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Introduction

This paper is meant as an introduction to an ∞-categorical theory of Thom
spectra. We assume a basic knowledge of algebraic topology and simplicial ho-
motopy theory. We begin by constructing the simplicial category of orthogonal
spectra, SpO, a category of spectra with a monoidal structure. In particular a
tensor product, the smash product. This smash product enables us to define
orthogonal ring spectra, i.e an orthogonal spectrum R, equipped with a map
R ∧R→ R, satisfying certain coherence diagrams. In other words a monoid in
SpO. To each such orthogonal ring spectrum R, we have the simplicial category
of R-modules, R−mod. We continue by defining a model structure, called the
stable model structure, showing that it is compatible with the simplicial struc-
ture. We can for each simplicial category S, associate a simplicial set N∆(S), an
enhanced version of the usual nerve functor N : Cat → Set∆, capturing more
of the homotopical information. If the mapping spaces of the simplicial cate-
gory S are Kan complexes, then N∆(S) is a particularly nice simplicial set, by
fulfilling a certain horn-filler lifting condition, and we call these simplicial sets
∞-categories. In ∞-categories we can define notions from ordinary category
theory, such as composition, colimits, slice categories and so on, although often
only up to homotopy equivalence. Let R−line be an ∞-category of R-modules
weakly equivalent to R. We then define the Thom spectra of a simplicial map

f : K → R−line ↪→ N∆(R−modcf )
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to be the ∞-categorical colimit of f . We finally go through some examples,
and show that R−line is equivalent as a ∞-category to the classifying space of
the∞-category Aut(R) of automorphisms of R as an R-module, which helps us

analyse the Thom spectra of a morphism f̂ : ΣK → R−line ↪→ N∆(R−modcf ),

when f̂ is adjoint to a map f : K → Aut(R).

1 Orthogonal Spectra

1.1 Orthogonal Spectra

Definition 1.1.1. An orthogonal spectrum X, is a sequence of pointed topolog-
ical spaces {Xn |n ∈ N}, with Xn equipped with an O(n)-action, and structure
maps

σn : Xn ∧ S1 → Xn+1

such that any composition

σk : Xn ∧ Sk ∼= Xn ∧ S1 ∧ Sk−1 σn∧1−−−→ Xn+1 ∧ Sk−1 ∼=
Xn+1 ∧ S1 ∧ Sk−2 σn+1∧1−−−−−→ · · · σn+k−2∧1−−−−−−→Mn+k−1 ∧ S1 σn+k−1−−−−−→ Xn+k

is O(n) × O(k)-equivariant. Note that by pointed topological spaces one often
means a restriction to an appropriate category of pointed topological spaces, in
our case we will use compactly generated Hausdorff spaces. We will continue
to refer to this category as Top∗. A map of orthogonal spectra f : X → Y , is
a collection of maps {fn : Xn → Yn |n ∈ N}, that commute with the structure
maps

Xn ∧ S1 Xn+1

Yn ∧ S1 Yn+1

fn∧1

σn

fn+1

σn

Definition 1.1.2. The sphere spectrum, S, is the spectrum with Sn = Sn for
every n ≥ 0, and structure maps given by isomorphisms Sn ∧ S1 ∼= Sn+1.

Theorem 1.1.3. [Rog21, Theorem 9.7.1] The category of orthogonal spectra,
denoted SpO, is symmetric monoidal, with unit object given by the sphere spec-
trum S, and with the monoidal paring X ∧ Y given levelwise by coequalizer∨

a+b+c=nO(n)+ ∧O(a)×O(b)×O(c) (Xa ∧ Sb ∧ Yc)

∨
i+j=nO(n)+ ∧O(i)×O(j) (Xi ∧ Yj)

(X ∧ Y )n
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where the left map is given by

O(n)+ ∧Xa ∧ Sb ∧ Yc
σb∧1−−−→ O(n)+ ∧Xi=a+b ∧ Yc

and the right map is given on elements by

A ∧ x ∧ s ∧ y 7→ (A · Ia × χc,b) ∧ x ∧ y ∧ s

(A · Ia × χc,b) ∧ x ∧ σb(y ∧ s) ∈ O(n)+ ∧Xb ∧ Yj=b+c

Here χc,b is the (c + b × c + b)-matrix permutating the first b coordinates with
the c last ones. The twist map is induced by the mappings

A ∧ x ∧ y ∈
∨
i+j=nO(n)+ ∧O(i)×O(j) (Xi ∧ Yj)

A · χj,i ∧ x ∧ y ∈
∨
i+j=nO(n)+ ∧O(i)×O(j) (Xi ∧ Yj)

on the spaces defining the coequalizer, applying it multiple times on the first
space.

1.2 Model structure on SpO

Definition 1.2.1. Let αn : πn(Mk)→ πn+1(Mk+1) be the map given by

(γ : Sn →Mk) 7→ (σ ◦ (γ ∧ 1) : Sn ∧ S1 →Mk ∧ S1 →Mk+1)

the graded homotopy groups π∗(X) of an orthogonal spectra X, is given in degree
n by the colimit of the sequence

· · · → πn+k(Mk)
αn+k−−−→ πn+k+1(Mk+1)→ · · ·

for n+ k ≥ 2. A spectra map f : X → Y gives morphisms

πn+k(f) : πn+k(Xk)→ πn+k(Yk)

which are compatible with the colimit. Therefore we have a functor π∗ : SpO →
AbZ.

Definition 1.2.2. A stable equivalence is a spectra map f : X → Y , which
induces a isomorphism π∗(f) : π∗(X)→ π∗(Y ).

Definition 1.2.3. For every l ≥ 0, let the degree-l evaluation functor, denoted
Evl : SpO → Top, be Evl(X) = Xl. Evl has a left adjoint, the degree-l free
functor, Fl : Top→ SpO. We see that

(Fl(A))n =

{
A ∧ Sn−l forn ≥ l
∗ otherwise.
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Definition 1.2.4. Let I = {i : Sn−1
+ → Dn

+ |n ≥ 0}. Let FI = {Fli :

FlS
n−1
+ :→ Dn

+ | l ≥ 0, i ∈ I}. A spectra map i : X → Y is called a rela-
tive cell spectrum if i is the colimit of a sequence

X = Y (0)→ Y (1)→ ...→ Y (n)→ Y (n+ 1)→ ...→ Y

where each map Y (n)→ Y (n+ 1) given by a pushout∨
α S(α)

∨
αD(α)

Y (n) Y (n+ 1)

φ

α

where α ∈ FI.

Definition 1.2.5. A spectra map i : X → Y is called a Quillen cofibration if it
is a retract of a relative cell spectrum, meaning that there exists a commutative
diagram

X X ′ X

Y Y ′ Y

i i′ i

where i : X ′ → Y ′ is a relative cell spectrum.

Remark 1.2.6. Notice that since colimits are taken levelwise in SpO, a Quillen-
cofibration is levelwise a cofibration in Top∗. But note that if a spectra map is
levelwise a cofibration in Top∗, it is not necessarily a cofibration in SpO.

Definition 1.2.7. Let σ̄ : Xn → ΩXn+1, be the adjoint map of σ : Xn ∧ S1 →
Xn+1 in the loop-suspension adjunction. A map p : X → Y is called a stable
fibration if pn : Xn → Yn is a Serre fibration for every n ≥ 0, and the diagram

Xn ΩXn+1

Yn ΩYn+1

pn

σ̄

Ωpn+1

σ̄

is a weak homotopy pullback for every n ≥ 0, meaning that the induced map
Xn → Yn ×ΩYn+1

ΩXn+1, is weak homotopy equivalence.

