(x)2 + β2(x)
2 + γ2(x)

2
)0.5

, x ∈ Ω9
2,

(95)

and the bubble function ω(x):

ω(x) =

{

β1(x)
2β2(x)

2γ1(x)
2γ2(x)

2, x ∈ Ω5
2

0, otherwise
. (96)

In Table 8, we show the exact solutions for all the variables of interest. Once
again, a value of n = 1.5 is adopted for this validation.
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Table 8: Exact solutions for the 2d/3d validation.

p2 =
dn+1 + ωd Ω2

2

dn+1
2 Ω2 \ Ω2

2

u2 =

−dn−1(n+ 1)
[

α β1 γ1
]

Ω1
2

−dn−1(n+ 1)
[

α β1 0
]

Ω2
2

−dn−1(n+ 1)
[

α β1 γ2
]

Ω3
2

−dn−1(n+ 1)
[

α 0 γ1
]

Ω4
2

−d
[

α−1(ω + dn(n+ 1)) 2β2
1β2γ

2
1γ

2
2 + 2β1β

2
2γ

2
1γ

2
2 2β2

1β
2
2γ

2
1γ2 + 2β2

1β
2
2γ1γ

2
2

]

Ω5
2

−dn−1(n+ 1)
[

α 0 γ2
]

Ω6
2

−dn−1(n+ 1)
[

α β2 γ1
]

Ω7
2

−dn−1(n+ 1)
[

α β2 0
]

Ω8
2

−dn−1(n+ 1)
[

α β2 γ2
]

Ω9
2

f2 =

−d−2(n+ 1)
(

3dn+1 + α2dn−1(n− 1) + β2
1d

n−1(n− 1) + γ2
1d

n−1(n− 1)
)

Ω1
2

−d−2(n+ 1)
(

2dn+1 + α2dn−1(n− 1) + β2
1d

n−1(n− 1)
)

Ω2
2

−d−2(n+ 1)
(

3dn+1 + α2dn−1(n− 1) + β2
1d

n−1(n− 1) + γ2
2d

n−1(n− 1)
)

Ω3
2

−d−2(n+ 1)
(

2dn+1 + α2dn−1(n− 1) + γ2
1d

n−1(n− 1)
)

Ω4
2

−2d
(

β2
1β

2
2 (γ1 (γ1 + 2γ2) + γ2 (2γ1 + γ2)) + γ2

1γ
2
2 (β1 (β1 + 2β2) + β2 (2β1 + β2))

)

Ω5
2

−α−2ωdn+1(n+ 1)2 − α−2ωdn+1(n+ 1)

−d−2(n+ 1)
(

2dn+1 + α2dn−1(n− 1) + γ2
2d

n−1(n− 1)
)

Ω6
2

−d−2(n+ 1)
(

3dn+1 + α2dn−1(n− 1) + β2
2d

n−1(n− 1) + γ2
1d

n−1(n− 1)
)

Ω7
2

−d−2(n+ 1)
(

2dn+1 + α2dn−1(n− 1) + β2
2d

n−1(n− 1)
)

Ω8
2

−d−2(n+ 1)
(

3dn+1 + α2dn−1(n− 1) + β2
2d

n−1(n− 1) + γ2
2d

n−1(n− 1)
)

Ω9
2

λ1 = ω Γ1

λ2 = ω Γ2

p2 = 0 ∂1Ω2

p2 = 0 ∂2Ω2

p1 = −ω Ω1

u1 =
[

0 2γ2
1γ

2
2(β1β

2
2 + β2

1β2) 2β2
1β

2
2(γ1γ

2
2 + γ2

1γ2)
]

Ω1
∑

j∈Ŝ1
λj = 2ω Ω1

f1 = β2
1γ

2
2 + 4β1β2γ

2
2 + β2

2γ
2
1 + 4β2

2γ1γ2 + 2β2
2γ

2
2 − 2ω Ω1
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