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Abstract

Although offshore wind power shows promising energy potentials, high cost of operating

and maintaining offshore wind farms concerns investors. Different maintenance strategies

are applied by wind farm operators to overcome this drawback. A mixed integer optimiza-

tion model is developed to find the optimal maintenance plan for an offshore wind farm. The

proposed model include probabilistic failure times, multiple components per wind turbine,

route decisions and imperfect maintenance. That is, aspects usually studied individually in

the literature. Maintenance actions are scheduled based on the calculated likelihood of fu-

ture turbine failures. Results from numerical experiments show that applying an imperfect

preventive maintenance strategy, as opposed to a preventive replacement strategy, is prefer-

able in most scenarios. An additional heuristic algorithm is presented. Close to optimal

solutions with optimality gaps between 1% and 3% prove that the heuristic algorithm yields

good solutions.
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Chapter 1

Introduction

Wind occurs as a result of the about 120000 terawatts (Jaffe and Taylor, 2018) from solar ra-

diation, that is absorbed by the earth. Most of this energy is located at hard to reach areas, as

in the upper atmosphere, or in deep water locations (Jaffe and Taylor, 2018). Consequently,

there are great potentials (Bosch et al., 2018) in offshore wind. Nevertheless, high cost of

operation and maintenance of Offshore Wind Farms (OWFs) challenge the development of

the energy source (Stålhane et al., 2020; Tusar and Sarker, 2021). We stress the importance

of making offshore wind an even more competitive energy source. We expect wind to take a

significant part in reaching the 7th UN sustainability goal. That is, sustainable energy for all

by 2030 (UN Summary of the Secretariat, 2021). This Master’s Thesis belongs to the field of

mathematical optimization. A model is developed to find the optimal maintenance plan at

an OWF, in order to maximize expected net profit from turbine electricity production.

1.1 Problem statement

The failure of a turbine at an OWF results in running production losses from the time of

failure to the time of repair. While loss of income favours a visit to the offshore wind farm

to perform maintenance, this trip is demanding. For example, the maintenance requires

costly vessel transport, a specialised crew, spare parts and expensive equipment (Ren et al.,

2021; Van Bussel and Zaaijer, 2001). Travel distances are often long, and the weather condi-

tions often challenging, making it difficult to access the OWF (Tusar and Sarker, 2021; Ren

et al., 2021; Van Bussel and Zaaijer, 2001). It goes without saying that redundant trips must

be avoided. Important decisions to be made include when to visit the offshore wind farm,

which turbines and components need attending, and whether or not the components need

to be fully replaced. There exist several mathematical models in the literature for optimizing

maintenance schedules (Sarker and Faiz, 2016; Lu et al., 2018; Ding and Tian, 2012). How-
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ever, to the best of our knowledge, few models present a solution where

1. the time of turbine breakdowns are not predefined,

2. both full replacement and minor maintenance can be performed,

3. multiple components are considered for each turbine, and

4. the decisions regarding maintenance routes are incorporated simultaneously.

It will become clear what is meant by a maintenance route in the following sections.

1.2 Research questions with hypothesis

In this Master’s Thesis, we address the following research questions.

1. How can we maximize the net profit from turbine electricity production at an OWF?

We propose a mixed integer optimization model, with both quadratic and linear constraints.

The model solution provides a schedule for maintenance and operations at an offshore wind

farm. The trade-off between a possible gain in income from power production, and the ex-

penses of repairing any broken turbines is captured. Some optimization models assume

that information about future turbine failures are known a priori, but this assumption gives

an unrealistic advantage (Gutierrez-Alcoba et al., 2019). As Gutierrez-Alcoba et al. (2019) ad-

dress, such information is not known in advance (Gutierrez-Alcoba et al., 2019). We propose

a model where no such information is given in advance. Maintenance decisions are instead

based on the calculated likelihood of future turbine failures. We allow each turbine to consist

of multiple components, for which we calculate individual probabilities of operation, based

on their age. We use a Weibull distribution function to calculate the probability that each tur-

bine is operating, hence producing power. Throughout the planning horizon, components

are maintained to increase their probability of operation. Wind farm operators either fully

replace a component, leaving it in perfect condition after the maintenance event, or perform

a less demanding maintenance action, to increase the components probability of operation,

without fully renewing it. Additionally, we assume that the wind farm operators have some

predefined routes to chose from. In our model, each route has limitations regarding which

turbines they visit, which components that can be maintained, and to which extent those

components can be maintained with the route.
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2. Can we solve the proposed optimization model for realistic wind farm sizes?

A good optimization model for scheduling maintenance at an OWF should be able to model

existing and future wind farm sizes. We expect the solution space to grow significantly when

the number of turbines, components and maintenance actions increase. It is reasonable that

large instances of such a model will be demanding to solve to optimality. Existing models in

literature show examples on cases where 10 turbines with four components (Ding and Tian,

2012), five turbines (Besnard et al., 2009), five turbines and four components (Tian et al.,

2011), 1 turbine (Hao et al., 2020), 50 turbines with 4 components Sarker and Faiz (2016), 125

turbines (Gutierrez-Alcoba et al., 2019). We note that the number of turbines and compo-

nents that are considered for each wind farm depend heavily on the model formulation.

3. Should OWF operators perform imperfect- or perfect preventive maintenance tasks?

By imperfect preventive maintenance we refer to maintenance actions that improve the op-

erating state of a turbine to some extent, without fully renewing it (Ding and Tian, 2012).

Similarly, we refer to perfect maintenance as maintenance where the operating state of a tur-

bine is returned to a perfect operating condition after the maintenance event (Ding and Tian,

2012). We remark that the third research question is sensitive to the model instance. We ex-

pect its answer to vary with the relation between income from turbine production, failure

rates, the expense of performing each maintenance action and the cost incurred by a main-

tenance route. As addressed by Sørensen (2009), cost models should be based on actual data

from practise, and unfortunately such information can be very difficult to obtain. However,

we generate different cost scenarios and perform numerical experiments to explore typical

behaviour for each data instance. More specifically, we vary the cost of transportation, the

cost of carrying extra spare parts/equipment, and the cost of performing imperfect mainte-

nance in each scenario.

1.3 Thesis outline

We give motivation and background information on wind energy, its potentials, and its chal-

lenges in the first few chapters of this Master’s Thesis. We start (Chapter 2) by emphasising

the pressing need for competitive renewable energy sources, to reach the UN sustainability

goals of both clean energy, and decent work for all by 2030. Thereafter (Chapter 3), we dis-

cuss wind power, and more specifically offshore wind power, as a significant part of the solu-

tion. We look at recent additions and ongoing projects in offshore wind, discuss challenges

and advantages, and further argue for the high energy potentials in offshore wind. Moreover

(Chapter 4), we consider different aspects of maintaining an offshore wind farm, as opera-
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tion and maintenance account for a large proportion of the cost of offshore wind power. We

mention typical failures at the different turbine components, and the maintenance actions

and equipment needed to perform the required actions. Moreover, maintenance strategies

and terminologies are introduced. We give (Chapter 5) an introduction to theory that is rel-

evant for the optimization model. Further (Chapter 6), we present an overview of existing

maintenance optimization models, and the current work is set side by side to existing litera-

ture. A substantial amount of the workload of this Master’s Thesis is allocated to developing

and implementing the proposed maintenance model (Chapter 7). We also explore the bene-

fit of introducing a heuristic approach to minimize time of solving the model. The heuristic

algorithm (Chapter 8) is meant as a starting point for further development. Several exper-

iments are introduced (Chapter 9) to answer the research questions at hand. We present

(Chapter 10) findings and results, and thereafter (Chapter 11) give the discussion, before

(Chapter 12) we draw a conclusion.
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Chapter 2

Tripling wind capacities by 2030

"We, the Heads of State and Government and High Representatives, meeting at

United Nations Headquarters in New York from 25 to 27 September 2015 as the Or-

ganization celebrates its seventieth anniversary, have decided today on new global

Sustainable Development Goals." (UN General Assembly, 2015).

So goes the declaration, introducing 17 Sustainable Development Goals (SDGs), adopted

by the UN in 2015. The goals are made to favour humanity and the planet by balancing

the economic, the social and the environmental prospects of sustainable development (UN

General Assembly, 2015).

We find that the following of the SDGs (UN General Assembly, 2015) are especially relevant

for the topic in this thesis,

SDG 7. Ensure access to affordable, reliable, sustainable and modern energy for all,

SDG 8. Promote sustained, inclusive and sustainable economic growth, full and productive em-

ployment and decent work for all (UN General Assembly, 2015).

The initial deadline of 15 years has decreased to 8 remaining years at the time of writing.

"We commit ourselves to working tirelessly for the full implementation of this

Agenda by 2030." (UN General Assembly, 2015).
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2.1 High Level Dialogue on Energy, 2021

On the 24th of September 2021, more than 130 Global leaders gathered with the intention

of promoting the energy related goals of the 2030 Agenda for Sustainable Development. It is

empathised that 760 million people worldwide still do not have access to electricity, and 2.6

billion are without access to clean cooking methods (UN Summary of the Secretariat, 2021).

The expected outcome of the dialogue was a global plan accelerate the pursuing of the 7th

SDG by 2030, henceforth the net zero emissions by 20501 and the 1.5 degrees goal of the Paris

Agreement2. Several commitments were made by participating parties. The summary report

(UN Summary of the Secretariat, 2021), from the dialogue on Energy, stresses that SDG7

is within reach. To get there, UN Deputy Secretary-General Amina Mohammed points out

tripling solar and wind capacity by 2030, as a priority for decarbonising the energy sector

(UN Summary of the Secretariat, 2021). Another milestone stated to be achieved by 2030 is

to reach 100 million jobs in the energy sector (UN Summary of the Secretariat, 2021).

2.2 Scaling up wind power production

There is clearly global motivation, and a pressing need to further develop and scale up re-

newable energy production. As pointed out by UN Summary of the Secretariat (2021), the

energy sector still accounts for about 75 % of total greenhouse gas emissions. It is also made

clear that the wind power industry has a significant role in order to pursue SDG7 (UN Sum-

mary of the Secretariat, 2021). Additionally, investments in renewable energy contribute to

achieving SDG8 by creating new job opportunities.

We introduce wind power, especially offshore wind power, in the following chapter. We fo-

cus on its potential, along with its challenges. Advantages and disadvantages with offshore

and onshore wind power are discussed. We argue that lowering expenses related to offshore

wind, is necessary to accelerate wind power production, and further contribute to the 2030

agenda, net-zero 2050 and the 1.5 degree goal in The Paris Agreement.

1Bring carbon dioxide emissions related to energy to net zero by 2050 (IEA, 2021a)
2The legally binding agreement between 196 parties that aims on limiting effects of global warming to 1.5

degrees, compared with pre-industrial temperature levels. (UNFCCC, 2022)
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Chapter 3

Wind energy background

We begin (Section 3.1) the current chapter by presenting wind capacity additions in recent

times, and some ongoing projects are mentioned. We observe that onshore wind additions

still surpass offshore additions, and discuss (Section 3.2) challenges and advantages with

offshore wind energy. Lastly (Section 3.3), we motivate the development in offshore wind,

and a paper looking into the global power potential of offshore wind is commented on.

3.1 Wind capacity additions in recent times

Wind energy additions are rapidly increasing. The report by IEA (2021b) finds wind power

to be the fastest growing source of renewable electricity generation in 2020. Almost 114 Giga

Watts (GW) of new wind capacity was added globally, with China alone accounting for two-

thirds of the additions in 2020 (IEA, 2021c). Further, the report (IEA, 2021c) from EIA fore-

casts that onshore wind capacity accelerates even further in Europe 2021 and 2022 due to

large additions in France, Sweden and the Netherlands. Figure 3.1 shows the annual wind

capacity addition given in Giga Watts, from 2014 to 2022. We observe that onshore additions

are constantly greater than offshore additions. Nevertheless, the proportion of offshore ad-

ditions is also increasing with time.
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Figure 3.1: The graph (IEA, 2021c) shows wind capacity additions from 2014 to 2022.

Despite onshore additions still dominating globally, there are several finished and planned

offshore projects globally. The offshore wind farm "Hornesea One" in UK, has a total capac-

ity of 1.2 GW. The wind farm has a total of 174 turbines distributed over an area of 407km2.

Each turbine has a capacity of 7 Mega Watts (MW), and the final turbine was installed in

2019 (Ørsted, 2022). Moreover, "Horns Rev 3" located in Denmark, and "Kriegers Flak" lo-

cated in the Baltic Sea between Denmark and Germany, are offshore wind farms with elec-

tricity capacities of 407 MW electric and 604 MW electric, respectively (Vattenfall, 2022a,b).

"Kriegers Flak" was finished in 2021, while "Horns Rev 3" was officially opened in 2019 ac-

cording to Vattenfalls company websites (Vattenfall, 2022a,b). Further, the areas (see Figure

3.2) named "Utsira Nord" and "Sørlige Nordsjø II" are planned for planned offshore wind

farms at the Norwegian coastal line (Ministry of Petroleum and Energy, 2020). As shown in

Section 3.3, the Norwegian coastline has great potential for offshore wind. The project Utsira

Nord is planned to be of floating wind technology. The area spans over 1010km2 (Ministry

of Petroleum and Energy, 2020). Sørlige Nordsjø II spans 2591km2, and the shallower water

depths enable bottom-fixed turbines (Ministry of Petroleum and Energy, 2020).



3.2. CHALLENGES AND ADVANTAGES WITH OFFSHORE WIND 9

Figure 3.2: The figure (Ministry of Petroleum and Energy, 2020) shows areas along the Nor-
wegian coastal line that are planned for offshore wind technologies.

3.2 Challenges and advantages with offshore wind

Although the difference has decreased over the years, high levelized cost of energy (LCOE)

compared with onshore installations keeps investors from investing in offshore wind (Tusar

and Sarker, 2021; Ren et al., 2021). Moreover, Ren et al. (2021) state the cost of OM constitutes

a significant share of the LCOE of an offshore wind fram, hence lowering this cost is an ef-

fective approach to control LCOE. The maintenance actions required offshore are generally

more expensive than onshore. For example,

1. specialised and costly maintenance equipment is needed,

2. harsher weather conditions result in higher failure rates for the installed turbines, and

3. high production losses occur when maintenance is postponed due to weather condi-

tions (Ren et al., 2021) .

Looking past the economical challenges, there are several reasons (Tusar and Sarker, 2021;

Ren et al., 2021; Bosch et al., 2018) why offshore wind is growing, and is expected to continue
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to grow in the near future. The areas used for offshore wind are often far from civilisation.

As a result, they impose less visual impact and noise pollution (Tusar and Sarker, 2021; Ren

et al., 2021). That is, bigger turbines can be installed, generating more power than smaller

turbines (Tusar and Sarker, 2021). Moreover, the areas are often unused coastal lines that

do not compete with any other usages (Tusar and Sarker, 2021; Ren et al., 2021; Bosch et al.,

2018). Additionally, as complex operations are needed to install, operate and maintain the

OWFs, offshore wind creates new jobs (Tusar and Sarker, 2021). Finally, deeper sea wind

resources are often greater than onshore, again leading to higher power generation (Tusar

and Sarker, 2021; Ren et al., 2021).

