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Abstract
Based on the ERA5-Land datasets from 1981–2020, a decadal oscillation has been found in the
variation of summer runoff in the middle and lower reaches of the Yangtze River Basin (MLYRB).
The oscillation suggests that the MLYRB will experience increased runoff in the next few decades
after 2020, which saw a record high runoff in the MLYRB. The decadal changes in summer runoff
over the MLYRB under various climate change scenarios are then analyzed with direct runoff
outputs from 28 general circulation models participating in the sixth phase of the Coupled Model
Intercomparison Project. Given that the equal-weighted multi-model ensemble mean could not
well represent the historical runoff changes in the MLYRB, in this paper we introduce a model
weighting scheme that considers both the model skill and independence. It turns out that this
scheme well constrains the models to represent the observed decadal changes of summer runoff.
The weighted mean projections suggest that the summer runoff in the MLYRB during 2015–2100
under all warming scenarios will be higher than the present day; and 2021–2040 is likely to be a
period with significantly increased summer runoff. Results of the present study have great
implications for flood control and effective water resources management over the MLYRB in the
future, and the weighting approach used in this paper can be applied to a wide range of projections
at both regional and global scales.

1. Introduction

Annual-mean globally averaged surface air temperat-
ure has increased at an average rate of 0.08 ◦C per
decade since 1880 (0.18 ◦C per decade since 1981)
(NOAANational Centers for Environmental Inform-
ation 2021), which has enormous impacts on the
global water cycle (Sohoulande et al 2016). As one
of the key elements of the hydrologic cycle, runoff
has changed significantly over the past years (Nam
et al 2018). Since runoff impacts people, agriculture,
industries and ecosystems, an enhanced understand-
ing of the spatiotemporal variations in runoff at a
river basin and their response to climate change is of

great significance for effective flood prevention, eco-
logical environment protection and policy formula-
tion (Xiao et al 2018, Xing et al 2018).

The Yangtze River Basin (YRB), the largest river
basin in China and the 12th largest river basin in
the world, plays a crucial role in regional water cycle,
economic and social development (Tao et al 2021).
The middle and lower reaches of the YRB (MLYRB)
have the most abundant water source in China,
with the highest nationwide density and number of
lakes (Li et al 2019). There has been considerable
research on spatiotemporal variation of runoff in the
YRB/MLYRB based on short-term observations and
simulations by various land surface models (LSMs)
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or global hydrological models (GHMs) (Chen et al
2014, Tang et al 2018, Xiao et al 2018, Gao et al 2020).
However, previous studies mostly focused on the sea-
sonal, interannual variability or long-term trend of
the runoff in the MLYRB, while less attention has
been paid to its interdecadal variability. 2020 sum-
mer saw the worst flooding disasters in the MLYRB
since 1998 (another recorded severe flood occurred in
1983), which severely impacted the lives and activit-
ies of the local people (Wang et al 2021). This implies
an interdecadal variation in the runoff at theMLYRB.
To develop adaption strategies for climate risk reduc-
tion, it is necessary to analyze the historical decadal
changes of summer runoff in the MLYRB, to reveal
its linkage to atmospheric circulation and to project
future runoff changes in this region.

Due to the short observed runoff data, model
outputs are indispensable for runoff projection. To
obtain long-term runoff data, previous studies have
commonly adopted the LSMs/GHMs driven by bias-
corrected precipitation data, which is estimated by
general circulation models (GCMs) (Koirala et al
2014, Schewe et al 2014, Nam et al 2019). However,
obtaining simulated runoff data in accordance with
the above procedure will face great challenges. For
example, due to our limited knowledge of the highly
complicated climate system, large uncertainties exist
in the precipitation predictions from GCMs (Kim
et al 2008, Hawkins and Sutton 2011), which con-
tribute to the major source of uncertainties in run-
off simulations (Wilby et al 2008). And the runoff
simulated by LSMs/GHMs might be heavily depend-
ent on the model used, the bias correction and the
downscaling method applied to the model input data
(Hagemann et al 2013, Schewe et al 2014). There-
fore, it is meaningful to use as many models as pos-
sible to explore the future runoff changes in the
study region. In recent years, with a rapid increase
in computational power and the great development
of model structures and spatial resolutions, GCMs
have been extensively applied to climate projection
(Kitoh et al 2009, Mizuta et al 2012). Currently, sci-
entists commonly utilize multi-model ensembles to
provide a range of plausible outcomes that a region
may experience (Merrifield et al 2020). The ensemble
projection allows researchers to analyze the consist-
encies and discrepancies of multiple models in the
ensemble to evaluate the overall level or the indi-
vidual model’s ability in projecting long-term climate
change.

