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Abstract

This thesis presents the theory describing the magnetic moments of Dirac and Majorana neutri-
nos, including a systematic method for extracting the neutrino magnetic moments from a given
model using electromagnetic form factors. In the standard electroweak interactions, neutrino
magnetic moments are suppressed by the small neutrino masses. Theories beyond the Standard
Model which overcome this suppression lead to unacceptably large loop corrections to the neu-
trino masses, necessitating fine-tuning of model parameters. This model building issue, and a
mechanism for avoiding it using a global symmetry, are discussed.

The excess in electron recoil events reported by the XENON1T collaboration may be inter-
preted as a neutrino magnetic moment many orders of magnitude above the Standard Model
prediction. Adopting the interpretation of this excess as a transition magnetic moment from an
active neutrino to a sub-MeV sterile neutrino, leptoquark models with couplings to right-chiral
neutrinos are explored. A recently proposed scalar leptoquark model, which generates large
magnetic moments without fine-tuning, is investigated. A vector leptoquark model is proposed
to simultaneously explain a large neutrino magnetic moment and recent data on lepton flavor
universality violating observables. If fine-tuning of the neutrino mass is accepted, the model
can accommodate the desired observables simultaneously.
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Chapter 1

Introduction

The Standard Model of particle physics is our best model for describing elementary particles
and their interactions. It explains how fermions, the building blocks of matter, interact by
exchanging gauge bosons, and how the masses of particles arise through the Higgs mechanism.
With the discovery of the Higgs boson in 2012 [1, 2], all the particles predicted by the Standard
Model have been observed. However, we know the Standard Model cannot be the final story,
as several questions are left unanswered. Thus, we are motivated to search for new physics not
explained in the Standard Model, so-called beyond the Standard Model (BSM) physics, hoping
to be guided toward a better theory of nature.

An interesting probe for BSM physics is the neutrino sector. Neutrinos are the most elusive
constituents of the Standard Model; they are extremely light particles which only interact weakly
with other matter. Since neutrinos are electrically neutral, they do not interact directly with the
electromagnetic field. In the language of quantum field theory, this means the neutrinos do not
couple to the photon. Nevertheless, neutrinos may interact indirectly with the electromagnetic
field through quantum loop effects. In particular, a magnetic moment may be defined and
predicted for subatomic particles, including neutrinos. The concept of magnetic moments carries
over from classical electrodynamics, where it characterizes the interaction between a system and
an external magnetic field. The magnetic moment of neutrinos is predicted to be extremely small
by the Standard Model, on the order of 10−19µB, with the Bohr magneton µB being the scale
of magnetic moments for electrons and atoms. This is many orders of magnitude lower than
current experimental sensitivities. However, BSM theories may predict it to be much larger.
Thus, an observation of a neutrino magnetic moment in current or future experiments would
be a strong hint toward new physics.

Neutrinos are abundantly produced in nuclear fusion reactions in the Sun. Around 6 × 1010

of these solar neutrinos pass through every square centimeter on earth per second [3, p. 352].
Despite this enormous flux, the neutrinos are hard to detect due to their feeble interaction with
other matter. Therefore, neutrino detectors are large, to increase the probability of seeing a
neutrino interaction, and often built underground in order to shield from other particles. One
such detector was the Homestake chlorine solar neutrino experiment, placed almost 1500m un-
derground in a gold mine. Homestake operated from 1970 to 1994, and was the first experiment
to observe solar neutrinos. In the 1980s, an anticorrelation between solar neutrino flux and sun
spot activity, which fluctuates in an 11-year cycle, was observed in the Homestake data [4]. This
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observation spurred theoretical activity to explain the apparent connection between magnetic
activity in the Sun and the observed number of neutrinos on Earth. One proposed explanation
was a large neutrino magnetic moment on the order of 10−11µB, which would cause the neu-
trinos to be affected by the magnetic field inside the Sun during their propagation through its
interior. In periods of high sun spot activity the magnetic field in the Sun is strong, which would
cause the neutrinos to flip their helicity from left-handed to right-handed. The right-handed
neutrinos would be invisible to the detector on Earth, causing a deficit in the observed flux.
Conversely, when solar activity is low, the neutrinos would pass through the Sun unaffected [5].

During these theoretical developments, it was realized that models with an enhanced neutrino
magnetic moment generally give an unacceptably large quantum loop correction to the neutrino
mass, owing to the similar chiral structure of the relevant operators. This leads to excessive
fine-tuning of parameters in the model in order to fit experimental data. It is desirable to
find models which incorporate large neutrino magnetic moments and small neutrino masses
simultaneously in a more elegant way.

With the advent of neutrino flavor oscillations to explain the solar neutrino problem, interest for
neutrino magnetic moments faded. Recently, however, data from the XENON1T dark matter
detector has shown an excess in electron recoil events in the low end of the recoil energy spec-
trum. These are events where incoming neutrinos scatter off electrons, transferring momentum
to the electron through a mediating gauge boson. A possible explanation for the excess is that
the neutrinos have a large magnetic moment, allowing them to interact electromagnetically with
the electrons in the detector [6]. Thus, interest in neutrino magnetic moments is rekindled, mo-
tivating further theoretical work on the subject. This thesis is devoted to studying the magnetic
moments of neutrinos in the Standard Model and beyond.

The thesis is structured as follows: We start with a brief description of the Standard Model,
including the concept of gauge interactions and the spontaneous breaking of electroweak gauge
symmetry. This sets the stage for exploring BSM models. We also discuss how neutrino masses
can be described in extensions of the Standard Model. In Chapter 3, we review the concept of
magnetic moments in classical physics, and see how it carries over to the quantum mechanical
description. We rederive the famous Schwinger electron g − 2 result, which guides us to the
definition of the neutrino magnetic moment through an effective Lagrangian. In Chapter 4,
we describe the electromagnetic interactions of neutrinos through form factors, developing a
methodology of extracting the magnetic moment of Dirac and Majorana neutrinos in different
theories. We discuss of how neutrino magnetic moments can be measured in experiments, and
in this context we briefly summarize the current experimental results and limits. The method
developed in Chapter 4 is utilized in Chapter 5, where the magnetic moment of neutrinos for
Standard Model interactions is rederived. Next, in Chapter 6 we explore the issue of fine-tuning
which arises in BSM theories with large magnetic moments, and how this issue can be solved
by a new global symmetry. In Chapter 7 a recent result from the literature is rederived, in a
model which introduces scalar leptoquarks to produce a large magnetic moment and utilizes
the aforementioned symmetry mechanism. We investigate possible neutrino mass scenarios in
this model as well. In Chapter 8, a vector leptoquark model is proposed which gives a large
neutrino magnetic moment, and in addition explains recent data on flavor physics anomalies.
Finally, we conclude in Chapter 9.

Natural units, in which c = ~ = 1, are used throughout the thesis unless otherwise specified.
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Chapter 2

The Standard Model and Neutrino
Physics

2.1 Fermions, Chirality and Charge Conjugation

Particles are classified into two types: bosons and fermions. Bosons are particles with integer
spins, examples from the Standard Model including the spin-1 photon and the spin-0 Higgs
boson. Fermions have half-integer spins. Electrons and quarks, which are the constituents of
ordinary matter, are examples of fermions. This class of particles also includes neutrinos, the
main subjects of this thesis. As such, a brief description of fermions and some useful related
operators are given in this section.

The elementary fermions in the Standard Model are spin-1/2 fermions, so we restrict our dis-
cussion to spin-1/2. We describe the elementary fermions as 4-component objects ψ(x) called
Dirac spinors, which satisfy the Dirac equation

(i6∂ −m)ψ(x) = 0, (2.1)

where the slash implies the contraction 6∂ = γµ∂µ and γµ are the 4× 4 Dirac matrices satisfying
the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (2.2)

The Dirac equation is an equation of motion; it describes the free propagation of spinors, such
as electrons.

Massive particles of spin J have 2J + 1 degrees of freedom [7, p. 111]. For massive spin-1/2
fermions, this gives two polarization states, commonly referred to as spin up and spin down.
However, the Dirac spinors ψ(x) have four components. The Dirac spinor is thus a composite
object. This is seen most clearly in the Weyl basis of the gamma matrices, where

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (2.3)

with 1 being the 2× 2 identity matrix and σi the Pauli matrices.
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In this basis, one can express the Dirac equation as a set of two coupled equations,

i∂tξR + iσi∂iξR − χLm = 0

i∂tχL − iσi∂iχL − ξRm = 0,
(2.4)

where we have written the Dirac spinor as

ψ =

(
χL

ξR

)
, (2.5)

χL and ξR being two-component objects called left- and right-chiral Weyl spinors, respectively.
Of course, this decomposition can be done in any basis of the gamma matrices. The special
property of the Weyl spinors can be seen by inspecting the Lorentz transformation of Dirac
spinors. From the covariance of the Dirac equation one can derive the transformation

ψ(x) → ψ′(x′) = exp

(
ε

8

[
γµ, γν

]
Iµν
)
ψ(x), (2.6)

where the number ε and the matrices Iµν characterize the Lorentz transformation in question.
The important thing here is that in the Weyl basis, the commutator

[
γµ, γν

]
is block diagonal.

Thus, χL and ξR do not mix under a Lorentz transformation. Specifically, we have

χL → χL +
1

2

(
iθk − βk

)
σkχL

ξR → ξR +
1

2

(
iθk + βk

)
σkξR,

(2.7)

under an infinitesimal Lorentz transformation, where θk are the rotation angles and βk are the
boost angles. In group theory jargon, one says that Weyl spinors transform under irreducible
representations of the Lorentz group, while the Dirac spinor transforms under a reducible rep-
resentation. The representations of χL and ξR are related; one can transform a left-chiral Weyl
spinor into a right-chiral Weyl spinor and vice versa. To that end, we define the suggestively
named Weyl spinors

χR ≡ iσ2χ∗
L, ξL ≡ −iσ2ξ∗R. (2.8)

Since the left- and right-chiral Weyl spinors are distinguished by how they transform under a
Lorentz transformation, let us check how χR transforms under a boost. Eq. (2.7) gives

χR → iσ2
(
χL − 1

2
βkσ

kχL

)∗
= χR − 1

2
βk

(
iσ2σk

∗
σ2
)
σ2χ∗

L

= χR +
1

2
βkσ

kχR, (2.9)

where in the second line the second term was multiplied by σ2σ2 = 1, and in the third line the
property σ2σk

∗
σ2 = −σk was used. The rotation part of the Lorentz transformation receives

an extra sign change from the complex conjugation, and stays unchanged. Thus, χR indeed
transforms as a right-chiral Weyl spinor. A similar calculation for ξL confirms that it transforms
as a left-chiral Weyl spinor.
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Because χL and ξR transform under irreducible representations of the Lorentz group, one can
think of them as the fundamental states, mixed through the mass term according to Eq. (2.4).
The propagating particle called “the electron” is thus a combination of the left- and right-chiral
spinors.

Since the equation of motion mixes χL and ξR anyway, one might say this distinction is rather
pointless. However, it turns out that nature does care about chirality. Specifically, the weak
interaction only acts on left-chiral particles (and right-chiral antiparticles). Thus, one could
make the argument that χL and ξR are the objects we should talk about, not ψ. Indeed, one
can devise Feynman rules for calculating processes in perturbation theory with two-component
spinors [8]. In this thesis, however, we stick to the conventional four-spinor formalism and
extract the chiral parts of the field using appropriate projector operators. Using the fifth
gamma matrix

γ5 ≡ iγ0γ1γ2γ3, (2.10)

the chirality projection operators are defined as

PL =
1 − γ5

2
, PR =

1 + γ5
2

, (2.11)

which obey the projector relations

PL,R
2 = PL,R, PL + PR = 1, PL,RPR,L = 0. (2.12)

A Dirac spinor can be decomposed as

ψ = (PL + PR)ψ ≡ ψL + ψR. (2.13)

In the Weyl basis,

ψL = PLψ =

(
1 0

0 0

)
ψ =

(
χL

0

)
, ψR = PRψ =

(
0 0

0 1

)
ψ =

(
0

ξR

)
, (2.14)

showing that the chirality projectors extract states of pure chirality from the Dirac spinor. In
the interacting theory, ψL and ψR are treated differently. Thus, we can use the Dirac spinors to
calculate processes in quantum field theory, at the price of having explicit chirality projectors
in the vertex factors.

An operation we will encounter frequently is charge conjugation. The transformation acts on a
Dirac spinor according to

ψ → ψc = Cψ
T
, (2.15)

where ψ ≡ ψ†γ0 denotes the Dirac adjoint spinor, and C is the charge conjugation matrix. C
depends on the choice of basis, but has the defining property

CγTµC
−1 = −γµ. (2.16)

Charge conjugation is named as such since the electric charge of the particle is flipped under
the transformation, but it is important to note that all the labels of the particle are flipped, not
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just the electric charge. In particular, we have

(ψL)
c = CψL

T
= C

(
ψPR

)T
= CPRψ

T
= PRCψ

T
= PRψ

c, (2.17)

i.e. charge conjugation flips the chirality of the spinor. In the Weyl basis, the charge conjugation
matrix is

C =

(
−iσ2 0

0 iσ2

)
. (2.18)

Thus, the charge conjugation operator acts on the Dirac spinor as

ψ =

(
χL

ξR

)
→ ψc =

(
−σ2ξ∗R
σ2χ∗

L

)
=

(
ξL
χR

)
. (2.19)

Evidently, the components of ψc are the transformed Weyl spinors defined in Eq. (2.8). There-
fore, −σ2ξ∗R and σ2χ∗

L are called the charge conjugate Weyl spinors. As already discussed, the
Weyl spinors χ and ξ are in general independent quantities, and can be interpreted to describe
distinct particles. However, a special case is the spinor

ψM =

(
χL

χR

)
, (2.20)

which is called a Majorana spinor. It has the property ψc = ψ, as can be readily checked by
Eq. (2.19). The number of degrees of freedom is halved relative to a Dirac spinor due to this
constraint; the components of ψM are related by Eq. (2.8). As charge conjugation flips the sign
of all charges, Majorana spinors can only describe neutral particles. The topic of Majorana
fermions will become relevant when we discuss neutrino masses in Section 2.4.

2.2 Gauge Interactions

Free fermions of mass m are described by Eq. (2.1), which is the equation of motion correspond-
ing to the Lagrangian

L = ψ (i6∂ −m)ψ, (2.21)

where ψ ≡ ψ†γ0. This Lagrangian is invariant under the U(1) transformation

ψ → ψe−iα, (2.22)

where α is an arbitrary real number. This transformation changes the phase of the spinor by the
same amount at every spacetime point, and is therefore called a global phase transformation.
Let us now demand invariance under the more general, local gauge transformation

ψ → ψe−igf(x), (2.23)

where g is a number and f(x) is a smooth function of spacetime. Under this transformation,
the Lagrangian in Eq. (2.21) transforms as

L → L+ gψγµψ∂µf(x), (2.24)
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that is, it is not invariant. We can restore invariance by replacing the derivative by a covariant
derivative, defined as

Dµψ =
(
∂µ + igAµ

)
ψ, (2.25)

where Aµ is the gauge field associated with the symmetry, transforming as

Aµ → Aµ + ∂µf(x). (2.26)

under a gauge transformation. Together, the transformations in Eq. (2.23) and Eq. (2.26) make
up a U(1) gauge transformation. The Lagrangian

L = ψ (i 6D −m)ψ (2.27)

is invariant under U(1) gauge transformations, and we got the extra term

Lint = −gψγµψAµ. (2.28)

This is a gauge interaction term between the matter field ψ and the gauge boson field Aµ.
The number g determines the coupling strength, and is therefore called the “gauge coupling”.
Thus, an interacting theory arose from demanding invariance under the local transformation
Eq. (2.23). This is called “gauging” the symmetry.

For a theory of electromagnetic interactions, the above description is suitable; The transforma-
tion in Eq. (2.26) is a symmetry of the Lagrangian

L = −1

4
FµνF

µν , (2.29)

where Fµν = ∂µAν − ∂νAµ. Eq. (2.29) is the Lagrangian for electrodynamics. The gauge
symmetry ensures that the field Aµ has only two degrees of freedom, corresponding to the
two polarization states of light. Thus, the gauge field Aµ is identified with the photon field.
Furthermore, by Noether’s theorem the symmetry under U(1) leads to the conserved current
and charge

jµ = gψγµψ, Q =

∫
d3x j0 = g

∫
d3xψ†ψ. (2.30)

Identifying Q as the electric charge, the gauge coupling is g = q, the electric charge of the
fermion ψ. We arrive at the Lagrangian for QED,

LQED = ψ (i6∂ −m)ψ − 1

4
FµνF

µν − qψ 6Aψ. (2.31)

q can be written in terms of the elementary charge e, which we take to be positive. Making
the substitution q = −e in Eq. (2.31) we obtain the familiar Lagrangian describing electrons,
photons, and their interaction.

We arrived at QED by demanding invariance under local phase transformations and identifying
the resulting gauge field with the photon. We could have gone the other way around. The
Lagrangian in Eq. (2.29), which gives the Maxwell equations, is invariant under the U(1) gauge
transformation in Eq. (2.26). This invariance must remain when introducing the interaction
between photons and matter, leading to the covariant derivative in Eq. (2.25) without the
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rather unmotivated step of gauging the global symmetry. Thus, we use the successful classical
description of electrodynamics to guide the development of QED. This is a luxury we do not
have for the other fundamental interactions, so the procedure of gauging a global symmetry is
useful in building the theory of the Standard Model interactions.

The gauge theory of strong interactions, called quantum chromodynamics (QCD), is obtained
by this “symmetry gauging” method. QCD is the theory describing the interactions of quarks,
which are the constituents of hadrons, and gluons, which are massless gauge bosons. It is an
experimental fact that quarks possess a quantum number called color charge. Particles which
have this charge are said to be colored, as opposed to uncolored particles such as leptons. The
color charge of quarks takes one of three values r, g, b, and quark spinors are therefore organized
into three-component fields

Ψ =
(
ψr ψg ψb

)T
. (2.32)

The Lagrangian of free quarks is
L = Ψ(i6∂ −m)Ψ, (2.33)

which is invariant under the global SU(3) transformations

Ψ → eiαAλA/2Ψ, (2.34)

where A = 1, 2, . . . , 8, αA are arbitrary real numbers, and λA are the Gell-Mann matrices,
which are the generators of SU(3). Conservation of color charge follows from the invariance of
Eq. (2.33) under the global transformation Eq. (2.34). Thus, Eq. (2.33) is an experimentally
motivated Lagrangian.

Next we gauge the symmetry by replacing the local phase transformations with the local trans-
formations

Ψ → eigsλAωA(x)/2Ψ, (2.35)

where gs is a coupling constant and ωA(x) are 8 real, smooth functions of spacetime. To obtain
a Lagrangian invariant under the transformations in Eq. (2.35) we replace the derivatives acting
on the quark fields by

DµΨ =
(
∂µ + igsλAG

µ
A/2

)
Ψ, (2.36)

where we introduced the 8 gluon fields Gµ
A. The quark Lagrangian then becomes

L = Ψ(i 6D −m)Ψ. (2.37)

For Eq. (2.37) to be invariant, the gluon fields must transform as

Gµ
A → Gµ

A − ∂µωA(x)− gsfABCωB(x)G
µ
C (2.38)

under an infinitesimal gauge transformation. The transformations in Eq. (2.35) and Eq. (2.38)
constitute an SU(3) gauge transformation.

For a complete picture, the QCD Lagrangian should contain terms which describe gluons when
no quarks are present. In QED, this was achieved by the kinetic term Eq. (2.29). An analogous
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term for gluons does not work, since the expression

−1

4
FAµνF

µν
A , (2.39)

where Fµν
A = ∂µGν

A − ∂νGµ
A, is not invariant under SU(3) gauge transformations. To fix this,

we define the gluon field strength tensor

Gµν
A = Fµν

A + gsfABCG
µ
BG

ν
C (2.40)

to write the gauge invariant gluon Lagrangian

L = −1

4
GAµνG

µν
A . (2.41)

The Lagrangian of QCD is thus

L = Ψ(i6∂ −m)Ψ− 1

2
gsΨ 6GAλAΨ− 1

4
GAµνG

µν
A , (2.42)

where we pulled the quark-gluon interaction term out from Eq. (2.37). In addition, Eq. (2.42)
describes the self-interactions of 8 colored gluons in the last term.

To complete the Standard Model, we need a gauge theory of the weak interactions. This is,
however, not a straightforward task. Whereas the gauge bosons of QED and QCD are massless,
the weak gauge bosons, Z and W±, are massive. Explicit mass terms for gauge bosons break
gauge invariance, so a more involved approach is required. Thus, the next section is devoted to
describing the standard electroweak theory.

2.3 The Standard Electroweak Theory

2.3.1 Gauge Invariant Electroweak Interactions

A striking feature of the weak interactions is that it affects only left-chiral particles and right-
chiral antiparticles; parity is violated. Thus, the chirality projectors in Eq. (2.11) come into
play. For a given fermion species ψ, the chiral components ψL = PLψ and ψR = PRψ have
different quantum numbers and transform differently under gauge transformations. From here
on, to avoid overly cluttered notation, fermion field operators are named according to their
species, i.e. the electron field operator is `e = ψ`e etc.

The electroweak interactions are described by the gauge group SU(2)L × U(1)Y . The charged
lepton fields `α and neutrinos να interact with the gauge bosons according to the Lagrangian

LL = LαLi 6DLαL + `αRi 6D`αR, (2.43)

where there is an implied sum over α = e, µ, τ . LαL is the left-chiral SU(2)L doublet

LαL =

(
ναL
`αL

)
, (2.44)
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and the covariant derivatives are defined as

DµLαL =

(
∂µ + ig

σj

2
W j

µ − ig′
1

2
Bµ

)
LαL, (2.45)

Dµ`αR =
(
∂µ − ig′Bµ

)
`αR. (2.46)

W j
µ and Bµ are the three gauge bosons of SU(2)L, and the gauge boson of U(1)Y , respectively.

We see explicitly that the left- and right-chiral components of the Dirac spinor `α behave
differently. Specifically, the SU(2)L gauge bosons only couple to the left-chiral doublet. The
strength of the coupling to the Bµ depends on the hypercharge Y of the field, defined as

Y =
q

e
− IW3 , (2.47)

where q/e is the electric charge of the field in units of the elementary charge, and IW3 is the
third component of the weak isospin of the field. IW3 is 1/2 for the upper component of an
SU(2)L doublet, and −1/2 for the lower component. These are also called isospin up and down,
respectively, in analogy with the spin angular momentum quantum numbers. Thus, LαL has
Y = −1/2 and `αR has Y = −1. Note that right-chiral neutrinos ναR are not part of an isospin
doublet and has zero electric charge, and thus zero hypercharge. ναR is therefore a complete
singlet under the Standard Model, and is not included in the theory. However, as we shall
explore in the next section, the theory can be extended to include right-chiral neutrinos in
order to explain non-zero neutrino masses.

The gauge bosons have associated kinetic and self-interaction terms, which describe their be-
havior when no fermions are present. These are

LB = −1

4
WiµνW

µν
i − 1

4
BµνB

µν , (2.48)

where

Wµν
i = ∂µW ν

i − ∂νWµ
i − gεijkW

µ
j W

ν
k , (2.49)

Bµν = ∂µBν − ∂νBν . (2.50)

So far, we have described an SU(2)L × U(1)Y gauge invariant theory with massless leptons
and gauge bosons. This is not what is realized in nature; we want to describe massive fermions
interacting with three massive weak bosons and a massless photon. However, naively introducing
mass terms would explicitly break the gauge symmetry. To see this, consider a Dirac mass term
for the charged leptons,

−ml`α`α = −ml`α (PL + PR) `α = −ml

(
`αR`αL + `αL`αR

)
. (2.51)

Since `αL are parts of weak isodoublets and `αR are singlets, this term does not respect the
gauge symmetry.

Introducing masses for the particles in a gauge invariant way requires spontaneous breaking of
SU(2)L×U(1)Y down to U(1)em. In doing so, we will obtain massive charged leptons and weak
gauge bosons, and along the way we will find the charged- and neutral current weak interactions,
as well as the familiar electromagnetic interactions of QED.
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2.3.2 Spontaneous Electroweak Symmetry Breaking

The spontaneous breaking of electroweak gauge symmetry and consequent acquisition of mass
for the weak gauge bosons and fermions is called the Brout-Englert-Higgs (BEH) mechanism.
It is facilitated by a complex scalar doublet

φ =

(
φ1
φ2

)
, (2.52)

called the Higgs doublet, described by the Lagrangian

Lφ = (Dµφ)
† (Dµφ)− µ2φ†φ− λ

(
φ†φ
)2

≡ (Dµφ)
† (Dµφ)− V (φ), (2.53)

where µ2 < 0 and λ > 0. The potential V (φ) has minima at φ = φ0, defined by

φ†0φ0 = |φ10|
2 + |φ20|

2 = −µ
2

2λ
≡ v2

2

=⇒
√
|φ10|

2 + |φ20|
2 =

v√
2
eiθ,

(2.54)

where v is the vacuum expectation value (vev) of the Higgs field, and 0 ≤ θ < 2π. Thus, there
is an infinite number of minima, depending on the phase angle θ. For the ground state of the
field, a particular value must be chosen, spontaneously breaking the symmetry. Without loss
of generality we choose

φ0 =

(
0

v/
√
2

)
. (2.55)

In order to keep electromagnetic gauge invariance unbroken, we impose that φ0 respects U(1)em.
The vacuum state transforms under an electromagnetic gauge transformation as

φ0 → φ′0 = exp
[
−iqf(x)

]
φ0 = exp

[
−i
(
Y + IW3

)
ef(x)

]
φ0, (2.56)

for some differentiable function of spacetime f(x). To obtain φ′0 = φ0 the isospin down compo-
nent of the Higgs doublet must be electrically neutral, i.e. we need Y = −IW3 . From this, we
deduce Y = 1/2 for the Higgs doublet, and we can write the covariant derivative explicitly as

Dµφ =

(
∂µ + ig

σj

2
W j

µ + ig′
1

2
Bµ

)
φ. (2.57)

Thus, we have two complex scalar fields, φ1 with charge +1 and the electrically neutral φ2. To
facilitate interpretation of excitations of the ground state as particles upon quantization, the
Higgs doublet is parameterized in terms of deviations from the ground state, as

φ =
1√
2

(
η1 + iη2

v +H + iη3

)
, (2.58)

where ηi and H are real scalar fields. As we will see, three of these degrees of freedom will be
absorbed in the weak gauge bosons when they acquire mass. Consequently, the parametrization
of the Higgs doublet in Eq. (2.58) contains redundant degrees of freedom. To remove these, we
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express the field in the unitary gauge, where

φ =
1√
2

(
0

v +H

)
. (2.59)

Thus the Higgs doublet is expressed in terms on one real degree of freedom H, which is the
Higgs boson. Other gauges, such as the Feynman gauge, may be more practical in calculations
of higher-order diagrams. Then, the fields ηi are present and give contributions to the am-
plitudes. The amplitudes, corresponding to physical observables, are of course independent of
gauge choice. The unitary gauge is convenient for expressing the electroweak Lagrangian, since
superfluous terms corresponding to unphysical degrees of freedom disappear. For the remainder
of this section, we assume that all fields in the theory are expressed in the unitary gauge.