Theorem 1.2.8. [BR20, Theorem 5.2.16] SpO has a model structure with the
stable fibrations, Quillen cofibrations, and stable equivalences being the fibra-
tions, cofibrations, and weak equivalences respectively. We call this the stable
model structure on SpO.
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Theorem 1.2.9. [BR20, p. 185] SpO has a model structure with the levelwise
fibrations and levelwise topological weak equivalences being the fibrations, and
weak equivalences respectively. We call this the levelwise model structure on
SpO.

Theorem 1.2.10. [BR20, Theorem 2.3.12] A spectral map f : X → Y is trivial
stable fibration if and only if it is a levelwise trivial fibration. Thus the levelwise
model structure and the stable model structure on SpO share trivial fibrations
and cofibrations.

Proof. Consider a trivial stable fibration f : X → Y , we know that it is a
levelwise fibration, so it remains to show that it is a levelwise weak homotopy
equivalence. Since f is a levelwise fibration, the fiber is given levelwise by the
homotopy fiber Ffn = f−1

n . Looking at the pullback diagram

Ff X

∗ Y

f

we have that Ff → ∗ is a trivial stable fibration. This have two consequences.
First we a have a weak homotopy equivalence

Ffn ∼= ΩFfn+1 ×Ω∗n+1 ∗n ∼= ΩFfn+1.

Second, we have πk(Ff) = 0 for every k, but from the first consequence, and
the definition of homotopy groups of spectra we have πk(Ffn) ∼= πk(Ff) = 0
for every k and n ≥ 0. From the long exact sequence of homotopy groups we
then have

πk(Xn) ∼= πk(Yn)

for every n ≥ 0 and k > 0. But for loop-spaces we have a weak homotopy
equivalence

Ωfn : ΩXn → ΩYn

for every n ≥ 0. Consider the diagram

Xn

Yn ×ΩYn+1
ΩXn+1 ΩXn+1

Yn ΩYn+1

fn

Ωfn+1

(1)

we see that we can write fn as the composite Xn → Yn ×ΩYn ΩXn → Yn. The
first map is a weak homotopy equivalence since f is stable fibration. The second
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map is a weak homotopy equivalence since Ωfn is a trivial fibration, thus fn is
a weak homotopy equivalence for every n.

Now consider diagram (1) when f is a levelwise trivial fibration. We know
Ωfn+1 is a trivial fibration, and since trivial fibrations are preserved by pullbacks
×ΩYnΩXn → Yn is on as well. Since fn : Xn → Yn is a weak homotopy
equivalence, Xn → Yn×ΩYn ΩXn is a weak equivalence as well by the 2-out-of-3
property.

2 Simplicial Structures

2.1 The simplicial model structure on SpO

Lemma 2.1.1. [GJ09, Lemma II.2.4] Let C be a category equipped with a functor

−⊗− : C × Set∆ → C.

Suppose the following conditions hold

1. −⊗K : C → C has a right adjoint homC(K,−) for fixed K ∈ Set∆.

2. X ⊗ − : Set∆ → C commutes with colimits, and X ⊗ ∗ ∼= X, for fixed
X ∈ C.

3. For X ∈ C, and K,T ∈ Set∆, there is a natural isomorphism (X ⊗K)⊗
T ∼= X ⊗ (K × T ).

Then C is a simplicial category with simplicial mapping space given by HomC(X,Y )n =
homC(X ⊗∆n, Y ).

Definition 2.1.2. Let C be a category that is both a model category and a
simplicial category. If for every cofibration i : A→ B and fibration p : Y → Y ,
the induced map

HomC(B,X)
(i∗,p∗)−−−−→ HomC(A,X)×HomC(A,Y ) HomC(B, Y )

is a fibration, which is acyclic if either i or p is, then C is called a simplicial
model category, and the above condition is called the simplicial model axiom.

Proposition 2.1.3. [GJ09, Proposition 2.3.11, Corollary 2.3.12, Proposition
2.3.13]

Let C be a simplicial category, and a model category. Then the following are
equivalent

1. The simplicial model axiom holds.

2. that for any cofibration i : X → Y in C, and n ≥ 0 the induced map
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X ⊗ ∂∆n Y ⊗ ∂∆n

X ⊗∆n X ⊗∆n ∪X⊗∂∆n Y ⊗ ∂∆n

Y ⊗∆n

is a cofibration, which is trivial if i is, and for e = 1 or 0

X ⊗∆1 ∪X⊗{e} Y ⊗ {e} → Y ⊗∆1

is a trivial cofibration.

3. For any cofibration i : X → Y in C, and cofibration j : A → B, the
induced map

X ⊗A Y ⊗A

X ⊗B X ⊗B ∪X⊗A Y ⊗A

Y ⊗B

is a cofibration, which is trivial if either i or j is.

4. For a cofibration i : K → L in Set∆ and fibration p : X → Y in C the
induced map
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homC(L,X)

homC(K,X)×homC(K,Y ) homC(L, Y ) homC(L, Y )

homC(K,X) homC(K,Y )

is a fibration which is trivial if either i or p is.

Example 2.1.4. The category of pointed compactly generated Hausdorff spaces,
denoted Top∗ is a simplicial model category, with

X ⊗K = X × |K|+.

Theorem 2.1.5. SpO is a simplicial model category.

Proof. First we show that SpO is a simplicial category. Define the functor
−⊗− : SpO × Set∆ → SpO, for X ∈ SpO and K ∈ Set∆

X ⊗K = X ∧ |K|+ = {Xn ∧ |K|+ |n ≥ 0}

with structure maps

Xn ∧ |K|+ ∧ S1 ∼= Xn ∧ S1 ∧ |K|+
σ∧1−−→ Xn+1 ∧ |K|+ .

Where σ is the structure map for X. Now we have to verify that this functor
satisfies the three conditions of a simplicial category.

1. Let homSpO(K,−) : SpO → SpO be defined by

homSpO(K,X)n = MapTop∗
(|K|, Xn)

with structure maps

MapTop∗
(|K|, Xn)∧S1 → MapTop∗

(|K|, Xn∧S1)
σ∗−→ MapTop∗

(|K|, Xn+1).

2. Fix an X ∈ SpO, and let K : J → Set∆, be a functor. We want show that
there is a natural isomorphism

colim((X ⊗−) ◦K) ∼= X ⊗ (colimK).

Since colimits are taken degreewise in SpO this becomes
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colim((Xn ∧ −) ◦ | − |+ ◦K) ∼= Xn ∧ |(colimK)|+.

We can break this into three parts. First we know that |− | : Set∆ → Top
preserves colimits since it is left adjoint to the singular complex functor.
Second, the functor (−)∗ : Top → Top∗ adding a disjoint basepoint is
adjoint to the forgetful functor functor U : Top∗ → Top, so it preserves
colimits. Third, − ∧ − : Top∗ × Top∗ → Top∗ is a left adjoint since Top∗
is a closed category, and − ∧− is precisely the product in Top∗

3. By inspection we can see that for X ∈ SpO, K,L ∈ Set∆

X ⊗ (K × L) ∼= (X ⊗K)⊗ L

since

Xn ∧ |K × L|+ ∼= (X ∧ |K|+) ∧ |L|+

since |K×L| = |K|×|L|, and in general for X,Y, Z ∈ Top X∧(Z×Y )+
∼=

X ∧ Z+ ∧ Y+

Now it remains to show that SpO fulfills the simplicial model axiom. We will
show that the second condition in proposition 2.1.3 holds. Consider the levelwise
model structure on SpO, where the fibrations are the levelwise fibrations, and
the weak equivalences are the levelwise weak equivalences. If we consider the
third version of the simplicial model axiom given in definition 2.1.2, it is clear
that he levelwise model structure on SpO is a simplicial model structure. This
also means that for any cofibration i : X → Y in SpO, the induced map

X ⊗ ∂∆n Y ⊗ ∂∆n

X ⊗∆n X ⊗∆n ∪X⊗∂∆n Y ⊗ ∂∆n

Y ⊗∆n

is a cofibration. Since the levelwise model structure, and the stable model
structure share cofibrations this is also true for the stable model structure.