As the most comprehensive collection of climate
simulations produced to date, the Coupled Model
Intercomparison Project Phase 6 (CMIP6) archive
(Eyring et al 2016) contains the latest outputs of
more than 30 GCMs developed at different institutes
around the world (Jiang et al 2020). Compared with
the CMIP5, the CMIP6 has designed new scenarios,
i.e., the shared socioeconomic pathway (SSP) 1–2.6,

SSP2–4.5, SSP3–7.0, and SSP5–8.5, whose new frame-
work filled in the critical gaps of intermediate for-
cing levels in CMIP5 (Eyring et al 2016, O’Neill et al
2016). It is therefore necessary to use CMIP6 GCMs
to project runoff changes in the MLYRB under these
new scenarios. Given the existing large model sys-
tematic errors, biases need to be constrained within
the ensemble runoff projection. However, in most
of the previous studies, each simulation/projection is
taken to be equally important and the equal-weighted
ensemble mean becomes a common way to reduce
the uncertainties caused by internal variability and
models’ biases. However, the equal-weighted method
has a fundamental drawback because an individual
model has distinct performance and skill (Chen et al
2020, Jiang et al 2020, Zhou et al 2020). Some stud-
ies specifically selected those models that have better
performance to calculate the equal-weighted mean.
However, such a method has not considered the
model independence (Lee andWang 2014, Wang et al
2014). Additionally, some studies have suggested that
both the model skill and the inter-dependence of
multi-model archives are essential to constrain the
uncertainties in climate simulations and projections
(Knutti et al 2013, Sanderson et al 2015, 2017). Spe-
cifically, given a set of models, it is important to eval-
uate the value of adding another model to this set
for projection. Taking an extreme case, for example,
adding a duplicated model to the original set would
not provide any new information; rather, it would
even bias the combination of existing models’ res-
ults toward the results of the duplicated model (Cald-
well et al 2014). In the CMIP6 archive, some mod-
els are highly similar to each other because they are
from the same institution or they share a large num-
ber of codes. In that case, these simulations and
projections cannot be seen as independent samples
of runoff changes. Therefore, it is essential to con-
sider both the model skill and the model independ-
ence to effectively constrain the model biases and
provide a more reliable projection of runoff in the
MLYRB.

Therefore, in this study, we will first use the obser-
vational/reanalysis data to investigate the interdecadal
variation of the summer (June, July and August) run-
off in the MLYRB and reveal its linkage to large-scale
atmospheric circulation. The results of this part are
described briefly in section 3.1 and more details can
be found in supplementary information (available
online at stacks.iop.org/ERL/17/024015/mmedia).
Subsequently, the CMIP6 archive will be processed
by a model weighting scheme utilized by Sanderson
et al (2017) to constrain the uncertainties in the his-
torical simulation andprojection of summer runoff in
the MLYRB. The model weighting scheme considers
both the model skill and the model independence,
which can reduce respectively the influence of rel-
atively poor-performing models and the influence of
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duplicatedmodels asmuch as possible. It is developed
based on the assumption that if a model has skills as
good as other models but has higher independence,
the model should have greater potential to provide
new and more useful information. Finally, based
on the multi-model weighted mean projections, we
provided a comprehensive picture of future runoff
changes under different climate change scenarios.
The results of this study could provide insights into
the effects of climate change on hydrological pro-
cesses and provide a valuable reference for future
flood prevention in the MLYRB.