The leptons couple to the Higgs doublet through the gauge invariant Yukawa terms

LY = −
∑

α=e,µ,τ

y`αLαLφ`αR +H.c. , (2.60)

where y`α are dimensionless coupling constants called Yukawa couplings. After spontaneous
symmetry breaking, the Higgs doublet takes the form of Eq. (2.59). Substituting into Eq. (2.60),
we find

LY = −
∑

α=e,µ,τ

y`αv√
2
`α`α −

∑
α=e,µ,τ

y`α√
2
`α`αH (2.61)

where `α = `αL+`αR. The first term is a mass term for the charged leptons, with m` = y`αv/
√
2.

The second term is an interaction between the charged leptons and the Higgs boson, with the
coupling m`/v. Thus, the charged leptons acquire mass in a gauge invariant way by the BEH
mechanism.

To recover the known massive gauge bosons and the massless photon, we make the identifications

Wµ =
1√
2

(
W 1

µ − iW 2
µ

)
,

W 3
µ = cos θWZµ + sin θWAµ,

Bµ = − sin θWZµ + cos θWAµ,

(2.62)

where Wµ is the non-Hermitian field describing the W± bosons, Zµ and Aµ are the Z0 boson and
photon fields, respectively, and θW is the weak mixing angle (also called the Weinberg angle).
Substituting these expressions into the lepton gauge interactions in Eq. (2.43) and imposing the
constraint

g sin θW = g′ cos θW = e (2.63)

to obtain the correct electromagnetic interaction of QED, we find

LL = −jµAµ − g

2
√
2

(
J†
µW

µ + JµW
µ†
)
− g

cos θW

(
J3
µ − sin2 θW

jµ
e

)
Zµ

+ `α6∂`α + να6∂να,
(2.64)
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where

jµ = −e`αγµ`α,
Jµ = ναγµ (1− γ5) `α = 2ναLγµ`αL,

J3
µ =

1

2

(
ναLγµναL − `αLγµ`αL

) (2.65)

are the electromagnetic current, the charged weak current and the neutral weak current, re-
spectively. These are linear combinations of the currents which couple directly to W j

µ and Bµ.
In particular, the weak hypercharge current coupling to Bµ is

JY
µ =

jµ
e

− J3
µ, (2.66)

which explains the definition of the weak hypercharge in Eq. (2.47).

The W± and Z0 bosons acquire mass through the BEH mechanism. To see this, we plug the
relations in Eq. (2.62) into the term |Dµφ0|2 which appears in Lφ after spontaneous symmetry
breaking to obtain

|Dµφ0|2 =
1

4
(gv)2W †

µW
µ +

1

8

(gv)2

cos2 θW
ZµZ

µ, (2.67)

and we identify the masses

mW =
gv

2
, mZ =

gv

2 cos θW
=

mW

cos θW
. (2.68)

Importantly, the photon field Aµ does not appear in Eq. (2.67), so it remains massless. The
weak gauge bosons now have an additional degree of freedom, since they are massive and the
longitudinal mode of polarization is allowed. This explains how the fields ηi could be removed
by a choice of gauge; the corresponding physical degrees of freedom remain in the theory in the
form of the longitudinal polarizations of W± and Z0.

The rest of the terms in |Dµφ|2 give the kinetic term for the Higgs boson, as well as the
interactions between the Higgs boson and the weak gauge bosons,

(Dµφ)
† (Dµφ) ⊃1

2

(
∂µH

)
(∂µH) +

1

2
vg2W †

µW
µH +

1

4
g2W †

µW
µH2

+
vg2

4 cos2 θW
ZµZ

µH +
g2

8 cos2 θW
ZµZ

µH2.

(2.69)

To obtain the Higgs mass term and self interactions, we plug Eq. (2.59) into the potential V (φ),
which gives

−V (φ) = −λv2H2 − λvH3 − 1

4
λH4. (2.70)

From this we infer the Higgs mass mH =
√
2λv2. Combining Eq. (2.67), Eq. (2.69), and

Eq. (2.70) gives Lφ in the unitary gauge after spontaneous symmetry breaking.

The remaining task is to plug Eq. (2.62) into LB to obtain the kinetic terms for the physical
gauge bosons and the interactions between them. The expression is quite lengthy, and we will
only summarize the types of interactions which appear. These are trilinear couplings involving
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derivatives of the gauge fields, and quadrilinear couplings. Schematically, we have

LB =WWZ +WWA+WWZZ +WWAA+WWAZ +WWWW + kinetic terms. (2.71)

Putting it all together, the standard electroweak Lagrangian for massless neutrinos is given by

L = LY + LL + Lφ + LB (2.72)

where the terms, after symmetry breaking, are given in the unitary gauge in Eqs. (2.61), (2.64),
(2.67) and (2.69) to (2.71).

2.3.3 Weak Interactions of Quarks

So far in this section, we have only considered the electroweak interactions of quarks. The
theory also applies to the quark sector in a straight-forward way. Left-chiral quarks make up
the weak isospin doublets

Q′
iL =

(
u′iL
d′iL

)
, (2.73)

where u′iL are the left-chiral up-type quarks of weak isospin +1/2 and electric charge +2/3, and
d′iL are the left-chiral down-type quarks of weak isospin −1/2 and electric charge −1/3. There
are corresponding right-chiral fields u′iR and d′iR with the same electric charge as their left-chiral
counterparts and no weak isospin. The prime on the field operators will be explained shortly.
The index i = 1, 2, 3 is the flavor index, referring to the three generations(

u′

d′

)
,

(
c′

s′

)
,

(
t′

b′

)
, (2.74)

written in ascending order of mass. The quarks participate in the electroweak interaction
according to the Lagrangian

LQ = Q′
iLi 6DQ

′
iL + u′iRi 6Du

′
iR + d′iRi 6Dd

′
iR, (2.75)

where there is an implicit sum over i, and the covariant derivatives are

DµQ
′
iL =

(
∂µ + ig

σj

2
W j

µ + ig′
1

6
Bµ

)
Q′

iL, (2.76)

Dµu
′
iR =

(
∂µ + ig′

2

3
Bµ

)
u′iR, (2.77)

Dµd
′
iR =

(
∂µ − ig′

1

3
Bµ

)
d′iR. (2.78)

Quark masses are readily explained by the BEH mechanism. The Yukawa Lagrangian is ex-
panded with the terms

LY ⊃ −Y d
ijQ

′
iLφd

′
jR − Y u

ijQ
′
iLφ̃u

′
jR +H.c. (2.79)
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To obtain mass terms for the up-type quarks we introduced the charge conjugate Higgs doublet

φ̃ = iσ2φ∗ =
1√
2

(
v +H

0

)
, (2.80)

where the second equality holds in the unitary gauge. After electroweak symmetry breaking,
the Lagrangian in Eq. (2.79) gives mass terms for the quarks. Y u and Y d are 3 × 3 matrices
of Yukawa couplings. These matrices are in general not diagonal, so u′ and d′ are not states of
definite mass after symmetry breaking. To obtain the mass eigenstates we must transform into
a basis in which Y u and Y d are diagonal. To do so, we define the unitary matrices V u

L , V u
R , V d

L ,
and V u

L such that

V d
L
†
Y dV d

R = Y d,diag, (2.81)
V u
L
†Y uV u

R = Y u,diag, (2.82)

where Y d,diag
ij = ydi δij , Y

u,diag
ij = yui δij , and ydi and yui are Yukawa couplings. Expanding the

doublets in Eq. (2.79), we can now write

LY ⊃ −v +H√
2
Y d
ijd

′
iLd

′
jR − v +H√

2
Y u
iju

′
iLu

′
jR +H.c.

= −v +H√
2

(
V d
LY

d,diagV d
R
†)

ij
d′iLd

′
jR − v +H√

2

(
V u
L Y

u,diagV u
R
†
)
ij
u′iLu

′
jR +H.c.

= −y
d
i v√
2
didi −

yui v√
2
uiui −

ydi√
2
didiH − yui√

2
uiuiH (2.83)

where ui = uiL + uiR and di = diL + diR are quarks of definite mass, defined by

diL =
(
V d
L
†)

ij
d′jL, diR =

(
V d
R
†)

ij
d′jR,

uiL =
(
V u
L
†
)
ij
u′jL, uiR =

(
V u
R
†
)
ij
u′jR.

(2.84)

The quark mass terms are the first two terms in Eq. (2.83), with masses mui = yui v/
√
2 and

mdi = ydi v/
√
2. The third and fourth terms in Eq. (2.83) are the interactions between the

quarks and the Higgs boson.

To understand what the observable effects of quark mixing are, we need to see its effect on the
weak charged current interaction of quarks. These currents are

JQ
µ = 2u′iLγµd

′
iL, (2.85)

similar to the leptonic charged currents Jµ in Eq. (2.65). In the mass basis, the quark weak
charge current takes the form

JQ
µ = 2ujL

(
V u
L
†
)
ji
γµ

(
V d
L

)
ik
dkL = 2ujLγµ

(
V u
L
†V d

L

)
jk
dkL. (2.86)

Thus, the weak charged current interactions couple the weak eigenstates within each generation
in Eq. (2.74) to each other, which are admixtures of the mass eigenstates. In this way, the
decay of heavy quarks to lighter quarks across generations can occur. Quark mixing has no
consequence for weak neutral current interactions and electromagnetic interactions, since the
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mixing matrices cancel due to unitarity. Since the only observable effect of mixing is that
described by Eq. (2.86), the matrix

V CKM
uidj

≡
(
V u
L
†V d

L

)
ij
, (2.87)

called the Cabibbo-Kobayashi-Maskawa (CKM) matrix, is defined. The elements of the CKM
matrix, characterizing the coupling strength between uiL and djL, are parameters to be deter-
mined by experiment.

When introducing the Yukawa terms for leptons in Eq. (2.60), we did not run into the compli-
cation of mixing. The reason for this is that the lepton flavors are defined by the charged lepton
mass states. In the Standard Model, mass is the only property differentiating e, µ and τ , and
the neutrino states are defined by which of these mass eigenstates they couple to in the weak
charged current interactions. Thus, the neutrino να only couples to `α, by definition. Since
the neutrinos are massless in every basis, there is no reason to transform the lepton fields. For
quarks, we do not have this luxury; there is no a priori reason that the eigenstates of the weak
interactions and the mass eigenstates that define their flavor should coincide.

We have now discussed the ingredients of the Standard Model, which, putting everything to-
gether, is the gauge theory of SU(3)c × SU(2)L × U(1)Y , with spontaneous breaking of the
symmetry to SU(3)c × U(1)em. In its original formulation, the neutrino sector of the Standard
Model describes three massless states, but is readily extended to include massive neutrinos.
This extension of the electroweak theory can be done in a straightforward way, analogously to
the charged lepton masses, by introducing right-chiral components of the neutrino fields. This
would be restrictive, however; neutrinos are not obligated to obtain mass only through Yukawa
couplings to the Higgs vev. The topic of neutrino masses requires a more detailed discussion,
which is given in the following section.

2.4 Neutrino Masses

With the observation of neutrino oscillations [9], it is an established fact that neutrinos are mas-
sive. Similarly to the quark sector, the neutrinos of definite mass are in general superpositions
of flavor eigenstates, which are defined by their charged current interactions. Roughly speak-
ing, due to their different masses the massive neutrinos propagate with different frequencies,
allowing interference between the flavor components of the mass eigenstate. Thus, a neutrino
emitted in the electron flavor eigenstate has a non-zero probability to be observed as a muon or
tau neutrino on detection. Neutrino oscillations will be described in more detail in Section 2.6.

One way to incorporate neutrino masses into the Standard Model is to introduce new right-
chiral singlet fields NsR. As the name suggests, these fields are singlets under the Standard
Model gauge group, in contrast to the active, left-chiral neutrinos ναL which partake in the
weak interactions. The most general mass Lagrangian for neutrinos after electroweak symmetry
breaking is [3, p. 130]

LMass = −
n∑

s=1

∑
α=e,µ,τ

NsRM
D
sαναL +

1

2

n∑
s,s′=1

NT
sRC

†MR
ss′Ns′R +H.c. (2.88)

The number of active neutrinos is constrained to three by the invisible Z boson decay width [10],
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but the number of singlet neutrinos is unconstrained. Thus, for the sake of generality we include
n such fields.

The first term in Eq. (2.88) is a Dirac mass term with the n× 3 Dirac mass matrix MD, arising
after electroweak symmetry breaking from the SU(2)L × U(1)Y invariant Yukawa Lagrangian

L ⊃ −
N∑
s=1

∑
α=e,µ,τ

LαLφ̃Y
ν
sαNsR −

∑
α=e,µ,τ

LαLφY
`
αβ`βR +H.c., (2.89)

where Y ν and Y ` are matrices of Yukawa couplings. If we take MR
ss′ = 0 and assume n = 3,

the singlet fields can be incorporated as the right-chiral components of the flavor neutrinos, i.e.
NsR → ναR. We then find the familiar-looking Yukawa term

L ⊃ −
∑

α=e,µ,τ

(
LαLφ̃Y

ν
αβνβR + LαLφY

`
αβ`βR

)
+H.c.

= −v +H√
2

∑
α=e,µ,τ

(
Y ν
αβναLνβR + Y `

αβ`αL`βR

)
+H.c.

(2.90)

In this case, the mechanism of neutrino mass is exactly analogous to the case of up-type quarks.
As discussed in Section 2.3.3, the flavor states of the charged leptons are defined by their mass,
so we take Y ` to be diagonal without loss of generality. Meanwhile, to find the neutrino mass
eigenstates we must do a change of basis. The Yukawa matrix is diagonalized,

U †
LY

νUR = Y ν,diag, (2.91)

where UL,R are unitary matrices such that Y ν,diag
ij = yνi δij . The neutrino mass eigenstates are

linear combinations of the flavor states, the coefficients being the elements of the matrices U †
L,R,

νiL =
(
U †
L

)
iα
ναL, νiR =

(
U †
R

)
iα
ναR. (2.92)

As in the case for quarks, the observable consequence of neutrino mixing is manifested in the
charged current weak interactions, the neutral current interactions being invariant under the
change of bases. Writing the leptonic charged weak current Jµ in the neutrino mass basis, we
have

Jµ = 2ναLγµ`αL = 2νiL
(
U †
L

)
iα
γµ`iL. (2.93)

The physical effects of neutrino mixing are thus encoded in the unitary matrix

(UL)αi ≡ UPMNS
αi , (2.94)

called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. As mentioned, we assumed here
that the three active neutrinos are Dirac particles; they are accompanied by three right-chiral
singlet fields ναR. If this is not the case and there are more singlet neutrinos, the mixing matrix
must be extended to accommodate the extra states, as we will see below.

Inserting the expression for φ̃ in the unitary gauge given in Eq. (2.80) into the Yukawa La-
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grangian Eq. (2.90) and using Eq. (2.91) and Eq. (2.92), we find the mass term

L ⊃ −
3∑

i=1

yνi v√
2
νiLνiR +H.c. . (2.95)

Thus, the neutrino masses are mi = yνi v/
√
2. To obtain masses in the acceptable range of

∼ 0.1 eV [10], the Yukawa couplings must be ∼ 10−12, six orders of magnitude below even the
electron Yukawa coupling, ye ≈ 2.9× 10−6. Although the masses of neutrinos can be described
in this way, their smallness is left unexplained. It is desirable to find a mechanism by which
small neutrino masses are obtained in a more natural way.

The second term of Eq. (2.88) is a mass term for the singlet neutrinos. Note that the term can
be written in the form

−1

2
NsM

R
ss′Ns′ , (2.96)

where the Hermitian conjugate was included, and we defined the field Ns = NsR +N c
sR. This

field satisfies the Majorana condition N c
s = Ns, and Eq. (2.96) is therefore called a Majorana

mass term. An analogous term could be written for the active neutrinos, but it would violate
electroweak gauge symmetry and is therefore forbidden.

To obtain the neutrino mass eigenstates when both terms in Eq. (2.88) are present, we start by
defining the array of left-chiral fields

ΨL =
(
νeL νµL ντL N c

1R . . . N c
nR

)T
. (2.97)

Then we can write the mass Lagrangian in the form

LMass =
1

2
ΨT

LC
†MΨL +H.c. , (2.98)

where M is the (3 + n)× (3 + n) mass matrix

M =

(
0 MDT

MD MR

)
. (2.99)

We can now diagonalize the combined mass term by writing ΨL as a linear combination of the
fields νiL,

ΨαL = UαjνjL. (2.100)

α here refers to both active and singlet flavors1. The unitary matrix U is chosen such that

UTMU = Mdiag, (2.101)

where Mdiag
ij = miδij . Thus, the fields νiL are 3+n mass eigenstates, and the mass Lagrangian

can be written as

LMass =
1

2

3+n∑
i=1

miν
T
iLC

†νiL +H.c. = −1

2

3+n∑
i=1

miνciLνiL +H.c. (2.102)

1The terminology of “flavor” to distinguish between the neutrino states participating in the weak charged
current, is expanded to include the “singlet flavors” s = 1, . . . , n.
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This Lagrangian takes the form of a Majorana mass term. Indeed, as for the singlet neutrino
mass term we can write

LMass = −1

2

3+n∑
i=1

miνiνi, (2.103)

where νi = νiL + νciL are massive fields satisfying the constraint νci = νi. Thus, when singlet
Majorana fields Ns are present, the massive neutrinos are Majorana particles. As we shall see,
this fact has important implications for the magnetic moments of neutrinos.

Again, the effects of mixing show up in the weak interactions. Now, we have 3 + n mass states
which can be rotated to flavor eigenstates, 3 of which participate in the weak interaction. Recall
the leptonic weak charged current,

Jµ = 2ναLγµ`αL. (2.104)

Rotating to the mass eigenstates requires only using a part of the mixing matrix U . Defining
the non-unitary matrix

Ũ = U |3×(3+n) (2.105)

as the 3× (3 + n) matrix obtained by taking the 3 first rows of U , we have

ναL =
∑

α=e,µ,τ

ŨαjνjL, (2.106)

so the leptonic weak charged current can be written as

Jµ = 2νjL
(
Ũ †)

jα
γµ`αL. (2.107)

Since the mixing matrix is non-unitary, the leptonic weak neutral current is affected as well,

J3
µ ⊃ 1

2
ναLγµναL

=
1

2
νiLγµ

(
Ũ †)

iα
ŨαjνjL. (2.108)

If mixing between the active flavors and the singlet states is negligible, Ũ reduces to the unitary
UPMNS and the active and singlet flavors are isolated. Thus, testing the unitarity of the PMNS
matrix is a probe for searching for singlet neutrinos.

It should be noted that a lepton number L assigned to the Majorana neutrinos νi is not con-
served. In the Standard Model, lepton number is a Noether charge associated with the symmetry
under a global U(1) transformation

ψ → eiφψ, (2.109)

where ψ denotes the charged leptons and the standard left-chiral flavor neutrinos. Leptons
have L = +1, while antileptons have L = −1. Clearly, such an assignment is problematic for
Majorana neutrinos since the particles and antiparticles coincide. Majorana neutrinos allow for
processes with ∆L = 2, such as neutrinoless double beta decay (0νββ). Searching for 0νββ

and other processes which similarly violate lepton number is an active field of research. Very
recently, the CMS collaboration performed a search for vector boson fusion events with two
muons of the same charge and no neutrinos in the final state [11]. In this process, the initial
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state consists of hadrons with L = 0, while the final state has L = ±2. No deviation from the
Standard model was found, allowing upper bounds to be set on mixing between νµ and N c

R for
a singlet mass in the 100MeV - 10TeV range.

2.5 The See-Saw Mechanism

With the mass matrix in Eq. (2.99), an opportunity arises to explain the smallness of the active
neutrino masses. The Dirac mass matrix MD is generated by the Higgs mechanism, and its
entries are therefore expected to be of the order of the other fermion masses. Meanwhile, it
is possible that MR is generated by new physics at a high energy scale. The fields Ns could
be parts of multiplets of some gauge symmetry in a high-energy theory, in which case MR is
related to the energy scale at which that symmetry breaks down to the Standard Model gauge
group.

Let us first consider the simple case of one active, left-chiral neutrino ναL, and one singlet,
right-chiral neutrino NR. Thus, ΨL =

(
ναL N c

R

)T , and the mass matrix is

M2×2 =

(
0 mD

mD mR

)
, (2.110)

whose entries are real numbers. As in the general case, this mass matrix is diagonalized with
the help of a unitary matrix U such that

UTM2×2U =

(
m1 0

0 m2

)
, (2.111)

and the mass eigenstates νiL are related to the flavor eigenstates by the unitary transformation

ΨαL = UαjνjL. (2.112)

The mixing matrix U can be parameterized as

U =

(
cos θ sin θ

− sin θ cos θ

)
, (2.113)

where the mixing angle θ, which specifies the admixture of flavor states in the massive neutrinos,
can be shown to be

tan 2θ =
2mD

mR
. (2.114)

The masses are

m1,2 =
1

2
mR

1∓

√
1 + 4

(
mD

mR

)2
 . (2.115)

Now, if we assume mR � mD and expand in the small ratio mD/mR, we obtain to leading
order

m1 ≈
m2

D

mR
, m2 ≈ mR, (2.116)
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and the mixing angle is very small. Thus, we find one heavy state mainly composed of N c
R and

one light state mainly composed of ναL. Because of the negligible mixing, the masses m1,2 are
sometimes sloppily referred to as the masses of the flavor neutrinos να and N c

R.

The small mass m1 is suppressed by mR; as increasing the mass of the heavy state results in
the lighter mass becoming smaller. Hence, the “see-saw mechanism”. Taking Yukawa couplings
of the order unity, we have mD ∼ v and the desirable light mass m1 ∼ 0.1 eV is obtained by
taking mR ∼ 1014GeV.

The see-saw mechanism works as long as the approximation mR � mD holds. For example,
allowing the neutrino Yukawa coupling to be on the order of the electron Yukawa coupling, mR

is lowered to 102GeV. Of relevance to this thesis is the assumption that the singlet neutrino
is kinematically reachable by neutrinos produced in the sun, which have energies up to ∼
10MeV [12]. Singlet neutrinos with masses not too far from the active neutrino masses are
also called sterile neutrinos, and in this case we are interested in sterile neutrinos with mass
of order 1MeV or lower, far below the conventional see-saw scale. For mR at this scale, a
Yukawa coupling of the order 10−8 is needed to obtain the correct active mass, and the see-
saw mechanism loses much of its appeal. Nevertheless, the formulae in Eq. (2.116) are generic
consequences of the assumption mR � mD when both terms in Eq. (2.88) are present.

Let us now outline the see-saw mechanism in the general case of 3 + n neutrino flavors. The
entries of MR are taken to be much larger than the entries of MD, and the mass matrix can be
block-diagonalized by a matrix U ,

UTMU =

(
Mlight 0

0 Mheavy

)
+O

(
(MR)−1MD

)
, (2.117)

where
Mlight ≈ −MDT (

MR
)−1

MD (2.118)

is a 3× 3 matrix whose eigenvalues give the light neutrino masses, and

Mheavy ≈MR (2.119)

is an n × n matrix whose eigenvalues are the masses of n heavy neutrinos. Thus, we obtain
3 light and n heavy neutrino mass eigenstates. The mixing matrix U has off-diagonal blocks
of the order (MR)−1MD [13], which we have assumed to be small. This means there is little
mixing between the blocks. The 3 light neutrinos are mainly composed of the active flavors
νe, νµ, ντ , while the n heavy states are mainly composed of the singlets. Thus, in low-energy
situations we effectively have mixing of three massive Majorana neutrinos.

2.6 Neutrino Oscillations

Having seen how neutrino flavor states are superpositions of mass eigenstates, we are now
able to discuss neutrino oscillations. Neutrino oscillations are important in the discussion of
experimentally measuring neutrino magnetic moments. Therefore, the simple case of neutrino
oscillations in vacuum, using the plane wave approximation, is presented here. The derivation
closely follows Ref. [3]. For a recent review on neutrino oscillations, see Ref. [14].
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Neutrinos produced in weak interactions are in one of three flavor states, which are superposi-
tions of mass eigenstates. Thus, the state describing the emitted neutrino is

|να〉 =
∑
i

U∗
αi |νi〉 , (2.120)

where α = e, µ, τ and U∗
αi are coefficients stemming from the mixing matrix which enters the

leptonic weak charged current. The states |νi〉 describe neutrinos of definite mass, and are
therefore eigenvalues of the Hamiltonian,

H |νi〉 = Ei |νi〉 . (2.121)

The time evolution of the mass states is determined by the Schrödinger equation

i
d

dt

∣∣νi(t)〉 = H
∣∣νi(t)〉 , (2.122)

leading to the plane wave solutions ∣∣νi(t)〉 = e−iEit |νi〉 . (2.123)

Thus, inserting into Eq. (2.120), a state initially created in the flavor α at t = 0 evolves as∣∣να(t)〉 =∑
i

U∗
αie

−iEit |νi〉 . (2.124)

Projecting the evolved state onto another state of definite flavor
∣∣νβ〉, the transition amplitude

for να → νβ is obtained as a function of time,〈
νβ
∣∣να(t)〉 =∑

ij

U∗
αiUβje

−iEit
〈
νj
∣∣νi〉 =∑

i

U∗
αiUβie

−iEit, (2.125)

where the mass states were assumed to be orthonormal. The transition probability is obtained
by squaring the amplitude,

Pνα→νβ (t) =
∣∣〈νβ∣∣να(t)〉∣∣2 =∑

ij

U∗
αiUβiUαjU

∗
βje

−i(Ei−Ej)t. (2.126)

For ultra-relativistic neutrinos, the energy eigenvalues are

Ei =
√
~p2 +m2

i ≈ E +
m2

i

2E
, (2.127)

where E = |~p| is the energy of the neutrino, neglecting the mass contribution. The difference
which enters the exponent in Eq. (2.126) is then

Ei − Ej ≈
m2

i −m2
j

2E
≡

∆m2
ij

2E
, (2.128)

where the squared-mass difference ∆m2
ij was defined. Furthermore, since the propagation time

t is not measured, it is useful to make the approximation t ≈ L, where L is the distance between
the neutrino source and the detector. This approximation holds since ultrarelativistic neutrinos
travel at nearly the speed of light. With these approximations we obtain the useful formula for
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the transition probability,

Pνα→νβ (L,E) =
∑
ij

U∗
αiUβiUαjU

∗
βj exp

(
−i

∆m2
ijL

2E

)
. (2.129)

The ratio L/E depends on the experiment, and the mixing matrix and squared mass differences
are constants of nature to be measured. Clearly, if all neutrinos are massless, neutrino oscil-
lations would not be observed. Unfortunately, however, oscillation experiments cannot probe
absolute neutrino masses, only their squared differences.