Now assume i is a trivial cofibration. First we show that

i⊗ 1 : X ⊗ ∂∆n → Y ⊗ ∂∆n
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is a cofibration. We can show this directly from Proposition 2.1.3, setting A = ∅
and B = ∂∆n, but we will here provide an alternate proof. Let p : A→ B be a
trivial fibration, and consider the diagram

X ⊗ ∂∆n A

Y ⊗ ∂∆n B

By the definition of −⊗−, this diagram is equal to

X ⊗ ∂∆n ∼= X ⊗ ∂∆n
∐
X⊗∅ Y ⊗ ∅ A

Y ⊗ ∂∆n B

By adjunction of X ⊗ − and hom(X,−), for a fixed X, and by the univer-
sal properties of pushback and pullout, finding a lift in the diagram above is
equivalent to finding a lift in the following diagram

X hom(∂∆n, A)

Y hom(∅, A)×hom(∅,B) hom(∂∆n, B) ∼= hom(∂∆n, B)

We know that the levelwise model structure is simplicial. We also know that
the levelwise model structure share trivial fibrations with the stable struc-
ture. Since p : A → B was assumed to be a trivial fibration, we know that
hom(∂∆n, A) → hom(∂∆n, B) is a trivial fibration in the levelwise model
structure by proposition 2.1.3(4), and hence in the stable model structure. Then
since i : X → Y was assumed to be a cofibration, we can find the desired lift.

Second, we show that i ⊗ 1 : X ⊗ ∂∆n → Y ⊗ ∂∆n is a weak equivalence.
Both X and Y define homology theories with coefficient groups π∗(X) = π∗(Y )
[Rog21, Proposition 9.4.2]. i : X → Y induces a isomorphism on coefficient
groups, and therefore by [Rog21, Corollary 3.3.11] for any CW complex Z a
isomorphism X∗(Z) ∼= Y∗(Z). Putting Z = ∂∆n

+ and expanding the definition
of X∗ and Y∗ we get.

π∗(X ⊗ ∂∆n) = π∗(X ∧ ∂∆n
+) = X∗(∂∆n

+)
∼= Y∗(∂∆n

+) = π∗(Y ∧ ∂∆n
+) = π∗(Y ⊗ ∂∆n)
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So i⊗ 1 : X ⊗∂∆n → Y ⊗∂∆n is a weak equivalence. Since X ⊗∆n → Y ⊗∆n

is obviously levelwise weakly equivalent to i : X → Y , and is therefore a weak
equivalence. Then because pushout preserves trivial cofibrations, and the 2-
out-of-3 property, the dashed map is a weak equivalence, in the stable model
structure.

The last condition is fulfilled since {e} ' ∆1, and therefore Y ⊗{e} ' Y ⊗∆1

X ⊗ {e} X ⊗∆1

Y ⊗ {e} Y ⊗ {e} ∪X⊗{e} X ⊗∆1

Y ⊗∆1

'

'

Note that Y ⊗ {e} → Y ⊗ {e} ∪X⊗{e} X ⊗∆1 is equivalent to Y → Y ∪X
X ⊗∆1 = Mi, where (Mi)n = M(in), which is levelwise homotopy equivalent
to Y , and the lower horizontal map is therefore a stable equivalence, then by
the 2-out-of-3 property the dashed map is an stable equivalence.

Definition 2.1.6. Let R be an orthogonal spectra equipped with maps

µ : R ∧R→ R and η : S→ R

where S is the sphere spectrum, and the maps satisfy diagrams

S ∧R R ∧R R ∧ S

R

η∧1

∼=
µ

1∧η

∼=

R ∧R ∧R R ∧R

R ∧R R

µ∧1

1∧µ

µ

µ

expressing unitality and associativity, respectively. We call such an R an or-
thogonal ring spectra. The ring spectra is said to be commutative if
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R ∧R R ∧R

R

τ

µ µ

We can characterize an (commutative) orthogonal ring spectra as a (commuta-
tive) monoid in SpO.

Definition 2.1.7. A (left) R-Module is an orthogonal spectra M , equipped
with a map

λ : R ∧M →M

satisfying the following diagrams

R ∧R ∧M R ∧M S ∧M R ∧M

R ∧M M M

µ∧1

1∧λ

λ ∼=

η∧1

λ

λ

2.2 The simplicial nerve

Definition 2.2.1. For an ordinary category C, the nerve, denoted N(C) is a
simplicial set characterized by

N(C)n = homCat([n], C)

where [n] is the linearly ordered set {0, 1, ..., n} regarded as a category. This
construction gives us a functor

N : Cat→ Set∆

Remark 2.2.2. We can extend this nerve functor to simplicial categories by
applying it to the underlying ordinary category. But by doing this we will in
general lose homotopical information. Consider the simplicial category with
objects {0, 1, 2}, four non-identity morphisms, {0, 1} : 0 → 1, {0, 2} : 0 →
2, {1, 2} : 1 → 2, and {1, 2} ◦ {0, 1} : 0 → 2, and a single homotopy, the one
between {0, 2} and {1, 2} ◦ {0, 1}.

1

0 2

This is easily seen to be a simplicial category. Now consider the same category
without the homotopy between {0, 2} and {1, 2} ◦ {0, 1}.
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1

0 2

This is also a simplicial category, although a discrete one. Since these have
isomorphic underlying categories, they have isomorphic nerve, even though they
are fundamentally different as simplicial categories. To amend this we replace [n]
with another simplicial category which can capture the homotopical information
better, which we will denote C[∆n].

Definition 2.2.3. The objects of C[∆n] are the numbers 0, 1, ..., n. The map-
ping spaces are defined by the vertices it goes through, more precisely, let Pi,j
be the set of subsets

Pi,j = {I ⊆ [i, j] | i, j ∈ I}

If we order this set by inclusions we get a partially ordered set, which can be
regarded as a category. We can then take the nerve of this category to obtain
a simplicial set, which we define to be the mapping space between i and j. We
define composition to be induced by the union. To summarize C[∆n]

• Objects: the numbers {i ∈ N | 0 ≤ i ≤ n}

• Mapping space: MapC[∆n](i, j) = N(Pi,j)

• Composition: Pj,k × Pi,j → Pi,k, is given by (I1, I2) 7→ I1 ∪ I2

• Identities: idi = N(Pi,i) = {i}

Lemma 2.2.4. [Lan21, Lemma 1.2.7] For i ≤ j, N(Pi,j) ∼= (∆1)j−i−1. In
particular MapC[∆n](0, n) = N(P0, n) = (∆1)n−1

Example 2.2.5. Here is MapC[∆4](0, 4) with only some of the 1-homotopies,
or 1-simplices drawn.

{0, 1, 3, 4} {0, 1, 2, 3, 4}

{0, 1, 4} {0, 1, 2, 4}

{0, 3, 4} {0, 2, 3, 4}

{0, 4} {0, 2, 4}

Here is MapC[∆3](0, 3) drawn with all homotopies
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{0, 1, 3}

{0, 3} {0, 1, 2, 3}

{0, 2, 3}

Both examples express the idea that although the mapping spaces are non-
trivial, the compositions are all homotopic to each other in a coherent way, and
the mapping space is contractible.