3.3 Global offshore power potential

We look at the global potential in offshore wind to motivate further development in the field.

In their paper, Bosch et al. (2018) present a method for estimating the global energy potential

from offshore wind power. They assume offshore wind power is built where possible. The

distance to a grid connection, water depth and developed capacity factors are constraints

used to determine areas where offshore wind is an option. Capacity factor is commonly de-

fined as the ratio between actual power output and the maximum power output of the per-

fectly operating system (Jaffe and Taylor, 2018). In their results shown in Figure 3.3, Bosch

et al. (2018) present the electricity generation potential from offshore wind in different coun-

tries.
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Figure 3.3: Bar graph (Bosch et al., 2018) of annual average energy production potential of
offshore wind. Shallow water dept is defined as 0−40m, transition is defined as 40−60m and
deep water depth is defined as 60−1000m. The authors include the total electricity demand
of each country from 2015 as a point on each bar, for comparison (Bosch et al., 2018).

The study finds a great potential in offshore wind. It is particularly high in deep water lo-

cations of the Norwegian coast. The potential of offshore wind in Norway is estimated to

be roughly 30 times the primary energy consumption in Norway in 2019, which was about

500TWh (Bosch et al., 2018; Our World in Data, 2022).
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Chapter 4

Maintenance of offshore wind farms

We mention (Section 4.1) typical wind turbine components, with corresponding failures in

the current chapter. Different maintenance policies are applied by OWF operators to reduce

the expense of OM. We therefore introduce (Section 4.2) necessary terminology and com-

mon maintenance policies.

4.1 Components and required maintenance

There exist different types of turbines, where horizontal-axis are the most common (Jaffe

and Taylor, 2018). We refer to horizontal-axis wind turbines in the following sections. Figure

4.1 illustrates a typical wind turbine. Typical components include the rotor blades, gearbox,

anemometer, generator, yaw motor, control system, and the foundation (Yu, 2021).
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Figure 4.1: Illustration (Yu, 2021) of a typical horizontal-axis wind turbine.

We briefly discuss the role of the component and typical failures that occur at the rotor, the

gearbox and the generator.

Rotor (and blades)

There are usually three blades attached to the rotor of horizontal-axis turbines. The kinetic

energy is transformed to mechanical power when wind causes the blades, and therefore the

rotor, to rotate. Deterioration, adjustment error, rotor imbalance, corrosion and cracks are

typical failures observed at the rotor and the blades (Ren et al., 2021).

Gearbox

The function of the gearbox is to increase the rotational speed before the generator (Ren

et al., 2021; Yu, 2021). Failures can occur due to wearing, gear tooth damage, oil leakage, too

high oil temperature and poor lubrication (Ren et al., 2021).

Generator

The generator converts mechanical power to electrical power. Common failures are due to

overheating, wearing, excessive vibration and winding damage (Ren et al., 2021).

In addition, Lu et al. (2018) emphasise the pitch system. The system is attached to the rotor

blades, and can adjust the angle of the blades, to control the output power from turbines (Lu

et al., 2018). The gearbox, the rotor, the generator and the pitch system are components that

especially contribute to high maintenance cost (Lu et al., 2018). These four components are
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critical as they either fail more frequently (pitch system, generator), or require a lot of time

or costly equipment to repair (rotor, generator) (Lu et al., 2018). In their paper, Van Bussel

and Zaaijer (2001) explain that the frequent need for an expensive external crane vessel is

the main cause for high OM costs for offshore wind farms. They refer to the day-rate cost

of an general purpose offshore lifting equipment being at least 10 times the equivalent on-

shore equipment. A lifting operation, performed with a crane, is required whenever a major

component needs replacing or maintenance. Examples of such major compoents are the

gearbox, the blades and the generators (Ren et al., 2021). Figure 4.2 shows an offshore lifting

operation.

Figure 4.2: The figure (Shaun Campbell, 2014) shows a lifting operation

4.2 Maintenance policies and terminology

We find some inconsistency in the classification of the maintenance policies (Ren et al., 2021;

Rausand and Høyland, 2004; Lu et al., 2018). One classification is introduced by Ren et al.

(2021). They define, proactive maintenance as all planned maintenance actions performed

at a working turbine to prevent future failures. This is opposed to corrective maintenance,

which is applied after a failure occurs. Further, preventive maintenance, condition-based

maintenance and predictive maintenance are defined as subcategories of the term proac-

tive maintenance. A slightly different categorisation is presented by Rausand and Høyland

(2004), where preventive maintenance signifies all maintenance actions performed to pre-
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vent future failures. Time-based preventive maintenance, opportunistic maintenance and

predictive maintenance are in their turn presented as subcategories of the term preventive

maintenance.

Despite some variation in the terminology, there is a broad agreement (Tusar and Sarker,

2021; Ren et al., 2021; Rausand and Høyland, 2004) that the following two policies in main-

tenance categories must be considered. Firstly,

1. planned maintenance, performed on a functioning turbine to prevent future failures,

and secondly

2. unplanned corrective maintenance, performed at a turbine after a failure occurs.

Moreover, some policies consider a combination of the two, as applies for opportunistic

maintenance. The latter policy takes advantage of the opportunities that arise when a visit

to the OWF is required. An opportunistic maintenance policy favours that additional pre-

ventive maintenance of functioning turbines are performed when the failure of a turbine

enforce a visit to the OWF (Rausand and Høyland, 2004).

To avoid confusion, we use the categorisation described in Figure 4.3 for maintenance ter-

minology in the current work.

Figure 4.3: The chart describes the chosen maintenance categorisation, modified based on
the chart by Ren et al. (2021).

Under the term maintenance we introduce planned preventive maintenance (PM), performed

to avoid future failures, and corrective maintenance (CM) performed to correct a failure. The

two policies meet in opportunistic maintenance. Moreover, we introduce time-based mainte-

nance, condition-based maintenance and predictive maintenance as examples of preventive

maintenance. A more detailed definition of each term follows.
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4.2.1 Corrective maintenance

Corrective maintenance is defined by IEEE (2000), as

The maintenance carried out after a failure has occurred and intended to restore

an item to a state in which it can perform its required function.

As breakdown events are often unforeseen, the corresponding maintenance tasks is sched-

uled subsequently. Such events have a tendency to be particularly costly. The OWF opera-

tors experience running production losses from breakdown to repair. In addition, the cost of

spare parts, the cost of equipment needed, and the transportation costs are incurred.

4.2.2 Preventive maintenance

At an OWF, a breakdown event of a major component can account for several months of

downtime (Yu, 2021). As stressed by Tusar and Sarker (2021), finding the right balance be-

tween preventive and corrective actions are of crucial importance. It is of interest to decrease

the probability of a breakdown event, by applying some type of preventive maintenance pol-

icy. Preventive maintenance is performed at an operating turbine or component with the

goal of preventing future failures.

The following two examples of time-based preventive policies are based on the book by Rau-

sand and Høyland (2004). It is important to be especially aware of how time is defined with

the following policies. Time could be measured as the conventional calendar-time, or in

terms of operation time, or a completely different unit, like units of power produced.

The first preventive policy we mention is Age replacement (Rausand and Høyland, 2004),

where a component is replaced at a specified operational age, or in an event of failure. This

means that, the system is either replaced after a specific time period has elapsed since last

renewal, or it fails before the planned renewal time, and thus is replaced due to failure. The

policy requires that the operating age of each component is monitored, and maintenance

will be required at different times for different components.

The Block replacement policy (Rausand and Høyland, 2004) is based on calendar time inter-

vals, regardless of the component’s age. The advantage of such an approach is that there is no

need to monitor age, as preventive maintenance is done simultaneously at all components.

Nevertheless, the approach is often wasteful. The events where components fail before the

scheduled maintenance action, and therefore are correctively replaced in-between of cal-

endar intervals, will result in replacement of brand new components at the next scheduled

replacement time.
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Figure 4.4 illustrates age replacement (1), and block replacement (2). Performed corrective

maintenance is marked by CM, and performed preventive maintenance is marked by PM on

the timelines. PM tasks are scheduled periodically, with period length T . In both cases, CM

is required before the scheduled PM task. For the age based approach, the component’s age

is set to zero after the event, and the next PM task is scheduled after an additional period T .

In contrast, the block approach carries out the PM task as planned, shortly after the CM task.

The latter results in a replacement of an almost new component.

Figure 4.4: The illustration is modified based on the figure and explanation by Rausand and
Høyland (2004). The upper timeline (1) illustrates age replacement, while the lower timeline
(2) illustrates block replacement. Performed corrective and preventive tasks are marked by
CM and PM, respectively. PM tasks are planned for intervals of lengths T .

Condition-Based maintenance

For condition-based maintenance policies, maintenance is decided based on the measured

data describing the health of the component (Rausand and Høyland, 2004; Yu, 2021). By

health, we refer to the performance of the component, or the degree of degradation. Differ-

ent parameters can be used to describe the health of a component. The measured parame-

ters can be, either

• physical measurements, such as temperature and pressure, or

• measurement of performance and the quality of products (Rausand and Høyland, 2004).

Using data from sensors to perform condition-based maintenance may decrease total main-

tenance cost, by avoiding unnecessary trips to each turbine. The approach can also prevent

minor faults from evolving into larger breakdowns. However, the additional cost of equip-

ment and false alarms will affect the performance of this policy (Ren et al., 2021).
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Predictive maintenance

Combining measurement data and parameter analysis to predict the remaining lifetime of a

component, for then to schedule maintenance before the predicted breakdown, is referred

to as a predictive maintenance policy by Ren et al. (2021). The policy is closely related to

condition-based maintenance, as the predictions may depend on measured data. It is for

this reason sometimes listed as a type of condition-based maintenance (Rausand and Høy-

land, 2004).

4.2.3 Opportunistic Maintenance

When a scheduled maintenance task needs attending at a wind turbine, this opens up an

opportunity for further unscheduled maintenance during the same visit or time period. The

method combines preventive and corrective maintenance actions, and can be very benefi-

cial in offshore wind, due to large setup costs. Such a policy has the potential to lower costs

by reducing the number of visits to each turbine, and is called opportunistic scheduling (OM)

in the literature (Rausand and Høyland, 2004).
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Chapter 5

Introduction to optimization and the

Weibull distibution function

In this chapter, we introduce the theory that is considered relevant for the optimization

model that we propose in this Master’s Thesis. Mathematical optimization models are a

widely used approach to solve large-scale problems. In their book, Korte and Vygen (2018)

state that thousands of problems from real life can be re-written into combinatorial opti-

mization problems. One definition of combinatorial optimization is given by SINTEF (2022):

"Within the field of mathematical optimization, combinatorial optimization rep-

resents a sub topic with several techniques for finding the optimal solution from a

finite (and huge) set of discrete candidate solutions (SINTEF, 2022)."

We argue that constructing a combinatorial optimization model is a good approach to opti-

mize OM of an offshore wind farm. We see in Table 6.1 that several papers apply optimization

models for this purpose.

We briefly introduce (Section 5.1) different approaches that may be used to solve combi-

natorial optimization problems. In particular, Linear Programming (LP), Integer Program-

ming (IP), Mixed Integer Programming (MIP) and Meta-Heuristics/Heuristics are mentioned.

Moreover (Section 5.2), we introduce the Weibull distribution function. The distribution

plays an important role in our optimization model. In which, the distribution is used to

calculate the probability that a component of a certain age is operating.



20
CHAPTER 5. INTRODUCTION TO OPTIMIZATION AND THE WEIBULL DISTIBUTION

FUNCTION

5.1 Solving combinatioral optimization problems

We mention a few methods that can be applied to solve combinatorial optimization prob-

lems.

Linear programming

Ever since the term Linear Program (LP) was introduced in the 1950s, the method has been

applied for planning purposes within a wide field range (Matousek and Gartner, 2007). We

mention planning of work schedules, transportation of equipment or planning of mainte-

nance activities. In the book by Matousek and Gartner (2007), "planning with linear con-

straints" is suggested as a more describing phrase to capture the concept of linear program-

ming. We refer the reader to the books by Matousek and Gartner (2007) and Vanderbei (2020)

for a thorough introduction to linear programming. The following brief description of a LP

is based in the book by Vanderbei (2020). To obtain the objective valueΨwe maximize some

linear objective function,

Ψ= c1x1 + c2x2 +·· ·+cn xn ,

by assigning best possible values to decision variables

xi ,∀ i ∈ 1,2, · · · ,n,

subject to a set of linear constraints,

a11x1 +a12x2 +·· ·+a1n xn ≤ b1,

a21x1 +a22x2 +·· ·+a2n xn ≤ b2,

...

am1x1 +am2x2 +·· ·+amn xn ≤ bm ,

xi ≥ 0 ∀i ∈ {1, · · · ,n} Vanderbei (2020).

Constraints define the feasible region. A solution which satisfies all constraints is called a fea-

sible solution (Vanderbei, 2020). Further, the feasible solution is optimal if the corresponding

objective value is the maximum (Vanderbei, 2020).

Integer programming

The variables are often constrained to integrality in practical problems. This is the case for

problems requiring scheduling of routes and hiring of personnel (Matousek and Gartner,

2007). We refer to such a problem as an Integer Linear Program, or Integer Program (IP) for

short.

Mixed integer programming
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A linear program, in which only a subset of the variables are constrained to be integers, is

referred to as a Mixed Integer Program (MIP) (Korte and Vygen, 2018). Although MIPs are

considered hard to solve, the speed up from both solvers and of computers makes it possible

to solve a MIP that would have needed 16 days in 1991, within a second today (Bertsimas,

2020).

Quadratic constraints

However, it is not unexpected to encounter non-linearities when setting up a problem in-

stance for the optimization problem at hand. When the constraints follow quadratic func-

tions, we refer to them as quadratic constraints.

Heuristics and meta-heuristics

Heuristics and meta-heuristics are possibly non-deterministic approaches that can be ap-

plied to find near to optimal solutions. In the book by Gendreau and Potvin (2018), meta-

heuristics are defined as

"solution methods that orchestrate an interaction between local improvement pro-

cedures and higher level strategies to create a process capable of escaping from

local optima and performing a robust search of a solution space (Gendreau and

Potvin, 2018)."

Improvement in a heuristic search In a heuristic search, one typically starts with a feasible

initial solution. Given the corresponding objective value Ψinitial, we define

i mp = Ψ∗−Ψinitial

Ψ∗ , (5.1)

as the fraction denoting the improvement from the initial objective, to the new obtained

objective value, Ψ∗.

Evaluating a feasible solution

A objective value, Ψ, from a feasible solution, gives a lower bound to the the optimal objec-

tive value (Vanderbei, 2020). We wish to determine how far this solution is from the optimal

solution (Vanderbei, 2020). If we can obtain a upper bound, Ψupper bound, for the objective

value, then we can determine the gap in which the optimal solution can be found (Van-

derbei, 2020). If the solver, Gurobi Optimization, LLC (2022), finds an upper bound to the

optimization problem, the fraction

g ap = Ψupper bound −Ψ∗

Ψ∗ , (5.2)

is calculated, telling us how far we at most are from the optimal solution.
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5.2 Probabilistic failures with Weibull distribution

In the following section, we introduce the Weibull distribution, and its role in failure predic-

tion and maintenance scheduling.