In the above derivation the neutrinos were assumed to be ultrarelativistic. But if neutrinos
are massive, they can in principle travel at any velocity relative to the detector. Consider the
processes by which the neutrinos are detected. One option is processes like

ν +A→
∑
i

Xi, (2.130)

proceeding through charged or neutral weak current interactions, where A and Xi are the
target particle in the detector and the daughter particles, respectively. The threshold neutrino
energy for such processes to occur is E & O(100 keV) [3, p. 143]. Another option is scattering
off an atomic electron, ν + e− → ν + e−, which has the cross section σ ∝ E. This sets
sensitivity limits on the neutrino energy for detectors using this process. Even ignoring this,
the characteristic energies for atomic electrons is on the order of a few eV. In any case, for the
present limits on neutrino masses at O(0.1 eV) [10], the detectable neutrinos satisfy E � m,
and the ultrarelativistic approximation is not restrictive.
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Chapter 3

Magnetic Moments

3.1 The Classical Description

The behavior of a system of charged particles in an electromagnetic field is described by the
Lagrangian [15, p. 22]

L =
1

2
miv

2
i + qi ~A(~ri) · ~vi − qiφ(~ri), (3.1)

where mi, ~vi and qi are the mass, velocity and charge of particle i, respectively, ~A(~r) is the
magnetic vector potential, and φ(~r) is the electric scalar potential. The magnetic field ~B is
given by ~B = ~∇× ~A. For a uniform magnetic field, we can use the vector potential ~A = 1

2
~B×~r,

since

~∇× ~A =
1

2
~∇×

(
~B×~r

)
=

1

2

[(
~r · ~∇

)
~B−

(
~B · ~∇

)
~r+ ~B

(
~∇ ·~r

)
−~r

(
~∇ · ~B

)]
=

1

2

[
−~B+ 3~B

]
= ~B, (3.2)

where in the second line, the first term vanishes by uniformity and the fourth term vanishes
since ~B is divergence-free. Assuming that every particle in the system has the same ratio q/m,
the Lagrangian can be rewritten as

L =
1

2
miv

2
i +

q

2m

(
~B×~ri

)
·mi~vi − qiφ(~ri)

=
1

2
miv

2
i +

q~B

2m
· (~ri ×mi~vi)− qiφ(~ri). (3.3)

The quantity in the brackets is the angular momentum ~L of the system. Thus, the interaction
between the system and an external uniform magnetic field is described by the potential

V = − q

2m
~L · ~B ≡ −~µ · ~B. (3.4)

The vector ~µ is the magnetic moment vector of the system, characterizing the strength of the
interaction of the system with the external magnetic field. The sign choice in Eq. (3.4) is such
that a magnetic dipole tends to align itself with the external magnetic field.
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The above description can be used to calculate the magnetic moment of a system of charged
particles. Consider, for example, a collection of uniformly distributed particles of charge q and
mass m, travelling around a circular loop of radius R at an angular speed ω = v/R. The system
is illustrated in Fig. 3.1.

I

q

~v
R

Figure 3.1: A system consisting of uniformly distributed particles with charge q, travelling in
a circular loop of radius R. The particles all have the same angular velocity, and constitute a
current I.

The angular momentum of the system is

~L =
∑
i

miR
2ωn̂, (3.5)

where n̂ is the unit vector perpendicular to the loop. The motion of the particles constitute a
steady electrical current I. With the linear charge density

∑
i qi/2πR, the current is

I =

∑
i qiv

2πR
=

∑
i qiω

2π
. (3.6)

Using Eq. (3.4) and Eq. (3.5), the magnetic moment of the system is then

~µ =
q

2m

∑
i

miR
2ωn̂

=
1

2

∑
i

qiR
2ωn̂

= IπR2n̂ = IAn̂, (3.7)

where A is the area of the circular loop.

Elementary particles carry intrinsic angular momenta called spin. For example, as already
discussed, the electron is a fermion with spin-1/2. It is tempting to apply the above description
to calculate the magnetic moment of the electron, treating it as a rotating spherical charge
distribution. However, in doing so we would consider the electron as a classical system, which
it certainly is not. To correctly calculate the magnetic moment of elementary particles, we need
a quantum mechanical description.

3.2 The Quantum Mechanical Description

For a classical system of particles with charge q and mass m, we found ~µ = q~L/2m. In general,

~µ = γ~L, (3.8)
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where γ is called the gyromagnetic ratio. Any particle with an intrinsic angular momentum also
has an associated magnetic moment, with the gyromagnetic ratio depending on the particle. We
shall restrict ourselves to spin-1/2 fermions, whose free propagation is described by the Dirac
equation Eq. (2.1). As in Eq. (2.25), to introduce interactions between the fermion and the
electromagnetic field, we make the minimal substitution

∂µ → Dµ = ∂µ + iqAµ, (3.9)

where q is the charge of the fermion and Aµ = (φ, ~A) is the electromagnetic 4-potential. The
Dirac equation for a charged fermion in an electromagnetic field becomes[

γµ
(
i∂µ − qAµ

)
−mψ

]
= 0. (3.10)

Now, applying the operator
[
γν (i∂ν − qAν) +m

]
from the left, we obtain[(

i∂µ − qAµ

)
(i∂ν − qAν) γ

µγν −m2
]
ψ = 0. (3.11)

But for a vector Tµ, it holds that

TµTνγ
µγν =

1

4

({
Tµ, Tν

}
{γµ, γν}+

[
Tµ, Tν

]
[γµ, γν ]

)
. (3.12)

Here, we need {
i∂µ − qAµ, i∂ν − qAν

}
{γµ, γν} = 2gµν

{
i∂µ − qAµ, i∂ν − qAν

}
= 4

(
i∂µ − qAµ

)2
, (3.13)

and[
i∂µ − qAµ, i∂ν − qAν

]
[γµ, γν ] = −2iσµν

(
−∂µ∂ν − iq

(
∂µAν

)
− iqAν∂µ − iqAµ∂ν + q2AµAν

+∂ν∂µ + iq
(
∂νAµ

)
+ iqAµ∂ν + iqAν∂µ − q2AνAµ

)
= −2qFµνσ

µν , (3.14)

where Fµν = ∂µAν−∂νAµ is the electromagnetic field strength tensor, and we used the definition
σµν = − i

2 [γ
µ, γν ]. Eq. (3.11) then becomes[ (

i∂µ − qAµ

)2 − q

2
Fµνσ

µν −m2
]
ψ = 0. (3.15)

This result can be written compactly as ( 6D2 + m2)ψ = 0, where we have found 6D2 = D2
µ −

qFµνσ
µν/2. The magnetic moment is contained in the term qFµνσ

µν/2, as we shall now see.

To locate the magnetic moment interaction, we need to identify the Hamiltonian and take the
non-relativistic limit. Since i∂tψ = HDψ, where HD is the Dirac Hamiltonian, we isolate the
time component of the kinetic term in Eq. (3.15),

(i∂t − qA0)
2 ψ =

[
(i∂i − qAi)

2 +
q

2
Fµνσ

µν +m2
]
ψ. (3.16)
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Making the substitutions i∂t → H, i∂i → −~p, we obtain

(HD − qφ)2 ψ =

[(
~p− q ~A

)2
+
q

2
Fµνσ

µν +m2

]
ψ. (3.17)

We now reintroduce factors of ~ and c, so that the non-relativistic limit can be taken by letting
1/c→ 0. Factoring out the mass term, we have

(HD − qφ)2 = m2c4

1 + 1

c2

(
(~p− q ~A)2

m2
+

~q
2m2

Fµνσ
µν

) . (3.18)

Taking the square root and keeping terms up to order c0, we obtain the non-relativistic approx-
imation

HD − qφ ≈ mc2 +
(~p− q ~A)2

2m
+

~q
4m

Fµνσ
µν , (3.19)

and subtracting the mass energy we obtain

H = HD −mc2 ≈ (~p− q ~A)2

2m
+

~q
4m

Fµνσ
µν + qφ, (3.20)

where magnetic moment interaction is described by the second term. Note that this term
is proportional to ~. Thus, taking the classical limit ~ → 0, the intrinsic magnetic moment
vanishes, indicating its quantum mechanical nature. In order to compare to the interaction
potential in Eq. (3.4), we expand the second term and use the relations F0i = −Ei/c and
Fij = εkijB

k,

Fµνσ
µν = 2F0iσ

0i + Fijσ
ij

= −2

c
Eiσ0i + εkijB

kσij

= −2

c
Eiσ0i − 4BkSk

≈ −4BkSk, (3.21)

where Sk = εkijσij/4 are the spin operators acting on Dirac spinors, satisfying the rotation
algebra

[
Si, Sj

]
= i~εijkSk. Substituting into Eq. (3.20) and returning to natural units, the

non-relativistic Hamiltonian is

H ≈ (~p− q ~A)2

2m
− q

m
~B · ~S+ qφ. (3.22)

Comparing to Eq. (3.4), we find the magnetic moment ~µ = q~S/m, or the gyromagnetic ratio

γ =
q

m
(3.23)

for spin-1/2 particles with charge q. The factor missing in the classical prediction γ = q/2m

is called the g-factor, and so the Dirac equation predicts g = 2. The electron, having charge

31



q = −e, has a magnetic moment

~µe = −ge
e

2me

~S

= −geµB~S, (3.24)

where µB = e/2me is the Bohr magneton.

The g = 2 result is a remarkable prediction of the Dirac equation, but it does not agree with the
experimental value of ge ≈ 2.0023 [10]. The deviation from g = 2, called the anomalous magnetic
moment, arises from quantum loop effects and requires quantum field theory to calculate.

3.3 Anomalous Magnetic Moment of a Charged Lepton

We have seen that a charged spinor ψ satisfies(
6D2 +m2

)
ψ = 0. (3.25)

Specializing to the case of a charged lepton with q = −e gives 6D2 = D2
µ + e

2Fµνσ
µν . The mag-

netic moment stems from the term e
2Fµνσ

µν , which connects the spin of the charged lepton to
the magnetic field. The g = 2 result is contained in the coefficient of this term, g e

4Fµνσ
µν . When

calculating the magnetic moment in quantum field theory, we therefore look for terms propor-
tional to Fµνσ

µν , which make corrections to this coefficient. The field strength tensor contains
derivatives of the photon field, so in momentum space the term will look like u(qf )pνσµνu(qi).

We will now calculate the one-loop contribution to the g-factor of a charged lepton in QED,
illustrating how magnetic moments are obtained in quantum field theory. This calculation was
first done by Schwinger in 1948 [16], and its agreement with experiment was an important
success of quantum field theory.

The relevant process at tree-level is

p

qi qf

= Mµ
0 = ieu(qf )γ

µu(qi). (3.26)

The photon corresponds to an external electromagnetic field and is off-shell, its momentum
constrained to be pµ = qµf − qµi . We use the Gordon identity,

u(qf )
(
qµi + qµf

)
u(qi) = (2m)u(qf )γ

µu(qi) + iu(qf )σ
µν
(
qνi − qνf

)
u(qi) (3.27)

to rewrite the amplitude,

Mµ
0 = ie

u(qf )
(
qµi + qµf

)
u(qi)

2m
− e

2m
u(qf )pνσ

µνu(qi). (3.28)

The second term has a coefficient C = e
2m , and the g = 2 result is identified with 4m

e C. To
calculate corrections to g, we thus calculate the coefficient to this term in a given order of
perturbation theory.
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In general, we look at graphs like

p

qi qf . (3.29)

Later we will carefully decompose this vertex into Lorentz invariant form factors, in the case of
incoming and outgoing neutrinos. For now, using all possible Lorentz vectors which may appear
in QED, we parameterize the amplitude as

Mµ = u(qf )
(
f1γ

µ + f2p
µ + f3q

µ
i + f4q

µ
f

)
u(qi) (3.30)

where the form factors fi are matrices in spinor space which depend on scalars such as p · q, p2

or 6p. Using momentum conservation we can substitute out the pµ dependence and let f2 = 0.
Further we can substitute all 6 qi and 6 qf dependence in favor of m by using the momentum
space Dirac equation. Thus, fi can only depend on contractions of qi and qf , i.e. qiqf and m.
Conventionally, the dependence is taken to be on p2 = (qf − qi)

2 = 2m2 − 2qiqf and m2.

Now, using the Ward identity,

0 = pµMµ

= pµu(qf )
(
f1γ

µ + f3q
µ
i + f4q

µ
f

)
u(qi)

= f1u(qf )6pu(qi) + (p · qi) f3u(qf )u(qi) + (p · qf )f4u(qf )u(qi), (3.31)

and using the Dirac equation, u(qf )6pu(qi) = u(qf )(6 qf −6 qi)u(qi) = u(qf )(m−m)u(qi) = 0, so

(p · qi) f3u(qf )u(qi) = −
(
p · qf

)
f4u(qf )u(qi)(

qf · qi − qi · qi
)
f3u(qf )u(qi) = −

(
qf · qf − qi · qf

)
f4u(qf )u(qi)(

qf · qi −m2
)
f3u(qf )u(qi) =

(
qi · qf −m2

)
f4u(qf )u(qi). (3.32)

Thus, f3 = f4. Now we have reduced the number of form factors down to two, and we are left
with

Mµ = u(qf )
(
f1γ

µ + f3(q
µ
i + qµf )

)
u(qi) (3.33)

To extract the magnetic moment, we use the Gordon identity to rewrite the second term,

f3u(qf )(q
µ
i + qµf )u(qi) = f3(2m)u(qf )γ

µu(qi) + f3iu(qf )σ
µν
(
qνi − qνf

)
u(qi), (3.34)

which when substituted into the amplitude gives

Mµ = u(qf ) [f1 + 2mf3] γ
µu(qi) + u(qf )

[
if3σ

µν(qνi − qνf )
]
u(qi)

= ieu(qf )

[
F1

(
p2

m2

)
γµ +

iσµν

2m
pνF2

(
p2

m2

)]
u(qi), (3.35)

where we introduced the new form factors F1 and F2. F1 corresponds to the renormalization
of the electric charge of the lepton, while F2 contributes to the magnetic moment. Observing
that the tree-level result is recovered for F1 = 1 and F2 = 0, we identify g → 2(1+F2(p

2/m2)).
Since the magnetic moment is measured at non-relativistic energies, the quantity we wish to
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calculate is F2(0) for the desired order of perturbation theory.

Only one-particle irreducible vertex graphs contribute to the magnetic moment correction. At
1-loop order, the only such graph is

qi k − qi
qf

k p+ k

p

which has the amplitude

Mµ
2 = e3u(qf )

∫
d4k

(2π)4
γν(6p+ 6k +m)γµ(6k +m)γν

[(k − qi)2 + iε][(p+ k)2 −m2 + iε][k2 −m2 + iε]
u(qi) (3.36)

We use Feynman parameters to simplify the denominator,

1

ABC
= 2

∫ 1

0
dx dy dz δ(x+ y + z − 1)

1

[xA+ yB + zC]3
(3.37)

Here,
A = k2 −m2 + iε, B = (p+ k)2 −m2 + iε, C = (k − qi)

2 + iε, (3.38)

such that

xA+ yB + zC = xk2 − xm2 + yp2 + yk2 + 2ypk − ym2 + zk2 + zq2i − 2zkqi + iε

= k2 + 2k(yp− zqi) + yp2 + zq2i − (x+ y)m2 + iε. (3.39)

But

(kµ + ypµ − zqµi )
2 = k2 + y2p2 + z2q2i + 2ykp− 2zkqi − 2yzpqi

= k2 + 2k(yp− zqi) + y2p2 + z2m2 − 2yzpqi, (3.40)

so we obtain Eq. (3.39) if we subtract from this

∆ = y2p2 + z2m2 − 2yzpqi − yp2 − zq2i + (x+ y)m2

= y(y − 1)p2 + z2m2 − 2yzpqi − zm2 + (1− z)2m2

= y(−x− z)p2 − 2yzpqi + (1− z)2m2

= −xyp2 + (1− z)2m2 − yz[p2 + 2pqi], (3.41)

where the last term vanishes since p2 + 2pqi = (p+ qi)
2 − q2i = q2f − q2i = m2 −m2 = 0. Thus,

we have
xA+ yB + zC = (kµ + ypµ − zqµi )

2 −∆+ iε, (3.42)

which we can exploit by doing the substitution kµ → kµ − ypµ + zqµi , making the denominator
(k2 −∆)3 and leaving d4k unchanged.
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We now turn to the numerator of the amplitude, which is

Nµ = u(qf )γ
ν(6p+ 6k +m)γµ(6k +m)γνu(qi)

= u(qf )
[
γν6pγµ6kγν + γν6kγµ6kγν + γν6pγµγνm+ γν6kγµγνm+ γνγµ6kγνm+ γνγµγνm

2
]
u(qi)

= u(qf )
[
−26kγµ6p− 26kγµ6k + 4pσg

σµm+ 4kσg
σµm+ 4kσg

µσm− 2γµm2
]
u(qi)

= −2u(qf )
[
6kγµ6p+ 6kγµ6k +m2γµ − 2m(2kµ + pµ)

]
u(qi). (3.43)

Making the substitution kµ → kµ − ypµ + zqµi , we obtain

−1

2
Nµ = u(qf )

[
m2γµ + (6k − y6p+ z6 qi)γµ6p+ (6k − y6p+ z6 qi)γµ(6k − y6p+ z6 qi)

−2m(2kµ − 2ypµ + 2zqµi + pµ)
]
u(qi). (3.44)

We wish to extract from this the term proportional to pνu(qf )σµνu(qi). To accomplish this, the
numerator will be rewritten in the form Apµ+B(qµi +q

µ
f )+Cγ

µ. From there the Gordon identity
can be used to obtain the pνu(qf )σµνu(qi) term. After some tedious algebra (see Appendix D),
we find the relevant part of the numerator

Nµ ⊃ −2imz(1− z)pνu(qf )σ
µνu(qi). (3.45)

Substituting Eq. (3.45) and the denominator (k2 − ∆ + iε)3 into Eq. (3.36), the term in the
amplitude contributing to the magnetic moment is

Mµ
2 ⊃ e3

∫
d4k

(2π)4
× 2

∫ 1

0
dx dy dz δ(x+ y + z − 1)

−2imz(1− z)pνu(qf )σ
µνu(qi)

(k2 −∆+ iε)3

= −pνu(qf )σµνu(qi)

[
4ime3

∫ 1

0
dx dy dz δ(x+ y + z − 1)

∫
d4k

(2π)4
z(1− z)

(k2 −∆+ iε)3

]
(3.46)

Our goal is to obtain the form factor F2. Comparing to Eq. (3.35), we have at 1-loop order

F2(p
2) = 8im2e2

∫ 1

0
dx dy dz δ(x+ y + z − 1)z(1− z)

∫
d4k

(2π)4
1

(k2 −∆+ iε)3
. (3.47)

The k integral is evaluated using Wick rotation (see e.g. Appendix B.2 of [7]),∫
d4k

(2π)4
1

(k2 −∆+ iε)3
=

−i
32π2∆

=
−i

32π2(−xyp2 + (1− z)2m2)
. (3.48)

Note that the form factor now can be written as

F2(p
2) = 8ie2

∫ 1

0
dx dy dz δ(x+ y + z − 1)z(1− z)

[
−im2/p2

32π2(−xy + (1− z)2m2/p2)

]
, (3.49)

and thus in the high-energy limit p2/m2 → ∞, the form factor is zero. As we shall see, the
magnetic moment operator is chirality flipping. This behavior is therefore expected, as the left-
and right-chiral fields decouple in the massless limit of QED.
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Meanwhile, in the low-energy limit we have

F2(0) =
im2e2

4

∫ 1

0
dx dy dz δ(x+ y + z − 1)z(1− z)

−i
π2(1− z)2m2

=
e2

4π2

∫ 1

0
dz

∫ 1

0
dy

z

1− z

∫ 1

0
dx δ(x+ y + z − 1). (3.50)

The integral over x is only non-zero if x + y + z − 1 = 0 inside the integration interval, which
means that y + z = 1 − x must be in the interval [0, 1]. This reduces the upper limit in y to
1− z, and we have

F2(0) =
e2

4π2

∫ 1

0
dz

∫ 1−z

0
dy

z

1− z

=
e2

4π2

∫ 1

0
dz z

=
e2

8π2

=
α

2π
, (3.51)

where α = e2/2π is the fine structure constant. The g-factor of a charged lepton to one-loop
order in QED is thus

g = 2(1 + F2(0)) = 2 +
α

π
, (3.52)

or in terms of the anomalous magnetic moment, a ≡ g−2
2 = α

2π ≈ 0.00116. To obtain a more
accurate prediction, one must calculate higher-order loop diagrams, including electroweak and
hadronic effects. The QED calculation for the electron has been done to 5th order in α, obtaining
ae in terms of the fine structure constant [17].

Because of the possibility of extremely precise measurement, the magnetic moment of charged
leptons can be used as precision tests of the Standard Model. To compare the measured g-factor
to the theoretical prediction, one needs an independent measurement of α with equivalent or
better precision to the measurement of g. Using measurements of the velocity of rubidium
atoms that absorb a photon [18], an experimental value of α has been obtained that disagrees
with measurements of the electron anomalous magnetic moment at a significance of 1.6σ [18,
19]. This is a reduction from the 2.5σ deviation when comparing to previous measurements of
α using cesium atoms [20].

The muon magnetic moment has a larger discrepancy between theory and experiment. As of
2022, there is a tension of 4.2σ between the measured value and the theoretical prediction [21].
If the discrepancy persists in future experiments, this could be a strong hint toward physics
beyond the Standard Model.
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3.4 Effective Lagrangian for the Magnetic Moment

We have seen how the magnetic moment is contained in the amplitude of processes like

p

qi qf

, (3.53)

in the limit p2 → 0. To find corrections to the magnetic moment of a charged lepton, we looked
for terms proportional to pνσµν in the amplitude. Such an amplitude is obtained directly from
the effective Lagrangian

Leff ∝ Fµνψσ
µνψ. (3.54)

Consider the process fγ → f , described by this Lagrangian. The fermion field operators do their
usual job of annihilating the initial state fermion and creating the final state fermion. Since the
electromagnetic tensor contains a derivative, we obtain a factor of p from the photon field. Fµν

and σµν are both antisymmetric, so we obtain an amplitude proportional to u(qi)σµνpµενu(qf ),
which is what we’re after.

3.4.1 Chirality Flip

We can write the effective Lagrangian in terms of the left- and right-chiral parts of the fields,

Leff ∝ Fµν

(
ψL + ψR

)
σµν
(
ψL + ψR

)
= Fµν

(
ψLPR + ψRPL

)
σµν
(
PLψL + PRψR

)
. (3.55)

Since γ5 anticommutes with γµ, the chirality projectors commute with σµν = i
2 [γ

µ, γν ]. Then
since PRPL = PLPR = 0, we are left with the terms

Leff ∝ FµνψLσ
µνψR + FµνψRσ

µνψL, (3.56)

which shows that the interaction induces a chirality flip. Thus, to have neutrino magnetic
moments, one needs to introduce fields to play the part of right-chiral neutrinos. There are
several options:

• Right-handed gauge singlet fields ναR, appearing in a Dirac mass term ναLM
D
αβνβR+H.c.

The two chiral fields are parts of a single Dirac spinor να = ναL + ναR.

• Heavier singlet neutrinos NsR, which in addition to the Dirac mass term have a Majo-
rana mass term N c

sRM
R
ss′Ns′R +H.c. Since this field has a different mass than the active

neutrino, it does not combine with νL into a Dirac spinor. Naturally small active neu-
trino masses can be generated with the help of the heavy states Ns through the see-saw
mechanism.

• The charge conjugated neutrino νcL, which is part of the Majorana field ν = νL + νcL. The
magnetic moments of Majorana neutrinos are discussed in Section 3.4.3.

The chirality flip has an important implication for the magnetic moment of neutrinos with only
Standard Model interactions. In that case, the contributing 1-loop diagrams are [22]
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γ

l

ν
W

ν

l
+

γ

W

ν
lν

W
. (3.57)

These diagrams involve electroweak vertices, which only occur for left-chiral neutrinos. Thus,
the chirality flip occurs on the incoming or outgoing neutrino with a mass insertion, from
L ⊃ mψLψR +H.c. Therefore, one has µν ∝ mν . Since (3.57) contain two weak vertices and
one electromagnetic vertex, we obtain

µν ∼ eGFmν = 2meµBGFmν ∼ 10−18µB

(
mν

10−1 eV

)
, (3.58)

where µB = e/2me is the Bohr magneton. Thus, the neutrino magnetic moment in the Standard
Model is heavily suppressed by the small mass of the neutrinos. The explicit calculation of the
neutrino magnetic moment in the standard electroweak theory will be shown in Chapter 5.