Definition 2.2.6. The simplicial nerve or the homotopy coherent nerve of an
simplicial category S, denoted N∆(S), is characterized by

N∆(S)n = homCat∆(C[∆n],S).

Theorem 2.2.7. [Lan21, Lemma 1.2.67] There exists a unique colimit preserv-
ing functor

C[−] : Set∆ → Cat∆

which is adjoint to
N∆(−) : Cat∆ → Set∆

2.3 ∞-categories

Definition 2.3.1. An∞-category C, is a simplicial set satisfying an inner horn-
filling condition

Λni C

∆n

for 0 < i < n. This property is supposed to enable a form of composition which
we will define later. A functor F : C → D is a simplicial map. Recall that
if a simplicial set satisfies lifting property for all 0 ≤ i ≤ n, we call it a Kan
complex.

Definition 2.3.2. An 1-simplex f : ∆1 → C is called an equivalence if there
exists 2-simplices αl, αr : ∆2 → C, such that αl|Λ2

0 = (f, 1) and αr|Λ2
2 = (1, f)

y x

x x y y

ff

1 1
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Usually a ∞-groupoid is defined as a ∞-category where each 1-simplex, (mor-
phism) is an equivalence. It is easily seen that a Kan complex is an∞-groupoid,
and it can be shown, although it is non-trivial, that a∞-groupoid is a Kan com-
plex, so the two notions coincide.

Theorem 2.3.3. [Lan21, p. 1.2.70] The simplicial nerve of a simplicial category
S is a ∞-category if all simplicial mapping spaces are Kan complexes.

Remark 2.3.4. In particular for a simplicial model category S, the mapping
spaces between fibrant-cofibrant objects are Kan complexes. So the simplicial
nerve of the restriction to fibrant-cofibrant objects Scf is a ∞-category

Definition 2.3.5. The ∞-category of ∞-categories, Cat∞, is the simplicial
nerve of the simplicial category with objects ∞-categories and mapping spaces
between ∞-categories C and D given by the maximal ∞-groupoid of Fun(C,D).
It can be shown that passing to maximal ∞-groupoid is a right adjoint and
therefore preserves products, Therefore this defines a fibrant simplicial category,
and so Cat∞ is in fact a ∞-category

Definition 2.3.6. A functor F : C → D is Joyal equivalence if it is an equiv-
alence in Cat∞. By [Lan21, Observation 2.2.11] Joyal equivalences between
∞-groupoids are exactly homotopy equivalences.

Definition 2.3.7. The composite of two morphisms f, g in an ∞-category C,
i.e two 1-simplicies f, g : ∆1 → C, such that d1f = d0g is an element of the
pullback in Set∆

CompC(f, g) Fun(∆2, C)

∗ Fun(Λ2
1, C)

i∗

(f,g)

By [Lan21, Corollary 1.3.44] CompC(f, g)→ ∗ is a trivial fibration, and therefore
is CompC(f, g) contractible.

Definition 2.3.8. A simplicial map between a simplicial set K and a ∞-
category C, f : K → C defines two simplicial sets Cf/ and C/f defined by
the levelwise by

n 7→ Hom(Set∆)K/(K → K ?∆n, f : K → C)

and
n 7→ Hom(Set∆)K/(K → ∆n ? K, f : K → C)

respectively. In other words we consider objects of C ”under” and ”over” f . Cf/
and C/f are ∞-categories by [Lan21, Corollary 1.4.24]

Definition 2.3.9. Let x, y be two objects in an ∞-category C. The mapping
space of x and y, mapC(x, y) is defined by the following pullback in Set∆
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mapC(x, y) Fun(∆1, C)

∗ Fun(∂∆1, C)

i∗

(x,y)

By [Lan21, Proposition 1.3.48], mapC(x, y) is an ∞-groupoid.

Definition 2.3.10. A functor between∞-categories F : C → D, is fully faithful
if the induced map mapC(x, y) → mapD(Fx, Fy) is an homotopy equivalence
for every x, y ∈ C.

Definition 2.3.11. If a functor between ∞-categories F : C → D, induces a
essentially surjective functor hF : hC → hD of ordinary categories, it is called
essentially surjective.

Definition 2.3.12. An object x in a ∞-category C is initial if for every y ∈
C, mapC(x, y) is contractible. We see that initial objects are unique up to
homotopy.

Definition 2.3.13. The colimit of a simplicial map f : K → C is an initial
object in the category Cf/.

Definition 2.3.14. R−Mod is the simplicial nerve of R−modcf , the full sub-
category of R−mod of fibrant-cofibrant objects. Note that R−Mod is an ∞-
category

Definition 2.3.15. R−line is the maximal connected Kan complex of R−Mod
containing R. In other words it is the restriction of R−Mod to R-modules stably
equivalent to R

Definition 2.3.16. The Thom spectra of a morphism

f : X → R−line

is the colimit of
f : X → R−line ↪→ R−Mod.

We want to introduce an alternate but equivalent notion of colimits, that
will be useful later.

Definition 2.3.17. For a functor F : K → C, MapC(F, x) is defined by the
pullback diagram

MapC(F, x) Fun(K ?∆0, C)

∗ Fun(K, C)× C(F,x)

16



In essence, this means we look at cones X ? ∆0 → C, but with base given by
F : K → C, and with cone point given by x.

Theorem 2.3.18. F : K ?∆0 → C is a colimit cone of F : K → C if and only
if the map

MapC(F , x)→ MapC(F, x) (2)

induced by

Fun(K ?∆0, C) Fun(K, C)× C ∗

Fun(K ?∆0 ?∆0, C) Fun(K ?∆0, C)× C ∗

(F,x)

(F,x)

is a homotopy equivalence. The maps in the diagram are induced by K → K?∆0

Proof. This is [Lan21, Definition 4.3.4] and [Lan21, Theorem 4.3.11].

Lemma 2.3.19. The induced map

MapC(F , x)→ MapC(F (∗), x) (3)

where F (∗) is regarded as a functor F |∆0 : ∆0 → C, is a homotopy equivalence.
Note that MapC(F (∗), x) = mapC(F (∗), x).

Proof. This is [Lan21, Remark 4.3.5] and [Lan21, Lemma 4.3.2]

Lemma 2.3.20. [Lan21, Corollary 4.3.20] Every functor F : ∆n → C admits
limits and colimits, with the limit and colimit object given F (0) and F(n), re-
spectively.

Remark 2.3.21. A colimit cone in the above lemma is given by a initial object
in CF/. A obvious example of such an initial object is

F ◦ sn : ∆n ?∆0 ' ∆n+1 → ∆n → C. (4)

We have can generalize this result for arbitrary F : X ? ∆0 → C. We have in
general for any cone F : X ?∆0 → C a homotopy equivalence

MapC(F, x) ∼= MapC(F (∗), x) = mapC(F (∗), x)

where F (∗) is the cone point. Now consider the extension

F : X ?∆0 ?∆0 ∼= X ?∆1 1?s0−−−→ X ?∆0 F−→ C

again we have a general homotopy equivalence

MapC(F , x) ∼= MapC(F ({1}), x) = MapC(F ({0}), x)

= mapC(F ({0}), x) ∼= MapC(F, x)

so together we have a homotopy equivalence MapC(F , x) ∼= MapC(F, x), so F is
a colimit cone.
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3 Examples

3.1 Simplicial circle

Proposition 3.1.1. [Lan21, Corollary 4.3.26] Let the simplicial set K be given
by a pushout

X Z

Y K

i

i′

p′

p

where i : Y → X. Suppose we are given an ∞-category C, and a functor
F : K → C. If the restrictions F ◦ p ◦ i, F ◦ p and F ◦ p′ has colimit objects x, y
and z, and C has pushouts, then F has a colimit object y

∐
x z.

