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Abstract

Wind flow fields within a wind farm, including wake dynamics, are a complex sys-
tem of large degrees of freedom. The wake shape and velocity deficit downstream of a
turbine may be calculated using numerical modeling, such as Large Eddy Simulations
(LES). However, these estimations are computationally expensive and time-consuming.
On the other hand, analytical models may provide efficient computations but generally
exclude several features of the wake dynamics. Reducing the complexity of the nu-
merical models and improving the details of the analytical models are highly relevant
issues for today’s wind farm controlling and layout designing.

This work proposes a methodology applicable to the industry to conduct wind farm
flow field calculations by investigating the wake dynamics based on applying Proper
Orthogonal Decomposition (POD) to Light Detection And Ranging (LiDAR) measure-
ments and Weather Research and Forecasting (WRF) data using a Parallelized Large
Eddy Simulation Model (PALM). Both data sets comprise a complex, high-dimensional
system consisting of an area of Germany’s first offshore wind farm, Alpha Ventus, lo-
cated in the North Sea. 10 days of wind speed and direction data are retrieved from
the radial velocity measured by the LiDAR at the FINO1 platform, located in close
proximity to the wind farm Alpha Ventus, between September and October 2016, dur-
ing varying atmospheric forcing conditions. The WRF-PALM data were simulated for
one hour on the 21st of September 2015, using ERA5 data as input, during unstable
conditions.

Reduced Order Models (ROMs) are built separately for both the LiDAR and WRF-
PALM data, by decomposing them into a number of time-dependent, truncated weight-
ing coefficients and spatial orthogonal basis functions. Proper Orthogonal Decompo-
sition (POD) is shown to reconstruct selected wind fields in a reduced manner while
preserving the global patterns of the wind fields for both LiDAR and WRF-LES data.

The study has further investigated the ability of the Gaussian Process (GP) to incorpo-
rate unresolved small-scale wake structures in the reconstruction that are excluded by
the truncated ROM. A sensitivity study for a variety of kernels accompanied by hyper-
parameters is conducted. By replacing the temporal weighting coefficients obtained for
the POD with stochastic weights obtained from the GP, the study has shown that the
reconstruction is sensitive to kernel selections. By reconstructing the field using both
the weighting coefficients from the standard POD and those obtained using GP, both
for the retrieved and WRF-PALM data, the performance of the methods has been eval-
uated based on visual inspection, energetic contribution, and Root Mean Square Error
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(RMSE).
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Chapter 1

Introduction

1.1 Background

Through a series of climate conferences, various agreements and goals have been de-
veloped to reduce human impact on the climate. One, and perhaps the most important
goal, was developed in Paris in 2015, stating that the average global temperature rise
should be kept well below 2◦C, ideally at 1.5◦C, compared to pre-industrial levels [1].
Moreover, International Energy Agency (IEA) stated that in order to keep global warm-
ing to no more than 1.5◦C, emissions must reach net zero by 2050 [2, 3].

Today we are at 1.1◦C [3]. Several measures must be taken to reach such goals, and
wind energy is expected to play a major role in achieving them. One fundamental
explanation for this is that wind is abundant, renewable, and has the potential to deliver
relatively large amounts of clean energy. The wind energy sector has already faced
tremendous growth during the past years. In 2001, the global cumulative installed
wind energy capacity was approximately 24MW versus 743MW in 2020 [4]. Still, this
only accounted for 6% of the world’s energy production in 2020, where well above
half came from China and the US alone. IEA has estimated that an average increase in
wind energy generation of 18% every year from 2021 to 2030 is required to meet the
net-zero power generation level [5].

Wind energy is often generated by clustering several turbines together in a wind farm.
For such arrangements, the aerodynamic wake effect is known as one of the major
power losses. The concept of wake has been known for many years, and in line with
installed wind energy capacity, the amount of research on wake has increased as well
(e.g. [6–12]). Wake induces turbulence and suppresses momentum, and therefore im-
pact loading on the downwind turbines and power output of the wind farm. It has been
showed that the wake effect may account for up to 20% energy loss from a wind farm
[13–15]. Hence, wake is crucial to account for in wind farm layout optimization and
controlling [16–19]. Wake is, however, not a straightforward system to analyze but
rather a complex, non-linear system of interactions between atmospheric conditions,
turbine characteristics, and control mechanisms of the turbine [16, 20]. These features
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make it challenging to conclude its behaviour1.

Through years of research, methods to study the wakefield within a wind farm have
evolved [9, 13, 21–25]. These can be divided into analytical, experimental, and nu-
merical techniques [8]. However, they are all somewhat deficient in providing efficient
and precise estimations. The low-fidelity analytical methods provide efficient predic-
tions but tend to underperform when it comes to accuracy due to simplifications and
assumptions. On the other hand, high-fidelity models provide accurate estimations,
including wake dynamics and relatively small and large-scale turbulence structures.
However, real-life problems of this kind seldom propose solutions within a satisfac-
tory time frame, using numerical techniques such as those under consideration. As
optimization processes rely on numerous computational iterations for a potentially ex-
tensive range of parameters in e.g. design and operation calculations, today’s industry
heavily relies on analytical models to solve these issues [26]. In an attempt to bridge be-
tween the methods mentioned for wake prediction, Proper Orthogonal Decomposition2

(POD) is proposed to build a Reduced Order Model (ROM) with the aim to simplify
the dynamics while preserving the global behavior of the real, high-fidelity system in a
wind farm.

There are several ways to create a ROM, and POD is a widely used technique in fluid
dynamics, e.g. [10, 12, 27–35]. Building a POD-based ROM is achieved by utilizing
a number of spatial modes and temporal weighting coefficients obtained through POD
to construct a ROM of truncated order. In this process, dominant features of the wind
field are isolated. Two aspects make ROM interesting to investigate further. Firstly,
most POD-based research for wind energy applications is combined with high-fidelity
simulations such as LES (e.g. [10, 12, 31, 33, 35, 36]). Common for these studies is that
in order to determine the global patterns of the system, high-fidelity data ("snapshots")
is necessary as input to the POD which is typically obtained by numerical modeling
[10, 12, 31, 33, 36]. Being able to avoid the initial numerical simulation, one is not
equipment dependent3, and one can reduce the costs and potentially obtain more ef-
ficient results while preserving a relative precision. Secondly, by excluding some of
the ROM modes describing the wind field, small-scale dynamics representing turbulent
structures are often excluded from the ROM. Hence, the ROM reconstructs a smooth
version of the original wind field. It is interesting to investigate the opportunities of in-
cluding small-scale dynamics in the ROM while preserving the efficiency of the model.
In this work, the widely studied Gaussian Process (GP) is investigated for this purpose
[37–40].

Therefore, the main question is how the widely-used POD approach performers when
applied to LiDAR scans and whether it is a procedure enabling the industry to study
wake dynamics and velocity deficits more practically and efficiently than the widely
used analytical models currently do. Moreover, is the ability to include small-scale
dynamics into the reconstruction fields obtained from the ROM using GP studied. In
the present work, the performance of POD both on high-fidelity WRF-PALM and high-

1Behaviour in this context includes, e.g. wake meandering, evolution, recovery, velocity deficit, etc.
2Also known as Principle Component Analysis (PCA) and Karhunen-Lo’eve decomposition [26].
3If the simulations are not of the very simplest manner, supercomputers etc. are often required to conduct

the simulation.
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resolution LiDAR data will be investigated.

1.2 Motivation and Contribution

The motivation for initiating this work is the desire to further improve today’s methods
for wake calculations, with particular regard to the industry. Enabling efficient and rel-
atively precise4 wake calculations are studied by investigating whether it is possible to
bridge between the complex numerical methods and the simplified analytical and low-
fidelity, experimental methods. By improving the available methods in the industry,
one can further improve the wind farm layout optimization and controlling processes,
which is beneficial for the wind energy industry.

POD is an extensively used method in the wind energy discipline and has proven to re-
duce the complexity of the complex wake dynamics [28, 31, 33, 36, 41–45]. However,
the majority of the work suggests the research of POD applied to LES simulations. The
LES research enables one to find key features of the wake meandering, evolution, and
velocity recovery in general. The method is, however, only to a limited extent valuable
to industry, where efficient analyses are required. To our knowledge, the technique had
not been widely applied to LiDAR measurements when this thesis was initiated and
was proposed as a future study by Bastine et al. [31]. The LiDAR makes it possible to
remotely measure the wind field at relatively high accuracy and spatial resolution [46].
In order to drive down costs of the (offshore) wind farm and meet the net-zero tar-
gets, (offshore) turbines are upscaled at a rapid rate [47–49]. This further complicates
measuring in-situ, and thus LiDAR measurements are continuously becoming more
relevant to the investigation.

Therefore, the novelty of this work is the study of POD on LiDAR data. By apply-
ing POD directly on processed LiDAR data, without carrying out a simulation, one
can save time and money, which generally is more applicable in the wind energy in-
dustry. Thus, it is interesting to investigate how the well-documented POD technique
performs applied to LiDAR measurements. As POD applied to LES data is an already
proven methodology, WRF-PALM data is used in this work for the sake of compari-
son. The findings obtained from the WRF-PALM data can be extended to the LiDAR
data. The results provide further insight into the widely utilized POD techniques and
results applied to measurements obtained from the emerging LiDAR instrument. The
works suggest a methodology for the industry to gain further insight into the wake dy-
namics in the specific wind farm investigated, further enabling optimization processes
to be improved.

As the truncated standard POD excludes small-scale motions of the real-life wake flow
[33], it is further investigated ways to include these features to improve the recon-
structed wind field by the standard POD. The work contributes to a method for fast and
efficient wake predictions using LiDAR measurements from an offshore wind farm.
ROMs are developed by reducing the complexity of the wind field using POD. ROM
can further be utilized to optimize wind farm layout and operation, which again could

4i.e. including wake dynamics such as wake meandering, which are not present in analytical methods of
today.
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result in reduced loading on downstream turbines and increased power output.

1.3 Objectives

This work aims to investigate the performance of the well-established POD technique
on LiDAR measurements obtained from an offshore platform in the North Sea and
compare it with its performance on high-fidelity WRF-PALM data. The method aims
to efficiently identify spatial modes, which yields a low order description of the full
order model without compromising vital (e.g. meandering) features of the wake behav-
ior. Reducing the dimensions of the wind field and incorporating the ROM into current
wind farm optimization processes could enhance the understanding of the wake effect.
Hence, this could result in improved power production and turbine loading estimations.
It appears to be the ultimate method for gaining relatively accurate and fast wake pre-
dictions. However, the extent to which it applies to LiDAR data snapshots and whether
it improves the accuracy of the simple analytical techniques, and the computational
time for the complex methods, remains to investigate. Based on the above considera-
tions, the main objective is to investigate how a ROM performs for wake estimations
using LiDAR measurements from the Forschungsplattformen in Nord- und Ostsee Nr.1
(FINO1) offshore wind site.

Secondary objectives are:

• Conduct quality control and preprocess wind speed and direction data, which
are retrieved from radial velocity obtained with a LiDAR located at the FINO1
platform in the North Sea.

• Build ROMs by applying POD to both retrieved and WRF-PALM data measured
at the same offshore wind farm, Alpha Ventus (different time and subdomain).

• Improving the standard POD by altering the time-dependent weighting coeffi-
cients in the reconstruction of the wind fields. This is done by including stochas-
tic features by utilizing the GP.

1.4 Limitations

The limitations of this work are listed below.

• Geographically limited to the North sea, and the conditions of the location
(wind/wave flows, ambient atmospheric stability, cells of the earth, northern
hemisphere, etc.).

• Temporal constrained to 24.09.2016 - 03.10.20165 for the LiDAR, cup anemome-
ter, and wind vane data, and one single hour at 22.11.2015 for the WRF-PALM

5Temporal constrained to 02.10.2016 for SCADA.
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data. Therefore, also limited to climatic events/conditions prominent in this pe-
riod.

• Assumption that the cup anemometer and wind vane are not distorted

• Temporal and spatial resolution of all data used.

• Errors or downtime of the LiDAR instrument causing incorrect or insufficient
data. E.g. is every 25th scan removed due to a 40 minute gap in the data for every
20 minutes of scanning. Moreover, is the LiDAR directed in a way causing many
incidents of cross-wind, resulting in a high number of bad-quality data.

• LiDAR and WRF-PALM snapshots in the period where the turbines are not oper-
ating (4m/s for Adwen AD 5-116 and 3.5m/s for Senvion 5M) are not removed,
which may impact the outcome of the ROMs.

• Unprocessed SCADA, cup anemometer, and wind vane data (Met-mast effects of
the cup anemometer and/or wind vane used for retrieval and validation. Rotor
effects and neighboring turbine wake effects on the SCADA data).

• The displacement of the various measurements in relation to each other, resulting
in the assumption that the conditions at one location hold for the other locations.
SCADA data is obtained from turbine 7, and LiDAR data is measured over an
area from FINO1, cup anemometer, and wind vane data is acquired at FINO1.
E.g. the conditions at FINO1 are not necessarily representative of the conditions
in the wind farm.

