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Abstract 

Cholera can kill up to 50% of patients who do not receive adequate rehydration; however, the case fatality rate can 

be as low as 1% with prompt treatment. As of November 2020, the World Health Organization reported 2.5 million 

suspected cholera cases and nearly 4,000 deaths in Yemen. Humanitarian response in Yemen is particularly needed 

when epidemics occur during or as a consequence of conflict and political upheaval. In 2017, the main problem was 

a lack of adequate cholera preparedness and response: vaccination implementation was delayed (after 16 months 

into the epidemic); water and sanitation (WASH) intervention was the primary preventive measure. 

Lessons learned from Yemen's cholera response are well-documented, with the majority taking a qualitative 

approach. This study aims to quantify and evaluate the lessons learned from the 2017 and 2018 cholera responses 

using system dynamics modeling. The model is useful to understand impactful policies before, during, and after 

cholera epidemics. A user-friendly interface was created to facilitate policy testing and engage multi-sector 

stakeholders in more effective communication. The model built upon a classic infection structure with empirically 

grounded operational structures: oral rehydration corner, diarrhea treatment center, WASH, vaccination, and data 

surveillance system. The data collected during the model's development and validation are epidemiological data: 

and cholera response (interventions) data.  

The findings show a profound difference of interventions for asymptomatic and symptomatic infected individuals, 

especially the ratio between the two disease states is 75% to 25%, respectively. For prevention, if vaccination began 

in June 2017 (close to the peak of epidemic) with the same number of vaccines (that were delivered 16 months into 

the epidemic) would still be effective in longer term if there is a following second vaccination campaign. Second, a 

single dose vaccine results in a more favorable short-term response, which has significant implications for epidemic 

management under severe logistical and security constraints. The findings highlight the unintended consequences 

resources are disproportionately directed toward WASH intervention. Such policies are likely to result in the "Shifting 

the Burden" system archetype, an overdependence on reactive quick fixes that results in fewer resources for other 

interventions. Deconstructing the interventions from historical implemented interventions (BASE) to no intervention 

(Business as Usual [BAU]) has demonstrated significant impacts from the humanitarian cholera response in 2017. 

The model simulation shows 55% more deaths if nothing has been done. The simulation result also projects a 

potential 30% of death can be prevented if interventions, can be initiated earlier.  

The insights gained from the intervention are not only applicable to the cholera epidemic but also to other infectious 

disease response modeling in general. The next step is to adapt this Al-Hudaydah model to other cholera-affected 

countries through collaboration with humanitarian actors.  
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1. Introduction 

1.1 Cholera and response  

Cholera is an acute diarrheal infection caused by consuming food or water contaminated with the bacterium Vibrio 

cholerae (Médecins Sans Frontières, 2018; WHO, 1993). Vibrio cholerae causes profuse watery diarrhea and 

vomiting that can quickly progress to dehydration and hypovolaemic shock, killing up to 50% of patients who do not 

receive adequate rehydration (Médecins Sans Frontières, 2018). Even healthy people can die within hours 

if developing severe cholera symptoms. The good news is that if symptomatic individuals receive healthcare 

treatment in time, the case fatality rate can be less than 1%. How does cholera kill between 21,000 and 143,000 

people globally each year? The World Health Organization (WHO) stated cholera as an inequitable disease that 

disproportionately affects the poorest and most vulnerable people (Global Task Force on Cholera Control [GTFCC], 

2022). 

Cholera treatment, control, and prevention are the responsibility of national government health ministries and non-

governmental organizations (NGOs) (Federspiel and Ali, 2018; Harpring et al., 2020; Spiegel et al., 2018).  Once cases 

are identified, interventions to control and prevent cholera include surveillance and case management (treatment), 

WASH interventions, provision of oral cholera vaccinations, and strengthening education programs (Davis, Narra and 

Mintz, 2018; Médecins Sans Frontières, 2018; WHO, 2021). While universal access to clean water and sanitation is 

the long-term solution to cholera, this is typically linked with the country's economic and political development; and 

is therefore vulnerable to environmental and humanitarian crises (Spiegel et al., 2018).  

WHO (2020) reported 2.5 million suspected cholera cases and nearly 4,000 deaths in Yemen as of November 2020. 

The literature identifies two groups of problems that allowed an epidemic of this magnitude: Yemen's precarious 

conditions and the humanitarian response. 

1.1.1 Yemen's precarious conditions 

Yemen has been devastated by a complex civil war between government forces in the south backed by the US and 

UK-backed Saudi-led Coalition Forces (SLC) and Houthi forces in the north allied with former President Saleh's forces 

since 2014 (Burki, 2016; Spiegel et al., 2018). Yemen was classified as a level 3 emergency by the United Nations 

(UN) in 2015, triggering the highest level of resource mobilization across the humanitarian system (Spiegel et al., 

2018). By 2016, only 46% of all healthcare facilities remained operational. In addition to severely damaged water 

and sewage infrastructure, the dire situation has been exacerbated by a lack of energy (electricity and fuel), spare 

parts, operating and maintenance funds, and three years of unpaid civil servants (Burki, 2016; Federspiel and Ali, 

2018; Spiegel et al., 2018; Qadri, Islam and Clemens, 2017).  

 Furthermore, most civilians' movement is confined by the ongoing conflicts; and food insecurity has put more than 

half of the population at risk of famine. Yemen has the highest number of people in need of humanitarian assistance 
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of any country. On September 28, 2016, a large-scale cholera epidemic began. The number of people in need 

reached as high as 20 million in 2017 (ECHO, 2021).  

1.1.2 Cholera response 

Humanitarian organizations prepare for, respond to, and assist in disasters, whether man-made or natural, or a 

combination of the two. Humanitarian interventions are particularly needed when disasters occur during or as a 

consequence of conflict and political upheaval (Harpring et al., 2020; Rocca, 2021). The man-made and 

environmental factors of the cholera epidemic complicate how, when, and where the international aid resources are 

distributed (Baboo et al., 2022; Harpring et al., 2020). 

Lessons learned from Yemen's cholera response are well documented (Al-Mekhlafi, 2018; Bellizzi, 2021; Federspiel 

and Ali, 2018; Spiegel et al., 2018; Qadri, Islam, and Clemens, 2017). The primary issue was that Yemen lacked an 

adequate cholera preparedness and response plan, despite previous outbreaks, regional endemicity, and active 

conflict. The timeline of the cholera response in Yemen is presented in Figure 1, including the cholera prevalence. 

The highlighted vaccination campaign in Figure 1 is a question asked by most of the lessons learned studies: Could 

the largest cholera outbreak ever recorded have been avoided or at least managed, had enough Oral Cholera Vaccine 

(OCVs) been deployed earlier on in the conflict? (Spiegel et al., 2018). 

The reviewed studies concluded that the delayed response was due to two factors: first, a lack of a functioning 

surveillance system; second, multi-sector coordination structures were confused with the mandates and roles of the 

clusters, cholera task force, and incident management system; either overlapping or incompletely developed. Lack 

of coordination across these areas hampered management, technical output, and agency trust (Bellizzi, 2021; Burki, 

2016; Federspiel and Ali, 2018; Harpring et al., 2020; Spiegel et al., 2018). 

The overall recommendations focus on improving the laboratory and surveillance capacities and collaboration across 

sectors. These recommendations are repeatedly outlined in lessons learned studies conducted not only in Yemen 

but also in other countries experiencing cholera outbreaks. The key questions revolve around: How can the 

recommendation be implemented? How does one actualize what ought to be done into how it can be done? 

1.2 Ending cholera by 2030: A Global Roadmap   

The Global Task Force on Cholera Control (GTFCC) brings together more than 50 institutions (including governments, 

non-governmental organizations (NGOs), academic institutions, and United Nations agencies) to adopt a strategy to 

end cholera by 2030 and to reduce cholera deaths by 90% within the next decade (GTFCC, 2020). The GTFCC is built 

on three pillars that parallel the Yemen lessons learned: early detection and response to outbreaks, integrated 

prevention strategies, and country-to-country coordination. To facilitate early response, the task force and several 

Yemen lessons learned studies argued for the use of modeling to guide and assess cholera control measures, 

particularly vaccination (Federspiel and Ali, 2018; Parker et al., 2017; Qadri et al., 2017). 



11 | P a g e  
 

 

Figure 1. Timeline of key events in Yemen cholera epidemic from 2016 to 2018, weekly number of cases (Spiegel et 

al., 2018).

1.3 Why faster can be slower: Shifting the burden archetype 

Barciela et al. (2021) has developed a Cholera Risk Model (CRM) for cholera control in Yemen. It is a predictive tool 

that integrates data on rainfall, temperature, and social determinants such as human mobility and water security to 

determine the risk of cholera trigger and transmission. Instead of a firefighting alarm, the CRM acts as a waterfighting 

alarm, dispatching water fighters whenever the system detects excessive rainfall. For example, with the rainfall 

forecast, the model assigns districts to one of three categories: 1 (low risk), 2 (moderate risk), or 3 (extreme risk) 

(high).  

Humanitarian actors such as UNICEF then respond by increasing water system chlorination, sewer clearing, water 

truck preparation, and risk communication. Without a doubt, WASH intervention is critical for preventing and 

controlling cholera transmission; thus, implementing WASH rapidly has a significant impact. However, Barciela et al. 

(2021) noted that UNICEF is starting to notice fatigue, both the beneficiaries (Yemenis) and the humanitarian actors. 

The following question is: Can implementing WASH rapidly be the answer to preventing cholera transmission? Are 

the actions being taken in response to acute problems (in this case, a cholera outbreak), reinforce the use of quick 

fixes? Is this a sign of the "Shifting the Burden" systems archetype? 
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An epidemiologist, who was interviewed in Spiegel et al. (2018) study, asked a critical question, "Why the second 

wave was so big, even with rainy season (it is a factor), but why was it so massive'. The interviewee response indicates 

that studies or predictive tools that focus solely on the exogenous factors on cholera transmission such as rain and 

precipitation is insufficient to understand the complexity of the problem. Recognizing endogenous Susceptible-

Infected-Recovered (SIR) feedback loops can shed light on such question.  

Harpring et al. (2022) study used system dynamics (SD) causal loop diagram to visualize the compounding factors 

influencing the cholera outbreak in Yemen. Along with the SIR dynamics, they discovered a strong connection 

between humanitarian response and the existing infrastructure development to the cholera epidemic. 

Pryut (2013) developed a cholera epidemic SD model for Zimbabwe that aimed for introductory System Dynamics 

courses. The model tested two policies: sanitary infrastructure and health services state. The policy impacts on the 

SIR structures are tested through the percentage change on these two policy parameters instead of detail 

operational policy structures.  

On the other hand, ordinary differential equation cholera models were reviewed and half of them contain only SIR 

model structure (Fung, 2014). To study the implications of different interventions and testing strategies, the SIR 

model must be extended with intervention structures. The other half of cholera transmission models included a 

maximum of three interventions focusing mainly on vaccination, antibiotics, and water provision. A model with more 

interventions does not necessarily mean better; it largely depends on the model objective and boundary. This 

cholera response model aims to identify the dynamic structures of humanitarian responses in Al-Hudaydah; hence, 

most treatment and preventive interventions are included.  

Cholera control and death reduction need a multifaceted approach. None of the reviewed models include structures 

of both asymptomatic and symptomatic individuals as well as WASH and health interventions. In extending the 

existing system dynamics models, this cholera response model bridge the endogenous feedbacks driving cholera 

epidemic dynamics with empirically-grounded operational structures.  

1.4 Research objectives 

1. Identify the dynamic structures of humanitarian responses that build upon the classic infection (epidemiological) 

SD models. 

2. Identify leverage points and test recommendations from Yemen cholera response lessons learned literature. 

3. Use the developed cholera response model for humanitarian preparedness and humanitarian multi-sectors 

cholera response communication. 
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1.5 Research Questions 

1.1 What are the driving factors which exacerbate the cholera epidemic? 

1.2 What are the operational dynamics of the identified factors relating to the cholera epidemic? What are the 

feedback mechanisms that responsible for the cholera epidemic? 

2.1 What are the high-impact interventions that can potentially alleviate the cholera epidemic in Yemen? 

2.2 What were the lessons learned from the past interventions? 

3.1 How can the model be used as a tool to have quick response to contain outbreaks at an early stage? 

3.2 How can the model be used for humanitarian multi-sectors cholera response communication? 

 

2. Methodology 

2.1 System Dynamics and values of modeling 

System Dynamics (SD) is the research methodology used in this study. Given the fact that SD incorporates both 

qualitative and quantitative components, it can be considered a mixed-methods research approach (Sterman, 2000). 

Infectious disease research has demonstrated that using SD models enables the exploration of alternative scenarios, 

the identification of previously unknown feedback loops, unintended consequences, and the identification of 

potential policy leverage points (Harpring et al., 2020; Pruyt, 2013; Rahmandad et al., 2021; Struben, 2020).  

SD is best suited to providing dynamic projections of the course of a humanitarian crisis and exploring the 

implications of various interventions. SD can therefore shed light on how to improve humanitarian response to meet 

the diverse needs of populations (Gonçalves, 2011; Rocca, 2021). In comparison to network and agent-based 

modeling, Rocca's (2021) research determined that System Dynamics is the most appropriate technique for piloting 

complex systems modeling in the humanitarian sector because it enables humanitarian response simulation even in 

contexts with limited data. Rocca’s (2021) findings highlighted a need to model Yemen's cholera response, thus 

inspired the building of this cholera response model.  

2.2 Specific considerations for this project  

This cholera response model is exactly what its name implies: cholera as SIR endogenous feedback loops, and 

response as exogenous operational dynamics balancing effect on the SIR. Wheat (2015) and Sterman (2000) 

emphasized that policy design is much more than changing the value of parameters. The operational policy structure 

should specifically include tangible resources, perceptual adjustments, institutional capacity, and time required to 

implement changes (delay) that result in the desired parameter value (Wheat, 2015). 

This cholera response model aims to build an operational component of cholera intervention implementation. The 

following question is how such a structure can be helpful to humanitarian actors. Usually, a programme manager 
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considers two main aspects during proposal development. What is the current need (also referred to as people in 

need - demand), and how many potential beneficiaries can be reached by the project (activities outputs - supply) 1. 

Hence, to make this cholera response model useful to humanitarian actors, the intervention inputs (in the model 

interface) should be constructed in a way that a programme manager can navigate the model interface quickly and 

effectively; with the objective to increase the users’ trust, acceptance, and adoption of the tool. This is especially 

crucial in an emergency response when the pressure is high, time to make decisions is scarce.  

Wheat (2015) provided an example of a vaccination policy structure that included inputs such as vaccine demand, 

vaccine supply, vaccination rate, staff size, and productivity. A programme manager and staff, on the other hand, 

may struggle to make sense of vaccination rates. In the author's experience as an aid worker, rate was rarely used 

in activity inputs. Additionally, the reviewed humanitarian literature makes relatively limited use of vaccination rates 

(note that this is about intervention inputs, humanitarian actors make use of rates such as death or infection rates 

in other aspects). For instance, during a multi-sector meeting to plan a cholera emergency response, a programme 

manager from WHO or UNICEF may state, "If 500,000 vaccines (input 1) can be procured in 30 days (delay - input 2), 

our team will be able to conduct a seven-day vaccination campaign (input 3) beginning May 1." (Input 4).  

Therefore, it is more helpful for this cholera response model to have numerical inputs rather than rate inputs (this 

applies to interventions other than vaccination in this model). Also, the programme manager is usually well aware 

of the team's capacity and will adjust it in accordance with available resources; staff productivity is unnecessary in 

this case. 

Furthermore, similar to the SIR core structure, the policy structure determines the type of data required. For 

example, it is difficult to collect data on the total number of staff and their productivity across all humanitarian 

organizations. OCHA (2017) WASH database records only the types of interventions implemented, the number of 

people reached, and the timeframe.  Fung concluded that while illustrating ranges of possibilities (impacts of 

interventions in cholera models) is beneficial, future studies should be designed to provide data to parameterize 

these models. 

This model collected data of each intervention for three main reasons. First, the historical data obtained results from 

all implemented interventions in 2017. Quantifying impacts from interventions should be done from the beginning 

of the modeled horizontal time together with the core SIR structure in replicating the historical data. Second, while 

this model has not yet been validated with expert inputs due to the study's resource constraints, incorporating 

historical data increases confidence in the model, particularly for uncertain parameters. Finally, the data indicate 

past implementation challenges. For instance, the starting date of the interventions; the maximum number of people 

that could be supported; the preparation (delay) that is needed for the intervention implementation. With the data, 

the policy testing in the model will be structured within a feasible range.  

 
1 This is based on the author personal opinion from working experience in the humanitarian field: as a monitoring and 
evaluation specialist, and a project officer, in managing and implementing projects. 
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2.3 Data collection 

The data collected during the model's development and validation can be classified into two categories: 

Epidemiological data: information on the characteristics of Vibrio cholerae infections (e.g. duration of infection, 

severity proportions), as well as their prevalence in Al-Hudaydah governorate (e.g. number of suspected and 

confirmed cases, deaths). 

Cholera response (interventions) data: WASH sector (OCHA, 2017) and health sector (EOC, 2018; UNICEF, 2018). 

Data quality issues have been regarded as a significant obstacle to an effective humanitarian response to the cholera 

epidemic. Inadequate access to health facilities may have resulted in underestimating the cholera burden, most 

notably mortality (Spiegel, 2018). For example, infected individuals who choose traditional medicine or private clinics 

over these specialized treatment centers are not captured by the surveillance system. Even mortality statistics are 

subject to reporting errors when deaths occur beyond the treatment facilities. On the other hand, Camacho et al. 

(2018) stated that overreporting of other AWD cases was likely to contribute to underestimates of the epidemic's 

case fatality rate. 

Regardless of the lack of data, policy decisions must be made, frequently under high uncertainty and pressure 

conditions. Where a lack of data makes precise predictions impossible, simulation models may still provide valuable 

insights to aid decision-making under unknown circumstances. Such scientifically informed exploration can add 

clarity to decisions, allowing for more effective policy choices. The model analysis chapter discusses how this cholera 

response model incorporates structures to account for over-and under-reporting. 

2.4 Research ethics  

The ethical concerns about the research participants are not applicable since this study does not involve collecting 

primary data. While modeling can help explore solutions to complex problems, it also increases the stakes: Alongside 

the possibility of real benefit comes the risk of real harm (Lim, 2021). To be aware of such risk, one requires reflection, 

not only on the modeler positionality but throughout the whole modeling process. Along with reflection for action, 

it is a modeler's responsibility to adhere to best practices in developing, testing, and documentation models 

following guidelines in the SD field (Barlas, 1996; Rahmandad and Sterman, 2012).  

Since the cholera model aimed to understand the lessons learned in 2017 to 2018, the main purpose is not to 

recommend specific policies. Limitations and uncertainties in both parameter values and structural components of 

the cholera model, as well as a lack of Yemen field work, limit the model’s ability to be used as a policy 

recommendation tool at its current iteration (Gkini, 2021).
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Table 1. Summary of feedback loops in SIR components. 

 

  

Infectious states Treatment Loops Shown 

Asymptomatic 
(75%) 

No 
Asymptomatic infected loop R1 

Asymptomatic recovered loop B1 

Mild symptom 
(15%) 

No Untreated mildly infected loop R2 

No Untreated mildly recovered loop B2 

Yes Treated mildly infected loop R3 

Yes Treated mildly recovered loop B3 

Severe symptom 
(10%) 

No Untreated severe infected loop R4 

No Untreated severe recovered loop B4 

Yes Treated severe recovered loop B5 

Figure 2. Core SIR cholera infection stock and flow diagram provides an overview of the key 
population groups and the transitions among them. 
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3. Model and Policy Analysis 

3.1. Cholera Susceptible-Infected-Recovered, SIR 

In brief, the cholera response model is an extended SIR model that integrates the epidemic response's operational 

dynamics. Building on Harpring et al. (2020) Yemen cholera response - causal loop diagram, and Pruyt’s model (2009) 

that simulates the 2008 cholera outbreak in Zimbabwe, this section will address the research question: What are the 

driving factors which exacerbate the cholera epidemic? 

Al-Hudaydah governorate had a population of 3,238,199 in 2017. (OCHA, 2017). In an SIR model, population are 

divided into several compartments called stocks, depending on their status of being susceptible to the infection (S), 

being infected and infectious (I), and having recovered from the infection (R) (Sterman, 2000). Individuals in each 

stock are assumed to be homogeneously mixing. Figure 2 is a stock and flow diagram illustrating the SIR major 

feedback loops. 

3.1.1 Indirect infection 

This model only incorporates indirect infection through contaminated water by infected individuals. When 

susceptible individuals become infected with cholera, they shift to the recently infected population after one day. 

The rate of cholera infection is a product of the indirect degree of infection and the size of the susceptible population 

(S). In turn, the indirect degree of infection depends on the connectedness of aquifers and smoothed fraction of 

contaminated water.  

Although sporadic cholera cases may occur as a result from ingestion of insufficiently cooked seafood contaminated 

with Vibrio cholerae, humans are the primary reservoir for the pathogen during periods of active transmission 

(epidemic) via fecal contamination of drinking water or food (Davis, Narra, and Mintz, 2018; Médecins Sans 

Frontières, 2018; Mwasa and Tchuenche, 2010, Pryut, 2009). A meta-analysis of the role of water, sanitation, and 

hygiene exposures in 51 case-control cholera studies found that cases were significantly more likely than controls to 

report the use of an untreated drinking water, open defecation, unimproved sanitation, and poor hand hygiene 

(Wolfe et al., 2018). Hence, the smoothed fraction of contaminated water is water contaminated by bacteria 

shedding from the infected individuals (Pryut, 2009). 

The smoothed fraction of contaminated water uses the (third-order) water contamination from total bacteria 

shedding from the fraction of infected with a delay of two and a half days. According to Nevondo and Cloete (2001), 

Vibrio cholerae survival in the aquatic environment is highly dependent on the chemical, biological, and physical 

conditions of the aquatic environment: Vibrio cholerae surviving in surface waters for periods ranging from one hour 

to thirteen days (cited from Okoh, 2015). 

Three days are used for time to affect water in aquifers in this model. A third-order delay is used to account for the 

fact that there are different stages in the process (Sterman, 2000) between bacteria shedding by the infected 

individuals to contaminating the water.  
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Connectedness of aquifers is the "contact rate" between the susceptible population with contaminated water. More 

than 19 million Yemenis are believed to be without access to safe drinking water and sanitation (Burki, 2016; 

Camacho et al., 2018; Ng et al., 2020). According to WHO-UNICEF statistics, only 55% of the population had access 

to drinking water from improved water sources in 2014 (Qadri, Islam, and Clemens, 2017). Grad et al. (2012) 

explained that "contact rate" is largely unknown in most contexts, and there are no simple methods for converting 

experimental study results into "contact rate" between susceptible individuals and bacteria in water. Since various 

factors determine the rate at which susceptible individuals become infected, the connectedness of aquifers is 

calibrated to the historical data, 0.44 is used in this model.  

3.1.2 Asymptomatic reinforcing feedback loop (R) 

Individuals in the recently infected population leave the stock after an average incubation time of one day and flow 

in two directions: as asymptomatic infected to the asymptomatic population if they show no symptom as mildly 

infected to the mildly infected population if they show mild symptoms. Pryut’s model (2009) makes no distinction 

between asymptomatic and symptomatic infections. Other works highlight that these are essential elements and 

incorporated into their model an asymptomatic feedback loop (Chao et al., 2014; Kaper, Morris, & Levine, 1995; 

Leung & Matrajt, 2021; Médecins Sans Frontières, 2018; Okoh et al., 2015) 

First, most infected individuals (75% of infections) remain clinically unapparent, while the remaining 25% develop 

mild to severe symptoms (depending on the strain involved) (Médecins Sans Frontières, 2018). Only symptomatic 

infections from treatment centers are captured in surveillance data (Fung, 2014; Médecins Sans Frontières, 2018). 

When calibrating modeling outputs to historical data, Fung (2014) concluded that underreporting of cases, including 

asymptomatic cases, should be considered. Chao et al. (2014) found their model sensitive to the fraction of infected 

people who became symptomatic: The higher the symptomatic proportion, the higher the incidence of reported 

cases. 

Second, the bacterial shedding rate is lower in asymptomatic individuals than in symptomatic individuals (60 percent 

- 90 percent of infected individuals are asymptomatic). Studies (Kaper, Morris, & Levine, 1995; Médecins Sans 

Frontières, 2018; Okoh et al., 2015) have reported that some individuals can be infected with Vibrio cholerae and 

yet show no symptoms but then tend to shed the organism into the environment, even for only a few days. In a non-

cholera epidemic area, Vibrio cholerae can be isolated from wastewater effluents (Okoh et al., 2015).  

Third, research emphasizes the distinction between immunity from asymptomatic infection and protection from 

disease (symptomatic) following recovery (Kaper, Morris, & Levine, 1995; Leung & Matrajt, 2021). 