Remark 3.1.2. The maps in the pushout y
∐
x z is given accordingly. Let

F ◦ p ◦ i : X ? ∆0 → C be the colimit cone of F ◦ p ◦ i, and similar for F ◦ p.
Then

F ◦ p ◦ (i ? 1) : X ?∆0 → Y ?∆0 → C (5)

restricts to F ◦p◦i on X, and is therefore an object in CF◦p◦i/. We know F ◦ p ◦ i
is initial in CF◦p◦i/ since it is a colimit cone of F ◦ p ◦ i. We then know that the

mapping space between F ◦ p ◦ i and F ◦ p ◦ (i ? 1) is contractible, which we see
parameterize a contractible choice of maps between the colimit objects x and y,
by the commutative diagram

mapCF◦p◦i/(x, y ◦ (i ? 1)) Fun(∆1, CF◦p◦i/) Fun(∆1, C)

∗ Fun(∂∆1, CF◦p◦i/) Fun(∂∆1, C)

pr

i∗ i∗

(x,y◦(i?1)) pr

where x and y are short for F ◦ p ◦ i and F ◦ p. Similar for z

Theorem 3.1.3. [Lur09, Theorem 4.2.4.1] Let J and C be fibrant simplicial
categories, and F : J → C a simplicial functor. Suppose we are given c ∈ C and
an extension of F , F̄ : J ? ∆0 → C, with F̄ : |∆0 = c. Then the following are
equivalent.

1. F̄ is a homotopy colimit of F

2. N∆(F̄ ) is a colimit of N∆(F ) : N∆(J)→ N∆(C)

18



Example 3.1.4. We can compute an analog of the Thom spectra for a discrete
ring R. Let R−mod∆ = Fun(∆op, R−mod) be the category of simplicial R-
modules. This category has a simplicial model structure by [GJ09, Example
II.6.2]. Let R−Mod∆ be the coherent nerve of the full subcategory of fibrant-
cofibrant objects in R−mod∆. By [Lan21, Lemma 1.2.70] this is an∞-category.
Let R−line∆ be the maximal connected Kan-complex containing R, the functor
from ∆op constant on R. The objects in R-line are the simplicial R-modules
which are weakly equivalent to R. By [GJ09, Corollary III.2.5] this amounts to
there being a quasi-isomorphism between the chain complexes which for each
A ∈ R−mod∆ is given degreewise by An and boundary maps

n∑
i=0

(−1)idi : An → An−1

where the di are the face maps of A. Consider the case when R = Z, and let
S1

∆ be the pushout diagram in Set∆

{0, 1} ∆1

∆1 S1
∆

i

i p

p′

and let F : S1
∆ → Z−line∆ be Z (the discrete simplicial abelian group) on

objects and on one of the ∆1 components, 1 : Z → Z and −1 : Z → Z on
the other one. Lemma 2.3.20 gives us that the colimit of the restriction to the
components of the pushout should be Z⊕Z, Z and Z. In the first case regarding
1 : Z→ Z and Z⊕ Z the colimit cones are simple

Z Z

Z⊕ Z Z

Z Z

i1 1

i0

1

1

Following the remark after 3.1.1, we restrict the base of the right diagram. We
can regard it as a element in the category R−modp◦i/, where the left diagram
is an initial element, giving us an contractible space of maps, similar for −1 :
Z→ Z. Since the diagrams are so simple we easily find explicit maps

Z Z

Z⊕ Z Z Z⊕ Z Z

Z Z

i1 1 i1 1

x+y y−x

i0 1 i0

−1
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This results in a new pushout diagram

Z⊕ Z Z

Z colimF

x+y

y−x

Now consider the composite double pushout diagram

Z Z⊕ Z Z

∗ Z colimF

(x,−x)

x+y

x−y

By [Lur09, Lemma 4.4.2.1] the given that the left square is an ∞-categorical
pushout diagram, the whole square is also an∞-categorical pushout if, and only
if the right square is one. This gives us a cofiber sequence

Z 2−→ Z→ colimF

and thus a long exact sequence of homotopy groups

· · · → πn(Z)
2−→ π(Z)→ πn(colimF )→ πn−1(Z)→ · · ·

Z has only one non-trivial homotopy group, π0(Z).

Example 3.1.5. Let S1
∆ be as previously, and let F : S1

∆ → S−line→ S−mod
be the functor sending one of the ∆1 factors to 1 : S → S, and the other to
−1 : S → S. We want to compute the colimit of F . By lemma 2.3.20 and
Proposition 3.1.1 we can reduce this to a diagram

S ∨ S S

S colimF

but we first need to analyse the restricted colimits to understand what the maps
in the pushout are supposed to be. Using Remark 3.1.2 and Lemma 2.3.20 we
get diagrams

S S

S ∨ S S S ∨ S S

S S

1i1 1i1

1∨1 −1∨1

1i0

−1

i0
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So the complete pushout diagram we need to compute is

S ∨ S S

S colimF

1∨1

−1∨1

(6)

Now consider the diagram, where {−1, 1} : S −1×1−−−−→ S× S ∼= S ∨ S

S S ∨ S S

∗ S colimF

{−1,1}

1∨1

−1∨1

We can show that the left square is a pushout, i.e a that S {−1,1}−−−−→ S ∨ S 1∨1−−→ S
is a cofiber sequence. Since the right square is pushout by definition, we have

that S (−1∨1)◦{−1,1}−−−−−−−−−−→ S → colimF is a cofiber sequence. The first composite is

equal to S 2−→ S., and we have a long exact sequence of homotopy groups

· · · → πn(S)
2−→ πn(S)→ πn(colimF )

∂−→ πn−1(S)→ · · · (7)

Alternatively we can try to compute it more directly. By construction we
can easily lift diagram (6). Now we need to compute the homotopy colimit
R−modcf To do this we need a cofibrant replacement for ±1 ∨ 1 : S ∨ S → S.
Consider the diagram

S ∨ S S ∨ S

S ∧ I+ M±1

S

1∨±1

i0∨i1
±1∨1

±1◦pr

We know i0 ∨ i1 : S ∨ S → S ∧ I+ is a cofibration, hence S ∨ S → M±1 is
a cofibration. We know that ±1 ∨ 1 : S ∨ S → S is a weak equivalence, and
since R−modcf is left proper by [Hir03, Corollary 13.1.3], S ∧ I+ → M±1 is
a weak equivalence. Since both ±1 and the projection S ∧ I+ → S are weak
equivalences, the composite are by the 2-out-of-3-rule, and by the same rule
the dashed map M±1 → S is a weak equivalence. Note that this holds for any
left proper category and weak equivalence f : B → B for a cofibrant object B.
Then the new pushout diagram is
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S ∨ S M−1

M1 colimF

The resulting object can be described as a mapping torus with a collapsed inner
circle.

3.2 Aut(R)

Definition 3.2.1. Recall that for two objects x, y in an∞-category C, mapC(x, y)
is defined by the pullback in Set∆

mapC(x, y) Fun(∆1, C)

∗ Fun(∂∆1, C)

i∗

(x,y)

We define the endomorphism space ofR inR−Mod as EndR(R) = mapR−Mod(R,R).

Theorem 3.2.2. [Lan21, Proposition 2.5.35] Let MapC(x, y) be the simplicial
mapping space of a fibrant simplicial category C, then

MapC(x, y) ' mapN∆(C)(x, y) (8)

the homotopy class of this map is natural in x and y. In particular composition,
which is only defined up to homotopy in N∆(C), commutes up to homotopy.

Remark 3.2.3. Notice that EndR(R) = mapR−Mod(R,R) ' MapR−mod(R,R).