• Errors in the preprocessing of the LiDAR data. E.g. bad-quality scans are kept
because the algorithms developed do not identify them as bad.

• Error in python codes.

• The results for the ROM are restricted to the snapshots utilized in this study. The
possibility that the performance of POD deviates from one snapshot to another is
present.

• The sensitivity study for kernels is restricted to the kernels tested and the hyper-
parameters chosen. The results obtained for the stochastic POD are restricted to
the kernels and hyper-parameters as well.

1.5 Thesis Outline

The thesis is distributed over five chapters. In chapter 2, the theoretical framework of
the thesis is presented. It covers relevant background about wind energy, environmental
conditions in a wind farm, including wake flow evolution and meandering, atmospheric
boundary layer, stability regimes, transient event characteristics, and differences in off-
shore and onshore boundary layer conditions. At the end of the chapter, wake prediction
methods of today are presented, and fields within the wind industry that would benefit
from improvements in these methods are explained briefly. Chapter 3, firstly, describes

Introduction 1.5 Thesis Outline
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the site investigated in the work, before elaborating on the various data sets used. Fi-
nally, the methods used are ascribed, including standard POD and the stochastic model
utilized. The results are presented in the following chapter 4, which is compared and
discussed in chapter 5. The discussion forms the basis for the conclusion of the thesis,
which is given in chapter 6, and future work is suggested.

Introduction 1.5 Thesis Outline



Chapter 2

Background

As detailed in this chapter, wind speed is a key factor in wind farm power production.
Hence, it is beneficial to gain a thorough understanding of the factors that influence it
and how it interacts with turbines and moves within the wind farm.

The first section of the chapter briefly elaborates on the current role of wind energy
in the world before a brief introduction to wind energy is presented. Subsequently,
we delver into environmental conditions, consisting of seven subsections. We start
by elaborating on wake and turbulence, two critical features within the wind farm of
interest to this study. In order to gain a comprehensive understanding of these features
and how they behave, we describe the wind profile, the atmospheric boundary layer
and -stability, transient event, and finally, offshore in relation to onshore conditions
next. These topics all affect wake propagation and recovery in some way. We complete
the chapter by briefly describing the methods for calculating wake today and the areas
where the current study may contribute with valuable insights.

2.1 Global Energy Consumption

While the importance of utilizing renewable versus non-renewable energy sources is
constantly growing [50], so is the energy consumption, as illustrated in figure 2.1a. In
order to meet the net-zero goals developed as a result of the Paris agreement [1] in
2015, an energy transition is required, and various road maps have been established
to achieve it [51]. However, as IEA points out, reaching netzero emissions by 2050
is a monumental task [2], with numerous challenges. One of these challenges is the
fact that the widely used non-renewable energy sources of today have a high energy
density, often hard to match with renewable sources [52, 53]. Thus, for renewable
energy sources to replace the current production of oil, gas, and coal, more power
plants are required to provide the same amount of energy.

Background
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(a) Global energy consumption per year (b) Global electricity production per year

Figure 2.1: Global energy consumption and electricity production, figures created by [54].

When considering the numbers from the figure 2.1 [54], one can find that renewable en-
ergy sources accounted for about 27% of the total energy consumption in 2019. In con-
trast, the remaining 73% were covered by coal, gas, and oil. According to IEA’s road
map to net-zero emissions by 2050, nearly 90% of global electricity must come from
renewable energy sources in 2050, with solar and wind energy accounting for almost
70% [2]. This necessitates comprehensive and costly infrastructure changes [2]. Fur-
thermore, several of the emerging renewable sources are not yet well-established and
mass-produced, making them more expensive than the well-established non-renewable
energy sources. Another consideration is that solar and wind energy, which are ex-
pected to account for nearly 70% of the total energy in 2050, are intermittent resources.
For this reason, it is not only necessary with renewable power plants, but also energy
storage facilities to meet the energy demand at all times [2]. In conclusion, one can say
that it is not a trivial task we are facing. However, one thing that is for certain is that
wind energy will play an essential role in the energy transition.

2.2 Wind Energy

Wind energy is a renewable energy resource exploited by utilizing a turbine to generate
electricity from the kinetic energy in the wind. The wind is an abundant resource, free
to use worldwide. Delivering emission-free electricity is crucial given the current cli-
mate situation of the earth previously noted [55, 56]. Although the use of wind energy
seems trivial, it poses several challenges in terms of being done in an economically,
socially, and environmentally friendly way [55].

The scale on which wind energy power plants are developed increases, and for this rea-
son, turbines are often clustered together in wind farms. The wind farm can be regarded
as a system, with the entire farm situated in an atmosphere with an associated stabil-
ity. As wind enters the system, the goal is to extract energy from the turbines. When
the wind evolves through the system, its natural flow is affected by the ambient stabil-
ity and turbines in the system. The turbines act as blockages for the wind, and energy
extraction induces wake. The wake causes a velocity deficit and increased turbulence
intensity in the wind flow downstream of the turbines. The concept has been known for

Background 2.2 Wind Energy
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decades, but as can be seen in section 2.1, it has yet to be implemented on a large-scale
globally [56, 57].

Thus, the energy production in a wind farm is directly related to the amount of energy
in the wind, partly determined by the velocity of the wind. It is known from physics that
kinetic energy is given by Ek = 1/2mU2, where m represents mass and U the velocity
(of the wind in this case). By combining this knowledge with the formula for power,
P = dEk/dt, the power, P, produced by the wind turbine can be calculated as [56, 58]:

P =
1
2

ρAU3Cp, (2.1)

where ρ is the air density, A is the swept area by the rotor, U is the wind speed (velocity)
perpendicular to the swept area, and Cp is the power coefficient1. As indicated by the
equation, the power output is proportional to the cubed wind speed2. Hence, any change
in wind speed has a significant impact on total power production. The wind has great
freedom to vary independently of the surrounding wind flows, and is therefore chaotic
and frequently fluctuating, both on a temporal and spatial scale. It is affected both
by local and global wind systems, ranging from winds at a planetary scale, through
synoptic and mesoscale, to microscale [55]. As mentioned, one such factor impacting
the wind velocity in a wind farm is the wake effect. It is crucial to understand the
characteristics of the wind resources and the drivers behind the wind flow, in any phase
of wind energy development [55, 57].

2.3 Environmental Conditions in the Wind Farm

The wake of interest in this work is the one that occurs as the wind hits a turbine. On
this basis, it is intuitive that the turbine itself and the incoming wind are key components
for understanding wake evolution. Like most renewable energy sources, wind energy is
driven by the sun. Thermal gradients are formed due to the uneven solar radiation of the
earth’s surface, generally causing air masses to move from cold toward warmer areas.
Thus, the incoming wind field is greatly affected by the atmospheric conditions3 [59]
and the topography of the site [60, 61]. The increasing rotor size of the modern turbines
makes it even more important to investigate the atmospheric conditions in which they
will operate, as these may vary significantly from one rotor tip to the other [20, 62].

2.3.1 Wake
The downstream wind flow of a turbine experiences two physical phenomena of in-
terest; increasing turbulence and decreasing velocity. The phenomenon is known as
the wake effect. In other words, as the wind passes the turbine, some of the wind
flow changes state to become turbulent (see chapter 2.3.2), and a velocity deficit oc-
curs when the turbines extract some of the wind energy. In a wind farm, turbines are

1The power coefficient measures how efficiently a turbine converts kinetic energy in the wind into elec-
tricity.

2Energy output is proportional to the wind speed squared.
3A case detecting 20% power production difference for various stability classes is found in [59].
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often clustered together with less distance than what is required for the wind to recover
to free stream (see more in section 2.4.2), and they are therefore greatly exposed to
the wake effect [21]. The velocity deficit and turbulence affect the power output and
fatigue load, respectively, on the downstream turbines [7, 11, 18, 20, 36, 63].

As seen in section 2.2, the power extracted from the turbine is greatly affected by the
incoming wind speed. As the wake reduces wind speed, it impacts the performance of
the downwind turbine when operated in the wake. Moreover, as seen in equation (2.1),
a relatively small reduction in wind speed caused by wake, can reduce the power output
significantly due to the cubed relationship. Wake is considered one of the major energy
losses in a wind farm and has been found to account for up to 20% of the total energy
loss [14, 15, 64]. Even power losses of as much as 28% have been detected [21]. By
considering the wake effect in wind farm layout optimization and controlling, one is
able to optimize and somewhat reduce the total power loss and loading it exerts on the
downstream turbines. However, this depends on reliable wake models and calculations.

Wakes are complex, and the wake evolution depends on various factors, such as tur-
bine size and design, wind inflow conditions, and turbine operation [65]. The area
behind the rotor where the wake unfolds is typically divided into two regions, the near-
and far-wake region4 [66–68]. The near wake region is just behind the rotor, and the
characteristics of the wind flow in this area are dominated by the rotor geometry5. The
length of the region has been debated through previous studies but can be approximated
to fall in the range from 1D to 5D downstream from the turbine [8, 9, 66, 67, 70–72].
In this area, phenomena such as decreased velocity, wake expansion, pressure gradi-
ent, and blade tip vortices dominate. The wake occurs within the free stream wind
flow, and the result is a strongly sheared layer6 separating them [69, 70]. Behind the
rotor, will a combination of velocity reduction7 and added wake turbulence8 increase
entertainment9, causing the wake to gradually expand and transfer momentum into the
wake [69]. In the far-wake region, which is seldom given a specific distance in liter-
ature [9, 67, 70], the wind flow is in a self-similarity state. Besides the wake added
turbulence and velocity deficit, the flow is mainly dominated by wake meandering10,
whereas the turbine characteristics are limited. With increased distance from rotor, the
energy-containing eddies11 generated in the sheared layer is transferred towards smaller
eddy scales (see figure 2.2), and with additional help from the ambient turbulence is the
velocity deficit reduced, and eventually, free wind flow is recovered [9, 67, 70, 74].

As already touched upon, the size and evolution of the wake structure are defined by
factors such as turbine design (e.g. thrust coefficient and therefore the ambient wind
speed), turbine control settings, and ambient atmospheric conditions [25, 71]. The
thrust coefficient of a turbine affects the amount of momentum possible for the turbine

4The wake region can be divided into finer regions, such as including an intermediate region.
5Geometries such as the number of blades, blade aerodynamics, pitch mechanisms, 3D effects, and tip

vortices [69].
6Shear: describes the change of wind speed and direction from one point in the atmosphere to another.
7From the conservation of mass, we have that the area expands due to reduced velocity [7].
8Mechanical turbulence is also known as forced convection [73].
9wind flow from outside the wake mixes with the wake flow.

10Wake meandering: large-scale movements of the entire wake due to atmospheric/ambient eddies [42].
11An eddy denotes a turbulent vortex-like structure.
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to extract, which again outlines the initial velocity deficit. In general, thrust coeffi-
cients are inversely proportional to wind speed. The higher the thrust force applied on
the rotor, the lower the wake velocity, and the larger the shear [75]. Thus, wake ve-
locity deficits are maximal at high thrust levels (low wind speeds) and in low ambient
turbulence intensities (stable atmospheric conditions) [71]. Another feature possibly
contributing to velocity deficit recovery is the wake meandering [70]. However, wake
meandering might also considerably increase the loading on the downstream turbines
[9, 70].

2.3.2 Turbulence
Turbulence is a well-known phenomenon discovered several decades ago and has been
studied frequently since then, e.g. [62, 63, 66, 67, 76–78]. In this work, turbulence
is of interest because it has shown that fatigue loading may increase significantly on
the downwind turbine if operated in the wake of another turbine [70, 79]. Moreover, as
seen in chapter 2.3.1, turbulence is crucial in understanding the evolution and dynamics
of the wake effect. Thus, turbulence is key in wind energy, as it has the potential
to increase loading on turbines and decrease wake recovery time [80]. Even though
turbulence has been studied comprehensively throughout the past decades, it has proven
to be a rather complex system to investigate. Thus, understanding and to some extent
predict turbulence are still highly relevant topics [73, 81–83].

One can imagine turbulence as a superposition of various sized eddies interacting non-
linearly, resulting in chaotic, random motions [73, 78]. Turbulence occurs naturally as
a response to instabilities in a flow12, tending to reduce the instability and returning to
equilibrium (neutral conditions). When the instability is no longer present, turbulence
ceases [73]. The main characteristic of turbulence is that it is stochastic and consists of
vorticial structures (eddies) in all three dimensions, and it has strong diffusivity (effi-
cient mixing). Moreover, it is known for having a broad energy spectrum, transferring
energy from large-scaled toward small-scaled eddies13, where energy eventually is dis-
sipated by viscosity (see figure 2.2). Lewis Fry Richardson put this nicely in 1922 as
[62, 73]:

"Big whirls have little whirls that feed on their velocity, and little whirls have lesser
whirls and so on to viscosity" [84, 85]

Turbulent describes the state of a fluid as it reaches a specific Reynolds number14.
Very viscous or slow-moving flows are considered laminar and are characterized as
calm, smooth flows. At some point, when the velocity increases in the laminar flow,
the viscosity becomes relatively low, and the movements become chaotic and fluctu-
ating, in other words, turbulent [62]. Turbulence is present in various ways in a wind

12Instabilities such as thermal gradient or shear.
13The size of an eddy may range from the size of an air molecule (< 2mm) up to the planetary scale of 20

000km [73].
14Reynold found through an experiment in 1883 a critical Reynolds number for turbulence,

Recritical > 2000, meaning that turbulence cannot exist in a flow with Re < 2000 [78](Can also be defined
using the Richardson number [73]).
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farm, which can be divided into wake added turbulence and ambient (atmospheric) tur-
bulence. Wake added turbulence is e.g. turbulent vortices shed by the rotor blades and
tips, mechanical induced turbulence by the tower and nacelle, and turbulence from the
mean velocity shear of the wake [67]. Ambient turbulence is elaborated on later in
section 2.3.