3.1.3 Bacteria shedding 

The model includes bacteria shedding as part of the indirect infection pathway. According to Kaper, Morris, and 

Levine (1995), doses of 10^11 Colony Forming Units (CFU) of Vibrio cholerae were needed to trigger diarrhea in 

healthy North American volunteers. For example, ingestion of 10^6 Vibrio cholerae with fish and rice resulted in a 
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high attack rate (100%). On the other hand, a symptomatic mild infected individual can shed Vibrio cholerae in the 

stool in low but potentially infectious concentrations, up to 10^8 Vibrio cholerae organisms per g of stool (Nelson et 

al., 2013). For an individual with acute cholera, severely disease, excretes 10^7 to 10^8 Vibrio cholerae organisms 

per gram of stool; for patients who have 5 to 10 liters of diarrheal stool, the total output of Vibrio cholerae can be 

in the range of 10^11 to 10^13 CFU (Kaper, Morris, and Levine, 1995).  

This model uses 10^6 Vibrio cholerae as the amount to infect an individual. The value of:  

i. bacteria shedding from symptomatic is 10^4,  

hence, normalized to 10^4/10^6 = 0.67 

ii. bacteria shedding from a mildly infected individual is 10^8,  

hence, normalized to 10^8/10^6 = 1.23 

iii. bacteria shedding from a severely infected individual is 10^12, hence, normalized to 10^12/10^6 = 2 

 

3.1.4 Symptomatic reinforcing feedback loops (R) 

Mildly infected population are mild cases of Vibrio cholerae infection that may be clinically indistinguishable from 

other causes of diarrheal illness (LaRocque & Harris, 2020). Hence, not all seek healthcare services (Médecins Sans 

Frontières, 2018). Depending on healthcare services access, this model disaggregates mildly infected individuals into 

two different feedback loops: treated and untreated mildly infected individuals. Mildly infected individuals leave the 

stock after the time progress to the next stage (one day) and flow to three directions: treated mildly infected 

population, untreated mildly infected population, and progresses into severe disease population stocks. 

Severe infected population is severe cases of Vibrio cholerae infection that is characterized by a sudden onset of 

acute voluminous watery diarrhea described as 'rice water stools' and vomiting leading to rapid dehydration (fluid 

losses of up to one liter per hour), and death if left untreated (Kaper, Morris, & Levine, 1995; Médecins Sans 

Frontières, 2018). Among individuals developing symptoms, 60 to 80% of episodes are of mild or moderate severity 

(Médecins Sans Frontières, 2018; Pryut, 2004). In other words, only 5 to 10% of the recently infected population in 

the base model becomes very ill. Mildly infected individuals move to severely infected population after an average 

time to progress next stage. Severely infected individuals then move into two different feedback loops based on 

access to healthcare services: treated and untreated. Treated severe infected population stock does not attribute to 

the infectious reinforcing feedback loop as the excreted wastewater is disinfected at the healthcare sewage 

treatment facilities (Médecins Sans Frontières, 2018).  

3.1.5 Recovered balancing feedback loops (B) 

All individuals belonging to the asymptomatic population, treated and untreated mildly infected population recover 

after average illness duration (asymptomatic for five days and symptomatic for nine days) (Chao et al., 2011; Nelson 

et al., 2009). On the other hand, individuals in treated and untreated severe infected population either die (cholera 

deaths) or recover and become immune (recovered from heavy infection) after the same average duration of the 

illness of nine days.  
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The proportion of the treated severely infected population dying or recovering is determined by the capacity of 

healthcare services, overloading in health services resulting in lower care quality. Hence, an increase in fatality 

fraction. In 2017, the case fatality rate in Al-Hudaydah governorate was 0.19 percent (OCHA, 2017). For severely 

infected individuals who are not accessing healthcare services, the untreated fatality fraction uses 0.004, assuming 

that the fatality fraction is double the case fatality rate with treated death fraction of 0.0021. 

3.1.6 Immunity waning 

Studies have shown a difference between protection from asymptomatic infection and protection from disease 

(symptomatic) after recovery (Kaper, Morris, & Levine, 1995; Leung & Matrajt, 2021). Pryut model (2004) aggregates 

both mildly and severely infected population into one stock of recovered temporarily immune population where they 

flow back to the susceptible population after an average immunity period of six years. Studies reported that clinical 

cholera (symptomatic) conferred protection against subsequent cholera for at least three years (Kaper, Morris, & 

Levine, 1995), while a study by Leung and Matrajt (2021) identified asymptomatic protection period lasts between 

3 to 12 months. The model uses six months for the average asymptomatic infection acquired immunity period and 

three years for the average symptomatic infection acquired immunity period (Kaper, Morris, & Levine, 1995; Leung 

& Matrajt, 2021). 

Limitations: 

For models that simulate an outbreak within a short period (two years in this model), one limitation is that they can 

ignore the dynamics of population growth (birth rate and death rate, gray arrows) and assume a constant population 

(Fung, 2014). There is no further subdivision of subpopulations according to health, living conditions, environmental 

conditions, geographic concentration as these are not part of the model boundary. 

Multiple Vibrio cholerae infections within the same household can occur due to secondary transmission from one 

household member to another via the fecal-oral route (Weil et al., 2014). To explicitly account for the concentration 

of hyperinfectious bacteria in drinking water, modelers include a separate compartment for these hyperinfectious 

bacteria with very high infectiousness for "human-to-human" transmission (Chao et al., 2014; Hartley et al., 2006; 

Miller et al., 2010). However, Pascual et al. (2006) argued that the additional compartment is redundant unless one 

has specific questions to study the hyperinfectious state. The hyperinfectious state of bacteria is not included in this 

cholera response model. 

3.2. Cholera response - intervention structure 

In the event of a cholera epidemic, the focus must be on limiting mortality and stopping the disease from spreading. 

It should be comprehensive and multi-sectoral, encompassing epidemiology (surveillance), case management, water, 

sanitation, hygiene, logistics, community engagement, and risk communication (GTFCC, 2020). This section 

addresses the following research questions: What are the operational dynamics of the identified factors relating to 

the cholera epidemic? What are the feedback mechanisms that responsible for the cholera epidemic? What are the 
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high-impact interventions? How can this model help shed light upon the lessons learned from the past interventions 

in Yemen? 

3.2.1 Water, sanitation and hygiene Interventions (WASH) 

Water, sanitation, and hygiene (WASH) interventions are commonly used to prevent and control cholera by deterring 

exposure to risk factors for disease transmission (Wolfe et al., 2018). Water interventions improve the quantity of 

water (water trucking), the quality of water (chlorinating water), or the management of water (safe storage). In 

Yemen, water trucking, latrine construction, chlorine tablet distribution, filter distribution, and hygiene kit 

distribution are the primary focuses of WASH (Spiegel et al., 2018). 

Fung (2014) discussed transmission dynamic models used to simulate the effects of water, sanitation, and hygiene 

interventions. WASH interventions, their effectiveness, and coverage substantially impact the outcomes. A poorly 

defined WASH intervention could inadvertently misinform policymakers about which programs should be expanded 

in cholera response. While it is useful to illustrate ranges of possibilities, Fung noted that future studies should be 

designed to provide data to parameterize these models.  The present cholera response model includes data on 

WASH interventions implemented in Al-Hudaydah governorate from OCHA's (2018) online database - the Cholera 

Response Dashboard.  

3.2.1.1 Clean water provision 

In Al-Hudaydah, clean water provision activities 

comprise of chlorination of wells, communal water 

tanks, distribution of chlorine tablets, and the daily 

chlorination of water trucks at water filling stations. 

The outputs of the activities are measured in terms 

of the number of people reached over time. While 

data are only available from May to December 2017, 

they enable parameterization of the intervention structure. More importantly, the intervention data demonstrate 

the capacity of humanitarian actors and the implementation challenges associated with cholera response, even in 

the absence of Yemeni stakeholders and experts’ inputs. 

Arguably, the weakest link in modeling WASH interventions is a lack of data connecting intervention variables to 

infection coefficient reduction (intervention impacts) (Fung, 2014). Bertuzzo et al. (2014) reported on a "set of 

sanitation measures" that would contribute to a 40% reduction in "contact rate" over a month in Haiti. It will 

help readers if details demonstrating how the 40% reduction was achieved in the Haiti context are available. On the 

other hand, Tuite et al. (2011) estimated the number of people who would require clean water to achieve the same 

effect as 500,000 people receiving two doses of vaccine in Haiti (they showed that one million people need water 

provision). The implied assumption was that providing safe drinking water would result in a 100% reduction in 

Figure 3. Stock and flow diagram of water provision 
intervention. 
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cholera transmission (but not human-to-human transmission). However, it is unclear to readers by such a 

comparison without further description on how to achieve three years of water provision in a cholera epidemic 

response. 

For example, it is feasible to vaccinate 500,000 people in a two-week vaccination campaign and provide up to three 

years of immunity protection to those vaccinated. To achieve the same three-year immunity through clean water 

intervention, the water trucks would likely need to deliver water to a million people (the study provided this Figure 

3) each day. Perhaps the capacity (resources) estimation should be 365*3 years*number of trucks needed for one-

million-person water provision per day.  

In this cholera response model, susceptible individuals who receive clean water shift to population with clean water 

stock after one day. Compared to Tuite et al. (2011) model on 100% reduction of "contact" rate if covered by clean 

water provision, this model assumes only 70% of individuals who receive clean water shift into the population with 

clean water stock. Having clean water does not ensure a 100% reduction in susceptibility (Wolfe et al., 2018). Figure 

4 below illustrates the different pathways of cholera transmission. In addition, not all the water provision goes 

directly to the susceptibility population. The water provision is shared among all SIR sub-populations since there is 

disaggregation among the recipients in this model. Hence, only a fraction of individuals from the susceptible 

population stock receives clean water.  

Individuals with clean water leave the stock after one day and flow back to susceptible population stock after water 

provision ceases. In other words, this water intervention structure shows one-day protection from infection. One 

might argue that the water provision should eventually transit from emergency water trucking or chlorine tablets to 

building water treatment plants. Nevertheless, such long-term WASH development strategy is not part of the 

emergency cholera response model boundary. 

Furthermore, this water intervention structure comprises a capacity-building structure (water supply capacity). 

Considering implementation challenges such as delay in building capacity from the supply side limitations, the 

capacity to distribute water is expressed as the number of people that can be provided with clean water. Building 

capacity to distribute water is a goal-seeking function. The current capacity to distribute water is closing the gap 

Figure 4. Pathways of fecal–oral 
cholera transmission and 
opportunities to interrupt 
transmission from Water 1st 
International (cited from Wolfe, 
2018). 
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with desired water distribution capacity (target by the humanitarian actors) over time to increase their distribution 

capacity (first-order delay). Time to increase distribution capacity is an assumptive duration (days) needed to 

increase the current capacity. The WASH experts can change the value for different scenario simulations through 

the developed model interface. 

Result 

Table 2 presents the water provision input (desired water distribution capacity) and the result (impact from the 

intervention on recently infected population). The behavior over time graphs in Table 2 only portrays the timeline 

from January to December 2017 for a clearer behavior (result) analysis. The desired water distribution capacity is the 

number of person reached for clean water intervention activities (Y-axis). BASE is the scenario simulation that 

replicates the historical data of cholera epidemic in Al-Hudaydah (including all the intervention data). The capacity 

from BASE (intervention data in red line) in the input graph shows a maximum of 100,000 recipients reached by the 

humanitarian actors in a governorate of three million population. 

No substantial difference between double the capacity (black line) to BASE (red line) is observed. Without any clean 

water provision intervention, the yellow line peaks at 12,000 persons while BASE line peaks at 11,000 persons. When 

the intervention begins earlier with the same capacity as in data, the blue line peaks at the same magnitude as BASE 

but peaks after one month delay in September. This indicates an important role of water provision as an immediate 

response (with a relatively short delay) compared to other interventions with longer delay such as building DTC or 

procuring vaccines from global stockpile.  

One might anticipate a greater impact of water provision on cholera control, given that WASH intervention is 

considered a critical component of such an emergency response (Médecins Sans Frontières, 2018). The result does 

not negate the importance of water provision as a preventive measure. Water provision can have a significant impact  

Table 2. Clean water provision intervention simulation.

Intervention input Result 
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 on flattening the cholera epidemic curve if capacity is tripled (purple line) or increased to 1,000,000 daily recipients; 

however, based on 2017 intervention data, the plan was deemed unattainable in Al-Hudaydah due to its precarious 

condition.  

3.2.1.2 Sewage treatment plant  

The highest number of cholera cases has been reported in areas with non-functional sewage treatment plants (Abu-

Lohom, Muzenda, & Mumsse, 2018). Without functional sewage treatment plants, sewage effluents are frequently 

diverted to impoverished neighborhoods and agricultural lands, contaminating shallow aquifers and wells used by 

local civilians and private tankers (Médecins Sans Frontières, 2018; Okoh et al., 2015). The reuse of sewage effluents 

for irrigation is an essential alternative water source for Yemen.  

Sewage treatment helps remove 

contaminants from sewage to produce 

effluent suitable for discharge to the 

surrounding environment or reuse (Al-

gheeti et al., 2014; Médecins Sans 

Frontières, 2018; Okoh et al., 2015). For 

instance, farmers in Yemen collect 

sewage effluent directly from 

stabilization ponds to irrigate various 

crops (Al-gheeti et al., 2018). A study by 

Al-Sharabee in 2009 (cited in Al-gheeti et al., 2014) reports that the zone area near the Sana'a wastewater treatment 

plant depends upon the sewage effluents by 95% to irrigate crops. However, Yemen's current sewage effluent quality 

is generally poor since none of the existing sewage treatment plants produces effluents comply with the effluent 

quality regulations (Al-gheeti et al., 2018). 

Sewage management and food safety are two critical areas for preparedness and response to the cholera outbreak. 

However, because these fields are not mandated by health or the WASH cluster, they are frequently overlooked or 

dealt with ad hoc during the response (Bellizzi, 2021; Wolfe, 2018). This problem is also indicated by the lack of 

cholera modeling literature on sewage treatment. In this cholera response model, a simplified need-based sewage 

treatment structure is constructed because it is unnecessary to model the effluent disinfection process.  

Most humanitarian responses are based on estimates of the number of people in need in each sector (Roberta, 

2021). In Yemen, the humanitarian actors have provided operational support for sewage treatment plants in Al-

Hudaydah governorate, particularly Al Hali, Al Hawak, and Al Mina districts. Apart from the number of people 

reached through implemented activities, humanitarian actors detailed their WASH activities in their annual reports 

(UNICEF, 2019). UNICEF, for example, has provided 3.2 million liters of fuel per month to ensure the continued 

operation of urban water supply and sanitation systems (including sewage treatment plants) in 15 major cities. 

Figure 5. Stock and flow diagram of sewage treatment plant 
intervention. 
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Although reports specifying project impact evaluation are uncommon in the published literature (Fung, 2014), a well-

maintained sewage treatment plant is assumed to produce effluents that meet quality regulations, thereby 

improving sanitary conditions and reducing Vibrio cholerae contamination in drinking water sources (Médecins Sans 

Frontières, 2018; Okoh et al., 2015). The sewage treatment plant intervention structure in this model addresses the 

ongoing maintenance and treatment needs of the existing plants (sewered population) in Al-Hudaydah.  

In Figure 5, sewage treatment plant is a stock that represents the sewered population in Al-Hudaydah - 69.3% 

average sewered population (Ministry of Electricity and Water, 2003). The sanitation intervention of additional 

treatment and maintenance to the sewage plants during the epidemic shifts the sewered individuals to sewage 

treatment plant supported stock. The sewered individuals covered by treatment and maintenance of the sewage 

plants then leave sewage treatment plant supported stock after an average degradation time, flows back to the 

sewage treatment plant. The degradation time assumes that a sewage treatment plant needs maintenance and 

treatment after 30 days. More data and expert input is required for this parameter. 

The effect of the intervention depends on the need for maintenance and treatment. Sewage treatment plant need 

is the stock sewage plant treatment relative to the initial value of sewage plant treatment (average sewered 

population). If the value is 1, it indicates 100% need. Once the intervention is implemented, the number of sewered 

persons reduces, causing the value to be less than one; hence, a reduced need and a positive effect of the 

intervention on sanitary conditions. The effect of sewage plant treatment on sanitary condition has a graphical 

function of S-shape decay. When the sewage treatment plant need is value 1 (no intervention), the effect is 1 (no 

effect to the normal sanitary condition). The maximum effect is limited at 2 to constrain the sanitary condition at its 

maximum at 100%. Like the clean water provision model structure, this intervention also adds a capacity component 

to show the delay: time needed to procure resources and implement the intervention. 

Result 

The following table 3 summarizes the sewage treatment plant support input (desired sewage treatment) and the 

results (impact from the intervention on recently infected population). The behavior over time graphs in Table 3 

depict only the period from January to December 2017 to enhance analysis of behavior (results). The desired sewage 

plant treatment capacity is determined by the number of people who will be targeted by intervention activities (Y-

axis). BASE is a scenario simulation that replicates the historical data of the Al-Hudaydah cholera epidemic (including 

all the intervention data). The capacity from BASE (intervention data in blue line) indicates that humanitarian actors 

reached a maximum of 15,000 sewered population in an average sewered population of 2.2 million. 

There is no noticeable difference between doubling capacity (purple dashed line) and no intervention (green line) to 

BASE (blue line).  This indicates that the intervention began too late (shortly before the epidemic's peak in August 

2017) where doubling the resources has a minimal impact. An earlier intervention in March or April has a significant 

impact on epidemic control.
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Table 3. Sewage treatment plant support intervention simulation. 

 

3.2.1.3 Latrine construction 

According to the World Bank (2021), 1% of people in Yemen's urban areas practiced open defecation in 2017. Open 

defecation refers to feces are discarded in fields, bodies of water, and other public areas (Wolfe, 2018). Like non-

functional sewage plants, open defecation near water sources, or poorly constructed latrines, can become sources 

of infection, particularly during the rainy season (Médecins Sans Frontières, 2018; Okoh et al., 2015; Spiegel, 2018). 

None of the cholera transmission models examined so far incorporate latrine structures. However, Médecins Sans 

Frontières (2018) highlights the importance of safe excreta disposal in a manual on Management of a Cholera 

Epidemic. For instance, whenever there is a high concentration of people, and there are no or few latrines, 

emergency measures should be implemented, taking the context and habits of the population into account. 

This model latrine construction intervention is based on the need for latrine capacity: the 1% population openly 

defecating. While the manual recommends prioritizing public latrine placement in areas with a high risk of 

transmission (markets, train stations, and bus stations), this model intervention structure does not disaggregate 

to infection hotspots level. The latrine intervention consists of a capacity-building structure (added latrine capacity). 

The stock added latrine capacity is expressed as number of people who can be provided with latrine facility. Latrine 

construction has a goal-seeking function at which the added latrine capacity (stock) is closing the gap with desired 

latrine construction over the time to build latrine (first order delay). In other words, the capacity building takes into 

account the time needed to build new latrines (delay). The intervention effect is represented by the effect of 

additional latrine on sanitary condition on the sanitary condition. The effect variable uses a graphical function of S-

Intervention input Result 
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shape decay. When the latrine need is value 1 (no 

intervention), the effect is 1 (no effect on the normal sanitary 

condition). The maximum effect is limited at 2 to limit the 

sanitary condition to its maximum at 100%. 

Result 

Figure 7 is a behavior of time graph that portrays the 

simulation result from various intervention inputs (in 2017). 

The intervention is composed of three inputs: the desired 

number of latrines, the duration required to build this desired 

number of latrines, and the start date for latrine construction. 

There is no information on latrine construction in the WASH data from OCHA's cholera response dashboard (2018). 

Other WASH activities were prioritized; for example, latrines 

were constructed as part of the ORC and DTC facilities, rather 

than as public latrines (Médecins Sans Frontières, 2018).  

BASE (dashed black line) shows no latrine intervention. Other 

simulated scenarios test the intervention starting time and the 

delay (duration to build new latrines). The most favorable 

behavior is starting the intervention early and having the 

latrines ready for public use the fastest. The intervention 

impact might not significantly impact the epidemic curve; 

however, this intervention plays a vital role in preventing water 

sources from Vibrio cholerae contamination, especially in the 

rainy season. 

Effect of WASH on sanitary condition 

In Gkini's COVID-19 transmission model (2020), each of those intervention is multiplied by their associated weight 

to give its total contribution to the overall costs of hygienic behaviour. In this model, the normal sanitary condition 

adopts the same weighted average approach to "combine" the effects of WASH intervention. Each intervention 

activity is multiplied by their associated weight to give their total contribution (effect) to the overall sanitary 

condition.  

According to WHO–UNICEF statistics, in 2014, only 53% of the population in Yemen used improved sanitation 

facilities (cited from Qadri, Islam, and Clemens, 2017). Hence, the value of normal sanitary condition is assumed to 

be 0.5 functioning.  

Figure 6. Stock and flow diagram of latrine 
construction intervention. 

Figure 7. Latrine construction intervention simulation 
result. 
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Weight of sewage plant support assigns the weight of sewage plant state in influencing the indicated sanitary 

condition. It is assumed to be 0.4 of the sanitary condition. The value is conceptualized with a higher weight than 

latrine use and other infrastructure states.  

Weight of latrine use assigns the weight of latrine state in influencing the indicated sanitary condition. It is assumed 

to be 0.2 of the sanitary condition. More data/expert input is required for this parameter. 

Weight of other sanitary interventions assigns the weight of another sanitation state in influencing the indicated 

sanitary condition. It is assumed to be 0.4 because this parameter considers household and personal level sanitation 

is different from community-level interventions on sewage treatment plant and latrines. Although personal and 

household sanitation conditions play an essential role on fecal-oral cholera transmission, it is beyond the boundary 

of this model. Hence, the parameter value remains constant. 

Limitations: 

The intervention data (OCHA, 2017) includes activities of Basic Hygiene Kit (household) distribution, and hygiene 

promotion in 2017. These activities are designed to minimize 'human-to-human' infection, particularly among 

members of the same household. Additionally, Chao et al. (2014) developed a model educational campaign to 

promote improved hygiene and sanitation in conjunction with a vaccination campaign. They simulate the effect of a 

10% or 30% (additional) reduction in areas targeted by vaccination campaigns. Nonetheless, no empirical data source 

for hygiene education effectiveness was provided in Chao et al. study.  

Modeling behavior change is possible, but more explanation is necessary because a change in knowledge does not 

guarantee behavior adoption or maintenance. Wolfe et al. (2018) mentioned that knowledge and attitudes toward 

WASH interventions and standard practices may also impact intervention effectiveness, but these factors were 

rarely reported. Modeling behavior change in relation to hygiene practices is outside the scope of this cholera 

response model.  

3.2.2 Healthcare Interventions 

3.2.2.1 Diarrhea Treatment Centre (DTC) 

Infected individuals who are severely dehydrated, need intravenous fluids and hospitalization. In Yemen, they are 

admitted to a DTC. The mortality rate without treatment can reach 50%; with adequate healthcare, it is less than 1% 

(Kaper, Morris, & Levine, 1995; Médecins Sans Frontières, 2018; Nelson et al., 2009). 

A DTC is a specialized inpatient healthcare facility dedicated to managing severe cholera cases. DTC is located outside 

the main hospital to prevent disease spread and is completely self-sufficient in general services (toilets, showers, 

kitchen, laundry, morgue, and waste area), stocks, and resources (medical and logistics, waters, and electricity). 
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None of the reviewed cholera transmission models includes DTC as the treatment component. Miller et al. (2010) 

and Mwasa and Tchuenche (2011) simulated the cholera treatment structure with symptomatic infected 

individuals receiving combined rehydration and antibiotic treatment. Those receiving this treatment are assumed to 

have an increased recovery rate and a decreased death rate due to cholera. Oral rehydration therapy (ORT) is the 

primary treatment for cholera patients, as it prevents dehydration and reduces mortality (Médecins Sans Frontières, 

2018). While antibiotics are not advised for mild or moderately ill patients, they can help reduce stool volume, 

diarrhea duration, and Vibrio cholerae shedding in severely ill patients when used with rehydration therapy (Davis, 

Narra, Mintz, 2018).  

DTC is added as the main treatment component for severe infected population who seek emergency treatment in 

this cholera response model. Emergency treatment at DTC has three impacts:  The effect of antibiotic treatment is 

not explicitly constructed in the DTC structure since mass antibiotic administration is not recommended because it 

has no proven effect on cholera transmission and may contribute to antimicrobial resistance (WHO, 2021). However, 

an increased recovery rate (five days rather than nine days in untreated individuals) is included, as Médecins Sans 

Frontières (2018) reported that a patient with severe dehydration or complications might require hospitalization for 

four to five days. 

Second, in addition to the antibiotic function of reducing the water contamination rate by treated patients in terms 

of Vibrio cholerae concentration in the water reservoir (Davis, Narra, Mintz, 2018), this model excludes treated 

severe infected population stock from the cholera infection feedback loop. In other words, they function as a 

balancing feedback loop when their bacteria shedding does not attribute to the water contamination. DTC adheres 

to strict guidelines for safe external waste disposal at the facility's waste treatment system.  

Figure 8. Stock and flow diagram of emergency treatment intervention. 
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Third, the DTC structure takes into account the impact of current healthcare facility capacity. This is a critical step as 

it models both supply and demand issues, which is not possible simply by adding an antibiotic treatment structure. 

