oo-categorical Thom spectra

Harald Ivarsen

June 1, 2022
Master’s Programme in Mathematics
Matematisk institutt
Universitetet 1 Bergen



Contents

Introduction 1
1 Orthogonal Spectra 2
1.1 Orthogonal Spectra. . . . . .. ... ... ... ... ... . 2
1.2 Model structure on Sp® . . ... 3
2 Simplicial Structures 6
2.1 The simplicial model structure on Sp® . . . . . ... ... ... 6
2.2 The simplicial nerve . . . . . . . . ... o Lo 12
2.3 oo-categories . .. ... 14
3 Examples 18
3.1 Simplicial circle . . . . . . ..o 18
32 Aut(R) . . .. 22
3.3 Suspensions . . . ... 24
Acknowledgements

I would like to thank my supervisor Christian Schlichtkrull for being a good
supervisor, and Anna Olsson for proof-reading.

Introduction

This paper is meant as an introduction to an oo-categorical theory of Thom
spectra. We assume a basic knowledge of algebraic topology and simplicial ho-
motopy theory. We begin by constructing the simplicial category of orthogonal
spectra, Sp@, a category of spectra with a monoidal structure. In particular a
tensor product, the smash product. This smash product enables us to define
orthogonal ring spectra, i.e an orthogonal spectrum R, equipped with a map
R A R — R, satisfying certain coherence diagrams. In other words a monoid in
Sp®. To each such orthogonal ring spectrum R, we have the simplicial category
of R-modules, R—mod. We continue by defining a model structure, called the
stable model structure, showing that it is compatible with the simplicial struc-
ture. We can for each simplicial category S, associate a simplicial set Na(S), an
enhanced version of the usual nerve functor N : Cat — Seta, capturing more
of the homotopical information. If the mapping spaces of the simplicial cate-
gory S are Kan complexes, then Na(S) is a particularly nice simplicial set, by
fulfilling a certain horn-filler lifting condition, and we call these simplicial sets
oo-categories. In oco-categories we can define notions from ordinary category
theory, such as composition, colimits, slice categories and so on, although often
only up to homotopy equivalence. Let R—line be an co-category of R-modules
weakly equivalent to R. We then define the Thom spectra of a simplicial map

f+ K — R—line — NA(R—mOdcf)



to be the oco-categorical colimit of f. We finally go through some examples,
and show that R—line is equivalent as a oco-category to the classifying space of
the oco-category Aut(R) of automorphisms of R as an R-module, which helps us

analyse the Thom spectra of a morphism f: YK — R—line — Na(R—mod.f),
when f is adjoint to a map f: K — Aut(R).

1 Orthogonal Spectra

1.1 Orthogonal Spectra

Definition 1.1.1. An orthogonal spectrum X, is a sequence of pointed topolog-
ical spaces {X,, |n € N}, with X, equipped with an O(n)-action, and structure
maps

On: Xy ANSY = X,
such that any composition

nA1 -1 ~
ok X, ASF X X, ASUA SR TN X A SRl
n+1A1 n+k—2oAl ntk—

Xpgr ASEA G2 T e Mokt A ST TS X

is O(n) x O(k)-equivariant. Note that by pointed topological spaces one often
means a restriction to an appropriate category of pointed topological spaces, in
our case we will use compactly generated Hausdorff spaces. We will continue
to refer to this category as Top.. A map of orthogonal spectra f : X — Y, is
a collection of maps {f, : X, — Y, |n € N}, that commute with the structure
maps

X A8t — 5 X,
fnAl Frt1

Yo A8 — T Y

Definition 1.1.2. The sphere spectrum, S, is the spectrum with S,, = S™ for
every n > 0, and structure maps given by isomorphisms S, A S* = §7t1

Theorem 1.1.3. [Rog21, Theorem 9.7.1] The category of orthogonal spectra,
denoted Sp®, is symmetric monoidal, with unit object given by the sphere spec-
trum S, and with the monoidal paring X \'Y given levelwise by coequalizer

Vasitemn OM) 1 Aoayxomyxo(e) (Xa ASPAY:)

L)

Vit jen O)+ Nogyxoy) (Xi AY;)

|

(X AY)n



where the left map is given by

b
O+ AXg ANSUAY, T2 O(n) 4 A Xieayy A Y.
and the right map is given on elements by

ANTASANYy— (A- Iy X Xep) NEAYAs

!

(AT X xep) ANz APy As) € O(n)y A Xp AYicpie

Here xcp is the (¢ + b X ¢+ b)-matriz permutating the first b coordinates with
the c last ones. The twist map is induced by the mappings

ANz Ny € Viyjmn O)+ Nogyxo() (Xi AYj)
O

on the spaces defining the coequalizer, applying it multiple times on the first
space.

A-xjihNzAyeV (n)+ Nogyxo() (Xi ANY;)

i+j=n

1.2 Model structure on Sp®
Definition 1.2.1. Let oy, : m, (M) — mpp1(Mg41) be the map given by
(y:8" = M) (co(yA1): 8" ASY = M ASY — Myy1)

the graded homotopy groups m.(X) of an orthogonal spectra X, is given in degree
n by the colimit of the sequence

oo = T (M) R Tkl (Mig1) = -

for n+k > 2. A spectra map f: X — Y gives morphisms

Ttk (f) © Tk (Xi) = Trgre (Vi)
which are compatible with the colimit. Therefore we have a functor m, : Sp© —
AbZ.
Definition 1.2.2. A stable equivalence is a spectra map f : X — Y, which

induces a isomorphism 7. (f) : m(X) — 7. (Y).

Definition 1.2.3. For every [ > 0, let the degree-l evaluation functor, denoted
Ev; : Sp® — Top, be Ev(X) = X;. Ewv has a left adjoint, the degree-l free
functor, F; : Top — Sp®. We see that

ANS™L forn > 1

* otherwise.

(Fi(A))n = {



Definition 1.2.4. Let I = {i : S7' — D% |n > 0}. Let FI = {Fji :
FlSi_l = D% |l > 0,7 € I}. A spectra map i : X — Y is called a rela-
tive cell spectrum if i is the colimit of a sequence

X=Y0)—-Y1l)—»..-Yn) ->Yn+1l) —..=Y
where each map Y (n) — Y(n + 1) given by a pushout

Vo S(a) ——— V, D(a)

Y(n) ——— Y(n+1)
where o« € F'I.

Definition 1.2.5. A spectra map i : X — Y is called a Quillen cofibration if it
is a retract of a relative cell spectrum, meaning that there exists a commutative
diagram

X X' X

Y Y’ Y
where 7 : X’ — Y is a relative cell spectrum.