Hence, (mechanical) turbulence is induced as the wind passes through the turbine. With
increasing distance from rotor, the kinetic energy in the turbulent flow is transferred to-
wards smaller spatial scales, like L.F. Richardson explained it in 1922. The internal
energy of the wake will increase steadily towards its initial state, as it was before it
interacted with the turbine. In 1941, Kolmogorov presented a theory on this energy
distribution with various eddy length scales in a turbulent flow [86]. The energy spec-
trum is frequently separated into three ranges of eddy scales referred to as the energy-
containing, inertial, and dissipation ranges [87], as seen in the illustration 2.2. The
eddies in the energy-containing range are largest in size, and turbulent kinetic energy
(TKE) is generated at these scales. As the TKE is transferred to the smaller-scaled ed-
dies, they eventually enter the inertial subrange. In this range, the turbulent eddies are
affected by neither the effects of viscosity nor the generation of TKE [78]. Kolmogorov
found that the energy of the eddies in this range would cascade in a characteristic −5/3
slope. The energy cascade continues into the range for the smallest eddies in the dissi-
pative range, where the viscosity comes into matter and the energy eventually dissipates
into heat [62, 88].

Figure 2.2: Kolmogorov energy spectrum, figure inspired by [78].

From fluid dynamics, it has been exhibited that the mathematical equations of Navier-
Stokes, based on the conservation of momentum for an incompressible fluid, can be
utilized to describe a general turbulent flow. These equations can be discretized and
solved numerically. However, in most cases, this process is computationally demand-
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ing. The reason is mainly the broad range of eddy sizes that need to be solved, and the
process of transferring energy from large to smaller eddy scales is described through
nonlinearities. The higher the Reynolds number of the turbulent flow, the smaller scales
are the eddies where the energy is dissipated. As a result, the model may become very
complex to solve for some specific flows. Today there exist methods to approximate so-
lutions, such as Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes
(RANS) [62], or creating models based on simplified equations [11, 23, 89]. Even
though turbulence has been investigated for several decades, no theoretical model de-
scribing the exact behavior of the phenomenon exists yet. Thus, it can be concluded
that there is no coherent theory of turbulence, but rather various problems and theories
[62, 73].

2.3.3 Wind Profile
Some parameters will have a so-called vertical profile in the atmosphere. This is the
case for wind, temperature, and humidity as will be explained later in section 2.3.5 and
2.3.7, respectively. The wind profile15 describes the variation of the mean wind speed
with elevation. Due to friction on the surface, the wind experiences a drag force closer
to the ground. Thus, the wind velocity is zero at the surface and gradually increasing
with altitude in the ABL, as seen in figure 2.3. The wind profile is important in wind
resource assessment and for turbine design [62, 68].

Figure 2.3: Illustration of a typical logarithmic wind profile in the surface layer. z0 is the surface
roughness length.

There are two common models for determining the vertical wind profile over flat terrain
in the surface layer: the logarithmic law and the power law. The logarithmic law is

15The wind profile can also be referred to as wind shear [56].
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based on fluid mechanic principles and can be described as in the following equation16:

u(z) =
u∗
κ

ln
( z

z0

)
, (2.2)

where u(z) is the velocity at height z, κ represents the von Karman constant, u∗ is
the friction velocity, and z0 is the roughness length17(see section 2.3.7). The equation
(2.2) is valid for neutral conditions; however, it is possible to incorporate atmospheric
stability into the model, resulting in the following equation:

u(z) =
u∗
κ

[
ln
( z

z0

)
+Ψs

( z
L

)]
, z � zo, (2.3)

where Ψs is an atmospheric stability function dependent on z/L18, and L is the Obukhov
length [56, 68].

On the contrary, the power law is empirically derived and can be described as:

u(z) = ur(zr)
( z

zr

)α

, (2.4)

where ur is the reference wind speed, zr is the reference elevation, and α is an empirical
shear exponent, dependent on parameters such as time of day and year, terrain, and
wind speed19. The model is a simple, more practical, and direct model compared with
the logarithmic law. Thus, it is widely used by engineers to describe the vertical wind
profile [56].

It has been demonstrated for flat terrains, such as an ocean surface, that these laws
provide results with small differences. However, when the vertical wind profile in the
surface layer is extrapolated into the Ekman layer, the power law is more suitable to
utilize, as the shear exponent can be defined as a function of height and atmospheric
stability [68, 90].

2.3.4 The Atmospheric Boundary Layer (ABL)
Wind turbines operate in a Boundary Layer (BL), which is where two boundaries with
distinctly different physical characteristics interact [78]. The BL relevant for this work
is between the atmosphere and the surface, the so-called Atmospheric Boundary Layer
(ABL)20. The ABL is the lower region of the atmosphere that is directly influenced by
the surface and responds to forcings applied by the surface within an hour [78]. The
depth of the ABL may vary greatly21, but a typical depth is in the order of 1km [73, 78].
A BL is characterized by the generation of turbulence in the form of thermals22 due
to solar heating of the surface, and therefore frequent mixing of matter and energy

16In this work, the displacement height d is neglected because of the flat terrain offshore.
17The roughness length defines the elevation at which the wind speed becomes zero [78].
18The reader is referred to [56, 57] for more reading on this.
19The reader is referred to [56] for further information.
20The ABL is also known as the planetary boundary layer.
21Typically in the range from 1km to 2km [78] but can range from tens of meters to 4km and more [73].
22Thermals are large eddies in this case [78].
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[78]. As turbulence redistributes matter, it also regulates the wind strength and patterns
[78, 91].

One can separate the ABL into two main layers in the vertical of interest for wind en-
ergy applications; the lower 10% can be referred to as the inner layer, surface layer,
constant-flux layer, or Prandtl layer [68], whereas the upper 90% of the ABL is be re-
ferred to as the outer layer or Ekman layer [68]. As explained in section, the wind flow
in the surface layer is highly affected by the surface friction [62, 68]n 2.3.3. Moreover,
the layer is characterized by relative constant fluxes, hence the name constant-flux layer
[78]. In the Ekman layer, the Coriolis and pressure forces23 dominate [62, 68, 78]. The
region outside the outer layer, thus; outside of the BL and not responding directly to
surface changes, is naturally called the free atmosphere [78]. The wind in the free at-
mosphere is said to be geostrophic24. Between the BL and the free atmosphere is a
capping inversion layer. This layer is characterized by high static stability and limits
the efficient mixing caused by turbulence to stay within the BL. Thus, the layer marks
a relatively large change in the vertical profiles in the atmosphere [73].

2.3.5 Atmospheric Stability
Like most renewable energy sources, wind energy is mainly generated by the sun. Due
to the uneven solar radiation, the temperature is distributed in a vertical profile in the
atmosphere, just like the wind explained in section 2.3.3. This profile varies diur-
nally and/or annually, depending on the surface underneath. An air parcel25 in the
atmosphere has a temperature and corresponding density, relative to the ambient tem-
perature at the same height. According to this relationship, the buoyancy force in the
atmosphere will either suppress or enhance the vertical motions of the air parcel [78].
Based on this knowledge, one may define three26 (static) atmospheric stability con-
ditions, referred to as stable-, neutral-, and unstable. The dry Adiabatic Lapse Rate
(ALR) is a useful tool to identify and separate the stability regimes. It describes the
theoretical temperature change in the atmosphere with altitude, ΓALR =−

(
dT
dz

)
ALR

, as-

suming that the air parcel moves adiabatically27. In general, the dry ALR implies that
an unsaturated air parcel will cool at a rate of 9.8K km−1 [73] until the parcel becomes
saturated. A saturated air parcel will cool at a slower rate due to the heat provided by
the humidity. The ALR, denoting the actual temperature change with height, can be
described as Γ = −

(
dT
dz

)
air

[73]. All stability regimes are illustrated in figure 2.4 by
considering a rising air parcel.

23The frictional force is also present in the outer layer, but decreasing with height [78].
24Geostrophic wind is when the Coriolis force is in balance with the pressure gradient force, due to the

absence of the frictional force [56, 73, 77].
25An air parcel can be thought of as a "box" of air.
26The atmospheric stability can be further divided into finer regimes [92].
27An adiabatic system means that there is no heat exchange between the system(air parcel) and the sur-

roundings(atmosphere). In this case, the temperature change happens because of the air parcels’ expansion
or compression.
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Figure 2.4: Illustration of how stability is defined by following a particle moving from the initial position
p0 upwards in altitude, to position p1. If the air parcel follows the ALR as it raises from zp0 to zp1, the
parcel will have the temperature Tp1b and correspondingly neutral conditions. However, if the adiabatic
cooling effect causes the rising air to become colder (Tp1b) than its surroundings (Tp1c), its vertical
motion will be suppressed, and the conditions are stable. On the other hand, if the adiabatic cooling
effect causes the rising air to become warmer (Tp1b) then the surroundings (Tp1a), the conditions are
unstable, and the vertical motion is enhanced. Figure inspired by from [73].

Neutral stability means that the air parcel’s temperature is in equilibrium with the sur-
rounding air (ΓALR = Γ). Hence, the parcel is not exposed to any forces in the vertical
direction (negligible buoyancy forces). A neutral BL is in the state of forced convec-
tion28 [73], often characterized by strong winds interacting with the surface roughness,
causing sufficient mixing of the BL [57].

The conditions are unstable when the air parcel has a higher temperature than the sur-
roundings (ΓALR < Γ). In this case, the parcel has a lower density than the surroundings
(positively buoyant). While considering an upward displacement of the parcel, the at-
mosphere enhances the upward movement to further ascent. This happens e.g. when
the surface is warm, heating the air close to the ground so that it is warmer than the
overlying air. An unstable BL is in the state of free convection29 and has efficient
mixing due to increased turbulence and a weaker vertical wind speed gradient (less
stratified BL). The mixing results in smaller wake regions and increased loading on the
downstream turbines if operated in the wake [70, 73].

The conditions are denoted as stable when the air parcel has a lower temperature than
the surroundings (ΓALR > Γ). Considering an upward displacement of the air parcel, it
has a higher density than the surroundings due to its low temperature. Therefore, the

28Forced convection occurs when shear is present in the mean wind (also known as mechanical turbu-
lence).

29Free convection is the movement of air due to thermal gradients.
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atmosphere will suppress the upward displacement of the air parcel (negatively buoy-
ant). This happens e.g. when a cold surface cools down the air adjacent to the ground
so that it is colder than the air right above. A stable BL has a stable stratification due to
suppressed turbulence intensity and mixing, and therefore a larger shear [91]. This will
result in longer wake recovery distance and larger wake velocity deficit regions, but less
loading on downstream turbines if operated with the same conditions30 as mentioned
in the unstable case [70, 73].

2.3.6 Transient Event
In the atmosphere, the stability regimes may provoke various transient events, which are
local, short-lasting events that can affect the wind farm significantly31. Some transient
events can e.g. be Low-Level Jets (LLJ), ramp events, or Open Cellular Convection
(OCC) [93–97]. For this work, OCC is of particular interest, as some data have been
measured during the OCC event (section 3.2.1).

Cellular Convection (CC) is shallow cloud formation at mesoscale in the ABL32. It is
formed during unstable atmospheric conditions, as cold air masses approximate rela-
tively warm air masses, in a so-called cold front. The phenomenon is often formed
over the ocean, as cold air blows from the continents and lays on top of the relatively
warm ocean air. The CC happens in ABLs with a capping inversion layer (see section
2.3.4). The process of CC formation can be explained through three stages. Sea-fog
is initially formed due to cold air advection, which develops further downwind into
cloud streets33, and eventually evolves into CC [78]. According to Hubert [98], the
CC could appear as open (Open Cellular Convection (OCC)) or closed. Open cells
tend to occur when the temperature gradient (air-ocean (surface)) is relatively large,
whereas closed cells occur during weak gradients. The OCC appears as cloud-free
cells (hexagons) capped by a cloudy border due to the circulation within the cells. The
hexagonal cloudy rings experience an upward motion, whereas the cloud-free center
a downward motion34. OCCs typically have diameters of 10km to 100km and depths
ranging from 1km to 3km [78, 99]. Satellite images often detect the phenomenon, and
the reader is referred to [97] for more information about the OCC event [95, 98, 99].