5.2.1 Usage

The Weibull distribution is widely used to model life length distributions for systems and

components. Its flexible nature makes it possible to model different types of failure rates,

solely by choosing the right parameter values (Rausand and Høyland, 2004). The distribu-

tion function comes with different notations in the literature. When applied to the likelihood

of breakdowns, the scaling parameter η reflects the likelihood of breakdowns caused by ran-

dom events, while the shaping parameter β expresses the modelled component’s sensitivity

to wear and tear. The component’s age is denoted x.

5.2.2 Cumulative distribution and reliability function

The two following equations, with derivations, are found in the work of McCool (2012). The

two factor cumulative Weibull distribution function is written as

F (L ≤ x) = 1−exp

[
−

(
x

η

)β]
, x > 0,

where F (L ≤ x) is the probability that the life length L is less than or equal to a positive value

x. That is, the probability that the component fails before time x is reached. Moreover, we are

often interested in the probability of the converse, i.e., that a component is still operating in

time x. The reliability function, often referred to as the survivorship (McCool, 2012) function,

is written as,

P (L > x) = exp

[
−

(
x

η

)β]
, x > 0, (5.3)

where P (L > x) denotes the probability that the life length L of the component exceeds a

given value x.
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Chapter 6

Review of existing models for maintenance

scheduling at OWFs

This chapter provides a literature review on existing models for optimizing maintenance and

operations at OWFs. We apply the terminology that is defined in the previous chapter. There

are too many models on the subject to include all. Therefore, we introduce a selection of

maintenance models in this chapter. As a group, the models cover aspects that are especially

relevant for the model we propose in Chapter 7. More specifically, this applies to

• probabilistic failure-times,

• multiple components per wind turbine,

• imperfect preventive maintenance, and

• decisions regarding maintenance routes.

For further reading, we refer to the review by Tusar and Sarker (2021), a study of 190 papers

related to maintenance at OWFs.

We start (Section 6.1) by shortly introducing a selection of optimization models that aim

to minimize the cost of maintenance for OWFs. Further (Section 6.2), we mention a few

models that address the choice of vessels and routes needed to perform maintenance at an

OWF. Moreover (Section 6.3), we shortly introduce our contribution to the literature with this

Master’s Thesis. Finally (Section 6.4), we compare the reviewed work, and the current work

of this Master’s Thesis.
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OWFS

6.1 Models optimizing maintenance scheduling

An integer linear optimization model is presented by Besnard et al. (2009). The model deter-

mines the optimal plan of preventive and corrective maintenance tasks at an offshore wind

farm for the current work day. The decisions are based on information about required cor-

rective maintenance for that day, and forecasts of power productions. That is, information

that the authors assume is known. Moreover, the model assumes that a set of preventive

maintenance tasks has to be performed by the end of the planning horizon.

A model by Tian et al. (2011) schedules condition-based maintenance at a wind farm. The

authors schedule maintenance actions based on the calculated probability that components

and turbines are operating. The solution gives the wind farm operators information on

whether to send a team to the wind farm, and which components and turbines that should

be maintained. The authors include economical dependencies favouring additional mainte-

nance when a turbine is stopped due to maintenance. Hence, we argue that the model apply

opportunistic maintenance.

Moreover, Besnard et al. (2011) present a stochastic program. Every day, present knowledge

of corrective maintenance that needs attending, as well as a forecast of power production, is

used to decide on additional maintenance tasks to be performed during the same shift. The

program solution is an opportunistic maintenance plan, where preventive maintenance is

performed at low power production levels, and if corrective maintenance is required.

The maintenance simulation model by Ding and Tian (2012), minimize expected mainte-

nance costs. The gearbox, the generator, the rotor and the main bearing are the consid-

ered components for each turbine at the wind farm. The decision of which components

to maintain throughout the simulation is based on whether or not a component’s age, at

a considered simulation step, exceeds an age threshold. The age threshold is different for

components belonging to a turbine where a failure is present, and for the components in

fully operating turbines. The objective of the simulation is to find optimal values for the age

thresholds, that minimize the expected cost of maintenance for the wind farm. The authors

apply both perfect replacement, and imperfect maintenance.

Another work by Lu et al. (2018), combine concepts from predictive, condition-based and

opportunistic maintenance. The authors assume continuous condition monitoring of four

main components at each wind turbine. Moreover, the model apply a perfect maintenance

policy. The authors calculate the probabilities that components and turbines operate, with

an artificial neural network. The model schedule maintenance actions based on those prob-

abilities, and aim to minimize long-term costs.

In their paper, Sarker and Faiz (2016) introduce an opportunistic maintenance model for off-
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shore wind turbines. The model include both perfect and imperfect preventive maintenance

for multiple components. In this model, corrective maintenance creates opportunities to

perform preventive maintenance.

Moreover, Zhu et al. (2017) presents a simulation method. The authors do not specify whether

the method can apply for offshore wind farms. Nevertheless, we observe that the model ap-

ply similar maintenance concepts as the previously mentioned models. The model monitor

one critical component’s condition continuously, while the rest of the components are not

monitored. Instead, the authors assume that the rest of the components follow a pre-defined

maintenance schedule. Such a schedule can be a time-based preventive maintenance, in

addition to corrective maintenance where needed. Scheduled maintenance events and un-

scheduled breakdowns for the non-monitored components, create opportunities to perform

additional preventive maintenance work at the critical component.

A binary linear optimization model, for deciding the next preventive maintenance activity at

an OWF makes the first paper of the doctoral dissertation by Yu (2021). The turbines at the

OWF consist of multiple components. Each component has a random life length according

to a Weibull distribution. The solution to this model specify the next component to main-

tain, as well as the optimal time to maintain this component. The model schedule the next

preventive maintenance task based on the expected benefit of performing the task, relative

to a purely corrective maintenance plan.

6.2 Models that consider route decisions

The solutions from the previously mentioned optimization models supply wind farm oper-

ators with decisions regarding the need of maintenance at the OWF. However, the models

have in common that they ignore route considerations. We refer to route considerations to

decisions regarding the travel to the wind farm. For example, there can be limitations on

available vessels or technicians. Fleet composition is a term that appear in the literature.

It refers to the selection of vessels needed to perform maintenance of an OWF (Gutierrez-

Alcoba et al., 2019). The following models address the fleet composition and route decisions

that is required to perform maintenance at an OWF (Gutierrez-Alcoba et al., 2019; Stålhane

et al., 2020; Stålhane et al., 2015).

A paper by Stålhane et al. (2015) present two optimization models. Both aim to find the

optimal maintenance route and schedules for a fleet of vessels that perform maintenance at

an offshore wind farm. We refer to the first model, formulated as a MIP, in Table 6.1. The

authors use a heuristic approach for the second model, to find solutions that are close to

optimal with significantly less computing time.
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To find an optimal fleet composition and maintenance schedule for an offshore wind farm,

Gutierrez-Alcoba et al. (2019) present a MIP. The authors address the drawback of making

decisions based on predefined weather conditions and breakdown scenarios. To overcome

this limitation, the authors present an additional model with a heuristic approach. The latter

model schedule maintenance solely based on available information.

Finally, Stålhane et al. (2020) give a mathematical formulation to find the optimal vessel fleet

composition to support the required maintenance of an offshore wind farm. The model

assumes that the offshore wind farms apply a time-based preventive maintenance strategy,

and that corrective maintenance is scheduled when a failure occurs.

The three latter references have in common that required maintenance is assumed to be

known a priori. According to Gutierrez-Alcoba et al. (2019), this assumption could result

in an underestimate of maintenance cost given the unrealistic advantage of known failure

times. Nevertheless, the models give valuable information to the wind farm operators about

required vessels and optimal routes. That is, decisions not addressed by the previous au-

thors.

6.3 Introducing the current work

In this Master’s Thesis, we introduce a mixed integer program with both quadratic and linear

constraints to find an optimal maintenance schedule at an OWF. We refer to the model as a

Mixed Integer Quadratic and Linear Program (MIQLP) in the following sections. We base

maintenance actions on the calculated probabilities of future failures. Hence, we avoid the

drawback of using pre-defined failure times. Each turbine consist of multiple components.

Moreover, we allow for each component to be either perfectly, or imperfectly maintained.

Additionally, we include route considerations in the maintenance scheduling model. We

assume that the wind farm operators have some pre-defined routes to choose from. Each

route has limitations on which turbines they visit, which components they can maintain,

and to what extent the route can restore a component. A maintenance action requires a

route that visits the turbine in question, and that has the capability to maintain the target

component to the required extent. The latter maintenance model is thoroughly introduced

in Chapter 7.
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6.4 Comparing the reviewed models

We compare the reviewed models, in addition to the current work, in Table 6.1. In this table,

we emphasise the model type used to find a problem solution. Further, we state what we find

to be the author’s main choice of maintenance policy, although the models are often based

on a combination of several concepts. Moreover, we specify whether or not the authors allow

for probabilistic failures, multiple components, imperfect maintenance, and consideration

of maintenance routes. In the column concerning probabilistic failures, all works that some-

how include uncertain failure times are checked, whereas those that rely on a predefined set

of failure times are left unchecked.

Authors Model type Strategy
Probabilistic

failures
Multiple

components
Imperfect

maintenance
Route

decisions
Besnard et al. (2009) LP Opportunisic - -
Besnard et al. (2011) MIP Opportunisic - - - -

Tian et al. (2011) simulation Opportunisic & CBM - -
Ding and Tian (2012) simulation Opportunisic -
Stålhane et al. (2015) MIP CBM - - -

Sarker and Faiz (2016) simulation Opportunistic -
Zhu et al. (2017) simulation Opportunisic & CBM - - - -

Lu et al. (2018) simulation Predictive & CBM - -
Gutierrez-Alcoba et al. (2019) MIP - - - -
Gutierrez-Alcoba et al. (2019) heuristic - - -

Stålhane et al. (2020) MIP time-based - - -
Yu (2021) LP CBM - - -

Current work MIQLP Predicitve & CBM

Table 6.1: Comparison of models for OM optimization from literature. The we refer to the
model introduce in this Master’s as Current work.
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Chapter 7

Model description of the MIQLP

We present the MIQLP formulation in this chapter. The model maximize the expected net

profit from turbine power production over a planning horizon at an OWF. In similarity to

models proposed by Ding and Tian (2012) and Yu (2021), we find the probability of future

turbine failures from a two-factor Weibull distribution function. We schedule maintenance

to increase the probability that each turbine is operating, and therefore producing power

from wind.
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Figure 7.1: The probability P (t ), that a turbine is operating, decreases with time elapsed
since last repair. The upper plot shows a case where the turbine is not maintained. The
turbine in the lower plot is maintained at two occasions throughout the planning horizon.
The horizontal axis shows time measured in days.

Figure 7.1 illustrate how the probability, P (t ), that a turbine is operating, changes with time.

The upper graph shows how P (t ) decreases in a scenario where no maintenance is per-

formed. Further, the lower graph show P (t ) for a scenario where the turbine is perfectly
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maintained at two occasions. For the latter case, we observe that P (t ) returns to its ini-

tial value, 1, when the turbine is perfectly maintained. The probability, P (t ), follows by a

two-factor Weibull distribution with an increasing failure rate in both scenarios. The scaling

parameter is set to 1847 days (Lu et al., 2018), and the value of the shaping parameter is 3

(Lu et al., 2018). If a turbine were to be imperfectly maintained, which is not shown in this

example, this would improve the value of P (t ) without fully restoring it to P (t ) = 1.

We have previously established that corrective maintenance at an OWF is considered costly

due to the long downtime, and the related production losses (Ren et al., 2021). For this rea-

son, some models distinguish between corrective and preventive maintenance (Gutierrez-

Alcoba et al., 2019; Besnard et al., 2011). However, we argue that such a major difference in

cost of corrective and preventive maintenance is unnecessary in the following optimization

model. We propose an objective function where expected income from turbine power pro-

duction is proportional to the turbine’s probability of operation. Consequently, the probabil-

ity of downtime losses are already accounted for. To further distinguish between corrective

and preventive maintenance would be superfluous.

Moreover, we propose a model where in addition to perfect maintenance, we allow for im-

perfect maintenance, improving the component to some extent, but not necessarily fully re-

newed it by a maintenance action. There exist some models that consider imperfect main-

tenance of OWFs (Ding and Tian, 2012; Sarker and Faiz, 2016). It may not be necessary, or

even possible to fully restore the operating condition of a component. In or model, a compo-

nent is either perfectly or imperfectly maintained, depending on the assigned maintenance

strategy.

In the proposed model, we consider multiple major components at each turbine. We as-

sume that their contributions to power production are vital, and together they define the

operating state of each turbine. Analogously to the practise in power electronics, we assume

that the components are connected in series, where the failure of one of these components

leads to a malfunction of the entire turbine (Tian et al., 2011). Moreover, we assume that a

wind farm operator wishes to repair each component individually, based on its respective

age. Following, the concept of age is used in a sense that should not be understood literally.

Rather than the conventional understanding, time elapsed since creation, age henceforth

reflects the state of a component. That is, a component is said to have age a if its probability

to be operative is identical to an equivalent, unmaintained component that was new a time

periods ago.

We divide the planning horizon into discrete time periods. Furthermore, we assume that the

wind farm operators have a set of pre-defined maintenance routes to chose from. Each route

visits a set of turbines, and has limitations on which components the route can maintain, and
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to which extent the wind farm operators can restore a component with this route. To illus-

trate, an example route visits turbine nr 1, 4 and 5. Although each turbine consists of several

components, this route is restricted to perfect replacement of the gearboxes. However, the

gearbox can be replaced all the visited turbines if the wind farm operators chose to do so. For

each time period, the wind farm operator may choose one or several routes, in order to visit

the desired turbines. Moreover, we assume the wind farm operators can perform the chosen

maintenance routes within one time period. Maintenance of components can exclusively

be performed at the turbines that are covered by the selected routes. The cost of performing

each maintenance action appear in addition to the cost of performing a route. We assume

there exists a route such that, by selecting a subset of routes, the wind farm operators are

able to maintain every component at every turbine with every maintenance strategy.

The solution to this optimization model provides the wind farm operators with information

about which turbines to visit, which components to maintain and to what extent each com-

ponent should be improved, for every time period in the planning horizon.

7.1 Deriving the model formulation

In the current section, we introduce the sets, the parameters and the variables for the model

formulation. Secondly, we discuss the objective function of our problem. We thereafter in-

troduce each constraint, and discuss its contribution. The full model description is attached

at the end of this chapter.

7.1.1 Sets

We represent an OWF by a set, K, of turbines. The wind farm operators have some pre-

defined maintenance routes to choose from, denoted by the set R. Furthermore, Kr is the

set of turbines that are are visited if route r ∈ R is chosen, and is a subset of K. Different

maintenance strategies can be used to improve the operating state of a component to a cer-

tain extent. The set, F , holds all maintenance strategies. Moreover, the set O j denotes the

set of components that make up turbine j ∈K. We assume that factors such as choice of ves-

sel, the technical level of the technicians, the equipment available, and spare parts constrain

which components, and which maintenance strategies that are possible to perform with a

selected route. Therefore, we introduce, R f i j , as the subset of routes that are able to main-

tain component i ∈O j at turbine j with maintenance strategy f ∈F . Table 7.1 contains the

sets used to describe our model.
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K Set of turbines
R Set of routes
Kr Set of turbines covered by route r ∈R, Kr ⊆K
O j Set of components belonging to turbine j ∈K
F Set of maintenance strategies
R f i j Set of routes covering component i ∈O j at turbine j ∈K with maintenance

strategy f ∈F , R f i j ⊆R

Table 7.1: The table contains the sets that describe the MIQLP.