Remark 1.2.6. Notice that since colimits are taken levelwise in Sp®, a Quillen-
cofibration is levelwise a cofibration in Top,. But note that if a spectra map is
levelwise a cofibration in Top,, it is not necessarily a cofibration in Sp®.

Definition 1.2.7. Let 5 : X,, — QX,,11, be the adjoint map of o : X,, A S* —
X411 in the loop-suspension adjunction. A map p : X — Y is called a stable
fibration if p,, : X,, — Y, is a Serre fibration for every n > 0, and the diagram

X, — s OXpin
Pn Qpn+t1

Yn 46 > QYnJrl

is a weak homotopy pullback for every n > 0, meaning that the induced map
Xpn = Yo Xy, ., @Xp41, is weak homotopy equivalence.

Theorem 1.2.8. [BR20, Theorem 5.2.16] Sp® has a model structure with the
stable fibrations, Quillen cofibrations, and stable equivalences being the fibra-
tions, cofibrations, and weak equivalences respectively. We call this the stable
model structure on Sp©.



Theorem 1.2.9. [BR20, p. 185] Sp® has a model structure with the levelwise
fibrations and levelwise topological weak equivalences being the fibrations, and
weak equivalences respectively. We call this the levelwise model structure on

SpO.
Theorem 1.2.10. [BR20, Theorem 2.3.12] A spectral map f: X =Y is trivial
stable fibration if and only if it is a levelwise trivial fibration. Thus the levelwise

model structure and the stable model structure on Sp® share trivial fibrations
and cofibrations.

Proof. Consider a trivial stable fibration f : X — Y, we know that it is a
levelwise fibration, so it remains to show that it is a levelwise weak homotopy
equivalence. Since f is a levelwise fibration, the fiber is given levelwise by the
homotopy fiber F'f,, = f, 1. Looking at the pullback diagram

Ff — X

¥ ——— Y

we have that F'f — x is a trivial stable fibration. This have two consequences.
First we a have a weak homotopy equivalence

an = QF.fn+1 XQxpi1 *n = QF‘fn+1-

Second, we have m(F f) = 0 for every k, but from the first consequence, and
the definition of homotopy groups of spectra we have 7y (Ff,) & mi(Ff) = 0
for every k and n > 0. From the long exact sequence of homotopy groups we
then have

ﬂ'kr(Xn) = 7Tk(yn)

for every n > 0 and k > 0. But for loop-spaces we have a weak homotopy

equivalence
Qfn  QX, —» QY,

for every n > 0. Consider the diagram

Xn

Yo Xav, . QX ———— QX

fn
Qfnt1

Yn QYn—i—l

we see that we can write f,, as the composite X,, = Y, xqy, QX,, = Y,,. The
first map is a weak homotopy equivalence since f is stable fibration. The second



map is a weak homotopy equivalence since {2 f,, is a trivial fibration, thus f, is
a weak homotopy equivalence for every n.

Now consider diagram (1) when f is a levelwise trivial fibration. We know
Qfn41 is a trivial fibration, and since trivial fibrations are preserved by pullbacks
xqy, 02X, — Y, is on as well. Since f, : X,, — Y, is a weak homotopy
equivalence, X,, = Y, Xqy, X, is a weak equivalence as well by the 2-out-of-3

property.
O

2 Simplicial Structures

2.1 The simplicial model structure on Sp®

Lemma 2.1.1. [GJ09, Lemma I1.2.4] Let C be a category equipped with a functor
—®—:Cx Setpa — C.

Suppose the following conditions hold

1. —® K :C — C has a right adjoint home (K, —) for fized K € Seta.

2. X ® — : Seta — C commutes with colimits, and X ® * = X, for fized
X ecC.

3. For X € C, and K,T € Seta, there is a natural isomorphism (X @ K) ®
T=X®(KxT).

Then C is a simplicial category with simplicial mapping space given by Home (X, Y),, =
home (X ® A™Y).

Definition 2.1.2. Let C be a category that is both a model category and a
simplicial category. If for every cofibration i : A — B and fibration p: Y — Y,
the induced map

Home(B, X) " Homc (A, X) X tome (4.y) Home (B, Y)
is a fibration, which is acyclic if either ¢ or p is, then C is called a simplicial
model category, and the above condition is called the simplicial model aziom.

Proposition 2.1.3. [GJ09, Proposition 2.3.11, Corollary 2.3.12, Proposition
2.3.13]

Let C be a simplicial category, and a model category. Then the following are
equivalent

1. The simplicial model axiom holds.

2. that for any cofibration i : X — Y in C, and n > 0 the induced map



X ® 0A™ Y ® 0A"

XQA" — s X QA" Uygoar Y © OA™

is a cofibration, which is trivial if i is, and for e = 1 or 0
X@A'"Uxgiep Y @{e} - Y @ A

is a trivial cofibration.

8. For any cofibration i : X — Y in C, and cofibration j : A — B, the
induced map

X®A Y®A

X®B—— 3 X®BUxea Y ® A

s a cofibration, which is trivial if either i or j is.

4. For a cofibration i : K — L in Seta and fibration p : X — Y in C the
induced map



Ty
hom¢ (K, X') Xhome(k,y) home(L,Y) ———— hom¢(L,Y)

hom¢ (K, X) hom¢(K,Y)

18 a fibration which is trivial if either i or p is.

Example 2.1.4. The category of pointed compactly generated Hausdorff spaces,
denoted Top, is a simplicial model category, with

X®K=Xx|K|4.
Theorem 2.1.5. Sp® is a simplicial model category.

Proof. First we show that Sp® is a simplicial category. Define the functor
—® —: Sp® x Seta — Sp°, for X € Sp° and K € Seta

X®K=XAN|K|y ={X, AN|K|+|n >0}
with structure maps
Xo MK ASY 2 X ASYA K 225 X ALK

Where o is the structure map for X. Now we have to verify that this functor
satisfies the three conditions of a simplicial category.

1. Let homgyo (K, —) : Sp? — Sp? be defined by
homSp@(Ka X)n = Ma‘pTop* (|K|7 Xﬂ)
with structure maps

Mapr,, (|K|, Xn)AS" = Mapy,, (IK|, XnAS") = Mapy,, (|K|, Xni1)-

2. Fix an X € Sp®, and let K : J — Seta, be a functor. We want show that
there is a natural isomorphism

colim((X ® =) o K) 2 X ® (colim K).

Since colimits are taken degreewise in Sp® this becomes



colim((Xp, A —=)o| — |+ o K) = X,, Al(colim K)|.