2.3.7 Offshore and Onshore Conditions
For the wind energy discipline, it is convenient to separate the ABL further based
on the surface interacting with the atmosphere. This is because the various surfaces
may greatly affect the atmosphere’s stability. The BL between the atmosphere and the
ocean (offshore wind farm) is referred to as the Marine (Atmospheric) Boundary Layer
(M(A)BL). On the contrary, when the BL is between the atmosphere and land (onshore
wind farm), the ABL is referred to as Land (Atmospheric) Boundary Layer (L(A)BL)

30Same conditions are in this case equal spacing between turbines and turbine characteristics (i.e. same
wind farm).

31Transient events can impact power output and structural loading on the turbines.
32Also known as mesoscale cellular convection.
33Cloud streets are linear cloud formations.
34On the contrary are closed CCs cloudy closed cells surrounded by clear rings.

Background 2.3 Environmental Conditions in the Wind Farm



Rønning, M.: Reduced order model on LiDAR and WRF-PALM data 18

from now on. The stability conditions in a MBL region differ from a LBL region. In
this section, key drivers causing differences in the conditions in the MBL and LBL are
briefly described [68].

Heat Capacity. Firstly, there is a difference in the heat capacity of the ocean and sur-
face of the earth, resulting in different temperature gradients. The ocean’s heat capacity
is relatively large, allowing it to store rather much heat whiteout, increasing the ocean’s
temperature significantly. With few exceptions, the air-ocean temperature variations
are no more than 1◦C to 2◦C [73], resulting in minimal temperature gradients. Hence,
the stability offshore is generally driven by the movements of the low-level wind field,
where the tendencies are from cold towards warm areas at microscale. The result is
cold air above warm ocean; thus, an unstable MBL [73]. However, the wind patterns
are also driven at a synoptic- and mesoscale, which are complex systems that are prod-
ucts of several factors in the atmosphere. At times, these systems cause the warm wind
to advect over cold waters. For example, this can be when warm air travels with the
Gulf Stream northwards to colder waters [73]. In this kind of event, the MBL is stably
stratified. Generally, the MBL exhibits a weak diurnal cycle due to the minor tem-
perature variations in the ocean. One can instead identify an annual variation, where
the dominating pattern is unstable MBL in the autumn/early winter and stable MBL in
the spring/early summer [68]. This is mainly because the ocean’s temperature is lag-
ging approximately one month with the variation in air temperature. So, when the air
is cooled in the autumn, the ocean keeps its heat for approximately one month longer,
resulting in unstable conditions. On the other hand, the ocean is cold relative to the
heated air in the spring, resulting in stable conditions. Another effect of the heat capac-
ity is the effect on the BL depth. The MBL is generally shallow compared to the LBL,
and more stable and homogeneous. Moreover, the earth’s surface (land) heat capacity
is relatively low. Thus, it requires little energy to heat it. In response to the alternating
heating and cooling of the surface, the LBL exhibits a great diurnal cycle. Thus, when
the sun rises in the morning, the surface responds almost instantaneously by increasing
the heat at the surface. As does the air above, creating thermal gradients resulting in
unstable conditions. The low heat capacity also makes the earth’s surface poor at stor-
ing heat. Therefore, it cools down relatively quickly, causing air parcels adjacent to the
ground to cool, causing stable conditions. Thus, assuming clear sky, the pattern rec-
ognized is stable conditions at nighttime and unstable conditions in the daytime. The
different heat capacity also results in different temperature profiles, resulting in a much
larger variation in the LBL depth. In general, this makes the LBL deeper than the MBL
[68, 78].

Humidity. Secondly, humidity at the site will generally affect the conditions of the
site. There is also a vertical distribution of moisture in the atmosphere, as described
previously for wind and temperature [73]. Onshore, this profile changes frequently ac-
cording to a diurnal cycle. The vertical profile of humidity offshore, on the other hand,
constantly decreases with altitude from the surface. As moist air is lighter than dry air
at a specific temperature, this contributes to a continuous and slight destabilization of
the MBL [68]. The humidity flux’s impact may vary depending on the stability, but the
flux will always be upward offshore [68]. Moreover, moisture will change the lapse
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rate of the air parcel as it reaches saturation. Saturated air is cooled down slower than
dry air parcels with altitude because condensation releases heat energy into the atmo-
sphere as the water vapor turns into liquid water [78]. In addition, moist air above the
ocean results in a more extensive cloud formation than onshore. This often results in
strengthening the capping inversion layer, which reduces the entertainment of dry air
into the capping layer. These conditions are ideal for OCC, as elaborated on in section
2.3.6 [73].

Roughness Elements. Thirdly, the surface roughness influences the ambient turbu-
lence intensity of the site [74]. The surface roughness is indicated by the so-called
surface roughness length, z0, which is a length scale valid in the surface layer. As previ-
ously mentioned, the wind velocity is distributed in a vertical profile in the atmosphere,
and the surface roughness (together with atmospheric stability) is key for determining
the wind profile. Offshore, the surface roughness varies depending on wave charac-
teristics35 such as wave size, height, and shape. However, one can often assume that
the surface roughness offshore is smaller, more homogeneous, and with the possibility
of fluctuating as opposed to onshore surface roughness [68, 100]. Onshore, roughness
elements range from small pebbles or trees to big mountains or buildings, increasing
the drag force at higher altitudes. As seen from the (neutral) logarithmic law, equation
(2.2), the velocity (theoretically) is logarithmically proportional to the ratio of sur-
face elevation to the (aerodynamic) surface roughness length. Hence, a lower surface
roughness length increases the logarithmic expression, resulting in a steeper vertical
wind profile. This is because a low surface roughness length results in less drag forc-
ing from the ground. Typical surface roughness length values range from 0.0001m to
0.001m offshore and from 0.002m36 to 3m onshore [56]. The surface roughness length
may result in a slight difference in the wind profile onshore versus offshore. However,
the greatest impact is perhaps due to very closely packed roughness elements onshore,
which may displace the entire wind profile to some elevation. Hence, when the wind
profile begins at the top of the wave offshore (e.g. at 1m height, often neglected), the
profile onshore may begin on top of a forest (e.g. 30m height). A turbine at some spec-
ified hub height will therefore experience higher wind speeds offshore in this case, as
the wind speed has accelerated to higher wind speeds offshore [56].

Summary. One can summarize by saying that the MBL exhibits annual variation,
whereas the LBL experiences diurnal variations. The MBL is generally unstable in the
autumn/early winter and stable in the spring/early summer. On the other hand, the LBL
will have stable conditions at night and unstable during the day [73, 78]. Moreover,
the MBL is shallower than the LBL, mainly due to the different temperature gradi-
ents. Thus, turbines of equal size are, onshore, placed in the surface layer, whereas
offshore, they are placed in the Ekman layer. Additionally, will the roughness elements
be smaller in the MBL compared with the LBL. As a result, one can generally expect
the wind in offshore conditions to be more uniform and reliable, less turbulent, and of
higher velocity at a given height [68]. Thus, offshore turbines generally experience less
shear over the rotor. On the other side, offshore wind turbines need larger free flow re-

35The wave formation depends on the wind speed and atmospheric conditions [68].
36Can also be in the order of 0.00001m for areas of ice/mudflats.
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covery distances than onshore wind turbines. It is important to emphasize that these
assumptions are broad generalizations, and local solar radiation and cloud formation,
topography, and season significantly impact the site’s stability, wake formation, and
loading on turbines. Moreover, ideal stability regimes such as those mentioned here are
not often found in nature, but rather occur as a combination of all regimes simultane-
ously. Therefore, it is necessary to exterminate the wind closely to determine stability
and turbulence at a specific site [91].

2.4 Wake Predictions

Firstly, this section describes widely used wake estimation techniques. Next, two main
optimization processes in the wind energy industry which may benefit greatly from
POD is briefly described.

2.4.1 Methods For Predicting Wake
Modeling the wakefield and wind dynamics in a wind farm is a comprehensive and
ongoing challenge. However, the wake effect is a phenomenon that has been known
for several decades, and thorough research has therefore been done in this regard, e.g.
[15, 25, 60, 101]. In general, one can separate the methods for estimating wake into
three techniques; experimentally [81, 102], analytically [11, 23, 103], and numerically
[20, 25].

Experiments

Experiments in the wind energy discipline mainly cover laboratory experiments such
as wind-/water-tunnel experiments and field measurement experiments. In wind-/water
tunnel experiments, one attempt to construct a small-scale model representing the true
utility-scale system, in a laboratory. This approach has provided details information
about the wake region throughout the years [20]. However, obtaining utility-scale re-
sults from the laboratory-scaled findings is often limited by the ability to reproduce
the same conditions in a laboratory as in reality. Usually, significant differences are
found in various parameters when comparing the imitated, small-scale model to the
real, large-scale model (i.e. atmospheric stability) [20, 70].

On the other hand, field experiments do provide measurements at utility-scale. Utilizing
several measurement instruments at the same site has provided further knowledge about
the wake effect [74, 102, 104]. However, field measurements are not a trivial task and
are frequently of limited spatial-temporal resolution, thus insufficient to explain the
structures of the wake in a detailed manner [8]. Moreover, it is challenging to fully
know the everchanging inflow conditions, resulting in uncertainties [42].

Experimental methods generally capture vital features of the flow structure in the wake
region, but are often mainly used to validate the skill of numerical and analytical models
[20, 69, 105].

Background 2.4 Wake Predictions
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Numerical Models

Numerical methods, or high-fidelity models [106], does in this context comprise Com-
putational Fluid Dynamics (CFD) and is amongst the most sophisticated and precise
methods of predicting wake today. CFD makes predictions of the wind flow, by uti-
lizing high-fidelity numerical techniques to solve the partial differential equations gov-
erning turbulent fluid [24]. In general, these methods are accurate. However, the calcu-
lations are time-consuming, computationally demanding, and expensive. For complex,
non-linear models of high-fidelity and degrees of freedom, one numerical simulation
may take from several hours up to days to finish, which is not applicable in most practi-
cal cases in the wind energy industry. The presence of turbulence, with its broad range
of energy scales, is the main reason for this. Additionally, calculations are even more
complex near the walls (physical boundaries such as turbine blades). To address the
complex nonlinearities in the equations, manipulation is exploited. The result is an in-
creased number of unknowns, making the equations impossible to solve. This is the
so-called closure problem of turbulence. Thus, there is no rigorous, statistical theory
of turbulence [107]. In order to approximate results and models using these equations,
the unknowns are parameterized, which introduces uncertainties [78].

One widely used method for calculating wake is the Large Eddy Simulations (LES).
Simply put, is LES a filtering operation. A lower grid size is chosen, and all turbulent
structures (eddies) larger than this size are resolved in the Navier-Stokes equations.
All eddies smaller than this scale, mainly the eddies responsible for dissipation, are
parameterized [62, 70]. LES is a widely used method, often combined with simplified
turbine models such as the actuator disk/line method [36]. However, due to the broad
eddy-size range in a turbulent flow, it is still a computationally demanding process,
inapplicable in most practical cases [10, 108].

Another well-known method for engineering problems is the Reynolds Averaged
Navier-Stokes (RANS) approach, where the velocity flow is split into a fluctuating37

and a mean part (see section 3.3). In RANS, only the mean part is utilized, which sim-
plifies the cascade challenge in LES. However, whereas the original equation was a
closed system, the averaging process of nonlinearities includes new unknown Reynold
stress terms which must be parameterized. Moreover, RANS resolves all scales of tur-
bulence, making it inapplicable for complex turbulent flows [41, 62, 70, 76].

Finally, PArallelized LES Model (PALM), which is used in this work, means that the
LES model is intended for massively parallel systems with distributed memory. Paral-
lelization of the LES results in less computational time and thus the ability to include
more features. The PALM model enables the multiscale framework to predict turbulent
wind flows within a wind farm with increased precision due to the implementation of
the actuator disk parameterization with rotation. However, the model is sensitive to the
selection of input parameters [97, 109, 110].

37By a fluctuating part mean deviations from the mean.
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Analytical Models

In the past decades, several analytical models, or low-fidelity models [106] have been
proposed to reproduce the wakefield. Some well-known are those developed by Jensen
[22], Frandsen et al. [103], Niayifar and Porté-Agel [89], Larsen [111], and Bastankhah
et al. [23]. The models are computationally efficient and are based on simplified ver-
sions of the fluid dynamical equations and/or empirical descriptions of the velocity
field [33, 36]. They can be divided into simple top-hat models and Gaussian or ’bell-
shaped’ models [11, 22]. The analytical wake models are often not valid for the entire
wake region, only parts. Analytical models are the state-of-the-art method in near real-
time optimization processes such as wind farm controlling (see section 2.4.2) and wind
farm layout optimization (see section 2.4.2) [20, 36] and can be justified in some cases.
However, these models generally exclude key features such as turbine properties and
operation, atmospheric stability, and flow characteristics. Therefore, the results are of-
ten limited when describing the wake dynamics (e.g. wake meandering), making them
inapplicable to address turbine performance and loads [28, 36]. Some models will be
addressed briefly in this section [11].