For example, a COVID-19 system dynamic model by Deaton (2021) incorporates hospital capacity in treating severely 

disease COVID-19 patients. This structure tracks the number of hospital beds. Once those beds are full, COVID-19 

patients in need of hospital care are placed on a waiting list and are admitted as space becomes available. Patients 

who cannot receive healthcare in time die at a significantly higher rate than those who receive it. Additionally, 

Fiddaman's COVID-19 system dynamic model (2020) includes a hospital capacity structure that considers the effect 

of care quality sensitivity to capacity strain on the patient death rate. Similarly, Médecins Sans Frontières (2018) 

stated that the case fatality rate (CFR) is used to evaluate the quality of healthcare services (case management) 

provided by cholera treatment centers.  

This model adopts Fiddaman's structure, where the 

fatality fraction on treated death is affected by the 

strain on DTC services capacity. The formula 

includes the sensitivity of care quality to health 

services strain. The negative exponent indicates an 

inverse relationship, whereby an increase in health 

services strain leads to decreased care quality. 

Hence, an increase in fatality fraction.  

Result 

Figure 7 shows two behavior of time graphs that 

presents the result of recently infected population 

(top) and treated death (bottom). BASE is the 

scenario simulation that replicates the historical 

data of cholera epidemic in Al-Hudaydah (including 

all the intervention data). The DTC number in BASE 

(intervention data in blue line) is 18 DTC.  

Different DTC capacity simulations substantially 

change both cholera transmission and death rate. 

The changes for both graphs are relatively similar 

for the first three scenarios of BASE (blue line), No 

DTC (green line), and Half the DTC (red line). The 

DTC need is more the DTC supply in these three scenarios: DTC is overload. The DTC strain has deteriorated 

healthcare service quality, and negatively impacted the death rate and health-seeking among severely infected 

individuals. In other words, a lack of DTC strengthens the untreated severe infected reinforcing loop, R5.  

Figure 9. DTC intervention simulation result of recently infected 
population (top) and treated death (bottom). 
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However, once the number of DTC increases to double and triple 

the capacity from data), both infected population and death 

drop (dashed yellow and purple lines). Interestingly, the drop in 

the infected population has a smaller magnitude than the drop 

in death. One of the reasons is that, DTC has a more substantial 

impact on preventing deaths: the mortality rate reduces from 

50% to less than 1% (Kaper, Morris, & Levine, 1995; Médecins 

Sans Frontières, 2018; Nelson et al., 2009).  

When the supply in these two scenarios is now meeting (and over) 

the demand, the health seeking ratio is slightly affected, 

positively. However, the impact is minimal since various factors 

affect health-seeking behavior; accessibility, availability, affordability, and acceptability. This model boundary 

focuses on the availability of the DTC. This model does not include interventions that increase health-seeking among 

severely infected individuals. Improving demand among the infected individuals can potentially be included in future 

studies.  

3.2.2.2 Oral Rehydration Corner (ORC) 

ORCs are small, decentralized outpatient care facilities that operate only during daylight hours (8 to 12 hours per 

day). They are primarily used to administer oral rehydration therapy. Early oral therapy can help prevent the onset 

or aggravation of severe dehydration, which requires hospitalization (Médecins Sans Frontières, 2018; Miller et al., 

2010; Mwasa and Tchuenche, 2011). If a patient's condition worsens, ORC transfer severe or complicated cases to a 

DTC. 

As with DTC, none of the cholera transmission models reviewed specifically extend the structure of ORC, with the 

exception of Miller et al. (2010) and Mwasa and Tchuenche (2011), who simulated oral rehydration therapy but not 

the health facilities. ORC is included as an intervention component for mildly infected individuals seeking rehydration 

care. There are two primary outcomes of ORC's rehydration care. First, assuming all patients at the ORC receive oral 

rehydration therapy: adequate volumes of a solution of oral rehydration salts. It prevents dehydration, thereby 

reducing mildly infected individuals' progression into severely diseased individuals.   

The ORC structure includes the impact from the existing healthcare facility capacity. If the ORC capacity is strained 

by high demand from the infected individuals, the care quality reduces. Médecins Sans Frontières (2018) explained 

that a mild clinical state can rapidly deteriorate (or remain unchanged) if the volume of fluid prescribed is insufficient 

(the degree of dehydration is underestimated); the volume is not administered within the appropriate time frame 

(rehydration too slow or too fast, interruptions in treatment). When the quality of healthcare declines, more mildly 

Figure 10. A behavior over time graph protraying 
whether the need for DTC are met by intervention 
input. 
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infected individuals become severely infected. Additionally, 

ORC overload has a negative effect on the health-seeking 

behavior of infected individuals. 

Result 

Figure 11 shows three behavior over time graphs that 

presents the result of recently infected population (top), 

recorded suspected and confirmed cases (middle), and 

treated and untreated death rate (bottom). BASE is the 

scenario simulation that replicates the historical data of 

cholera epidemic in Al-Hudaydah (including all the 

intervention data). The ORC number in BASE (intervention 

data in blue line) is 144 ORC. Different ORC capacity 

simulations give three distinct behavior observations.  

First, one might assume recorded suspected and confirmed 

cases graph (middle) portrays the same behaviors as recently 

infected population graph (top) when increased number of 

ORC strengthens the treated recovered balancing feedback 

loop, B3. Why does double the ORC capacity (yellow line) 

show the highest peak among all the recorded suspected and 

confirmed cases (rate) simulations?  

ORC and DTC are the primary sources of data for the 

country's surveillance system (McCrickard et al., 2017; 

Spiegel et al., 2018). Hence, the data depends on the 

availability of ORC and DTC. However, cases are still 

recorded in the graph when there is no ORC (red line). Even 

though the destruction has limited health care delivery, 

infected individuals are assumed to seek healthcare services 

at hospitals if ORC and DTC are not available. In this scenario, 

the surveillance system relies on the existing hospital to 

provide treatment to the infected individuals. Hence, no 

ORC does not mean a flat red line in the recorded cases 

(middle) graph. 

Figure 11. Behavior of time graphs that presents 
the result of recently infected population (top), 
recorded suspected and confirmed cases (middle), 
and treated and untreated death rate (bottom) 
under ORC intervention. 
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Second, one might puzzle over the result of double the 

ORC capacity (yellow line) slightly more than the BASE 

(blue line) in recently infected population graph (top). 

This observation is related to the result in treated and 

untreated death graph (bottom). Figure 12 is an 

overtime graph that shows the supply and demand on 

ORC. It indicates the ORC services strain situation if the 

demand is more than the supply of ORC. For example, 

in BASE scenario (blue line), the ORC (supply) is lower 

than the ORC needs (demand in red line). Overloading 

in ORC results in less impact of the intervention in 

preventing cholera death.  

Nonetheless, an increase in ORC does not lead to a 100% reduction in death (as shown in treated and untreated 

death graph). In other words, once the supply is over the demand, good quality care help prevent the symptoms 

deteriorates to severely infected stage: The treated mildly recovered balancing loop (B3) is strengthened. When 

there is a less severely infected population, there is less death; the total population in Al-Hudaydah is higher in 

scenario double the ORC capacity compared to BASE. There are more susceptible individuals in scenario double the 

ORC capacity. Hence, the recently infected population graph (top) shows a slightly higher infected number in scenario 

double the ORC capacity compared to BASE.  

Figure 12. A behavior over time graph protraying 
whether the need for ORC is met by intervention input. 

Figure 13. Stock and flow diagram of oral rehydration care at ORC intervention. 
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Nonetheless, an increase in ORC does not lead to a 100% reduction in death (as shown in treated and untreated 

death graph). In other words, once the supply is over the demand, good quality care help prevent the symptoms 

deteriorates to severely infected stage: The treated mildly recovered balancing loop (B3) is strengthened. When 

there is a less severely infected population, there is less death; the total population in Al-Hudaydah is higher in 

scenario double the ORC capacity compared to BASE. There are more susceptible individuals in scenario double the 

ORC capacity. Hence, the recently infected population graph (top) shows a slightly higher infected number in scenario 

double the ORC capacity compared to BASE.  

3.2.2.3 Vaccination 

Vaccination decreases the number of fully susceptible individuals, decreases infectiousness (the rate of water 

contamination), and decreases the likelihood of becoming symptomatic when infected (Camacho et al., 2018; Grad 

et al., 2012). OCV has been shown to be safe, logistically feasible, and acceptable by recipients (Federspiel and Ali, 

2018; Parker et al., 2017; WHO, 2017). OCV is also inexpensive in a variety of settings, with total costs including 

procurement and delivery per fully vaccinated individual being less than USD 10 (Federspiel and Ali, 2018; Parker et 

al., 2017; WHO, 2017).  

Vaccination is the most common simulated intervention 

among cholera transmission models that extend beyond 

the SIR explanatory component. For example, Fung (2014) 

has reviewed 14 ordinary differential equation (ODE) 

models that focus on the Haitian cholera epidemic. Eight 

models incorporated intervention components where all 

eight of them simulated impact from vaccination.  

In this cholera response model, the stock and flow diagram in Figure 14 illustrates that the vaccination transfers 

individuals from susceptible population to vaccinated population. Once immunity wanes, people are transferred back 

to the susceptible population from the vaccinated population. However, not vaccine recipients come directly from 

the susceptible population, especially when there is no mass testing (such as COVID-19 screening) during the cholera 

epidemic. Even mass testing is possible for COVID-19, healthcare providers do not screen the recipients. Hence, the 

vaccines procured for Al-Hudaydah are shared among the: susceptible population, recently infected population, 

asymptomatic population, and recovered asymptomatic population (refer to Appendix B documentation for detailed 

equations, Figure 14 is a simplified SFD). In addition, not everyone vaccinated will be immune to infection. A recent 

meta-analysis of seven randomized trials and six observational studies reported the mean effectiveness of a 

standard two-dose killed oral cholera vaccination at 76% with protection lasting at least three years (Shim and 

Galvani, 2012). Vaccine effectiveness is included in this model but not vaccine efficacy. 

 

Figure 14. Stock and flow diagram of vaccination 
intervention. 
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Result 

Most of the Yemen cholera response lessons learned literature centers on the question: Could the largest cholera 

outbreak ever recorded have been avoided or at least managed, had enough OCVs been deployed earlier on in the 

conflict? In the total infected population graph (bottom), BASE has the same total number of infected population 

(red line overlapping with blue line), indicating that vaccination in August 2018 has a minimal impact.  

The result indicates that the earlier the vaccination starts, the better the impact in flattening the curve in the first 

wave. Although starting the vaccination during the height of the epidemic (in June 2017) has a lesser impact than 

early response in April, starting in June still reduces infection profoundly compared to starting vaccination in August 

Data vaccination started 

in September 2018 

What if vaccination 

starts late in the 

epidemic? What if vaccination 

starts soon after 

the epidemic? 

Figure 15. Simulation of different vaccination starting time with the same resources as in 2018 vaccination data. 
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2018 (historical data). Surprisingly, late response in June (green line) would result in a lower total number of infected 

population over the entire course of the epidemic than earlier vaccination compared to early response (dashed 

yellow line) shown in total infected population graph (bottom). This is because more vaccinated individuals would 

remain in the vaccinated stock at the end of 2018, thereby protecting them during the second wave of 2018. Those 

vaccinated earlier have a more favorable impact on the first wave in 2017; however, they return to susceptible 

population stock sooner after the protection period ends. 

Two-dose policy: Médecins Sans Frontières (2018) reports that immunity develops one week after administration 

and lasts up to six months after a single dose and at least three years after two doses. The comparison between 

single and two doses (dashed yellow and purple respectively) in Figure 15 shows that single dose has a more 

favorable impact in short term response, although both interventions end up with similar total infected population 

late in 2018. This result is in line with a study by Pezzoli (2020) where the author claimed that, although OCV currently 

used in mass campaigns are administered according to two-dose regimen 14 days apart, a single dose provides short-

term protection, within the first year, which is crucial for epidemic management. For a population of 3 million people 

in Al-Hudaydah that received 260,000 vaccines in 2018, giving a single dose vaccine to double the population results 

in a more favorable impacts under severe logistical and security constraints; buying more time to procure more 

vaccines.  

Revaccination 

Figure 16 portrays simulation result of implementing a second vaccination campaign in 2018. As expected, the early 

vaccination can significantly flatten the epidemic. Surprisingly, a substantial reduction of infection is observed even 

when the vaccination starts late in the epidemic (July 2017) (dashed black and purple lines). Interestingly, with the 

same resources and two campaigns, the late vaccination that has a lesser impact than early vaccination in the first 

wave, has however, more impact than early vaccination in the second wave, 2018.  

This indicates that revaccination is necessary to maintain immunity in previously vaccinated individuals after the 

protection has waned. Second,  

In 2018, these two populations shift back to the susceptible population. When the balancing feedback loops weaken, 

the infection reinforcing feedback loops strengthen again. The result suggests revaccinating the population in Al-

Hudaydah to strengthen the balancing feedback loops and prevent future epidemics. Durham et al. (1998) and 

UNICEF (2018) also recommended revaccinating at-risk populations every two years (given that the duration of 

vaccine protection is about two years) in areas that are potentially facing annual outbreaks. If one dose policy is used 

in conflict affect areas while waiting for more vaccines, revaccination should be done earlier since the protection 

period from one dose is about 180 days.  

 

 



37 | P a g e  
 

 

 

 

 

 

 

What if vaccination with 

double the resources start 

late in the epidemic? 

What if vaccination 

with double the 

resources starts soon 

after the epidemic? What if vaccinating the 

population again in second 

campaign? 

Figure 16. Re-vaccinate the public in 2018 simulation results. 
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3.2.3 Surveillance system 

According to Camacho et al. (2018), Yemen's health 

authorities established a national cholera surveillance 

system to collect data on suspected cholera cases 

presenting to health facilities (no mass screening, the 

data depends on the availability of ORC, DTC, and health 

seeking ratio). Only symptomatic infections are likely to 

seek treatment and be reported. Camacho et al. further 

reported that only 32.4% of suspect cholera cases in 

Yemen visited a DTC on the same day of symptom onset, 

while for 10.2% of patients it took two or more days to 

access care. Moreover, there may be a degree of under 

ascertainment from cases who visited private health 

facilities and were not reported to this system. The DTC 

and ORC system cannot capture cases that sought 

traditional healers or self-medication instead of formal 

health care or deaths outside the healthcare facilities 

(Houatthongkham et al., 2016). 

In this cholera response model, simulated suspected and 

confirmed cases that replicate the historical data are a 

product of individuals seeking rehydration care and 

emergency treatment with suspected cholera infection. 

Result 

Total infected population in Figure 18 (top) illustrates the 

comparison between reported cases (yellow line) and all 

infected individuals (including asymptomatic) as 212,000 

and 2,060,000 people respectively at the end of 2018. In 

other words, this simulation result shows that only 10% 

of infected individuals are recorded in the surveillance 

system. This finding is consistent with the WHO 

statement that cholera is underreported, resulting in 

underestimating the disease's global burden. Officially 

reported cholera cases account for only 5–10% of the 

total number that occurs annually worldwide, owing to 

Figure 17. Stock and flow diagram of data surveillance 
system. 

Figure 18. Behavior of time graphs that presents the result 
of total infected population (top) and recently infected 
population (bottom).  
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insufficient laboratory and epidemiological surveillance systems and economic, social, and political disincentives to 

report cases. (Ali, Nelson, and Sack, 2015).  

Besides, other infectious disease modeling also highlights the under-reporting issue. For instance, a COVID-19 model 

by Rahmandad, Lim, and Sterman (2021) found that official data substantially underreport prevalence and mortality: 

Estimated cumulative COVID cases are approximately 7 times greater than official reports while deaths are 1.44 

times larger than official reports.  

 

The bottom behavior over time graph presents scenarios of different response time to update the system. Smooth 

function is used to incorporate the delay from the surveillance system in all intervention start time. The result is 

significantly impact as expected since the intervention start time is highly sensitive in controlling the epidemic. This 

structure is not endogenized into the model as the objective is to show the interface users regarding the importance 

of response time. 

.  
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Cholera Response Model Stock and Flow Diagram 

  

 

Figure 19. Stock and flow diagram of the cholera response model. 
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3.3 Other Model Setting 

The model conceptual framework and structure has now been discussed elaborately (refer to Appendix B for detailed 

model documentation). This section explains additional modeling decisions made during the development of this 

model. 

3.3.1 Time Horizon Choice 

This model has a relatively short time horizon, as its purpose is to explore the implications of cholera response 

interventions during the 2017 and 2018 epidemics. As such, the model commences on January 1, 2017 and continues 

for 730 days, ending on December 31, 2018. One of the research objectives is to quantify the lessons learned from 

the reviewed literature; thus, a retrospective analysis and policy testing were conducted rather than the more 

conventional future timeline projection for epidemic preparedness.  

3.3.2 DT and Integration Method  

A DT of 1/4 with Euler's integration method is used to run this model.  

3.3.3 Calibration  

Three uncertain parameter values: connectedness to aquifer, initial value of recently infected population, and time 

(of bacteria shed by infected individuals) to affect water in aquifer, were estimated using a calibration routine. 

3.3.4 Parameterization 

Table 4 below outlines key parameters used in SIR structure. For more information and complete parameters record, 

refer to Appendix B (model documentation) and C (sensitivity test analysis) 

 

Table 4. Literature sources for key parameters in SIR structure. 

No Parameters 
Sensitivity Test 

Values Unit Sources 
Numerical Behavioral 

1 connectedness of aquifers   0.5 1/day 
Calibrated; Pryut, 2013;  

Tuite et al., 2011 

2 time to affect water in aquifers   8 day Calibrated; Pryut, 2013 

3 ratio of asymptomatic   0.75 dmnl 
Kaper, Morris and Levine, 1995; Médecins 

Sans Frontières, 2018 

4 average incubation time   1 day 
Kaper, Morris and Levine, 1995; Médecins 
Sans Frontières, 2018; Nelson et al., 2009 

5 
average duration of illness 
asymptomatic 

  5 day 
Chao et al., 2014; Kaper, Morris and Levine, 

1995; Médecins Sans Frontières, 2018 

6 susceptible population   3,238,199 person OCHA, 2017 

7 recently infected population   500 person Estimation from OCHA, 2017 

8 normal ratio of severe disease   0.3 dmnl 
Kaper, Morris and Levine, 1995; Médecins 

Sans Frontières, 2018 

Indicators:  Sensitive  Highly sensitive 
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9 
average duration of illness 
symptomatic 

  9 day 
Chao et al., 2011;  

Nelson et al., 2009 

10 
average asymptomatic infection 
acquired immunity period 

  180 day Leung & Matrajt, 2021 

11 
average symptomatic infection 
acquired immunity period 

  1095 day 
Kaper, Morris, & Levine, 1995; Leung & 

Matrajt, 2021 

12 
fraction mildly infected seeking 
care 

  0.3 dmnl Estimation from Camacho et al., 2018 

13 
fraction severe infected seeking 
care 

  0.4 dmnl 
Camacho et al., 2018;  

Médecins Sans Frontières, 2018 

14 treated fatality fraction   0.0021 dmnl OCHA, 2017 

15 
bacteria shedding from 
asymptomatic 

  0.67 dmnl 
Kaper, Morris, & Levine, 1995 (normalized 

value) 

16 
bacteria shedding from mildly 
infected 

  1.33 dmnl 
Nelson et al., 2013 
(normalized value) 

17 
bacteria shedding from severely 
infected 

  2 dmnl 
Kaper, Morris, & Levine, 1995 

(normalized value) 

  

3.4 Model Validation 

Barlas (1996) explains that validating a model fundamentally assesses "its usefulness with respect to its purpose". 

Adhering to Barlas (1996) and Sterman (2000) guidelines, formal model analysis, and validation procedures were 

conducted to support model developing and testing throughout the research process. The procedures involve 

iterative cycles of data collection, model building, simulation, analysis, validation, and documentation. The 

procedures were repeated until the result produced the right behavior for the right reasons. 

 

Table 5. Summary of conducted validity tests. 

Type of Test Test Results 

Direct 
structure 

tests 

Parameter 
confirmation 

 

Are the parameter values used known or reasonable estimates of the real-world values?  
 

Parameter values were chosen after reviewing both empirical and modeling studies (refer 

to Table 5 above and model documentation Appendix B). It is important to mention that 

certain parameter values identified in the literature result from modeling research. For 

example, the connectedness to aquifer value in Pryut (2014).  To a certain degree, 

modeling studies make parameter estimations based on calibration to replicate the 

historical. As such, certain parameter values are intrinsically linked to the 

model structural components. Hence, parameter values that "best-fits" the underlying 

SIR models from literature must be changed to match this cholera response model. Three 

uncertain parameters are calibrated to the historical data: connectedness to aquifer, 

initial value of recently infected population, and time (of bacteria shed by infected 

individuals) to affect water in aquifer.  
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Dimensional 
consistency 

Are the units of measurement consistent without scaling or dummy variables?  
 

This test is automatically run by the simulation software (Stella Architect). In this model, 

all units are dimensionally consistent. 

Structure 
confirmation 

Is the model structure consistent with the knowledge of the real-world system?  
 

The literature that served as the theoretical framework for developing this model 

provides structural confirmation for the model (refer to model analysis section). While 

the structure simplifies the real-world cholera epidemic (as all models do), the processes 

included in the model have sufficient theoretical support to increase the model 

confidence; The model structure reasonably and adequately represents the real-world 

cholera epidemic. 

Extreme 
conditions 

Do the equations in the model return logical outputs even if the input to each equation 

takes on extreme values?  
 

The test verifies that all equations in the model are rigorous under extreme conditions. 

Each equation has been examined to ensure that it is sufficiently robust in the presence 

of extreme inputs. Wherever possible, the MIN or MAX functions have been used to 

prevent the equations from taking absurd values.  The upper and lower bounds of table 

functions have also been estimated in this test. 

Structure-
oriented 
behavior 

tests 

Behavior 
sensitivity 

Is the model's behavior appropriately sensitive to changes in its various parameters as 

if in the real-world epidemic dynamics?  
 

Sensitivity analysis was performed on the model for each of the key parameters. The test 

also reveals which parameters require additional data collection for quantification. 

Appendix C provides additional analysis of the test results. 

Boundary 
adequacy 

 

Is model aggregation appropriate? Does the model include all relevant structures for 

the model?  
 

The most important question in determining the boundary is the model objectives. The 

model differentiates asymptomatic and symptomatic infection for two main reasons. 

First, to explore the under-reporting problem as silent spreaders strengthening the 

infection reinforcing feedback loop. Second, treatment intervention is disease-specific: 

ORC for mildly infected individuals and DTC for severely infected individuals. 

Disaggregating the population to asymptomatic and symptomatic population enables the 

model to capture the stated dynamics, particularly when the asymptomatic individuals 

are 75% of the total infected population. It would be unrealistic to provide treatment to 

asymptomatic individuals who would not seek healthcare in the first place. The model 

result shows that only 10% of total infected individuals are recorded, similar to the global 

statistic of cholera prevalence data by WHO. To conclude, the model's boundary is 

determined to be adequate.  
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Behavior 
pattern test 

Behavior 
reproduction 

test 

 

Is the model capable of reproducing the behavior patterns observed in the real-world 

system? 

 

 
Figure 20. Comparison between model behaviors and historical data in total suspected and confirmed cases 

graph (left) and in the infection rate of suspected and confirmed cases graph (right). 

The Figure 20 demonstrates a good fit between the model simulation results and the 

historical data as expected. First, the model incorporates the dynamic of asymptomatic 

feedback loop as the collected data are the suspected and confirmed cases in Al-

hudaydah. In other words, infected individuals who are sick enough to seek healthcare 

services (symptomatic). Second, the model takes account of the data source; suspected 

and confirmed cases were collected from the DTC. Hence, the capacity structure of the 

DTC is built as part of the intervention structures.  

On the other hand, the infection rate of suspected and confirmed cases graph (right) 

illustrates the marginal difference in infection rates between suspected and confirmed 

cases (right). The plausible explanation is that DTC and ORC lacked capacity at the 

epidemic inception due to a delay in capacity development (constructing new DTC and 

ORC). 
 

Camacho et al. (2018) explained that scarcity of adequate treatment is more common 

during the initial phase of unexpected outbreaks and in crisis settings. The absence of DTC 

and ORC indicates a data collection gap (according to Yemen's surveillance system). When 

infected individuals have access to the DTC and ORC, there is an over-reporting problem 

because other patients with acute watery diarrhea (AWD) seek care at the ORC and DTC 

(Federspiel and Ali, 2018, Spiegel et al., 2018). It is reasonable for the simulated infection 

rate to be slightly higher than the data at the start and slightly lower than the data 

following the establishment of DTC and ORC.  
 

No explanation regarding the two peaks of the data behavior is available from the 

literature. One plausible reason is that the healthcare system was over-stretched by the 

drastic increase in infected patients; healthcare and the data surveillance system could 

not perform as usual under such an overloaded condition. Once the system has an 

increased capacity (after a delay), the data collection function also increases, resulting in 

a second peak. Another reason could be the rain precipitation that intensifies the 

infection rate during heavy rain (Barciela et al., 2021).  
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Loops That 
Matter 
(LTM) 

Loops 
dominance 

 

Are the feedback loops shown in LTM test producing the right results for the right 

reasons? 
 