We can break this into three parts. First we know that |— | : Seta — Top
preserves colimits since it is left adjoint to the singular complex functor.
Second, the functor (—). : Top — Top, adding a disjoint basepoint is
adjoint to the forgetful functor functor U : Top, — Top, so it preserves
colimits. Third, — A — : Top, x Top, — Top, is a left adjoint since Top,
is a closed category, and — A — is precisely the product in Top,

3. By inspection we can see that for X € Sp@, K, L € Seta
X@KxL)2(XK)®L
since
Xn N K x LIy = (X A[K]4) AL

since |K x L| = |K| x |L|, and in general for X, Y, Z € Top X A(ZxY ), &
XNZiNYy

Now it remains to show that Sp® fulfills the simplicial model axiom. We will
show that the second condition in proposition 2.1.3 holds. Consider the levelwise
model structure on Sp®, where the fibrations are the levelwise fibrations, and
the weak equivalences are the levelwise weak equivalences. If we consider the
third version of the simplicial model axiom given in definition 2.1.2, it is clear
that he levelwise model structure on Sp? is a simplicial model structure. This
also means that for any cofibration i : X — Y in Sp®, the induced map

X ® 0A" Y ® 0A™

X®A" — 5 X ® A" Uxgaar Y ® DA™

is a cofibration. Since the levelwise model structure, and the stable model
structure share cofibrations this is also true for the stable model structure.

Now assume 7 is a trivial cofibration. First we show that

1®1: X ®0A™ =Y @ 0A"



is a cofibration. We can show this directly from Proposition 2.1.3, setting A = ()
and B = 0A™, but we will here provide an alternate proof. Let p: A — B be a
trivial fibration, and consider the diagram

XR0IA" —— A

Y®0A" ——— B

By the definition of — ® —, this diagram is equal to

XRIA"Z X @0A" [[ygY ©®0 ———= A

Y ® 0A" B

By adjunction of X ® — and hom(X, —), for a fixed X, and by the univer-
sal properties of pushback and pullout, finding a lift in the diagram above is
equivalent to finding a lift in the following diagram

X hom(9A™, A)

Y = hom(0), A) Xpom(p,3) hom(dA", B) = hom(IA", B)

We know that the levelwise model structure is simplicial. We also know that
the levelwise model structure share trivial fibrations with the stable struc-
ture. Since p : A — B was assumed to be a trivial fibration, we know that
hom(9A™, A) — hom(0A™, B) is a trivial fibration in the levelwise model
structure by proposition 2.1.3(4), and hence in the stable model structure. Then
since 7 : X — Y was assumed to be a cofibration, we can find the desired lift.

Second, we show that i ® 1 : X ® 0A™ — Y ® 0A" is a weak equivalence.
Both X and Y define homology theories with coefficient groups m.(X) = m.(Y)
[Rog21, Proposition 9.4.2]. i : X — Y induces a isomorphism on coefficient
groups, and therefore by [Rog21, Corollary 3.3.11] for any CW complex Z a
isomorphism X, (Z) = Y,(Z). Putting Z = A" and expanding the definition
of X, and Y, we get.

(X ® 0A™) = m,(X A OAT) = X, (0A™)
> Y, (0A") = m (Y ADAT) = m. (Y ® DA™)

10



Soi®l: X ®IA™ — Y ® DA™ is a weak equivalence. Since X @ A" - Y @ A"
is obviously levelwise weakly equivalent to i : X — Y, and is therefore a weak
equivalence. Then because pushout preserves trivial cofibrations, and the 2-
out-of-3 property, the dashed map is a weak equivalence, in the stable model
structure.

The last condition is fulfilled since {e} ~ Al, and therefore Y @ {e} ~ Y ® Al

X ® {e} = X @Al

Y @{e} ———— Y ®{e} Uxgey X @ Al

~

Y ® Al

1

Note that Y @ {e} =Y ® {e} Uxg(e} X @ Al is equivalent to Y — Y Ux

X ® Al = Mi, where (Mi),, = M(i,), which is levelwise homotopy equivalent

to Y, and the lower horizontal map is therefore a stable equivalence, then by
the 2-out-of-3 property the dashed map is an stable equivalence.

O

Definition 2.1.6. Let R be an orthogonal spectra equipped with maps
pu:RAR— Randn:S— R

where S is the sphere spectrum, and the maps satisfy diagrams

SAR —"Y Ly RAR 7 RAS

IR
1R

R
1IAp
RARANR — RAR
pAL Iz

RAR—* 3R

expressing unitality and associativity, respectively. We call such an R an or-
thogonal ring spectra. The ring spectra is said to be commutative if

11



RAR——— RAR

R

We can characterize an (commutative) orthogonal ring spectra as a (commuta-
tive) monoid in Sp©.

Definition 2.1.7. A (left) R-Module is an orthogonal spectra M, equipped
with a map

AiRANM — M

satisfying the following diagrams

RARAM — Y L RAM SAM —"™ L\ RAM
pnAl A - A
RAM — 2> s M M

2.2 The simplicial nerve

Definition 2.2.1. For an ordinary category C, the nerve, denoted N(C) is a
simplicial set characterized by

N(C)n - homC’at([n]a C)

where [n] is the linearly ordered set {0,1,...,n} regarded as a category. This
construction gives us a functor

N : Cat — Setp

Remark 2.2.2. We can extend this nerve functor to simplicial categories by
applying it to the underlying ordinary category. But by doing this we will in
general lose homotopical information. Consider the simplicial category with
objects {0,1,2}, four non-identity morphisms, {0,1} : 0 — 1, {0,2} : 0 —
2,{1,2} : 1 — 2, and {1,2} 0 {0,1} : 0 — 2, and a single homotopy, the one
between {0,2} and {1,2} o {0,1}.

This is easily seen to be a simplicial category. Now consider the same category
without the homotopy between {0,2} and {1,2} o {0,1}.

12



0 2

This is also a simplicial category, although a discrete one. Since these have
isomorphic underlying categories, they have isomorphic nerve, even though they
are fundamentally different as simplicial categories. To amend this we replace [n]
with another simplicial category which can capture the homotopical information
better, which we will denote C[A™].

Definition 2.2.3. The objects of C[A"] are the numbers 0, 1, ...,n. The map-
ping spaces are defined by the vertices it goes through, more precisely, let P; ;
be the set of subsets

Py ={ICli,j]li,jel}

If we order this set by inclusions we get a partially ordered set, which can be
regarded as a category. We can then take the nerve of this category to obtain
a simplicial set, which we define to be the mapping space between i and j. We
define composition to be induced by the union. To summarize C[A"]

Objects: the numbers {i € N|0 <i<n}

e Mapping space: Mapcian(4,7) = N(P; ;)

e Composition: P;; x P, ; = P; 1, is given by (I1,I2) — I U I
o Identities: id; = N (P, ;) = {i}

Lemma 2.2.4. [Lan2l, Lemma 1.2.7] For i < j, N(P;;) = (A== In
particular Mapgan(0,n) = N(Py,n) = (A1)"!