One of the pioneering wake models is the one proposed by Niels O. Jensen in 1983,
later referred to as the Jensen Wake model [22]. This model falls within the top-hat
models and is valid in the far-wake region only. It is a simple wake model, assum-
ing linear wake expansion as a function of the downstream distance from rotor, with
a wake spreading parameter, k, representing the growth rate (diameter) of the wake.
Hence, both the wake expansion and velocity deficit are a linear function of the down-
stream distance from rotor. The growth rate is an empirical parameter, varying from
one wind farm to another. However, the default values of 0.05 offshore and 0.075 on-
shore are often used [112]. The growth parameter is also frequently seen as a function
of the ambient turbulence intensity [11, 112, 113], as this has shown to be one of the
most influencing factors on the wake recovery [23, 112, 114]. Moreover, the model is
characterized by an equal velocity deficit in the cross-section of the wake. The model
is widely used due to its low computational costs and robustness [11, 112, 115].

The Gaussian wake models are characterized by the bell-shaped wake distribution,
which, in general, is a more realistic view of the wake. One of the most widely known
Gaussian models is the one proposed by Bastankhah and Porté-Age in 2014 [23]. Sim-
ilar to the Jensen model, this model retains the assumption of linear wake expansion.
The growth rate, k∗ is expressed as a linear function of the ambient turbulence intensity,
which can be tuned using empirical experiments. The model is valid in the far wake
only and derived from the conservation of mass and momentum equations [23, 115].

PyWake PyWake is a package in python, developed for wind farm flow field calcula-
tions, amongst others, where a variety of wake models have been implemented. Some
of the most widely used models are displayed in figure 2.5, using the open-source codes
provided by PyWake. Figure 2.5 a represents the wake model developed by Jensen, fig-
ure 2.5 b depicts the wake model proposed by Larsen, and figure 2.5 c is the wake
model from Bastankhah et al. [116].
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(a) Jensen wake model [22, 116] (b) Larsen wake model [111, 116]

(c) Bastankhah wake model [23, 116]

Figure 2.5: An overview of some of the most widely used analytical models in the industry today. Figure
(a) is of the Jensen wake model, (b) is the Larsen wake model, and (d) is the Bastankhah model.

2.4.2 Wind Farm Layout Optimizing and Controlling
As already touched upon, precise wake estimations are crucial to enable wind farm
design and operational improvements [28]. The gains obtained from a wind farm are
superficially determined by the balance of costs versus the Annual Energy Production
(AEP) of the wind farm. Being able to find the optimal balance between increasing
AEP and reducing costs is a comprehensive task and a hot topic to further improve
[13, 17, 117–119]. In the planning phase, one needs to establish an optimal layout for
turbine operation. Next, based on the chosen layout and the conditions at the site, one
must operate the turbines in harmony to obtain the most power at the least cost. An op-
timization problem is essentially several similar problems with small differences that
need to be solved. Achieving this enables one to compare results, thus deciding the
"best" solution. Therefore, efficient predictions are required in this process [120]. To-
day, the state-of-the-art method for such optimization processes is the analytical model,
as mentioned in section 2.4.1. However, as seen previously in this work, there is po-
tential for improvements in accuracy in these models. Including more precision and
dynamics into today’s models could improve layout optimization and controlling of
wind farms significantly.

Background 2.4 Wake Predictions
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Wind Farm Layout Optimizing. In a wind farm, the turbines are arranged together
in a given layout, separated by some spacing distance. The various ways of cluster-
ing the turbines together38 may significantly affect power output and loading on the
downstream turbines. Wind farm layout optimization aims to find the optimal layout
which provides the highest power output at the lowest expenditures at the given site
[121]. The wind farm layout optimization problem is complex and multidisciplinary
[122] and includes aspects such as system expenditures (related to cable, mooring,
foundation, turbine etc. . . ), environment, technical constraints, area constraints, wind
conditions, ecosystems, structural loading, etc. Since wake may account for up to 20%
power losses, as already mentioned, it is one of the main drivers to consider when iden-
tifying the optimal wind farm layout [36]. In the optimization process, several layouts
are calculated and compared. Therefore, it is beneficial to obtain fast and relatively ac-
curate estimations [16, 106, 122]. The faster the calculations are, while being fairly
precise, the more parameters one can account for in the optimization.

Wind Farm Controlling. Wind farm controlling becomes vital during the operation of
the wind farm and attempts to coordinate all turbines in a wind farm in harmony. In
other words, by controlling the wind farm, one aspires to obtain maximum energy at
the lowest loading and expenditures. Depending on the wind conditions, either opti-
mizing or limiting the power output can be achieved by wind farm control. One control
mechanism is passive/active yaw-, pitch- and generator load/torque control [56].

Yaw control is the mechanism responsible for changing the direction of the entire ro-
tor/nacelle on the horizontal axis. The yaw makes it possible to steer the rotor to face
the incoming wind at the desired angle, e.g. aligned with the wind, or at some angle to
steer the wake by yaw misalignment [123]. Pitch control is the mechanism altering the
turbine blade, where the chord line of the blade is altered relative to the incoming wind
speed, referred to as the angle of attack. Pitch control allows one to always operate at
an optimal angle of attack with regards to the wind conditions and thus control the ro-
tational speed of the blades [124, 125]. Finally, generator torque can also be utilized to
regulate the tip speed ratio39 [19, 56].

By utilizing control mechanisms such as these, one can control the aerodynamic force
on the turbine blade and loading of each turbine in the wind farm. However, the pro-
cess is data sensitive in the sense that the data forms the basis of the steering [58]. To
obtain the optimal solution for e.g. the pitch angle, one must try and fail. Being able
to conduct several calculations for various pitch angles within a short period of time,
further optimization of the power output is enabled. Since the wind flow changes con-
tinuously, it is key to get fast wake predictions. Detailed and efficient wake predictions
can improve the controlling process and increase the power output [33, 56].

38Layouts can be rectangular, triangle, semicircle, staggered, random, etc.
39The ratio between the tip speed of one blade and the wind speed [56].
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Chapter 3

Data and Methods

This chapter elaborates on the data and methods used to achieve the results provided
in chapter 4. All procedures are conducted in PyCharm using Python. Firstly, is a de-
scription of the site where the data is collected from presented. Next, is the data used
presented with an explanation of the processing conducted. Finally, is a brief descrip-
tion of ROM done before the process for obtaining the ROM through POD is elabo-
rated. Finally, the methods for including stochasticity in the time-dependent weighting
coefficient are explained.

3.1 Site

FINO1 (Forschungsplattformen In Nord- und Ostsee nr.1) is a research platform located
in the North Sea, close to Germany’s first commissioned offshore wind farm Alpha
Ventus[126]. Alpha Ventus consists of 12 turbines organized in a rectangular layout.
An illustration is shown in figure 3.1a. The distance between the turbines varies but
is generally approximately seven rotor diameters (7D) [127]. Because the wind farm
was commissioned to be an offshore test site, it consists of two types of turbines with
different foundations. Turbines 1-6 are Senvion 5M turbines, and 7-12 are Adwen Wind
M5000 (Multibrid) turbines, with jacket and tripod foundations, respectively[128, 129],
see figure 3.1b. For more information about the turbines, see Table 3.1.

Data and Methods
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(a) Location of FINO1 in relation to Alpha Ventus, figure
from [127].

(b) Alpha Ventus turbines and foundations: Senvion tur-
bine with jacket foundation in front, and Adwen turbines
with tripod foundations in the back, figure from [130].

Table 3.1: Information about the turbines in the Alpha Ventus wind farm [129, 131, 132].

Turbine overview

Turbine name Senvion 5M Adwen AD 5-116

Manufacturer Senvion SE ADWEN Offshore

Formerly turbine manufacturer REpower Systems SE AREVA Wind GmbH

Turbines 1-6 7-12

Rated power [MW] 5 5

Rotor diameter [m] 126 116

Hub height [m] 92 90

Cut-in speed [m/s] 3.5 4

Cut-out speed [m/s] 25 25

Foundation jacket tripod

Data and Methods 3.1 Site
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3.2 Data

This section aims to provide an overview of the various data used and how they were
processed. In this work, LiDAR- and wind vane and cup anemometer measurements
were obtained at FINO1, SCADA data from turbine 7 (AV7) in Alpha Ventus, and
Weather Research and Forecasting (WRF)-PALM are data used. Two periods are in-
vestigated, hereinafter referred to as the first and second periods. They are one hour at
the 22nd of September 2015, and the period of 24th of September to the 3rd of October
2016, respectively. Data collected in the first period, WRF-PALM data, is presented in
section 3.2.1. In the second period, SCADA, cup anemometer, wind vane, and LiDAR
data are collected. This is mainly due to the retrieval process necessary for the LiDAR
measurements, which is described in section 3.2.2. Both periods were collected dur-
ing the Offshore Boundary-Layer Experiment at FINO1 (OBLEX-F1) campaign [133].
The periods are chosen based on the availability of the various data measurements.

3.2.1 WRF-PALM Data
WRF-PALM data from the first period, the first hour of 22.11.2015, is used in this work
for POD. As mentioned previously, POD applied to LES data is an already proven
method for reducing the order of a complex system. Hence, in this work, the WRF-
PALM data is used to compare the results using the LiDAR data. However, it must
be specified that WRF-PALM data is known to be less idealized than LES [97]. The
data is collected in unstable conditions during the passage of an OCC event (see section
2.3.6), which commonly occurs in the North Sea [94].

WRF-PALM data denotes data obtained by utilizing the Weather Research and Fore-
casting (WRF) model and parallelized LES (WRF-PALM) as a multi-scale model
chain. The WRF simulation is initialized with ERA5 reanalysis data at 30km reso-
lution in this work [134]. The result of the WRF simulation is a wind field of 40m grid
spacing and is conducted with the aim of reproducing the atmospheric conditions of the
site. However, the resolution is too coarse to resolve the frequently occurring small-
scale eddies in turbine wakes. Downscaling the original WRF domain spacing from
40m to 10m (horizontal) increases the number of grid points by 64 times (4×4×4), al-
lowing the small scald dynamics to appear in LES1. However, the computational time
would increase by the same order. The grid spacing is only reduced over a local area
around the wind farm to reduce the computational time to the greatest extent possible.
The local area is then a child domain added to the LES, and the original domain be-
comes the parent domain (see information about resolution in Table 3.2). The child
domain is obtained through a one-way nesting approach. Hence, the results from solv-
ing the equations in the parent domain are used to obtain the nested boundaries for the
child domain through interpolation, so that the same equations can be solved in the
child domain. An overview of the grid transformation is presented in Table 3.2

The equations are solved using PALM, and the reader is referred to [110] for further
reading regarding the nesting system utilized, and [97] for information about the WRF
model.

1The section desribes the LES model being parallelized using PALM
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Table 3.2: Table presenting information about the grid resolution in the WRF-PALM data.

Grid spacing Number of grid points Nested domain lower left corner coordinates
∆x, m ∆z, m Nx Ny Nz x, m y, m

WRF 40 10 576 576 96 - -
LES, parent 40 10 576 576 96 - -
LES, child 10 5 448 512 64 10480 8400

WRF-PALM Data Description. Figure 3.2 illustrates the domain for the WRF-PALM data
used in this work, covering four turbines (AV1, AV4, AV7, and AV10). This corresponds
to the spatial resolution of x =[1000, 1900] and y =[895, 4495] with [dx, dy] = 10m. The
temporal resolution is ∼2 seconds for one snapshot2 to be conducted, consisting of 32400
measurements. Therefore, the amount of measurements per second is 16200. Thus, and as
expected, both the spatial and temporal resolutions are finer than for the retrieved LES data
described in section 3.2.2. As the data is simulated using ERA5 reanalysis data, all snapshots
are of the same amount of measurements and high-quality, and there is no need for processing.
From investigating the minimum and maximum values for the mean wind speed, the values
were found to be ∼6.16m/s and ∼16.8m/s, respectively. The hours simulated are during an
OCC event (explained in section 2.3.6). Hence, the conditions are volatile, as explained in
section 2.3.6.

Figure 3.2: Illustration of the WRF-PALM subdomain. Showing which turbines in Alpha Ventus the
simulation covers. Inspiration from [128].

2One snapshot in the WRF-PALM data is analogs to one scan for the LiDAR data.
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3.2.2 Data Measured at FINO1
FINO1 is a platform densely packed with various measurement equipment for wind, tem-
perature, and humidity [128, 135, 136]. These are taken from both the platform itself and
the met-mast at FINO1. This work uses cup and vane anemometer measurements from the
met-mast and LiDAR data recorded at the FINO1 platform. The data sets are from the sec-
ond period (24.09.2016 to 03.10.2016) obtained during the OBLEX campaign. This section
presents the data and briefly the instruments used.