Remark 3.2.4. Note that an orthogonal ring spectrum R induces a monoid
structure on R0, since in degree 0 we have R0 ∧ R0 → R0+0 = R0. This is
associative and unital, by the definition of the ring structure.

Theorem 3.2.5. Let Sing(−) be the regular singular functor and R0 the 0-th
space of an orthogonal ring R, then

EndR(R) ' Sing(R0).

Proof. There is an adjunction

R ∧ (−)+ : Top � R−mod : Ev0

which gives us

MapR−mod(R,R)k := R−mod(R ∧ |∆k|+, R) ' MapTop(|∆k|, R0) = Sing(R0)k

22



Applying π0 to this equivalence gives us

Ho(R−Mod)(R,R) = π0EndR(R) = π0mapR−Mod(R,R) = π0MapR−mod(R,R) =

Ho(R−mod)(R,R) = π0Sing(R0) = π0R

The last equality follows since R is an Ω-spectrum.

Definition 3.2.6. Let AutR(R) ⊆ EndR(R) be the union of connected compo-
nents corresponding to stable homotopy equivalences R→ R.

Definition 3.2.7. Let GL1(R) ⊆ R be the union of connected components
corresponding to units in π0R0.

We see that we have an induced equivalence AutR(R) ' GL1(R), since both
correspond to the units in equivalent monoids.

Definition 3.2.8. Let BAutR(R) ⊂ R−line be the full subgroupoid with R as
the single object.

Proposition 3.2.9. BAutR(R) ' R−line.

Proof. The inclusion of BAutR(R) is by definition fully faithful, and since
R−line is an ∞-groupoid, it is also essentially surjective. By [Lan21, Theo-
rem 2.3.20] the inclusion is then a Joyal equivalence.

Lemma 3.2.10. AutR(R) = mapR−line(R,R).

Proof. By [Lan21, Lemma 2.3.8] the map

mapC'(x, y)→ mapC(x, y)

for an ∞-category C and objects x, y ∈ C is the inclusion of the path com-
ponents which have equivalences as points. In the case where C = R−Mod′,
the connected component of R−Mod containing R, x = y = R, we have by
definition C' = R−line and we see that AutR(R) ⊆ EndR(R) coincides with
mapR−line(R,R) ⊆ mapR−Mod′(R,R).

Theorem 3.2.11. AutR(R) ' ΩBAutR(R). So BAutR(R) is in fact a classi-
fying space of AutR(R).

Proof. AutR(R) = mapR−line(R,R) is defined by the pullback

mapR−line(R,R) Fun(∆1, R−line)

∗ Fun(∂∆1, R−line)
(R,R)
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but this precisely defines the loop space of R-line based at R. Since ∂∆1 → ∆1 is
a cofibration, the induced map Fun(∆1, R−line)→ Fun(∂∆1, R−line) is a fibra-
tion, and since R−line is a ∞-groupoid, i.e a Kan complex, Fun(∂∆1, R−line)
and Fun(∂∆1, R−line) are fibrant. Therefore the pullback is a homotopy pull-
back, and from proposition 0.0.10, we have an equivalence AutR(R) = ΩR−line '
ΩBAutR(R) .

3.3 Suspensions

Suppose we have a finite simplicial set X, and we want to analyse mappings

ΣX → BAutR(R) ' R−line ↪→ R−Mod

and their colimits, the Thom spectra. We can decompose ΣX as a pushout

X CX

∗ ΣX

Then a map f̂ : ΣX → BAutR(R) is adjoint to a map f : X → ΩBAutR(R) '
AutR(R).

Remark 3.3.1. Note that by the particular choice of construction of the sus-
pension ΣX, we do not require in this case that either f̂ of f to be based
preserving. Note that BAut(R) only has one object, so f̂ is in a sense auto-
matically based. If we wanted a such an adjoint for a space, Y , with more
than one 0-simplex, we need to restrict to maps ΣX → Y that is constant on
the 0-simplicies of ΣX to the basepoint used in the construction of ΩY . For
alternate suspensions see [GJ09, Chapter III.5].

Lets consider such a map f : X → AutR(R), and the adjoint map f̂ : ΣX →
BAutR(R) ' R−line. Now consider a diagram

X CX

∗ ΣX

BAutR(R)

i

p

f̂

from [Lan21, Proposition 4.3.26], we have a homotopy pushout
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T (f̂pi) T (f̂p)

T (∗) T (f̂)

(9)

where T (−) denotes the Thom spectra, i.e the homotopy colimit of the functor
composed with inclusion to R−Mod

Lemma 3.3.2. The colimit cone of f̂p, which we also denote T (f̂p), is

T (f̂p) : X ?∆0 ?∆0 ∼= X ?∆1 1?s0−−−→ X ?∆0 f̂p−→ R−Mod. (10)

In particular T (f̂p) ◦ (i ? i) : X ?∆0 → R−Mod equals f̂p.

Proof. This is simply remark 2.3.21.

Remark 3.3.3. For an arbitrary simplicial set X, the R-module R ∧ |X|+ is
cofibrant, but generally not fibrant. To simplify notion, we will still denote the
fibrant replacement of R ∧ |X|+ by R ∧ |X|+.

Lemma 3.3.4. For a finite simplicial set X, the constant map to R

cX : X → R−mod

has colimit R ∧ |X|+. In particular T (f̂pi) ' R ∧ |X|+.

Proof. Notice that f̂pi is constant since it factors through ∗. We continue by
induction on the dimension of X, the highest degree of non-degenerate simplices.
Assume that the inclusion (n − 1)-skeleton, Xn−1 ↪→ X has colimit object
R ∧ Xn−1

+ . Assume that the colimit cone can be described by as follows. For
notational simplicity will describe it for a general X. Let cX denote the colimit
cone of cX , the constant map on R, X → R−Mod. This is a map

cX : X ?∆0 → R−Mod

which corresponds to a map

cX : X → R−Mod/R∧X+
.

We define how this maps simplices γ : ∆m → X. Consider a 0-simplex x : ∆0 →
X. This corresponds to a map ∆0 ?∆0 x?1−−→ X ?∆0 cX−−→ R−Mod. By definition
of R−Mod as the simplicial nerve of the full subcategory of fibrant-cofibrant
objects of R−mod, this is equivalent by adjointness to a map

x̂ : C[∆0 ?∆0] ∼= C[∆1]→ R−modcf .
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In particular we have a map

x̂∗ : MapC[∆1](0, 1) ∼= (∆1)1−1 ∼= ∆0 → MapR−modcf
(R,R ∧ |X|+).

We define this map by

∆0 7→ (1 ∧ x : R ∼= R ∧ |∆0|+ → R ∧ |X|+)

where 1 ∧ x : R ∧ |∆0|+ → R ∧ |X|+ is the map (r, ∗) 7→ (r, x). Now consider a
1-simplex α : x→ y in X, or equivalently α : ∆1 → X. Now we define the map

∆2 ∼= ∆1 ?∆0 α∧1−−→ X?∆0 cX−−→ R−Mod

As above this is equivalent to a map

α̂ : C[∆2]→ R−modcf .

In particular we have an induced map on the mapping spaces

α̂∗ : MapC[∆2](0, 2) ∼= (∆1)2−1 ∼= ∆1 → MapR−modcf
(R,R ∧ |X|+)

We define this map by

(1 ∧ x : R ∧ |∆0|+ → R ∧ |X|+)
α̂∧1−−→ (1 ∧ y : R ∧ |∆0|+ → R ∧ |X|+)

where α̂ ∧ 1 is adjoint to the map 1 ∧ α : R ∧ |∆1|+ → R ∧ |X|+, mapping
(r, i) 7→ (r, α(i)). Now consider a 2-simplex ψ : ∆2 → X

y

x z .