Example 2.2.5. Here is Mapgias)(0,4) with only some of the 1-homotopies,
or 1-simplices drawn.

{0,1,3,4} {0,1,2,3,4}

] _—

{07174} {07 17234}

{0,3,4} T {0,2,3,4}

e 7

{0,4} {0,2,4}

Here is Mapcias)(0,3) drawn with all homotopies

13



{0,1,3}

A

{07 ]" 27 3}

~ 1 7

{0,2,3}

{0,3}

Both examples express the idea that although the mapping spaces are non-
trivial, the compositions are all homotopic to each other in a coherent way, and
the mapping space is contractible.

Definition 2.2.6. The simplicial nerve or the homotopy coherent nerve of an
simplicial category S, denoted Na(S), is characterized by

NA(S), = homggr, (C]A"], S).

Theorem 2.2.7. [Lan2l, Lemma 1.2.67] There exists a unique colimit preserv-
ing functor
C[—]: Seta — Cata

which is adjoint to
NA(—) : Catpa — Seta
2.3 oo-categories

Definition 2.3.1. An oco-category C, is a simplicial set satisfying an inner horn-
filling condition

A ¢
pa

ATL

for 0 < ¢ < n. This property is supposed to enable a form of composition which
we will define later. A functor F' : C — D is a simplicial map. Recall that
if a simplicial set satisfies lifting property for all 0 < i < n, we call it a Kan
complex.

Definition 2.3.2. An l-simplex f : A! — C is called an equivalence if there
exists 2-simplices ay, o : A% — C, such that oy|A2 = (f, 1) and o, |A% = (1, f)

14



Usually a co-groupoid is defined as a oo-category where each 1-simplex, (mor-
phism) is an equivalence. It is easily seen that a Kan complex is an co-groupoid,
and it can be shown, although it is non-trivial, that a co-groupoid is a Kan com-
plex, so the two notions coincide.

Theorem 2.3.3. [Lan2l, p. 1.2.70] The simplicial nerve of a simplicial category
S is a oco-category if all simplicial mapping spaces are Kan complexes.

Remark 2.3.4. In particular for a simplicial model category S, the mapping
spaces between fibrant-cofibrant objects are Kan complexes. So the simplicial
nerve of the restriction to fibrant-cofibrant objects S.y is a co-category

Definition 2.3.5. The oo-category of oo-categories, Cato,, is the simplicial
nerve of the simplicial category with objects co-categories and mapping spaces
between co-categories C and D given by the maximal co-groupoid of Fun(C, D).
It can be shown that passing to maximal oco-groupoid is a right adjoint and
therefore preserves products, Therefore this defines a fibrant simplicial category,
and so Cat, is in fact a co-category

Definition 2.3.6. A functor F : C — D is Joyal equivalence if it is an equiv-
alence in Cato,. By [Lan2l, Observation 2.2.11] Joyal equivalences between
oo-groupoids are exactly homotopy equivalences.

Definition 2.3.7. The composite of two morphisms f, g in an oco-category C,
i.e two l-simplicies f,g : A' — C, such that d'f = d’¢ is an element of the
pullback in Seta

Compe (f,9) ——— Fun(A?,C)

* (F.9) Fun(A2,C)

By [Lan21, Corollary 1.3.44] Comp,(f, g) — = is a trivial fibration, and therefore
is Comp,(f, g) contractible.

Definition 2.3.8. A simplicial map between a simplicial set K and a oo-
category C, f : K — C defines two simplicial sets C;, and C,; defined by
the levelwise by

n»—)Hom(setA)K/(K%K*A",f:K—>C)

and
n = Hom(gesn), /(K = A" x K, f : K = C)

respectively. In other words we consider objects of C "under” and "over” f. Cy,
and C, ¢ are oo-categories by [Lan21, Corollary 1.4.24]

Definition 2.3.9. Let z,y be two objects in an oo-category C. The mapping
space of x and y, mapg(x,y) is defined by the following pullback in Seta

15



mape(z,y) ——— Fun(A,C)

M G )N Fun(9AY,C)

By [Lan21, Proposition 1.3.48], map.(x,y) is an co-groupoid.

Definition 2.3.10. A functor between oco-categories F' : C — D, is fully faithful
if the induced map mape(z,y) — mapp(Fz, Fy) is an homotopy equivalence
for every x,y € C.

Definition 2.3.11. If a functor between oo-categories F' : C — D, induces a
essentially surjective functor hF' : hC — hD of ordinary categories, it is called
essentially surjective.

Definition 2.3.12. An object z in a oo-category C is initial if for every y €
C, mapg(x,y) is contractible. We see that initial objects are unique up to
homotopy.

Definition 2.3.13. The colimit of a simplicial map f : K — C is an initial
object in the category Cy,.

Definition 2.3.14. R—Mod is the simplicial nerve of R—mod.s, the full sub-
category of R—mod of fibrant-cofibrant objects. Note that R—Mod is an oo-
category

Definition 2.3.15. R—line is the maximal connected Kan complex of R—Mod
containing R. In other words it is the restriction of R—Mod to R-modules stably
equivalent to R

Definition 2.3.16. The Thom spectra of a morphism
f:X — R-line

is the colimit of
f: X — R—line — R—Mod.

We want to introduce an alternate but equivalent notion of colimits, that
will be useful later.

Definition 2.3.17. For a functor F' : K — C, Map¢(F, z) is defined by the
pullback diagram

Map¢(F,z2) ——— Fun(K » A% C)

;L (Fz) l

Fun(K,C) xC

16



In essence, this means we look at cones X « AY — C, but with base given by
F: K — C, and with cone point given by =z.

Theorem 2.3.18. F : K x A% — C is a colimit cone of F : K — C if and only
if the map -
Map. (F,z) — Map, (F, ) (2)

induced by

Fun(K « A% C) — & Fun(K,C) x C +— 2

Fun(K x A°x A% C) ————— Fun(K « A°,C) x C T *

is a homotopy equivalence. The maps in the diagram are induced by K — KA
Proof. This is [Lan21, Definition 4.3.4] and [Lan21, Theorem 4.3.11]. O
Lemma 2.3.19. The induced map

Mape(F, ) — Mape(F (x), ) (3)

where F (%) is regarded as a functor F|A? : A° — C, is a homotopy equivalence.

Note that Map.(F(*),z) = mape(F(x), ).
Proof. This is [Lan21, Remark 4.3.5] and [Lan21, Lemma 4.3.2] O

Lemma 2.3.20. [Lan21, Corollary 4.3.20] Every functor F : A™ — C admits
limits and colimits, with the limit and colimit object given F(0) and F(n), re-
spectively.