3.4.2 Effective Lagrangian in the Non-Relativistic Limit

In general, we are interested in processes like Eq. (3.53) with an incoming fermion ψi and an
outgoing fermion ψf , not necessarily in the same state, i.e. it is possible that f 6= i. The
effective Lagrangian is therefore generalized to

Leff = −1

2

N∑
f,i=1

µfiFµνψfσ
µνψi, (3.59)

where the coupling µfi is an element of a matrix in the space of N fermion states, here taken
to be mass eigenstates. We have seen how this Lagrangian gives an amplitude proportional to
σµνpµεν , thus contributing to the magnetic moment. Let us now justify the name of the coupling
µfi by making the connection to the non-relativistic interaction Hamiltonian H = −~µ · ~B. We
work in the Pauli-Dirac representation, which is convenient for taking the non-relativistic limit,
and hold f, i fixed. In the rest frame we have the plane wave spinor solutions

ψi ≈

(
φs
0

)
e−imit

ψf = ψ†
fγ

0 ≈
(
φTr 0

)
eimf t, (3.60)

where r = 1, 2, φ1 = (1, 0)T and φ2 = (0, 1)T . Splitting Eq. (3.59) into terms with µ = j and
µ = 0 and inserting the spinor solutions, we have

Leff ≈ −ei(mf−mi)

µfi
2
Fjk

(
φTr 0

)
σjk

(
φs
0

)
+ µfiF0k

(
φTr 0

)
σ0k

(
φs
0

) . (3.61)
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In the Dirac-Pauli representation, the gamma matrices are

γ0 =

(
1 0

0 −1

)
, γk =

(
0 σk

−σk 0

)
, (3.62)

so

σjk = − i

2

[
σj , σk

]
14×4 = εjklσl14×4, σ0k = i

(
0 σk

σk 0

)
. (3.63)

The second term in Eq. (3.61) vanishes, and we’re left with

Leff ≈ −
µfi
2
ei(mf−mi)tFjkε

jkl
(
φTr 0

)
σl14×4

(
φs
0

)
= µfie

i(mf−mi)tBlφTr σ
lφs, (3.64)

where we used the relation Bl = −1
2ε

jklFjk to rewrite in terms of the magnetic field. At this
point, we are describing the generalization of the magnetic moment, where the concept is ex-
tended to transition processes where i 6= f . To connect with the non-relativistic theory, we now
take i = f , such that we are describing the magnetic moment interaction of a single fermion ψ.
The spin operator for a non-relativistic fermion is [23, equation (3.111)] ~S =

∫
d3xψ†

(
1
2
~Σ
)
ψ,

where Σk = σk1. Inserting our spinor solutions, we have

Sk =
1

2

∫
d3x

(
φTr 0

)(σk 0

0 σk

)(
φs
0

)

=
1

2

∫
d3xφTr σ

kφs. (3.65)

Thus,
−
∫

d3xLeff = H = −2µ~S · ~B =⇒ ~µ = 2µ~S = µ~σ. (3.66)

The quantity µ thus determines the amplitude of the magnetic moment vector. We call µfi “the
magnetic moment”, defined through the effective Lagrangian Eq. (3.59), while ~µ is referred to as
“the magnetic moment vector”. Note that in Eq. (3.66), we assumed that the spinors ψ describe
neutrinos. In the case of charged leptons, −

∫
d3xLeff is added to the tree-level contribution

H0 = 2e~S · ~B/2m`. Then, the coupling should be a`e/4m`, a` being the anomalous magnetic
moment, in order to produce ~µ` = −ge/2m`

~S.

3.4.3 Magnetic Moment of Majorana Neutrinos

Majorana fermions are defined by the property ψ = ψc, where

ψc = Cψ
T (3.67)

denotes charge conjugation and C is the charge conjugation matrix. For the Dirac adjoint field
we have

ψc = −ψTC−1. (3.68)
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Thus in the case of Majorana fermions we can rewrite the effective Lagrangian as

LMajorana
eff = −

µfi
4
Fµν

(
ψfσ

µνψi + ψc
fσ

µνψc
i

)
(3.69)

Using equations (3.67) and (3.68), we can rewrite the second term in the brackets:

ψc
fσ

µνψc
i = −ψT

f C
−1σµνCψi

T

= − i

2
ψT
f C

−1 (γµγν − γνγµ)Cψi
T
. (3.70)

Now, using the property CγµTC−1 = −γµ,

ψc
fσ

µνψc
i = − i

2
ψT
f C

−1
(
CγµTC−1CγνTC−1 − CγνTC−1CγµTC−1

)
Cψi

T

= − i

2
ψT
f

(
γµTγνT − γνTγµT

)
ψi

T

= − i

2
ψT
f (γνγµ − γµγν)T ψi

T

= −ψT
f σ

νµTψi
T

= ψT
f σ

µνTψi
T

= −
(
ψiσ

µνψf

)T
, (3.71)

where we used the antisymmetry of σµν , and we gained a minus when exchanging spinors. The
object inside the brackets is just a number, so we can take the transpose without changing it.
Thus, we arrive at

ψc
fσ

µνψc
i = −ψiσ

µνψf . (3.72)

Inserting into Eq. (3.69), we have

LMajorana
eff = −

µfi
4
Fµν

(
ψfσ

µνψi − ψiσ
µνψf

)
. (3.73)

If i = j the effective Lagrangian vanishes. Thus, Majorana fermions only have transition
magnetic moments. Since the quantity in the brackets is antisymmetric on the exchange i↔ f

while the Lagrangian is symmetric, we have

µif = −µfi, (3.74)

i.e. the magnetic moment matrix for Majorana fermions is antisymmetric. Majorana fermions
have half the number of degrees of freedom as Dirac fermions, so it should be expected that the
magnetic moment matrix for Majorana neutrinos is more restricted.

Since Majorana spinors can be written as ψ = ψL + ψc
L, with PRψ = ψc

L, the charge conjugate
spinor ψc

L plays the part of the right-chiral field in the magnetic moment interaction. Thus, for
Majorana particles one finds transition magnetic moments for the processes ψiLγ → ψc

fL and
ψc
iLγ → ψfL, where f 6= i.
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Chapter 4

Electromagnetic Form Factors

We have now seen how the magnetic moment µfi of neutrinos can be defined as the coupling
in the effective Lagrangian in Eq. (3.59). To predict µfi in a given theory, we need a way
of extracting it from the relevant amplitudes. Such a method is developed in this chapter.
The amplitude resulting from an effective neutrino-photon vertex depends on various Lorentz
covariant combinations of tensors. We wish to separate the dependence on these tensors into
individual terms, the coefficients of which are the electromagnetic form factors. From the
structure of the effective interaction described in the previous chapter, one of these form factors
will be identified with the neutrino magnetic moment. The ensuing derivation closely follows
those in [24] and [13].

4.1 Dirac Neutrinos

The neutrino magnetic moment is described by the interaction with a single photon in the low
energy limit. In the case of the electron, we were able to write down the QED vertex function
in terms of two form factors. Using the Gordon identity, the vertex function could be rewritten
such that one term was proportional to σµν , allowing us to read off the magnetic moment. In
the case of neutrinos, we are interested in the amplitude

p

qi qfνi νf

= uf (qf )Λ
µ
fi(qi, qf )ui(qi), (4.1)

where the external photon polarization vector was not included. This process only has contri-
butions from loop diagrams. Eq. (4.1) arises from an effective interaction Hamiltonian [13]

H =

N∑
f,i=1

νfΛ
µ
fiνiAµ, (4.2)

where νi and νf are on-shell neutrino mass eigenstates, i.e. p2i,f = m2
i,f , and momentum is

conserved, p = qf − qi. The sum runs over all neutrino mass states. The vertex function Λµ
fi

is a 4 × 4 matrix in spinor space. Unlike in the QED case, the loop contributions can come
from parity-violating weak interactions, so Λµ

fi is a sum of polar and axial vector contributions.
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Thus, we can write Λµ
fi as a linear combination of the 16 basis matrices {1, γµ, σµν , γ5, γµγ5}.

The Lorentz index in the vertex function can be carried by the available tensors, which are
the momenta qµ1 , qµ2 , the metric gµν and the Levi-Civita symbol εµνλρ, where dependence on
pµ was eliminated using momentum conservation. For convenience, we choose the momentum
dependence to be on p and r ≡ qi+qf . Then Λµ

fi can be expressed in terms of the combinations
of tensors and basis matrices which carry one Lorentz index.

We can immediately eliminate contractions of the momenta with γµ, such as 6p, 6 r and σλρpλrρ,
by using the momentum-space Dirac equation,

6 qiu(qi) = miu(qi), u(qf )6 qf = mfu(qf ). (4.3)

The remaining terms where the Lorentz index is carried by pµ or rµ are

{pµ1, rµ1, pµγ5, r
µγ5}. (4.4)

There are also terms where the basis matrix carries the Lorentz index. These are

{γµ, γµγ5, σµνpν , σµνrν}. (4.5)

Finally, we have the terms where the Lorentz index is carried by the Levi-Civita symbol,

{εµνλρσλρpν , εµνλρσλρrν , εµνλρpλrργν , εµνλρpλrργ5γν , εµνλρpλrρσνκpκ, εµνλρpλrρσνκrκ}. (4.6)

These 14 terms are not linearly independent. Our next task is to reduce the number of terms
down to the set of 6 matrices

S = {pµ1, pµγ5, γ
µ, γµγ5, σ

µνpν , ε
µνλρσλρpν}. (4.7)

Firstly, we can rewrite the matrix σµν as

σµν = iγµγν − igµν . (4.8)

Thus, we have

u(qf )iσ
λρ
(
qf − qi

)
ρ
u(qi) = u(qf )

(
− γλγρ + gλρ

) (
qf − qi

)
ρ
u(qi)

= u(qf )
[
− γλ

(
6 qf −6 qi

)
+ qλf − qλi

]
u(qi)

= u(qf )
[
6 qfγλ − 2(qf )ρg

λρ + γλmi + qλf − qλi

]
u(qi)

= u(qf )
[
(mf +mi)γ

λ − (qf + qi)
λ
]
u(qi). (4.9)

Using this relation we can eliminate the rµ1 term in favor of σµνpν and γµ. Using qf +qi instead
of qf − qi in the above derivation, we arrive at

u(qf )iσ
λρ
(
qf + qi

)
ρ
u(qi) = u(qf )

[
(mf −mi)γ

λ − (qf − qi)
λ
]
u(qi), (4.10)

which we can use to eliminate σµνrν in favor of γµ and pµ1. Furthermore, exchanging u(qi) for
γ5u(qi) in Eqs. (4.9) and (4.10) has the effect of flipping the sign of mi, since {γµ, γ5} = 0.
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Thus, we have the identities

u(qf )iσ
λρ
(
qf − qi

)
ρ
γ5u(qi) = u(qf )

[
(mf −mi)γ

λ − (qf + qi)
λ
]
γ5u(qi), (4.11)

u(qf )iσ
λρ
(
qf + qi

)
ρ
γ5u(qi) = u(qf )

[
(mf +mi)γ

λ − (qf − qi)
λ
]
γ5u(qi). (4.12)

The left-hand side of these equations can be rewritten using the relation

σλργ5 =
i

2
εµνλρσµν , (4.13)

which allows us to use Eq. (4.11) to rewrite rµγ5 in terms of γµγ5 and εµνλρσλρpν , and Eq. (4.12)
to rewrite εµνλρσλρrν in terms of γµγ5 and pµγ5.

There are 4 more terms involving the Levi-Civita symbol which need to be rewritten in terms
of the set S. All of them contain the contraction εµνλργν , so we use the identity

εµνλργν = i
(
gµλgνρ − gµρgνλ

)
γνγ5 − γµσλργ5. (4.14)

This must be contracted with pλrρ, yielding

εµνλρpλrργν = i6 rpµγ5 − i6prµγ5 −
i

2
γµγ5 (6p6 r −6 r6p) . (4.15)

As stated before, 6 r and 6p can be exchanged in favor of masses. Thus, Eq. (4.15) can be used to
exchange εµνλρpλrργν in favor of pµγ5, γµγ5, and εµνλρσλρpν . The term εµνλρpλrρσνκp

κ can be
written as

εµνλρpλrρσνκp
κ =

i

2

[
εµνλρpλrργν , 6p

]
, (4.16)

i.e. we obtain the same terms as in Eq. (4.15), but with an extra 6p on the left or right. Thus,
we can still exchange εµνλρpλrρσνκpκ in favor of pµγ5, γµγ5, and εµνλρσλρpν , and the same is
true for εµνλρpλrρσνκrκ. Finally, multiplying Eq. (4.15) by γ5 and using γ5γ5 = 1, we can write
the term εµνλρpλrργ5γν in terms of pµ1, γµ and σµνpν .

Summarizing, we have shown that the vertex function Λµ
fi can be written as a linear com-

bination of the set S. The coefficients are Lorentz invariant functions of p and r, but since
r2 = 2

(
m2

f +m2
i

)
− p2, they can be written in terms of p2 only. Thus, we can write the vertex

function on the form

Λµ
fi =f1(p

2)pµ1 + f2(p
2)pµγ5 + f3(p

2)γµ + f4(p
2)γµγ5 + f5(p

2)σµνpν + f6(p
2)εµνλρσλρpν ,

(4.17)

where the indices fi on the form factors fj have been suppressed to avoid clutter. We can
simplify further using conservation of the electromagnetic current, ∂µjµ, where jµ = νfΛ

µ
fiνi.

In momentum space this implies pµu(qf )Λµ
fi(qi, qf )u(qi) = 0. The f5 and f6 terms vanish in this

contraction, since pµpν is symmetric in µ and ν while the relevant tensors are antisymmetric.
Using the momentum space Dirac equation, the rest of the terms give

u(qf )
[
f1(p

2)pµp
µ + f2(p

2)pµp
µγ5 + f3(p

2)6p+ f4(p
2)6pγ5

]
u(qi) = 0

=⇒ u(qf )
[
f1(p

2)p2 + f2(p
2)p2γ5 + f3(p

2)(mf −mi) + f4(p
2)(mf +mi)γ5

]
u(qi) = 0
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=⇒
f1(p

2)p2 + f3(p
2)(mf −mi) = 0

f2(p
2)p2 + f4(p

2)(mf +mi) = 0,
(4.18)

where we obtain two independent equations since γ5 and the identity matrix are linearly inde-
pendent. Substituting Eq. (4.18) back into Eq. (4.17), we have

u(qf )Λ
µ
fiu(qi) ⊃ u(qf )

[
− f3(p

2)
mf −mi

p2
pµ + f3(p

2)γµ

− f4(p
2)
mf +mi

p2
pµγ5 + f4(p

2)γµγ5

]
u(qi)

= u(qf )

[
FQ(p

2)

(
γµ − 6ppµ

p2

)
+ FA(p

2)

(
γµ − 6ppµ

p2

)
γ5

]
u(qi), (4.19)

where FQ(p
2) = f3(p

2) is the form factor corresponding to charge renormalization, and FA(p
2) =

f4(p
2) is the anapole form factor.

Further, we use Eq. (4.13) to obtain

σµνγ5 =
i

2
ελρµνσλρ

=
i

2
εµνλρσλρ

=⇒ εµνλρσλρ = −2iσµνγ5, (4.20)

which can be used to rewrite the f6 term in Eq. (4.17) as proportional to σµνpνγ5. This term
was not included in the original set S since it is a combination of two basis matrices. Together
with Eq. (4.19), this enables us to write the vertex function on the conventional form

Λµ
fi =

(
γµ − 6ppµ

p2

)
FQ(p

2) +
iσµνpν
mf +mi

FM (p2) +

(
γµ − 6ppµ

p2

)
γ5FA(p

2) +
iσµνpν
mf +mi

γ5FE(p
2),

(4.21)
where FM = −i(mf +mi)f5 is the magnetic dipole form factor, and FE = −2(mf +mi)f6 is the
electric dipole form factor. The form factor FM (p2) in the on-shell limit is what we’re interested
in here, since it gives the magnetic moment. Recall the effective Lagrangian which describes
the magnetic dipole moment interaction,

Leff = −
N∑

i,f=1

µfi
2
Fµννfσ

µννi (4.22)

For the process νi(qi)γ(p) → νf (qf ) we find the S-matrix element

Sfi =
〈
νf (qf )

∣∣− i
µfi
2

∫
d4xN

{(
∂µA

(+)
ν − ∂νA

(+)
µ

)
ν(−)σµνν(+)

} ∣∣γ(p)νi(qi)〉
= iµfi

〈
νf (qf )

∣∣ ∫ d4x
(
ν(−)σµν∂νA

(+)
µ ν(+)

) ∣∣γ(p)νi(qi)〉
= iµfi 〈0|

∫
d4xuf (qf )σ

µν(−ipν)εµ(p)ui(qi)ei(qf−qi−p)x |0〉

= µfiuf (qf )σ
µνεµ(p)pνui(qi)× (2π)4δ(qf − qi − p),

(4.23)
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i.e. the amplitude
Mµ = µfiuf (qf )σ

µνpνui(qi). (4.24)

This must agree with Eq. (4.21) for an on-shell photon, so

µfi =
iFM (0)

mf +mi
. (4.25)

Since the Hamiltonian in Eq. (4.2) is Hermitian and the photon field is real, it follows that

∑
f,i

νfΛ
µ
fiνi =

∑
f,i

(
νfΛ

µ
fiνi

)†
=
∑
f,i

νiγ
0
(
Λµ
fi

)†
γ0νf

=
∑
f,i

νfγ
0
(
Λµ
if

)†
γ0νi, (4.26)

where γ0γ0 = 1 was inserted in the second line and the summation indices i, f were renamed
in the third line. Thus, Hermiticity implies

γ0
(
Λµ
if

)†
γ0 = Λµ

fi, (4.27)

which means that γ0 (iσµνFM )† γ0 = iσµνFM . From this, we find that the magnetic moment
matrix is Hermitian. This can also be seen from the Hermiticity of the effective Lagrangian in
Eq. (4.22), which gives µ∗fi = µif .

As we saw in Section 3.4.1, the magnetic moment operator is chirality flipping. The Lagrangian
Eq. (4.22) and the amplitude Eq. (4.24) describes both the processes νLγ → νR and νRγ → νL.
When looking at a theory with active chiral neutrinos νL and heavier sterile chiral neutrinos
NR, it is more natural to consider the transition νLγ → NR, but the resulting amplitude could
then not be compared directly to Eq. (4.24). For simplicity, consider one active neutrino and
one sterile neutrino. The effective Lagrangian is then

Leff = −µNν

2
FµνNσ

µνν − µνN
2
Fµννσ

µνN − µνν
2
Fµννσ

µνν − µNN

2
FµνNσ

µνN (4.28)

Inserting the identity matrix 1 = PL + PR, we obtain in total 8 terms. If the neutrinos are
chiral, only two terms survive,

Leff = −µνN
2
FµνNRσ

µνPLνL − µNν

2
FµννLσ

µνPRNR (4.29)

The first term gives the interaction vertex νLγ → NR. The relevant part of the resulting
amplitude receives a factor 1/2 relative to Eq. (4.24) due to the chirality projector. Thus,
Eq. (4.25) would need to be modified to

µνN =
2iFM (0)

mf +mi
. (4.30)

Thus one uses either Eq. (4.25) or Eq. (4.30) to extract the magnetic moment, depending on
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the situation at hand.

Having written the amplitude for a process like Eq. (4.1) in a given theory, one can obtain the
magnetic moment by rewriting the amplitude in the form of Eq. (4.21), picking out FM (0),
and using Eq. (4.25). We were able to do this for the 1-loop QED contribution to the electron
magnetic moment, but in general it’s very impractical. A more straightforward way to obtain
FM (0) from the amplitude is to use a projector Pµ

M , such that

tr
[
PMµΛ

µ
fi

]
= FM (p2). (4.31)

Pµ
M is carries a Lorentz index and is a matrix in spinor space, such that contracting and taking

the trace yields a scalar. Using the projection technique, one avoids having to calculate the
entire loop integral, only picking out the relevant part. Throughout this thesis, the magnetic
moment is calculated using Package-X [25] in Mathematica [26]. Specifically, the form factor
FM (p2) is obtained using the function Projector, and loop integrals are carried out with the
LoopIntegrate function.

4.2 Majorana Neutrinos

Majorana neutrinos are their own antiparticles, and thus the adjoint field ν contains the same
operators as ν. Therefore, the transition νiγ → νf can be obtained from two of the terms in
the interaction Hamiltonian Eq. (4.2),

H ⊃ νfΛ
µ
fiνiAµ + νiΛ

µ
ifνfAµ. (4.32)

These terms give the amplitude

Mµ = uf (qf )Λ
µ
fi(p)ui(qi)− vi(qi)Λ

µ
if (p)vf (qf ), (4.33)

where the relative minus comes from normal ordering. The first term is the amplitude in the
case of Dirac neutrinos, Eq. (4.1). Using the relations v = uc = CuT and v = uc = −uTC−1,
the amplitude is written as

Mµ = uf (qf )Λ
µ
fi(p)ui(qi) + ui(qi)

TC−1Λµ
if (p)Cuf (qf )

T

= uf (qf )
(
Λµ
fi(p) + CΛµ

if (p)
TC−1

)
ui(qi), (4.34)

where the second term was transposed in spinor space and the properties CT = C−1 = −C
were used. Defining the Majorana vertex function ΛMµ

fi (p), we have

ΛMµ
fi (p) = Λµ

fi(p) + CΛµ
if (p)

TC−1. (4.35)

Specifically, the magnetic moment term for Majorana neutrinos is

iσµνpν
mf +mi

FM
Mfi(p

2) =
iσµνpν
mf +mi

FMfi(p
2) + C

(
iσµνpν
mf +mi

FMif (p
2)

)T

C−1

=
(
FMfi(p

2)− FMif (p
2)
) iσµνpν
mf +mi

, (4.36)
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where we used the property CσTµνC
−1 = −σµν , which follows from the defining property

C−1γµC = −γTµ of the charge conjugation matrix. Thus, the magnetic moment matrix for
Majorana neutrinos is obtained by

µMfi = µDfi − µDif . (4.37)

As expected from Section 3.4.3, µMfi is antisymmetric in the space of neutrino states, so only
transition magnetic moments are allowed. Since the magnetic moment matrix is also Hermitian,
the transition Majorana magnetic moments are imaginary.

4.3 Effective Neutrino Magnetic Moment

In detectors, one can look for neutrino magnetic moments by analyzing neutrino-electron scat-
tering. In the Standard Model, weak neutral and charged current interactions contribute to this
process. With a large neutrino magnetic moment, diagrams like Fig. 4.1 contribute significantly
to the total cross section, which can be written as

dσναe−

dTe
=

(
dσναe−

dTe

)
w
+

(
dσναe−

dTe

)
em
, (4.38)

where Te is the kinetic energy of the final electron. The first term in Eq. (4.38) is the contribution
from the Standard Model weak interactions, given by [13](
dσναe−

dTe

)
w
=
G2

Fme

2π

{(
gναV + gναA

)2
+
(
gναV − gναA

)2(
1− Te

Eν

)2

+
[(
gναA
)2 − (gναV )2] meTe

E2
ν

}
,

(4.39)
where the couplings are

gνeV = 2 sin2 θW +
1

2
,

g
νµ,τ
V = 2 sin2 θW − 1

2
,

gνeA =
1

2
,

g
νµ,τ
A = −1

2
,

(4.40)

and for antineutrinos one must substitute gA → −gA. The second term in Eq. (4.38) is the
contribution from the neutrino-photon interaction, which in the lowest order in neutrino mass
can be shown to be [27] (

dσναe−

dTe

)
em

=
πα2

m2
e

(
1

Te
− 1

Eν

)(
µeff
να

µB

)2

, (4.41)

where Eν is the energy of the incoming neutrino, and µeff
να is the effective neutrino magnetic

moment, which will be explained shortly. There is a cross term between the weak and electro-
magnetic terms in the cross section, but it is suppressed by mν/me at lowest order in neutrino
mass, and we therefore neglect it [28]. Note the Te dependence of Eq. (4.41), which is differ-
ent from that of Eq. (4.39); the inverse proportionality means that the smaller electron energy
can be measured, the smaller neutrino magnetic moments can be probed. This is illustrated
in Fig. 4.2, where the weak and electromagnetic cross sections for a 1MeV electron neutrino
scattering elastically with an electron are shown as functions of the electron recoil energy. As
is evident from Fig. 4.2, the electromagnetic contribution dominates at low recoil energies.

The neutrino-electron scattering cross section depends on an effective neutrino magnetic moment
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γ

e− e−

νfνα

Figure 4.1: Diagram involving the neutrino electromagnetic interaction which contributes
to neutrino-electron scattering. να is an active neutrino flavor state emitted from a source,
which oscillates on its way to the detector. νf is a mass eigenstate. The gray blob represents
the neutrino electromagnetic interaction, including the magnetic moment, whose specific form
depends on the model. In this diagram, the blob also includes the mixing and oscillation of the
initial neutrino, as described by the effective neutrino magnetic moment in Eq. (4.42).

µeff
ν rather than the magnetic moment directly. There are two reasons for this. Firstly, the

neutrino-photon interaction in Fig. 4.1 receives a contribution from the electric dipole moment
in addition to the magnetic moment. Secondly, the neutrinos which participate in the neutrino-
electron scattering in the detector are produced in flavor eigenstates, which are superpositions of
mass eigenstates. Thus, the effective neutrino magnetic moment takes into account mixing and
the oscillation that occurs between the source and the detector. Assuming vacuum oscillations
as described in Section 2.6, the effective neutrino magnetic moment can be shown to be [13]

(
µeff
να

)2
=
∑
f

∣∣∣∣∣∑
k

Uαke
−iL∆m2

fk/2Eν
(
µfk − iεfk

) ∣∣∣∣∣
2

, (4.42)

where εfk is the neutrino electric dipole moment. It can be extracted from the vertex function
Eq. (4.21) as

εfk =
−iFE(0)

mf +mk
, (4.43)

where mf,k are the masses of the neutrino eigenstates νf,k. If the neutrinos pass through matter
between the source and the detector, as in the case of solar neutrinos, one must take into
account the effects of the surrounding matter on the neutrino oscillation. A description of
neutrino oscillations in matter is beyond the scope of this thesis. Here, we only note that the
effective magnetic moment for solar neutrinos can be written as [13](

µeff
νsolar

)2
=
∑
k

∣∣UM
ek

∣∣2∑
f

∣∣µfk − iεfk
∣∣2, (4.44)

where UM is a mixing matrix taking into account matter effects, and the exponential terms
in Eq. (4.42) are washed out by the finite energy resolution of the detector due to the large
distance L in comparison to the oscillation length, L� 4πEν/∆m

2
fk [13].