The visualization and aggregation of feedback loops in a behavior over time graph enable 

the analysis of the dynamics of various loops. If a loop's behavior deviates from 

expectations, for example, a sudden drastic reduction in the treated recovery balancing 

loop without any intervention, it indicates a questionable structure. By working backward 

and examining the variables in the causal pathway, the problematic equations can be 

identified.  
 

Schoenberg, Davidsen, and Eberlein (2019) noted that LTM is less appropriate for models 

where external forcing functions dominate the model's feedback effects, as LTM focuses 

exclusively on endogenously generated behavior. The effects of interventions are a type 

of external balancing effect. Since vaccination has the potential to bring an epidemic to a 

halt, one would assume there will be an obvious feedback loop. However, it is not shown 

in the LTM result, unless the horizontal time frame of the graph is narrowed to the six 

days of the vaccination campaign. Still, the vaccination causal loop appears as a very 

minimal impact within the LTM result. The reason is that vaccination has created a 

favorable condition for other feedback loops: the reduction of the susceptible population 

then weakens the infection reinforcing feedback loops. Schoenberg, Davidsen, and 

Eberlein (2019) suggested that such structure can be analyzed using the Loop Impact 

method. This method will be explored in future studies.  

 

 

 

4. Scenario Analysis  

4.1 (BAU-BASE-Early response)

The previous section analyzes each intervention independently while this section analyses impact from a joint-

interventions and answers the research question: How can the model be used as a tool for quick response in 

containing outbreaks at an early stage? 

BASE 

BASE is the simulation that replicates the historical data. This scenario included implemented interventions in 2017.  

Business as Usual (BAU) 

BAU is the scenario where all interventions are deconstructed from BASE to explore the worst-case scenario of the 

cholera epidemic.  
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Early response 

An early response would explore the impact of all 

interventions if the starting day were in April 2017, using the 

same capacity from the BASE. This is to avoid unrealistic policy 

recommendations, particularly in a conflict-affected context 

where intervention implementation faces immense 

challenges.  

Deconstructing the interventions from BASE to BAU has 

shown significant impacts from the humanitarian cholera 

response in 2017. 55% more deaths if nothing has been done 

in Al-Hudaydah. The simulation result also reveals a potential 

30% of death can be prevented if interventions, especially 

vaccination, can be initiated earlier.  

Studies have reported that concern was raised by Yemeni 

government and some humanitarian actors regarding mass 

immunization would be logistically difficult with ongoing 

security problems (Al-Mekhlafi, 2018; Federspiel and Ali, 

2018; Qadri, Islam and Clemens, 2017). Another reason is that 

vaccination would have a minimal effect given the magnitude 

of the outbreak: it may be too late for vaccination, and the 

benefits would not outweigh the risks of initiating a campaign.  

Yemen's government, the United Nations, and the WHO 

stated that the decision was made on a technical basis to 

ensure that efforts would be concentrated on WASH 

intervention targeting approximately 16 million people (Al-

Mekhlafi, 2018). Vaccines were finally distributed to 540,000 

people by the WHO and UNICEF in August 2018, nearly 16 

months after the outbreak began. Al-Hudaydah vaccinated 

260,000 people with two dose OCV. 

Indeed, the conflict situation posed significant logistical challenges for mass vaccination. Burki (2016), on the other 

hand, reported that coverage of the pentavalent vaccine is expected to be around 88% in 2015 — the same as in 

2014. Past pentavalent vaccine campaign indicates that mass vaccination campaign is feasible if well-planned and 

supported. Moreover, Médecins Sans Frontières' (2018) cholera response manual stated that OCVs are administered 

Figure 21. Behavior of time graphs that presents 
the result of recently infected population (top), 
recorded suspected and confirmed cases (middle), 
and treated and untreated death rate (bottom) of  
BAU-BASE-Early response simuation. 
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orally (not via injection) and rarely cause serious adverse effects; mass cholera vaccination campaigns do not require 

a large number of medical personnel. Hence, an earlier vaccination campaign is not impossible in Yemen. 

 

Table 6. Numerical result of BAU-BASE-Early response simuation. 

 

 

 

 

 

On the other hand, the intervention analysis on WASH and vaccination (page 16) has outlined that three-year 

protection provided by vaccination compared to a one-day protection by clean water provision. Additionally, it is 

unrealistic to assume that those who receive clean water are 100% protected from cholera infection, as cholera is 

transmitted via multiple pathways (as illustrated in Figure 4); thus, removing a single source of infection may not 

effectively prevent disease, whereas contamination introduced via a single pathway can effectively cause disease.  

Additionally, water can be viewed as a source of cholera outbreaks. Even when routine water treatments are carried 

out, cholera can still be transmitted when: dosing errors are made, treatment is forgotten, or the piped water supply 

is contaminated ( Wolfe et al., 2018). In fact, Jon Snow made history in public health by tracing and discovering that 

the source of the London cholera epidemic in 1854 was contaminated water from a water pump.   

This discussion does not intend to discredit the crucial role of clean water provision. Having access to safe drinking 

water is central to living a life in dignity and upholding human rights (WHO, 2017). However, it is problematic when 

resources are overly focused on WASH intervention. 

First, during the major wave of the epidemic, when 

stakeholders chose not to vaccinate the public but 

instead prioritized WASH (Al-Mekhlafi, 2018); 

second, after the epidemic, when humanitarian 

actors utilize the waterfighting system, Cholera Risk 

Model predictive tool (Barciela et al., 2021) without 

considering the endogenous feedback loops of 

cholera transmission. Such policy is very likely to 

result in the "Shifting the Burden" system 

archetype. This system archetype demonstrates a 

reliance on reactive quick fixes that leads to 

Number of people BASE BAU Early response 

total infected 

population 
2055712 2888484 +41% 

168110

5 
-18% 

total death 1468 2268 +55% 891 -39% 

Figure 22. Communicating model insights through a user-
friendly model interface. 
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unintended consequences of low priorities and fewer resources for other interventions. This cholera response 

model simulation can shed light on previously unknown unintended consequences and pave the way for a more 

robust cholera response in the future. 

In general, the model demonstrates that individual and joint-interventions can have varying degrees of effectiveness 

depending on the supply, demand, and progression of the epidemic (timing). As a result, the decision must be made 

on a case-by-case basis by the humanitarian response stakeholders. Possessing a model does not guarantee its utility 

if stakeholders do not adopt it. This brings us to the critical role of science communication that influences decision-

making. The next section answers the last research question: How can the model be used for humanitarian multi-

sectors cholera response communication? 

4.2 Model interface 

The model interface has been designed to communicate insights from the model simulation in a safe environment 

using a self-learning approach. For example, the climate–energy simulation En-ROADS enables decision makers to 

gain firsthand knowledge about how a low carbon economy can be achieved and how climate policies affect physical 

and transition risks, through the use of a science-based tool (Kapmeier et al., 2021).  

Additionally, the model interface can facilitate in cross-sector communication, fostering collaboration between 

agencies working in different humanitarian clusters. Such an integrated model is especially essential in times of crisis, 

particularly in countries undergoing internal conflict. Bellizi et al. (2021) identified dysfunctional collaboration in 

Yemen as a result of conflicting mandates and the relationship between non-governmental organizations and their 

donors. WASH and health services are the responsibility of a number of agencies and stakeholders, which frequently 

results in complicated and occasionally confusing approaches to addressing gaps and barriers, particularly during an 

emergency response.  

In addition to "Shifting the Burden",  a common challenge identified by Sterman (2015) is that, rather than 

implementing risk-mitigating strategies, managers are frequently caught in "firefighting" and capability traps, 

depleting the resources required to manage problems. The model interface enables stakeholders to gain such 

insights and to learn from previous policy decisions. 

Similar to En-roads, this model interface can be conducted in a workshop setting, with the facilitator(s) running the 

model and delving into the results with the participants. Typically, the workshop can gather information, with 

participants sharing their insights and reactions. This type of discussion frequently provides critical feedback to the 

modeler. For example, humanitarian actors' capacity to implement interventions may change over time, either 

increasing or decreasing. The model can then be updated based on the feedback received from participants: a virtual 

reinforcing feedback loop. A facilitation guide is developed for this purpose (attached to interface).  
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The developed interface is primarily intended for public health professionals and program managers who involve in 

cholera response. These include, for example, staff working at ministries of health, public health institutions, United 

Nations agencies, and non-governmental organizations.  

On the other hand, Struben (2020) noted that much of the success of interventions is largely dependent on broad 

support and involvement from a variety of actors such as local policymakers who lack direct access to experts, 

volunteers working within communities, compliant citizens, and communicative media. As a result, making the 

model available via a web interface can increase the model's accessibility and sustainability.  

A brief overview of the interface is listed in the next two pages in Figure 23 to 26. The interface is divided into five 

major sections: model briefing, guidance on how to use the dashboard, main dashboard, control panel, and 

debriefing. 

5. Conclusion 

Cholera kills up to 50% of patients who do not receive adequate rehydration; with treatment in time, the case fatality 

rate can be less than 1%. World Health Organization reported 2.5 million suspected cholera cases and nearly 4,000 

deaths in Yemen as of November 2020. How could an epidemic of this magnitude occur? In Yemen, humanitarian 

response is particularly needed when epidemics occur during or as a consequence of conflict and political upheaval. 

Lessons learned from cholera response in Yemen are well-studied where most of the reviewed literature employed 

a qualitative approach. The primary problem was that Yemen lacked an adequate cholera preparedness and 

response in 2017; with two main findings pointing at the late implementation of vaccination (after 16 months into 

the epidemic). The initial attempt to vaccinate the public failed as the stakeholders decided that the vaccine would 

have a minimal impact. Instead, resources were channeled into WASH interventions as the main preventive measure 

in controlling the epidemic.  

When a community is threatened by a rapidly spreading cholera epidemic, it can be difficult to know how to save 

lives. This study uses system dynamics modeling to quantify and evaluate the lessons learned from the 2017 and 

2018 cholera response. The model is used to answer some of the debated questions in the lessons learned literature. 

More importantly, the model enables decision-makers to test policies that would be impractical or unethical in the 

real world and learn from their errors in this virtual Al-Hudaydah. A user-friendly interface was built for policy testing 

and to engage multi-sector stakeholders to communicate more effectively in cholera response. The model can be 

used prior to an epidemic to aid in prevention and preparedness; during an outbreak to organize and monitor the 

response; and following an outbreak to assess the response.  

The model extended the classic infection structure with empirically grounded operational structures: oral 

rehydration corner, diarrhea treatment center, water and sanitation intervention, vaccination, and data surveillance 

system. The data collected during the model's development and validation are epidemiological data: and cholera 
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response (interventions) data. The model demonstrates that individual and joint-interventions can have varying 

degrees of effectiveness depending on the supply, demand, and progression of the epidemic (timing).  

The model shows the importance of implementing different interventions for asymptomatic and symptomatic 

infected individuals, especially the ratio between the two-disease state is 75% to 25%, respectively. Both treatment 

and preventive interventions are tested. One of the most debated questions from lessons learned studies is, could 

the largest cholera outbreak ever recorded have been avoided or at least managed, had enough OCVs been deployed 

earlier on in the conflict? The model findings show that the 260,000 vaccines that arrived 16 months into the 

epidemic would still be impactful even if the vaccination started in June 2017 (height of the epidemic).  

First, although starting the vaccination during the height of the epidemic (late response in June) has a lesser impact 

than early response in April, starting in June still reduces infection. Surprisingly, late vaccination in June has resulted 

in lower total number of infected population compared to early vaccination. During the end of 2018, more 

vaccinated individuals remained in the vaccinated stock due to the late vaccination, hence protecting them during 

the third wave in 2018. However, those vaccinated earlier have a more favorable impact in the second wave in 2017; 

however, they return to susceptible population stock earlier after the protection duration. This indicates that 

revaccination is needed for the early vaccinated individuals to be protected again after immunity wanes. Second, a 

single dose vaccine has a more favorable short-term response, which has important implications for epidemic 

management when logistical and security constraints are high. 

It is problematic when resources are overly focused on WASH intervention. Such policy is likely to result in the 

"Shifting the Burden" system archetype; relying on reactive quick fixes that leads to unintended consequences of 

low priorities and fewer resources for other interventions. For instance, vaccination provides three-year protection 

compared water provision of a one-day protection.  

Deconstructing the interventions from BASE to BAU has shown significant impacts from the humanitarian cholera 

response in 2017. 55% more deaths if nothing has been done in Al-Hudaydah. The simulation result also reveals a 

potential 30% of death can be prevented if interventions, especially vaccination, can be initiated earlier.  

While this cholera response model is useful for clarifying policy problems in the past and reshaping mental models; 

just as important, is to be transparent regarding the model’s limitations, assumptions, and boundary conditions.  

The cholera response model has several limitations where many of them stem from data quality or availability 

problems to approximate or estimate more detailed quantified representations of important dynamics. For instance, 

a lack of information regarding the weight of various WASH intervention impacts on the overall sanitory conditions 

in Al-Hudaydah. SD does not shy away from building such structures in the model as it is a basic tenet of SD modelling 

that crucial structures or variables should not be excluded from a model simply because they are difficult to quantify 

(Lim, 2021). However, estimating parameters necessary to quantify such structures still depends on having relevant 
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data. In this case, subject experts’ inputs are essential. Besides, sensitivity test analysis has been used to provide 

some insurance against such uncertainties.  

The model’s limitations nonetheless restrict the quantitative precision of the model’s projections which should be 

borne in mind when interpreting its results. In other words, this cholera response model is not intended for high-

precision quantitative forecasting or prediction.  

Regardless of the outlined limitations, this cholera response model has shown both the compounding factors that 

exacerbate the epidemic and the operational dynamics in controlling the epidemics. The developed interface can be 

used to explore high impacts interventions as well as to communicate among different humanitarian sectors. More 

importantly, the insights gained from the model are not only applicable to the cholera epidemic but also to other 

infectious disease response modeling. The next step is to adapt this Al-Hudaydah model to other cholera-affected 

countries through collaboration with humanitarian actors.  
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Figure 23. Figure shows a top-level stock and flow diagram of the cholera response model as part of the model briefing aside 
from description on the problem, interface objectives, model validation, and interventions. 

Figure 24. Guidance on how to use the dashboard for policy testing. 
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Figure 25. The intervention panel that allows further adjustment on various policy testing. The vaccination graph 
on the top left show the need of vaccination by indicating the susceptible population. Other intervention panels 
also contain such indicators to help users make decision based on the need for such interventions. 

Figure 26. The control panel enables the users to change the parameter values. For instance, what will happen if the average 
duration of infection is longer.  
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6.2 Appendix B: Documentation 

 

 

Equation Units Documentation 

SIR component 

asymptomatic MAX(recently_infected
_population*ratio_of_a
symptomatic/average_i
ncubation_time, 0) 

person
/day 

"asymptomatic" flow is the rate at which recently infected 
individuals leave the stock through multiplication with 
(ratio of asymptomatic) after an average incubation time 
of 1 day (material delay). The MAX function is to ensure the 
flow is more than 0.  

asymptomatic_
infection_acqui
red_immunity_
waning 

MAX(0, 
recovered_asymptoma
tic_population/average
_asymptomatic_infecti
on_acquired_immunity
_period-
vaccination_recovered
_asymptomatic) 

person
/day 

"asymptomatic infection acquired immunity waning" flow 
is the rate at which recovered asymptomatic individuals 
leave the stock after an average asymptomatic infection 
acquired immunity period of 6 months (material delay). 
The MAX function is to ensure the flow is more than 0. The 
flow also minus the vaccination flow once the intervention 
is activated.  

asymptomatic_
population(t) 

asymptomatic_populati
on(t - dt) + 
(asymptomatic - 
recovered_from_asym
ptomatic - 
vaccination_asymptom
atic) * dt 

person "asymptomatic population" are cholera infected 
individuals who show no symptom. Asymptomatic 
individuals who shifted to the "asymptomatic population" 
stock then leave after an average duration of 
asymptomatic illness of 5 days and flow towards 
"recovered from asymptomatic population" stock. The 
"asymptomatic population" is assumed to be 0 initially. 

average_asymp
tomatic_infecti
on_acquired_i
mmunity_perio
d 

180 day Subclinical infections, or infections confirmed by positive 
stool culture but unaccompanied by diarrhea, have been 
documented. Leung and Matrajt (2021) study highlights 
the difference between protection from infection and 
protection from disease. They identified 3 challenge 
studies in which most participants were reported among 
the participants without diarrhea on initial challenge 
developed symptoms upon rechallenge (3 to 12 months) 
(Leung & Matrajt, 2021) 

average_durati
on_of_illness_a
symptomatic 

5 day The shedding of bacteria typically ends within 7 to 10 days.  

average_durati
on_of_illness_s
ymptomatic 

9 day The symptomatic infectious period ranges from 7 to 14 
days (Chao et al., 2011; Nelson et al., 2009). Médecins Sans 
Frontières (2018) similarly reports bacteria shedding of 
bacteria among symptomatic patients typically ends within 
7 to 10 days. The "average duration of illness symptomatic" 
uses 9 days. 
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average_durati
on_of_recovery
_under_treatm
ent 

5 day Findings indicate that antibiotics reduced volume of stool 
output by 8–92%, duration of diarrhea by 50–56%, and 
duration of positive bacterial culture by 26–83% (CDC, 
2020). However, mass administration of antibiotics is not 
recommended, as it has no proven effect on the spread of 
cholera may contribute to antimicrobial resistance (WHO, 
2021). A patient with severe dehydration or complications 
may remain hospitalised 4 to 5 days (MSF, 2018).Hence, 
the "average duration of recovery under treatment" uses 
5 days.  

average_incuba
tion_time 

1 day The incubation period of cholera can range from several 
hours to 5 days (Kaper, Morris, & Levine, 1995; Médecins 
Sans Frontières, 2018; Nelson et al., 2009). The "average 
incubation time" uses 1 day as the symptomatic individuals 
will then progress to either mild or severe disease stage 
with "time to progress to next stage". 

average_sympt
omatic_infectio
n_acquired_im
munity_period 

3*365 day Studies found that clinical cholera conferred protection 
against subsequent cholera for at least 3 years (Kaper, 
Morris, & Levine, 1995; Leung & Matrajt, 2021) 

bacteria_shedd
ing_from_asym
ptomatic 

0.67 1 Some patients can even be infected with V. cholerae and 
yet show no symptoms but then tend to shed the organism 
into the environment, even for only a few days, explaining 
why vibrios can be isolated in wastewater effluents in a 
non-Vibrio and/or non-cholera epidemic area (Okoh et al., 
2015).  

According to Kaper, Morris, and Levine (1995), doses of 
10^11 CFU of V. cholerae were required to consistently 
cause diarrhea in healthy North American volunteers when 
the inoculum was given in buffered saline (pH 7.2). When 
stomach acidity was neutralized with 2 g of sodium 
bicarbonate immediately prior to administration of the 
inoculum, attack rates of 90% were seen with an inoculum 
of 10^6. Food has a buffering capacity comparable to that 
seen with sodium bicarbonate. Ingestion of 10^6 vibrios 
with food such as fish and rice resulted in the same high 
attack rate (100%) as when this inoculum is administered 
with buffer.  

For Yemen context, the model uses 10^6 vibrios as the 
amount to cause an infection. 10^6 vibrios is normalized to 
1. An asymptomatic infected individual can shed vibrios in 
the stool in low but potentially infectious concentrations 
(10^3 to 10^5 V. cholerae organisms per g of stool) for 
several days (Kaper, Morris, & Levine, 1995). The variable 
"bacteria shedding from asymptomatic" uses 10^4, hence, 
normalized to 10^4/10^6 = 0.67 
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bacteria_shedd
ing_from_mildl
y_infected 

1.33 1 According to Nelson et al. (2013), a symptomatic, mildly 
infected individual can shed vibrios in the stool in low but 
potentially infectious concentrations, up to 10^8 V. 
cholerae organisms per g of stool. 

For Yemen context, the model uses 10^6 vibrios as the 
amount to cause an infection. 10^6 vibrios is normalized to 
1. The variable "bacteria shedding from a mildly infected 
individual" uses 10^8, hence, normalized to 10^8/10^6 = 
1.23 

bacteria_shedd
ing_from_sever
ely_infected 

2 1 According to Kaper, Morris, and Levine (1995), individual 
with acute cholera excretes 10^7 to 10^8 V. cholerae 
organisms per g of stool; for patients who have 5 to 10 
liters of diarrheal stool, total output of V. cholerae can be 
in the range of 10^11 to 10^13 CFU. Even after cessation 
of symptoms, patients who have not been treated with 
antibiotics may continue to excrete vibrios for 1 to 2 
weeks. For Yemen context, the model uses 10^6 vibrios as 
the amount to cause an infection. 10^6 vibrios is 
normalized to 1.The variable "bacteria shedding from 
severely infected" uses 10^12, hence, normalized to 
10^12/10^6 = 2 (Kaper, Morris, & Levine, 1995).  

become_severe
_infected 

(mildly_infected_popul
ation/time_progress_t
o_next_stage-
rehydration_care)*nor
mal_ratio_of_severe_d
isease 

person
/day 

"become severe infected" flow is the rate at which part of 
the mildly infected individuals leave the stock through 
multiplication with the normal ratio of severe disease after 
the time progress to next stage - 1 day (material delay).  

connectedness
_of_aquifers 

0.5 1/day The "connectedness of aquifers" is the rate of contact with 
contaminated water. This is an abstract concept that in the 
context of this model must be related to the amount of 
reservoir water consumed, but is not expressed in units 
that include volume and has no upper or lower bounds 
(Pruyt, 2013). The "connectedness of aquifers" is a 
simplified and uncertain factor. The variable is calibrated 
to the historical data, amount to 43% in the base model.  

data_IDP 362292 person Data is obtained from online database from International 
Organization for Migration (2018) who has an IDP tracking 
system (DTM). Due to the intensified conflict in Al-
Hudaydah from June 2018, an increase of IDP from June to 
November 2018 was recorded: 133830 to 362292 IDP 
within 6 months.  

duration_IDPs_
movement 

180 day Data is obtained from online database from International 
Organization for Migration (2018) who has an IDP tracking 
system (DTM). Due to the intensified conflict in Al-
Hudaydah from June 2018, an increase of IDP from June to 
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November 2018 was recorded: 133830 to 362292 IDP 
within 6 months. Hence, 180 days is used. 

emergency_tre
atment 

IF 
switch_data_collection
=0 THEN 
emergency_treatment_
at_hospital ELSE 
MAX(emergency_treat
ment_at_hospital, 
seeking_care_at_DTC) 
{IF switch_DTC=0 THEN 
severe_infected_popul
ation*fraction_severe_
infected_seeking_care*
effect_of_DTC_strain_o
n_seeking_emergency_
treatment*seeking_car
e_at_hospital ELSE 
severe_infected_popul
ation*fraction_severe_
infected_seeking_care*
effect_of_DTC_strain_o
n_seeking_emergency_
treatment 

person
/day 

"treatment at DTC" flow is the rate at which severe 
infected individuals leave the stock by seeking treatment 
at DTC. The flow depends on the fraction severe infected 
seeking care and it is affected by the ORC strain.  

emergency_tre
atment_at_hos
pital 

fraction_seeking_care_
at_hospital*severe_inf
ected_population/time
_progress_to_next_sta
ge 

person
/day 

"emergency treatment at hospital" flow is the rate at 
which mildly infected population seek emergency 
treatment at hospital. 

fraction_mildly
_infected_seeki
ng_care 

0.3 1 Only symptomatic infections are likely to be reported. 
Camacho et al. (2018) demonstrated that only 32.4% of 
suspect cholera cases in Yemen visited a DTC on the same 
day of symptom onset, while for 10.2% of patients it took 
two or more days to access care (Yemen report). For mildly 
infected individuals who may experience short period of 
cholera symptoms and may be clinically indistinguishable 
from other causes of diarrheal illness, are likely to not seek 
treatment. Hence, the value is assumed to be 0.1 (less than 
0.32 who seek treatment in DTC). 

fraction_of_Inf
ected_IDP 

0.1 1 Assuming 10% of the IDP are infected. Many IDPs live in 
forest, mountainous or desert areas of Hudaydah, which 
lack services and provide little for shelter, food or water 
(Ali, 2021). 

fraction_seekin
g_care_at_hosp
ital 

0.15 1 if ORC intervention is switch off, assuming 15% of the 
individuals who would seek treatment at ORC resort to 
care at the hospital. MSF (2018) reported that 
approximately 15-20% of patients will seek medical care 
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during the peak week (less for rural settings, more for 
crowded urban settings). However, if ORC and DTC is 
unavailable, infected individuals are assumed to seek 
healthcare services at hospitals. Spiegel et al. (2018) and 
Qadri, Islam, and Clemens (2017) highlighted that delivery 
of health care has been limited by the destruction by air 
strikes of approximately half the health sector facilities, 
including hospitals and clinics in Yemen. Hence, "seeking 
care at hospital" uses 0.15.  

fraction_severe
_infected_seeki
ng_care 

0.4 1 Only symptomatic infections are likely to seek treatment 
and be reported. Camacho et al. (2018) demonstrated that 
only 32.4% of suspect cholera cases in Yemen visited a DTC 
on the same day of symptom onset, while for 10.2% of 
patients it took two or more days to access care (Yemen 
report). This parameter uses 0.4. 

immunity_wani
ng_treated_po
pulation 

recovered_immune_tr
eated_population/aver
age_symptomatic_infe
ction_acquired_immun
ity_period 

person
/day 

"immunity waning treated population" flow is the rate at 
which all recovered immune treated individuals leave the 
stock after an average symptomatic infection acquired 
immunity period of 3 years (material delay) and flow back 
to the susceptible population.  

immunity_wani
ng_untreated_
population 

MAX(recovered_immu
ne_untreated_populati
on/average_symptoma
tic_infection_acquired_
immunity_period, 0) 

person
/day 

All recovered symptomatic individuals leave recovered 
immune untreated population stock after an average 
symptomatic infection acquired immunity period of 3 
years and flow as "immunity waning untreated 
population" back to the susceptible population. The MAX 
function is to ensure the flow is more than 0. The flow also 
minus the vaccination flow once the intervention is 
activated.  

indicated_ratio
_of_severe_dis
ease 

normal_ratio_of_sever
e_disease*effect_of_O
RC_strain_on_fraction_
of_severe_disease 

1 The "indicated ratio of severe disease" shows the value of 
normal ratio of severe disease under the effect of ORC 
strain on fraction of severe disease. An increase in ORC 
health services strain leads to a decrease care quality. 
Hence, more mildly infected individuals progress to severe 
infected stage. 

indirect_degree
_of_infection 

connectedness_of_aqu
ifers*smoothed_fractio
n_of_contaminated_w
ater 

1/day Studies have shown that Cholera is most commonly 
acquired from drinking water in which V. cholerae is found 
naturally or that has been contaminated by the faeces of 
an infected individual (Kaper, Morris, & Levine, 1995; 
Médecins Sans Frontières, 2018; Nelson et al., 2009). Food 
may be contaminated when prepared with contaminated 
water or kitchen utensils, or mixed with other 
contaminated food, or handled by infected persons in 
unhygienic conditions. 