7.1.2 Parameters

We introduce T as the number of time periods in the planning horizon. Income from turbine

production vary with uncertainties like electricity price and weather conditions. Therefore,

we assume that the expected value E j t is taken over the uncertain parameters and holds

the expected monetary value of power production from turbine j ∈ K in time period t ∈
{0, · · · ,T }, given that turbine j is operative in time period t . Moreover, the loss in income

due to downtime during a maintenance operation is ignored, as we expect the loss to be

insignificant relative to the income of one time period.

Further, Sr t , holds the cost of route r ∈R in period t . This route cost includes travel cost,

access cost, and the equipment setup cost at the relevant turbines, but excludes the cost of

the maintenance actions itself. The parameter, M f i j t holds the cost of maintaining compo-

nent i ∈O j at turbine j during time period t using maintenance strategy f ∈F . Moreover, it

is not assumed that all components are brand new at the beginning of the planning horizon.

The component’s initial ages are given by the parameters a0i j ∈Z+.

The probability Pai j that the life length of a component i at a turbine j exceeds the age

a ∈ {0, · · · ,T +a0i j }, is sampled from the two-factor Weibull survivorship function, (5.3), as

Pai j = exp

[
−

(
a

ηi j

)βi j
]

, ∀i ∈O j ,∀ j ∈K, ∀a ∈ {0, . . . ,T +a0i j },

with corresponding Weibull scaling parameter ηi j and shaping parameter βi j (Section 5.2).

In similarity to Ding and Tian (2012), we introduce a factor Q f ∈ [0,1], describing the degree

of rejuvenation related to each maintenance strategy f ∈ F . Henceforth, we refer to Q f as

the rejuvenation factor. Executing a maintenance action with Q f = 1 returns the component

"as good as new", whereas if Q f = 0 it does not improve the component’s performance at

all. For example, a component with an initial age a = 8 periods is assigned the new age

a = 4 periods after a maintenance event with a rejuvenation factor Q f = 0.5. Moreover, all

maintenance strategies with a rejuvenation factor smaller than 1, are what we refer to as
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imperfect maintenance strategies.

Throughout this chapter, we will continue to denote components by index i , turbines by

index j , routes by index r , ages by index a and maintenance strategies by index f . All pa-

rameters can be found in Table 7.2.

T Number of periods in the planning horizon

E j t Expected monetary value of production from turbine j in period t

Sr t Cost of route r , chosen for period t

M f i j t Cost of maintenance of component i , at turbine j in period t with mainte-
nance strategy f

Q f Rejuvenation factor of maintenance strategy f ∈F
a0i j Initial age of component i at turbine j

Pai j Probability that component i at turbine j with age a is still operating

ηi j Weibull scaling parameter for component i at turbine j

βi j Weibull shaping parameter for component i at turbine j

Table 7.2: The table contains the parameters that describe the MIQLP.

7.1.3 Variables

The binary variable x f i j t equals 1 if a maintenance task f is used to maintain component

i at turbine j during time period t , and zero otherwise. We choose to track the age of each

component with a binary variable. By making this choice, most of our constraints can be pre-

sented as linear constraints. We introduce the binary variable bi j t a to keep track of the age

of each component. The value of bi j t a is 1 if component i belonging to turbine j during time

period t has age a, and 0 otherwise. Further, yr t takes the value 1 if the wind farm operators

choose to perform route r during period t , and 0 otherwise. We emphasise that the proba-

bility that a component is operating, depends on the maintenance actions performed in the

previous time period. For this reason, no benefit can be obtained from performing mainte-

nance actions in the final period. Therefore, we only schedule maintenance and routes for

the first T − 1 time periods. Finally, we introduce two continuous variables. The variable

Z j t ∈ [0,1] holds the probability that turbine j operates in period t , while wi j t ∈ [0,1] holds

the probability that component i at turbine j operates during time period t .
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7.1.4 Objective function

The objective function,

Maximize
∑
j∈K

T∑
t=0

E j t Z j t −
∑

f ∈F

∑
i∈O j

∑
j∈K

T−1∑
t=0

M f i j t x f i j t −
∑
r∈R

T−1∑
t=0

Sr t yr t , (7.1)

maximizes expected net profit from the total turbine electricity production over the planning

horizon, while subtracting expenses related to operating and maintaining the OWF. Looking

closer, the first term in the objective equals the expected monetary value of power produc-

tion from the turbines at the OWF. That is, a value proportional to the probability Z j t of task

for each turbine. The sum of the expenses M f j i t that constitute the maintenance strategy

f ∈ F that is performed at components i ∈ O j at turbines j ∈ K during the time periods

t ∈ {0, · · · ,T −1} is then subtracted. Lastly, the costs Sr t corresponding to the routes the wind

farm operators choose to perform, are subtracted in the final term.

7.1.5 Constraints

We introduce the constraints for our model description in this section. The first constraint

assigns at most one maintenance strategy f to each component i at turbine j during time

period t as follows,

∑
f ∈F

x f i j t ≤ 1 ∀i ∈O j ,∀ j ∈K,∀t ∈ {0, · · · ,T −1}.

Furthermore, the constraint,

x f i j t ≤
∑

r∈R f i j

yr t ∀ f ∈F ,∀i ∈O j ,∀ j ∈K,∀t ∈ {0, · · · ,T −1},

induces at least one of the maintenance routes, r ∈R f i j that are able to maintain compo-

nent i at turbine j with a strategy f during time period t , if the strategy f is assigned to

component i at turbine j during time period t .

Moreover, an essential part of our model description is to update the age of each component

according to performed maintenance, or the lack of maintenance. Firstly, we initialise bi j t a

with the initial age for each component,

bi , j ,0,a0i j = 1 ∀i ∈O j ,∀ j ∈K.

To every component at every turbine, there must be assigned exactly one age for every time
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period throughout the planning horizon. It is ensured by the equation,

T+a0i j∑
a=0

bi j t a = 1 ∀i ∈O j ,∀ j ∈K,∀t ∈ {1, · · · ,T },

where the upper limit of the sum reflects that a component i at a turbine j could at most

have age a = T +a0i j at the end of the planning horizon, due to the component’s initial age

a0i j .

The two following inequalities update the age of a component for each time period, with

respect to the actions made in the previous time period. Recall that the binary variable,

bi j t a , takes the value 1 if component i at turbine j during time period t has age a. Firstly,

bi j t a ≥ bi , j ,t−1,a−1 − ∑
f ∈F

x f ,i , j ,t−1∀i ∈O j ,∀ j ∈K,∀t ∈ {1, · · · ,T },∀a ∈ {1, · · · ,T +a0i j },

force component i at turbine j during time period t to have age a if no maintenance is

done at that component in the previous time period. On the contrary, if the component is

maintained during the previous time period, the latter inequality is still valid, but the new

age of the component is constrained by,

bi , j ,t ,d(1−Q f )ae ≥ bi , j ,t−1,a +x f ,i , j ,t−1 −1∀ f ∈F , i ∈O j , j ∈K, t ∈ {1, · · · ,T }, a ∈ {0, · · · ,T +a0i j }.

(7.2)

We justify the inequality as follows. For the case when a is the age of component i at turbine

j during time period t −1, hence,

bi , j ,t−1,a = 1,

and maintenance is done at the component during time period t −1, meaning,

x f ,i , j ,t−1 = 1,

the left hand side of (7.2) equals 1. We obtain the new age for this component i at turbine j

during time period t by rounding up (1−Q f )a to the nearest integer value

d(1−Q f )ae,

where Q f is the rejuvenation factor of the applied maintenance strategy f , and a is the cor-

rect age of the component during time period t −1. We further argue that rounding (1−Q f )a

up to the closest integer is sufficient, considering that the duration of one time period is
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typically much smaller than the life length of a component.

The final state condition,

wi j T ≥ wi j 0 ∀ j ∈K, i ∈O j ,

force the probability that every component is operating in the final time period to be at least

as great as the components’s initial probability of operation. By applying this condition we

avoid leaving the OWF at a poor operating level at the end of our planning horizon. More-

over, we find the probability wi j t that component i at turbine j operates during period t

by summing the probabilities sampled from the Weibull distribution, multiplied with their

corresponding binary variables for all ages,

wi j t =
T+a0i j∑

a=0
Pi j abi j t a ∀i ∈O j ,∀ j ∈K,∀t ∈ {0, · · · ,T }.

Finally, the product,

Z j t = ∏
i∈O j

wi j t ∀ j ∈K,∀t ∈ {0, · · · ,T }, (7.3)

of the probabilities wi j t , that the components i ∈O j at turbine j are operative in period t ,

equals the probability of operation of the entire turbine j in time period t .

7.1.6 Quadratic constraints

For model instances where the number of components exceeds two per turbine, we rewrite

the constraint that determines the probability Z j t that turbine j is operating in time period

t . The continuous variables,

hi
j t ∈ [0,1] ∀ i ∈ {0, · · · , |O j |−2}, j ∈K, t ∈ {0, · · · ,T },

are introduced in order to rewrite constraint (7.3) into the following quadratic equations,

hi
j t = wi j t wi+1, j ,t , ∀ i = 0, j ∈K, t ∈ {0, · · · ,T },

hi
j t = hi−1

j t wi+1, j ,t , ∀ 1 ≤ i < |O j |−2, j ∈K, t ∈ {0, · · · ,T },

Z j t = hi−1
j t wi+1, j ,t , ∀ i = |O j |−2, j ∈K, t ∈ {0, · · · ,T }.



36 CHAPTER 7. MODEL DESCRIPTION OF THE MIQLP

We manually decide whether to include the latter set of constraints, or constraint (7.3) in the

model formulation based on the number of components per turbine in the problem at hand.
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7.2 Full model formulation of the MIQLP

The full model description is attached below.

Maximize
∑
j∈K

T∑
t=0

E j t Z j t −
∑

f ∈F

∑
i∈O j

∑
j∈K

T−1∑
t=0

M f i j t x f i j t −
∑
r∈R

T−1∑
t=0

Sr t yr t (7.4)

Subject to:

∑
f ∈F

x f i j t ≤ 1 ∀i ∈O j , j ∈K, t ∈ {0, · · · ,T −1}

x f i j t ≤ ∑
r∈R f i j

yr t ∀ f ∈F , i ∈O j , j ∈K, t ∈ {0, · · · ,T −1}

bi , j ,0,a0i j = 1 ∀i ∈O j , j ∈K

T+a0i j∑
a=0

bi j t a = 1 ∀i ∈O j , j ∈K, t ∈ {1, · · · ,T }

bi j t a ≥ bi , j ,t−1,a−1 −
∑

f ∈F
x f ,i , j ,t−1∀i ∈O j , j ∈K, t ∈ {1, · · · ,T }, a ∈ {1, · · · ,T +a0i j }

bi , j ,t ,d(1−Q f )ae ≥ x f ,i , j ,t−1 +bi , j ,t−1,a −1 ∀ f ∈F ,∀i ∈O j , j ∈K, t ∈ {1, · · · ,T }, a ∈ {0, · · · ,T +a0i j }

wi j T ≥ wi j 0 ∀ j ∈K, i ∈O j

wi j t =
T+a0i j∑

a=0
Pabi j t a ∀i ∈O j , j ∈K, t ∈ {0, · · · ,T }

Only for data instances where |O j | ≤ 2,

Z j t =
∏

i∈O j

wi j t∀ j ∈K, t ∈ {0, · · · ,T }
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Only for data instances where |O j | > 2,

hi
j t = wi j t wi+1, j ,t , ∀ i = 0, j ∈K, t ∈ {0, · · · ,T }

hi
j t = hi−1

j t wi+1, j ,t , ∀ 1 ≤ i < |O j |−2, j ∈K, t ∈ {0, · · · ,T }

Z j t = hi−1
j t wi+1, j ,t , ∀ i = |O j |−2, j ∈K, t ∈ {0, · · · ,T }

Binary variables:

bi j t a ∈ {0,1} ∀i ∈O j ,∀ j ∈K,∀t ∈ {0, · · · ,T }, a ∈ {0, · · · ,T +a0i j }

x f i j t ∈ {0,1} ∀ f ∈ i ∈O j ,∀ j ∈K,∀t ∈ {0, · · · ,T −1}

yr t ∈ {0,1}, ∀r ∈R, t ∈ {0, · · · ,T −1}

Continuous variables:

wi j t ∈ [0,1] ∀i ∈O j , j ∈K,∀t ∈ {0, · · · ,T }

Z j t ∈ [0,1] ∀ j ∈K, t ∈ {0, · · · ,T }

hi
j t ∈ [0,1] ∀ i ∈ {0, · · · , |O j |−2}, j ∈K, t ∈ {0, · · · ,T }
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Chapter 8

Heuristic algorithm

We introduce a heuristic algorithm in the current chapter. The goal is to find sufficiently

good solutions to the previously described maintenance optimization model. The heuristic

is proposed as a starting point to further development. The algorithm improves a feasible

solution inside a loop, by making slight changes in each iteration. A solution that is both

feasible and better than the current best solution is brought to the next iteration.

We initialise (Section 8.1) the heuristic algorithm with a feasible, but costly solution. That is,

performing every maintenance route, and maintaining every component at every turbine,

for each time period in the planning horizon. We emphasise (Section 8.3) the conditions

that must hold for the model solution to be feasible. Further (Section 8.4), we improve a

solution by making one of the following changes,

1. remove one route,

2. remove one maintenance action, or

3. reduce the extent of one maintenance strategy.

Lastly (Section 8.5), we describe the heuristic search, in which the feasible solution is im-

proved inside a loop by performing one of the three latter actions in each iteration.

8.1 Solution representation and initial solution

We pursue the notation from the MIQLP model in Chapter 7. Any solution to the heuristic

can be represented using the independent variables,

x f i j t ∈ {0,1} ∀ f ∈F∀i ∈O j ,∀ j ∈K,∀t ∈ {0, · · · ,T −1}, and
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yr t ∈ {0,1}, ∀r ∈R,∀t ∈ {0, · · · ,T −1}.

Moreover, we introduce the vector x which consists of the variables x f i j t ∀ f ∈ F ,∀i ∈
O j ,∀ j ∈K,∀t ∈ {0, · · · ,T −1}, and the vector y which consists of the variables yr t∀r ∈R,∀t ∈
{0, · · · ,T −1}. Hence, each solution can be represented as (x,y).

Further, we initialise the search with the feasible solution where all routes

yr t = 1,∀r ∈R,∀t ∈ {0, · · · ,T −1},

are performed and all perfect maintenance actions

x fperfect,i , j ,t = 1,∀i ∈O j ,∀ j ∈K,∀t ∈ {0, · · · ,T −1},

are executed. The maintenance strategy fperfect ∈F is such that Q f perfect = 1, hence returns

component i at turbine j in perfect operating condition in the following time period, t +1.