Cup Anemometer and Wind Vane Data

The cup and vane anemometer measurements obtained during OBLEX are available in heights
ranging from 30m to 100m (for every 10thm) and from 30m to 90m (for every 20thm) Above
Sea Level (ASL, henceforth a.s.l.), respectively. Wind speed data from a cup anemometer
installed at 100m a.s.l. is used in this work. The wind direction is from a wind vane mounted
90m a.s.l. Both data sets are used to retrieve wind speed and direction from the LiDAR data,
which is explained in section 3.2.2. Moreover, the data is used for validating the retrieved wind
speed and direction. Hereafter, the wind speed and direction is referred to as the reference wind
speed and direction, respectively.

Both the cup anemometer and the wind vane are based on in-situ sensing technology, meaning
that they measure directly where they are located. Thus, e.g. a mast to be mounted on is re-
quired to obtain measurements at turbine rotor height [135]. A cup anemometer consists of a
number of vertical cups springing from equal distanced horizontal arms mounted on a vertical
shaft. As the wind hits the collecting cups and turns them, the horizontal wind speed can be
found [137, 138]. For an extensive explanation of the cup anemometer, see [137]. A wind vane
is a vertical vane mounted on a rotating shaft, driven by the pressure exerted by the wind, caus-
ing the vane to align with the wind direction [138]. Generally, it is essential to process the data
from anemometers and wind vanes. Typical disturbances for cup anemometer is calibration er-
rors and wear and tear, whereas the errors for wind vanes are most related to installation [138].
Generally, since the measurements are mounted at the met-mast on FINO1, the so-called geo-
graphical exclusion zone is one potential error. This is distortion in the measurements caused
by the wind hitting the mast before the anemometer/vane [135, 138].

Cup Anemometer and Wind Vane Data Description. The wind speed and direction are
measured at a single point from the met-mast at FINO1, at the coordinates, 6◦35’15.58"E,
54◦00’53.94"N [128]. The measurements are mean values for every ∼50th second, corre-
sponding to one LiDAR scan (see section 3.3). Hence, the reference data also contains the
irregularities explained later in section 3.2.23. The original temporal resolution of the data is
unknown, as this was not provided.

As mentioned, the data should be processed in some way. Due to lack of information about
the distortion ranges4, the cup anemometer and wind vane data are not treated in any way.
However, a peak removal with threshold values for wind speed of 30m/s and wind direction
for > 360 and < 360 was conducted. The findings were that the wind speed in the period is in

3A subset of 25 LiDAR scans represents the first 20 minutes of every hour. The last 40 minutes are not
captured by the LiDAR.

4[135] states that the cup anemometer at 100m a.s.l. at FINO1 is in a height where the wind flow is not
distorted due to the met-mast.
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the range from 0.78m/s to 19.42m/s, and the wind direction in the range from 3.83◦ to 359.42◦,
at corresponding 100m and 90m, in which no values are considered av unrealistic. The mean
wind speed is ∼9.2m/s, and the dominant wind direction is from the southwest, as illustrated
by a wind rose in figure 3.3. As the distribution of the wind direction is relatively concentrated
from the southwest region, and no unrealistic values in the wind speed or direction are detected,
it is subsequently assumed that the distortions range is not in this region. However, some wind
speed is detected from the northeast region, and the quality of that data remains unknown.

Figure 3.3: Wind speed distribution in the second period, using cup anemometer and wind vane data
obtained at FINO1.

Light Detection And Ranging (LiDAR

The LiDAR data used in this work is radial velocity obtained by a single scanning Doppler
wind LiDAR Leosphere WindCube 100S, mounted 23.5m a.s.l. at FINO1. Wind speed and
direction are first retrieved from the radial velocity. Next, a subdomain is chosen before the
processed data is used in the POD, see sections 3.2.2, 3.2.2, and 3.3, respectively.

LiDAR is a remote sensing technology providing information about the radial velocity, i.e. a
component of the velocity in the line-of-sight [46], as seen in figure 3.8. Laser is emitted
from the LiDAR and then reflected by the aerosol particles in the atmosphere. However,
not all laser pulses are reflected well by the atmosphere5, causing gaps in the data. Some
signals are returned, and due to the motions of the aerosols, a Doppler frequency shift occurs

5This is heavily dependent on aerosol content in the atmosphere and weather conditions, e.g. rain can
weaken the backscatter significantly [139].
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in the returned signal, providing information about the radial velocity. The LiDAR provides
data in a specific grid resolution (beam range) and returns a volumetric average of the radial
velocities within this range [135, 138, 140]. The location can be derived from the line of sight
and time of flight. In this way, the wind field over a considerable distance can be measured.
LiDAR measurements are advantageous in the wind energy industry as they make it possible
to measure the wind before the turbine possibly alters it. Moreover, they can provide data
over the entire rotor instead of in-situ measurements such as anemometers [141]. The laser at
FINO1 is emitted at a more or less constant elevation angle, φ = 4.62◦. The elevation angle
causes the LiDAR to scan the wind field at varying heights depending on the turbine position
in relation to the LiDAR, as shown in the figure 3.4.

Figure 3.4: Illustration of the LiDAR scan area dur-
ing the OBLEX campaign, covering AV7, AV10, and
AV11 in Alpha Ventus. The numbers indicate the
scanning height at each turbine captured by the Li-
DAR scanning area. Figure from [127].

LiDAR Data Description. Moreover, fig-
ure 3.4 visualizes the scanning range of the
LiDAR, covering the three6 bottom left tur-
bines of Alpha Ventus (AV7, AV10, and
AV11). We find that the LiDAR was directed
in a south-east (from north-west) direction
towards the wind farm during the OBLEX
campaign. The LiDAR data was measured
in a Plan Position Indicator (PPI) scanning
mode, meaning that the LiDAR scans an area
in 2D, explained by the beam range and az-
imuth angle.

In this work, 6000 scans7, 600 irregular scans
per day for ten days, are investigated. The
LiDAR produces one scan approximately ev-
ery ∼50 seconds, which is required to finish
one scan. The 600 scans per day are irreg-
ular in the sense that they are separated into
24 batches of 25 scans. As a result, the is
a ∼40 minute data gap every 25th scan. It
is clear from this that the data represents the
first ∼20 minutes of each hour [142]. The
beam range is from 50m to 3300m8 (seen
in figure 3.7) in a 25m range resolution, and
the azimuth angle, θ , from 132◦ to 180◦9 in
a ∼1◦ range resolution. Dependent on the
backscatter, is the radial velocity measured
in a range from 8 to 5849 measurements per
scan. The wind speed components, u and v,
used in this work are explained briefly in section 3.2.2. A summary of the raw LiDAR data
can be seen in Table 3.3.

6Some of the scans only contain AV7 and AV10.
7Scans are equivalent to snapshots.
8The range varies from scan to scan, depending on the weather conditions and the atmospheric aerosol

content [138].
9The directions are provided in meteorological convention
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Table 3.3: Overview LiDAR data ranges.

LiDAR data overview

Data Nomenclature Min Max Resolution Unit

Date period - 24.09.2016 03.10.2016 600 scans
day

Beam range - 50 3300 25 m

Azimuth angle θ 132 180 1 ◦

Elevation angle φ 4.608 4.632 irregular ◦

Seconds per scan - 44 60 irregular s
scan

Measurements
per scan

- 8 5849 irregular nr
scan

Data Processing.

The following paragraphs will explain how the LiDAR data is processed in order to obtain
high-quality data10 for the POD. The process is visualized in figure 3.5. Firstly, a subdomain
is chosen. Subsequently, insufficient scans are detected and removed. After that, the wind
speed components u and v are retrieved from the raw radial velocity. The next step involves
identifying and treating outliers, and finally, the data is interpolated and prepared for the POD.

Figure 3.5: Overview of the processing steps of the LiDAR data.

Subdomain. When the retrieved wind speed (and direction) is obtained, a subdomain is
chosen to investigate closer. This is to ensure high-quality data11 and make the data applicable
for the POD. The area chosen is in the range of x = [20, 800] and y = [-700, -1800] , with a
resolution of [dx, dy] = 25m, as can be seen in figure 3.6. By choosing this subdomain, the
POD captures at least one wake regardless of the wind direction.

Data Gaps. Significant data gaps detected as Not A Number (NaN) values frequently occur
in the LiDAR scans. As previously stated, some scans contain as few as eight measurements.
In this work, 95% of the data must be available in each scan to be quantified as high-quality.
Hence, scans of measurements below 95% of the total scan are considered insufficient, i.e. not
providing enough information about the wind field to retrieve or reconstruct it, and are conse-
quently discarded. An overview of where the data is considered insufficient is shown in figure
4.2 in the results. Reasons for this can either be the weakened signal-to-noise ratio (SNR),

10high-quality is a relative term in this case.
11By choosing a subdomain, the NaN values caused by turbine shadow and SNR are reduced significantly.
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Figure 3.6: Illustration of the subdomain used in the POD algorithm.

the turbines acting as obstacles for the laser beam, or low aerosol content (as described ear-
lier in section 3.2.2). Firstly, the SNR says something about the strength of the signal relative
to the background noise and will therefore decrease with increased distance from the LiDAR
[143]. Secondly, in the so-called turbine shadow, we also see clear gaps in data measurements
[127]. Both the SNR (the ruffled edge of the scans) and the turbine shadow (present as one
long white line) are illustrated in figure 3.7. As insufficient data is removed, the retrieval can
be conducted.
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Figure 3.7: Turbine shadow in LiDAR measurements. The figure also provides an indication of the
various beam ranges measured depending on the backscatter of the lasar from the LiDAR.

Retrieval. As already mentioned, the LiDAR measurements are provided as radial velocity
measurements, which is not a complete picture of the total wind speed (see figure 3.8). There-
fore, the wind speed retrieval (u and v) is required before the POD is conducted. In addition
to the radial velocity, wind speed and direction are needed in this process, which in this work
are the reference wind speed and direction (section 3.2.2). Regarding wind speed retrieval,
wind direction is essential to keep in mind, as it may result in crosswind effects. This will be
elaborated on further in section 3.11.

The retrieval algorithm is a study of its own; thus, numerous methods for retrieving wind
speed and direction exist [46, 80, 143, 144]. In this work, the so-called Volume Velocity
Preprocessing (VVP) was used before the retrieval algorithm was conducted in the manner of
the article by Nihanth W. et al. [46].

In short, is the VVP based on the governing equation for radial velocity, Vr, describing the
radial velocity in 3D for (u,v,w), along the line of sight given by the elevation angle, φ and the
azimuth angle, θ :

Vr = ucosθ cosφ + vsinθ cosφ +wsinθ . (3.1)

Moreover, can the tangential velocity in the horizontal, Vth and vertical, Vtv plane be described
as:

Vth =−usinθ + vcosθ , (3.2)

Vtv =−ucosθ sinφ − vsinθ sinφ +wsinφ . (3.3)

By assuming that the elevation height can be neglected, what remains from equation (3.1) is
the 2D field where the wind speed can be described as:

Vrucosθ + vsinθ . (3.4)
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Figure 3.8: Illustration of the radial velocity, Vr, compared to the actual wind speed. Radial velocity
can be decomposed into tangential velocity in the horizontal, Vth, and vertical, Vtv, plane.

At this stage, equation (3.4) contains two unknowns, u and v. With only one equation to solve
with, it becomes impossible to solve without making any assumptions. In the VVP method,
we exploit two consecutive scans (i) and (i+ 1), and attempt to fit a solution using the two
equations:

V (i) = usinθ + vsinθ , (3.5)

V (i+1) = usinθ + vsinθ . (3.6)

The method is based on the assumption of a uniform flow, meaning that it generally does
not recognize the wake. The result is that the wake’s shape is not adequately resolved in
some scans. This, however, is used as input to the 2D VAR retrieval algorithm [145]. A cost
function is derived based on the 2D field. The reader is referred to [46] for more details on the
derivation. By minimizing the cost function, we achieve the wind speed’s u and v components.
In this work, u is retrieved as east and v as North. Due to the gap every 25th scan of ∼40
min, and the pairwise retrieval method just explained, every 25th scan is not retrieved to avoid
errors due to very different flows. Finally, u and v are utilized to compute the wind speed, ws,
and direction, wd are computed as follows:

ws =
√

u2 + v2, (3.7)

wd = 270◦−
(

arctan
(v

u

)
∗
(180◦

π

))
, (3.8)

where 270◦ is the angle required to obtain the wind direction in mathematical convention12, as
illustrated in figure 3.9. Since wind speed is a scalar, it is not affected by the convention of the
wind direction. This data is hereafter referred to as the retrieved data.

12In meteorology is 0◦ defined as from North, whereas 0◦ in mathematics is from East.
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Figure 3.9: Illustration of mathematical versus meteorological convention.

Outliers. Outliers are unrealistic values common for most types of data sets, and frequently
seen in LiDAR measurements [135]. For this kind of data, a correlation between unrealistic
wind speed values and the corresponding wind direction is often detected (the wind direction
for this period can be seen in figure 3.3). This is explained by considering equation (3.4)13

for the 2D radial velocity field in section 3.2.2. If the wind blows towards the LiDAR, the
conditions are favorable for the LiDAR to detect the Doppler shift in the frequency of the
returned laser signals. In the event of crosswind, when the wind blows perpendicular to the
line-of-sight of the LiDAR (see figure 3.8), the radial velocity is mainly the horizontal wind
speed. Because the radial velocity component converges towards zero in these cases, the data
is exposed to bias [127, 146].