2. Data andmethods

2.1. Observations and CMIP6 archive
In this study, we use 1981–2014 as the baseline
period to compare the observations with CMIP6 his-
torical simulations. To investigate the atmospheric
factors leading to the decadal changes of sum-
mertime runoff in the MLYRB, we have used the
monthly gridded data from the European Centre
for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v5 (ERA5) including the atmospheric
fields, runoff, precipitation, evaporation with a spa-
tial resolution of 1◦ × 1◦ (Hersbach et al 2020;
https://cds.climate.copernicus.eu/). Hourly and daily
gridded precipitation from the ERA5-Land data-
set and outputs of 28 GCMs from the CMIP6
(https://esgf-node.llnl.gov/search/cmip6/) are used
to calculate the extreme precipitation index follow-
ing the ETCCDI protocols (Sillmann et al 2013;
http://etccdi.pacificclimate.org/) which is one of the
essential objects of the evaluation to confirm model
weighting scheme (supplementary information). The
confirmed weighting scheme will be used to obtain
the bias-constrained summer-mean runoff from the
GCMs of CMIP6 in historical simulations and future
projections. Supplementary table 1 lists the informa-
tion on the models used in this study. To be consist-
ent with the reanalysis data, the model outputs are re-
gridded to 1◦ × 1◦ through the bilinear interpolation
method. Five experiments are investigated, including
the historical simulation and the projections under
different scenarios of SSPs (i.e. SSP1-2.6, SSP2-4.5,
SSP3-7.0 and SSP5-8.5) (Eyring et al 2016, O’Neill
et al 2016). Only the first available realization of each
model is selected for analysis.

2.2. Statistical methods
In addition to composite and correlation analyses
(Zhu et al 2013, Huang et al 2019, Zhang et al
2020), empirical orthogonal function (EOF) analysis
(Chen et al 2015), the Lanczos low-pass filter method
(Duchon 1979) and the developedmoving t-test tech-
nique (Xiao and Li 2007) are used in this study. The
linear trends in all the reanalysis datasets are removed
to eliminate the global warming effects and better
analyze the interdecadal variability. The correlation

significance is evaluated using the two-tailed Stu-
dent’s t-test.

2.3. Model weighting scheme
Instead of regarding each model as equally import-
ant in future projections like the previous studies
noted in section 1, we introduce a model weight-
ing scheme (Sanderson et al 2017) to reduce uncer-
tainties in projections of future runoff. In this
scheme, model weights are determined by evaluat-
ing models’ performances in simulating the historical
changes of two seasonal-mean variables (summer-
mean runoff (mrro) and precipitation (pr)) and
one extreme precipitation index (summer maximum
consecutive 5 day precipitation (rx5day)) (Sillmann
et al 2013; http://etccdi.pacificclimate.org/) during
the baseline period. The scheme will provide each
model with three sets of weights: skill weight, inde-
pendence weight and overall weight. The skill weight
and independence weight reflect model skill and
model independence, respectively. With compre-
hensive consideration of the above two model char-
acteristics, we calculated the model’s overall weight
as a combination of the skill weight and independ-
ence weight (equations (7) and (8) in the supple-
mentary information). The sum of all models’ over-
all weights is equal to one and only the model’s over-
all weight will be eventually used to multi-model
weighted mean runoff projection. Taking a model for
an example, its skill weight can be obtained by con-
sidering its capability of reproducing of the observed
variation of the above evaluation objects (mrro, pr
and rx5day). It is determined through evaluating the
root mean square error (RMSE) distance between
this model and the observation (equation (6) in the
supplementary information). A smaller RMSE rep-
resents better model performance and corresponds
to a larger model skill weight. For a given model,
its independence weight can be obtained by con-
sidering its uniqueness, which reflects whether the
model’s simulation/projection is representative and
its ability to provide new and useful information. It
is determined by the RMSEs between this model and
all the other models in the CMIP6 archive (equations
(3)–(5) in the supplementary information). Larger
RMSEs correspond to larger model independence
weight. RMSE distance is calculated using the fol-
lowing procedure (equation (1) in the supplement-
ary information): given a model and an evaluation
object, for each year we computed the area mean and
summertime value of this object simulated by this
model, so for n years, we can obtain a time series
containing n values and the RMSE distance is calcu-
lated based on this series. Here we take the MLYRB
region as a whole and just focus on its temporal
variation, but not the internal spatial variation con-
sidered by Sanderson et al (2017). More details on the
weighting scheme are described in the supplementary
information.
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Figure 1. The first mode of EOF (a) and its corresponding standardized PC1 (red solid curve) (b) of the summertime runoff in
southern China from 1981–2020. The black box in panel (a) indicates the domain of the MLYRB. The standardized area-averaged
runoff over the MLYRB in the observation (blue solid curve) and the ensemble mean of 28 GCMs (orange and purple solid curve)
are also presented in panel (b). The simulation consists of a combination of historical simulations in 1981–2014 and projection
under SSP5-8.5 in 2015–2020. The dashed curves in panel (b) represent the nine year low-pass filtered series. Panel (c) represents
the results calculated by the developed moving t-test technique (filled bars). The black dotted lines in (c) represents significance at
the 0.05 level. 1991 and 2000 are the shift years.