Similarly, the maintenance strategy fmin ∈F denotes the maintenance strategy such that the

corresponding rejuvenation factor is the smallest possible,

Q f min = minimum(Q f ∀ f ∈F ).

Henceforth, the indices denoting each maintenance strategy f ∈F are ordered increasingly,

[ fmin, fmin +1, · · · , fper f ect ] ∈F ,

in respect to the corresponding rejuvenation factor, Q f .

8.2 Calculating the objective

We keep the objective function 7.1 from the MIQLP model formulation in Chapter 7. How-

ever, the following additions are introduced to the notation, for simplicity. Henceforth, the

total income from turbine production is kept in the variable totalE. We name the variable

corresponding to the total maintenance cost, totalM. Finally, the expences related to routes

are kept in the variable totalS. For each solution (x,y), we calculate the objective,

Obj = totalE− totalM− totalS.

In order to calculate totalE, we require the additional step of calculating the operation prob-

abilities of each turbine during each time period. In similarity to the model description in



8.2. CALCULATING THE OBJECTIVE 41

Chapter 7, we keep track of the age of component i at turbine j during time period t . Instead

of the previous notation of using a binary variable to express the age, we introduce the new

variables,

ai j t ∈Z+ ∀ j ∈K, i ∈O j , t ∈ {0, · · · ,T }.

The initial age, a0i j of component i at turbine j is used to sample the initial operation prob-

ability,

wi j 0 = Pai j 0,i , j ∀i ∈O j ,∀ j ∈K,

from the Weibull distribution. Thereafter, the age of the component is computed for every

time period in the planning horizon. For time periods t in which the component is main-

tained, that is if x f i j t = 1, the age is updated by

ai j t+1 = d(1−Q f )ai j t e.

Whereas if the component is not maintained, if x f i j t = 0, we let

ai j t+1 = ai j t +1.

The corresponding operational probabilities for component i at turbine j are sampled from

the Weibull distribution,

wi j t = Pai j t ,i , j .

Finally, the operational probabilities for each turbine is calculated,

Z j t =
∏

i∈O j

wi j t .

We further introduce the vector Z which holds the variables Z j t∀ j ∈O j ,∀t ∈ {0, · · · ,T }, and

the vector w which holds the variables wi j t∀i ∈ O j ,∀ j ∈ K,∀t ∈ {0, · · · ,T }. The above ap-

proach for calculating Z and w is described with pseudo code in Algorithm 1.
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Algorithm 1 prob(x,y)

1: INPUT (x,y)
2: SET wi j 0 ← Pa0i j ,i , j initial probability of operation for component i at turbine j
3: SET Z j 0 ← ∏

i∈O j

wi , j ,0 initial probability of operation for turbine j

4:

5: FOR each time period, t ∈ {0, · · · ,T −1}
6: FOR each turbine, j ∈K
7: FOR each component, i ∈O j

8: maintained ← False
9: FOR each maintenance strategy, f ∈F

10: IF x f i j t = 1 . maximum true for one f
11: THEN maintained ← True
12: update age ai , j ,t+1 ←d(1−Q f )ai j t e
13: END IF
14: IF maintained is False
15: THEN update age ai , j ,t+1 ← ai j t +1
16: END IF
17: END FOR
18: wi , j ,t+1 ← Pai j t+1,i , j

19: END FOR
20: Z j ,t+1 ← ∏

i∈O j

wi , j ,t+1

21: END FOR
22: END FOR
23: RETURN Z,w

We can now obtain totalE as the sum,
∑

j∈K

T∑
t=0

E j t Z j t . Moreover, the variables totalM and to-

talS can be calculated directly from the sum of performed maintenance actions and routes.

Firstly, totalM is calculated as
∑

f ∈F
∑

i∈O j

∑
j∈K

T−1∑
t=0

M f i j t x f i j t . Similarly, totalS is computed as

∑
r∈R

T−1∑
t=0

Sr t yr t . The approach of calculating the objective value is described with pseudo code

in Algorithm 2.
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Algorithm 2 calculateObjective(x,y)

1: INPUT (x,y)
2: CALL Z,w ← prob(x,y)
3: SET totalM, totalS, totalE ← 0
4:

5: FOR each time period, t ∈ {0, · · · ,T }
6: FOR each turbine, j ∈K
7: totalE ← totalE+ (E j t ∗Z j t )
8: END FOR
9: END FOR

10:

11: FOR each time period, t ∈ {0, · · · ,T −1}
12: FOR each turbine, j ∈K
13: FOR each component, i ∈O j

14: FOR each maintenance strategy, f ∈F
15: IF action x f i j t = 1 . maximum true for one f
16: THEN totalM ← totalM+M f i j t

17: END IF
18: END FOR
19: END FOR
20: END FOR
21: END FOR
22:

23: FOR each time period, t ∈ {0, · · · ,T −1}
24: FOR each route, r ∈R
25: IF yr t = 1
26: THEN totalS ← totalS+Sr t

27: END IF
28: END FOR
29: END FOR
30: SET objective← totalE− totalS− totalM
31: RETURN objective

8.3 Feasibility conditions

A special attention is given to the two conditions that must be held for a feasible solution.

For all maintenance variables x f i j t assigned the value 1, there must be a corresponding route

r , that is able to use maintenance strategy f at component i at turbine j in time period t ,

for which yr t = 1 in the solution. Additionally, the final probability of operation for each

component at each turbine, wi j T , must be greater than or equal to its initial probability

corresponding, wi j 0.
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8.4 Improving a solution

Given a feasible solution (x,y), we perform one of the functions removeRoute (Section 8.4.1),

removeAction (Section 8.4.2), or reduceAction (Section 8.4.3) in order to improve the solution.

8.4.1 Remove random route

The function removeRoute, selects a random route r ∗ ∈R and a random time period t∗ ∈
{0, · · · ,T −1}, for which yr∗,t∗ = 1, from the current solution (x,y). We copy the current solu-

tion, and obtain (x
′
,y

′
). Thereafter, we set y

′
r∗,t∗ = 0 in the new solution. A special attention

is given to the maintenance actions in the new solution. We replace each variable x f ,i , j ,t∗

where x f ,i , j ,t∗ = 1 in the old solution, by the variable x
′
f ,i , j ,t∗ = 0 in the new solution, for

cases where there no longer exist a route r such that y
′
r,t∗ = 1 in the new solution, that is able

to apply maintenance strategy f to component i at turbine j during time period t∗. In other

words, we remove the maintenance actions from time period t∗ that only can be performed

with the route r ∗. The corresponding pseudo code is described in Algorithm 3. The objec-

tive value is calculated for the new solution. The new solution is returned if it is feasible, and

better than the current best solution.
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Algorithm 3 removeRoute(x,y,bestObjective,notImproved)

1: INPUT (x, y,bestObjective,notImproved)
2: SET x

′
,y

′ ← x,y . copy the solution
3: SET select random r ∗ ∈R and t∗ ∈ {0, · · ·T −1} such that y

′
r∗,t∗ = 1

4: SET y
′
r∗,t∗ ← 0 . set the random variable to 0 in the solution

5: FOR each maintenance strategy, f ∈F
6: FOR each component, i ∈O j

7: FOR each turbine, j ∈K
8: IF x f , j ,i ,t∗ = 1

9: IF y
′
r,t∗ = 0 ∀r ∈R f i j \{r ∗}

10: THEN x
′
f ,i , j ,t∗ ← 0 . remove the infeasible maintenance action

11: END IF
12: END IF
13: END FOR
14: END FOR
15: END FOR
16:

17: CALL Z,w ← prob(x
′
,y

′
)

18: SET feasible ← True
19: FOR each component, i ∈O j

20: FOR each turbine, j ∈K
21: IF final state condition, wi j T < wi j 0, is violated
22: THEN feasible ← False
23: notImproved = notImproved +1
24: RETURN x,y,bestObjective,notImproved . return old solution
25: END IF
26: END FOR
27: END FOR
28:

29: CALL currentObjective ← calculateObjective(x
′
,y

′
)

30: IF feasible = True and currentObjective > bestObjective
31: THEN bestObjective ← currentObjective
32: x,y ← x

′
,y

′
. update solution

33: ELSE notImproved = notImproved +1
34: END IF
35: RETURN x,y,bestObjective,notImproved

8.4.2 Remove random maintenance action

The second function, removeAction, is described by pseudo code in Algorithm 4. We again

introduce (x
′
,y

′
) as a copy of the current (x,y) solution. Thereafter, a strategy f ∗ ∈F , a tur-

bine j∗ ∈K, a component i∗ ∈O j , and a time period t∗ ∈ {0, · · · ,T }, for which x f ∗,i∗, j∗,t∗ = 1,

are randomly selected. We set x
′
f ∗,i∗, j∗,t∗ = 0 in the new (x

′
,y

′
) solution. We keep the new so-

lution if the final state condition still holds, and the new objective is better than the current
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objective.

Algorithm 4 removeAction(x,y,bestObjective,notImproved)

1: INPUT x,y,bestObjective,notImproved
2: SET x

′
,y

′ ← x,y . copy the solution
3: SET select random f ∗ ∈F , i∗ ∈O j , j∗ ∈K, t∗ ∈ {0, · · · ,T −1} such that x

′
f ∗,i∗, j∗,t∗ = 1

4: SET x
′
f ∗,i∗, j∗,t∗ ← 0 . remove action

5:

6: CALL Z,w ← prob(x
′
,y

′
)

7: SET feasible ← True
8: IF final state condition, wi∗, j∗,T < wi∗, j∗,0, is violated
9: THEN feasible ← False

10: notImproved = notImproved +1
11: RETURN x,y,bestObjective,notImproved . return old solution
12: END IF
13:

14: CALL currentObjective ← calculateObjective(x
′
,y

′
)

15: IF feasible = True and currentObjective > bestObjective
16: THEN bestObjective ← currentObjective
17: x,y ← x

′
,y

′
. update solution

18: ELSE notImproved = notImproved +1
19: END IF
20: RETURN x,y,bestObjective,notImproved

8.4.3 Reduce the extent of a maintenance strategy

A third function, reduceAction, is introduced in Algorithm 5 to swap the maintenance strat-

egy that is applied to one component i , at one turbine j , during one time period t . Recall

that we initialise the model with a pure replacement strategy. We attempt to reduce the cur-

rent applied strategy f to a less perfect strategy f −1. For example, a strategy f that reduces

a component’s age by 100% can be replaced by a strategy that reduce the component’s age

by 50%.

We randomly pick a strategy f ∗ ∈ F , a turbine j∗ ∈ K, a component i∗ ∈ O j , and a time

period t∗ ∈ {0, · · · ,T }, for which x f ∗,i∗, j∗,t∗ = 1 in the solution (x,y). If the applied mainte-

nance strategy is the minimal maintenance strategy, f ∗ = fmin, then we pick another set

( f ∗, i∗, j∗, t∗). However, if we find a variable x f ∗,i∗, j∗,t∗ = 1 where f ∗ > fmin, then set,

x f ∗,i∗, j∗,t∗ = 0

and set

x f −1∗,i∗, j∗,t∗ = 1
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in the new solution (x
′
,y

′
).

We return the old solution if no strategy f ∗, for a component i∗, at a turbine j∗, during a

time period t∗ such that x f ∗,i∗, j∗,t∗ = 1 and f ∗ > fmin are found within the maximum number

maxDraw of tries is reached. Similarly, the old solution is returned if either the new solution

is infeasible or not better than the old solution.
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Algorithm 5 reduceAction(x,y,bestObjective,notImproved)

1: INPUT x,y,bestObjective,notImproved
2: SET x

′
,y

′ ← x,y . copy the solution
3: SETfoundAction ← False
4: SET f ∗ ← fmin

5: SETcount ← 0
6:

7: While count < maxDraw
8: IF the strategy f ∗ = fmin is minimal
9: THEN select random f ∗ ∈F , i∗ ∈O j , j∗ ∈K, t∗ ∈ {0, · · · ,T −1} s.t. x

′
f ∗,i∗, j∗,t∗ = 1

10: count ← count+1
11: ELSE count ← maxDraw
12: foundAction ← True
13: END IF
14: END WHILE
15:

16: IF foundAction is True
17: THEN x ′

f ∗,i∗, j∗,t∗ ← 0 . remove old action
18: x ′

f ∗−1,i∗, j∗,t∗ ← 1 . add new action

19: IF y
′
r,t∗ = 0 ∀r ∈R f ∗,i∗, j∗

20: THEN notImproved ← notImproved+1
21: RETURN x,y,bestObjective,notImproved . return old solution
22: END IF
23: ELSE RETURN x,y,bestObjective,notImproved . return old solution
24: END IF
25:

26: CALL Z,w ← prob(x
′
,y

′
)

27: SET feasible ← True
28: IF final state condition, wi∗, j∗,T < wi∗, j∗,0, is violated
29: THEN feasible ← False
30: notImproved = notImproved +1
31: RETURN x,y,bestObjective,notImproved . return old solution
32: END IF
33:

34: CALL currentObjective ← calculateObjective(x
′
,y

′
)

35: IF feasible = True and currentObjective > bestObjective
36: THEN bestObjective ← currentObjective
37: x,y ← x

′
,y

′
. update solution

38: ELSE notImproved = notImproved +1
39: END IF
40: RETURN x,y,bestObjective,notImproved
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8.5 Heuristic function

The heuristic function is described in Algorithm 6. We improve the heuristic solution inside

a loop consisting of N ∈ Z+ iterations. In each iteration, we apply one of the functions re-

moveRoute (Algorithm 3), removeAction (Algorithm 4), or reduceAction (Algorithm 5), with

the overall goal of improving the solution from one iteration to the next.

Algorithm 6 heuristic(N, maxnotImproved)

1: SET (x,y) ← initial solution
2: SET bestObjective ← initial objective
3: SET n ← 0
4: SET notImproved ← 0 . count the number of nonimproving iterations
5: SET mode ← 0
6: FOR n<N
7: IF mode is 0
8: THEN x,y,notImproved,bestObjective ← removeRoute(x,y,notImproved)
9: ELIF mode is 1

10: THEN x,y,notImproved,bestObjective ← removeAction(x,y,notImproved)
11: ELIF mode is 2
12: THEN x,y,notImproved,bestObjective ← reduceAction(x,y,notImproved)
13: END IF
14: IF notImproved > maxnotImproved
15: THEN count ← 0
16: mode ← mode+1
17: END IF
18: IF mode > 2
19: THEN mode ← 0
20: END IF
21: END FOR
22: RETURN bestObjective

We start the search by applying the function, removeRoute, until the number of not improv-

ing iterations reached maxnotImproved. Thereafter, we apply the function, removeAction,

until maxnotImproved is reached. Similarly, reduceAction, is applied until maxnotImproved

once again is reached.We continue looping between the three functions until the maximum

number of iterations, N is reached.
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Chapter 9

Experimental study

We present the input that is given to both the MIQLP, and the heuristic algorithm in this

chapter. Moreover, we introduce the numerical experiments that are performed. As ad-

dressed by Sørensen (2009), models based on relative costs should be based on real data,

obtained from practice. Unfortunately, information on maintenance and repair costs are

difficult to obtain (Sørensen, 2009). Such data tends to be confidential and the following

experimental cases are therefore mostly based on data obtained from the literature and log-

ical reasoning. However, we apply turbine capacities found for the turbines by Vestas (2022),

which are implemented at Horns Rev 3 by Vattenfall (2022a). The reasoning behind each

parameter choice will be made clear throughout the chapter.