In summary, the neutrino magnetic moment has an effect on the observable cross section of
neutrino-electron scattering, where the µfi enters the description in the non-trivial way de-
scribed by Eq. (4.41) and Eq. (4.42). By analyzing the recoil electron energy spectrum, one can
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Figure 4.2: Weak (black dashed line) and electromagnetic (blue solid lines) contributions to
the cross section of an electron neutrino scattering elastically with an electron, as a function
of the recoil energy of the electron. The electromagnetic cross section is shown for two values
of the effective magnetic moment, corresponding to terrestrial and astrophysical limits. At low
recoil energies, the electromagnetic contribution dominates, distorting the spectrum relative to
the Standard Model expectation.

look for a signal from neutrino magnetic moments.

4.4 The Experimental Situation

Having described how neutrino magnetic moments can be observed in detectors, let us now
briefly discuss the current experimental status. The interested reader is referred to Ref. [13] for
more details.

In the past, upper limits have been set on neutrino magnetic moments by the lack of deviations
from the expected recoil electron spectrum. For example, in the 1990s data was taken on
accelerator νµ and νµ scattering on e− in the LSND detector. An upper limit of µeff

νµ < 6.8 ×
10−10µB was obtained [29]. In 2012, the GEMMA experiment reported the limit µeff

νe < 2.9 ×
10−11µB from reactor νe [30].

Solar neutrinos have also been used to look for neutrino magnetic moments. In 2017, the Borex-
ino collaboration reported the limit µeff

νsolar
< 2.8× 10−11µB [31]. More recently, the XENON1T

experiment detected an excess in the low energy range of the electron recoil spectrum, which
is shown in Fig. 4.3. Interpreted as a neutrino magnetic moment, the 90% confidence interval
µeff
νsolar

∈ {1.4, 2.9} × 10−11µB was obtained. The magnetic moment explanation is preferred
over the Standard Model at a significance of 3.2σ [6]. One specific hypothesis to explain the
XENON1T excess is a transition magnetic moment from νµ to a heavier sterile state [32]. BSM
models in the context of this interpretation are discussed in Chapter 7 and Chapter 8. It should
be noted that the XENON1T collaboration also have interpreted the excess as coming from
solar axions, with a statistical significance of 3.4σ. The source of the excess may also be small
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Figure 4.3: Electron recoil events as a function of recoil energy recorded in the XENON1T
dark matter detector (black points), and the expected event rate from the background model
(red curve). There is an excess in the lower end of the electron recoil energy spectrum. The
figure is taken from [6].

amounts of tritium in the detector which have not been accounted for in the background anal-
ysis. This explanation has a similar statistical significance as the neutrino magnetic moment
explanation [6].

Neutrino magnetic moments can also be probed in nuclear interactions. In particular, one can
analyze coherent elastic neutrino-nucleus scattering (CEνNS), where the momentum exchange is
low enough for the nucleus to be treated as a point particle. The scattering cross section due to
a neutrino magnetic moment in such a process is proportional to that of elastic neutrino-electron
scattering, given in Eq. (4.41). CEνNS was first observed by the COHERENT collaboration [33],
and also recently by the “NCC-1701” detector using antineutrinos from the Dresden-II nuclear
reactor in the United States [34]. Very recently, the results from these experiments were used
in Ref [35] to set limits on the neutrino magnetic moment. These are µeff

νe < 2.13×10−10µB and
µeff
νµ < 18 × 10−10µB. Being weaker than the limits from elastic neutrino-electron scattering,

these new limits are not in conflict with the interpretation of the XENON1T excess as an
enhanced neutrino magnetic moment.

In addition to the limits obtained from terrestrial experiments, one can also use astrophysical
and cosmological data to set constraints on neutrino magnetic moments. In the plasma of a star,
photons acquire an effective mass, allowing the decay into neutrinos via the magnetic moment
interaction. The emitted neutrinos would carry away a large amount of energy from the star.
Thus, large neutrino magnetic moments may be in conflict with the standard stellar evolution
models. From data on red giants, the limit µeff

ν < 4.5×10−12µB on a generic neutrino magnetic
moment has been obtained [36]. This is in conflict with the magnetic moment interpretation of
the XENON1T data. However, the limit can be avoided if the neutrinos are coupled to a light
scalar through a Yukawa interaction, thereby obtaining a medium-dependent effective mass.
Thus, the decay of plasma photons may become kinematically forbidden. This idea is explored
in Refs. [32, 37].
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Constraints on the neutrino magnetic moment can be obtained from data on Big-Bang Nucle-
osynthesis (BBN). In the early universe, weak charged current interactions between electrons,
electron neutrinos, and nuclei were in thermal equilibrium. In these reactions, protons are con-
verted into neutrons and vice versa. The formation of nuclei depends on the relative number
of neutrons and protons, which in turn depends on the rates of the aforementioned weak inter-
action processes. Thus, one can discern neutrino properties from data on abundances of light
nuclei in the early universe. Limits on Majorana transition magnetic moments on the order of
10−10µB have been derived from BBN [38].

Transition magnetic moments between active neutrinos and heavier sterile, right-chiral neutrinos
NR open up the possibility for NR to be produced in the early universe, which affects BBN.
The cosmic microwave background is also affected, through the effective number of relativistic
degrees of freedom. These cosmological limits depend on the mass of the sterile neutrino, and
its lifetime, which in turn depends on the magnetic moment mediating the decay NR → γνL.
A detailed analysis can be found in Ref. [32]. Here we only remark that stringent limits are
obtained for sterile masses below ∼ 100 keV, which may be in conflict with the interpretation
of the XENON1T excess as an active-to-sterile transition magnetic moment. Possibilities for
avoiding the cosmological limits are also discussed in Ref. [32].

In conclusion, terrestrial experiments are able to set limits on the effective neutrino magnetic
moment at the order of 10−11µB, with more stringent limits coming from astrophysics and
cosmology. As shall be seen in the next chapter, the Standard Model predicts neutrino magnetic
moments several orders of magnitude smaller than these limits. Thus, experimental evidence
of neutrino magnetic moments in current and future detectors would be a clear sign of new
physics. If the XENON1T excess persists, it may be such a sign.
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Chapter 5

Neutrino Magnetic Moment in the
Standard Model

5.1 Dirac Neutrinos

As a first example of a calculation of the magnetic moment of neutrinos, let us consider the
Standard Model, extended to include massive neutrinos. In particular, we first consider the
case of the three standard flavors having Dirac mass terms.

The leading contributions to the neutrino magnetic moment with Standard Model interactions
comes from one-loop electroweak diagrams. We seek the magnetic moment µfi between the
neutrino mass eigenstates νi and νf , which are related to the flavor eigenstates να by the
unitary transformation

να =
3∑

j=1

Uαjνj , (5.1)

where Uαi is the PMNS matrix. We assume that the neutrinos are Dirac fields with left- and
right-chiral components, νj = νjL + νjR. The relevant diagrams are shown in Fig. 5.1.

p

`

qf
W

qi

`

γ

νfνi

(a)

p

W

qf
`

qi

W

γ

νfνi

(b)

Figure 5.1: Diagrams contributing to the magnetic moment µfi in the Standard Model with
massive Dirac neutrinos. νi and νf are mass eigenstates, and ` is any charged lepton. For Dirac
neutrinos, one may have i = f or i 6= f , describing diagonal and transition magnetic moments,
respectively.
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The amplitude Mµ = Mµ
a +Mµ

b is obtained by employing the standard electroweak Feynman
rules, which are summarized in Section A.1. Each diagram in Fig. 5.1 can involve either of the
charged lepton flavors e, µ, τ in the loop, so the amplitudes include a sum over lepton flavor α.
We find

Mµ
a=− g2e

2

∑
α=e,µ,τ

U∗
αfUαi

×
∫

d4k

(2π)4
u(qf )γ

νPL

(
6 qf + 6k +m`α

)
γµ
(
6 qi + 6k +m`α

)
γρPLu(qi)

(
−gνρ + kνkρ/m

2
W

)[
(qf + k)2 −m2

`α
+ iε

][
(qi + k)2 −m2

`α
+ iε

][
k2 −m2

W + iε
] ,

(5.2)
and

Mµ
b =

g2e

2

∑
α=e,µ,τ

U∗
αfUαi

×
∫

d4k

(2π)4

{
u(qf )γ

νPL

(
6k +m`α

)
γρPLu(qi)

×
(
−gνλ + (k − qf )ν(k − qf )λ/m

2
W

) (
−gκρ + (k − qi)κ(k − qi)ρ/m

2
W

)[
k2 −m2

`α
+ iε

][
(k − qf )2 −m2

W + iε
][
(k − qi)2 −m2

W + iε
]

×
[
gµλ

(
2qf − qi − k

)κ
+ gλκ

(
2k − qi − qf

)µ
+ gκµ

(
2qi − qf − k

)λ]}
.

(5.3)

Using Package-X [25], the form factor FM (p2) was projected out of Mµ and the loop integral
performed. Then, using Eq. (4.25), taking the on-shell limit p2 → 0 and expanding to first order
in the neutrino masses, we obtain

µfi =
∑

α=e,µ,τ

U∗
αfUαi − 3eg2(mf +mi)

×
m6

`α
− 6m4

`α
m2

W + 7m2
`α
m4

W − 2m6
W + 2m4

`α
m2

W log
(
m2

`α

m2
W

)
256m2

W

(
m2

W −m2
`α

)3
π2

 . (5.4)

Defining aα = m2
`α
/m2

W , and writing in terms of the Fermi constant GF =
√
2g2/8m2

W , we have

µfi =
3eGF

32
√
2π2

(mf +mi)
∑

α=e,µ,τ

[
1 +

1

1− aα
− 2aα

(1− aα)2
− 2a2α log aα

(1− aα)3

]
U∗
αfUαi

≡ 3eGF

32
√
2π2

(mf +mi)
∑

α=e,µ,τ

f(aα)U
∗
αfUαi, (5.5)

where the loop function f(aα) was written in a form where the limit aα → 0 is easily seen.
Indeed, since aα is small,

aα =
m2

`α

m2
W

≤ m2
τ

m2
W

≈ 4.9× 10−4, (5.6)
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we can approximate f(aα) ≈ 2. Then, we can use the unitarity of the PMNS matrix,∑
α

U∗
αfUαi = δfi, (5.7)

yielding for the diagonal magnetic moment

µii ≈
3eGFmi

8
√
2π2

, (5.8)

which agrees with the literature [39]. Note that the magnetic moment is proportional to the
neutrino mass, as expected in Eq. (3.58). Numerically,

µii ≈ 3.20× 10−19

(
mi

1 eV

)
µB, (5.9)

which is roughly 8 orders of magnitude lower than the experimental bounds discussed in Sec-
tion 4.4.

For the transition magnetic moments, i.e. i 6= f , the leading order contribution in Eq. (5.5)
vanishes because of the unitarity of the PMNS matrix, Eq. (5.7). Thus, the leading order
contribution to the transition magnetic moments comes from the 2nd term in the expansion
f(aα) ≈ 2− aα, so

µfi ≈ − 3eGF

32
√
2π2

(mf +mi)
∑

α=e,µ,τ

aαU
∗
αfUαi, (5.10)

which is suppressed by a factor ∼ 10−4 relative to the diagonal magnetic moment due to the
ratio aα.

5.2 Majorana Neutrinos

If neutrinos are Majorana fermions, there are additional diagrams contributing to the magnetic
moment; since the fields ν and ν contain the same operators, there are more allowed contractions
with the external states |νi〉 and |νf 〉. The contributing diagrams in the case of Majorana
neutrinos are shown in Fig. 5.2.

The amplitudes of the diagrams in Fig. 5.2 must be evaluated using the Feynman rules for
fermion-number-violating interactions, given in Ref. [40]. These rules are summarized in Sec-
tion A.3. Choosing the direction of fermion flow as indicated by the gray arrows in Fig. 5.2,
the diagrams in Fig. 5.2a and Fig. 5.2b are the same diagrams as shown in Fig. 5.1, and yield
the amplitudes Ma and Mb, respectively. The additional diagrams, Fig. 5.2c and Fig. 5.2d,
have lepton number flow antiparallel to the fermion flow. The amplitudes obtained from these
diagrams are

Mµ
c =

g2e

2

∑
α=e,µ,τ

U∗
αiUαf

×
∫

d4k

2π4
u(qf )γ

νPR

(
6 qf −6k +m`α

)
γµ
(
6 qi −6k +m`α

)
γρPRu(qi)

(
−gνρ + kνkρ/m

2
W

)[
(qf − k)2 −m2

`α
+ iε

][
(qi − k)2 −m2

`α
+ iε

][
k2 −m2

W + iε
] ,

(5.11)
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Figure 5.2: Diagrams contributing to the neutrino magnetic moment in the Standard Model
with Majorana neutrinos. The gray arrows indicate the chosen fermion flow, which is used
to determine the correct amplitude corresponding to the Feynman rules for fermion-number-
violating interactions summarized in Section A.3. For Majorana neutrinos, only transition
magnetic moments are allowed, so i 6= f .

and

Mµ
d = − g2e

2

∑
α=e,µ,τ

U∗
αiUαf

×
∫

d4k

(2π)4

{
u(qf )γ

νPR

(
−6k +m`α

)
γρPRu(qi)

×
(
−gνλ + (k − qf )ν(k − qf )λ/m

2
W

) (
−gκρ + (k + qi)κ(k + qi)ρ/m

2
W

)[
k2 −m2

`α
+ iε

][
(k + qf )2 −m2

W + iε
][
(k + qi)

2 −m2
W + iε

]
×
[
gµλ

(
2qf − qi + k

)κ
+ gλκ

(
−2k − qi − qf

)µ
+ gκµ

(
2qi − qf + k

)λ]}
.

(5.12)

Adding up the four diagrams and using the same methodology as in the Dirac case, we arrive
at

µMfi =
3eGF

32
√
2π2

(mf +mi)
∑

α=e,µ,τ

f(aα)
(
U∗
αfUαi − U∗

αiUαf

)
,

=
3ieGF

16
√
2π2

(mf +mi)
∑

α=e,µ,τ

f(aα) Im
(
U∗
αfUαi

)
. (5.13)

The Majorana magnetic moment matrix is antisymmetric and imaginary. The expression is
larger than the Dirac case, Eq. (5.5), by a factor of 2, but these are not directly comparable
due to the PMNS matrix being different [13].

A simpler way to obtain the magnetic moment of Majorana neutrinos is to use the method
described in Section 4.2. Using Eq. (4.37), we easily obtain Eq. (5.13) from the Dirac magnetic
moment in Eq. (5.5). This illustrates how the magnetic moments of Majorana neutrinos can be
calculated with only half the contributing diagrams explicitly evaluated.
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As we learned in Section 2.4, massive neutrinos are Majorana particles if a singlet field with a
Majorana mass terms is present in the model. Thus, in common models explaining the mass
of neutrinos, such as the see-saw mechanism, the relevant formula for the neutrino magnetic
moment is Eq. (5.13). The mixing matrix U appearing in Eq. (5.13) assumes three flavors, but
in the see-saw mechanism, more singlet neutrinos are present. However, the heavy states are
kinematically unreachable by the light states which primarily consist of the three flavors e, µ, τ .
Consequently, the phenomenologically interesting transition magnetic moments are between the
three light states. The formulas for the neutrino magnetic moment of both Dirac and Majorana
neutrinos can be modified to include a general number of singlet neutrinos, see Ref. [13].

A potential scenario is that new physics at a high energy scale produces the mass term

LMass =
1

2

∑
α,β=e,µ,τ

ML
αβν

c
αLνβL +H.c. , (5.14)

where ML is a matrix of Majorana masses for the active neutrinos νL. As mentioned in Sec-
tion 2.4, such a mass term is not invariant under SU(2)L × U(1)Y , and is therefore forbidden
in the Standard Model. The new physics could be for instance the introduction of a Higgs
triplet [41] or spontaneous symmetry breaking in a left-right symmetric model [42]. With
the mass term Eq. (5.14) the active neutrinos are Majorana particles, and Eq. (5.13) applies.
However, the introduction of new particles in the high energy model may give additional contri-
butions to the neutrino magnetic moments, which are not included in the result in Eq. (5.13).
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Chapter 6

Fine-Tuning and the Voloshin
Mechanism

As we have seen in the calculation of the neutrino magnetic moment in the Standard Model in
Chapter 5, the magnetic moment is suppressed due to its proportionality to the small neutrino
mass. We shall now see that even in a model which avoids this direct proportionality, a large
neutrino magnetic moment requires a large amount of fine-tuning to avoid neutrino masses
incompatible with experiment. A solution to this issue due to Voloshin [43], where a new
SU(2)ν symmetry is introduced, will then be discussed.

6.1 Neutrino Magnetic Moment and Mass

Voloshin considers a theory with a new charged scalar η which couples to neutrinos and the tau
lepton. The relevant part of the Lagrangian is [43]

L = f(χτχνe)η − f ′(χc
τχ

c
νe)η

∗ +H.c. , (6.1)

where (χ1χ2) = εabχ
a
1χ

b
2, ε is the antisymmetric symbol, and a, b = (1, 2). Eq. (6.1) is written

in two-spinor notation. In four-spinor notation, the same Lagrangian is

L = f`τL
T νLη + f ′`τRNR

T
η∗ +H.c. . (6.2)

The translation of Eq. (6.1) into the 4-spinor notation is shown in Appendix C. This Lagrangian
gives rise to 1-loop diagrams like

γ

τ

ν
η

ν

τ
+

γ

η

ν
τ

ν

η
. (6.3)
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These diagrams contribute to the neutrino magnetic moment, yielding [43]

µν =
eff ′

16π2
mτ

m2
η

F (m2
τ/m

2
η), (6.4)

where F (x) = −(1 − x)−2 log x − (1 − x)−1. Depending on couplings f , f ′ and the mass of
the scalar mη, the neutrino magnetic moment can be made large. Note that µν is proportional
to mτ , not mν as in the Standard Model. This is because the Lagrangian Eq. (6.2) includes
couplings for right-chiral neutrinos, so the chirality flip occurs on the tau lepton line inside the
loop. We now see the motivation for the coupling to the tau; It is the heaviest charged lepton.

Since the magnetic moment operator is chirality flipping, removing the photons from the above
diagrams gives a diagram which contributes to the neutrino Dirac mass,

ν τ

η

ν
. (6.5)

This diagram leads to the renormalization group equation [43]

dmν(p
2)

d log p2
=

ff ′

16π2
mτ , for p2 � m2

η. (6.6)

Combining Eqs. (6.4) and (6.6) gives

dmν(p
2)

d log p2
=
µν
e

m2
η

F (m2
τ/m

2
η)
. (6.7)

If we want a large neutrino magnetic moment on the order of 10−11µB, then

µν ∼ 10−11µB = 10−11 e

2me
=⇒ µν

e
∼ 10−16 eV−1. (6.8)

Moreover, η must have a mass mη � mτ to not be excluded by experimental data. Then, we
can use the approximation

F (x) ≈ − log x− 1 = log
1

x
− 1

=⇒ F (m2
τ/m

2
η) ≈ log

(
m2

η/m
2
τ

)
− 1 ∼ log(10000)− 1 ∼ 10. (6.9)

Substituting these numbers back into Eq. (6.7) we obtain

dmν(p
2)

d log p2
∼ 10−16 eV−1 × 1022 eV2

10
= 105 eV. (6.10)

Integrating from a low energy scale p, where the Standard Model is an effective theory and
the neutrino mass is experimentally constrained, to the scale of the UV-complete theory Λ, we
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obtain

mν(Λ
2)−mν(p

2) = 105 eV

(
log

Λ2

p2

)

=⇒ mν(p
2) = mν(Λ

2)− 105 eV

(
log

Λ2

p2

)
(6.11)

Thereforemν(Λ
2) must be tuned with an accuracy of 10−5 eV/ log Λ2

p2
in order to avoid a neutrino

mass of order 105 eV. Tuning in this context means that a small change in a parameter leads
to unacceptable predictions.

Below the scale of electroweak symmetry breaking, where the fermions are massive and magnetic
moments are non-zero, one can make a naïve, model independent argument to illustrate the
tuning issue [44]. Introducing new physics to enhance the neutrino magnetic moment means
invoking new interactions yielding loop diagrams like Fig. 6.1a. Then, one inevitably obtains
diagrams like Fig. 6.1b by just removing the photon line, which make loop contributions to the
Dirac mass of the neutrino. By dimensional analysis we write

µν ∼ eG

Λ

δmν ∼ GΛ, (6.12)

where e appears because of the coupling to the photon, G is a dimensionless combination of
couplings and loop factors coming from new physics, and Λ is the energy scale of the new
physics. Thus, we can relate the magnetic moment and the mass contribution by

µν ∼ eδmν

Λ2
=

2meδmν

Λ2
µB. (6.13)

Assuming new physics not far below the electroweak scale, we obtain

µν
µB

∼ 10−16 δmν

eV
, (6.14)

giving δmν & 105 eV in order to obtain a neutrino magnetic moment on the order of 10−11µB.
This mass contribution must be tuned against for the neutrino masses to be compatible with
data. If neutrino masses are generated only by a Yukawa coupling to the Higgs field, the
coupling must be tuned to

yν ∼ 10−12 − 10−6, (6.15)

where the negative term is needed to cancel δmν , and the small positive term gives the correct
order of magnitude for the neutrino mass, mν ∼ 10−1 eV.

6.2 The Role of Majorana Mass Terms

The above argument shows that the mass of neutrinos becomes large if one naively introduces a
large neutrino magnetic moment. However, if the right-chiral singlet neutrinos have a Majorana
mass term, a small active neutrino mass is generated easily via the see-saw mechanism, as
described in Section 2.5. In that case, the active neutrino mass is mν = m2

D/mN , where mN
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G

(a)

G

(b)

Figure 6.1: a) Generic diagrams contributing to the neutrino magnetic moment. b) Diagrams
which appear in theories where the diagrams in (a) are allowed. These diagrams contribute to
the neutrino mass. G is a combination of coupling constants and loop factors.

is the mass of the right-chiral singlet neutrino and mD is the Dirac mass appearing in the
operator mDνN . The observed range of active neutrino masses can be accommodated even
if mD ∼ v = 246GeV, by letting the unconstrained parameter mN be large. In that case,
mN & 10TeV in order for the relation mD/mN � 1 to hold, and mN could be taken up to the
GUT scale of 1016GeV. With a non-zero Majorana mass for the right-chiral singlet neutrino
and the Dirac mass correction associated with µν ∼ 1011µB, the Yukawa coupling is estimated
to

yν ∼ 10−12

√
mN

eV
− 10−6. (6.16)

If mN is at the conventional see-saw scale of 1014GeV, the tuning issue disappears, since the
correction is then many orders of magnitude smaller than the tree-level value. Thus, the see-saw
mechanism can alleviate the fine-tuning issue in addition to the smallness issue for the Yukawa
coupling.

However, the see-saw scale is far above the range of current experiments sensitive to the process
νγ → N in which the neutrino magnetic moment could contribute [32]. When insisting on singlet
neutrino masses in the experimentally available range of mN . MeV, the see-saw mechanism
breaks down, since the assumption mD � mN does not hold when mD receives a large loop
contribution. Thus, for neutrino magnetic moments that are phenomenologically interesting,
the tuning issue must be addressed in some other way.

6.3 Voloshin’s Solution to the Tuning Issue

To solve the fine-tuning issue, Voloshin introduces an SU(2)ν symmetry under which νL and
NR

c transform as a doublet [43]. We will now see that under such a symmetry, a Dirac mass
term is forbidden, while a magnetic moment term is allowed.

Let N = (νL, NR
c)T be the SU(2)ν doublet, and τ i be the generators of the group, i.e. the
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Pauli matrices1. We can then rewrite the Dirac mass term as [13]

NRνL =
1

2

(
NRνL

)T
+

1

2
NRCC

†νL

= −1

2
νL

TNR
T − 1

2
NRC

TC†νL

= −1

2
νL

TC†CNR
T − 1

2

(
CNR

T
)T

C†νL

= −1

2
νL

TC†NR
c − 1

2
NR

cTC†νL

= −1

2

(
νL

T NR
cT
)
C†

(
NR

c

νL

)
= −1

2
N TC†τ1N , (6.17)

where we used L = LT , the anticommutation of spinors, and CT = −C. Meanwhile, the
magnetic moment operator can be written as

NRσµννL =
1

2

(
NRσµννL

)T
− 1

2
NRC

TC†σµννL

= −1

2
νL

Tσµν
TNR

T − 1

2

(
CNR

T
)T

C†σµννL

=
1

2
νL

TC†σµνCNR
T − 1

2
NR

cTC†σµννL

=
1

2
νL

TC†σµνNR
c − 1

2
NR

cTC†σµννL

=
1

2

(
νL

T NR
cT
)
C†σµν

(
NR

c

−νL

)
=

1

2
N TC†σµνiτ

2N , (6.18)

where the property C†σµνC = −σµνT of the charge conjugation matrix was used. Let us now
see how these quantities transform under an infinitesimal SU(2)ν transformation. The doublet
and its transpose transform according to

N → eiλ
iτ iN = N + iλiτ iN = N +

(
iλ1τ1 + iλ2τ2 + iλ3τ3

)
N

N T → N T eiλ
iτ i

T

= N T +N T iλiτ i
T
= N T +N T

(
iλ1τ1 − iλ2τ2 + iλ3τ3

)
. (6.19)

Making use of the anticommutation relation
{
τ i, τ j

}
= 2δij1, the SU(2)ν content of the Dirac

mass term transforms as

N T τ1N →
[
N T +N T

(
iλ1τ1 − iλ2τ2 + iλ3τ3

)]
τ1
[
N +

(
iλ1τ1 + iλ2τ2 + iλ3τ3

)
N
]

= N T τ1
[
1 +

(
iλ1τ1 + iλ2τ2 − iλ3τ3

)] [
1 +

(
iλ1τ1 + iλ2τ2 + iλ3τ3

)]
N

= N T τ1N +N T τ1
(
2iλ1τ1 + 2iλ2τ2

)
N +O(λ2), (6.20)

1The generators of SU(2)ν are named τ i to differentiate them from the Pauli matrices acting in spinor space.
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while the magnetic moment term transforms as

N T τ2N →
[
N T +N T

(
iλ1τ1 − iλ2τ2 + iλ3τ3

)]
τ2
[
N +

(
iλ1τ1 + iλ2τ2 + iλ3τ3

)
N
]

= N T τ2
[
1−

(
iλ1τ1 + iλ2τ2 + iλ3τ3

)] [
1 +

(
iλ1τ1 + iλ2τ2 + iλ3τ3

)]
N

= N T τ2N +O(λ2). (6.21)

Thus, the magnetic moment term is invariant under SU(2)ν , while the Dirac mass term is not.
In the following chapter, we shall see how the SU(2)ν symmetry can be implemented in practice
in a model with scalar leptoquarks.
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Chapter 7

Scalar Leptoquark Model

As we discussed in Chapter 4, the XENON1T experiment reported an excess in electron recoil
events that can be interpreted as a signal of a large neutrino magnetic moment. In Ref. [32],
it was found that the excess can be accommodated by a transition magnetic moment on the
order of 10−11µB from νµ to a heavier sterile state NR. In the same paper, a model with a
scalar leptoquark was proposed to explain this magnetic moment, while avoiding a large active
neutrino mass. In this chapter, we investigate said model.