3. Results

3.1. Interdecadal changes of runoff in the
reanalysis data
Figures 1(a) and (b) show the observed first leading
EOF mode and the responding principal compon-
ent (PC1) for summer runoff over southern China.
In this study, we refer the domain of (27◦–32◦N,
108◦–120◦E) as the MLYRB region, where sum-
mer runoff has the dominant interdecadal variab-
ility (figure 1(a)). The PC1 has well captured the
abnormal hydrology events over the MLYRB, such
as the extreme floods in 1983, 1998 and 2020 (solid

red curve in figure 1(b)). Additionally, the nine year
low-pass filtered series of the PC1 (red dashed curve
in figure 1(b)) in 1981–2020 exhibits an obvious
interdecadal oscillation. To further interpret the res-
ults of the EOF analysis, we compare the PC1 with
the standardized area-mean summertime runoff over
the MLYRB region (SRI, blue curves in figure 1(b)).
Obviously, the changes of SRI match the PC1 well at
both the interannual and decadal time scales, with the
correlation coefficient of 0.97 and 0.98, respectively.
Given this consistency, we adopt the area-averaged
summer runoff over the MLYRB to the following
model assessment and projections. The result of the
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moving t-test technique shown in figure 1(c), which
is used for shift year detection, shows 1991 and 2000
are the shift years. Considering both the shift years
and the nine year low-pass filtered series of the PC1
in figure 1(b), we identify the years from 1991–1999
as the high runoff period and the years from 2003–
2013 as the low runoff period.

Previous studies have shown that the changes in
annual runoff in the MLYRB are affected by many
meteorological factors including precipitation and
temperature (Xiao et al 2018). In summer, accord-
ing to the composites during the two periods (sup-
plementary figure 1), precipitation is the dominant
factor that directly leads to the interdecadal oscilla-
tion of summertime runoff in the MLYRB. Since pre-
cipitation in the MLYRB can be significantly influ-
enced by weather patterns (Xiao et al 2015, Su et al
2017, Li et al 2021), we have found a close linkage
between runoff changes in this region and the atmo-
spheric circulation (supplementary figure 2).We have
confirmed the significant contributions of the anom-
alous anticyclone in the westernNorth Pacific and the
strengthening of zonal westerly in the upper tropo-
sphere to the observed runoff changes in the MLYRB
through their impacts on the East Asian summer
monsoon. It has been discussed in supplementary
information in detail. The result agrees with that
of Tang et al (2018) and it indicates that climate
change plays an important role in the interdecadal
variation of summer runoff in the MLYRB. On this
basis, we attempt to further investigate the long-term
decadal variation characteristics of summer runoff
under climate change with 28 global climate models
participating in CMIP6.

3.2. Ensemble-mean of historical simulations by
CMIP6models
In this section, utilizing runoff from 28 GCMs in
the CMIP6 archive, we aim to objectively present
the overall performance of these models in simu-
lating historical summer runoff in the MLYRB dur-
ing the baseline period. First of all, the multi-model
mean (MME) has also shown decadal variation in the
runoff of the MLYRB, however, the simulated evol-
ution (orange and purple curves in figure 1(b)) is
much different from the observation. Even though
the climate models have well represented the human-
induced effects on climate and the long-term increase
of precipitation extremes in the MLYRB (figures not
shown), the MME of the 28 CMIP6 GCMs have not
well reproduced the observed climatology and trend
of summer runoff in the MLYRB due to large model
systematic errors (supplementary figure 3 and sup-
plementary information). Note that the simulated
runoff trend is important for future projections in
worldwide climate impact studies, and the MME is
obviously not appropriate for an impact study of
future climate change.