We start (Section 9.1) this chapter by defining the planning horizon. Moreover, we justify our

choice of the expected monetary value of power production, the Weibull parameters, the

routes and route costs, and the maintenance costs. Thereafter (Section 9.2), we introduce

three numerical experiments and emphasise their purposes. The number of turbines, the

number of components, and the applied maintenance strategies are specified for the indi-

vidual experiments.

9.1 Generating model instances

We start by introducing the parameters that are held constant for all experiments. That is,

the planning horizon (Section 9.1.1), the monetary value of power production (Section 9.1.2)

and the Weibull parameters (Section 9.1.3). The solution sensitivity to route cost (Section

9.1.4), and maintenance cost (Section 9.1.5) is explored, as we generate them for different

scenarios.
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9.1.1 Planning horizon

We set the planning horizon T to 24 time periods in all instances. Although having the length

of one period equal to the shift length of a maintenance crew (Gutierrez-Alcoba et al., 2019)

seems like a reasonable approach, we observe little to no difference in the operational prob-

abilities for such small time intervals. We therefore set the length of each time period to 28

days.

9.1.2 Expected monetary value of power production

Recall that the expected monetary value of power production, E j t , gives the total income

from a fully operating turbine j in time period t . This parameter is calculated as follows,

E j t = 24[h/days]× length of one time period[days]

×Expected electricity sale price[euro/MWh]

×Turbine Capacity[MW] ∀ j ∈K, t ∈ {0, · · · ,T }.

Moreover, we assume the wind farms consist of identical Vestas V164 turbines (Vestas, 2022),

with corresponding capacities of 8.3MW. Vattenfall state that they will produce energy with

the electricity price of DKK 0.77 per kilowatt hour (Vattenfall, 2022a) in their new offshore

wind farm consisting of these turbines. Simple unit calculation based on the exchange rates

given by Norges Bank (The central bank of Norway) (2022) (1 DKK = 1.29 NOK, 1 Euro = 9.63

NOK), verify that this results in approximately 100 euro per MWh. We obtain the following

value for E j t ,

E j t = 24[h/days]×28[days]

×100[euro/MWh]

×8.3[MW] ∀ j ∈K, t ∈ {0, · · · ,T },

= 557760[euro] ∀ j ∈K, t ∈ {0, · · · ,T }.
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9.1.3 Weibull parameters

The generator, the pitch system, the rotor and the gearbox are mentioned as critical compo-

nents by Lu et al. (2018). We use the Weibull parameters and replacement costs described by

the authors.

Component Shaping β Scaling η[days] Replacement cost[euro]
Rotor 3 1847 185000
Gearbox 3 1477 230000
Generator 2 1594 60000
Pitch 3 1144 14000

Table 9.1: The table shows the shaping parameter, the scaling parameter and the replace-
ment cost for four critical components (Lu et al., 2018).
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Figure 9.1: The figure shows the Weibull survivorship function for the four critical compo-
nents. The distributions are based on information given by Lu et al. (2018).

The survivorship function 5.3 is adjusted for a time period of length of 28 days to scale the

Weibull parameters. The probability Pai j of operation for component i , with the corre-

sponding age a time periods, belonging to turbine j gets,

Pai j = exp

[
−

(
a ∗28[d ay s]

η

)β]
, a > 0.

9.1.4 Routes and route cost

We generate routes by randomly selecting turbines from the set of turbines. We assume that

the cost of a maintenance route is independent of the time period it is performed in. The
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OWF operators can perform all routes during all time periods. We assign each turbine to at

least one route, and all routes visit fairly the same number of turbines.

Turbines are usually spaced with 5-9 rotor diameters distance in the prevailing wind direc-

tion, and with 3-5 rotor diameters distance in the perpendicular direction (Pardalos et al.,

2013). We calculate the approximate travel distance for each route. The turbines are placed

in a two dimensional grid with 7 times the rotor dimensions distance in x-direction, and y-

direction. The corresponding rotor diameters are 164m (Vestas, 2022). We assume there exist

a base at a specified distance to the wind farm. Each maintenance route starts and ends at

this base. The coordinates of the base varies with the size of the farm. The parameter Cdist

holds the price of a route per meter of travel.

It is reasonable to assume that the cost of each route is determined by more than just travel

distance. Therefore, we assume that the cost of one route additionally depends on factors as

the vessel type, the available equipment and spare parts, and the crew of technicians. These

factors constrain the type of maintenance strategy that can be performed, and the type of

component that can be maintained. Therefore, we assume that the cost of a maintenance

route also is dependent on the number of different maintenance strategies it can perform,

and the number of different component types it can maintain. We introduce two new pa-

rameters. Henceforth, the cost Cextra, f holds the cost of being compatible with a mainte-

nance strategy, and arise for each maintenance strategy that is compatible with the route in

question. Similarly, Cextra,i holds the cost for that route to be able to maintain a component.

For example, Route X1 visits turbine 1,5 and 7, with a total travel distance of 5000m. The

route is only able to perform one maintenance strategy: full replacement. The route brings

extra equipment to maintain only one component: the gearbox. Nevertheless, the gearbox

can be replaced at all the visited turbines in route X1. The cost of this route is,

Sr t = 5000m ×Cdist

+1 compatible strategy×Cextra, f

+1 compatible component×Cextra,i

On the other hand, Route X2 visits the same turbines, but is able to perform both full replace-

ment, and minor maintenance to with a rejuvenation factor of 20%. All four components at
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each turbine can be maintained. The cost of this route is therefore,

Sr t = 5000m ×Cdist

+2 compatible strategies×Cextra, f

+3 compatible components×Cextra,i

Moreover, we make sure to generate the routes in such a way that all components can be

maintained to all strategies f ∈F , as we wish to capture the behaviour of imperfect vs per-

fect maintenance. Therefore, the model should have the choice between maintaining one

or several components per turbine. We therefore generate several routes that seem identical

at first glance. Nevertheless, they differ in allowed maintenance strategies and the compat-

ible components. Suppose an offshore wind farm where two components are considered

for each turbine, and three different maintenance strategies can be applied. We make the

following duplications for each route, each with a unique pair of compatible maintenance

strategies and components. The route is able to maintain

1. both components, with all strategies

2. component 0, with all strategies, or

3. component 1 with all strategies,

and

4. both components, with the first strategy

5. component 0, with the first strategy,or

6. component 1, with the first strategy,

and

7. both components, with the second strategy

8. component 0, with the second strategy, or

9. component 1, with the second strategy,

and

10. both components, with the third strategy

11. component 0, with the third strategy, or
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12. component 1, with the third strategy.

As demonstrated, the number of maintenance routes increases rapidly for instances where

several components and strategies are considered.

9.1.5 Maintenance cost

The cost of full replacement for each component is given in Table 9.1. However, we expect

the choice of maintenance strategy to depend on the cost of applying each maintenance

strategy. We consider two scenarios. Firstly, an exponential relation between the cost of a

maintenance action and the strategy of choice,

M f i j t =
(
Q f ∗

√
replacement cost

)2 ∀ f ∈F , i ∈O j , j ∈K, t ∈ {0, · · · ,T −1},

or a linear relation

M f i j t =Q f ∗ replacement cost ∀ f ∈F , i ∈O j , j ∈K, t ∈ {0, · · · ,T −1}.

We illustrate the two alternatives for a gearbox with total replacement cost of 230000 euro in

Figure 9.2.
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Figure 9.2: The figure shows the maintenance cost M f i j t for the gearbox for a linear (solid
red), and an exponential (dotted blue) relation to the rejuvenation factor Q f .
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9.2 Introducing the experiments

Recall the research questions we present in Chapter 1. We perform several numerical exper-

iments answer whether,

1. we can solve the MIQLP for realistic wind farm sizes, in reasonable time, and if

2. OWF operators should perform imperfect preventive maintenance tasks, as opposed

to a preventive replacement strategy.

We implement both the MIQLP and the heuristic algorithm in Python 3. We use the commer-

cial solver, Gurobi (Gurobi Optimization, LLC, 2022), with an academic license to solve the

MIQLP (Gurobi Optimization, LLC, 2022). At response to feedback from the terminal output,

we set the parameter NonConvex to 2, and NumericFocus to 3. A MacBook Air with 1,6 GHz

Dual-Core Intel Core i5 Processor, and memory 8 GB 1600 MHz DDR3 is used.

9.2.1 Experiment I: Increasing input sizes

We wish to answer whether the model can be used to solve realistic wind farm sizes. There-

fore, we use the commercial solver, Gurobi (Gurobi Optimization, LLC, 2022), to solve the

MIQLP for increasing input sizes. We terminate the MIQLP solver when an optimality gap of

minimum 5% is found. While keeping the other sets constant, we increase either the number,

|K|, of turbines, the number, |O j |, of considered components, or the number, |F |, of strate-

gies. The number, |R|, of routes is a result of the number of components and the number

of strategies used, as described in Section 9.1.4. The length of the planning horizon remains

constant at T = 24 time periods. The number of applied maintenance strategies are more

relevant than the maintenance strategies itself in this experiment. This experiment consists

of 12 runs which input is described in Table 9.2.
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Input sizes for experiment I

Nr File |K| |O j | |F | |R|
(1) K20_Oj1_F1 20 1 1 2

— " — K20_Oj2_F1 20 2 1 6
— " — K20_Oj3_F1 20 3 1 8
— " — K20_Oj4_F1 20 4 1 10

(2) K20_Oj1_F1 20 1 1 2
— " — K50_Oj1_F1 50 1 1 6
— " — K100_Oj1_F1 100 1 1 12
— " — K200_Oj1_F1 200 1 1 25

(3) K20_Oj1_F1 20 1 1 2
— " — K20_Oj1_F2 20 1 2 6
— " — K20_Oj1_F3 20 1 3 8

K100_Oj4_F3 100 4 3 240
K200_Oj4_F3 200 4 3 500

Table 9.2: The table shows the input sizes of each file.

9.2.2 Experiment II: Different cost scenarios

With this numerical experiment, we explore if OWF operators should perform imperfect pre-

ventive maintenance tasks, as opposed to a preventive replacement strategy. As mentioned

in the hypothesis, we expect that the answer to this question vary with the model instance.

Therefore, we introduce different scenarios to explore typical behaviour for different scenar-

ios.

We focus on one single component, the rotor, throughout this experiment. The Weibull pa-

rameters, and replacement cost for the rotor can be found in Table 9.1. Moreover, the initial

age for each rotor, the visited turbines Kr for each route r ∈R, the route costs Sr t

We generate route costs In the first cost scenario, which applies to cases 1.1, 1.2 and 1.3

in Table 9.3, we assume that Cdist is low while Cextra, f and Cextra,i are higher, relative to the

second scenario. The second cost scenario is applied to cases 2.1, 2.2 and 2.3 in Table 9.3.

Moreover, the choice of maintenance strategy, f ∈ F , depend on the relationship between

the cost of each maintenance action, M f i j t , and the corresponding rejuvenation factor. For

this reason, we explore both an exponential (case X.2) and a linear (case X.3) relation for the

cases where imperfect maintenance is allowed.

To summarise, we obtain the scenarios, (case 1.1) cost scenario 1 with perfect maintenance,

(case 1.2) cost scenario 1 with imperfect maintenance with an exponential M f i j t relation,

(case 1.3) cost scenario 1 with imperfect maintenance with a linear M f i j t relation,

(case 2.1) cost scenario 2 with perfect maintenance,
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(case 2.2) cost scenario 2 with imperfect maintenance with an exponential M f i j t relation,

and

(case 2.3) cost scenario 2 with imperfect maintenance with a linear M f i j t relation.

The number |K| of turbines, the number |O j | of components, the number |F | of strategies,

the corresponding rejuvenation factors Q f , the number |R| of generated routes, the values

for Cdist, Cextra, f , Cextra,i and the choice of relation between M f j i t and Q f are given in Table

9.3 for each file. We choose values for the three latter values so that the corresponding route

cost Sr t varies between 22100 euro and 26800 euro for the first scenario and 53000 euro and

70120 euro for the second euro. In comparison, the paper by Tian et al. (2011) model a trip

to the wind farm with a fixed access cost of 50 000$.

The coordinates of the turbines, and the coordinates for the base are constant in the six cases

for Experiment II, and are attached in Section A.1 of the Appendix. Additional data for cases

1.1, 1.2, 1.3, 2.1, 2.2, and 2.3 are given in the Appendix in Sections A.2, A.3, A.4, A.5, A.6, A.7.

The latter information include the visited turbines Kr for each route r ∈ R, the initial age

for each gearbox, the compatible maintenance strategies for each route, and the compatible

components for each route. Moreover, we terminate the MIQLP solver when an optimality

gap of 2% is found.

Input files for experiment II

File |K| |F | Q f |R| Cdist [euro] Cextra, f [euro] Cextra,i [euro] relation
case1.1 30 1 1 3 0.2 200 200 -
case1.2 30 3 0.2,0.6,1.0 12 0.2 200 200 exp
case1.3 30 3 0.2,0.6,1.0 12 0.2 200 200 linear
case2.1 30 1 1 3 0.5 100 100 -
case2.2 30 3 0.2,0.6,1.0 12 0.5 100 100 exp
case2.3 30 3 0.2,0.6,1.0 12 0.5 100 100 linear

Table 9.3: The table shows the characteristics for each input each file for experiment 2.

9.2.3 Experiment III: Evaluation of the heuristic algorithm

We apply the heuristic algorithm (Chapter 8) for the files in experiment II (Table 9.3) to eval-

uate its performance. The specifications for each file are given in Table 9.3, and in Appendix

A.2 to A.7. We use N = 5000 iterations to improve the solution, and perform the search in

a loop 10 times. The average best objective, and the global best objective, and the time of

solving the algorithm is reported. We use maxnotImproved = 100 and maxDraw = 20.

We additionally solve the heuristic for file K100_Oj4_Qf3 and K200_Oj4_Qf3 in Table 9.2. We

increase the number of iterations to N = 10000, and perform the search 2 times per file. We
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set maxnotImproved = 100 and maxDraw = 20. We report the average best objective, and the

global best objective, and the time of solving the algorithm.

We report gaps and improvement based on the best values values objective function. Recall

the equations (5.2) and (5.1) for calculation of gaps and improvement, respectively.



60

Chapter 10

Experimental results

The results from the numerical experiments are presented in this chapter. Firstly (Section

10.1), we present the results from Experiment I. Moreover (Section 10.2), we give the results

that we obtain from Experiment II. Finally (Section 10.3), we present the results from Exper-

iment III.