β

γ

α
ψ

By the same argument as above this corresponds to a map

ψ̂ : C[∆3]→ R−modcf

and in particular a map

ψ̂∗ : MapC[∆3](0, 3) ∼= (∆1)3−1 → MapR−modcf
(R,R ∧ |X|+)

where (∆1)3 − 1 = (∆1)2 is identified with the diagram

{0, 3} {0, 1, 3}

{0, 2, 3} {0, 1, 2, 3}

∩

⊂

∩

⊂
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which we map to

1 ∧ x 1 ∧ y

1̂ ∧ ψ

s1(1̂ ∧ γ)

1 ∧ z 1 ∧ z

1̂∧γ

1̂∧α

1̂∧γ 1̂∧β

1̂∧1

Now we want to define a similar map for a arbitrary θ : ∆n → X. Same as
before we define a map θ̂ : C[∆n+1]→ R−modcf , such that 0, 1, . . . n 7→ R, and

n+1 7→ R∧|X|+. This map needs to be compatible with maps ∆m → ∆n θ−→ X.
We need to ensure that for 0 ≤ i ≤ k < n

MapC[∆n+1](i, k)→ MapR−mod(R,R)

is constant. So consider {0, ..., k, n + 1} ∈ MapC[∆n+1](0, n + 1). By definition
{0, ..., k, n + 1} = {0, ..., k} ∪ {k, n + 1} = {k, n + 1} ◦ {0, ..., k}. This is then
mapped to 1∧ θ(k) ◦ 1R = 1∧ θ(k). This holds in general for inclusions coming
from

MapC[∆n+1](k, n+ 1)×MapC[∆n+1](i, k)→ MapC[∆n+1](0, n+ 1)

for 0 ≤ i ≤ k ≤ n. So the only information not determined by the inductive
process is how the sequence of inclusion

in : {0, , n+ 1} ⊂ {0, 1, n+ 1} ⊂ · · · ⊂ {0, 1, . . . , n, n+ 1}

is mapped. This amounts to a map

θ̂∗(in) : ∆n+1 → MapR−mod(R,R ∧ |X|+)

adjoint to 1 ∧ θ ∈ MapR−mod(R ∧∆n+1, R ∧ |X|+), mapping (r, i) 7→ (r, θ(i)).

So now we have a collection of maps θ̂ : C[∆n ?∆0]→ R−mod compatible with
diagrams

∆n

Xn−1

∆m

θ

η

θ′
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for maps [n] → [m] in ∆. Using the canonical isomorphism C[X ? ∆0] ∼=
colim
θ:∆n→X

C[∆n ?∆0], and maps θ̂ : C[∆n ?∆0]→ R−mod, the universal property

of colimits gives a map C[X ?∆0]→ R−mod. This is equivalent by adjointness
to a map X ? ∆0 → R−Mod. Now we prove the base case. First we want to
show that the colimit object of the constant map c :

∐
α∈I

∆0 → R−Mod equals

R ∧ |
∐
α∈I

∆0|+. Considering the definition of the smash product, we see that

R ∧ |
∐
α∈I

∆0|+ =
∨
α∈I

R

which is exactly the coproduct in R−Mod, which is defined as the colimit of
c :

∐
α∈I

∆0 → R−Mod. The cone as a map

∐
α∈I

∆0 → R−Mod/
∨
α∈I

R

obviously maps a 0-simplex to ∆0
α ↪→

∐
α∈I

∆0 to the coproduct inclusion. The

n-skeleton of X, Xn can be written as the pushout∐
x∈NXn

∂∆n Xn−1

∐
x∈NXn

∆n Xn

where NXn are the non-degenerate simplices of Xn. Again by 3.1.1 theorem
and 2.3.20 we can then express the colimit as the homotopy pushout.∐

x∈NXn
R ∧ |∂∆n|+ R ∧ |Xn−1|+

∐
x∈NXn

R T (Xn)

Φ

We want to establish that

Φ :
∐

x∈NXn
R ∧ |∂∆n|+ → R ∧ |Xn−1|+

is natural, i.e that it is the inclusion 1R ∧ α : R ∧ |∂∆n|+ → R ∧ |Xn−1|+
for each α : ∂∆n → Xn−1. To do this we need an analyse how this map is
induced, which is restricting the cone cXn+1to cXn+1

◦ (α ? 1). We see that this
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is an element of R−ModcXn+1
◦α/. Recall that by definition the mapping space

mapR−ModcXn+1
◦α/

(cXn+1
◦ α, cXn+1

◦ (α ? 1)) is contractible so we only need to

show that there exist a map Φα : ∂∆n ?∆1 → R−Mod, such that

Φα|∂∆n ? {0} = cXn+1
◦ α

Φα|∂∆n ? {1} = cXn+1
◦ (α ? 1)

and
Φ|∆1 = 1R ∧ α : R ∧ |∂∆n|+ → R ∧ |Xn−1|+

for each α : ∂∆n → Xn−1. Consider a map θ : ∆m → ∂∆n, m < n. This
induces a map

∆m+2 ∼= ∆m ?∆1 θ?1−−→ ∂∆n ?∆1 Φα−−→ R−Mod

and we want to define this. This corresponds to a map

̂Φα ◦ (θ ? 1) : C[∆m+2]→ R−modcf .

The restriction on Φα|∂∆n?{0} forces the induced map on MapC[∆m+2](0,m+1)
to be

θ̂∗ : MapC[∆m+2](0,m+ 1) ∼= (∆1)m → MapR−modcf
(R,R ∧ |∂∆n|+).

Let MapC[∆2](0, m̂+ 1,m+ 2) ⊂ MapC[∆m+2](0,m+ 2) be the inclusion

N({I ⊆ [0,m+2] | 0,m+2 ∈ I, m+1 /∈ I}) ⊂ N({I ⊆ [0,m+2] | 0,m+2 ∈ I, }).

Recall that the last set is MapC[∆m+2](0,m + 2) by definition. Then the re-

striction on Φ|X ? {1} forces the induced map on MapC[∆2](0, m̂+ 1,m+ 2) to
be

α̂ ◦ θ∗ : MapC[∆m+2](0, m̂+ 1,m+ 2) ∼= (∆1)m

→ MapR−modcf
(R,R ∧ |Xn−1|+).

The map such that

α̂ ◦ θ∗(im) : ∆m → MapR−modcf
(R,R ∧ |Xn−1|+)

is adjoint to

1 ∧ (α ◦ θ) = (1 ∧ α) ◦ (1 ∧ θ) : ∆m → R ∧ |∂∆n|+ → R ∧ |Xn−1|+.

Now consider the diagram

MapC[∆m+2](0,m+ 1) MapR−modcf
(R,R ∧ |∂∆n|+)

MapC[∆m+2](0,m+ 2) MapR−modcf
(R,R ∧ |Xn−1|+)

({m+1,m+2})∗

θ̂∗

(1∧α)∗

̂Φα◦(θ?1)

(11)
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Let MapC[∆m+2](0,m+ 1,m+ 2) ⊂ MapC[∆m+2](0,m+ 2) be the inclusion

N({I ⊆ [0,m+ 2] | 0,m+ 1,m+ 2 ∈ I, }) ⊂ N({I ⊆ [0,m+ 2] | 0,m+ 2 ∈ I, }).