Remark 2.3.21. A colimit cone in the above lemma is given by a initial object
in Cr/. A obvious example of such an initial object is

Fos,: A"« A~ A" 5 A" 5 (. (4)

We have can generalize this result for arbitrary F : X x A® — C. We have in
general for any cone F : X x A” — C a homotopy equivalence

Map. (F,z) = Map(F(x),x) = mape (F(x), x)
where F'(x) is the cone point. Now consider the extension
FiX+A"% A= X« A 120 y o A0 B
again we have a general homotopy equivalence
Mapy (F, z) = Mapc (F({1}),2) = Map¢ (F({0}), z)
= mape (F({0}), 2) = Map (F, )

so together we have a homotopy equivalence Map¢(F, z) = Map.(F, z), so F is
a colimit cone.
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3 Examples

3.1 Simplicial circle

Proposition 3.1.1. [Lan21, Corollary 4.3.26] Let the simplicial set K be given
by a pushout

-/
?

X —" sz
Y —— K

where i :'Y — X. Suppose we are given an oco-category C, and a functor
F: K — C. If the restrictions Fopoi, Fop and Fop’ has colimit objects x,y
and z, and C has pushouts, then F has a colimit object y ], z.

Remark 3.1.2. The maps in the pushout y[[, z is given accordingly. Let
Fopoi: X+ A" — C be the colimit cone of F opoi, and similar for F o p.
Then

Fopo(ix1): X«A” =Y xA" = (5)

restricts to Flopoi on X, and is therefore an object in Cropoi/- We know Fropoi
is initial in Cpepoi/ since it is a colimit cone of F'opoi. We then know that the

mapping space between F opoi and F opo (ix1) is contractible, which we see
parameterize a contractible choice of maps between the colimit objects x and v,
by the commutative diagram

mape, (T,yo (i*1)) —————— Fun(A',Cropoi/) — P Fun(AL,Q)

* 44—
~
%
IS
*

1 1
G Fun(0A%, Cropoiy) —5— Fun(9A*,C)

where T and 3 are short for F opod and F op. Similar for z

Theorem 3.1.3. [Lur09, Theorem 4.2.4.1] Let J and C be fibrant simplicial
categories, and F : J — C a simplicial functor. Suppose we are given ¢ € C and
an extension of F, F : Jx A? — C, with F : |A° = c¢. Then the following are
equivalent.

1. F is a homotopy colimit of F
2. Na(F) is a colimit of Na(F) : Na(J) — Na(C)

18



Example 3.1.4. We can compute an analog of the Thom spectra for a discrete
ring R. Let R—moda = Fun(A°, R—mod) be the category of simplicial R-
modules. This category has a simplicial model structure by [GJ09, Example
11.6.2]. Let R—Moda be the coherent nerve of the full subcategory of fibrant-
cofibrant objects in R—moda. By [Lan21, Lemma 1.2.70] this is an oo-category.
Let R—linea be the maximal connected Kan-complex containing R, the functor
from A°P constant on R. The objects in R-line are the simplicial R-modules
which are weakly equivalent to R. By [GJ09, Corollary II1.2.5] this amounts to
there being a quasi-isomorphism between the chain complexes which for each
A € R—modp is given degreewise by A,, and boundary maps

D (=1)id; : Ap = Ay

i=0
where the d; are the face maps of A. Consider the case when R = Z, and let
SlA be the pushout diagram in Seta

{0,1} ——— Al

1 1
Al )

and let F : S\ — Z-linea be Z (the discrete simplicial abelian group) on
objects and on one of the A' components, 1 : Z — Z and —1 : Z — Z on
the other one. Lemma 2.3.20 gives us that the colimit of the restriction to the
components of the pushout should be Z&Z, Z and Z. In the first case regarding
1:7Z — 7Z and Z & 7Z the colimit cones are simple

Z Z
YASY/ 1 7
k /
Z Z

Following the remark after 3.1.1, we restrict the base of the right diagram. We
can regard it as a element in the category R—mod,.;/, where the left diagram
is an initial element, giving us an contractible space of maps, similar for —1 :
Z — 7. Since the diagrams are so simple we easily find explicit maps

Z Z
Z®L ------ A/ Z®L - N/
-1
Z Z
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This results in a new pushout diagram

707 —Y° 7
T4y

7 ——  colim F
Now consider the composite double pushout diagram

T—y

7 747 zZ
Tty
* Z colim F'

By [Lur09, Lemma 4.4.2.1] the given that the left square is an oo-categorical
pushout diagram, the whole square is also an co-categorical pushout if, and only
if the right square is one. This gives us a cofiber sequence

Z % 7 — colim F
and thus a long exact sequence of homotopy groups
oo mn(Z) 2 w(Z) = mn(colim F) = w1 (Z) — - -
Z has only one non-trivial homotopy group, m(Z).

Example 3.1.5. Let S} be as previously, and let F': S — S—line — S—mod
be the functor sending one of the A! factors to 1 : S — S, and the other to
—1:S — S. We want to compute the colimit of F. By lemma 2.3.20 and
Proposition 3.1.1 we can reduce this to a diagram

SvS ——— S

S —— colim F

but we first need to analyse the restricted colimits to understand what the maps
in the pushout are supposed to be. Using Remark 3.1.2 and Lemma 2.3.20 we
get diagrams

S S
SVS ------ WL__5s SVS ----- LSS
-1
k / k /
S S

20



So the complete pushout diagram we need to compute is

svs — ™M s

1v1 (6)

S ———— colim F

—1x1

Now consider the diagram, where {—1,1} : S ——= S xS~SVS
s = L svs —M s
V1
* S colim ¥’

We can show that the left square is a pushout, i.e a that S =Ll svs L s

is a cofiber sequence. Since the right square is pushout by definition, we have
(—1v1)
that S

equal to S EN S., and we have a long exact sequence of homotopy groups

—1,1 . . o
o } S — colim F' is a cofiber sequence. The first composite is

S T (S) B T (S) = ma(colim F) D w1 (S) — - (7)

Alternatively we can try to compute it more directly. By construction we
can easily lift diagram (6). Now we need to compute the homotopy colimit
R—mod.s To do this we need a cofibrant replacement for £1v1:SVvVS — S.
Consider the diagram

svs —YEL . svs

1oViy

S/\I+ _— Mil

+lopr

We know iy Vi; : SVS — S A I is a cofibration, hence SV S — My, is
a cofibration. We know that £1V 1 :SVS — S is a weak equivalence, and
since R—mod,.; is left proper by [Hir03, Corollary 13.1.3], SA I+ — My, is
a weak equivalence. Since both +1 and the projection S A I, — S are weak
equivalences, the composite are by the 2-out-of-3-rule, and by the same rule
the dashed map Mi; — S is a weak equivalence. Note that this holds for any
left proper category and weak equivalence f : B — B for a cofibrant object B.
Then the new pushout diagram is
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SVS —— M,

My ——— > colim F

The resulting object can be described as a mapping torus with a collapsed inner
circle.