Okoh et al. claimed that V. cholera presence in 
wastewater, therefore, could be dependent on the 
number of infected people in the population contributing 
to the wastewater flow. 



64 | P a g e  
 

Once these vibrios get into environmental water, they 
convert to conditionally viable environmental cells within 
24 h (Nelson et al. 2008). Such vibrios are infectious on 
reintroduction into a human body. This becomes a major 
public health problem in underdeveloped areas like the 
ECP where, as of 2011, about 36 % of the population still 
got their drinking water directly from rivers and streams 
(Okoh, 2015).  

According to WHO–UNICEF statistics, in 2014 only 55% had 
access to drinking water from improved water sources 
(Qadri, Islam, and Clemens, 2017). 

Therefore, in this model, the "indirect rate of infection" 
equals the product of following two factors: the smoothed 
fraction of contaminated water and the connectedness of 
aquifers (Pruyt, 2013).  

Although cholera can be transmitted through direct faecal-
oral contamination. For example, by eating food that has 
come into contact with human faeces. This model only 
incorporates indirect transmission through contaminated 
water: indirect contamination is assumed to occur much 
more often than direct contamination (Pruyt, 2013). 

Infected_IDP DELAY 
(PULSE(data_IDP, 
"time_IDPs_increase_t
o_Al-hudaydah", 0), 
duration_IDPs_movem
ent)*fraction_of_Infect
ed_IDP 

person
/day 

A spike in internal displaced persons (IDPs) from August 
2018 due to intensified conflict in Al-hudaydah. Pulse 
function is used to show the increase of IDP that is DELAY 
over 5 months: to represent the displacement of IDP over 
time in Al-Hudaydah. 

infections susceptible_population
*indirect_degree_of_in
fection 

person
/day 

"infections" flow is the product of the susceptible 
population and the indirect infection rate. When 
individuals from the susceptible population become 
infected with cholera, they shift to the recently infected 
population.  

initial_recently
_infected_popu
lation 

500 person OCHA (2017) recorded 21 suspected and confirmed cases 
in 2017. The health seeking ratio in the beginning is 10% of 
the symptomatic individuals, assuming that there is a lack 
of DTC and ORC, and perceived of threat among the public. 
Symptomatic is 25% of total infected individuals (MSF, 
2018). Hence, the estimated total infected individuals is 
840 in April. The calibration of the model to historical data 
resulted as 500 as initial value of recently infected 
population, it is within a reasonable range. 

mildly_infected MAX(recently_infected
_population*(1-
ratio_of_asymptomatic

person
/day 

"mildly infected" flow is the rate at which recently infected 
individuals leave the stock through multiplication with (1 
minus the ratio of asymptomatic) after an average 
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)/average_incubation_t
ime, 0) 

incubation time of 1 day (material delay). The MAX 
function is to ensure the flow is more than 0.  

mildly_infected
_population(t) 

mildly_infected_popula
tion(t - dt) + 
(mildly_infected - 
rehydration_care - 
become_severe_infect
ed - 
remain_untreated_mil
dly_infected) * dt 

person "midly infected population" are mild cases of V. cholerae 
infection that may be clinically indistinguishable from 
other causes of diarrheal illness (LaRocque & Harris, 2020). 
Mildly infected individuals who shifted to the "mildly 
infected population" stock then leave after the time 
progress to next stage - 1 day, and flow to 3 directions: 
"treated mildly infected population", "untreated mildly 
infected population" and "severe disease population" 
stocks. The "asymptomatic population" is assumed to be 0 
initially. 

normal_ratio_o
f_severe_disea
se 

0.3 1 The "normal ratio of severe disease" is the ratio of mildly 
infected population progress into severe disease.  

Among patients who seek treatment, 25-30% of patients 
will have severe dehydration, 30-40% some dehydration, 
and 30-40% no dehydration (Médecins Sans Frontières, 
2018). Kaper, Morris, and Levine (1995) report that, among 
all cholera infection (including asymptomatic), 11% of 
patients with classical infections develop severe disease 
while 15% of classical infections result in moderate illness 
(defined as cases detected and managed in outpatient 
clinics). Hence, the "normal ratio of severe disease" is 0.3 
in this model, from the symptomatic mildly infected 
population. 

ratio_of_asymp
tomatic 

0.75 1 Depending on the strain involved, 75% of infections remain 
clinically unapparent while the remaining 25% develop 
mild to severe symptoms. For example, stomach cramps 
and vomiting followed by diarrhoea, which may progress 
to fluid losses of up to 1 litre per hour  

(Kaper, Morris, & Levine, 1995; Médecins Sans Frontières, 
2018).  

recently_infect
ed_population(
t) 

recently_infected_pop
ulation(t - dt) + 
(infections + 
Infected_IDP - 
mildly_infected - 
asymptomatic) * dt 

person Infected individuals who shifted to the "recently infected 
population" stock then leave after an average incubation 
time of 1 day and flow towards "mildly infected 
population" and "asymptomatic population" stocks.  

The World Health Organization estimates that officially 
reported cases of cholera represent only 5–10% of the 
actual number occurring annually worldwide because of 
inadequate laboratory and epidemiological surveillance 
systems and economic, social and political disincentives to 
case reporting (CDC, 2020). Historical data (OCHA, 2017) 
shows 40 cases in April 2017. Assuming that those are 
tested symptomatic severe cases and taking into 
consideration of under-reporting, the "recently infected 
population" is assumed to be 1000.  
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recovered_asy
mptomatic_po
pulation(t) 

recovered_asymptoma
tic_population(t - dt) + 
(recovered_from_asym
ptomatic - 
asymptomatic_infectio
n_acquired_immunity_
waning - 
vaccination_recovered
_asymptomatic) * dt 

person "recovered asymptomatic population" are asymptomatic 
individuals who recover and become immune because of 
natural infection. Asymptomatic individuals who shifted to 
the "recovered asymptomatic population" stock then leave 
after mild infection-acquired immunity waning of 6 
months and flow back to "susceptible population" stock. 
The "recovered asymptomatic population" is assumed to 
be 0 initially. 

recovered_fro
m_asymptomat
ic 

MAX(asymptomatic_po
pulation/average_dura
tion_of_illness_asympt
omatic-
vaccination_asymptom
atic, 0) 

person
/day 

"recovered from asymptomatic" flow is the rate at which 
asymptomatic individuals leave the stock after an average 
duration of illness asymptomatic of 5 days (material delay). 
The MAX function is to ensure the flow is more than 0. The 
flow also minus the vaccination flow once the intervention 
is activated.  

recovered_fro
m_treated_mil
d_infection 

treated_mildly_infecte
d_population*(1-
indicated_ratio_of_sev
ere_disease)/average_
duration_of_illness_sy
mptomatic 

person
/day 

"recovered from treated mild infection" flow is the rate at 
which part of the treated mildly infected individuals, 
through multiplication with (1 minus indicated ratio of 
severe disease), leaves the stock after an average duration 
of illness asymptomatic of 9 days (material delay).  

recovered_fro
m_treated_sev
erely_infection 

treated_severe_infecte
d_population/average_
duration_of_recovery_
under_treatment-
treated_death 

person
/day 

"recovered from treated severely infection" flow is the rate 
at which most of the treated severe disease individuals 
leave the stock after an average duration of illness 
asymptomatic of 9 days (material delay) and flow as 
"recovered from treated severely infection" to the 
recovered immune treated population after minus the 
treated death flow. 

recovered_fro
m_untreated_
mild_infection 

untreated_mildly_infec
ted_population/averag
e_duration_of_illness_
symptomatic 

person
/day 

"recovered from untreated mild infection" flow is the rate 
at which all of the untreated mildly infected individuals 
leaves the stock after an average duration of illness 
symptomatic of 9 days (material delay).  

recovered_fro
m_untreated_s
evere_disease 

untreated_severe_infe
cted_population/avera
ge_duration_of_illness
_symptomatic-
untreated_deaths 

person
/day 

"recovered from untreated severe infection" flow is the 
rate at which all of the untreated severe infected 
individuals leaves the stock after an average duration of 
illness symptomatic of 9 days (material delay). The flow 
also minus the untreated deaths flow. 

recovered_imm
une_treated_p
opulation(t) 

recovered_immune_tr
eated_population(t - 
dt) + 
(recovered_from_treat
ed_mild_infection + 
recovered_from_treate
d_severely_infection - 

person "recovered immune treated population" are symptomatic 
individuals who recover and become immune because of 
natural infection with treatment. Treated symptomatic 
individuals, both mild and severe disease, who shifted to 
the "recovered a immune treated population" stock then 
leave after average symptomatic infection acquired 
immunity period of 3 years and flow back to "susceptible 
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immunity_waning_trea
ted_population) * dt 

population" stock. The "recovered immune treated 
population" is assumed to be 0 initially. 

recovered_imm
une_untreated
_population(t) 

recovered_immune_un
treated_population(t - 
dt) + 
(recovered_from_untre
ated_mild_infection + 
recovered_from_untre
ated_severe_disease - 
immunity_waning_untr
eated_population) * dt 

person "recovered immune untreated population" are 
symptomatic individuals who recover and become 
immune because of natural infection without any 
treatment. Untreated symptomatic individuals, both mild 
and severe disease, who shifted to the "recovered a 
immune untreated population" stock then leave after 
average symptomatic infection acquired immunity period 
of 3 years and flow back to "susceptible population" stock. 
The "recovered immune untreated population" is assumed 
to be 0 initially. 

rehydration_ca
re 

IF 
switch_data_collection
=0 THEN 
rehydration_care_at_h
ospital ELSE 
MAX(rehydration_care
_at_hospital, 
seeking_care_at_ORC) 

person
/day 

"treatment at ORC" flow is the rate at which mildly infected 
individuals leave the stock by seeking treatment at ORC. 
The flow depends on the fraction mildly infected seeking 
care and it is affected by the ORC strain. If there is no ORC, 
infected individuals would need to rely on the current 
health facilities. Hence, a MAX function is used.  

rehydration_ca
re_at_hospital 

(mildly_infected_popul
ation/time_progress_t
o_next_stage)*fraction
_seeking_care_at_hosp
ital 

person
/day 

"rehydration care at hospital" flow is the rate at which 
mildly infected population seek rehydration care at 
hospital. 

remain_untreat
ed_mildly_infec
ted 

mildly_infected_popula
tion/time_progress_to
_next_stage-
rehydration_care-
become_severe_infect
ed 

person
/day 

"remain untreated mildly infected" flow is the rate at 
which mildly infected individuals leave the stock through 
multiplication with (1 minus the normal ratio of severe 
disease) after the time progress to next stage - 1 day 
(material delay). The MAX function is to ensure the flow is 
more than 0. The flow also minus the treatment at ORC 
rate once the intervention is activated.  

remain_untreat
ed_severe_infe
cted 

MAX((severe_infected_
population/time_progr
ess_to_next_stage)-
emergency_treatment, 
0) 

person
/day 

"remain untreated severe infected" flow is the rate at 
which severe infected individuals leave the stock through 
multiplication with (1 minus the untreated fatality ratio) 
after the time progress to next stage - 1 day (material 
delay). The MAX function is to ensure the flow is more than 
0. The flow also minus the treatment at DTC rate once the 
intervention is activated.  

seeking_care_a
t_DTC 

effect_of_DTC_strain_o
n_seeking_emergency_
treatment*fraction_sev
ere_infected_seeking_
care*severe_infected_
population/time_progr
ess_to_next_stage 

person
/day 

"rehydration care at DTC" flow is the rate at which severe 
infected population seek emergency care at DTC. 
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seeking_care_a
t_ORC 

(mildly_infected_popul
ation/time_progress_t
o_next_stage)*fraction
_mildly_infected_seeki
ng_care*effect_of_OR
C_strain_on_people_se
eking_hydration_care 

person
/day 

"seeking care at ORC" flow is the rate at which mildly 
infected population seek rehydration care at ORC. 

severe_infecte
d_population(t) 

severe_infected_popul
ation(t - dt) + 
(become_severe_infect
ed - 
remain_untreated_sev
ere_infected - 
emergency_treatment) 
* dt 

person "severe infected population" are severe cases of V. 
cholerae infection that is characterized by a sudden onset 
of acute voluminous watery diarrhoea described as ‘rice 
water stools’ and vomiting leading to rapid volume 
depletion and death if left untreated (Kaper, Morris, & 
Levine, 1995; Médecins Sans Frontières, 2018). Mildly 
infected individuals who shifted to the "severe infected 
population" stock then leave after the time progress to 
next stage - 1 day, and flow to 3 directions: "treated severe 
infected population", "untreated severe infected 
population" and "untreated cholera death" stocks. The 
"severe infected population" is assumed to be 0 initially. 

smoothed_frac
tion_of_conta
minated_water 

(SMTH3(total_bacteria
_shedding_from_the_f
raction_of_infected,tim
e_to_affect_water_in_
aquifers)*effect_of_sa
nitary_on_contaminate
d_water) 

1 The "smoothed fraction of contaminated water" smoothes 
the (third order) effect of the fraction of infected on the 
fraction of contaminated water with a delay of 14 days. 
This structure is refering to cholera model by Pruyt (2013). 
A third order delay is used to account for the fact that there 
are many stages in the process between bacteria shedding 
by the infected individuals to contaminating the water. 
(Sterman, Business Dynamics: Systems Thinking and 
Modeling for a Complex World, 2000) 

Igbinosa et al. (2011) found that South Africa has been 
plagued by outbreaks of Vibrio-related waterborne 
infections that are suspected to be linked to inefficiently 
treated effluents discharge from wastewater treatment 
facilities (cited from Okoh et al., 2015).  

Effluent is sewage that has been treated in a septic tank or 
sewage treatment plant. 

susceptible_po
pulation(t) 

susceptible_population
(t - dt) + 
(immunity_waning_unt
reated_population + 
vaccination_acquired_i
mmunity_waning + 
immunity_waning_trea
ted_population + 
asymptomatic_infectio
n_acquired_immunity_
waning + 
stop_receiving_clean_
water - infections - 

person Total population in Al Hudaydah governorate, Yemen in 
2017 was 3,238,199 (OCHA, 2017). For models that 
simulate an outbreak within a short period of time (e.g. 
two years in this model), one can ignore the dynamics of 
population growth (birth rate and death rate, gray arrows) 
and assume a constant population. It is assumed the total 
population as susceptible to cholera as the first cholera 
case only reported in September 2016. 
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vaccination_susceptibl
e - 
receiving_clean_water) 
* dt 

"time_IDPs_inc
rease_to_Al-
hudaydah" 

540 day The conflict in Al-Hudaydah intensified from June 2018. 
Hence, the starting day is 540,000. Although IDP present in 
Al-Hudaydah even before June 2018, the impact from IDP 
is less compared to the drastic increase of IDP from June 
2018. Hence, only IDP from June 2018 is captured in the 
model. 

time_progress_
to_next_stage 

1 day The incubation period of cholera can range from several 
hours to 5 days (Kaper, Morris, & Levine, 1995; Médecins 
Sans Frontières, 2018; Nelson et al., 2009). Similar to the 
"average incubation time", "time to progress to next stage" 
uses 1 day as the symptomatic individuals will then 
progress to either mild or severe disease stage.  

time_to_affect
_water_in_aqui
fers 

8 day The "time to affect water in aquifers" has an assumptive 
value of 5 days delayed. According to Nevondo and Cloete 
(2001), survival of vibrios in the aquatic environment 
relates sharply to various chemical, biological and physical 
characteristics of the aquatic milieu, with V. cholerae 
known to remain viable in surface waters for periods 
ranging from 1 h to 13 days (cited from Okoh, 2015). 

total_asympto
matic_shedding 

(recently_infected_pop
ulation+asymptomatic_
population)*bacteria_s
hedding_from_asympt
omatic 

person "total asymptomatic shedding" is the total bacteria shed by 
number of asymptomatic population and recently infected 
population  

total_bacteria_
shedding_from
_the_fraction_
of_infected 

(total_asymptomatic_s
hedding+total_mildly_s
hedding+total_severe_i
nfected_not_in_DTC_s
hedding)/Total_Popula
tion 

1 "fraction of infected" is the fraction of infected individuals 
who are contributing to the concentration of V. cholerae in 
the environment. This is a product of the number of 
infected individuals and the bacteria shedding in the stool 
over the total population. This compound parameter is 
depending on severity of infection as the bacteria shedding 
is different (Kaper, Morris, & Levine, 1995). 

Okoh et al. claimed that V. cholera presence in 
wastewater, therefore, could be dependent on the 
number of infected people in the population contributing 
to the wastewater flow. 

total_mildly_sh
edding 

(mildly_infected_popul
ation+untreated_mildly
_infected_population+t
reated_mildly_infected
_population)*bacteria_

person "total mildly shedding" is the total bacteria shed by 
number of treated mildly infected, mildly infected and 
untreated mildly infected population. 
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shedding_from_mildly_
infected 

total_severe_in
fected_not_in_
DTC_shedding 

(severe_infected_popul
ation+untreated_sever
e_infected_population)
*bacteria_shedding_fr
om_severely_infected 

person Severity affects the intensity of shedding, and so the 
average contribution of an infectious person to 
transmission may change systematically with time as the 
distribution of infectious doses changes (Kaper, Morris, & 
Levine, 1995; Nelson et al., 2013). The "severe infected not 
in DTC" excludes treated severe infected population 
because at DTC, the sewage system is in place with 
disinfection. Hence, it is assumed that all patients at DTC 
do not attribute their bacteria shedding back into the 
environment.  

total_symptom
atic_bacteria_s
hedding 

total_mildly_shedding+
total_severe_infected_
not_in_DTC_shedding 

person "total symptomatic bacteria shedding" is a product of both 
mild and severely infected bacteria shedding. 

treated_choler
a_death(t) 

treated_cholera_death
(t - dt) + 
(treated_death) * dt 

person "treated cholera death" are the deaths result from severe 
infected individuals who have received treatment. 

treated_death treated_severe_infecte
d_population*fatality_f
raction/average_durati
on_of_illness_sympto
matic 

person
/day 

"treated deaths" flow is the rate at which severe infected 
individuals leave the stock through multiplication with the 
treated fatality fraction after an average duration of illness 
symptomatic of 9 days (material delay).  

treated_mild_b
ecome_severe_
infected 

treated_mildly_infecte
d_population*indicate
d_ratio_of_severe_dise
ase/time_progress_to_
next_stage 

person
/day 

"treated mild become severe infected" flow is the rate at 
which treated mildly infected individuals leave the stock 
after the time to progress to next stage - 1 day (material 
delay) into treated severe infected population. The flow 
depends on the indicated ratio of severe disease which is 
lower if the capacity of the ORC is not strained. The ORC 
aims to treat mildly infected individuals at an early stage as 
a prevention from deteriorating into severe infected stage. 
The strained ORC will affected the quality of treatment 
among the mildly infected individuals where the rate 
"treated mild become severe infected" is higher. Médecins 
Sans Frontières (2018) reports that the initial clinical state 
can rapidly deteriorate (or not improve) if: – the volume of 
fluid prescribed on admission is insufficient: degree of 
dehydration underestimated or error in calculation. The 
volume is not administered within the correct time frame: 
rehydration too slow or too fast, interruptions in 
treatment (empty IV bags or ORS cups). On-going fluid 
losses (continued diarrhoea) are not adequately 
compensated by additional ORS or RL. Frequent vomiting 
persists: IV therapy may be needed for those who 
systematically vomit all ORS, even in patients with some 
dehydration. 
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treated_mildly
_infected_popu
lation(t) 

treated_mildly_infecte
d_population(t - dt) + 
(rehydration_care - 
recovered_from_treate
d_mild_infection - 
treated_mild_become_
severe_infected) * dt 

person "treated mildly infected population" are mild cases of V. 
cholerae infection that are treated. Mildly infected 
individuals who shifted to the "treated mildly infected 
population" stock then leave after an average duration of 
illness symptomatic 9 days, and flow to "recovered 
immune treated population" and "treated severe infected 
population" stocks. The "treated mildly infected 
population" is assumed to be 0 initially.  

treated_severe
_infected_popu
lation(t) 

treated_severe_infecte
d_population(t - dt) + 
(emergency_treatment 
+ 
treated_mild_become_
severe_infected - 
recovered_from_treate
d_severely_infection - 
treated_death) * dt 

person "treated severe infected population" are severe cases of V. 
cholerae infection that are treated. Severe infected 
individuals who shifted to the "treated severe infected 
population" stock then leave after an average duration of 
illness symptomatic 9 days, and flow to "recovered 
immune treated population" and "treated cholera death" 
stocks. The "treated severe infected population" is 
assumed to be 0 initially. 

untreated_chol
era_death(t) 

untreated_cholera_dea
th(t - dt) + 
(untreated_deaths) * 
dt 

person "untreated cholera death" are the deaths result from 
severe infected individuals who left untreated. 

untreated_deat
hs 

untreated_severe_infe
cted_population*untre
ated_fatality_fraction/
average_duration_of_il
lness_symptomatic 

person
/day 

"untreated deaths" flow is the rate at which severe 
infected individuals leave the stock through multiplication 
with the untreated fatality fraction after an average 
duration of illness symptomatic of 9 days (material delay).  

untreated_fatal
ity_fraction 

0.01 1 Case fatality rate is 0.19% in 2017 in Al-hudaydah 
governorate (OCHA, 2017). "untreated fatality fraction" 
uses 0.004 assuming that the fatality fraction is higher than 
the case fatality rate with treated death fraction of 0.0021. 