Based on the azimuth angle, wind directions where bad-quality LiDAR scans are expected to
occur due to crosswind events have been identified. The azimuth angle (line of sight from the
LiDAR) range is from 132◦ to 180◦. Hence we expect bias when the radial velocity angle is
42◦ to 90◦ and 222◦ to 270◦. However, when investigating the data, we find that the range of
unrealistic data starts at ∼ 210◦ [127], and the ranges 30◦ to 80◦ and 210◦ to 260◦ seem to
fit the unrealistic radial velocities quite well, as seen in figure 3.10. Thus, the scans in these
regions are discarded.

13Assuming that the elevation angle is negligible.
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Figure 3.10: Comparing reference wind speed from FINO1 with wind speed (simply) retrieved from
measurements by the LiDAR, the red area indicated values ≥ 30m/s, green below. The vertical lines are
ranging from 30◦ to 80◦ and from 210◦ to 260◦. Figure inspired by [142].

In general, are all values above 30m/s considered outliers and were removed before the re-
trieval was performed. In addition to these, outliers are detected in the turbine positions, as
seen in figure 3.11. One reasonable explanation for this could be that the rotating turbine
blade interferes with the reflection of the laser beam sent from the LiDAR. In LiDAR data,
local peaks can be challenging to detect. This is because the area of the local peaks and the
values vary significantly from one scan to the next. A local peak removal algorithm is, based
on separating the data into quantiles, developed in an attempt to remove the majority of these
types of outliers. The local peak removal algorithm was developed based on visual inspection
for a sample of the total data. The detected local peaks are replaced with NaN values.
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(a) High outlier (b) Low outlier

Figure 3.11: Outliers due to turbine reflection.

Interpolation In order to reconstruct the entire wind field, the final processing step before
the data can go into the POD is an interpolation. In this process, the values that have been
replaced by NaN values in the former stages, mainly due to the local peak removal algorithm
(the other scans are removed entirely), are filled with interpolated values. As the local peak
removal algorithm is limited to a few peaks per scan, the values missing may be interpolated
without removing any of the physical meaning of the scans. In this work, this is done by
leveraging linear interpolation. After the data processing procedure is conducted, the final
data set, originally 6000 scans, is reduced to 3292.

3.2.3 Supervisory Control and Data Acquisition (SCADA)
of turbine 7

The SCADA data is collected from AV7 in Alpha Ventus, which is of the type Adwen AD
5-116 (see Table 3.1). The turbine is located 919m (7.92D) away from AV7 in Alpha Ventus
[127]. While turbine 4 (AV4) is the closest turbine to FINO1 (where cup anemometer and
wind vane measurements have been measured), AV7 is the first turbine detected by the LiDAR
scans, as seen in figure 3.4 [128, 142]. The SCADA data is used for validation of the retrieved
wind speed and direction from the LiDAR data. The data is obtained from the Research at
Alpha Ventus (RAVE) portal by applying for access to the Federal Maritime and Hydrographic
Agency. When accessed, the SCADA data from AV7 in the second period (24.09.2016 to
02.10.2016) was downloaded through their online platform [128].

SCADA systems are computer-based systems collecting data directly from the wind turbines in
the wind farm, which in turn can be used in continuously analyzing, monitoring, and control
of the primary turbine functions in the wind farm [21, 68]. Through communication with
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Fraunhofer Institut für Windenergiesysteme IWES, it is established that the SCADA data is
unprocessed, and wind speed and direction measurements are located on top of the nacelle of
AV7, right behind the rotor. Hence, we can assume that the SCADA data is, to some degree,
continuously distorted by the blades of AV7 during operation. We expect the wind speed to
be lower behind the rotor from knowledge obtained about power, equation (2.1), and wake
(specified in section 2.3.1). Moreover, the measurements are always at risk of being distorted
by wakes from neighboring turbines14.

SCADA Data Description. The SCADA data is obtained at a temporal resolution of every
60 seconds. The data is collected at AV7 with coordinates 6◦35′38.970”E, 54◦00′27.018”N
[128]. Hence, the data is measured at >90 a.s.l.15 (from Table 3.1). As for the reference wind
speed and direction data, the SCADA data is kept raw, and only outliers (spikes) are filtered
out. In this work, the threshold values are 30m/s and in the range 0◦ to 360◦ for wind speed
and direction, respectively.

Total Data Overview

For an overview of the entire data used in this work, see Table 3.4.
14E.g. is A7 operating in the wakes of AV4 in ∼0◦, by AV10 in ∼180◦, and AV5 in the range from ∼20◦ to

∼50◦.
15The height of the tripod foundation is unknown.
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Table 3.4: Overview of data used in this work.

Data overview

Data
Cup
anemome-
ter

Wind vane SCADA Retrieved (LiDAR) WRF-PALM

Parameter Wind speed
Wind direc-
tion

Wind speed
and direc-
tion

Wind speed and
direction

Wind speed

Unit m/s ◦ m/s , ◦ m/s m/s
Measurement
height [m]

100 90 ∼90 23.5 - ∼290 87.5

Measurement
location

FINO1 FINO1 AV7
AV7, AV10, AV11
(from FINO1)

AV1, AV4, AV7,
AV10 (from ERA5)

Purpose
Retrieval
and valida-
tion

Retrieval
and valida-
tion

Validation POD POD

Period
24.09.2016-
03.10.2016

24.09.2016-
03.10.2016

24.09.2016-
02.10.2016

24.09.2016-
03.10.2016

22.11.2015
00:00:00 -
01:00:00

Time interval 10 days 10 days 10 days
10 days (3292
snapshots)

1 hour (1800
snapshots)

Grid points single point single point single point
1408 (780m
×1100m)

32400 (890m
×3590m)

Subdomain
in x-range, y-
range, (dx,dy)

single point single point single point
[20m, 800m],
[-700m, -1800m],
25m

[1000m, 1900m],
[895m, 4495m],
10m

Distorted data
[%]

0 0 0.116 (both) 45.1 0

3.3 Reduced Order Model (ROM)
As perhaps realized by now, there exists a gap in the current methods for calculating and pre-
dicting wake in a wind farm. It seems, we can either obtain significantly simplified wake mod-
els in a short period (see section 2.4.1) or considerably time-consuming and detailed models
(see section 2.4.1) [36]. Thus, there is still potential for improvement on the wake prediction
methods of today in order to enable relatively precise and efficient estimations, which in turn
can be utilized in wind farm layout optimization and controlling (see sections 2.4.2 and 2.4.2).

ROM is a well-established technique for reducing the computational complexity of a computer
model without it going to the detriment of the global behavior of the full order model [28, 29,
34, 35, 43, 147, 148]. In other words, we want to draw conclusions for the full order model
based on calculations with the ROM. As the ROM is based on data snapshots, it is beneficial
to develop a data-driven ROM [33]. This enables the ROM to be "trained" by feeding it
with so-called training data in machine learning terminology, enabling the ROM to produce
estimations for periods not available (e.g. in the future) [37, 40]. ROM is a broad term with
contributions from many research branches and can be obtained in various ways, but will in
this work be accomplished using POD. POD has been demonstrated numerous times to be
efficient within multiple engineering fields [147]. One of these fields is fluid dynamics. POD
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is a proven method to significantly reduce the order of the original model while preserving a
reliable approximated model [28, 31, 33, 36, 41–44]. This is mainly done through investigating
and identifying the coherent structures16 and extract these features from a random, chaotic
process such as wake [28, 41]. A lower rank of the data inserted can be represented on a lower-
dimensional, linear subspace, including the modes representing the most energy [28, 33]. This
is accomplished by transforming the data linearly to a new orthogonal coordinate system, so
that the first mode (coordinate) covers the greatest variance by any projection of the data. The
second mode then covers the second largest variance by any projection of the data and so on
[34]. One concern about the POD-based ROM is that it is limited to the boundaries of the
data used as the basis for the model. This means that when the real wind flow is outside these
boundaries, the ROM will no longer be applicable. Hence, the ROM is utterly dependent on
the data input [33]. It is important to carefully consider and be aware of the boundaries of the
data used for building the ROM to acquire reliable results. The boundaries are defined by the
data input or the so-called ’snapshots’ of the system.

3.3.1 Standard Proper Orthogonal Decomposition (POD)
In this work, the method of snapshots will be used [12, 149]. Since the main interest is to
investigate the wakefield, i.e. the variations in the wind field, POD is applied only on the
fluctuations17. If the two-dimensional preprocessed, retrieved wind velocity vector from the
LiDAR data is written as u = (u,v), the mean is then annotated as ū, then the fluctuations are
written as u′ = u− ū [33, 78]. The main idea of the POD is to utilize a modal decomposition
of the dynamic wind field to obtain a lower-dimensional model of the system, as explained in
section 3.3 [36]. This is done by decomposing the fluctuating flow field, u′(x, t) into determin-
istic spatial (POD) modes and time-dependent weighting coefficients, respectively φi(x) and
ai(t) [10]. The assumes that the position vector x can be written as x = (x,y). The fluctuating
flow field is then described by the 2D LiDAR data as follows [10, 32, 33, 45]:

u′(x, t) =
M

∑
i=1

ai(t)φi(x), (3.9)

where, t represents time, and M is the number of snapshots. The wind field, u(x, t), is ob-
tained by adding the mean ū(x, t) to u′(x, t). Despite that the decomposition procedure is
linear, it does not neglect the non-linearities of the original dynamical system [38]. The spa-
tial modes, φi(x), representing the spatial dependence, are referred to as the orthogonal POD
modes. The weighting coefficients, ai(t), characterizes all time dependence and can be under-
stood as a variable capturing the energy of each POD mode. These variables are approximated
by calculating the covariance matrix of the fluctuating vector field (mean removed).

In order to obtain the spatial and temporal weighting coefficients required for the ROM, the
eigenvalue problem must be solved. In this work, it is approximated by calculating the co-
variance matrix [10]. Firstly, the time dependent fluctuating velocity field (mean removed) is
represented in a snapshot matrix U:

16Coherent structures are repeatedly appearing spatial features that undergo a characteristic temporal life
cycle. Coherent structures often appear in flows that are dominated by local shear [41].

17The mean is removed because it is considered as a disturbance.
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U =


...

...
...

u1(x, t) u2(x, t) · · · um(x, t)
...

...
...


N×M

, (3.10)

where N represents the length of both the u and v components. The matrix is, in this work,
a composition of the (processed) u and v data retrieved from the LiDAR data or WRF-PALM
data. Next, the covariance matrix, C is created as follows:

C = UT U, (3.11)

where C is a M ×M matrix. By exploiting tools from linear algebra, we obtain the eigenvec-
tors and eigenvalues, λi, from the covariance matrix [10]. The eigenvectors represent spatial
patterns/modes of the wind field and are obtained as an orthogonal matrix, ψψψ . The eigenval-
ues are non-negative values storing the energetic contribution (variance) in the various POD
modes. The eigenvalues and corresponding eigenvectors are hierarchically arranged by the
energy of the eigenvalues, such that λ1 > λ2 > .. .λM [41]. Once the eigenvalues and eigen-
vectors are determined, the spatial modes and temporal dynamics are, respectively, determined
by [149–152]:

φi(x) = U
M

∑
i=0

ψψψ i
1√
ζζζ i

, (3.12)

and:

ai(t) =
M

∑
i=0

ζζζ iψψψ
T
i , (3.13)

where ψψψ is a square matrix of eigenvectors and ζζζ is a diagonal matrix of eigenvalues.

Based on the energy-containing eigenvalues, we chose a reasonable number of modes to in-
clude in the ROM, the so-called rank, r. The total wind field seen in equation (3.9) is then
truncated so that the following equation holds:

u′(r)(x, t) =
r

∑
i=1

ai(t)φi(x)≈ u′(x, t). (3.14)

This is possible since the eigenvalues are arranged in descending order or in nature. The
accuracy of this model thus depends on the number of POD modes included in the ROM
[10, 33].

3.3.2 Stochastic Model
As seen previously, from the equation (3.14) of the standard POD, the wind field is described
through deterministic temporal and spatial weighting coefficients, ai(t) and φi(x), respectively.
However, do the temporal weighting coefficients not include any modeling of the stochasticity
of the system, but are rather deterministic. Hence, the POD can be considered a spatial filter of
some kind [10]. As the wind field behind a turbine is a stochastic phenomenon, the POD can
be improved by including these features [33]. This could perhaps reduce the number of modes
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required in the reconstruction. One way of achieving this is by replacing the deterministic
time-dependent weighting coefficients, ai(t) from the standard POD with the stochastic time-
dependent weighting coefficients, ãi(t), yielding [10, 33]:

ũ′(r)(x, t) =
r

∑
i=1

ãi(t)φi(x). (3.15)

Including stochasticity by altering the temporal weighting coefficients as demonstrated above,
we can include more turbulence, which is crucial when investigating power output and turbine
loading in a wind farm. The result is more precision in the reconstructed wind field. Further-
more, the approach described in the next section 3.3.2 allows us to make predictions for ãi(t) at
unknown times, which are used to produce (forecast) the corresponding wind field, ũ′(r)(x, t).
There exist several ways of doing this. In this work will, the standard Gaussian Process be
investigated closer [33].