3.2 Aut(R)

Definition 3.2.1. Recall that for two objects z, y in an co-category C, mape(, y)
is defined by the pullback in Seta

mape (z,y) —— Fun(Al,C)

M G )N Fun(9AY,C)

We define the endomorphism space of R in R—Mod as Endg(R) = mapp_poq(R, R).
Theorem 3.2.2. [Lan21, Proposition 2.5.35] Let Map.(z,y) be the simplicial
mapping space of a fibrant simplicial category C, then

Mape (z,y) =~ mapy, ) (2, y) (8)

the homotopy class of this map is natural in x and y. In particular composition,
which is only defined up to homotopy in Na(C), commutes up to homotopy.

Remark 3.2.3. Notice that Endg(R) = mapg_poq(R, R) ~ Mapg_..4(R, R).

Remark 3.2.4. Note that an orthogonal ring spectrum R induces a monoid
structure on Ry, since in degree 0 we have Ry A Ry — Rp4+o = Ro. This is
associative and unital, by the definition of the ring structure.

Theorem 3.2.5. Let Sing(—) be the regular singular functor and Ry the 0-th
space of an orthogonal ring R, then

Endg(R) ~ Sing(Ry).
Proof. There is an adjunction
RA(—)+:Top &2 R—mod : Evg
which gives us

MapR—mod(Ra R)k = R_mOd(R A |Ak|+7 R) = MapTop(|Ak|a RO) = Sing(RO)k
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Applying 7 to this equivalence gives us

Ho(R—Mod)(R, R) = moEndr(R) = momapg_poq(Rs R) = moMapp_0q4(R, R) =
Ho(R—mod)(R, R) = mpSing(Ry) = moR

The last equality follows since R is an {)-spectrum. O

Definition 3.2.6. Let Autg(R) C Endgr(R) be the union of connected compo-
nents corresponding to stable homotopy equivalences R — R.

Definition 3.2.7. Let GL1(R) C R be the union of connected components
corresponding to units in o Ryp.

We see that we have an induced equivalence Autg(R) ~ GL1(R), since both
correspond to the units in equivalent monoids.

Definition 3.2.8. Let BAutg(R) C R—line be the full subgroupoid with R as
the single object.

Proposition 3.2.9. BAuty(R) ~ R—line.

Proof. The inclusion of BAutgr(R) is by definition fully faithful, and since
R—line is an co-groupoid, it is also essentially surjective. By [Lan21, Theo-
rem 2.3.20] the inclusion is then a Joyal equivalence. O

Lemma 3.2.10. Autr(R) = mapg_j;;,.(R, R).
Proof. By [Lan21, Lemma 2.3.8] the map

mape= (x,y) — mape(x,y)

for an oo-category C and objects z,y € C is the inclusion of the path com-
ponents which have equivalences as points. In the case where C = R—Mod',
the connected component of R—Mod containing R, x = y = R, we have by
definition C= = R—line and we see that Autr(R) C Endg(R) coincides with
mMapp_jine (12, R) € mapp_pjoq (R, R). O

Theorem 3.2.11. Autr(R) =~ QBAutr(R). So BAutg(R) is in fact a classi-
fying space of Autg(R).

Proof. Autp(R) = mapp_ji(R, R) is defined by the pullback

mapp_jine( R, R) ————— Fun(A!, R—line)

* : Fun(9A!, R—line)
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but this precisely defines the loop space of R-line based at R. Since AT — Al is
a cofibration, the induced map Fun(A!, R—line) — Fun(9A!, R—line) is a fibra-
tion, and since R—line is a co-groupoid, i.e a Kan complex, Fun(9A!, R—line)
and Fun(0A!, R—line) are fibrant. Therefore the pullback is a homotopy pull-
back, and from proposition 0.0.10, we have an equivalence Autz(R) = QR—line ~
QBAutg(R) . O

3.3 Suspensions

Suppose we have a finite simplicial set X, and we want to analyse mappings

Y X — BAutg(R) ~ R—line — R—Mod

and their colimits, the Thom spectra. We can decompose XX as a pushout

X —CX

F — XX

Then a map f : ©X — BAutg(R) is adjoint to a map f : X — QBAutz(R) ~
AutR(R).

Remark 3.3.1. Note that by the particular choice of construction of the sus-
pension ¥X, we do not require in this case that either f of f to be based
preserving. Note that BAut(R) only has one object, so f is in a sense auto-
matically based. If we wanted a such an adjoint for a space, Y, with more
than one 0-simplex, we need to restrict to maps ~X — Y that is constant on
the O-simplicies of ¥ X to the basepoint used in the construction of Y. For
alternate suspensions see [GJ09, Chapter IIL.5].

Lets consider such a map f : X — Autg(R), and the adjoint map f: ¥X —
BAutgr(R) ~ R—line. Now consider a diagram

X —*t 40X

*  —————— ¥ X R
X)

BAutg(R)

from [Lan21, Proposition 4.3.26], we have a homotopy pushout
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o~

T(fpi) —— T(fp)
‘ (9)
(%) f

— T()

where T'(—) denotes the Thom spectra, i.e the homotopy colimit of the functor
composed with inclusion to R—Mod

Lemma 3.3.2. The colimit cone of ]?p, which we also denote T(]?p), 18

T(Fp): X x A% A0 2 X x A1 229 x 4 A0 2 B Mod. (10)
In particular T(fp) o(ixi): X A% - R—Mod equals fp,
Proof. This is simply remark 2.3.21. O

Remark 3.3.3. For an arbitrary simplicial set X, the R-module R A | X|; is
cofibrant, but generally not fibrant. To simplify notion, we will still denote the
fibrant replacement of R A | X|; by RA | X|4.

Lemma 3.3.4. For a finite simplicial set X, the constant map to R
cx : X - R—mod
has colimit R A |X|4. In particular T(fpi) ~ R A |X|+.

Proof. Notice that fpi is constant since it factors through x. We continue by
induction on the dimension of X, the highest degree of non-degenerate simplices.
Assume that the inclusion (n — 1)-skeleton, X"~! < X has colimit object
RA Xﬁ_l. Assume that the colimit cone can be described by as follows. For
notational simplicity will describe it for a general X. Let ¢x denote the colimit
cone of cx, the constant map on R, X — R—Mod. This is a map

ox : X * A = R—Mod
which corresponds to a map
tx : X — R*MOd/R/\XJr.