To quantitatively evaluate the models’ perform-
ance in simulating the temporal variation of summer
runoff in the MLYRB, we calculate anomaly cor-
relation coefficient (ACC) and RMSE between the
observed area-averaged runoff and simulations in
individual GCMs and the MME at both interannual
and decadal time scales (figure 2). It is clear that the
CMIP6 models have diversities in reproducing tem-
poral evolution of runoff changes. At the interan-
nual time scale (figure 2(a)), (a) the ACCs in indi-
vidual models range from −0.49 to 0.5 and most
are centered around zero, only one model (ACCESS-
ESM1-5) has well simulated the observed runoff
changes (ACC passes the 95% significance level);
and (b) the RMSEs range from 1.5–3.98. At decadal
time scale (figure 2(b)), the simulations also have
large biases from the observation with RMSEs ran-
ging from 0.86–3.85 and ACCs ranging from −0.8
to 0.8. Because of the large model spread at both
scales, the MME, a skill-weighted ensemble to some
degree (Sanderson et al 2017), cannot well represent
the interannual and decadal changes of summer run-
off in the MLYRB (figures 1(b) and 2). The MME’s
ACC is −0.08 (−0.3) and the MME’s RMSE is 1.95
(1.81) at the interannual (decadal) time scale over the
MLYRB region. This means that the MME’s projec-
tion may be potentially biased and cannot be used
directly.

3.3. Constraining multi-model biases through a
weighting strategy
In this section, we attempt to implement the weight-
ing strategy (section 2.3) to constrain the model
biases. Our goal is to obtain a weighted runoff pro-
jection that is more reliable and representative than
that from the commonly usedMME. The single set of
weights provided in this section can be applied to a
wide range of runoff projections.

3.3.1. Inter-model distance matrix
As the basis for themodel weighting strategy, themul-
tivariate inter-model distance matrix δ is illustrated
in figure 3(a). Since the magnitude of the RMSE dis-
tance may be sensitive to the object being evaluated,
for each object each model’s distances were divided
by the mean distance across all models to ensure
the mean inter-model distance is equal to one and
each object gets about the same weight, like Sander-
son et al (2017) or Knutti et al (2017). Compared
with the mean pairwise inter-model distance, it can
be found that some individual models (ACCESS-
CM2, ACCESS-ESM1-5) have larger distances than
any othermodel in the archive. This implies that these
models are likely to be unique in future projections.
However, in some previous studies, some of these
unique models were abandoned only because their
performance for the simulation of the present cli-
mate is poor. In addition, in several subsets of the
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Figure 2. Performance of each individual model and their simple mean/weighted mean on the simulation of the interannual
(a) and decadal (b) variations of area-mean summer runoff in the MLYRB during 1981–2014. The abscissa and ordinates indicate
the ACC and RMSE, respectively. The blue vertical lune in panel (a) denotes statistical significance at the 0.05 level according to
the Student’s t-test.

archive (Institute of Numerical Mathematics Climate
Model (INMCM) variants, Norwegian Earth System
Model version 2 (NorESM2) variants), the models
in a single subset may have smaller distances from
each other, whereas they all have larger distances
from other models outside the subset. In this situ-
ation, using the traditional method used in the pre-
vious studies (e.g. MME) to project runoff can lead
to poor accuracy and poor estimation of uncertainty
because well-performed models or poor-performed
models together with their duplicates all are used,
which would bias the ensemble projection toward to
the results of the duplicated models. These two kinds
of problems mentioned above are closely related to
the model independence, which can be solved effect-
ively in our weighting scheme through calculating the
RMSE distances across the models in the archive to
determine the independence weight of each model.
The results of the independence weight scheme will
be discussed in the following section.