7.1 The Model

To enhance the neutrino magnetic moment, a new charged particle must be introduced to run
in the loop. In Voloshin’s model, this was the charged scalar η. If the new particle is a boson,
we require a charged fermion to close the loop. One possibility is that the new particle is a
leptoquark, which as the name suggests, couples quarks to leptons. Then, the fermion running
in the loop is a Standard Model quark. By writing all couplings between quarks and leptons
allowed by gauge invariance, one can obtain the possible leptoquark states. These are six scalar
and six vector fields with varying couplings to the Standard Model fermions and right-chiral
neutrinos. The interested reader is referred to Ref. [45] for a comprehensive review.

In the model proposed in Ref. [32], a scalar leptoquark S1 coupled to the third generation of
quarks is introduced. S1 has quantum numbers (3̄,1, 1/3) under SU(3)c × SU(2)L × U(1)Y ,
and contributes to the magnetic moment through diagrams like Fig. 7.1. The neutrino content
of the model is one active flavor νL, and one sterile flavor NR. Thus, we consider transition
magnetic moments between these.

Since S1 is an SU(2)L singlet, only the coupling to the U(1)Y gauge boson contributes to
the electromagnetic interaction after spontaneous symmetry breaking. Ignoring SU(3)c, the
covariant derivative is

DµS1 =

(
∂µ +

1

3
ig′Bµ

)
S1, (7.1)

which leads to the interaction

(DµS1)
†(DµS1) ⊃

1

3
ig′Bµ

(
S1∂µS

†
1 − S†

1∂µS1

)
. (7.2)
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νL
S
−1/3
1

bRbL

H

NR

γ

Figure 7.1: Diagram contributing to the transition neutrino magnetic moment. S1 is a scalar
leptoquark which couples to the third generation of quarks. A Higgs vev insertion has been
included to illustrate that the chirality flip occurs on an internal line, bringing a factor of the
bottom quark mass.

The derivatives bring factors of momentum. To see which momentum factors we receive, let us
look at the Fourier expansion of the scalar fields,

S1 ∝
∫

d3p

(2π)3

(
a(p)e−ipx + b†(p)eipx

)
,

S†
1 ∝

∫
d3p

(2π)3

(
b(p)e−ipx + a†(p)eipx

)
,

(7.3)

where a†(p) and a(p) are the operators which create and annihilate S1/3
1 , and b†(p) and b(p)

create and annihilate S−1/3
1 . For the S1BS1 vertex in Fig. 7.1, we need b†(p) and b(p). The

derivative in the first term in Eq. (7.2) gives a factor −ipµ, and the derivative in the second
term gives ipµ. There is an additional factor of i from the S-matrix expansion. Extracting the
photon field from the hypercharge gauge field, Bµ ⊃ cos θWA

µ, and using g′ cos θW = e, we find
the electromagnetic vertex

p1

p2
S
−1/3
1

S
−1/3
1

Aµ

=
1

3
ie(pµ1 + pµ2 ). (7.4)

The new scalar couples to quarks and leptons through the Yukawa interactions

L ⊃ y1bcRNRS1 + y2

(
Q3LL

c
αL

)
S†
1 +H.c. , (7.5)

where b is the bottom quark, NR is the right-chiral neutrino, Q3L is the third generation quark
doublet, LαL is the lepton doublet of arbitrary flavor, and the brackets denote contraction of
the SU(2)L doublets with the Levi-Civita symbol. Expanding the SU(2)L terms in order to see
the interactions in Fig. 7.1 explicitly, we have

L ⊃ y1bcRNRS1 + y2tL`
c
LS

†
1 − y2bLν

c
LS

†
1 +H.c. , (7.6)

where tL is the left-chiral top quark, and `L is a left-chiral charged lepton of the same flavor as
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p
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(b)
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p
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νL NR
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p
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Figure 7.2: Diagrams contributing to the active-to-sterile transition neutrino magnetic mo-
ment in the scalar leptoquark model. a) Contributions from the singlet scalar leptoquark S1. b)
Contributions from the doublet scalar leptoquark R̃2. The fermion line running in the loops is
the bottom quark, on which a chirality flip occurs. The superscripts on the leptoquarks indicate
electric charge.

νL. Eq. (7.6) is written in the quark mass basis; quark mixing in the third generation is small,
so it has been ignored. From Eq. (7.6), vertex factors for the S1 interactions with the Standard
Model fermions are extracted. For the neutrino magnetic moment, we need the vertex factors
for the interaction of S1 with the active and sterile neutrinos. These are given in Section A.2.

7.2 Prediction for the Neutrino Magnetic Moment

Let us now calculate the transition magnetic moment µNν . The relevant diagrams are shown
in Fig. 7.2a and Fig. 7.2b, and yield the amplitudes

Ma =
1

3
Ncy1y2e

∫
d4k

(2π)4

u(qf )PL(6k +mb)PLu(qi)(q
µ
i + qµf + 2kµ)[

k2 −m2
b + iε

][
(qi + k)2 −m2

LQ + iε
][
(qf + k)2 −m2

LQ + iε
] , (7.7)

Mb =
1

3
Ncy1y2e

∫
d4k

(2π)4
u(qf )PL(6k −6 qf +mb)γ

µ(6k −6 qi +mb)PLu(qi)[
(k − qf )2 −m2

b + iε
][
(k − qi)2 −m2

b + iε
][
k2 −m2

LQ + iε
] . (7.8)

Note that since we consider only the transition νLγ → NR between chiral fermions, we have to
use the formula µNν = 2iFM (0)/(mf+mi) for the magnetic moment, as explained in Section 4.1.
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From the total amplitude M = Ma +Mb we then obtain, to zeroth order in neutrino mass,

µNν =
ey1y2mb

16π2m2
LQ

(
− 1

a− 1
+

log a

(a− 1)2

)
=
y1y2mbme

8π2m2
LQ

µB

(
− 1

a− 1
+

log a

(a− 1)2

) (7.9)

where a = m2
b/m

2
LQ. The leptoquark mass is experimentally constrained to be at least

O(TeV) [10]. With mLQ = 1TeV and y1y2 = 0.1, we find

|µNν | ≈ 3× 10−11µB. (7.10)

Eq. (7.9) disagrees with Ref. [32] by a factor of 2. The authors of Ref. [32] used formulae from
Ref. [45] to calculate the magnetic moment [46]. Said formulae apply for the process ` → γ`′,
where ` and `′ are charged leptons. Here, the external fermions are neutral, so the formulae
must be modified. To cross-check the result, the magnetic moment was also calculated using
the formulae in Ref. [47]. There, general formulae for the process f1 → γf2, where f1,2 are
fermions of a general charge Qf , are given at one-loop order for a Yukawa interaction. Using
Qf = −1 reproduces the formula in Ref. [45]. Meanwhile, adapting the formulae to the neutrino
case by letting Qf = 0 results in a relative factor of 1/2 when taking the limit a → 0, giving
the magnetic moment in Eq. (7.9).

A sizable neutrino magnetic moment can thus be produced when introducing the scalar lepto-
quark S1. As expected, however, the neutrino mass must be fine-tuned in order to cancel the
loop induced δmD from the diagram in Fig. 7.3a, while simultaneously giving mν ∼ 10−1 eV.
To avoid this issue, the Voloshin mechanism is implemented by adding another leptoquark R̃2

to the model, which transforms according to (3,2, 1/6) under the Standard Model gauge group.
This leptoquark is a SU(2)L doublet, R̃2 = (R̃

2/3
2 , R̃

−1/3
2 ), with superscripts denoting electric

charge. Under the Voloshin symmetry SU(2)ν , (νcL, NR) and (R̃
−1/3
2 , S†

1) transform as doublets.
The interaction Lagrangian of R̃2 with the Standard Model fermions is

L ⊃ −y1
(
R̃†

2b
c
RL

c
αL

)
+ y2Q3LNRR̃2 +H.c.

= −y1R̃2/3 †
2 bcR`

c
L + y1R̃

−1/3 †
2 bcRν

c
L + y2tLNRR̃

2/3
2 + y2bLNRR̃

−1/3
2 +H.c. , (7.11)

where in the second line the SU(2)L doublets were expanded. The vertex factors for the inter-
actions of R̃2 are given in Section A.2.

The additional diagrams contributing to the neutrino magnetic moment at one-loop order are
shown in Fig. 7.2c and Fig. 7.2d, and give the amplitudes

Mc =
1

3
Ncy1y2e

∫
d4k

(2π)4

u(qf )PL(6k +mb)PLu(qi)(q
µ
i + qµf − 2kµ)[

k2 −m2
b + iε

][
(k − qi)2 −m2

LQ + iε
][
(k − qf )2 −m2

LQ + iε
] ,
(7.12)

Md = −1

3
Ncy1y2e

∫
d4k

(2π)4
u(qf )PL(6k + 6 qf +mb)γ

µ(6k + 6 qi +mb)PLu(qi)[
(k + qf )2 −m2

b + iε
][
(k + qi)2 −m2

b + iε
][
k2 −m2

LQ + iε
] .
(7.13)

Note that since S1 and R̃2 are in the same SU(2)ν doublet, they have the same mass, which we
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denote by mLQ.

Adding Mc and Md to the total amplitude M before calculating the neutrino magnetic moment
gives an extra factor of 2 in the result relative to Eq. (7.9). Meanwhile, the radiative mass
correction has the additional diagram shown in Fig. 7.3. The diagrams give the amplitudes

MMass
a,b = ∓Ncy1y2

∫
d4k

(2π)4
u(qf )PL(6k +mb)PLu(qi)[

(qi ± k)2 −m2
LQ + iε

][
k2 −m2

b + iε
] . (7.14)

The relative sign is reversed in the case of the magnetic moment amplitudes, due to the opposite
signs in the photon couplings. Thus, the mass diagrams cancel, while the magnetic moment
diagrams do not.

νL NR

q1

k + q1

S
−1/3
1

q2

k

(a)

νL NR

q1

k − q1

R̃
1/3
2

q2

k
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Figure 7.3: Diagrams contributing to the neutrino mass at one-loop order in the scalar lepto-
quark model. These diagrams are obtained from the ones in Fig. 7.2 by removing the external
photon line. Since S†

1 and R̃
−1/3
2 form a doublet under the new global SU(2)ν symmetry, they

have the same masses and Yukawa couplings to fermions, and the diagrams cancel.

The SU(2)ν symmetry is not exact. As stated in Ref. [32], the symmetry is explicitly broken
by the charged lepton Yukawa couplings, electroweak radiative corrections, and the Majorana
mass term for NR. However, the symmetry breaking from these sources is small, so excessive
fine-tuning of the neutrino mass is still avoided.

In addition to the symmetry breaking sources already mentioned, the interaction Lagrangians
Eq. (7.6) and Eq. (7.11) contain couplings to the top quark which break SU(2)ν , a source
of symmetry breaking which was not pointed out in Ref. [32]. These terms are required by
electroweak gauge invariance. The top quark couples to NR, but not to νL, so contributions to
the neutrino mass arise at two-loop level, as shown in Fig. 7.4. Note that there is a chirality
flip on the internal bottom quark line in both diagrams. Thus, a rough estimate of the neutrino
mass contribution from the first diagram in Fig. 7.4 is

δmD ∼ y1y
3
2mb(

16π2
)2 ∼ 103 eV, (7.15)

using the chosen values for the couplings. This is still around three orders of magnitude below
the estimated contribution in a model without the Voloshin mechanism. To obtain the estimate
from the second diagram in Fig. 7.4, one must exchange (y1y2) for the SU(2)L gauge coupling
g2, which does not change the conclusion. Thus, a Dirac mass is still present and must be
dealt with to obtain acceptable active neutrino masses. In Section 7.4, we will explore how the
desired neutrino mass spectrum can be achieved.
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Figure 7.4: Contributions to the Dirac mass of the Neutrinos coming from the SU(2)ν breaking
top quark interaction terms in the scalar leptoquark model. Since these diagrams arise at
two-loop order, the contributions to the neutrino mass are smaller than the one-loop diagram
Fig. 7.3a which would contribute in the absence of the SU(2)ν symmetry.

It should be noted that the scalar leptoquark model described here can explain B-meson anoma-
lies as well as a large neutrino magnetic moment [32], making it more compelling. In Chapter 8,
these flavor physics anomalies will be described in more detail as we propose a vector leptoquark
model for a large neutrino magnetic moment which explain the B-meson anomalies as well.

7.3 More Neutrino Flavors

So far we have focused on a single active neutrino flavor, assumed to be the muon neutrino. A
straightforward extension of the model is to include the other active flavors. Considering only
the singlet S1 for simplicity, the leptoquark-neutrino interaction term is modified to

L ⊃ −y2
∑

α=e,µ,τ

bcLναLS
†
1 +H.c.

= −y2
∑

α=e,µ,τ

4∑
i=1

UαkbcPLνkS
†
1 +H.c. ,

(7.16)

where in the second line, we switched to the mass basis. Since the model now contains four
neutrino flavors —three active and one sterile —there are four mass eigenstates. The interaction
in Eq. (7.16) permits magnetic moment transitions νiγ → νf . The diagrams are the same as
Fig. 7.2a and Fig. 7.2b, exchanging νL → νi and NR → νf . The amplitudes are

Me = −1

3
Ncy

2
2e

∫
d4k

(2π)4

u(qf )PR(6k +mb)PLu(qi)(q
µ
i + qµf + 2kµ)[

k2 −m2
b + iε

][
(qi + k)2 −m2

LQ + iε
][
(qf + k)2 −m2

LQ + iε
] ,

(7.17)

Mf = −1

3
Ncy

2
2e

∫
d4k

(2π)4
u(qf )PR(6k −6 qf +mb)γ

µ(6k −6 qi +mb)PLu(qi)[
(k − qf )2 −m2

b + iε
][
(k − qi)2 −m2

b + iε
][
k2 −m2

LQ + iε
] , (7.18)
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which give, to first order in neutrino mass, the magnetic moment

µfi =
ey22

(
mf +mi

)
128π2m2

LQ

[
− 1

1− a
+

2

(1− a)2
+

2a log a

(1− a)3

] ∑
α,β=e,µ,τ

(
UfβU

∗
iα − UiβU

∗
fα

)
, (7.19)

where we have assumed the massive neutrinos are of Majorana type due to the presence of the
heavier NR, and used Eq. (4.37) to obtain the magnetic moment from two of the four allowed
diagrams. The magnetic moment is proportional to the neutrino mass, as in the Standard
Model case. This is expected, since the leptoquark interaction Eq. (7.16) only contains the
left-chiral part of the neutrino, and the chirality flip has to occur at an external line. Thus, a
large neutrino magnetic moment between the light states is not possible in this model. However,
we have an opportunity to investigate how the mass proportionality arises in the evaluation of
the loop integrals.

Let us compare Ma in Eq. (7.7) and Me in Eq. (7.17). Their spinor structures only differ by the
leftmost chirality projector, which is PL in Ma and PR in Me. The denominators are identical.
As in the calculation of the anomalous magnetic moment of a charged lepton, we use Feynman
parametrization to rewrite the denominator and shift the integration variable kµ such that

1

ABC
→ 2

∫ 1

0
dx dy dz δ(x+ y + z − 1)

1(
k2 −∆

)3 , (7.20)

where

A = k2 −m2
b + iε,

B = (qi + k)2 −m2
LQ + iε,

C = (qf + k)2 −m2
LQ + iε,

∆ = xm2
b + y(y − 1)m2

i + z(z − 1)m2
f + (y + z)m2

LQ + 2yzqiqf ,

(7.21)

and kµ was shifted by
kµ → kµ − yqµi + zqµf . (7.22)

We now turn to the numerators, considering first that of Me. Since γ5 and γµ anticommute
and PLPR = 0, the mb term vanishes. Shifting kµ according to Eq. (7.22) gives

Me ∝ u(qf )PR6k(qµi + qµf + 2kµ)u(qi)

→ u(qf )PR

(
6k − y6 qi + z6 qf

)(
(1− 2y)qµi + (1 + 2z)qµf + 2kµ

)
u(qi).

(7.23)

Now, distributing the chirality projector and utilizing the momentum space Dirac equation, we
obtain

Me ∝ u(qf )
(
PR6k − ymiPR + zmfPL

) (
(1− 2y)qµi + (1 + 2z)qµf + 2kµ

)
u(qi), (7.24)

and the proportionality to the neutrino masses becomes apparent. Meanwhile, in the numerator
of Ma only the mb term survives. There is no 6k which brings 6 qi,f upon shifting the integration
variable, and thus the amplitude is proportional to mb instead of the neutrino masses. Again,
this is traced back to the fact that the interaction Lagrangian includes couplings to a right-chiral
neutrino.
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7.4 Neutrino Mass Scenarios

So far, we have assumed a neutrino sector containing the fields νL and NR, and the Voloshin
mechanism has been employed to avoid a large loop contribution to the neutrino mass. However,
the specifics of the neutrino mass terms have not been discussed. The desired mass spectrum
is one light state of the order 0.1 eV, and one heavier state of the order 100 keV. In the limit
of exact SU(2)ν symmetry the Dirac mass term is forbidden, but as we saw in Section 7.2 the
symmetry is explicitly broken, giving δmD ∼ keV. Thus, we still need some tuning unless the
correct mass scale is generated by some other mechanism. For example, the ordinary see-saw
formula requires mN ∼ 10MeV to generate the correct active mass without tuning, which is
infeasible for explaining the excess in recoil event from . MeV solar neutrinos. In this section
we explore further options for generating the desired neutrino masses.

With the goal of more flexibility in neutrino mass generation, we add a chiral singlet fermion
FL to the model. Let us assume the following mass Lagrangian:

Lmass = −mDνLNR −mNFFLNR − 1

2
mFF c

LFL +H.c. , (7.25)

in which the new fermion has a Majorana mass term while the other two fields only appear in
Dirac mass terms. Defining the array of left-chiral fields

ΨL =
(
νL N c

R FL

)T
, (7.26)

the mass Lagrangian is written as

Lmass =
1

2
ΨT

LC
†MΨL, (7.27)

where M is the 3× 3 mass matrix

M =

 0 mD 0

mD 0 mNF

0 mNF mF

 . (7.28)

To diagonalize M and obtain the mass eigenvalues, we use the technique shown in Ref. [48].
We define the matrices

Ma =

(
mD

0

)
, Mb =

(
0 mNF

mNF mF

)
, (7.29)

so that the mass matrix can be written as

M =

(
0 MT

a

Ma Mb

)
. (7.30)

Note that the structure of Mb and the block structure of M are identical to the combined
Dirac-Majorana mass matrix in Eq. (2.110), so the same formalism can be employed.
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7.4.1 Double See-Saw

Let us now assume

mD,mNF � mF , mD �
m2

NF

mF
. (7.31)

The condition mNF � mF gives see-saw eigenvalues for Mb. That is, the eigenvalues of Mb are
approximately mF and m2

NF /mF . By assumption, both of these are much larger than mD. We
can therefore use the results of the see-saw mechanism with 3+n neutrinos. Block-diagonalizing
M gives

WTMW ≈

(
m1 0

0 M2

)
, (7.32)

where m1 and the eigenvalues of M2 are the neutrino masses. Carrying over the results in
Section 2.5, we have

m1 ≈ −MT
a M

−1
b Ma

= −
(
mD 0

)− mF

m2
FN

1
mNF

1
mNF

0

(mD

0

)

=
m2

DmF

m2
NF

.

(7.33)

Thus we have the mass spectrum

m1 =
m2

DmF

m2
NF

m2 =
m2

NF

mF
m3 = mF .

=
m2

D

m2
, =

m2
NF

m3
,

(7.34)

As two of the masses have a see-saw formula, this is called the double see-saw mechanism. The
masses m1 and m2 are related by the exact same equation as in the conventional see-saw case,
so no new parameter space is opened up. Invoking Occam’s razor, this scenario is disfavored,
since the introduction of FL provides no benefit.

7.4.2 Inverse See-Saw

We now turn to the scenario
mF � mD � mNF , (7.35)

which is called the inverse see-saw. mF is required to be small, but since lepton number is
conserved in the limit mF → 0, this scenario is natural in the ’t Hooft sense. In this context, a
small valued parameter is natural if a symmetry is restored when the parameter goes to zero [49].
The mass matrix still has the structure of Eq. (7.28), and we define the same matrices Ma and
Mb as in Eq. (7.29). The eigenvalues of Mb are

m2,3 =
1

2

(
mF ±

√
m2

F + 4m2
NF

)
, (7.36)
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which give the two heavier masses. Expanding to first order in the small ratio mF /mNF and
redefining the fields with unphysical phase shifts to make the masses positive, we have

m2,3 ≈ mNF ± 1

2
mF . (7.37)

The masses are nearly degenerate. Note that the mass eigenvalues m2,3 are much larger than
mD, by the assumption Eq. (7.35). Thus, we can proceed with diagonalization using the same
method as for the double see-saw scenario, obtaining

m1 =
m2

DmF

m2
NF

. (7.38)

Our requirement for m2 fixes mNF ∼ 105 eV. Then, to achieve m1 ∼ 10−1 eV while satisfying
Eq. (7.35), we take mD ∼ 104 eV and mF ∼ 10 eV. The correction δmD ∼ 103 eV is therefore
not an issue. The Dirac mass is one order of magnitude below the electron mass. While this
means the neutrino Yukawa coupling is small (O(10−7)), it is still several orders of magnitude
larger than it would be without invoking a see-saw mechanism.

In the limit mF → 0, the two heavier states combine to form a Dirac spinor, and the light state
becomes massless. Defining the small ratio R = mD/mNF , the mixing matrix is approximated
by

W ≈


−1 R√

2
R√
2

0 − 1√
2

1√
2

R 1√
2

1√
2

 , WTW = 1 +O(R2), (7.39)

Parameterizing the mixing matrix in the standard way, we can extract the three Euler mixing
angles. There is maximal mixing between the two sterile states, with tan θNF = 1/

√
2. The

active-sterile mixing is tan θνS = ±R/
√
2, with S = F,N . With the numbers assumed above,

|tan θνS | ∼ 10−1. This is probably excluded by experimental limits, but further analysis is
needed to draw a definite conclusion [50, 51]. Thus, we avoid tuning at the cost of large active-
sterile mixing.

In conclusion, the correct neutrino mass spectrum can be obtained without fine-tuning in the
scalar leptoquark model by invoking the global SU(2)ν symmetry together with the inverse
see-saw mechanism.
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Chapter 8

Vector Leptoquark Model

8.1 The Model

For a model to generate neutrino magnetic moments at one-loop, it must contain couplings
between the neutrinos and charged particles, which run in the loop and couple to the external
photon. There are two generic possibilities: the loop contains a vector boson, or a scalar boson.
We have now seen these cases in action; in the previous chapter, we looked at a model with
a charged scalar, in the form of a leptoquark, coupling to the neutrinos. Meanwhile, in the
Standard Model, the W bosons, which are charged vectors, run in the loop. In that case the
neutrino magnetic moment is heavily suppressed by the neutrino mass. In this chapter, we
explore the possibility of a new charged vector particle, in the form of a leptoquark, produc-
ing a large neutrino magnetic moment. We will also explore the possibility of simultaneously
explaining flavor physics anomalies.

To generate a sizable neutrino magnetic moment, we need the vector leptoquark to couple
both to left- and right-chiral neutrinos. There are two options [45]: The SU(2)L singlet Uµ

1 ∼
(3,1, 2/3), and the doublet Ṽ µ

2 ∼ (3,2,−1/6), where the brackets signify quantum numbers
under the Standard Model gauge group. Here, we focus on the singlet Uµ

1 , which has been
studied in the context of B-meson anomalies and muon g− 2 [52–55]. With a single right-chiral
neutrino NR, Uµ

1 couples to leptons and quarks through the Lagrangian

L ⊃ Uµ
1

(
xiαL QiLγµLαL + xiαR diRγµ`αR + xiNR uiRγµNR

)
, (8.1)

where QiL are the SU(2)L quark doublets, ui are the up-type quarks (u, c, t), di are the down-
type quarks (d, s, b), α is the lepton flavor index α ∈ {e, µ, τ}, and xiαL,R are dimensionless
couplings. Thus, every quark generation is coupled to every lepton flavor with varying coupling
strengths. The couplings to first generation quarks and leptons are strongly constrained by
atomic parity violation and µ-e conversion on nuclei [45]. Thus, we let x1αL,R = 0 for all α, and
xieL,R = 0 for all i. Therefore, the model cannot produce neutrino magnetic moments involving
the electron neutrino. However, we can obtain a transition magnetic moment µNνµ , to explain
the XENON1T excess as interpreted in Ref. [32].

Whereas the scalar leptoquarks in Eq. (7.6) and Eq. (7.11) couple the right-chiral neutrino to the
down-type quarks, we see from Eq. (8.2) that the vector Uµ

1 couples NR to the up-type quarks.
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Assuming the couplings are not separated by several orders of magnitude, the dominating
contributions will be those with the top quark running in the loop, giving amplitudes enhanced
by its large mass.