We define how this maps simplices v : A™ — X. Consider a 0-simplex z : A? —
X. This corresponds to a map A%xA® “*L X« A0 X5 R_Mod. By definition
of R—Mod as the simplicial nerve of the full subcategory of fibrant-cofibrant

objects of R—mod, this is equivalent by adjointness to a map

7: C[A"x AY] = C[A'] = R—mod,;.
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In particular we have a map
Z.: Mapgan)(0,1) = (AHH = A% = Mapp_0q, (R, RA [X]4).
We define this map by
A’ (IAz: R RAIAY L — RAIX|,)

where 1 Az : RA|A% L — RA|X|; is the map (r,*) — (r,x). Now consider a
1-simplex o : © — y in X, or equivalently o : A! — X. Now we define the map

A2 = AL A0 2P X AD X R Mod
As above this is equivalent to a map
@ : C[A?] - R—mod,.
In particular we have an induced map on the mapping spaces
8. - Mapoas (0,2) = (A7 = A = Mapy_yoq,, (R, RAIX],)
We define this map by

(IAz:RAIAY, = RAIX)) 225 1Ay : RAIAY, — RA|X],)

where a A1 is adjoint to the map 1 A« : R A |AY|y — R A |X|:, mapping
(r,i) = (r,a(i)). Now consider a 2-simplex 1 : A2 — X

Y
«a A B

i

By the same argument as above this corresponds to a map
) C[A®] = R—mod,f
and in particular a map
w* : Mapc[AB] (07 3) = (Al)s_l - MaprmodCf (Ra RA |X|+)

where (A!)? — 1 = (A')? is identified with the diagram

{0,3} S {0,1,3}

{07 27 3} % {07 17 273}
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which we map to

TAa

1Az 1Ay
TAY
e e 5
si(LA7y)
1Nz — 1Az
int

Now we want to define a similar map for a arbitrary 6 : A" — X. Same as
before we define a map 6 : C[A"*'] - R—mod., such that 0,1,...n — R, and

n+1— RA|X|4. This map needs to be compatible with maps A™ — A™ 4 x.
We need to ensure that for 0 <i <k <n
Mapeian+1 (4 k) = Mapp_0a(R, R)

is constant. So consider {0,...,k,n + 1} € Mapan+17(0,n + 1). By definition
{0,...k,n+1} ={0,....,k} U{k,n+ 1} = {k,n+ 1} 0 {0,...,k}. This is then
mapped to 1 A0(k)o1lr =1 A6(k). This holds in general for inclusions coming
from

MapC[An,+1] (k7 n + 1) X MapC[AnH] (Z, k) — MapC[An+1] (0, n -+ ].)

for 0 < i < k < n. So the only information not determined by the inductive
process is how the sequence of inclusion

in:{0,,n+1}Cc{0,1,n+1} Cc---C{0,1,...,n,n+ 1}

is mapped. This amounts to a map

o~

9* (Zn) : An+1 — Maprmod(Rv R A |X‘+)

adjoint to 1 A0 € Mapp_,,.q(R A A" R A|X|4), mapping (r,i) — (r,0(i)).
So now we have a collection of maps 8 : C[A"™ x A%] — R—mod compatible with
diagrams

An
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for maps [n] — [m] in A. Using the canonical isomorphism C[X x A% =

GcglimXC’[A”*AO], and maps 0 : C[A" x A°] — R—mod, the universal property
AT —

of colimits gives a map C[X « A°] — R—mod. This is equivalent by adjointness
to a map X » A -+ R—Mod. Now we prove the base case. First we want to

show that the colimit object of the constant map ¢ : J[ A® — R—Mod equals
acl
RAJ]] A%4. Considering the definition of the smash product, we see that

acl
RAI[[A%y =V R

acl acl

which is exactly the coproduct in R—Mod, which is defined as the colimit of

c: [T A — R—Mod. The cone as a map
acl

[1A° = R—Mod, \ &

acl ael

obviously maps a 0-simplex to A? — J] A° to the coproduct inclusion. The
aecl
n-skeleton of X, X™ can be written as the pushout

[ oa" —  xn1
rzeNX"n

Il A" Xn
zeNX™

where N X™ are the non-degenerate simplices of X,,. Again by 3.1.1 theorem
and 2.3.20 we can then express the colimit as the homotopy pushout.

[T RA|0A™, —2— RA|X™ Y,
xeENX™
Il R r(Xx")
reNX"™

We want to establish that

o: J[ RAloA™ — RAIX™Y,
zeNX™

is natural, i.e that it is the inclusion 1z A a : R A |[0A™] — R A | X1,
for each a : OA™ — X"~!. To do this we need an analyse how this map is
induced, which is restricting the cone ¢x, 1 to ¢x, ; o (ax1). We see that this
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is an element of R—Mod,., Lyoa/ Recall that by definition the mapping space
MADR_NMod,,  oa) (Cx,. 0@, Cx,,, o (ax1))is contractible so we only need to
show that there exist a map @, : OA™ x Al = R—Mod, such that

Ea\aA" * {0} =Cx

n+10a

D,|0A™ x {1} =Cx,,, o (ax1)

and -
DIA'=1rAa:RA|OA™; — RA|X™ Y,

for each o : OA™ — X"~ Consider a map 0 : A™ — OA", m < n. This
induces a map

A2 o Am o AL 5L gAn AT 2ey B od

and we want to define this. This corresponds to a map

—

D, 0 (0%1): C[A™?] — R—mod,;.

The restriction on ®,|dA"%{0} forces the induced map on Mapciam+2)(0,m+1)
to be

0. : Mapeami2)(0,m + 1) 2 (AY)™ = Mapy_oq,, (R, R A|OA"]4).

Let Mapgia2) (0, m41,m+ 2) C Mapgiam+21(0,m + 2) be the inclusion
N{IC[0,m+2]|0,m+2€ I, m+1¢1I})C NH{IC[0,m+2]|0,m+2€1I,}).