3.3.2. Independence weight
The key point for estimating the independenceweight
is the determination of the appropriate value of
the radius of similarity Du (equation (3) in the
supplementary information). It is a free parameter
that determines the distance scale over which the
model’s independence weight should be reduced.
Du is sampled by considering the distribution of
inter-model distances. Here we determine its value
based on several typical individual models or sub-
sets in the CMIP6 archive mentioned in section 3.3.1.
Figure 3(b) shows the relationship between Du

and their independence weights. As mentioned in
section 3.3.1, we expect that those models that
have no obvious duplicates (i.e. ACCESS-CM2 and
ACCESS-ESM1-5), should not be down-weighted
by the method. In addition, for some subsets in
which there are several closely related variants sub-
mitted from the same institution (i.e. INMCM and
NorESM2), it is appropriate to select a value of Du

that can produce a weight of about 1/n (n is the num-
ber of variants submitted) for each variant (Sander-
son et al 2017). Finally, we set Du to be 0.67 times
the distance between the best-performing model and
observation, and then, the independence weight of
each model in the archive can be estimated (supple-
mentary figure 6).

3.3.3. Skill weight
According to the RMSEs between each model and
observations, the model skill weight can be determ-
ined. A larger RMSE corresponds to a smaller skill
weight, and vice versa. Similar to independence
weight, the radius of model quality Dq needs to be
determined appropriately (equation (6) in the sup-
plementary information). Once Dq is determined,
the model’s skill weight and overall weight would
finally be produced. In this paper, we provideDq with
a relatively appropriate value considering the errors
both in present and future climate changes repro-
duced by a multi-model weighted average. Keep Du

invariant, which has been determined in section 3.3.2,
and sample a range of Dq, figure 3(c) shows the
corresponding changes in multivariate errors from a
multi-model weighted mean relative to that from the
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Figure 3. Panel (a) shows the multivariate inter-model distance matrix δ for CMIP6. It is the average of distance matrixes for three
evaluation objects (equation (2) in the supplementary information). Observation is included and it can be seen the n+ 1th
model (n is the number of total models in the archive). Each row and column represents a single climate model (or observation).
Each box represents a pairwise distance, where darker colors indicate greater distances. For each evaluation object, distances are
divided by the mean distance across all models in the CMIP6 ensemble to ensure that the mean inter-model distance is equal to
one and each object gets about the same weight. Smaller distances mean the datasets are in better agreement. Panel (b) shows the
dependence of the independence weights on the radius of similarity Du for a number of special models or groups in the CMIP6
archive. The vertical line represents the final Du value selected for runoff projection. Panels (c) and (d) show the dependence of
RMSE of the weighted mean series on the radius of model quality Dq . Results are expressed as a fraction of the RMSE one would
obtain with the MME (in the two panels Du is set to be 0.67 times the distance between the best-performing model and
observation selected in panel (b)). (c) The RMSE of the simulated area-mean summer series from the observation during
1981–2014. (d) The average RMSE of historical and future summer runoff change simulations and projections under four
scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) relative to the baseline period (34 year moving average minus the mean
state during 1981–2014) from the truth represented by an out-of-sample model (with obvious replicates removed from the
ensemble). The vertical lines in panel (c) and (d) represent the final Dq value selected for runoff projection.

simple ensemble mean for the baseline period. It is
obvious that taking Dq as approximately 0.55 times
the distance between the best-performing model and
observations could reduce the most in-sample error
by about 25%–30% under comprehensive considera-
tion (the reduction of the RMSE of the precipitation
simulation can be up to about 32%). However, in-
sample error is not the only factor considered. That
is, even if one model in the archive can be seen as a
good-performing model for the baseline period sim-
ulation, we still cannot guarantee that its projections
are reliable for adaptation activities.

Thus, in order to determine whether our weight-
ing scheme can efficiently improve the performance
of themulti-model ensemble runoff projection under
climate change, we conduct a ‘perfect model test’
following the method outlined by Sanderson et al
(2017). It is introduced in the supplementary inform-
ation in detail. In this method, a single model is
selected from the archive to represent the truth and
the remaining models are used to project it. For a
specific range of Dq, the RMSEs of the weighted
mean projection of each perfect model’s projection
of summer runoff changes relative to 1981–2014

7
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Figure 4. The observed (black line) and multi-model weighted mean projections (blue line) (standardized by the values of
1981–2010) of area-mean summer runoff in the MLYRB and its nine year low-pass filtered value (thick lines) during 2015–2100
under four scenarios (a–d: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). To facilitate comparison, the simulated (red line) series
during the baseline period (1981–2014) are also presented.
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are compared with the MME. Results are shown in
figure 3(d). Out-of-sample errors in runoff change
projections can be reduced most when taking Dq

as approximately 65% of the distance between the
best-performing model and observation. Consider-
ing model skills during historical, baseline and future
periods, we finally determine Dq to be 0.7 times the
smallest distance between models and observation,
and then, eachmodel’s skill weight and overall weight
can be estimated (supplementary figure 6).