Eq. (8.2) is written in the weak basis, which coincides with the neutrino flavor basis. Expanding
the SU(2)L doublets, and writing the quark fields in the flavor/mass basis, we receive factors of
the unitary quark transformation matrices V u,d

L,R. Multiplying by V d
LV

d
L
†
= 1 and absorbing the

remaining transformation matrices into the coupling matrices, we can write

L ⊃ Uµ
1

[
V CKM
uidj

xjαL uiLγµναL + xiαL diLγµ`αL + xiαR diRγµ`αR + xiNR uiRγµNR

]
. (8.2)

With the goal of obtaining the νµ → NR transition magnetic moment, we keep the neutrinos in
the flavor basis. Our coupling flavor structure then coincides with that of Ref. [55].

The kinetic terms of Uµ
1 and its interactions with the Standard Model gauge bosons are governed

by the Lagrangian [45]

L ⊃ −1

2
U †
1µνU

µν
1 +m2

U1
U †
1µU

µ
1 + ig′κY

2

3
U †
1µUνB

µν + igsκsU
†
1µ

λA

2
UνG

µν
A , (8.3)

where mU1 is the mass of the leptoquark, Uµν
1 = DµUν

1 −DνUµ
1 is the leptoquark field strength

tensor, and Dµ = ∂µ + ig′ 23B
µ + igs

λA

2 G
µ
A is the covariant derivative. Bµ and Gµ

A are the
hypercharge gauge boson field and the gluon fields, respectively, with Bµν and Gµν

A the corre-
sponding field strength tensors. κY and κs are dimensionless parameters. Setting κY,s = 0 gives
a minimal coupling. We take κY,s = 1, obtaining a Yang-Mills coupling analogous to the WWγ

coupling in the Standard Model. For completeness, the couplings between Uµ
1 and the gluons

were included in Eq. (8.3), but they are not relevant to our discussion.

After electroweak symmetry breaking, Eq. (8.3) contains the couplings between the leptoquark
and the photon. To calculate the neutrino magnetic moment, we extract the terms with two
leptoquarks and one photon, which are

L ⊃ 2

3
ie

[(
∂µUν

1 − ∂νUµ
1

)
AµU

†
1ν −

(
∂µUν

1
† − ∂νUµ

1
†
)
AµU1ν +

(
Uµ
1
†
Uν
1 − Uν

1
†Uµ

1

)
∂µAν

]
.

(8.4)

8.2 Prediction for the Neutrino Magnetic Moment

In Eq. (8.2) and Eq. (8.4) we have all the necessary ingredients to calculate the transition
magnetic moment µNνα . The diagrams contributing at one-loop are similar to those in the
Standard Model calculation of Chapter 5, but are shown in Fig. 8.1 for convenience.
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Figure 8.1: Diagrams involving the vector leptoquark Uµ
1 contributing to the transition mag-

netic moment µNνα . The interaction Lagrangian Eq. (8.2) allows any up-type quark to run
in the loop. Since the internal quark line contains a chirality flip, the magnetic moment is
proportional to the quark mass.

The amplitudes obtained from Fig. 8.1a and Fig. 8.1b respectively are

Mµ
a =

2

3
eNc

∑
i,j=1,2,3

V CKM
uidj

xjαL (xiNR )∗ (8.5)

×
∫

d4k

(2π)4
u(qf )γ

νPR(6k +mui)γ
ρPLu(qi)[

k2 −m2
ui

+ iε
][
(qf − k)2 −m2

U1
+ iε

][
(qi − k)2 −m2

U1
+ iε

]
×
(
− gνλ +

(qf − k)ν(qf − k)λ
m2

U1

)(
− gρκ +

(qi − k)ρ(qi − k)κ
m2

U1

)
×
[
gµκ

(
k + qf − 2qi

)λ
+ gκλ

(
qi + qf − 2k

)µ
+ gµλ

(
k + qi − 2qf

)κ ]
,

(8.6)

Mµ
b =

2

3
eNc

∑
i,j=1,2,3

V CKM
uidj

xjαL (xiNR )∗

×
∫

d4k

(2π)4
u(qf )γ

νPR(6 qf −6k +mui)γ
µ(6 qi −6k +mui)γ

ρPLu(qi)
(
− gνρ + kνkρ/m

2
U1

)[
k2 −m2

U1
+ iε

][
(qf − k)2 −m2

ui
+ iε

][
(qi − k)2 −m2

ui
+ iε

] ,

(8.7)

where mui is the mass of the quark running in the loop. Extracting the magnetic moment using
Eq. (4.30) yields

µNνα =
eNc

24π2mU1

∑
i,j=1,2,3

V CKM
uidj

xjαL (xiNR )∗ × aui

(
1− 3

a2ui
− 1

+
3a2ui

log a2ui

(a2ui
− 1)2

)

≡ eNc

24π2mU1

∑
i,j=1,2,3

V CKM
uidj

xjαL (xiNR )∗f(aui),

(8.8)

where aui ≡ mui/mU1 . This is the general transition magnetic moment for a neutrino of flavor
α to the sterile neutrino, with contributions from all three up-type quarks. The result was
cross-checked with the formulae in Ref. [47].

As already mentioned, we assume the couplings to the first generation of leptons are zero. Thus,
µNνe = 0. Here we focus on µNνµ . The three terms in Eq. (8.8) each receive a numerical factor
from the loop function f(aui), which depends on the mass of the vector leptoquark. With
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certain model assumptions, the CMS collaboration has constrained the vector leptoquark mass
to above 1530GeV [56]. For numerical calculations, we here take mU1 = 2TeV. Then, the loop
function takes the values

f(au) ≈ 4.6× 10−6,

f(ac) ≈ 2.5× 10−3,

f(at) ≈ 0.34.

(8.9)

Clearly, the contribution from the top quark dominates. This corresponds to the i = 3 term in
Eq. (8.8), which gives

µNνµ ≈ NcmeµB
12π2mU1

(
V CKM
ts x2µL + V CKM

tb x3µL

)
(x3NR )∗f(at), (8.10)

where the magnetic moment has been written in terms of the Bohr magneton µB. Using global
fits for the CKM matrix elements [10] and choosing the couplings xµ2L = −xµ3L = 0.05, x3NR = 0.5,
we obtain the numerical result ∣∣µNνµ

∣∣ ≈ 5.7× 10−11µB, (8.11)

which means that the model can accommodate the desired value ∼ 10−11µB with small coupling
constants.

The coupling to the third generation of quarks gives the largest contribution because of the
magnitude of V CKM

tb . Interestingly, setting xµ3L = 0 such that µNνµ is proportional to the off-
diagonal CKM element V CKM

ts , we still find µNνµ ≈ 3.1× 10−11µB with xµ2L = x3NR = 0.6. Thus,
the model can explain the XENON1T excess in a large region of parameter space. However,
these coupling values are not suitable to explain flavor physics anomalies, as we shall see in the
next section.

Doing a similar calculation with the charm quark running in the loop, corresponding to the i = 2

term in Eq. (8.8), gives a contribution of 1.6×10−11µB even when all the relevant couplings are
set to 1. If x2NR ≈ x3NR , such that a large hierarchy does not weigh up for the difference between
the top quark contribution and charm quark contribution to µNνµ , we can neglect the latter.

8.3 Flavor Physics Anomalies

In the Standard Model, the gauge interactions act identically on the three generations of leptons.
This accidental symmetry is called lepton flavor universality (LFU), and is only broken by the
Yukawa interactions. That is, the only property differentiating the three generations is the
mass of the particles. A violation of LFU would be a clear indication of new physics, thus
motivating experimental searches for such phenomena. In particular, experimental data on
decays of B mesons show deviations from the Standard Model predictions, which may be signs
of new physics.

The vector leptoquark Uµ
1 can be used to explain such LFU violations. The authors of Ref. [55]

propose the coupling structure
x2µL , x

3µ
L , x

3τ
R , x

2N
R 6= 0, (8.12)

which we shall now explore in the context of observed flavor anomalies.
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The R(D(∗)) Anomaly

In the Belle [57–60], BaBar [61, 62], and LHCb [63–65] collaborations, LFU has been tested in
the charged current transition b→ c`ν, the observables being the ratio of branching fractions

R(D(∗)) =
Br(B → D(∗)τντ )

Br(B → D(∗)`ανα)
, (8.13)

where α = e, µ, and B and D(∗) are non-strange beauty mesons and charmed mesons, respec-
tively, the asterisk referring to an excited state. The world averages of measurements, and the
corresponding Standard Model predictions are [66] (Spring 2021 update [67])

R(D)exp = 0.339± 0.030,

R(D)SM = 0.299± 0.003,

R(D∗)exp = 0.295± 0.014,

R(D∗)SM = 0.252± 0.005,
(8.14)

The measurements exceed the Standard Model prediction at a combined significance of 3.4σ.

Introducing the U1 leptoquark with the interactions in Eq. (8.2), the b→ c`ν transition receives
the extra contribution from b→ cτNR shown in Fig. 8.2. With the goal of comparing the model
predictions to the experimental values, we now calculate the quantity

R(D(∗))exp

R(D(∗))SM
− 1 =

Br(B → D(∗)τν)total
Br(B → D(∗)τν)SM

− 1. (8.15)

The branching ratio is defined as Br(A → B) = ΓA→B/
∑

Γ, where ΓA→B is the decay rate of
the process and

∑
Γ is the total decay rate. Thus, we can write

R(D(∗))exp

R(D(∗))SM
− 1 =

(
ΓB→D(∗)τντ + ΓB→D(∗)τNR

)
/
(∑

ΓSM + ΓB→D(∗)τNR

)
ΓB→D(∗)τντ /

∑
ΓSM

− 1. (8.16)

Assuming the new physics gives a small contribution to the decay rate relative to the total
Standard Model decay rate, this reduces to

R(D(∗))exp

R(D(∗))SM
− 1 ≈

ΓB→D(∗)τNR

ΓB→D(∗)τντ

. (8.17)

Since we are calculating a ratio of decay rates, complications due to the hadronic structure
cancel out, and we can work at the quark level. Further, since the neutrino masses are many
orders of magnitude smaller than the quark masses, the difference in phase space is negligible.
Thus, the ratio only depends on the squared unpolarized amplitudes,

R(D(∗))exp

R(D(∗))SM
− 1 ≈

∣∣Mb→cτNR

∣∣2
unpol.∣∣Mb→cτντ

∣∣2
unpol.

. (8.18)

Using the Feynman rules of the Standard Electroweak theory and the vector leptoquark model
shown in Appendix A, one can straightforwardly write the amplitudes for the processes

b(p1, s1) → c(p2, s2) + τ(p3, s3) + ν(p4, s4), (8.19)

where the quantities in the brackets are the momenta and spins of the external particles, and ν
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denotes either ντ or NR. We obtain

Mb→cτντ = −ig
2

2
V CKM
cb

[
us3(p3)γµPLvs4(p4)

] −gµν + qµqν/m2
W

q2 −m2
W

[
us2(p2)γνPLus1(p1)

]
≈ −i g2

2m2
W

V CKM
cb

[
us3(p3)γ

µPLvs4(p4)
] [
us2(p2)γµPLus1(p1)

]
, (8.20)

Mb→cτNR
= −ix2NR (x3τR )∗

[
us3(p3)γµPRvs4(p4)

] −gµν + qµqν/m2
U1

q2 −m2
U1

[
us2(p2)γνPRus1(p1)

]
≈ −i

x2NR (x3τR )∗

m2
U1

[
us3(p3)γ

µPRvs4(p4)
] [
us2(p2)γµPRus1(p1)

]
, (8.21)

where q = p2−p1 = p3+p4. The process has the characteristic energy scale mc,mb ∼ O(1GeV),
so we have taken the limits q2/m2

W → 0 and q2/m2
U1

→ 0. To find the squared amplitudes, we
average over initial spin and sum over final spins,

∣∣M∣∣2
unpol. =

1

2

∑
s1,s2,s3,s4

M∗M. (8.22)

Using energy projection operators to eliminate spin sums as described in Eq. (B.12), the Stan-
dard Model process yields

∣∣Mb→cτντ

∣∣2
unpol. =

g4

8m4
W

∣∣V CKM
cb

∣∣2AµνB
µν , (8.23)

where

Aµν =
1

16mτmντ

tr
[
( 6p3 +mτ ) γ

µ (1− γ5) ( 6p4 −mντ ) (1 + γ5) γ
ν
]

=
1

2mτmντ

(
pν3p

µ
4 + pµ3p

ν
4 − p3p4g

µν − iεµνλρp3λp4ρ

)
, (8.24)

Bµν =
1

16mcmb
tr
[
( 6p2 +mc) γ

µ (1− γ5) ( 6p1 +mb) (1 + γ5) γ
ν
]

=
1

2mcmb

(
pν1p

µ
2 + pµ1p

ν
2 − p1p2g

µν + iεµνλρp1λp2ρ

)
. (8.25)

The traces of products of gamma matrices were evaluated using the relations in Eq. (B.5).
Contracting, we obtain

∣∣Mb→cτντ

∣∣2
unpol. =

g4

8m4
W

∣∣V CKM
cb

∣∣2 (p1p3)(p2p4)
mbmcmτmντ

. (8.26)

Meanwhile, the leptoquark diagram gives

∣∣Mb→cτNR

∣∣2
unpol. =

∣∣x2NR x3τR
∣∣2

2m4
U1

CµνD
µν , (8.27)
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Figure 8.2: Tree-level diagrams contributing to the flavor observables R(K(∗)) and R(D(∗)) in
the model with a vector leptoquark Uµ

1 and a sterile neutrino NR.

where

Cµν =
1

16mcmNR

tr
[
( 6p2 +mc) γ

µ (1 + γ5) ( 6p4 −mNR
) (1− γ5) γ

ν
]

=
1

2mcmNR

(
pν2p

µ
4 + pµ2p

ν
4 − p2p4g

µν − iεµνλρp3λp4ρ

)
, (8.28)

Dµν =
1

16mbmτ
tr
[
( 6p3 +mτ ) γ

µ (1 + γ5) ( 6p1 +mb) (1− γ5) γ
ν
]

=
1

2mbmτ

(
pν1p

µ
3 + pµ1p

ν
3 − p1p3g

µν − iεµνλρp1λp3ρ

)
, (8.29)

which gives the unpolarized squared amplitude

∣∣Mb→cτNR

∣∣2
unpol. =

∣∣x2NR x3τR
∣∣2

2m4
U1

(p1p3)(p2p4)

mbmcmτmNR

. (8.30)

Taking the limit mντ = mNR
→ 0 and inserting Eq. (8.26) and Eq. (8.30) into Eq. (8.18), we

arrive at
R(D(∗))exp

R(D(∗))SM
− 1 =

∣∣x2NR x3τR
∣∣2

m4
U1

v4

4|V CKM
cb |2

, (8.31)

where the relation mW = vg/2 was used.

Since R(D) and R(D∗) are both given by Eq. (8.31), we use the average of the ratios
R(D)exp/R(D)SM and R(D∗)exp/R(D

∗)SM, weighted by their uncertainties given in Eq. (8.14).
Doing so gives the requirement∣∣x2NR x3τR

∣∣2
m4

U1

v4

4|V CKM
cb |2

= 0.159± 0.065, (8.32)

corresponding to ∣∣x2NR x3τR
∣∣2 = 4.57 (8.33)

at the central value, which falls within the 1σ region for both R(D) and R(D∗).
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The R(K(∗)) Anomaly

Another flavor observable is the ratio

R(K(∗)) =
Br(B → K(∗)µ+µ−)

Br(B → K(∗)e+e−)
, (8.34)

where K(∗) are the K-mesons possessing non-zero strangeness. The decays in Eq. (8.34) come
from the neutral current transition b → s`+`−. Since there are no tree-level flavor changing
neutral currents in the Standard Model, the transition happens at the one-loop level. Because of
the small mass of e and µ in comparison to the b quark mass, the Standard Model predicts these
ratios to be close to unity [68]. Recently, the LHCb collaboration published the experimental
value [69]

R(K)exp = 0.846+0.044
−0.041, (8.35)

which is a 3.1σ deviation from the Standard Model. LHCb has also performed the most accurate
measurement of R(K∗) [70],

R(K∗)exp = 0.69+0.12
−0.09. (8.36)

This value deviates from the Standard model at 2.4σ. Both the experimental values correspond
to a dilepton invariant mass squared between 1.1GeV2 and 6.0GeV2.

On the theoretical side, the b → s`+`− transitions can be treated in a model-independent way
by using effective field theory. In this framework one constructs an effective Lagrangian by
integrating out the heavy degrees of freedom and adding up the possible relevant operators of
a given mass dimension. Such a Lagrangian encodes the low-energy behavior of the Standard
Model and potential new physics (NP), and can be written accordingly as

Leff = LSM
eff + LNP

eff . (8.37)

Relevant to R(K(∗)) are the dimension 6 operators containing b, s and two charged leptons `.
As will be explained shortly, the operators of interest here are

LNP
eff ⊃ 4GF√

2
V CKM
tb V CKM

ts
∗ α

4π

(
Cbsµµ
9 Obsµµ

9 + Cbsµµ
10 Obsµµ

10

)
+H.c. , (8.38)

where

Obsµµ
9 =

(
sγµPLb

)
(µγµµ) , Obsµµ

10 =
(
sγµPLb

)
(µγµγ5µ) , (8.39)

and C9,10 are the so-called Wilson coefficients. The subscripts on the operators and coefficients
come from the naming convention commonly adopted in the literature.

Having integrated out new heavy fields, the effect of new physics can be encoded in the Wilson
coefficients, allowing a model-independent analysis. A recent such analysis, based on data on
rare B decays, can be found in Ref. [71]. In a combined fit to rare B decay data, it was found
that the scenario

Cbsµµ
9 = −Cbsµµ

10 = −0.39± 0.07 (8.40)

is preferred over the Standard Model.

To connect to the leptoquark model, consider the diagrams in Fig. 8.2. The amplitude corre-
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sponding to the process b→ sµ+µ− is

Mb→sµ+µ− = −ix2µL (x3µL )∗
[
usγµPLvµ

] −gµν + pµpν/m2
U1

p2 −m2
U1

[
uµγνPLub

]
, (8.41)

where the subscripts on the spinors indicate the corresponding particle, and pµ is the momentum
of the intermediate Uµ

1 . To match with the effective theory in Eq. (8.38), we take the limit
p2/m2

U1
→ 0, giving

Mb→sµ+µ− ≈ −i
x2µL (x3µL )∗

m2
U1

[
usγ

µPLvµ
] [
uµγµPLub

]
. (8.42)

Using the appropriate Fierz identity [3, p. 66] to rearrange the spinors, and expanding the
rightmost chirality projector, the approximate amplitude can be rewritten as

Mb→sµ+µ− ≈− i
x2µL (x3µL )∗

2m2
U1

[usγ
µPLub]

[
uµγµvµ

]
+ i

x2µL (x3µL )∗

2m2
U1

[usγ
µPLub]

[
uµγνγ5vµ

]
.

(8.43)

As is evident from the operators in Eq. (8.39), this matches the effective description if

Cbsµµ
9 = −Cbsµµ

10 = − πv2

αV CKM
tb V CKM

ts
∗
x2µL (x3µL )∗

m2
U1

, (8.44)

where v is the Higgs vev, and we used the relation GF = (
√
2v2)−1. Thus, with the same

coupling structure needed to produce the transition magnetic moment in Eq. (8.10), the model
also contributes to R(K(∗)). The relation Cbsµµ

9 = −Cbsµµ
10 arises since the contributing term in

the interaction Lagrangian Eq. (8.2) is a current of left-chiral muons. Note that the negative
sign in Eq. (8.44) is cancelled by the sign of V CKM

ts . Thus, assuming real couplings, we require
x3µL and x2µL to have opposite signs in order to fit the data. To reach the central fit value in
Eq. (8.40), the requirement is

x2µL x
3µ
L = −2.38× 10−3. (8.45)

From Eq. (8.31) and Eq. (8.44), we see that it is possible to explain both the R(D(∗)) and
R(K(∗)) anomalies in the model given in Eq. (8.2), given the couplings in Eq. (8.12). With
these couplings, a transition magnetic moment µNνµ is induced at one-loop order with a charm
quark running in the loop. To explain the flavor anomalies, the authors of Ref. [55] take
x3τR x

2N
R ∼ O(1) and x2µL , x

3µ
L � 1. As discussed in Section 8.2, this is not sufficient to explain

the XENON1T excess.

To obtain a large µNνµ , we extend the model to include a non-zero x3NR , allowing the top quark to
run in the loops. As pointed out in Ref. [55], this does not alter the flavor anomaly contributions.
Then, the formula for the neutrino magnetic moment is Eq. (8.10). The observables µNνµ

and R(K(∗)) both depend on x2µL and x3µL , so we seek a region of parameter space which can
accommodate them simultaneously. Meanwhile, R(D(∗)) does not share parameters with the
leading contribution to the neutrino magnetic moment, so we adjust the couplings x3τR and x2NR
assuming they do not affect µNνµ .

81



−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

x2µ
L

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

x
3
µ
L

x3N
R = 0.3

x3N
R = 0.5

x3N
R = 0.8

R(K) 1σ

Figure 8.3: Preferred parameter regions in the x2µL − x3µL plane. The gray hatched region is
the 1σ region for the Wilson coefficients Cbsµµ

9 = −Cbsµµ
10 which explain the R(K(∗)) anomalies.

The green areas are regions where |µNνµ | lies between 4.5 × 10−11µB and 6.5 × 10−11µB, for
three different values of x3NR . The black line is x3µL = −x2µL , showing where these couplings
have the same magnitude. Overlapping regions correspond to parameters which can explain the
R(K(∗)) anomalies and the XENON1T excess simultaneously.

For the remaining parameters, we fix x2µL and x3µL such that Eq. (8.44) gives Wilson coefficients
in the favored region, and then adjust x3NR to obtain the desired µNνµ . This is illustrated in
Fig. 8.3. The 1σ region for Cbsµµ

9 = −Cbsµµ
10 is obtained by inserting the values in Eq. (8.40)

into Eq. (8.44) and solving for x3µL . This gives x3µL ∝ −1/x2µL , resulting in the two symmetric,
hatched regions.

Also shown in Fig. 8.3 are parameter regions which give |µNνµ | between 4.5 × 10−11µB and
6.5 × 10−11µB. There is a small dependence of the neutrino magnetic moment on x2µL , which
comes from quark mixing. This alters the preferred parameter regions slightly, giving them a
small slope. The magnetic moment depends linearly on the couplings, so taking the absolute
value results in two distinct regions for each choice of x3NR . It is clear from Fig. 8.3 that
overlapping parameter regions for the two observables can be found while keeping all couplings
small.

To ensure the validity of the model, the authors of Ref. [55] calculated limits on the couplings
coming from constraints from other observables. These are observables related to tree-level
processes of beauty, charmed, and strange mesons. The addition of x3NR 6= 0 in the model does
not contribute at tree-level, and there are no analogous constraints involving the top quark since
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it does not form bound states. To summarize, the most stringent constraints given are [55]

Br(Bc → µN) =⇒
∣∣x3µL x2NR ∣∣ . 0.23, (8.46)

Br(Ds → µν/N) =⇒
∣∣x2µL x2NR ∣∣ . 0.17

(
mU1

1TeV

)2

, (8.47)

Br(Bs → τµ) =⇒
∣∣(x2µL )∗x3τR

∣∣ < 8.8× 10−3

(
mU1

1TeV

)2

. (8.48)

To reach the benchmark point x2µL = −x3µL ≈ 0.05 with mU1 = 2TeV, the constraints give
x3τR . 0.70, x2NR . 4.6, which still gives room to satisfy Eq. (8.32).

Looking at Fig. 8.3, there are large overlapping regions for R(K(∗)) and |µNνµ | when increasing
x2µL , since the curve for Cbsµµ

9 = −Cbsµµ
10 flattens out and matches the slope of the preferred

|µNνµ | region. However, the stringent limit from Br (Bs → τµ) then requires one to reduce x3τR
and thus increase of x2NR to explain the R(D(∗)) anomaly.

In summary, choosing an appropriate point in parameter space, the model can explain the
R(D(∗)) and R(K(∗)) anomalies together with a large |µNνµ |, while satisfying constraints and
keeping the couplings small. As a concrete example, the point(

x2µL , x
3µ
L , x

3τ
R , x

2N
R , x3NR

)
≈
(
0.05, −0.05, 0.7, 3.0, 0.5

)
(8.49)

gives the desired outcome. The charm contribution to |µNνµ | is in this case more than an order
of magnitude lower than the top contribution.

As usual, when removing the photon line from either diagram in Fig. 8.1, we obtain a diagram
contributing to the Dirac neutrino mass. The authors of Ref. [55] estimate a contribution
proportional to the charm quark mass. Here, since we allow the top quark to run in the loop,
the dominant contribution is

δmD ∼ 1

16π2
x3NR mt

(
x3µL Vtb + x2µL Vts

)
, (8.50)

which gives δmD ∼ 1MeV with the couplings needed to fit the data and avoid constraints. With
only a Dirac term contributing to the neutrino mass, this means the neutrino Yukawa coupling
must be tuned with an accuracy of one part in 107. The authors of Ref. [55] invoke the inverse
see-saw mechanism to obtain acceptable active neutrino masses. Here, requiring active-sterile
mixing to be

tan θνN ∼ mD

mR
. 10−2, (8.51)

the inverse see-saw scenario would lead to a heavy mass eigenstate with mN ∼ 100MeV, which
ruins the explanation of XENON1T data. Thus, fine-tuning of the neutrino Yukawa coupling
is necessary.

83



Chapter 9

Conclusions and Outlook

Motivated by recent experimental results, this thesis has discussed magnetic moments of neutri-
nos in and beyond the Standard Model. In 2020, the XENON1T experiment reported an excess
in electron recoil events at recoil energies around 2–3 keV. This excess can be interpreted as the
consequence of a neutrino magnetic moment on the order 10−11µB, many orders of magnitude
above the Standard Model prediction.