From the diagram (15) we see that the map induced by ̂Φα ◦ (θ ? 1) on

(∆1)m ∼= MapC[∆m+2](0,m+ 1,m+ 2) ⊂ MapC[∆m+2](0,m+ 2)

∼= (∆1)m+1 → MapR−modcf
(R,R ∧ |Xn+1|+)

is equal to (1 ∧ α)∗ ◦ θ̂∗. Notice that (1 ∧ α)∗ ◦ θ̂(in) is adjoint also adjoint to

(1 ∧ α) ◦ (1 ∧ θ) : R ∧ |∆m|+ → R ∧ |∂∆n|+ → R ∧ |Xn−1|+.

So extending what we are given

(∆1)m
∐

(∆1)m ∼= MapC[∆m+2](0,m+1,m+2)
∐

MapC[∆m+2](0, m̂+ 1,m+2)

→ MapR−modcf
(R,R ∧ |Xn+1|+)

to (∆1)m × ∆1 = (∆1)m+1 ∼= MapC[∆m+2](0,m + 2) → MapR−modcf
(R,R ∧

|Xn−1|+) is easily and naturally done, since we can just take the identity ho-
motopy. Now we make a cofibrant replacement of the left vertical map, and the
obvious choice is∐

x∈NXn
R ∧ |∂∆n|+ ↪→

∐
x∈NXn

R ∧ |∆n|+
∼−→

∐
x∈NXn

R. (12)

This gives us the pushout

∐
x∈NXn

R ∧ |∂∆n|+ R ∧ |Xn−1|+

∐
x∈NXn

R ∧ |∆n|+ T (Xn) .

∐
x∈NXn

1∧x

Since R ∧ (−)+ commutes with colimits, we have T (Xn) = R ∧ |Xn|+.

Now diagram 9 takes the form

R ∧X+ R

R ∧ |∆0|+ T (f̂)

Φ

(13)
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Proposition 3.3.5. Φ is given up to homotopy by the composition

R ∧ |X|+
1∧f−−→ R ∧ |AutR(R)|+ → R ∧mapR−Mod(R,R)→ R (14)

Proof. The goal is to show the existence of a

Φ : X ?∆1 → R−Mod

such that Φ|X ? ({0}
∐
{1}) = cX

∐
f̂p, and Φ|∆1 = ev ◦ (1 ∧ f). Consider a

map θ : ∆n → X. This induces a map

∆n+2 ∼= ∆n ?∆1 θ?1−−→ X ?∆1 Φ−→ R−Mod

and we want to define this. This corresponds to a map

̂Φ ◦ (θ ? 1) : C[∆n+2]→ R−modcf .

The restriction on Φ|X ? {0} forces the induced map on MapC[∆n+2](0, n + 1)
to be

θ̂∗ : MapC[∆2](0, n+ 1) ∼= (∆1)n → MapR−modcf
(R,R ∧ |X|+)

Now consider the diagram

MapC[∆n+2](0, n+ 1) MapR−modcf
(R,R ∧ |X|+)

MapC[∆2](0, n+ 2) MapR−modcf
(R,R)

({n+1,n+2})∗

θ̂∗

(ev◦(1∧f))∗

̂Φ◦(θ?1)∗

(15)

From the diagram (15) we see that the map induced by ̂Φ ◦ (θ ? 1) on

(∆1)n ∼= MapC[∆m+2](0, n+ 1, n+ 2) ⊂ MapC[∆m+2](0, n+ 2)

∼= (∆1)n+1 → MapR−modcf
(R,R)

is equal to (ev ◦ (1∧ f))∗ ◦ θ̂∗. Notice that the adjoint of (ev ◦ (1∧ f))∗ ◦ θ̂∗(in)
is

ev◦(1∧f)◦(1∧θ) : R∧|∆n|+ → R∧|X|+ → R∧|Aut(R)|+ ↪→ R∧|End(R)|+ → R

defined on elements as

(r, i) 7→ (r, θ(i)) 7→ (r, f(θ(i))) 7→ f(θ(i))(r)

The restriction on Φ|X ? {1} forces the induced map on

f̂pθ : C[∆n+1] ∼= C[dn+1∆n+2] ⊂ C[∆n+2]→ R−mod
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to be the adjoint of

f̂p ◦ (1 ? θ) : ∆n+1 ∼= ∆n ?∆0 → X ?∆0 → R−Mod .

We then have an induced map

f̂pθ∗ : (∆1)n ∼= MapC[∆n+2](0, n̂+ 1, n+ 2) ⊂ MapC[∆n+2](0, n+ 2)

→ MapR−modcf
(R,R)

and in particular a map

f̂pθ∗(in) : ∆n → MapR−modcf
(R,R)

which is exactly the map

∆n θ−→ X
f−→ End(R) ∼= MapR−modcf

(R,R)

which is adjoint R ∧ |∆n|+ → R defined on elements by (r, i) 7→ f ◦ θ(i)(r) =

f(θ(i))(r). Hence (ev ◦ (1 ∧ f))∗ ◦ θ̂∗ = f̂pθ∗. So extending what we are given

(∆1)n
∐

(∆1)n ∼= MapC[∆n+2](0, n+ 1, n+ 2)
∐

MapC[∆n+2](0, n̂+ 1, n+ 2)

→ MapR−modcf
(R,R)

to (∆1)n×∆1 = (∆1)n+1 ∼= MapC[∆n+2](0, n+2)→ MapR−modcf
(R,R) is easily

and naturally done, since we can just take the identity homotopy.

Example 3.3.6. Consider an Ω ring spectrum R, such that πn(R) = πn(Ω∞R),
for n ≥ 0. Recall that π0(R) is a discrete ring, with addition given by canonical
group structure as a stable homotopy group, and multiplication given by the
multiplication λ : R ∧ R → R, and passing to π0(R), notice that there is an
multiplicative identity. Sn is connected for n > 0, so a based map Sn → Ω∞R
is contained in the connected component containing the basepoint, denoted
Ω∞0 (R). Notice that Ω∞0 (R) corresponds to the 0 in the ring π0(R) ∼= π0(Ω∞R).
Let Ω∞1 (R) corresponds to 1 in π0(R). Ω∞R has a H-space structure so we have
a homotopy equivalence

Ω∞0 (R)
+1−−→ Ω∞1 (R).

Recall that EndR(R) ' Sing(R0) = Ω∞R. Under this equivalence Ω∞1 (R)
corresponds to the connected component of EndR(R) of homotopy equivalences
homotopic to the identity, hence it lies in AutR(R). Therefore given an element
[f : Sn → Ω∞(R)] ∈ πn(R) we get a map (f + 1) : Sn → AutR(R) , by

composing with +1. Now we can ask what the Thom spectra is for ̂(f + 1) :
ΣSn → BAutR(R). We know we have a homotopy pushout.
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R ∧ Sn+ R

R T ( ̂(f + 1))

We have a stable equivalence

R ∧ Sn+ ' R ∧ Sn ×R ' R ∧ Sn ∨R

such that R∧ Sn ↪→ R∧R∧ Sn+ ' R∧ Sn ∨R corresponds to the inclusion. So
now we have the double homotopy pushout

R ∧ Sn R ∧ Sn+ R

∗ R T ( ̂(f + 1))

where by proposition (3.3.5) the composite R ∧ Sn → R ∧ Sn+ → R is given by

R ∧ Sn 1∧f−−→ R ∧ (R×0 )+ → R ∧R0
λ−→ R.

Considering the outer pushout square, we get a cofibration sequence

R ∧ Sn → R→ T ( ̂(f + 1)).

On homotopy groups this means

· · · πi(R ∧ Sn) πi(R) πi(T ̂(f + 1)) πi−1(R ∧ Sn) · · ·

· · · πi−n(R) πi(R) πi(T ( ̂(f + 1)) πi−1−n(R ∧ Sn) · · ··[f ]

where ·[f ] is multiplication in the graded ring π∗(R) induced by λ : R∧R→ R.
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