It is obvious that our weighting scheme can
effectively constrain the multi-model biases and
really improve the performance of the multi-model
ensemble runoff simulation over the MLYRB during
the baseline period (figure 2 and supplementary
figures 3(b) and (e)). This is mainly reflected in the
reduction of the RMSE compared with the MME.
Although we take the MLYRB region as a whole
and just consider its area-mean runoff variations
in the weighting scheme, results show significant
improvement in the weighted mean simulation of
the spatial distribution of two key runoff features:the
climatology and trend over theMLYRB (supplement-
ary figures 3(b) and (e)). The RMSEs of the two
features have been reduced by 76.8% and 88.6%,
respectively, comparedwith theMME. Figure 2 shows
the improvement in the simulation of both interan-
nual and decadal variations. The weighted mean has
an ACC of 0.34 (passes the 95% significance level)
(0.88) and an RMSE of 1.44 (1.12) for the inter-
annual (decadal) time scale. It has obviously better
skills than almost all individualmodels and theMME.
Considering the improvement and good performance
(especially in simulating runoff ’s decadal variations),
the set of overall model weights produced in this
section are finally used to investigate the characterist-
ics of interdecadal variation of summer runoff in the
MLYRB during the future period (2015–2100) under
climate change.

3.4. Future projection with constraints of model
biases
In this section, after the multi-model biases during
the future period are constrained using the model
weighting scheme, we aim to provide a relatively
objective and reasonable runoff projection in the
MLYRB. In this study, we focus on interdecadal
variation characteristics of mean summer runoff in
the MLYRB under the SSP1-2.6, SSP2–4.5, SSP3–7.0
and SSP5–8.5 scenarios. Figure 4 shows interannual
and decadal series (blue lines) of runoff projected
by multi-model weighted mean during 2015–2100.
For the convenience of comparison, the simulated
series (red lines) during 1981–2014 are also presen-
ted. Following Yao et al (2020), all series are stand-
ardized by the values of 1981–2010, which represents
the World Meteorological Organization climatolo-
gical standard normal (Kappelle et al 2021). It can
be seen that the weighted mean can well simulate

the observed interdecadal variation during 1981–
2020, which demonstrates that our model weight-
ing scheme is applicable and reliable. It can also
be reflected by evaluating the skill of the weighted
and unweighted mean simulation of climatology,
trend and variation of area-average summertime run-
off over the MLYRB (supplementary table 2). After
the model biases are constrained with the weight-
ing scheme, great improvement can be found in not
only past simulations, but also in the future projec-
tion during 2015–2020 under different climate scen-
arios. This is due to the consideration of the model’s
future performance by conducting the ‘perfect model
test’ in the scheme. It shows a certain degree of
credibility of the runoff projection presented in this
paper. Under the climate change scenario, positive
standardized values indicate that summer runoff in
the MLYRB tends to be larger in the future than the
mean state during the present day. It is worth noting
that the decadal series of runoff under the four SSPs
all indicate that the peak value occurs in 2020, which
to some extent can explain the rainstorm and flood
disasters that occurred in the MLYRB in that year.
According to the changes in runoff and precipita-
tion during 2021–2040 relative to the mean state dur-
ing 1981–2010 (supplementary figure 7), we projec-
ted that the MLYRB and its surrounding regions are
going to experience a new pluvial period in the com-
ing 20 years. Under the direct impacts of the precip-
itation, summertime runoff in the middle and south
of the MLYRB tends to increase significantly under
all economy pathways. The high consistency of the
spatial patterns of runoff and precipitation changes
demonstrates that precipitation is still the major cli-
mate variable influencing summertime runoff in the
south of China under future climate change.