10.1 Results I: Increasing input sizes

We report the objective function values, upper bounds, gaps and time of solving each data

instance for Experiment I in Table 10.1. We give the objective functions values and upper

bounds in euros. Further, we give gaps in relative terms, as percentages. We report time

of solving each instance in seconds. Gurobi obtain an upper bound for the the objective

function value from the instance file ’K100_Oj4_Qf3’ within 6 hours. However, the instance

file ’K200_Oj4_Qf3’ could not be solved as the PC run out of application memory. The lack

of results is denoted by ’-’ in Table 10.1.
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Solving the MIQLP for experiment I

Nr File Objective [euro] Upper bound[euro] Gap [%] Time [s]
(1) K20_Oj1_F1 259802365 263296092 1 91

— " — K20_Oj2_F1 251055492 257092642 2 970
— " — K20_Oj3_F1 243870433 254038074 4 5098
— " — K20_Oj4_F1 242133385 252537280 4 15791

(2) K20_Oj1_F1 259802365 263296092 1 91
— " — K50_Oj1_F1 632682995 657998084 4 33
— " — K100_Oj1_F1 1263386409 1314978173 4 125
— " — K200_Oj1_F1 2519761003 2628667538 4 607

(3) K20_Oj1_F1 259802365 263296092 1 91
— " — K20_Oj1_F2 259608184 267152993 3 485
— " — K20_Oj1_F3 260434457 267176900 3 571

K100_Oj4_Qf3 - 1305800000 - ca 21000
K200_Oj4_Qf3 - - - -

Table 10.1: Results for the MIQLP in experiment I.

Moreover, three subplots are given in Figure 10.1 to show the running time of the MIQLP

for the files marked with number (1), (2), and (3) in Table 9.2. The subplots marked (1), (2)

and (3) show the time of solving the MIQLP when we increase the number of components,

turbines and strategies, respectively. We terminate the MIQLP solver at 5 % optimiality gap

for the instances in the latter figure.
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Figure 10.1: Running time for the instances in Experiment I. Time of solving the model is
given in seconds at the shared vertical axis. The subplots marked (1), (2) and (3) show in-
crease in components, turbines and strategies, respectively.
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10.2 Results II: Different cost scenarios

We give the results from Experiment II in the current section. The MIQLP solver is terminated

at 2% optimality gap in each case for Experiment II. We aim to present the results in a logical

order, such that findings easily can be discussed in the next chapter. Rather than presenting

the results from each case separately, we introduce similar findings alongside each other.

Particularly, all results regarding maintenance intensity are presented in Section 10.2.1, and

all results showing the probability of operation of each OWF are presented in Section 10.2.2.

Before finally, the objective function values are presented in Section 10.2.3.

10.2.1 Maintenance intensity

The Figures 10.2 to 10.7 show the optimal maintenance intensity over the time horizon for

each case of Experiment II. In each figure, maintenance actions with strategy Q f = 1.0 are

presented in green, the maintenance actions with strategy Q f = 0.6 are presented in red,

while the maintenance actions performed with Q f = 0.2 are presented in blue. We give the

time periods along the horizontal axis, and the number of executed maintenance actions

along the vertical axis.

Figure 10.2 shows the maintenance actions that are performed during each time period for

cost scenario 1. A perfect maintenance strategy (Q f = 1) is applied.
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Figure 10.2: The number of executed maintenance actions performed each time period in
case 1.1.
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Similarly, Figures 10.3 and 10.4 show maintenance intensity for cost 1 with imperfect main-

tenance for an exponential (case 1.2) and a linear (case 1.3) relation, respectively.
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Figure 10.3: The number of executed maintenance actions performed during each time pe-
riod in case 1.2.
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Figure 10.4: The number of executed maintenance actions performed during each time pe-
riod in case 1.3.



64 CHAPTER 10. EXPERIMENTAL RESULTS

Figure 10.5 shows the number of executed maintenance actions performed during each time

period for cost scenario 2, when a perfect maintenance strategy is applied.
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Figure 10.5: The number of executed maintenance actions performed during each time pe-
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Moreover, the Figures 10.3 and 10.4 show maintenance intensity for cost 2 with imperfect

maintenance for an exponential (1.2) and a linear (1.3) relation, respectively.
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Figure 10.6: The number of maintenance executed maintenance actions performed during
each time period in case 2.2.
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10.2.2 Operational probabilities

In this section, we present the probabilities Z j t that selected turbines j ∈ K are operating

in time period t ∈ {0, · · · ,T } in each case for Experiment II. Those selected turbines are the

turbine with the highest initial age, the turbine with the lowest initial age, and the turbine

with the median initial age. IN each figure, we present the turbines with the lowest, median

and highest initial age by a blue, red and green line, respectively. The average operation

probability of all turbines for each period is given by a purple line.

Figure 10.8 shows the operational probabilities in the first cost scenario, when a perfect

maintenance strategy is applied. Moreover, Figure 10.9 and Figure 10.10 are also obtained

for cost scenario 1. However, an imperfect maintenance strategy is applied in the cases re-

ported in the two latter figures. An exponential relation is applied for Figure 10.9, while a

linear relation applies case reported in Figure 10.10.
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Figure 10.8: The probability of operation over the planning horizon in case 1.1.
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Figure 10.9: The probability of operation over the planning horizon in case 1.2.
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Figure 10.10: The probability of operation over the planning horizon in case 1.3.
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Similarly, Figures 10.11, 10.12 and 10.13 show the operational probabilities in the second cost

scenario. We apply a perfect maintenance strategy for the case in Figure 10.11. Moreover, an

imperfect maintenance strategy with an exponential relation applies in for Figure 10.12, as

opposed to the imperfect maintenance strategy with a linear relation for Figure 10.13.
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Figure 10.11: The probability of operation over the planning horizon in case 2.1.
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Figure 10.12: The probability of operation over the planning horizon in case 2.2.
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Figure 10.13: The probability of operation over the planning horizon in case 2.3.
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10.2.3 Objective function values

The objective function values, upper bounds, gaps and time of solving the MIQLP for Exper-

iment II are given in Table 10.2.

MIQLP solutions

File Best obj. [euro]
Upper

bound [euro] Gap [%] Time [s]
case1.1 388294215 394758373 2 284
case1.2 394173041 400496368 2 2847
case1.3 391303965 399109163 2 3703
case2.1 386937388 394605391 2 429
case2.2 392717865 400437717 2 3797
case2.3 390645538 398446723 2 11982

Table 10.2: Results for the MIQLP in Experiment II.

10.3 Results III: Evaluating the heuristic algorithm

This section give the results obtained with the heuristic algorithm. We give the best values for

the objective function in the column "Best obj.". Moreover, we obtain the average objective

function value for each instance by solving the heuristic multiple times. The average values

are given in the column "Avg obj.". Moreover, we give the gaps, improvement (Imp.), and

running time of the heuristic algorithm for Experiment II in the first six rows of Table 10.2.

Additionally, we report the results found by the heuristic algorithm for file ’K100_Oj4_Qf3’

and ’K200_Oj4_Qf3’ in the two final rows in Table 10.2. We emphasise that the upper bounds

are carried from the MIQLP solutions, and used to calculate gaps.

Heuristic solutions

File Best obj. [euro] Avg. obj. [euro]
Upper

bound [euro] Gap [%] Imp. [%] Time [s]
case1.1 388916798 387817895 394758373 2 43 35
case1.2 389679402 388317548 400496368 3 46 67
case1.3 389754392 388461553 399109163 2 46 68
case2.1 388866601 388145461 394605391 1 44 34
case2.2 389322488 388683872 400437717 3 51 66
case2.3 388706197 387217639 398446723 3 51 71
K100_Oj4_Qf3 1106663879 1105212843 1305800000 18 243 1670
K200_Oj4_Qf3 1426316459 1416735977 - - 221 7635

Table 10.3: Results for the heuristic algorithm.
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Chapter 11

Discussion

We analyse findings in the current chapter. Firstly, findings from the numerical experiments

are discussed. We discuss (Section 11.1, Section 11.2 and Section 11.3) the findings for Ex-

periment I, Experiment II and Experiment III. Thereafter (Section 11.4), we consider the

strengths of the model, and give suggestions for further work.

11.1 Discussion of Experiment I

We solve the MIQLP for the instances in Table 9.2, and report the time of solving the model

to a minimum of 5 % from optimality in Table 10.1. More specifically, while holding the other

sets constant, we increase either the number of components, the number of turbines, or the

number of strategies. The corresponding running times are shown in Figure 10.1. Recall

that the four first instances in Table 9.2 model an OWF with 20 turbines, and a perfect main-

tenance strategy(Q f = 1). We observe that by increasing the number of components from

one per turbine, to four per turbine, the corresponding time of solving the MIQLP model

increases from 91s to 15791s. However, we are able to solve an instance with 200 turbines

in 607s if we consider only one component per turbine. Moreover, in the rows marked (3)

in Table 9.2, we increase the number of maintenance strategies |F |. For an instance with 20

turbines and one component per turbine, we observe that the running time of solving the

MIQLP increase from 91s for an instance with |F | = 1 to 571s for an instance with |F | = 3.

Additionally, we know that the number of routes increase rapidly when we increase the num-

ber of strategies and the number of turbines. The way routes are generated results in many

routes for a case with several components or several strategies, which may be a contributing

factor to the running time. An interesting observation is that the running time grows more

rapidly when we increase the number of components, than when we increase the number

of turbines or maintenance strategies. The two final instances in Table 9.2 challenge the
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MIQLP solver. The instance with 200 turbines, 4 components and 3 maintenance strategies

could not be solved as the computer ran out of application memory. However, we obtain

the upper bound of 1305800000 euro for the instance with 100 turbines, 4 components and

3 strategies in about 6 hours.

11.2 Discussion of Experiment II

11.2.1 The intensity of maintenance

In experiment II, we solve the MIQLP model to 2% optimality gap for six different input sets,

to explore the value of allowing for imperfect preventive maintenance. While the cases 1.1

and 2.1 allow for solely perfect preventive maintenance, imperfect preventive maintenance

is allowed in the cases 1.2, 1.3, 2.2, and case 2.3. We give the optimal objective function values

in Table 10.2. Moreover, we observe that profits are higher for all cases where imperfect

preventive is an option, as opposed to the cases where a perfect strategy is applied.

Another observation is that maintenance is typically performed in the beginning and the

end of the planning horizon. This trend is especially easy to observe for the two cases with

perfect strategies, shown in the Figures 10.2 and 10.5. The trend is also easily verified for case

1.3, shown in Figure 10.4, where despite the option of imperfectly maintaining components,

a pure perfect strategy is applied. Additionally, we observe that maintenance strategies with

higher rejuvenation factors Q f = 1.0 and Q f = 0.6 are more often applied in the beginning

and end of the planning horizons, for cases 1.2 and 2.2. The latter statement is verified by

the Figures 10.3 and 10.6, respectively. The trend of more frequent maintenance in the be-

ginning and end of the planning horizon is justifiable. As we do not expect the turbines to

be new at the beginning of the planning horizon, maintenance is performed to increase the

operating state of the elder turbines at the OWF. Similarly, the increase in maintenance in-

tensity towards the end of the planning horizon can be justified by the final state condition.

The condition forces the final operating state of each turbine to be greater than or equal to

its initial operating state. Hence, it is reasonable that more maintenance is applied towards

the end of planning horizon to fulfil this constraint. Nevertheless, case 2.3 break the trend,

as maintenance is scheduled throughout the planning horizon with no clear indicator of an

increase in maintenance in the beginning or end of the planning horizon.

A linear maintenance cost relation is the characteristic that connects case 1.3 and case 2.3.

Additionally, lower value of Ctravel, and higher values of Cextra,i and Cextra, f , applies to case 1.3

when compared with case 2.3. A quick look at the Figures 10.4 and 10.4 tells that less frequent

maintenance is performed in case 1.3 than in case 2.3. The solution in case 1.3 shows that
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perfect maintenance is optimal in this instance, as no imperfect actions are performed. The

high cost of performing several maintenance actions along each route supports the solution

of only applying one maintenance strategy in case 1.3.

A general observation is that applying imperfect maintenance favours more frequent visits to

the wind farm than applying perfect maintenance. Further, we observe that a maintenance

strategy with rejuvenation factor of 0.2 is clearly the favourable option for the scenarios with

imperfect maintenance and exponential cost relations (Figure 10.3 and Figure 10.6). It can

be observed in Figure 9.2 illustrating the cost of a maintenance action for a linear vs when

M f i j t increase exponentially with Q f , that the latter is the cheaper option of the two, for

all actions that are not 100% renewal. This fact supports the observation that less imperfect

maintenance actions are performed for cases 1.3 and 2.3, as opposed to cases 1.2 and 2.2

where the exponential dependency is applied. A paper by Ding and Tian (2012) finds that

show that a maintenance strategy that reduce the age of a component by 50% is a more cost-

effective imperfect maintenance strategy than 25 % and 75%. Their result emphasises that

the relative costs affect the optimal maintenance strategy.

11.2.2 The probability of operation

We give the optimal operational probabilities Z j t for selected turbines in Figures 10.8, 10.9,

10.10, 10.11, 10.12 and 10.13. As there are too many turbines to individually examine, only

the turbine with the highest initial age, the lowest initial age and the median initial age are

shown. In addition, we give the average value for the optimal Z j t . That is, the average over

all turbines j ∈K for each time period t ∈ {0, · · · ,T } in the planning horizon. We argue that

this selection of operational probabilities is sufficient to show typical behaviour of the OWF.

Turbine 5 has the highest initial age in case 1.1. We observe in Figure 10.8 that at least one

component belonging to the turbine is maintained in time period 0. As a result, the the

probability of operation increase to the next time period. Moreover, turbine 2 with the lowest

initial age in this case, is not significantly maintained until the second to last period, leaving

it fully operating in the final time period. We interpret the rest of the Figures 10.9, 10.10,

10.11, 10.12 and 10.13 similarly.

From visual inspection we find that the optimal value Z j t averaged over turbines j ∈ K is

typically high in each time period t ∈ {0, · · · ,T }. More specifically, the average values are

above 95% for all cases except for case 1.3. The high probabilities of operation evidence

that the loss of income is more critical than the cost of maintenance in cases 1.1, 1.2, 2.1,

2.2 and 2.3. Another observation is that Z j t is more stable for the cases where imperfect

maintenance is used (Figures 10.9,10.12 and 10.13). We justify the latter observation with
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the frequent maintenance that occur in the cases where imperfect maintenance applies in

the optimal solution (Figures 10.3, 10.6, and 10.7). Moreover, we note that despite imperfect

strategies are an option in case 1.3, only a perfect preventive strategies are performed in the

optimal solution in this case (Figure 10.4).

11.2.3 Objective function values

We give the objective function values, best upper bounds and the running time of each in-

stance for experiment II in Table 10.2. We observe that an imperfect maintenance strategy

is optimal in several scenarios. The only exception is case 1.3. It looks like a linear relation

between maintenance cost and the degree of rejuvenation, in addition to low value of Ctravel

and high values of Cextra,i and Cextra, f could favour perfect replacement. However, the latter

statement requires further experiments to be verified.

11.3 Discussion of Experiment III

We give the heuristic algorithm as an alternative to the MIQLP, and apply the algorithm to the

same problem instances as described in Section 9.2.2. We observe from Table 10.3 that the

heuristic finds close to optimal solutions for all instances in Experiment II (cases 1.1, 1.2, 1.3,

2.1, 2.2, 2.3). We obtain optimality gaps from 1% to 3% for the heuristic, as opposed to the 2%

optimality gap with the MIQLP solver. For case 2.1, we observe that the heuristic algorithm

provides an even better solution than the MIQLP, which results in a tighter optimality gap of

1%. The heuristic algorithm improves the initial solution by 43, 46, 46, 44, 51 and 51 % for

cases 1.1, 1.2,1.3, 2.1, 2.2 and 2.3, respectively. The running time of the heuristic algorithm is

significantly lower than for the MIQLP, with over one hour difference for case 2.2. Ten runs of

the heuristic algorithm show that the average objective function values are close to the best

objective function value for each instance.