McCrickard et al. (2016) reports that more than half of the 
records of cholera deaths in Dar es Salaam were missing 
from the existing surveillance system, which only captured 
patients who arrived at DTCs. Deaths that occurred in 
other treatment locations or in the community were not 
reported. Underreporting of deaths during cholera 
epidemics, a phenomenon not unique to Tanzania poses a 
threat to global health security. 

untreated_mild
ly_infected_po
pulation(t) 

untreated_mildly_infec
ted_population(t - dt) + 
(remain_untreated_mil
dly_infected - 
recovered_from_untre
ated_mild_infection) * 
dt 

person "untreated mildly infected population" are mild cases of V. 
cholerae infection that are not treated. Mildly infected 
individuals who shifted to the "untreated mildly infected 
population" stock then leave after an average duration 
of illness symptomatic 9 days, and flow to "recovered 
immune untreated population" stock. The "untreated 
mildly infected population" is assumed to be 0 initially.  
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untreated_seve
re_infected_po
pulation(t) 

untreated_severe_infe
cted_population(t - dt) 
+ 
(remain_untreated_sev
ere_infected - 
recovered_from_untre
ated_severe_disease - 
untreated_deaths) * dt 

person "untreated severe infected population" are severe cases of 
V. cholerae infection that are not treated. Severe infected 
individuals who shifted to the "untreated severe infected 
population" stock then leave after an average duration of 
illness symptomatic 9 days, and flow to "recovered 
immune untreated population" stock. The "untreated 
severe infected population" is assumed to be 0 initially. 

vaccinated_pop
ulation(t) 

vaccinated_population(
t - dt) + 
(vaccination_susceptibl
e + 
vaccination_recovered
_asymptomatic + 
vaccination_asymptom
atic - 
vaccination_acquired_i
mmunity_waning) * dt 

person "vaccinated population" has the vaccinated individuals 
from recovered asymptomatic population, asymptomatic 
population, and susceptible population. Since there is no 
mass screening to filter the indviduals with infection 
acquired immunity, it is assumed that the health workers 
vaccinate those who seemed healthy and never been 
treated for cholera the past 1 year. 

vaccination_ac
quired_immuni
ty_waning 

vaccinated_population
//average_duration_of
_protection 

person
/day 

All vaccinated individuals leave vaccinated population 
stock after an average duration of protection (depending 
on 1 or 2 doses of vaccines) and flow as "vaccination 
acquired immunity waning" back to the susceptible 
population.  

vaccination_asy
mptomatic 

asymptomatic_populati
on*indicated_fractiona
l_vaccination 

person
/day 

"vaccination asymptomatic" flow is the rate at which 
asymptomatic individuals leave the stock through 
multiplication with indicated fractional vaccination. 

vaccination_rec
ently_infected_
population 

recently_infected_pop
ulation*indicated_fract
ional_vaccination 

person
/day 

Vaccination on recently infected population is assumed to 
be no impact. Hence, the flow is not attached to any stock. 
This is used  

vaccination_rec
overed_asympt
omatic 

recovered_asymptoma
tic_population*indicate
d_fractional_vaccinatio
n 

person
/day 

"vaccination recovered asymptomatic" flow is the rate at 
which recovered asymptomatic individuals leave the stock 
through multiplication with indicated fractional 
vaccination. 

Health_sector: 

beds 50 person
/centr
e 

2,531 beds were reported in 54 Diarrhoea treatment 
centres DTCs (EOC, 2018). "beds" is assumed to have 50 
patients capacity in each DTC. MSF (2018) guideline shows 
that one DTC has the capacity from 50 to 200 beds.  

building_DTC_s
tart_time 

80 day "building DTC start time" is the day when DTC started to be 
built. 

building_ORC_s
tart_time 

90 day "building ORC start time" is the day when ORC started to 
be built. 



73 | P a g e  
 

data_number_
of_DTC 

18 centre Emergency Operations Center (2017) reported 18 
functioning DTC. The population in Al-hudaydah was in 
need of 44 ORC. 

data_number_
of_ORC 

144 centre Emergency Operations Center (2017) reported 142 
functioning ORC. The population in Al-hudaydah was in 
need of 422 ORC. 

desired_DTC_c
apacity 

IF 
switch_data_collection
=0 THEN 0 ELSE (IF 
switch_DTC=1 THEN 
(0+STEP(data_number_
of_DTC*beds, 
indicated_building_DTC
_start_time)) ELSE IF 
switch_DTC=2 THEN 
(0+STEP(desired_numb
er_of_DTC*beds, 
indicated_building_DTC
_start_time)) ELSE 0) 

person "desired DTC capacity" is adjusted according to the 
number of severely infected individuals from the cholera 
prevalence (simulation). The variable input is a graphical 
function that has included the intervention historical data 
in 2017. It can be changed to test the policy impacts when 
the switch is turned to 2. "desired DTC capacity" also 
includes the implementation limitation from the effect of 
new DTC added. 

desired_numbe
r_of_DTC 

18 centre "desired number of DTC" is adjusted according to the 
number of severely infected individuals from the cholera 
prevalence (simulation). It can be changed to test the 
policy impacts when the switch is turned to 2.  

desired_numbe
r_of_ORC 

144 centre "desired number of ORC" is adjusted according to the 
number of severely infected individuals from the cholera 
prevalence (simulation). It can be changed to test the 
policy impacts when the switch is turned to 2.  

desired_ORC_c
apacity 

IF 
switch_data_collection
=0 THEN 0 ELSE (IF 
switch_ORC=1 THEN 
(0+STEP(data_number_
of_ORC*patient_treate
d, 
indicated_building_OR
C_start_time))ELSE IF 
switch_ORC=2 THEN 
(0+STEP(desired_numb
er_of_ORC*patient_tre
ated, 
indicated_building_OR
C_start_time)) ELSE 0) 

person "desired ORC capacity" is adjusted according to the 
number of symptomatic individuals from the cholera 
prevalence (simulation). The variable input is a graphical 
function that has included the intervention historical data 
in 2017. It can be changed to test the policy impacts when 
the switch is turned to 2. "desired ORC capacity" also 
includes the implementation limitation from the effect of 
new ORC added. 

DTC_capacity(t) DTC_capacity(t - dt) + 
(DTC_capacity_building
) * dt 

person People who are severely dehydrated may need 
intravenous fluids and hospitalisation. In these cases, they 
should be admitted to a Diarrhoea Treatment Centre 
(DTC). Without treatment, the mortality rate can reach 50 
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per cent; with adequate care, it's less than 2 per cent 
(Kaper, Morris, & Levine, 1995; Médecins Sans Frontières, 
2018; Nelson et al., 2009). A DTC is set up outside of the 
main hospital to prevent the spread of the disease and is 
fully autonomous. In open settings, with spread-out 
populations, treatment needs to be as close as possible to 
affected populations. "DTC capacity" expressed as number 
of severely infected individuals that can be treated at ORC 
in Al-hudaydah. The stock has an initial value of 0. 

DTC_capacity_b
uilding 

(desired_DTC_capacity-
DTC_capacity)//time_t
o_build_DTC 

person
/day 

"DTC capacity building" is a goal seeking function at which 
the current capacity to treat severely infected individuals 
is closing the gap with desired DTC capacity over the time 
to build DTC (first order delay). 

DTC_need people_in_need_DTC//
beds 

centre "DTC need" is a demand of beds relative to supply of beds 
ratio.  

DTC_strain treated_severe_infecte
d_population*ratio_se
vere_disease_in_DTC//
DTC_capacity 

1 Strain on DTC services capacity, level of overloading, from 
ratio of treated severe infected population to DTC 
capacity. 

effect_of_DTC_
strain_on_seeki
ng_emergency_
treatment 

GRAPH(DTC_strain) 
Points(11): (0.000, 
1.296), (0.500, 1.222), 
(1.000, 1.128), ... 

1 The graphical function shows that when the DTC strain is 
high, it affects the health seeking behavior among the 
infected individuals. More data/expert input is required for 
this parameter. 

effect_of_ORC_
strain_on_fracti
on_of_severe_
disease 

GRAPH(ORC_strain) 
Points(18): (0.000, 
0.503346425462), 
(0.0882352941176, 
0.505994142063), 
(0.176470588235, 
0.510691654066), ... 

1 By helping to reduce the severity of dehydration of 
patients who require health facility services, ORCs reduce 
stress and overcrowding at health facilities (UNICEF, 2013). 
Besides, when mildly infected individuals receive early 
treatment, it can help prevent the symptoms deteriorates 
to severely infected stage that requires DTC treatment. 
Médecins Sans Frontières (2018) also reports that the 
initial clinical state can rapidly deteriorate (or not improve) 
if: The volume of fluid prescribed on admission is 
insufficient (degree of dehydration underestimated or 
error in calculation). In addition, when the volume is not 
administered within the correct time frame (rehydration 
too slow or too fast, interruptions in treatment). In this 
model, the graphical function shows that when the ORC 
strain is high, it affects the quality and availability of care 
to mildly infected individuals. Hence, the ORC has less 
effect on preventing individuals flow into "treated severe 
infected population".  

effect_of_ORC_
strain_on_peop
le_seeking_hyd
ration_care 

GRAPH(ORC_strain) 
Points(11): (0.000, 
1.296), (0.500, 1.222), 
(1.000, 1.128), ... 

1 The graphical function shows that when the ORC strain is 
high, it affects the health seeking behavior among the 
infected individuals. More data/expert input is required for 
this parameter. 
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fatality_fractio
n 

service_strain_fatality_
fraction+(treated_fatali
ty_fraction-
service_strain_fatality_
fraction)/(1+DTC_strain
^service_capacity_sens
itivity) 

1 According to Médecins Sans Frontières (2018), the case 
fatality rate (CFR) is is used for assessing the quality of 
healthcare services (case management) at treatment 
centres. The standard indicator for adequate case 
management is a CFR < 1%. In this model, the "fatality 
fraction" on treated death is affected by the strain on DTC 
services capacity. The formula includes the sensitivity of 
care quality to health services strain. The negative 
exponent indicates an inverse relationship, whereby an 
increase in health services strain leads to a decrease care 
quality. Hence, an increase in fatality fraction.  

indicated_build
ing_DTC_start_
time 

IF 
switch_data_collection
=2 THEN 
building_DTC_start_tim
e + 
(response_time_to_up
date_system) ELSE 
building_DTC_start_tim
e 

day "indicated building DTC start time" includes the delay from 
surveillance system. 

indicated_build
ing_ORC_start_
time 

IF 
switch_data_collection
=2 THEN 
building_ORC_start_ti
me + 
(response_time_to_up
date_system) ELSE 
building_ORC_start_ti
me 

day "indicated building ORC start time" includes the delay from 
surveillance system. 

initial_DTC_cap
acity 

50 person The initial DTC is assumed to be 50 persons. This is an 
assumption as the cholera cases were reported since 
September 2016. 

initial_ORC_cap
acity 

200 person The initial ORC is assumed to be 200 persons. This is an 
assumption as the cholera cases were reported since 
September 2016. 

ORC_capacity(t
) 

ORC_capacity(t - dt) + 
(ORC_capacity_building
) * dt 

person Cholera is relatively simple to treat in people with mild to 
moderate forms usually able to recover through treatment 
with fluids and oral rehydration salts, which are easy to 
administer (Kaper, Morris, & Levine, 1995; Médecins Sans 
Frontières, 2018; Nelson et al., 2009). Care is decentralised 
to smaller-scale Oral Rehydration Centres (ORCs) known as 
cholera treatment units and oral rehydration solution 
points, supported by mobile teams."ORC capacity" 
expressed as number of people that can be treated at ORC 
in Al-hudaydah. The stock has an initial value of 0. 
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ORC_capacity_
building 

(desired_ORC_capacity
-
ORC_capacity)//time_t
o_build_ORC 

person
/day 

"ORC capacity building" is a goal seeking function at which 
the current capacity to treat mildly infected individuals is 
closing the gap with desired ORC capacity over the time to 
build ORC (first order delay). 

ORC_need (people_in_need_ORC)
//patient_treated 

centre "ORC need" is a demand of care relative to supply of care 
ratio.  

ORC_strain people_in_need_ORC//
ORC_capacity 

1 Strain on services capacity, level of overloading, from ratio 
of mildly and severely infected population to ORC capacity. 

other_AWD_ca
ses 

7000 person AWD case that is not easy to be differentiated from cholera 
patients. Most cases of acute, watery diarrhea are caused 
by viruses (viral gastroenteritis). The most common ones in 
children are rotavirus and in adults are norovirus (this is 
sometimes called “cruise ship diarrhea” due to well 
publicized epidemics) (Ochoa and Surawicz, 2012). This is 
an assumption number of 7000 persons. More data/expert 
input is required for this parameter. 

patient_treated 50 person
/centr
e 

Michas (2020) reports majority physicians see 20 patients 
per day, only 1.3% of physicians saw between 51 and 60 
patients per day. Assuming doctors in an emergency 
setting can see 50 patients. "patient tested" is assumed to 
be 50 patients per day.  

people_in_nee
d_DTC 

treated_severe_infecte
d_population*ratio_se
vere_disease_in_DTC 

person "people in need DTC" is number of severely infected 
individuals who need DTC treatment. Some severely 
infected individuals can be treated at ORC.  

people_in_nee
d_ORC 

(treated_severe_infect
ed_population*(1-
ratio_severe_disease_i
n_DTC)+treated_mildly
_infected_population+
other_AWD_cases) 

person "people in need DTC" is number of mildly infected 
individuals who need ORC treatment. This include other 
AWD case that is not easy to be differentiated from cholera 
patients. 

ratio_severe_di
sease_in_DTC 

0.7 1 Some severely infected individuals can be treated at ORC 
while some of them require treatment at DTC. It is 
assumed that 0.2 of all severely infected individuals need 
treatment at DTC. 

service_capacit
y_sensitivity 

2 1 "service capacity sensitivity" indicates the sensitivity of 
care quality to health services strain.  

service_strain_f
atality_fraction 

0.01 1 Case fatality rate is 0.19% in 2017 in Al-hudaydah 
governorate (OCHA, 2017). "treated fatality fraction" uses 
0.004 assuming that the fatality fraction is higher than the 
case fatality rate with treated death fraction of 0.0019 
when minimally treated due to overwhelmed, chaotic 
health care. 
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switch_DTC 1 1 A switch to activate and deactivate the intervention 

switch_ORC 1 1 A switch to activate and deactivate the intervention 

time_to_build_
DTC 

120 day "time to build DTC" is an assumptive duration (days) 
needed to increase the current capacity to meet the need 
from "desired desired DTC capacity".  

time_to_build_
ORC 

30 day "time to build ORC" is an assumptive duration (days) 
needed to increase the current capacity to meet the need 
from "desired desired ORC capacity".  

treated_fatality
_fraction 

0.0021 1 Case fatality rate is 0.21% in 2017 in Al-hudaydah 
governorate (OCHA, 2017). "treated fatality fraction" uses 
0.001 assuming that the fatality fraction is lower than the 
case fatality rate with treated death fraction of 0.0019 
when the quality of healthcare services is good. 

National_cholera_surveillance_system: 

data_updated_i
n_cholera_surv
eillance_syste
m 

IF 
switch_data_collection
=2 THEN 
SMTH3("recorded_susp
ected_and_confirmed_
cases_(cummulative)", 
normal_time_to_updat
e_system+response_ti
me_to_update_system
) ELSE 
SMTH3("recorded_susp
ected_and_confirmed_
cases_(cummulative)", 
normal_time_to_updat
e_system) 

person 

 

including_unre
ported(t) 

including_unreported(t 
- dt) + 
(including_unreported_
flow) * dt 

person "including unreported" is the stock of all infected 
individuals. 

including_unre
ported_flow 

asymptomatic+mildly_i
nfected*0.8 

person
/day 

"including unreported flow" is the rate of all infected 
individuals in the model per day. 

normal_time_t
o_update_syste
m 

14 day "normal time to update system" is a desired duration 
(days) needed to collect and update data of the 
surveillance system. 

"recorded_susp
ected_and_con
firmed_cases_(

"recorded_suspected_
and_confirmed_cases_
(cummulative)"(t - dt) + 
("recorded_suspected_

person In areas where an epidemic is under way, a suspected case 
of cholera is defined as acute watery diarrhea, with or 
without vomiting, in a patient over 5 years of age. 
According the study by Camacho (2018), Yemen Health 



78 | P a g e  
 

cummulative)"(
t) 

and_confirmed_cases_
(rate)") * dt 

Authorities set up a national cholera surveillance system to 
collect information on suspected cholera cases presenting 
at health facilities (no mass screening, the data depends on 
the availability of ORC, DTC, and health seeking ratio). 
Individual variables included symptom onset date, age, 
severity of dehydration, and rapid diagnostic test result. 
Suspected cholera cases were confirmed by culture, and a 
subset of samples had additional phenotypic and 
genotypic analysis. "cumulative cholera cases (suspected 
and confirmed cases)" is a stock with recorded cases from 
ORC and DTC. 

"recorded_susp
ected_and_con
firmed_cases_(
rate)" 

rehydration_care+eme
rgency_treatment 

person
/day 

According the study by Camacho (2018), Yemen Health 
Authorities set up a national cholera surveillance system to 
collect information on suspected cholera cases presenting 
at health facilities. Individual variables included symptom 
onset date, age, severity of dehydration, and rapid 
diagnostic test result. Suspected cholera cases were 
confirmed by culture, and a subset of samples had 
additional phenotypic and genotypic analysis. "recorded 
cholera cases" flow is the rate of individuals seeking 
treatment at ORC and DTC. 

response_time
_to_update_sys
tem 

0 day "normal time to update system" is an assumptive duration 
(days) needed to collect and update data of the 
surveillance system. 

switch_data_co
llection 

1 1 A switch to activate and deactivate the intervention 

Sanitation_condition: 

added_latrine_
capacity(t) 

added_latrine_capacity
(t - dt) + 
(latrine_construction) * 
dt 

person "added latrine capacity" is expressed as number of people 
that can be provided with latrine facility. 

average_sewer
ed_population 

Total_Population*ratio
_sewered_population 

person "average sewered population" is the product of total 
population multiply with ratio sewered population. 

building_capaci
ty_to_do_treat
ment 

((desired_sewage_plan
t_treatment-
capacity_to_treat_sew
age_plant)/time_to_inc
rease_treatment_capa
city)*effect_of_maxim
um_support_on_buildi
ng_capacity 

person
/day/d
ay 

"building capacity to do treatment" is a goal seeking 
function at which the current capacity to treat sewage 
plant is closing the gap with desired desired sewage plant 
treatment over the time to increase treatment capacity 
(first order delay). 

building_latrine
_start_time 

0 day "building latrine start time" is the day when latrines started 
to be built. 
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capacity_to_tre
at_sewage_pla
nt(t) 

capacity_to_treat_sew
age_plant(t - dt) + 
(building_capacity_to_
do_treatment) * dt 

person
/day 

Taking into the implementation challenges such as delay in 
building capacity in treating and maintaining sewage 
plants, "capacity to treat sewage plant" expressed as 
number of people that can be covered by the treated 
sewage plant. 

current_max_la
trine_need 

Total_Population*curre
nt_ratio_open_defecati
on 

person "current max latrine need" is the maximum capacity 
reduces with the additional capacity (and likewise) 
overtime. 

current_ratio_o
pen_defecation 

ratio_open_defecation-
(added_latrine_capacit
y/Total_Population) 

1 Ratio of people practicing open defecation in urban area of 
Yemen after the intervention. 

data_sewage_t
reatment_plant
_support 

GRAPH(TIME) 
Points(728): (0.0, 0), 
(1.00412654746, 0), 
(2.00825309491, 0), ... 

person
/day 

Data from the implemented intervention (OCHA, 2017).  

degradation sewage_treatment_pla
nt_supported/degradat
ion_time 

person
/day 

"degradation' flow is the rate that describes how quickly 
the sewage treatment plant are in need of treatment and 
maintenance again.  

degradation_ti
me 

30 day "degradation time" is assumed to be 30 days, assuming a 
sewage treatment plant needs maintenance after 30 days. 
More data/expert input is required for this parameter. 

desired_latrine
_construction 

IF 
switch_data_collection
=0 THEN 0 ELSE ( IF 
switch_latrine=2 THEN 
STEP(desired_number_
of_new_latrine, 
indicated_building_latri
ne_start_time)*people
_per_latrine*effect_of
_maximum_new_latrin
e ELSE 0) 

person Once the switch is changed to value 2, "desired latrine 
construction" has a pulse function of the product of 
desired number of new latrine, people per latrine, and 
building latrine start time. It also includes the effect of 
maximum new latrine as the implementation limitation. 

desired_numbe
r_of_new_latri
ne 

0 latrine "desired number of new latrine" is adjusted according to 
the maximum new latrine capacity needed. It can be 
changed to test the policy impacts when the switch is 
turned to 2.  

desired_sewag
e_plant_treatm
ent 

GRAPH(IF 
switch_data_collection
=2 THEN TIME + 
(response_time_to_up
date_system) ELSE 
TIME) Points(730): (0.0, 

person
/day 

"desired sewage plant treatment" is adjusted according to 
the number of individuals covered by treated sewage 
plant. The variable input is a graphical function that has 
included the intervention historical data in 2017. It can be 
changed to test the policy impacts. The intervention start 
time include response time (delay) from the surveillance 
system. 
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0), (1.00137174211, 0), 
(2.00274348422, 0), ... 

effect_from_lat
rine_interventi
on 

normal_sanitary_condi
tion*weight_of_latrine
_use*effect_of_additio
nal_latrine_on_sanitar
y_condition 

1 effect of additional latrine on sanitary condition is the 
product of the effect of additional latrine on sanitary 
condition based on the assigned weight. 

effect_from_ot
her_infrastruct
ure_conditions 

normal_sanitary_condi
tion*weight_of_other_
sanitary_interventions*
Other_infrastructure_s
tates 

1 effect from other infrastructure conditions is the product 
of other infrastructure states on sanitary condition based 
on the assigned weight. 

effect_from_se
wage_plant_int
ervention 

normal_sanitary_condi
tion*weight_of_sewag
e_plant_support*effect
_of_sewage_plant_trea
tment_on_sanitary_co
ndition 

1 effect from sewage plant intervention is the product of 
effect of sewage plant treatment on sanitary condition 
based on the assigned weight 

effect_of_addit
ional_latrine_o
n_sanitary_con
dition 

GRAPH(latrine_need) 
Points(20): (0.000, 
2.000), 
(0.0526315789474, 
1.978), 
(0.105263157895, 
1.949), ... 

1 Latrine intervention includes additional latrine and 
maintenance during the epidemic. The "effect of additional 
latrine on sanitary condition" has a graphical function of S-
shape decay.When the latrine need is value 1 (no 
intervention), the effect is 1 (no effect to the normal 
sanitary condition). The maximum effect is limited at 2 in 
order to constrain the sanitary condition at its maximum at 
100%. 

effect_of_maxi
mum_new_latr
ine 

GRAPH(latrine_need) 
Points(11): (0.0000, 
0.000), (0.0300, 
0.237185670755), 
(0.0600, 
0.423017710815), ... 

1 The "effect of maximum new latrine" has a graphical 
function of logarithmic growth. Assuming that when the 
latrine need is closer to 0, the effect decreases increasingly 
towards 0 because there is a lack of need to add more 
latrine. 

effect_of_maxi
mum_support_
on_building_ca
pacity 

GRAPH(sewage_treatm
ent_plant_need) 
Points(11): (0.0000, 
0.000), (0.0300, 
0.212119217174), 
(0.0600, 
0.385094456986), ... 

1 The "effect of maximum support on building capacity" has 
a graphical function of logarithmic growth. Assuming that 
when the sewage treatment plant need is closer to 0, the 
effect decreases increasingly towards 0 because there is a 
lack of need to support the sewage plant treatment. 

effect_of_sanit
ary_on_contam
inated_water 

GRAPH(indicated_sanit
ary_conditions) 
Points(13): (0.000, 
0.7503), 
(0.0833333333333, 
0.7144), 

1 "effect of sanitary on contaminated water" represents the 
sanitation states that impact the population in accessing 
clean water. When the indicated sanitary conditions is 
close to 1, from the range of 0 to 1, (poor to good sanitary 
condition), the effect (values) on the contaminated water 
decreases decreasingly towards zero: It reduces the water 
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(0.166666666667, 
0.6755), ... 

contamination level. The maximum effect (minimum 
value) is limited at 0.2 as good infrastructure cannot 
promise 0 water contamination. There are other factors on 
the water contamination. 

effect_of_sewa
ge_plant_treat
ment_on_sanit
ary_condition 

GRAPH(sewage_treatm
ent_plant_need) 
Points(20): (0.000, 
2.000), 
(0.0526315789474, 
1.967), 
(0.105263157895, 
1.929), ... 

1 Sewage plant support intervention includes additional 
treatment and maintenance to the sewage plants during 
the epidemic. Hence, this is additional treatment to the 
usual maintenance routines in the governorate. The 
"effect of sewage plant treatment on sanitary condition" 
has a graphical function of S-shape decay.When the 
sewage treatment plant need is value 1 (no intervention), 
the effect is 1 (no effect to the normal sanitary condition). 
The maximum effect is limited at 2 in order to constrain the 
sanitary condition at its maximum at 100%. 

indicated_build
ing_latrine_star
t_time 

IF 
switch_data_collection
=2 THEN 
building_latrine_start_t
ime + 
(response_time_to_up
date_system) ELSE 
building_latrine_start_t
ime 

day "building latrine start time" includes the delay from 
surveillance system. 

indicated_sanit
ary_conditions 

effect_from_sewage_pl
ant_intervention+effec
t_from_other_infrastru
cture_conditions+effec
t_from_latrine_interve
ntion 

1 "indicated sanitary conditions" represents the sanitation 
states that impact the population in accessing clean water. 
It multiplies the effect of sewage plant treatment on 
sanitary, effect of additional latrine on sanitary condition, 
and effect of other infrastructure states on the indicated 
sanitary conditions. Most of Yemen's major water and 
sanitation systems have sustained damage, and refuse 
collection services have been severely impaired. That there 
has not been a complete collapse is down to the 
resourcefulness of the population. “In some of the large 
cities, it is the business community that has come together, 
raised funds, and arranged solid waste collection 
campaigns that have been very successful” (Burki, 2016). 

initial_latrine_c
apacity_neede
d 

(Total_Population*rati
o_open_defecation) 

person "initial latrine capacity needed" is the initial need of latrine 
capacity by looking at the current number of population 
who are openly defecating. 

latrine_constru
ction 

MAX((desired_latrine_c
onstruction-
added_latrine_capacity
)/time_to_build_latrine
, 0) 

person
/day 

"latrine construction" is a goal seeking function at which 
the added latrine capacity is closing the gap with desired 
latrine construction over the time to build latrine (first 
order delay). 
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latrine_need current_max_latrine_n
eed/INIT(current_max_
latrine_need) 

1 "latrine need" is the current ratio open defecation relative 
to the initial ratio open defecation. If the value is 1, it 
indicates 100% need. If there is intervention, the need of 
latrine reduces, causes the value to be less than 1; hence, 
a reduced need and an effect of intervention on sanitary 
conditions. 

normal_sanitar
y_condition 

0.5 1 Under conflict affected context, the value of "normal 
sanitary condition" is assumed to be 0.5 functioning. 
According to WHO–UNICEF statistics, in 2014 only 53% of 
the population used improved sanitation facilities (cited 
from (Qadri, Islam, and Clemens, 2017). 

number_of_latr
ine_constructe
d 

added_latrine_capacity
/people_per_latrine 

latrine "number of latrine constructed" is obtained from dividing 
added latrine capacity with people per latrine. 