4. Conclusion and discussion

This study reveals that the summer runoff in the
MLYRB experienced an obvious interdecadal oscilla-
tion during 1981–2020 with significantly high runoff
during 1991–1999 and low runoff during 2003–2013.
According to the results of the composite and correl-
ation analysis, we found that the appearance of the
western North Pacific anomalous anticyclone and the
strengthening of zonal westerly in the upper tropo-
sphere are main climate causes through their impacts
on precipitation, which is confirmed to be the direct
factor leading to decadal changes of summer runoff in
the MLYRB. Because of its close linkage with climate
change, long-term decadal changes in summer runoff
over the MLYRB were then evaluated with 28 GCMs
participating in CMIP6.

Due to large multi-model biases and wide model
spread, the MME poorly simulates the climatology,
trend, interannual and decadal variations of summer
runoff in the MLYRB during the baseline period. In
this situation, nomatter whether an individualmodel
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or the MME is selected for runoff projection, the res-
ult will have considerable biases and cannot provide a
valuable reference. Therefore, in this paper, a model
weighting scheme is conducted with the simulations
of 28 GCMs from the CMIP6 archive. Following the
framework outlined by Sanderson et al (2017), each
model is weighted on the basis of its skill in simulating
the historical observations as well as its independence
from the other models. The computational process
determines that this scheme can constrain the multi-
model biases during both the historical and future
period under different climate change scenarios. It
is confirmed that the weighted mean has much bet-
ter performance in simulating the historical observed
climatology, trend, interannual and especially decadal
variations of summer runoff in theMLYRB compared
with the MME or individual models in the CMIP6
archive. In that case, the multi-model weighted mean
runoff simulation and projection were finally used to
detect the decadal variations of summer runoff in the
MLYRB during a longer term under climate change.

Comparedwith themean state during 1981–2010,
summer runoff in the MLYRB is projected to be
higher in the future. It is worth noting that the peaks
of summer runoff in theMLYRBunder different scen-
arios all occur in 2020, which is likely to be followed
by increased summer runoff until 2040. Specifically,
theweighted projections indicate that in the following
20 years, the MLYRB and its surrounding regions are
projected to experience a new pluvial period. And in
the future extreme precipitation is still the major cli-
mate hazard impacting south of China. Theweighting
scheme in this paper can be reliable for runoff projec-
tions in other regions at multiple time scales.

It should be noted that there are several limita-
tions of the current research. First, only the linkage
between the interdecadal variation of summer runoff
in theMLYRB and atmospheric circulation anomalies
during 1981–2020 is analyzed. It is necessary to use
available long-term observations or long-term recon-
struction data to obtain more samples and further
investigate whether the relationship could last for a
longer time during the historical period. Second, the
problem of trade-off between model skill and model
independence outlined by Sanderson et al (2017) still
exists. That is, in the CMIP6 archive, those models
with highermodel skill weights also tend to havemore
duplicates and thus have lower model independence
weights. Due to the unavoidable trade-off problem
of the CMIP6 archive, in this paper the model skill
and independence are likely to have compensating
effects in the weighting scheme, which leads to there
still being much room to further reduce the model
biases and uncertainties. Researchers should usemore
scientific ensemble methods to deal with the trade-
off problem in future runoff projections. Moreover,
the weighting scheme just considers local runoff and
its direct meteorological impact factor (i.e. precip-
itation). In fact, it has been pointed out by many

previous studies that summer runoff in the MLYRB
is significantly influenced by individual remote cir-
culation patterns through their impacts on the East
Asia summer monsoon (e.g. El Niño/Southern Oscil-
lation, Pacific Decadal Oscillation) (Xiao et al 2015,
Su et al 2017).We propose that in future studies,more
optimal and physically relevant variables as well as the
climate patterns should be selected and their local and
nonlocal effects should be considered to acquire bet-
ter runoff projections. Finally, human activities can
have a great impact on river hydrology inmany catch-
ments. With the increasing population, dam capacity
and gross domestic product, together with the warm-
ing trend induced by human activities, runoff may
be influenced significantly. However, in the weight-
ing scheme we did not consider any impact of human
factors. To some satisfaction, runoff projected by this
scheme tends to increase under global warming and
to be larger under stronger warming forcing except
for SSP1-2.6 (figure not shown). Additionally, Chen
et al (2014) indicated that the annual runoff in the
YRB has shown little response to human activities
since the late 1970s. This implies that the character-
istics of runoff variability at annual and seasonal time
scale are distinct, which should be paid more atten-
tion in future studies.
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