Recall that the last set is Mapoam+21(0,m + 2) by definition. Then the re-

striction on ®|X % {1} forces the induced map on Mapeaz) (0, mA+1,m-+ 2) to
be

—

a 06, : Mapgam-2) (0, m+1,m+2) = (AhHm
— Mapp_mod,, (R, RA X" M),
The map such that
@00, (im) : A™ Mapg_mod,, (B, R A X" 4)
is adjoint to
IA(aof)=(1Aa)o(1AB): A™ — RA|OA™ L — RA|X™ Y.
Now consider the diagram

Mapgamsz)(0,m + 1) ——"—— Mapg_oa_, (R, R A|0A™|)

({m+1,m+2}). (1AQ). (11)

MapC[Am+2] (O, m + 2) ********** ke MapR_modcf (R, RA ‘anl |+)
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Let Mapgam+2)(0,m + 1,m +2) C Mapoiam+2)(0,m + 2) be the inclusion

N{IC0,m+2]|0,m+1,m+2€,})CN{IC[0,m+2]|0,m+2€l}).
From the diagram (15) we see that the map induced by @aﬁ 1) on
(Al)m = MapC[Am+2](O, m+1,m+ 2) - MapC[AmH](O, m + 2)
= (Al)m+1 - Maprmodcf (Rv RA |Xn+1‘+)

is equal to (1 Aa)s o 5* Notice that (1 A «). o A(zn) is adjoint also adjoint to
(1Aa)o(1A0): RA|A™| — RAIDA™{ — RA|IX" Y.

So extending what we are given

(ahm ]_[(Al)m = Mapgam+2)(0, m+1, m+2) H Mapcam+2)(0, m+1,m+2)
— Maprmodcf (Rv RA |Xn+1 ‘Jr)

to (A)™ x Al = (A" = Mapgiamez)(0,m +2) = Mapg_yeq,, (B R A
|X"=1|,) is easily and naturally done, since we can just take the identity ho-
motopy. Now we make a cofibrant replacement of the left vertical map, and the
obvious choice is

IT rrjoA™ = [ rrla™ = [ R (12)

TeNX"n TeNX"™ reENX™

This gives us the pushout

1INz
zENX™

[[ RAIOA™,
reNX"

RA|IX™ 1,

I RAIA")y — 5 T(X7).
reNX™

Since R A (—)4+ commutes with colimits, we have T(X™) = R A | X™|4+. O
Now diagram 9 takes the form

RAX, —2* R

o~

RAJAYL, —— T(f)
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Proposition 3.3.5. ® is given up to homotopy by the composition
RAIX)+ 205 RAJAutp(R)|y — RAmapp_yoq(RB,R) > R (14)
Proof. The goal is to show the existence of a
$: X Al - R—Mod

such that | X » ({0} [[{1}) = ex ][] fp, and D|A! = ev o (1 A f). Consider a
map 0 : A" — X. This induces a map

A2 o An AL 2 v AT 2 R Mod

and we want to define this. This corresponds to a map

—

do(fx1): C[A™?] — R—mod,.

The restriction on ®|X x {0} forces the induced map on Mapecan+2)(0,7 + 1)
to be

é\* : MapC[AQ](()?n + 1) = (Al)n — Ma‘prmodcf (R7 RA |X|+)

Now consider the diagram

6.
Mapgiant2)(0,n +1) ———— Mapgr_poa,, (B, RA[X]4)
({n+1,n+2}). (evo(1Af))- (15)
Fo(x1).
Mapgiaz)(0,n + 2) -------=--==--- » Mapg_moa,, (R, 1)

From the diagram (15) we see that the map induced by ® o (§ x 1) on

(AhH™ = Mapciam+2)(0, 7 + 1,1 + 2) C Mapgiam+2)(0,n + 2)
= (Al)n+1 — Ma‘pR—modcf (Rv R)

is equal to (evo (1A f)), o 8s. Notice that the adjoint of (ev o (1A f)), o 6y (in)
is

evo(1Af)o(1A0) : RA|A™ |+ — RAIX |+ — RAJAwt(R)|+ — RA|End(R)|+ — R
defined on elements as

(ryi) = (r,0i)) = (r, f(0(2))) = f(0(2))(r)

The restriction on ®|X % {1} forces the induced map on

Fpo : C[A™1] = C[d,, 1 A™?] € C[A™?] = R—mod
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to be the adjoint of
Fpo(1x6): A 2 A" A 5 X % A 5 R—Mod.

We then have an induced map

m* D (AN MapC[An,+2](0,7z/—-|—\1, n+2) C Mapgian+2)(0,n +2)
= Mapp_noq,, (R, R)

and in particular a map
fpe*(ln) AT = MaprmodCf (R’ R)
which is exactly the map
A" % X L End(R) = Mapy_oa, (R, R)

which is adjoint R A |A™|; — R defined on elements by (r,i) — f o 0(i)(r) =
f(6(2))(r). Hence (evo (1A f))« 068, = fpg,. So extending what we are given

(Al)n H(Al)n = Mapcm”ul (0, n+ 1, n—+ 2) H MapC[Anm] (0, ’I’L/-F\]., n —+ 2)
- MapR—modcf (Ra R)

to (A1) x Al = (A1) 2 Mapgans2)(0,n+2) — Mapg_moq,, (R R) is easily
and naturally done, since we can just take the identity homotopy.
O

Example 3.3.6. Consider an € ring spectrum R, such that m,(R) = 7,(Q2*°R),
for n > 0. Recall that m(R) is a discrete ring, with addition given by canonical
group structure as a stable homotopy group, and multiplication given by the
multiplication A : R A R — R, and passing to mo(R), notice that there is an
multiplicative identity. S™ is connected for n > 0, so a based map S™ — QR
is contained in the connected component containing the basepoint, denoted
Q5°(R). Notice that Q5°(R) corresponds to the 0 in the ring mo(R) = mo(2°R).
Let Q5°(R) corresponds to 1 in mo(R). 2°°R has a H-space structure so we have
a homotopy equivalence

O5°(R) 5 QF(R).

Recall that Endg(R) ~ Sing(Ry) = Q°°R. Under this equivalence Q5°(R)
corresponds to the connected component of Endg(R) of homotopy equivalences
homotopic to the identity, hence it lies in Autg(R). Therefore given an element
[f: S = Q°(R)] € m(R) we get a map (f + 1) : S — Autgr(R) , by

composing with +1. Now we can ask what the Thom spectra is for (f +1) :
¥S5™ — BAutg(R). We know we have a homotopy pushout.
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RAS —— S R

o —

R——— T((f +1))
We have a stable equivalence
RASY ~RAS"XxR~RANS"VR

such that RAS™ — RARA ST ~ RAS"V R corresponds to the inclusion. So
now we have the double homotopy pushout

RAS" — 5 RAS? ——— S R

—

* R T((f+1)

where by proposition (3.3.5) the composite R A S™ — RA ST — R is given by

RAS™ M RA(RY), — RARy > R.

Considering the outer pushout square, we get a cofibration sequence

RAS™ = R—T((f+1)).

On homotopy groups this means

—

- —— m(RAS") —— m(R) — m(T(f+1) —— mi1(RAS?) ——— -+

[f]

— Wi_n(R) e WZ(R) —_— WZ(T((f+ 1)) e Wi_l_n(R/\Sn) —_— -

where -[f] is multiplication in the graded ring m.(R) induced by A : RAR — R.
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