Other_infrastru
cture_states 

1 1 "Other infrastructure states" are represented by 
household and personal level sanitation that is different 
than community level interventions on sewage treatment 
plant and latrines. Under conflict affected context, the 
value of other infrastructures is assumed to be 0.5 
functioning. Therefore, the value for this parameter is 1. 
No intervention means no effect to the normal sanitary 
condition. Personal and household sanitation conditions 
play an important role on fecal-oral cholera transmission 
that is not within the boundary of this model. Hence, it is 
represented as constant values in this model. 

people_per_lat
rine 

20 person
/latrin
e 

Gunther (2012) research findings recommend that not 
more than four households (or 20 individuals) should share 
a toilet stance to ensure long-term hygienic and 
sustainable use. MSF (2018) and Spiegel et al. (2018) also 
report a minimum of one latrine for 20 people. Hence, the 
value 20 is used for each latrine. 

ratio_open_def
ecation 

0.01 1 Worldbank (2021) reports 1% of people practicing open 
defecation in urban area of Yemen in 2017. Open 
defecation included cases where feces are disposed in 
fields, water, and other open spaces and unimproved 
sanitation includes disposing feces in latrines without a 
platform, hanging latrines, or bucket latrines. 

ratio_sewered_
population 

0.693 1 Average sewered population in Al-hudaydah is 69.3% 
(Ministry of Electricity and Water, 2003). 

sewage_treatm
ent_plant(t) 

sewage_treatment_pla
nt(t - dt) + (degradation 
- treatment) * dt 

person Sewage plant treatment removes contaminants from 
sewage to produce an effluent that is suitable for discharge 
to the surrounding environment or an intended reuse 
application. Non-functional sewage plants leads to 
contamination of the shallow aquifers and wells, where 
local civilians and private tankers collect drinking water. 
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Sewage plant support intervention includes additional 
treatment and maintenance to the sewage plants during 
the epidemic (UNICEF, 2018). Initial value of the stock is 
"average sewered population" in Al-hudaydah. 

sewage_treatm
ent_plant_need 

sewage_treatment_pla
nt/INIT(sewage_treatm
ent_plant) 

1 "sewage treatment plant need" is the stock sewage plant 
treatment relative to the initial sewage plant treatment. If 
the value is 1, it indicates 100% need. If there is 
intervention, the stock reduces, causes the value to be less 
than 1; hence, a reduced need and an effect of 
intervention on sanitary conditions. 

sewage_treatm
ent_plant_supp
orted(t) 

sewage_treatment_pla
nt_supported(t - dt) + 
(treatment - 
degradation) * dt 

person "sewage treatment plant supported" is the stock where 
the number of individuals covered by treatment and 
maintenance of the sewage plants. 

switch_latrine 0 1 A switch to activate and deactivate the intervention 

switch_treatme
nt 

1 1 A switch to activate and deactivate the intervention 

time_to_build_
latrine 

30 day "time to build latrine" is an assumptive duration (days) 
needed to increase the current capacity to meet the need 
from "desired latrine construction".  

time_to_increa
se_treatment_c
apacity 

14 day "time to increase treatment capacity" is an assumptive 
duration (days) needed to increase the current capacity to 
meet the need from "sewage treatment plant". More 
data/expert input is required for this parameter. 

treatment IF 
switch_data_collection
=0 THEN 0 ELSE (IF 
switch_treatment=1 
THEN 
data_sewage_treatme
nt_plant_support ELSE 
IF switch_treatment=2 
THEN 
capacity_to_treat_sew
age_plant ELSE 0) 

person
/day 

Sewage treatment is a type of wastewater treatment 
which aims to remove contaminants from sewage to 
produce an effluent that is suitable for discharge to the 
surrounding environment or an intended reuse 
application, thereby preventing water pollution from raw 
sewage discharges. "treatment' flow is the rate at which 
individuals who leave sewage treatment plant stock to 
sewage treatment plant supported stock. 

weight_of_latri
ne_use 

0.15 1 "weight of latrine use" assigns the weight of latrine state in 
influencing the indicated sanitary condition. It is assumed 
to be 0.2 of the sanitary condition as open defecation can 
lead to contamination of the shallow aquifers and wells. 
Hence, the effect of functioning latrine intervention is 
assumed to be 0.2. More data/expert input is required for 
this parameter. 
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weight_of_oth
er_sanitary_int
erventions 

0.45 1 "weight of other sanitary interventions" assigns the weight 
of other sanitation state in influencing the indicated 
sanitary condition. It is assumed to be 0.45 because this 
parameter sanitary conditions include household and 
personal level sanitation that is different than community 
level interventions on sewage treatment plant and 
latrines. Although personal and household sanitation 
conditions play an important role on fecal-oral cholera 
direct transmission, this is not within the boundary of this 
model.  

weight_of_sew
age_plant_sup
port 

0.4 1 "weight of sewage plant support" assigns the weight of 
sewage plant state in influencing the indicated sanitary 
condition. It is assumed to be 0.4 of the sanitary condition 
as the highest numbers of cholera cases have been 
reported in places where sewage treatment plants are 
non-functional. Without working sewage treatment plants, 
raw sewage is often diverted to poor neighborhoods and 
agricultural lands (leads to contamination of the shallow 
aquifers and wells) where local civilians and private tankers 
collect drinking water. Hence, the value is conceptualised 
with a higher weight than latrine use and other 
infrastructure states. More data/expert input is required 
for this parameter. 

Vaccination: 

"1_dose" 1 vaccin
e/pers
on 

1 dose of vaccine per person 

"1_dose_protec
tion" 

180 day Although OCV currently used in mass campaigns are 
administered according to a two-dose regimen 14 days 
apart, a single dose provides short-term protection, with a 
pooled effectiveness of 69% (95% CI 35–85%) within the 
first year, which has important implications for outbreak 
management (Pezzoli, 2020) 

MSF (2018) reports that immunity develops one week after 
administration and lasts up to 6 months after a single dose 
and at least 3 years after 2 doses. 

"2_doses" 2 vaccin
e/pers
on 

2 doses of vaccines per person 

"2_doses_prote
ction" 

365*3 day Potentially facing annual epidemics, it may be necessary to 
revaccinate at-risk populations every 2 y given that the 
duration of vaccine protection is about 2.5 to 3 years 
(Durham el at., 1998; UNICEF, 2018) 

They have an average two-dose efficacy of 58% (95% 
confidence interval [CI], 42–69%) and effectiveness of 76% 
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(95% CI, 62–85%) for at least 3 years, with one study 
showing efficacy for up to 5 years. Although OCV currently 
used in mass campaigns are administered according to a 
two-dose regimen 14 days apart, a single dose provides 
short-term protection, with a pooled effectiveness of 69% 
(95% CI 35–85%) within the first year, which has important 
implications for outbreak management (Pezzoli, 2019). 

average_durati
on_of_protecti
on 

IF 
switch_vaccine_dose=0 
THEN 
"1_dose_protection" 
ELSE IF 
switch_vaccine_dose=1 
THEN 
"2_doses_protection" 
ELSE 0 

day "average duration of protection" depends on 1 or 2 doses 
vaccination. 

data_vaccines 260000 person According to UNICEF (2018) situation report, WHO and 
UNICEF Yemen have supported the first round of an oral 
cholera vaccination campaign in five districts in the 
northern governorates of Al-hudaydah and Ibb to protect 
an additional 540,595 people (over 1 years of age) against 
Cholera. In total 387,390 (69 per cent) persons have been 
vaccinated (first dose) against the total target of 561,002 
people. There is no data on dis-aggregation of Al-hudaydah 
and Ibb governorates. Hence, among the 3 districts, 2 are 
withing Al-hudaydah, it is assumed that 260,000 first dose 
OCV distributed in Al-hudaydah with the total target of 
370,000 people (from the total of 561,002 people). 

desired_numbe
r_of_vaccines 

260000 vaccin
e 

"desired number of vaccines" is initiated with the value 
260000 from the historical data. The value can be changed 
to test the policy. 

fractional_vacci
nation 

IF 
switch_data_collection
=0 THEN 0 ELSE (IF 
switch_vaccination=1 
THEN 
data_vaccines/potentia
l_vaccine_recipients/le
ngth_of_vaccination_c
ampaign ELSE IF 
switch_vaccination=2 
THEN 
number_of_vaccinated
_people 
/potential_vaccine_reci
pients/length_of_vacci
nation_campaign ELSE 
0) 

1/day "fractional vaccination" is rate that derived from dividing 
the number of vaccinated people over the campaign 
period (either from data or policy test input) with total 
population. This fraction draws number of person from the 
targeted stocks of sub-population into the vaccinated 
population stock. 
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indicated_fracti
onal_vaccinatio
n 

(STEP(fractional_vaccin
ation*vaccine_effective
ness, 
indicated_vaccination_
start_time+time_to_pr
ocure_vaccines) + 
STEP(-
fractional_vaccination*
vaccine_effectiveness, 
vaccination_stop_time
+time_to_procure_vac
cines)) 
+(interval_for_second_
round_of_vaccination/
/interval_for_second_r
ound_of_vaccination)* 
(STEP(fractional_vaccin
ation*vaccine_effective
ness, 
indicated_vaccination_
start_time+time_to_pr
ocure_vaccines+interva
l_for_second_round_of
_vaccination) + STEP(-
fractional_vaccination*
vaccine_effectiveness, 
vaccination_stop_time
+time_to_procure_vac
cines+interval_for_sec
ond_round_of_vaccina
tion)) 

1/day "indicated fractional vaccination" is a rate that depends on 
both the vaccination start time (policy initiation) and the 
time to procure vaccines (delay). Step function is used to 
enable the flows of individuals from the targeted stocks of 
sub-population into the vaccinated population stock. 

indicated_vacci
nation_start_ti
me 

IF 
switch_data_collection
=2 THEN 
vaccination_start_time 
+ 
(response_time_to_up
date_system) ELSE 
vaccination_start_time 

day "vaccination start time" is the day when the campaign 
starts. 

interval_for_se
cond_round_of
_vaccination 

0 day for interface. 

length_of_vacci
nation_campai
gn 

6 day "length of vaccination campaign" can be adjusted 
according to the health workers capacity. The value is set 
at a 6 days campaign in Al-hudaydah (UNICEF, 2018). 

number_of_vac
cinated_people 

IF 
switch_vaccine_dose=0 
THEN 

person Number of people vaccinated depends on the vaccine dose 
policy (switch) 
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desired_number_of_va
ccines/"1_dose" ELSE IF 
switch_vaccine_dose=1 
THEN 
desired_number_of_va
ccines/"2_doses" ELSE 
0 

potential_vacci
ne_recipients 

recovered_asymptoma
tic_population + 
asymptomatic_populati
on + 
susceptible_population 
+ 
recently_infected_pop
ulation 

person Individuals who are perceived as potential recipients of 
vaccines are individuals who were not previously infected 
with cholera. Besides susceptible individuals, this 
population includes asymptomatic individuals (both 
currently infected and recovered) and recently infected 
individuals because they cannot be differentiated by 
healthcare providers since there is no test before 
inoculation. 

switch_vaccinat
ion 

1 1 A switch to activate and deactivate the intervention 

switch_vaccine
_dose 

0 1 A switch for 1 or 2 doses OCV policy. 1 as 1 dose; 2 as 2 
doses 

time_to_procur
e_vaccines 

26 day "time to procure vaccines" is the delay from the day to 
request vaccines from global vaccine stockpile, to the day 
the vaccines delivered to the health workers before the 
vaccination campaigns. According to Pezzoli (2020), in 
emergency settings, the longest delay was from the 
occurrence of the emergency to requesting OCV (median: 
26 days). The parameter uses 26 days. 

vaccination_sta
rt_time 

600 day "vaccination start time" is the day when the campaign 
starts. 

vaccination_sto
p_time 

indicated_vaccination_
start_time+length_of_v
accination_campaign 

day "vaccination stop time" is the day after the campaign ends. 

vaccination_sus
ceptible 

susceptible_population
*indicated_fractional_v
accination/1 

person
/day 

"vaccination susceptible" flow is the rate at which 
susceptible individuals leave the stock through 
multiplication with indicated fractional vaccination. 

vaccine_effecti
veness 

0.76 1 Not everyone vaccinated will be immune to infection. A 
recent meta-analysis of seven randomized trials and six 
observational studies estimates the mean effectiveness of 
standard two-dose killed oral cholera vaccination at 76% 
with protection lasting for at least 3 years (Shim and 
Galvani, 2012). Also, Fung (2014) summarized five models 
on the Haitian cholera epidemic model parameters in 
Table (Appendix).  

Water_provision: 
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building_capaci
ty_to_distribut
e_water 

(desired_water_distrib
ution_capacity-
capacity_to_distribute_
water)/time_to_increa
se_distribution_capacit
y 

person
/day/d
ay 

"building capacity to distribute water" is a goal seeking 
function at which the current capacity to distribute water 
is closing the gap with desired water distribution capacity 
over the time to increase distribution capacity (first order 
delay). 

capacity_to_dis
tribute_water(t
) 

capacity_to_distribute_
water(t - dt) + 
(building_capacity_to_
distribute_water) * dt 

person
/day 

Taking into the implementation challenges such as delay in 
building capacity in supply side limitations, "capacity to 
distribute water" is expressed as number of people that 
can be provided with clean water. 

Data_clean_wa
ter_provision 

GRAPH(TIME) 
Points(364): (0.0, 0), 
(1.00550964187, 0), 
(2.01101928375, 0), ... 

person
/day 

Clean water provision intervention data were derived from 
OCHA (2017). The overtime data only available for 2017. 

day 1 day 1 day is used because water is daily essential need for 
human survival.  

desired_water_
distribution_ca
pacity 

GRAPH(IF 
switch_data_collection
=2 THEN TIME + 
(response_time_to_up
date_system) ELSE 
TIME) Points(728): (0.0, 
0), (1.00412654746, 0), 
(2.00825309491, 0), ... 

person
/day 

"desired water distribution capacity" is adjusted according 
to the number of susceptible individuals requiring clean 
water. The variable input is a graphical function that has 
included the intervention historical data in 2017. It can be 
changed to test the policy impacts. The intervention start 
time include response time (delay) from the surveillance 
system. 

fractional_susc
eptible_popula
tion 

susceptible_population
/Total_Population 

1 Fraction of population remaining susceptible to cholera.  

population_wit
h_clean_water(
t) 

population_with_clean
_water(t - dt) + 
(receiving_clean_water 
- 
stop_receiving_clean_
water) * dt 

person Cholera occurs in areas with poor access to sanitation and 
unsafe drinking water - so providing people with clean 
drinking water is vital to preventing and curbing any 
outbreaks. Clean Water Provision Intervention provides 
people with sachets to purify water, truck clean water in, 
and install, fix and clean out sanitation facilities such as 
toilets in affected areas. The epidemiology model by Tuite 
et al. (2010) simplified the cholera water provision 
intervention with an assumption at which 100% reduction 
of “contact” rate if covered by clean water provision. 
Hence, in this model, a similar assumption is made to 
represent the population with clean water. The initial value 
is 0. However, people who have clean water are still 
vulnerable to infection through other routes, such fecal-
oral transmission (which is not within the boundary of this 
model).  

ratio_of_clean_
water_in_reduc

0.7 1 Compared to Tuite et al. (2011) model on 100% reduction 
of "contact" rate if covered by clean water provision, this 
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ing_susceptibili
ty 

model assumes only 70% of individuals who receive clean 
water shift into the population with clean water stock. 
Figure 3 below illustrates the different pathways of cholera 
transmission. Having clean water does not ensure a 100% 
reduction in susceptibility (Wolfe et al., 2018). In addition, 
not all the water provision goes directly to the 
susceptibility population. The water provision is shared 
among all SIR sub-populations since there is no 
disaggregation among the recipients in this model. Hence, 
only a fraction of individuals from the susceptible 
population stock receives clean water.  

receiving_clean
_water 

IF 
switch_data_collection
=0 THEN 0 ELSE (IF 
switch_water_provisio
n=1 THEN 
Data_clean_water_pro
vision*susceptible_pop
ulation_receiving_wate
r*ratio_of_clean_water
_in_reducing_susceptib
ility ELSE IF 
switch_water_provisio
n=2 THEN 
capacity_to_distribute_
water*susceptible_pop
ulation_receiving_wate
r*ratio_of_clean_water
_in_reducing_susceptib
ility ELSE 0) 

person
/day 

"receiving clean water' flow is the rate at which a fraction 
of susceptible population is receiving water based on the 
capacity to distribute water (supply).  

IF switch_water_provision=1 THEN 
"WASH_support_(data)"*susceptible_population_receivin
g_water ELSE 
IF switch_water_provision=2 THEN 
capacity_to_distribute_water*susceptible_population_re
ceiving_water  
ELSE 0 

stop_receiving_
clean_water 

population_with_clean
_water/day 

person
/day 

"stop receiving clean water" flow is the rate at which 
individuals who had received clean water leave the stock 
after one day (material delay) once they no longer 
provided with water. They become susceptible to cholera 
again. 

susceptible_po
pulation_receiv
ing_water 

fractional_susceptible_
population 

1 "susceptible population receiving water" is the fractional 
susceptible population. This is an assumption of water is 
provided to the population without knowing who are the 
receivers. It is unrealistic to model all water provision goes 
to the susceptible population. Hence, only a fraction of the 
intervention is able to impact the population by reducing 
their susceptibility to cholera.  

switch_water_
provision 

1 1 A switch to activate and deactivate the intervention 

time_to_increa
se_distribution
_capacity 

14 day "time to increase distribution capacity" is an assumptive 
duration (days) needed to increase the current capacity to 
meet the need from "desired water distribution capacity".  
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6.3 Appendix C: Sensitivity Analysis and Calibration 

 

This appendix shows the sensitivity analysis (Monte Carlo analysis) run on all exogenous parameters and initial values 

using Sobol Sequence and Random Sampling. A base case run is given below, and each sensitivity run utilizes these 

values and changes one of the values in normal and incremental distribution within a preset range. The appendix is 

structured with two parts: SIR and intervention structures. A brief discussion about the insights of the sensitivity 

analysis follows the results for each tested parameter. For calibration, an example is shown on the last page. 

 
Table 7. Summary of sensitivity test.  (Click the parameters for further analysis results) 

No Parameters Numerical Behavioral Interventions 

1 connectedness of aquifers    

2 time to affect water in aquifers    

3 ratio of asymptomatic    

4 average incubation time    

5 average duration of illness asymptomatic    

6 susceptible population    

7 recently infected population    

8 asymptomatic population    

9 recovered asymptomatic population    

10 severe infected population    

11 normal ratio of severe disease    

12 time progress to next stage    

13 average duration of illness symptomatic    

14 average asymptomatic infection acquired immunity period    

15 fraction mildly infected seeking care    

16 fraction severe infected seeking care    

17 treated fatality fraction    

18 bacteria shedding from asymptomatic    

19 bacteria shedding from mildly infected    

20 bacteria shedding from severely infected    

21 
effect of the fraction of infected on the fraction of 

contaminated water 
   

 

Indicators: 

 Sensitive  Highly sensitive 
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No Parameters Numerical Behavioral Interventions 

22 time to increase distribution capacity    

23 desired water distribution capacity    

24 vaccination start time    

25 desired number of vaccines    

26 time to procure vaccines    

27 desired sewage plant treatment    

28 degradation time    

29 effect of sewage plant treatment on sanitary condition    

30 time to increase treatment capacity    

31 weight of sewage plant support    

32 weight of latrine use    

33 ratio sewered population    

34 ratio open defecation    

35 building latrine start time    

36 time to build latrine    

37 people per latrine    

38 desired number of new latrine    

39 effect of sanitary on contaminated water    

40 building ORC start time    

41 time to build ORC    

42 desired number of ORC    

43 effect of ORC strain on fraction of severe disease    

44 desired number of DTC    

45 building DTC start time    

46 desired time to update system    

 

 

Indicators: 

 Sensitive  Highly sensitive 
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1. SIR Model Component Structures:                                [Back to summary] 

    

Sensi parameter Result: Behavior over time graphs 

 

 

connectedness of 
aquifers 

Run 1 0.12 

Run 2 0.10 

Run 3 0.13 

Run 4 0.11 

Run 5 0.14 

Run 6 0.09 

Run 7 0.12 

Run 8 0.10 

Run 9 0.14 

Run 10 0.08  

The model is strongly (numerically and behaviourally) sensitive to changes in the value of 
"connectedness of aquifers" as expected. According to Pruyt's (2013) cholera model, this is an 
abstract concept related to the amount of reservoir water consumed. Adapting from Pryut's 
cholera model, this variable is a simplified and uncertain factor indicating the contact rate 
(susceptible population) with contaminated water. Higher connectedness values, higher impact 
on the infection rate (likewise). The variable is calibrated to the historical data, amounting to 
13% in the base model. 

 

 

time to 
affect water 
in aquifers 

Run 1 14 

Run 2 11 

Run 3 17 

Run 4 12.5 

Run 5 18.5 

Run 6 9.5 

Run 7 15.5 

Run 8 11.75 

Run 9 17.75 

Run 10 8.75 

 

The model is numerically sensitive to changes in the value of "time to affect water in aquifers" 
as expected. The variable controls the delay in "smoothed fraction of contaminated water". 
Hence, if the delay is short, the contaminated water reached or used by the susceptible 
population faster through the "indirect degree of infection" variable. 
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                 [Back to summary] 

                      [ 

 

 

 

ratio of 
asymptomatic 

Run 1 0.68 

Run 2 0.59 

Run 3 0.76 

Run 4 0.63 

Run 5 0.81 

Run 6 0.54 

Run 7 0.72 

Run 8 0.61 

Run 9 0.78 

Run 10 0.52 
  

The model is strongly (numerically and behaviourally) sensitive to changes in the value of "ratio of 
asymptomatic" as expected. Since 75% of infections remain clinically unapparent, they are the 'silent 
spreader' in the communities.  

 

average 
incubation 
time 

Run 1 1.00 

Run 2 0.75 

Run 3 1.25 

Run 4 0.88 

Run 5 1.38 

Run 6 0.63 

Run 7 1.13 

Run 8 0.81 

Run 9 1.31 

Run 10 0.56 
  

The model is numerically sensitive to changes in the value of "average incubation time" as expected. 
The value determines the infection progression rate to different stages of the disease; hence, it 
determines the differences of bacteria sheddings on the water contamination rate. The longer the 
incubation time, the longer the individuals stay in the recently infected population stock instead of 
moving on the severely infected population stock with higher bacteria shedding rate.  
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                [Back to summary] 

 

 

 
average 
duration of 
illness 
asymptomatic 

Run 1 5 

Run 2 4 

Run 3 6 

Run 4 4.5 

Run 5 6.5 

Run 6 3.5 

Run 7 5.5 

Run 8 4.25 

Run 9 6.25 

Run 10 3.25 
 

 

The model is strongly (numerically and behaviourally) sensitive to changes in the value of "average 
duration of illness asymptomatic" as expected. Since 75% of infections remain clinically unapparent, 
they are the 'silent spreader' in the communities. The faster the silent spreaders recovered, the lesser 
the bacteria shedding in contaminating the water source.  

 

susceptible 
population 

Run 1 2500000 

Run 2 2750000 

Run 3 3000000 

Run 4 3250000 

Run 5 3500000 

Run 6 2500000 

Run 7 2750000 

Run 8 3000000 

Run 9 3250000 

Run 10 3500000 
  

The model is numerically sensitive to changes in the value of "susceptible population" (initial value) as 
expected. The infection rate depends on the number of susceptible individuals. If the initial population 
value is lower, the scale of the infected population is smaller. On the other hand, the sensitivity of the 
susceptible population stock also indicated a leverage point for interventions. Interventions targeting 
to reduce the susceptibility can strengthen the balancing feedback loop and flatten the infection curve.  
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recently 
infected 
population 

Run 1 500.50 

Run 2 250.75 

Run 3 750.25 

Run 4 375.63 

Run 5 875.13 

Run 6 125.88 

Run 7 625.38 

Run 8 313.19 

Run 9 812.69 

Run 10 63.44 
  
The model is numerically sensitive to changes in the value of "recently infected population" (initial 
value) as expected. A higher number of infected individuals in the population increases the strength 
of the infection reinforcing feedback loop. Hence, one of the leverage points is to prevent people from 
getting infected in the first place. 