To facilitate a clear discussion, the theoretical background necessary for discussing neutrino
magnetic moments was given. This included an introduction to neutrino physics in the Stan-
dard Model, and some extensions of the standard theory to account for neutrino masses. A
thorough introduction to magnetic moments was given, where we connected the classical pic-
ture to the quantum mechanical one. We saw that in the framework of quantum field theory, the
magnetic moment can be generalized to a coupling constant in an effective Lagrangian, includ-
ing transition interactions between different particle states. The identification of the magnetic
moment in this way was justified by taking the non-relativistic limit and connecting back to the
classical concept.

Since neutrinos are electrically neutral, their magnetic moments arise only at loop-level in
quantum field theory. To allow the systematical calculation of neutrino magnetic moments in
any given model, the electromagnetic vertex function for neutrinos was decomposed into form
factors, and we identified the neutrino magnetic moment as one of these form factors. Using
this description, magnetic moments can be extracted from amplitudes by means of projection
operators, allowing us to avoid calculating entire loop integrals. The methodology was adapted
to the specific case of a transition magnetic moment from an active neutrino to a heavier
singlet state, connecting our discussion to other works which consider this scenario. We saw
how the magnetic moments of Dirac and Majorana neutrinos differ; for Majorana neutrinos
the magnetic moment is antisymmetric in the space of neutrino states, thereby only allowing
transition magnetic moments. Magnetic moments of Majorana neutrinos can be treated using
established Feynman rules for fermion-number violating processes, or they can be extracted
from the corresponding Dirac magnetic moments.

Like mass operators, the magnetic moment operator flips chirality. Since the Standard Model
neutrinos are left-chiral, a non-zero neutrino magnetic moment requires right-chiral neutrinos in
some form. Thus, the discussion of neutrino magnetic moment is closely connected to neutrino
mass generation. In the most straight-forward extension of the Standard model, neutrino masses
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are generated by Yukawa couplings to the Higgs vev, and the neutrino fields take the form
ν = νL+ νR. In that case, magnetic moment interactions are transitions between the two chiral
components, exactly like in the case of the magnetic moment of charged leptons. If neutrinos
are Majorana particles, their chiral decomposition is ν = νL + νcL, with transition magnetic
moments between chiral components of different states. In both these scenarios, the neutrino
magnetic moments were calculated assuming the standard electroweak interactions. Using the
projection technique, we arrived at magnetic moments which agree with the literature. These
results show that the electroweak interactions give neutrino magnetic moments proportional to
the neutrino masses. This was understood from the structure of the electroweak interactions;
They act only on left-chiral states, so the necessary chirality flip must occur on an external
neutrino line, leading to a mass insertion.

To generate large neutrino magnetic moments, one must introduce non-standard interactions
in which the right-chiral neutrinos participate. Then, the chirality flip can happen inside the
loop and one avoids the proportionality to the neutrino mass. However, a model building
challenge arises in such models; the diagrams which generate neutrino magnetic moments also
give loop corrections to the neutrino mass when the external photon line is removed. The loop
diagrams act as Dirac mass operators, and the resulting corrections give unacceptably large
neutrino masses if the magnetic moments are to be large enough to be detected by current
experiments. Therefore, the tree-level neutrino mass must be tuned to compensate the large
correction. Using a rough, model-independent estimate we found that the neutrino Yukawa
coupling must be tuned to an accuracy of one part per million.

It is desirable to avoid fine-tuning of the parameters in a theory. Therefore, we discussed the
Voloshin mechanism as a solution to the tuning issue. In this scenario, the left- and right-
chiral neutrinos constitute a doublet under a new global SU(2) symmetry, which forbids the
Dirac mass operator while allowing the magnetic moment operator. We saw how this symmetry
mechanism can be implemented in a specific theory when we considered a recently proposed
model with scalar leptoquarks coupled to the third generation quarks [32]. In this model,
transition magnetic moments occur between the muon neutrino and a sterile, right-chiral state
NR of mass lower than 1MeV, which is a kinematically possible process for solar neutrinos. The
transition magnetic moment µNνµ was calculated, our results disagreeing with Ref. [32] by a
factor of 2. We saw how the Voloshin mechanism is implemented by the introduction of a second
scalar leptoquark, with the two leptoquarks together transforming as a doublet under the new
SU(2) symmetry. This symmetry requires equal leptoquark couplings and masses, leading to
the cancellation of the 1-loop mass diagrams. In the context of the scalar leptoquark model,
the generation of the correct neutrino masses was also discussed. The Voloshin mechanism
mitigates the fine-tuning issue, and we found that the inverse see-saw mechanism is suitable to
obtain the desired masses, albeit with a large active-sterile mixing angle.

A model with vector leptoquarks was proposed to produce the active-to-sterile magnetic mo-
ment µNνµ large enough to explain the XENON1T anomaly. An SU(2)L singlet vector which
couples to standard model leptons and quarks can run in one-loop diagrams to produce neutrino
magnetic moments. Through the vector leptoquark, the neutrinos couple to the up-type quarks.
Because of the vector structure of the couplings, left-chiral fields are coupled to other left-chiral
fields, and likewise for the right-chiral fields. For the diagrams producing neutrino magnetic
moments, this implies that the chirality flip occurs by a quark mass insertion, allowing the
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neutrino magnetic moment to be enhanced by the top quark mass. We assumed a non-Abelian
coupling between the vector leptoquark and the Standard Model gauge bosons.

Couplings between the vector leptoquark and the first generation leptons and quarks is strongly
constrained by experiment, so magnetic moments involving νe are not feasible in this model.
However, a large transition magnetic moment from νµ to NR can be achieved by choosing the
appropriate coupling structure. In particular, we imposed non-zero left-chiral couplings between
the muon family and the second and third quark generations, and a non-zero coupling between
the sterile neutrino and the top quark. We found that due to CKM mixing, the XENON1T
excess can be accommodated in a large region of parameter space with a 2TeV leptoquark.

Further, the implications of the vector leptoquark model on lepton flavor anomalies were ex-
plored. With the same couplings structure as required to produce a large µNνµ , the model
also contributes at tree-level to the ratios R(K(∗)), which quantify lepton flavor violation in
the semileptonic B → K(∗)`+`− decays. With two more non-zero parameters, in particular
the couplings between the right-chiral tau lepton and the bottom quark, and the right-chiral
charm quark and the sterile neutrino, the model also contributes to the ratio R(D(∗)). This
ratio describes lepton flavor universality violation in the decays B → D(∗)`ν. Measurements of
R(K(∗)) and R(D(∗)) show deviations in both variables with respect to the Standard Model.
The contributions to these observables from the vector leptoquark were explicitly calculated,
and using the most recent experimental results, an analysis of the parameter space to accom-
modate both flavor observables and a large neutrino magnetic moment was performed. While
satisfying bounds from other flavor physics observables, we found overlapping regions for µNνµ

and R(K(∗)) with all relevant couplings below unity, while the R(D(∗)) can be accommodated
with the relevant couplings ∼ O(1).

Unfortunately, the vector leptoquark model requires a large amount of fine-tuning to avoid
excessively large neutrino masses, as expected. With the top quark running in the loops, the
loop contribution to the Dirac mass of the neutrinos is estimated to 1MeV, requiring a Yukawa
coupling tuned with an accuracy of 1 part in 107. Without a mechanism reducing the loop mass
contribution, the see-saw mechanism cannot solve the tuning issue without a singlet mass too
large to explain the XENON1T excess. Therefore, going forward, finding a more elegant way of
producing the correct neutrino masses in the vector leptoquark model would be desirable to make
the model more appealing. One possible avenue, inspired by the SU(2) symmetry mechanism
employed in the scalar leptoquark model, is to introduce a second vector leptoquark. One could
explore the effects of imposing a symmetry, such as a simple exchange symmetry, between the
leptoquarks to obtain cancellation of the 1-loop mass diagrams. The candidate leptoquark is a
doublet vector, the only other vector leptoquark with couplings to both left- and right-chiral
neutrinos.

In addition to the Voloshin symmetry, other mechanisms to obtain naturally large neutrino
magnetic moments exist in the literature. For example, Barr, Freire and Zee proposed a spin-
suppression mechanism, where the loop mass diagram is suppressed on the basis of spin conserva-
tion [72]. Babu and Mohapatra introduced a horizontal flavor gauge symmetry under which the
electron and muon families form doublets [73], causing cancellation of the mass loop diagrams.
For future work, it could be of interest to explore the implementation of these mechanisms to
obtain a naturally large neutrino magnetic moment explaining the XENON1T data.
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Appendix A

Feynman Rules

A.1 The Standard Electroweak Theory

Here we present the Feynman rules for the standard electroweak theory, including only the
vertex factors relevant to this thesis. The unitary gauge is employed. We adopt the convention
where e = |e| > 0 is the electric charge of the proton. qf is the charge of a fermion f . The
Feynman rules of this section are sourced from Refs. [3, 74].

Propagators

Fermion propagator: p
f f =⇒ i

(
6p+mf

)
p2 −m2

f + iε
(A.1)

Photon propagator: p
Aµ Aν =⇒ i

−gµν

p2 + iε
(A.2)

W propagator: p
Wµ W ν =⇒ i

−gµν + pµpν/m2
W

p2 −m2
W + iε

(A.3)

Z propagator: p
Zµ Zν =⇒ i

−gµν + pµpν/m2
Z

p2 −m2
Z + iε

(A.4)

Higgs propagator: p
H H =⇒ i

p2 −m2
H + iε

(A.5)
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Vertices

Electromagnetic vertex:
f f

Aµ

=⇒ −iqfγµ (A.6)

Charged current lepton vertex:
`α να

Wµ

=⇒ −i g

2
√
2
γµ (1− γ5) (A.7)

Charged current quark vertex:
dj ui

Wµ

=⇒ −i g

2
√
2
γµ (1− γ5)V

CKM
uidj

(A.8)

Charged current quark vertex:
ui dj

Wµ

=⇒ −i g

2
√
2
γµ (1− γ5)

(
V CKM
ujdi

)∗
(A.9)

W -W -γ vertex:
p1

p2

p3

W+
µ W−

ν

Aλ

=⇒
ie
[
(p1 − p2)λ gµν

+ (p2 − p3)µ gνλ

+ (p3 − p1)ν gλµ
]

(A.10)

A.2 Leptoquarks

In this section, the Feynman rules for leptoquarks (LQs) used in this thesis are presented.
The relevant leptoquarks and their quantum numbers under the Standard Model are shown in
Table A.1.

Table A.1: Relevant leptoquark states and their quantum numbers under the Standard Model.

Leptoquark SU(3)c SU(2)L U(1)Y
S1 3 1 1/3

R̃2 3 2 1/6
U1 3 1 2/3

A thorough account of Feynman rules for scalar leptoquarks can be found in Ref. [75]. For a
comprehensive review on leptoquarks, the reader is referred to Ref. [45].
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The interaction vertices between leptoquarks, neutrinos and quarks come from the terms

L ⊃− yiαL ν
c
αLdiLS1 +

(
V CKM
uidj

)∗
yjαL `cαLuiLS1 + yiNR dciRNRS1

+ ỹiαL diRναLR̃
−1/3
2 + ỹiNR diLNRR̃

−1/3
2

− ỹiαL diR`αLR̃
2/3
2 + V CKM

uidj
ỹjNR uiLNRR̃

2/3
2

+ V CKM
uidj

xjαL uiLγµναLU
µ
1 + xiNR uiRγµNRU

µ
1

+ xiαL diLγµ`αLU
µ
1 + xiαR diRγµ`αRU

µ
1 +H.c. ,

(A.11)

where the sums over quark generations i, j, and lepton flavor α are implied. Color conservation
is implicitly enforced in each vertex. In the model of Ref. [32] which we discussed in Chapter 7,
the couplings are y3µL = ỹ3NR ≡ y2, y3NR = ỹ3µL ≡ y1, with the rest of the couplings set to zero.

Propagators

Scalar singlet LQ propagator: p
S1 S1 =⇒ i

p2 −m2
S1

+ iε
(A.12)

Scalar doublet LQ propagator: p
R̃2 R̃2

=⇒ i

p2 −m2
R̃2

+ iε
(A.13)

Vector singlet LQ propagator: p
Uµ
1 Uν

1
=⇒ i

−gµν + pµpν/m2
U1

p2 −m2
U1

+ iε
(A.14)

Vertices

S1-νL-d vertex:
ναL di

S1

=⇒ −iyiαL PL (A.15)

S1-`L-u vertex:
`αL ui

S1

=⇒ i
(
V CKM
uidj

)∗
yjαL PL (A.16)

S1-NR-d vertex:
NR di

S1

=⇒ iyiNR PR (A.17)
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R̃2-νL-d vertex:
ναL di

R̃
−1/3
1

=⇒ iỹiαL PL (A.18)

R̃2-NR-d vertex:
NR di

R̃
−1/3
1

=⇒ iỹiNR PR (A.19)

R̃2-`L-d vertex:
`αL di

R̃
2/3
1

=⇒ −iỹiαL PL (A.20)

R̃2-NR-u vertex:
NR ui

R̃
2/3
1

=⇒ iV CKM
uidj

ỹjNR PR (A.21)

S1-γ vertex:
p1 p2

S
1/3
1 S

1/3
1

Aµ

=⇒ −1

3
ie
(
pµ1 + pµ2

)
(A.22)

R̃2-γ vertex:
p1 p2

R̃
−1/3
1 R̃

−1/3
1

Aµ

=⇒ 1

3
ie
(
pµ1 + pµ2

)
(A.23)

U1-νL-u vertex:
ναL ui

Uµ
1

=⇒ ixjαL V
CKM
uidj

γµPL (A.24)
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U1-`-d vertex:
`α di

Uµ
1

=⇒ iγµ
(
xiαL PL + xiαR PR

)
(A.25)

U1-NR-u vertex:
NR ui

Uµ
1

=⇒ ixiNR γµPR (A.26)

U1-γ vertex:
p1

p2

p3

U
−1/3
1µ U

1/3
1ν

Aλ

=⇒
−2

3
ie
[
(p1 − p2)λ gµν

+ (p2 − p3)µ gνλ

+ (p3 − p1)ν gλµ
] (A.27)

A.3 Additional Feynman Rules for Majorana Fermions

When dealing with Majorana fermions, there are additional contributing diagrams to a given
process due to the fact that ψ and ψ contain the same operators. To calculate these diagrams,
special Feynman rules must be constructed. Dirac fermions carry fermion number flow, which is
indicated by arrows on the external and internal fermion lines in diagrams. Majorana fermions
do not carry fermion number flow, and are therefore drawn without arrows.

The procedure for dealing with Majorana fermions in Feynman diagrams is sourced from
Ref. [40], and is as follows:

1. For a given process, draw all contributing diagrams.

2. For each fermion chain, assign an arbitrary direction of “fermion flow” (indicated by a
gray arrow).

3. For each fermion chain, write the Dirac matrices in opposite order of the chosen fermion
flow.

4. For each internal Dirac fermion, if the direction of fermion number flow is opposite to the
chosen direction of fermion flow, substitute the propagator S(p) for S(−p).

5. For each vertex with Dirac fermions attached, if the direction of fermion number flow is
opposite to the chosen direction of fermion flow, substitute the vertex Γ for CΓTC−1.

6. For each external fermion, assign a spinor according to the chosen direction of fermion
flow as follows:
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=⇒ u(p)

=⇒ v(p)

=⇒ u(p)

=⇒ v(p)
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Appendix B

Dirac Matrices

The Dirac matrices are 4× 4 matrices defined by the anticommutator

{γµ, γν} = gµν (B.1)

and the Hermiticity condition
γµ† = γ0γµγ0. (B.2)

The fifth gamma matrix is defined as

γ5 = iγ0γ1γ2γ3, (B.3)

which satisfies the properties

{γ5, γµ} = 0, (γ5)
2 = 1, γ5

† = γ5. (B.4)

Traces of products of gamma matrices are

tr (γµγν) = 4gµν ,

tr (γµγνγλγρ) = 4(gµνgλρ − gµλgνρ + gµρgνλ),

tr (odd # of γ) = 0,

tr γ5 = tr (γ5γ
µ) = tr (γ5γ

µγν) = tr (γ5γ
µγνγλ) = 0,

tr (γ5γ
µγνγλγρ) = −4iεµνλρ,

(B.5)

where εµνλρ is the totally antisymmetric symbol, equal to 1 for an even permutation of (0, 1, 2, 3).

The constant spinors us(p) and vs(p), describing particles and antiparticles of spin s and 4-
momentum p, satisfy the momentum space Dirac equations

(6p−m)us(p) = 0, (6p+m)vs(p) = 0, (B.6)

and their adjoints are
us(p) = u†s(p)γ

0, vs(p) = v†s(p)γ
0. (B.7)
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They satisfy the completeness relation

2∑
s=1

[
usα(p)usβ(p)− vsα(p)vsβ(p)

]
= δαβ, (B.8)

where the Greek indices refer to spinor space components.

The energy projection operators are defined by

Λ± =
±6p+m

2m
, (B.9)

in order to satisfy
Λ+(p)us(p) = us(p), Λ−(p)vs(p) = vs(p),

us(p)Λ
+(p) = us(p), vs(p)Λ

−(p) = vs(p),
(B.10)

and
Λ+(p)vs(p) = Λ−(p)us(p) = vs(p)Λ

+(p) = us(p)Λ
−(p) = 0. (B.11)

From the completeness relation Eq. (B.8), one finds that the energy projection operators can
be written as

Λ+
αβ(p) =

2∑
s=1

usα(p)usβ(p), Λ−
αβ(p) = −

2∑
s=1

vsα(p)vsβ(p). (B.12)

These relations are used to eliminate spin sums when evaluating unpolarized squared amplitudes.
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Appendix C

Translating the Voloshin Lagrangian
to 4-spinor Notation

In this section the flavor subscript on the electron neutrino is dropped, i.e. ν = νe, in order to
avoid overly cluttered notation. Lower case Latin indices refer to two-spinor indices, and Greek
indices refer to four-component spinor indices. The chiral basis for the gamma matrices is used
in this section.

The Lagrangian in Eq. (6.1) is written in two-component spinor notation,

L = f(χτχν)η − f ′(χc
τχ

c
ν)η

∗ +H.c. (6.1)

In order to obtain the same Lagrangian in four-component notation, we first note that the
neutrino Dirac mass term in [43] is written as

LMass = mνε
abχc

νaχνb +H.c. , (C.1)

Where a, b = (1, 2) and ε is the antisymmetric symbol. We let the four-component spinors be

ψ =

(
χa

χc†ȧ

)
, ψ =

(
χ†
ȧ χca

)
γ0 =

(
χca χ†

ȧ

)
, (C.2)

where the two-component spinors with undotted indices transform under the left-chiral represen-
tation of the Lorentz group, and the spinors with dotted indices transform under the right-chiral
representation. The indices are distinct since one cannot contract spinors of different represen-
tation to obtain a Lorentz scalar. Applying the rules for translating between four-component
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and two-component notation provided in [8], we have for the neutrino mass term

LMass = mνε
abχc

νaχνb +H.c.

= mνχ
ca
ν χνa +H.c.

= mνψ
β
νL

a
βL

δ
aψνδ +H.c.

= mνψ
β
ν (PL)

δ
βψνδ +H.c.

= mνψ
β
ν (PL)

γ
β(PL)

δ
γψνδ +H.c.

= mνψνRψνL +H.c. , (C.3)

where

L =

(
1

0

)
, L =

(
1 0

)
, (C.4)

are 4×2 and 2×4 matrices respectively, with 0 the 2×2 matrix of zeros and 1 the 2×2 identity
matrix. In the above calculation we used the properties La

βL
δ
a = (PL)

δ
β and PL = (PL)

2.
Eq. (C.3) is the familiar Dirac mass term, which justifies the construction of the 4-spinors in
Eq. (C.2). In the interaction Lagrangian Eq. (6.1), we thus want to couple the upper components
of ψν and ψτ , and the scalar field η, with the coupling constant f , and the lower components of
ψν

T and ψτ
T , and η∗, with the coupling constant f ′. To pick out upper and lower components

we use the chirality projectors

PL =

(
1 0

0 0

)
, PR =

(
0 0

0 1

)
. (C.5)

Thus, we have

L = fψτL
T ψνLη + f ′ψτR ψνR

T
η∗ +H.c. (6.2)

= fψT
τ PLψνη + f ′ψτPLψν

T
η∗ +H.c.

= f
(
χa
τ χc†

τ ȧ

)(
1 0

0 0

)(
χνa

χc†ȧ
ν

)
η + f ′

(
χca
τ χ†

τ ȧ

)(
1 0

0 0

)(
χc
νa

χ†ȧ
ν

)
η∗ +H.c.

= fτaνaη + f ′τ caνcaη
∗ +H.c.

= f(τν)η + f ′(τ cνc)η∗ +H.c. ,

i.e. the Lagrangian in Eq. (6.2), using four-component notation, agrees with Eq. (6.1).
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Appendix D

Rewriting the Numerator Nµ

In the evaluation of the one-loop diagram for the magnetic moment of a charged lepton, the
numerator of the amplitude is

−1

2
Nµ = u(qf )

[
m2γµ + (6k − y6p+ z6 qi)γµ6p+ (6k − y6p+ z6 qi)γµ(6k − y6p+ z6 qi)

−2m(2kµ − 2ypµ + 2zqµi + pµ)
]
u(qi), (3.44)

from which we want to extract the term proportional to pνu(qf )σµνu(qi). Our first goal will be
to deal with the terms containing Feynman slashes. In the following we will make use of the
momentum space Dirac equation, the anticommutation relation 6a6 b = −6 b6a−a ·b and the relation
u(qf )6pu(qi) = 0. Terms with k will not contribute to the term we are ultimately interested in,
so we will not consider them.

−1

2
Nν ⊃ u(qf )

[
(−y6p+ z6 qi)γµ6p+ (−y6p+ z6 qi)γµ(−y6p+ z6 qi)

]
u(qi)

= u(qf )
[
6pγµ(−y6p+ y26p− yz6 qi) + 6 qiγµ(z6p− yz6p+ z26 qi)

]
u(qi)

= u(qf )
[
(2pµ − γµ6p)(−y6p+ y26p− yz6 qi) + (2qµi − γµ6 qi)(z6p− yz6p+ z26 qi)

]
u(qi)

= u(qf )

{
γµ
[
−6p
(
(y2 − y)6p− yz6 qi

)
−6 qi

(
z(1− y)6p+ z26 qi

)]

+2pµ
(
(y2 − y)6p− yz6 qi

)
+ 2qµi

(
z(1− y)6p+ z26 qi

)}
u(qi)

= u(qf )

{
γµ
[
−(y2 − y)6p6p+ yz6p6 qi − z(1− y)6 qi6p− z26 qi6 qi

]
+2pµ(y2 − y)6p− 2yzpµ6 qi + 2z(1− y)qµi 6p+ 2z2qµi 6 qi

}
u(qi)

= u(qf )

{
γµ
[
(y − y2)p2 + yz6 qf6 qi − z6 qi6 qi − z(1− y)(2qip−6p6 qi)− z26 qi6 qi

]
−2yzpµm+ 2z2qµi m

}
u(qi)
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= u(qf )

{
γµ
[
(y − y2)p2 + yz6 qfm− z(1− y)(2qiqf − 2qiqi + 6 qi6 qi)− 2z2m2

]
−z(1− y)(−γµ6 qf6 qi)− 2yzpµm+ 2z2qµi m

}
u(qi)

= u(qf )

{
γµ
[
(y − y2)p2 − z(1− y)(2qiqf − 2m2 +m2)− 2z2m2

]
+yzγµ6 qfm− z(1− y)(6 qfγµm− 2qµfm)− 2yzpµm+ 2z2qµi m

}
u(qi)

= u(qf )

{
γµ
[
(y − y2)p2 − z(1− y)(−p2 +m2)− 2z2m2

]
−yzm6 qfγµ + 2yzmqµf − z(1− y)(m2γµ − 2qµfm)− 2yzpµm+ 2z2qµi m

}
u(qi)

= u(qf )

{
γµ
[
(y − y2 + z − yz)p2 − zm2 + yzm2 − 2z2m2 − yzm2 − zm2 + yzm2

]
+2yzmqµf + 2zmqµf − 2yzmqµf − 2yzmpµ + 2z2mqµi

}
u(qi)

= u(qf )

{
γµ
[
(y − y2 + z − yz)p2 + (−2z − 2z2 + yz)m2

]
−2yzmpµ + 2z2mqµi + 2zmqµf

}
u(qi).

(D.1)

In addition, in Eq. (3.44) we have the terms

u(qf )
[
−2m(−2ypµ + 2zqµi + pµ)

]
u(qi) = u(qf )

[
(4my − 2m)pµ − 4zmqµi

]
u(qi). (D.2)

Adding these terms to the ones above we obtain

−1

2
Nν ⊃ u(qf )

{
γµ
[
(y − y2 + z − yz)p2 + (−2z − 2z2 + yz)m2

]
−2yzmpµ + (4my − 2m)pµ + 2z2mqµi + 2zmqµf − 4zmqµi

}
u(qi)

= u(qf )

{
γµ
[
(y − y2 + z − yz)p2 + (−2z − 2z2 + yz)m2

]
+ (−2yz + 4y − 2 + 2z)mpµ

−2mz(1− z)qµi

}
u(qi)

= u(qf )

{
γµ
[
(y − y2 + z − yz)p2 + (−2z − 2z2 + yz)m2

]
+ (−2yz + 4y − 2 + 2z)mpµ

−2mz(1− z)qµi +mz(1− z)pµ −mz(1− z)pµ
}
u(qi)

= u(qf )

{
γµ
[
(y − y2 + z − yz)p2 + (−2z − 2z2 + yz)m2

]
+(−2yz + 4y − 2 + 3z − z2)mpµ −mz(1− z)(qµi + qµf )

}
u(qi),

(D.3)

where we have used the fact that 2qi + p = qi + qf . We can now use the Gordon identity to
rewrite

−mz(1−z)u(qf )(qµi +q
µ
f )u(qi) = −2m2z(1−z)u(qf )γµu(qi)+imz(1−z)u(qf )pνσµνu(qi) (D.4)
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The terms we have not included from Eq. (3.44) are terms proportional to k, and one term
m2γµ. These do not contribute to the σµν piece, and thus the term relevant to the magnetic
moment is

Nµ ⊃ −2imz(1− z)pνu(qf )σ
µνu(qi). (3.45)
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