The two latter instances in Table 10.3 show that the heuristic algorithm obtain solutions

to instances of larger size than what are found by the MIQLP solver. We carry the upper

bound (Table 10.1) from the MIQLP solver, and find a optimality gap of 18% for instance

K100_Oj4_Qf3.The heuristic is meant to be a starting point for further development of a

smarter heuristic solution. However, it yields good solutions.
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11.4 Model strengths and suggestions for further work

This study aims to find the optimal maintenance plan of an OWF of a given size. We do not

assume that information about future failure times are pre-defined. Additionally, the opti-

mal number of preventive maintenance actions are calculated for each specific case. As we

observe in Section 11.2.1, the optimal number of preventive maintenance actions varies with

the problem instance. The MIQLP address the choice of maintenance routes, multiple com-

ponents per turbine, probabilistic failure times and both perfect and imperfect preventive

maintenance. That is, aspects that to the best of our knowledge, are not considered simulta-

neously in other maintenance optimization models. We argue that the latter is a strength of

this optimization model.

Moreover, the relationship between Ctravel, Cextra, M f i j t and E j t can be adjusted to reflect

reality. Nevertheless, we can not be sure that the results we report from the numerical ex-

periments reflect real scenarios, as actual data is challenging to obtain. Weaknesses with the

proposed maintenance model include that good solutions require good pre-defined routes

to choose from. A solution to the model supply the OWF operators with the turbines to be

visited and maintenance actions to be performed for each period. Nevertheless, as a time

period is modelled as 28 days, decisions regarding when to perform each action will likely

have to be made additionally. While decreasing the length of each time period is an option,

this will decrease the planning horizon that we are able to model. We propose the following

as further work for the maintenance model MIQLP:

1. Generate routes smarter for the pre-defined set of routes,

2. including downtime costs from performing maintenance actions,

3. consider variations in weather conditions and electricity prices,

4. combine the operational probabilities based on age, with condition monitor data from

sensors.

Moreover, we propose the following improvements for further work of the heuristic algo-

rithm:

1. A solution should be able to add maintenance actions and routes, as opposed to only

removing,

2. an escape algorithm could be applied to prevent the search of to be stuck in local max-

imum,
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3. a less random and more greedy approach could be implemented to remove the costli-

est routes and actions from the solution, and

4. an acceptance criterion could be applied to save the diversity in the solution.
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Conclusion

UN Sustainable development goal 7 is within reach if tripling wind capacity is tripled by 2030

(UN Summary of the Secretariat, 2021). It is crucial to minimize the cost of OM at OWFs, so

offshore wind energy can take its planned part in reaching the UN sustainability goals and

the Paris Agreement. This Master’s Thesis present a mixed integer optimization model, with

both quadratic and linear constraints (MIQLP). The goal of the model is to find the optimal

schedule for maintaining and operating offshore wind farms. We perform several experi-

ments to explore the time of solving problem instances of different input sizes. The results

show that the number of components per turbine is the parameter increasing the time of

solving the model the most. We want to determine whether the find the optimal mainte-

nance schedule for actual wind farm sizes. In Section 3.1, we find that new additions include

the OWF "Hornsea One" consisting of 174 turbines. In this Master’s Thesis, we are able to

schedule the optimal maintenance plan for an OWF with 200 turbines. However, we can

only consider one single component per turbine, and only allow for perfect maintenance

for OWFs of these sizes. The instance with 200 turbines with four components each, while

allowing both perfect and imperfect maintenance is too large for the MIQLP in this exper-

iment. Nevertheless, we develop a heuristic algorithm to find near-optimal solutions, with

shorter running time. The heuristic are able to obtain a solution for larger instances than

we obtain this the MIQLP solver. Moreover, we introduce different cost scenarios to answer

whether imperfect maintenance is a cost reducing maintenance strategy. The experimental

results verify that an imperfect preventive maintenance plan is favourable in several scenar-

ios. Moreover, the optimal number of preventive maintenance action vary with the scenario

and should not be pre-determined. We argue that although the model is instance sensitive,

it is a good foundation for further development. We conclude that the heuristic find good

solutions, as small optimality gaps are obtained within significantly shorter time than from

solving the MIQLP.
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Appendix A

Instance files for experiment II

We supply additional data for Experiment II in Appendices A.1 to A.7. Firstly, the x- and y-

coordinates of the turbines and the base remain constant for each case. We give their values

in Section A.1. For each case, we give the initial ages for the component at each turbine, the

route costs, the turbines visited by each route, the compatible components to each route and

the compatible strategies to each route (Appendices A.2 to A.7).
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A.1 Coordinates of the turbines and the base

The coordinates of the turbines and the base remain the same for the following six cases.

# x − , y− coordinates of turbines [m]

0 . 0 , 0 . 0

0.0 ,1148.0

0.0 ,2296.0

0.0 ,3444.0

0.0 ,4592.0

0.0 ,5740.0

1148.0 ,0.0

1148.0 ,1148.0

1148.0 ,2296.0

1148.0 ,3444.0

1148.0 ,4592.0

1148.0 ,5740.0

2296.0 ,0.0

2296.0 ,1148.0

2296.0 ,2296.0

2296.0 ,3444.0

2296.0 ,4592.0

2296.0 ,5740.0

3444.0 ,0.0

3444.0 ,1148.0

3444.0 ,2296.0

3444.0 ,3444.0

3444.0 ,4592.0

3444.0 ,5740.0

4592.0 ,0.0

4592.0 ,1148.0

4592.0 ,2296.0

4592.0 ,3444.0

4592.0 ,4592.0

4592.0 ,5740.0

#x − , y− coordinates of base [m]

34450 ,3445
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A.2 Case 1.1

# I n i t i a l age of components

23 ,13 ,19 ,6 ,10 ,13 ,22 ,5 ,1 ,11 ,16 ,2 ,11 ,9 ,3 ,

14 ,19 ,14 ,17 ,6 ,22 ,8 ,19 ,5 ,15 ,5 ,22 ,10 ,22 ,8

#Route Cost [ euro ]

59641.2 ,

54496.0 ,

69112.7

# Routes : row index = route index

26 ,2 ,11 ,7 ,29 ,15 ,0 ,6

16 ,23 ,8 ,1 ,17 ,27 ,21 ,9

10 ,14 ,13 ,19 ,5 ,24 ,20 ,4 ,28 ,12 ,3 ,22 ,18 ,25

# Components that can be maintained by route index nr

0

0

0

# S t r a t e g i e s that can be used by each route , row = route

1.0

1.0

1.0
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A.3 Case 1.2

# I n i t i a l age of components

0 ,19 ,24 ,4 ,14 ,10 ,23 ,17 ,1 ,7 ,18 ,12 ,7 ,4 ,

6 ,9 ,4 ,10 ,24 ,22 ,7 ,23 ,4 ,7 ,0 ,16 ,4 ,24 ,2 ,1

#Route Cost [ euro ]

24262.5

23862.5

23862.5

23862.5

23134.3

22734.3

22734.3

22734.3

26867.5

26467.5

26467.5

26467.5

# Routes : row index = route index

6 ,2 ,17 ,10 ,28 ,5 ,29 ,20

6 ,2 ,17 ,10 ,28 ,5 ,29 ,20

6 ,2 ,17 ,10 ,28 ,5 ,29 ,20

6 ,2 ,17 ,10 ,28 ,5 ,29 ,20

3 ,7 ,27 ,4 ,15 ,8 ,16 ,26

3 ,7 ,27 ,4 ,15 ,8 ,16 ,26

3 ,7 ,27 ,4 ,15 ,8 ,16 ,26

3 ,7 ,27 ,4 ,15 ,8 ,16 ,26

24 ,18 ,11 ,1 ,22 ,23 ,9 ,14 ,21 ,0 ,25 ,13 ,12 ,19

24 ,18 ,11 ,1 ,22 ,23 ,9 ,14 ,21 ,0 ,25 ,13 ,12 ,19

24 ,18 ,11 ,1 ,22 ,23 ,9 ,14 ,21 ,0 ,25 ,13 ,12 ,19

24 ,18 ,11 ,1 ,22 ,23 ,9 ,14 ,21 ,0 ,25 ,13 ,12 ,19

# Components that can be maintained by route index nr

0

0

0

0

0
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0

0

0

0

0

0

0

# Qf that can be used by route index nr

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0
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A.4 Case 1.3

# I n i t i a l age of components

17 ,0 ,8 ,8 ,5 ,18 ,0 ,1 ,20 ,1 ,16 ,2 ,5 ,21 ,0 ,13 ,

23 ,24 ,10 ,22 ,11 ,14 ,11 ,1 ,19 ,0 ,2 ,9 ,16 ,2

#Route Cost : row index = route index

23741.3

23341.3

23341.3

23341.3

22300.8

21900.8

21900.8

21900.8

27595.0

27195.0

27195.0

27195.0

# Routes : row index = route index

20 ,19 ,10 ,3 ,16 ,12 ,22 ,7

20 ,19 ,10 ,3 ,16 ,12 ,22 ,7

20 ,19 ,10 ,3 ,16 ,12 ,22 ,7

20 ,19 ,10 ,3 ,16 ,12 ,22 ,7

9 ,13 ,14 ,8 ,4 ,2 ,6 ,11

9 ,13 ,14 ,8 ,4 ,2 ,6 ,11

9 ,13 ,14 ,8 ,4 ,2 ,6 ,11

9 ,13 ,14 ,8 ,4 ,2 ,6 ,11

28 ,24 ,0 ,15 ,17 ,21 ,27 ,29 ,23 ,18 ,26 ,1 ,25 ,5

28 ,24 ,0 ,15 ,17 ,21 ,27 ,29 ,23 ,18 ,26 ,1 ,25 ,5

28 ,24 ,0 ,15 ,17 ,21 ,27 ,29 ,23 ,18 ,26 ,1 ,25 ,5

28 ,24 ,0 ,15 ,17 ,21 ,27 ,29 ,23 ,18 ,26 ,1 ,25 ,5

# Components that can be maintained by route index nr

0

0

0

0

0
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0

0

0

0

0

0

0

# Qf that can be used by a route : row index = route index

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0
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A.5 Case 2.1

# I n i t i a l age of components

23 ,13 ,19 ,6 ,10 ,13 ,22 ,5 ,1 ,11 ,16 ,2 ,11 ,9 ,3 ,

14 ,19 ,14 ,17 ,6 ,22 ,8 ,19 ,5 ,15 ,5 ,22 ,10 ,22 ,8

#Route Cost [ euro ] : row index = route index

59641.2

54496.0

69112.7

# Routes : row index = route index

26 ,2 ,11 ,7 ,29 ,15 ,0 ,6

16 ,23 ,8 ,1 ,17 ,27 ,21 ,9

10 ,14 ,13 ,19 ,5 ,24 ,20 ,4 ,28 ,12 ,3 ,22 ,18 ,25

# Components that can be maintained by each route : row index = route index

0

0

0

# Qf that can be used by each route : row index = route index

1.0

1.0

1.0
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A.6 Case 2.2

# I n i t i a l age of components

1 ,12 ,21 ,1 ,7 ,10 ,3 ,10 ,16 ,9 ,2 ,1 ,2 ,13 ,9 ,4 ,

5 ,14 ,1 ,14 ,13 ,24 ,11 ,19 ,8 ,15 ,6 ,21 ,23 ,3

#Route Cost [ euro ] : row index = route index

53442.3

53242.3

53242.3

53242.3

56867.6

56667.6

56667.6

56667.6

70319.8

70119.8

70119.8

70119.8

# Routes : row index = route index

22 ,0 ,2 ,3 ,26 ,21 ,16 ,10

22 ,0 ,2 ,3 ,26 ,21 ,16 ,10

22 ,0 ,2 ,3 ,26 ,21 ,16 ,10

22 ,0 ,2 ,3 ,26 ,21 ,16 ,10

13 ,15 ,9 ,7 ,24 ,5 ,20 ,29

13 ,15 ,9 ,7 ,24 ,5 ,20 ,29

13 ,15 ,9 ,7 ,24 ,5 ,20 ,29

13 ,15 ,9 ,7 ,24 ,5 ,20 ,29

18 ,8 ,6 ,17 ,11 ,19 ,1 ,28 ,12 ,25 ,4 ,27 ,14 ,23

18 ,8 ,6 ,17 ,11 ,19 ,1 ,28 ,12 ,25 ,4 ,27 ,14 ,23

18 ,8 ,6 ,17 ,11 ,19 ,1 ,28 ,12 ,25 ,4 ,27 ,14 ,23

18 ,8 ,6 ,17 ,11 ,19 ,1 ,28 ,12 ,25 ,4 ,27 ,14 ,23

# Components that can be maintained by route index nr

0

0

0

0

0
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0

0

0

0

0

0

0

# Qf that can be used each route : row index = route index

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0
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A.7 Case 2.3

# I n i t i a l age of components

4 ,6 ,22 ,3 ,12 ,3 ,4 ,17 ,0 ,4 ,10 ,24 ,24 ,20 ,16 ,

15 ,18 ,1 ,0 ,9 ,23 ,14 ,6 ,9 ,19 ,12 ,19 ,9 ,6 ,11

#Route Cost [ euro ] : row index = route index

56413.7

56213.7

56213.7

56213.7

56078.1

55878.1

55878.1

55878.1

69539.4

69339.4

69339.4

69339.4

# Routes : row index = route index

12 ,1 ,3 ,25 ,9 ,10 ,28 ,16

12 ,1 ,3 ,25 ,9 ,10 ,28 ,16

12 ,1 ,3 ,25 ,9 ,10 ,28 ,16

12 ,1 ,3 ,25 ,9 ,10 ,28 ,16

18 ,7 ,27 ,23 ,22 ,14 ,0 ,29

18 ,7 ,27 ,23 ,22 ,14 ,0 ,29

18 ,7 ,27 ,23 ,22 ,14 ,0 ,29

18 ,7 ,27 ,23 ,22 ,14 ,0 ,29

2 ,5 ,6 ,19 ,15 ,21 ,13 ,24 ,4 ,26 ,8 ,17 ,20 ,11

2 ,5 ,6 ,19 ,15 ,21 ,13 ,24 ,4 ,26 ,8 ,17 ,20 ,11

2 ,5 ,6 ,19 ,15 ,21 ,13 ,24 ,4 ,26 ,8 ,17 ,20 ,11

2 ,5 ,6 ,19 ,15 ,21 ,13 ,24 ,4 ,26 ,8 ,17 ,20 ,11

# Components that can be maintained by each route : row index = route index

0

0

0

0

0



A.7. CASE 2.3 93

0

0

0

0

0

0

0

# Qf that can be used by each route : row index = route index

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0

0 . 2 , 0 . 6 , 1 . 0

0.2

0.6

1.0
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