 

asymptomatic 
population 

Run 1 500 

Run 2 778 

Run 3 1056 

Run 4 1333 

Run 5 1611 

Run 6 1889 

Run 7 2167 

Run 8 2444 

Run 9 2722 

Run 10 3000 
  

The model is numerically sensitive to changes in the value of "asymptomatic population" (initial value) 
as expected. Similar results were found with tests on "mildly infected population", "untreated mildly 
infected population", and "treated mildly infected population". A higher number of asymptomatic and 
mild infected individuals in the population increases the strength of the infection reinforcing feedback 
loop. Among the infected individuals, 75% are asymptomatic, and 15% are mildly symptomatic (Kaper, 
Morris, & Levine, 1995; Médecins Sans Frontières, 2018). This underscores a key challenge in stopping 
the epidemic: If people do not know they are infected, they are probably not taking steps to prevent 
transmitting it (treated mildly infected population might not be identified as cholera patients because 
it is clinically indistinguishable from other causes of diarrheal illness). To prevent bacteria shedding 
from silent spreaders in contaminating water sources, policies must focus on improving sanitary 
conditions (infrastructures) and preventing people from getting infected in the first place.  
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recovered 
asymptomatic 
population 

Run 1 500.50 

Run 2 250.75 

Run 3 750.25 

Run 4 375.63 

Run 5 875.13 

Run 6 125.88 

Run 7 625.38 

Run 8 313.19 

Run 9 812.69 

Run 10 63.44 
  

The model is insensitive to changes in the value of "recovered asymptomatic population" (initial value) 
as expected. Similar results were found with tests on "recovered immune untreated population", 
"treated severe population", "recovered immune treated population". These sub-population are part 
of the balancing feedback loops in the model.  

 

severe 
infected 
population 

Run 1 500.50 

Run 2 250.75 

Run 3 750.25 

Run 4 375.63 

Run 5 875.13 

Run 6 125.88 

Run 7 625.38 

Run 8 313.19 

Run 9 812.69 

Run 10 63.44 
  

The model is slight numerically sensitive to changes in the value of "severe infected population" (initial 
value) as expected. A similar result was found with a test on "untreated severe population". Although 
only 10% of all infected individuals progress into a severe disease state, bacteria shedding is highest 
among the severely infected individuals (Kaper, Morris, & Levine, 1995). Hence, it is crucial to treat 
these individuals, prevent deaths, and prevent them from contaminating water sources. 
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normal ratio 
of severe 
disease 

Run 1 0.35 

Run 2 0.28 

Run 3 0.43 

Run 4 0.31 

Run 5 0.46 

Run 6 0.24 

Run 7 0.39 

Run 8 0.29 

Run 9 0.44 

Run 10 0.22 
  

The model is slight numerically sensitive to changes in the value of "normal ratio of severe disease" as 
expected. The testing range is small, between 9-11% of all infected individual because this parameter 
is determining the flow from mild infection to severe infection. Hence, 0.4 (40%) of the mild infected 
population progresses into severe infected population. If this ratio were increased from 10% of all 
infected populations, it gives numerical and behavioral sensitivity results.  

 

time 
progress to 
next stage 

Run 1 1.25 

Run 2 0.88 

Run 3 1.63 

Run 4 1.06 

Run 5 1.81 

Run 6 0.69 

Run 7 1.44 

Run 8 0.97 

Run 9 1.72 

Run 10 0.59 
  

The model is strongly (numerically) sensitive to changes in the value of "time progress to next stage" 
as expected. The faster the infected individuals leave the mild and severe infected stocks, the faster 
they move to the recovery state, attributing to the balancing feedback loops. 
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average 
duration of 
illness 
symptomatic 

Run 1 9 

Run 2 7 

Run 3 11 

Run 4 8 

Run 5 12 

Run 6 6 

Run 7 10 

Run 8 7.5 

Run 9 11.5 

Run 10 5.5 
 

 

The model is strongly (numerically and behaviourally) sensitive to changes in the value of "average 
duration of illness symptomatic" as expected. The faster the infected individuals leave the infectious 
stocks into the recovery stocks, the stronger the strength of the balancing feedback loops. 

 
average 
asymptomatic 
infection 
acquired 
immunity 
period 

Run 1 180 

Run 2 165 

Run 3 195 

Run 4 172.5 

Run 5 202.5 

Run 6 157.5 

Run 7 187.5 

Run 8 168.75 

Run 9 198.75 

Run 10 153.75 
 

 

The model is numerically sensitive to changes in the value of "average asymptomatic infection 
acquired immunity period" as expected. A similar result was found with a test on "average 
symptomatic infection acquired immunity period. When individuals stay in the recovered stocks 
longer, more individuals are accumulated in the recovered stocks, strengthening the balancing 
feedback loops. 
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fraction 
mildly 
infected 
seeking care 

Run 1 0.20 

Run 2 0.15 

Run 3 0.25 

Run 4 0.18 

Run 5 0.28 

Run 6 0.13 

Run 7 0.23 

Run 8 0.16 

Run 9 0.26 

Run 10 0.11 
 

 

The model is insensitive to changes in the value of "fraction mildly infected seeking care" as expected. 
For mildly infected cases, individuals are provided with oral rehydration treatment that is not helping 
to prevent bacteria shedding into the environment. On the other hand, the reported cholera cases are 
numerically sensitive to this parameter change. The surveillance system relies on reported cases from 
ORC and DTC in Yemen. Hence, if more people seek treatment (demand) and more treatment centers 
are available (supply), the reported cholera cases are higher. 

 

fraction severe 
infected seeking 
care 

Run 1 0.20 

Run 2 0.23 

Run 3 0.27 

Run 4 0.30 

Run 5 0.33 

Run 6 0.37 

Run 7 0.40 

Run 8 0.43 

Run 9 0.47 

Run 10 0.50 
  

The model is numerically sensitive to changes in the value of "fraction severe infected seeking care" 
as expected. A ratio of severely infected individuals required emergency treatment at DTC, where the 
excretion of the individuals at the centers is treated before entering the sewage system. Hence, 
reducing the risk of water contamination by cholera bacteria shedding. 
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treated 
fatality 
fraction 

Run 1 0.0013 

Run 2 0.0009 

Run 3 0.0016 

Run 4 0.0011 

Run 5 0.0018 

Run 6 0.0007 

Run 7 0.0014 

Run 8 0.0010 

Run 9 0.0017 

Run 10 0.0006 

 

  

The model is insensitive to changes in the value of "treated fatality fraction" as expected. Similar 
results were found with tests on "untreated fatality fraction", "treated fatality fraction", "service 
capacity sensitivity", and "service strain fatality fraction". All these parameters are sensitive to the 
cholera deaths.  

 
bacteria 
shedding 
from 
asymptomatic 

Run 1 0.60 

Run 2 0.50 

Run 3 0.70 

Run 4 0.55 

Run 5 0.75 

Run 6 0.45 

Run 7 0.65 

Run 8 0.53 

Run 9 0.73 

Run 10 0.43 
 

 

The model is strongly (numerically and behaviourally) sensitive to changes in the value of "bacteria 
shedding from asymptomatic" as expected. Although the tested values are the lowest among the three 
infectious levels of bacteria sheddings, the highest number of asymptomatic individuals (75%) 
attribute to the high sensitivity of this parameter value.  
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bacteria 
shedding 
from mildly 
infected 

Run 1 1.30 

Run 2 1.15 

Run 3 1.45 

Run 4 1.23 

Run 5 1.53 

Run 6 1.08 

Run 7 1.38 

Run 8 1.19 

Run 9 1.49 

Run 10 1.04 
 

 

The model is numerically sensitive to changes in the value of "bacteria shedding from mildly infected" 
as expected. For mildly infected cases, they shed bacteria into the environment with and without 
treatment.   

 
bacteria 
shedding 
from 
severely 
infected 

Run 1 2.00 

Run 2 1.75 

Run 3 2.25 

Run 4 1.88 

Run 5 2.38 

Run 6 1.63 

Run 7 2.13 

Run 8 1.81 

Run 9 2.31 

Run 10 1.56 
 

 

The model is numerically sensitive to changes in the value of "bacteria shedding from severely 
infected", and least sensitive compared to the other two infectious level of bacteria shedding, as 
expected. First, the number of severely infected individuals is only account for 10% of the total infected 
population. Second, among this 10% severely infected individuals, those who received treatment at 
DTC are assumed to not contribute to the bacteria shedding into the environment as the excretion of 
the individuals at the centers is treated before entering the sewage system.  
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effect of the fraction of 
infected on the fraction of 
contaminated water 

 
Run 1 – logarithmic growth 
Run 2 – exponential  growth 
Run 3 – linear growth 
Run 4 – S-shape growth 
 

 

 

The model is strongly (numerically and behaviourally) sensitive to changes in the graphical function 
shape of "effect of the fraction of infected on the fraction of contaminated water", as expected. This 
effect refers to Pryut's cholera model (2013). The effect of the fraction of infected on the fraction of 
contaminated water is a graphical function: if the fraction of infected is 0% then the fraction of 
contaminated water is assumed to be 0%, if it is 12.5% then the fraction of contaminated water is 
assumed to be 5%, if it is 25% then the fraction of contaminated water is assumed to be 75%, if it is 
50% then the fraction of contaminated water is assumed to be 90%, if it is 75% then the fraction of 
contaminated water is assumed to be 99%, and if it is 100% then the fraction of contaminated water 
is assumed to be 100%. This relationship is also an assumption in Pryut's cholera model. Compared to 
other curves in the graphical function, the assumption from Pryut's model shows a behavior that is 
expected from the model. 
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Clean water provision 

 
time to 
increase 
distribution 
capacity 

Run 1 13 

Run 2 9 

Run 3 17 

Run 4 11 

Run 5 19 

Run 6 7 

Run 7 15 

Run 8 10 

Run 9 18 

Run 10 6 

 

 

The model is insensitive to changes in the value of "time to increase distribution capacity" as expected 
because the model is simulated on the historical data of intervention. The intervention barely showed 
an impact because the resources were limited. However, the population with clean water is numerically 
sensitive to the delay of this parameter. If the supply of water is provided faster, more individuals move 
from the susceptible stock into the population with clean water stock faster, increasing the strength of 
the balancing feedback loop. 

desired water distribution capacity 
 
Run 1 - historical data in 2017 
Run 2 – test 

 

The model is numerically sensitive to changes in the value of "desired water distribution capacity" as 
expected. When more individuals move from the susceptible stock into the population with clean water 
stock, the strength of the balancing feedback loop increases. 
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vaccination 
start time 

Run 1 30 

Run 2 93 

Run 3 157 

Run 4 220 

Run 5 283 

Run 6 347 

Run 7 410 

Run 8 473 

Run 9 537 

Run 10 600 

 

 

The model is numerically sensitive to changes in the value of "vaccination start time" as expected. With 
the same amount of vaccine provision in Al-hudaydah (260,000 vaccines - intervention historical data), 
an earlier vaccine campaign shows a significant reduction of infected population.  
 

vaccination 
start time 

desired 
number of 
vaccines 

Run 1 156 890000 
Run 2 410 1000000 
Run 3 220 450000 
Run 4 30 780000 
Run 5 473 560000 
Run 6 93 560000 
Run 7 283 1000000 
Run 8 346 450000 
Run 9 410 1000000 
Run 10 600 340000 
One vaccine dose policy 

 

The model is strongly (numerically and behaviourally) sensitive to changes in the values of "vaccination 
start time" and "desired number of vaccines". For example, Run 4 (780,000 vaccines on day 30) shows 
the most promising outcome. However, it is unrealistic to implement such vaccine procurement in such 
a short amount of time. Run 6 (560,000 vaccines on day 93) shows a more realistic approach, with a low 
number of vaccines but earlier vaccine provision to the population reduces the mildly infected 
population profoundly. Run 9 (1,000,000 vaccines on day 410) shows the least favorable impact. Even 
though there are one million vaccines, providing vaccines very late in the epidemic gives minimal impact. 
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vaccination 
start time 

desired number of 
vaccines 

Run 1 93 340000 
Run 2 537 10000 
Run 3 347 670000 
Run 4 93 1000000 
Run 5 410 230000 
Run 6 30 780000 
Run 7 600 340000 
Run 8 473 450000 
Run 9 30 230000 
Run 10 537 10000 
Two vaccine dose policy 

 

The model is strongly (numerically and behavioral) sensitive to changes from one-dose to a two-dose 
policy with the same testing range in the one-dose policy. The two-dose policy provides three years of 
protection compared to one year in one dose vaccination. When the individuals are protected longer, 
it contributes to the balancing feedback loops. The oscillation in late 2018 is dampened more in two 
dose policy compared to one dose policy. 

 

time to 
procure 
vaccines 

Run 1 15 

Run 2 33 

Run 3 52 

Run 4 70 

Run 5 88 

Run 6 107 

Run 7 125 

Run 8 143 

Run 9 162 

Run 10 180 

 

 

By setting the model at two doses policy, 560,000 vaccines, and starting on day 60: the model is 
numerically sensitive to changes in the value of "time to procure vaccines" as expected. This delay takes 
into consideration of implementation challenges of capacity building. The delay attributes to the delay 
in providing vaccines to the population. Hence, the sooner the vaccine provision starts in an epidemic, 
the faster the balancing feedback loop is strengthened, reducing the infected population. 
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Sanitation infrastructure conditions                        [Back to summary] 

 

 

 

desired sewage plant treatment 
 
Run 1 – historical data  
Run 2 – earlier intervention 
Run 3 – double the intervention 

 
 

The model is strongly (numerically) sensitive to changes in the values of "desired sewage plant 
treatment" as expected. The infection reinforcing feedback loop is affected by the water source 
contamination by the infected individuals. If the current sewage plant treatment is well supported, 
there is less water contamination by cholera. 

 

degradation 
time 

Run 1 10 

Run 2 49 

Run 3 89 

Run 4 128 

Run 5 168 

Run 6 207 

Run 7 247 

Run 8 286 

Run 9 326 

Run 10 365 

 

 

The model is numerically sensitive to changes in the value of "degradation time" as expected. Assuming 
a sewage treatment plant needs maintenance after a certain period (degradation time). If the 
degradation time is longer, the resources (intervention historical data) to support the treatment plant 
could have reached more treatment plants. As a result, there is a reduction in water contamination by 
cholera. 
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effect of sewage plant 
treatment on sanitary condition 

 
Run 1 – S-shape decay 
Run 2 – exponential decay 
Run 3 – logarithmic decay 
Run 4 – linear decay 

 

The model is numerically sensitive to changes in the graphical function shape of "effect of sewage plant 
treatment on sanitary condition", as expected. Run 1 (S-shape decay) and Run 4 (linear decay) show 
similar behavior. However, very few relationships are linear due to the problem's complexity. Hence, 
non-linear S-shape decay is assumed to represent the effect of sewage plant treatment on sanitary 
conditions. 

 
time to 
increase 
treatment 
capacity 

Run 1 10 

Run 2 20 

Run 3 30 

Run 4 40 

Run 5 50 

Run 6 60 

Run 7 70 

Run 8 80 

Run 9 90 

Run 10 100 

 

 

The model is numerically sensitive to changes in the value of "time to incrase treatment capacity" as 
expected. This delay takes into consideration of implementation challenges of capacity building. Hence, 
the faster the intervention begins, the sooner the balancing feedback loop being strengthened 
(reducing water contamination), decreasing the infected population. 
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weight of 
sewage plant 
support 

Run 1 0.20 

Run 2 0.26 

Run 3 0.31 

Run 4 0.37 

Run 5 0.42 

Run 6 0.48 

Run 7 0.53 

Run 8 0.59 

Run 9 0.64 

Run 10 0.70 

 

 

The model is strongly (numerically and behavioral) sensitive to changes in the values of "weight of 
sewage plant support" as expected. This is one of the crucial leverage points on the sanitary condition 
as the highest numbers of cholera cases have been reported in places where sewage treatment plants 
are non-functional. Without working sewage treatment plants, raw sewage is often diverted to poor 
neighborhoods and agricultural lands (leads to contamination of the shallow aquifers and wells) where 
local civilians and private tankers collect drinking water. The value is conceptualized with a higher 
weight than "latrine use" and "other infrastructure states" on the highly sensitive effect of sanitary on 
contaminated water (strong leverage point).  

 

weight of 
latrine use 

Run 1 0.10 

Run 2 0.13 

Run 3 0.17 

Run 4 0.20 

Run 5 0.23 

Run 6 0.27 

Run 7 0.30 

Run 8 0.33 

Run 9 0.37 

Run 10 0.40 

 

 

By setting the model at 500 additonal latrines, and starting on day 100: the model is  strongly 
(numerically and behavioral) sensitive to changes in the value of "weight of latrine use" as expected. 
This intervention affects the sanitary condition substantially as open defecation can lead to 
contamination of the shallow aquifers and wells.  
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ratio 
sewered 
population 

Run 1 0.4 

Run 2 0.45 

Run 3 0.5 

Run 4 0.55 

Run 5 0.6 

Run 6 0.65 

Run 7 0.7 

Run 8 0.75 

Run 9 0.8 

Run 10 0.85 

 

 

The model is numerically sensitive to changes in the value of "ratio sewered population" as expected. 
Assuming that the sewage treatment plant intervention (historical data) remains the same but the ratio 
value differs, the impact would also differ following the changing needs for sewage plant treatment.  

 

ratio open 
defecation 

Run 1 0.005 

Run 2 0.006 

Run 3 0.007 

Run 4 0.008 

Run 5 0.009 

Run 6 0.011 

Run 7 0.012 

Run 8 0.013 

Run 9 0.014 

Run 10 0.015 

 

 

The model is numerically sensitive to changes in the value of "ratio open defecation" as expected. 
Assuming that the number of latrine building remains the same but the ratio of open defecation differs, 
the impact would also differ following the changing needs for latrines.  
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building 
latrine start 
time 

Run 1 30 

Run 2 67 

Run 3 104 

Run 4 142 

Run 5 179 

Run 6 216 

Run 7 253 

Run 8 291 

Run 9 328 

Run 10 365 

 

 

By setting the model at 1000 additional latrines: the model is numerically sensitive to changes in the 
value of "building latrine start time" as expected. With the same amount of latrine provision in Al-
hudaydah, an earlier vaccine campaign shows a significant reduction of infected population.  

 

time to build 
latrine 

Run 1 15 

Run 2 23 

Run 3 32 

Run 4 40 

Run 5 48 

Run 6 57 

Run 7 65 

Run 8 73 

Run 9 82 

Run 10 90 

 

 

By setting the model at 1000 additional latrines, and starting on day 100: the model is numerically 
sensitive to changes in the value of "time to build latrine" as expected. This delay takes into 
consideration of implementation challenges of capacity building. Hence, the faster the intervention 
begins, the sooner the balancing feedback loop being strengthened (reducing water contamination), 
decreasing the infected population. 
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people per 
latrine 

Run 1 10 

Run 2 20 

Run 3 30 

Run 4 40 

Run 5 50 

Run 6 60 

Run 7 70 

Run 8 80 

Run 9 90 

Run 10 100 

 

 

By setting the model at 500 additional latrines, and starting on day 100: the model is numerically 
sensitive to changes in the value of "people per latrine" as expected. The higher the value, the more Al-
hudaydah population would be covered by latrine and sewage system (assuming the latrines are well 
maintained). 

 

desired 
number of 
new latrine 

Run 1 250 

Run 2 306 

Run 3 361 

Run 4 417 

Run 5 472 

Run 6 528 

Run 7 583 

Run 8 639 

Run 9 694 

Run 10 750 

 

 

By setting the model at 500 additional latrines, people per latrine at 20, and starting on day 100: the 
model is numerically sensitive to changes in the value of "desired number of new latrine" as expected. 
The higher the value, the more Al-hudaydah population would be covered by latrine and sewage system 
(assuming the latrines are well maintained). 
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effect of sanitary on 
contaminated water 

 
Run 1 – S-shape decay 
Run 2 – exponential decay 
Run 3 – logarithmic decay 
Run 4 – linear decay 
 

 

 

The model is strongly (numerically and behavior) sensitive to changes in the graphical function shape 
of "effect of sanitary on contaminated water", as expected. Run 1 (S-shape decay) and Run 4 (linear 
decay) show similar behavior. However, very few relationships are linear due to the problem's 
complexity. Hence, a non-linear S-shap decay is assumed to represent a sanitary effect on contaminated 
water. 
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building ORC 
start time 

Run 1 30 

Run 2 60 

Run 3 90 

Run 4 120 

Run 5 150 

Run 6 180 

Run 7 210 

Run 8 240 

Run 9 270 

Run 10 300 

 

  

The model is slight numerical sensitive to changes in the value of "building ORC start time" as expected 
because the model is simulated on the historical data of intervention. The intervention showed minimal 
impact because the resources were limited to accommodate the need of Al-hudaydah infected 
individuals and mildly infected individuals might not be aware they are infected. However, the recorded 
cholera cases are highly (numerically) sensitive to the values. If the ORC service starts earlier, more 
individuals receive treatment earlier (prevention on progressing to severe state), so does the 
surveillance system can function earlier to provide crucial information for cholera emergency response. 

 

time to build 
ORC 

Run 1 30 

Run 2 67 

Run 3 104 

Run 4 142 

Run 5 179 

Run 6 216 

Run 7 253 

Run 8 291 

Run 9 328 

Run 10 365 

 

 
The model is insensitive to changes in the value of "time to build ORC" as expected with the historical 
data as the intervention was not sufficient to meet the population need (supply and demand issues). 
This delay takes into consideration of implementation challenges of building ORC. Hence, the faster the 
intervention begins, the sooner the infected individuals receive treatment (prevention on progressing 
to severe state), and the surveillance system can function earlier to provide crucial information for 
cholera emergency response. 
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desired number of ORC 
 

 

The model is numerically sensitive to changes in the value of "desired number of ORC" as expected. A 
similar result was found on "patient treated". Run 1, 2, and 4 show similar results, indicating a lack of 
need (or demand) from the infected individuals. Increasing the demand (health-seeking behavior) 
among the mildly infected individuals is one of the leverage points and should be further explored as 
the next steps. 

effect of ORC strain on fraction of 
severe disease 

 
Run 1 – S-shape growth 
Run 2 – exponential  growth 
Run 3 – logarithmic  growth 
Run 4 – linear growth 

 

 

 

The model is insensitive to changes in the graphical function shape of "effect of ORC strain on fraction 
of severe disease", as expected. Based on the historical data of ORC, the impact is minimal towards the 
overall infection reinforcing feedback loop. However, the effect impacts the number of progressing into 
severe disease states as mildly infected individuals receive early treatment helps to prevent progressing 
to a severe state. When the severely infected increases (only during the initial months before the ORC 
were built), cholera deaths slightly increase.  
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desired number of DTC 
 

 

 

The model is insensitive to changes in the value of "desired number of DTC" as expected. A similar result 
was found on "bed". Severely infected individuals seeking treatment are very low relative to the total 
infected population. Even though the DTC treats the human waste before releasing it into the sewage 
system as the desired action to decrease water contamination, the impact is minimal. However, the 
teated cholera death is highly (numerically) sensitive to treatment at DTC.  

 

building DTC 
start time 

Run 1 30 

Run 2 67 

Run 3 104 

Run 4 142 

Run 5 179 

Run 6 216 

Run 7 253 

Run 8 291 

Run 9 328 

Run 10 365 

 

 

The model is insensitive to changes in the value of "building DTC start time" as expected. A similar result 
was found with "time to build DTC". However, the teated cholera death is highly (numerically) sensitive 
to both parameters. 
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desired 
time to 
update 
system 

Run 1 7 

Run 2 13 

Run 3 19 

Run 4 25 

Run 5 31 

Run 6 36 

Run 7 42 

Run 8 48 

Run 9 54 

Run 10 60 

 

 

 

The model is numerical sensitive to changes in the value of "desired time to update system" as expected 
in the scenario based on historical intervention data. It assumes that if the surveillance system is 
delayed, the emergency response based on the collected cholera prevalence data experiences a delay 
in the start time (policy structures). Likewise, if the surveillance system is highly responsive, the start 
time of the intervention will be earlier. 
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Calibration Example using Stella Architect 

 
Starting optimization "Optimization" at 2022-May-25 16:35:33 

Method maxiter init_step tolerance 

Powell 5000 1 0.00001 

 

Payoff: Payoff 

Action minimize 

Kind Calibration 

Element data suspected and confirmed cases (cummulative) 

Weight auto 

Comparison Variable recorded suspected and confirmed cases (cummulative) 

Comparison Run -2 

Comparison Type Squared Error 

Comparison Tolerance 0 

 

Parameter: connectedness of aquifers time to affect water in aquifers 

min_value 0 1 

max_value 1 14 

scaling 1 1 

 
 connectedness of aquifers time to affect water in aquifers Payoff 

Starting at 0.5 8  

After 76 runs 0.500262792 7.50549131 1,586.61825 

 
 
Finishing optimization at 2022-May-25 16:35:38 
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