Gaussian Process (GP)

In order to predict something unknown, i.e. a real-life process such as wake, the approach
is often to leverage statistical tools. The Gaussian distribution, also known as the normal
distribution, is one of the most important probability distributions for continuous variables in
statistics [39]. A single random variable from the Gaussian distribution is fully characterized
by the sample mean and variance, making it trivial to work with.

This is the foundation of the so-called Gaussian Process. GP can be understood as a gen-
eralization of the multivariate Gaussian distribution, like an infinite-dimensional multivariate
Gaussian distribution18 [37]. It is a probabilistic, stochastic process applicable for predicting
stochastic, real-life systems such as a wake area. GP is a process (function) collecting ran-
dom variables at some observed, known inputs. This is the training data mentioned previously.
The inputs corresponding to the variables collected have some correlation value, depending
on the distance between the input variables. As the probability distribution used to collect the
random variables is a GP, is the random process characterized by the Gaussian distribution.
Hence, a finite number of this collection (a finite vector) will have a joint Gaussian distribu-
tion [40, 153].

A Gaussian Process Regression (GPR) 19 can be conducted by assuming a GP prior over
functions. The GP prior assumption, based on the so-called Bayes’ theorem20, means that one
makes some assumption of what type of function one would expect to observe, before seeing
the data [37]. The GPR can be considered a classical (probabilistic) regression, seeking to
determine continuous quantities of interest by constructing a model based on the training data
[30]. A GPR is generally the process of finding the function describing unknown data in the
best manner, based on known input-output data sets [33, 37]. The GPR is categorized as a
supervised learning technique21, which is a type of Machine Learning (ML). ML is a general
term for allowing the computer to learn22 from algorithms [154]. ML is often separated into

18The multivariate Gaussian distribution is a generalization of the Gaussian distribution [40].
19GP is also known as the kriging process.
20Bayesian approach involves the process of converting a prior probability into a posterior probability,

based on the observed data [39].
21Supervised learning is generally divided into regression and classification problems [37].
22’Learn’ as in finding patterns in the data [154].
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supervised and unsupervised ML, where supervised learning simply means that the data needs
to be labeled. A function generates a label that maps the label to the input data. Supervised
learning is often in need of human supervision/interpretation in order to do the labeling process
[154].

The GPR allows us to build a data-driven ROM. A data-driven process is driven by the aim
of obtaining estimations for new, unknown test data, based on the known training data. The
process of building the data-driven ROM can generally be separated into two phases, an of-
fline and an online phase [40, 120, 151]. In the offline phase, the high-fidelity (full order)
data (LiDAR and WRF-PALM snapshots) are obtained, enabling the building of an approxi-
mated model at some prescribed accuracy. This is the most time-consuming and costly process
of building the ROM. The mapping between the time parameters and coefficients is reached
through the GPR, trained with the snapshot data by supervised learning. New solutions are
computed for the test data during the online phase, which is generally an inexpensive process
[30, 40].

In short, we aim to develop a GP posterior function to compute a predictive distribution, y∗

given the unknown input, t∗. The GPR conducted in this work can be formulated as follows:
A finite training data set at the ith mode is collected, S={(t j

i ,y j
i ), j= 1,2,...n}, of n pairs of

input values, t j
i , and noisy output values, y j

i (label). By assuming that the relationship between
the observed, noisy output, y j

i and the corresponding input, t j (at some mode i) follows some
regression function âi - the GP prior, we assume that â(ti) is a stochastic (random) time series
at any time ti. Hence, as analogue to the Gaussian distribution, the GP is specified by a the
mean µi, and a covariance function (kernel function) ki(t, t ′). This is displayed in the following
equations [30, 33, 37, 153]:

âi(t)∼ GP(µi,ki(t, t ′)), y j
i = âi(t j)+ εi, εi ∼N(0,σ2

ε ), (3.16)

where εi is an independent error term, also known as the Gaussian-noise, corrupting the GP
prior. It is defined by an associated mean of 0 and variance σ2

ε . In equation (3.15), ãi(t) = y j
i .

Posterior Function. As previously mentioned, the aim is to utilize the training data set, S to
obtain prediction values y∗i at corresponding unknown time values t∗, such that the test data set
can be written as S∗={(t j∗

i ,y j∗
i ), j∗= 1,2,...n∗}, of n∗ pairs of test points. As follows of the Bayes

approach (the GP prior assumption), the conditional probability of observing yi at the a single
input ti, follows a Gaussian distribution such that yi|t = N(0,ki +σ2

ε I). By incorporating this
knowledge provided by the training data into the prior and combining it with the predictions
for the test data, we obtain a posterior function restricted by this knowledge [37]. Thus, the
training and test data sets follow a multivariate Gaussian distribution, which is described as
[33, 37, 40]:

[
yi
y∗i

]
∼N

(
0,
[

ki(t, t)+σ2
ε I ki(t, t∗)

ki(t∗, t) ki(t∗, t∗)

])
, (3.17)

where the mean function, µ is zero for both the training and predicted sets in this work, k(t, t ′)
is the prescribed kernel, ki(t, t∗) = ki(t∗, t), and σ2

ε I represents the diagonal matrix containing
the assumed Gaussian noise corrupting the training data, of size M ×M. The GP models an
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underlying true function (labels) yi(t) of the training data as one random draw from this joint
distribution. Hence, can the GP model be trained by inferring predicted values for the mean
function, µi(t), and kernel, ki(t, t ′) which affects the generated observed values, yi(t).

On this foundation, the new outputs can be expressed in a probabilistic manner [37]. The
new predictions will also follow a normal distribution, and the predictions at the ith mode are
obtained as [37, 40]:

y∗i |ti,yi, t∗i ∼N(µ∗,ci(t∗, t∗)) (3.18)

with the predicted mean function, µ∗, and kernel function, σ∗ [30, 37, 40]:

µ
∗
i = ki(t∗, t)ki(t, t)−1y∗i , (3.19)

ci(t∗, t∗) = ki(t∗, t∗)− ki(t∗, t)ki(t, t)−1ki(t, t∗). (3.20)

The posterior mean function can be understood as a correction to the prior function [37]. Time-
dependent coefficients at the training data labels, t∗, and/or in the future, are obtained directly
from the regression model and used in combination with the standard POD modes of some
chosen range to create the stochastic ROM.

Model Selection. The kernel function (determining the covariance matrix) in the GP is pre-
defined and selected, and tuned to get the best results for the given data. The GP is based
on the assumption that similar input values should have similar outputs. This foundation is
included through the covariance function [37]. The covariance function measures the covari-
ance between the outputs, yi(t) and y∗(t), as a function of the corresponding inputs, t j

i and t∗i
[37]. A high kernel function value indicates that the outputs are alike, whereas a small kernel
function value implies small similarity. There are several types of kernels, which are further
specified by several hyper-parameters23. As long as the kernel function has the properties of
being symmetrical and positive definite24, it may be used as a kernel. The flexibility induced
by model selection makes the GP model flexible to fit many data types. However, finding the
best model is at the same time one of the key challenges when exploiting the GPR in variable
predictions. Several kernels are investigated in this work with the objective of identifying the
best fit.

Every kernel has various hyper-parameter(s) that determine the kernel’s shape. One recurring
hyper-parameter is the length scale, l, which controls the width of the kernel [33, 155]. In other
words, it reflects the input distance required for the function output to change significantly [37].
As described in the following chapter, a shorter length-scale result in more fluctuating function
and visa-versa. Other hyper-parameters present in this work are γ , α , and χ . All kernels also
have a σ2 term, which is a normalization factor regulating the normalization (mean).

The first kernel investigated is the widely used kernel named the Squared Exponential (SE)
covariance kernel [33, 37, 38], also known as the Radial Basis Function (RBF) [155], which
follows:

ki(t, t ′) = σ
2 exp

(
− (t − t ′)2

2l2

)
(3.21)

23They are defined as hyper-parameters because they do not directly specify the function, but rather the
distribution over function [155].

24Positive definite means that the eigenvalues of the matrix are non-negative [37].
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The next kernel explored, the exponential covariance function, follows:

ki(t, t ′) = σ
2 exp

(
− t − t ′

l

)
. (3.22)

The γ-exponential covariance function is also investigated, and can be found in the following
manner [37]:

ki(t, t ′) = σ
2 exp

(
−
(t − t ′

l

)γ)
for 0 < γ ≤ 2. (3.23)

Next, the Rational Quadratic (RQ) covariance function is presented [37]:

ki(t, t ′) = σ
2
(

1+
(t − t ′)2

2αl2

)−α

. (3.24)

Finally, the periodic random covariance function is investigated [37, 155]:

ki(t, t ′) = σ
2 exp

(
−

2sin2( t−t ′
χ
)

l2

)
, (3.25)

where the period, χ , determines the distance between the repetitions of the kernel function
[155].

3.3.3 Error Analysis of POD
In order to statistically interpret the POD performance, error calculation may be utilized. There
are several ways to estimate the relative error between the reconstructed and original wind
fields [152, 156, 157]. In this work, the Root Mean Square Error (RMSE) is utilized to obtain
a statistical indication of the POD performance. The calculations are conducted for a small
cross-section within the snapshots, for both the reconstructed vector field, ũ and the original
fields, u. The calculations are performed as follows [156, 158]:

√
1
n

n

∑
p=1

(up − ũp)2. (3.26)
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Chapter 4

Results and Interpretation

In the following chapter, the overall results from conducting the method are presented and
interpreted. Firstly, results from the retrieval and processing of the LiDAR data are displayed1.
Next, the visual and RMSE calculations of the standard POD on the retrieved and WRF-PALM
data are elaborated on. Finally, the results from the stochastic POD are described for both
LiDAR and WRF-PALM data.

4.1 Data Processing of LiDAR Data - Second Period

4.1.1 Data Retrieval
As the wind speed and direction must be retrieved from the radial velocity by utilizing refer-
ence wind speed and direction, it is desired to validate the data. In this case, the wind speed
and direction are validated using cup anemometer data at 100m a.s.l. and wind vane at 90m
a.s.l. obtained at FINO1, as elaborated on in section 3.2.2, and SCADA data from AV7 at
∼90m a.s.l. found in section 3.2.3. Figure 4.1 displays normalized wind speed (upper) and di-
rection (lower) data for the entire second period investigated2. The data is resampled in a 10
minute resolution for both SCADA (green), reference (yellow), and retrieved (blue and red)
data, accompanied by one standard deviation for the reference data displayed in grey.

By investigating figure 4.1, we see that the 10 minute, normalized retrieved wind speed and
direction appear to follow the respective reference and SCADA data reasonably well. We de-
tect a limited number of red dots for the wind speed, which are considered outliers concerning
one standard deviation from the reference value. For the wind direction, it appears as if there
are more deviations present. Small clusters are gathered at the 26th, 27th, 30th of September,
and 3rd of October. Otherwise, only a few data points are marked red.

However, we must emphasize that the values presented in this figure are resampled in 10
minute values. Hence, 40 minutes every hour for the LiDAR data, which have not been
recorded as explained in the section 3.2.2, are present as linearly interpolated values. There-
fore, the figure indicates the data quality where outliers are detected but provides no infor-

1As the other data is barley/not processed, it is no presented in this chapter.
2The 03.10.2016 is excluded from the figure due to the SCADA data. All results are, however, including

this day as well.
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mation on data quality where the data appears to be following the validation data. Since the
wind speed and direction are derived from the retrieved u and v data, see equations (3.7-3.8),
it is reasonable to link outliers detected in the wind speed plot with the wind direction and
visa-versa. Thus, it is conceivable that the outliers detected for wind direction at the 26th, 27th,
30th of September, and 3rd of October also apply at the respective time for the wind speed. In
summary, outlier detects areas needing closer inspection.

Figure 4.1: Figure illustrating the normalized wind speed (upper) and direction (lower) for SCADA,
retrieved (LiDAR), and reference (cup and vane) data. The period investigated is from 24.09.2016 to
and including the 02.09.2016. For comparison, the data sets are resampled in a 10 minute temporal
incline.

4.1.2 Insufficient Data
Figure 4.1 implies that the retrieval algorithm performed well throughout most of the inves-
tigated period. By examining insufficient data (i.e. available measurements per scan), we
gain a more comprehensive picture of the retrieval performance. To obtain meaningful wind
speed and direction values from the radial velocity recorded by the LiDAR, a threshold of
95%3 measurements available per scan were established in section 3.2.2. With this threshold
in mind, figure 4.2 presents the insufficient data scans (snapshots) as red dots, with reference
wind speed in the upper image and reference wind direction in the lower4 These snapshots,

3The test was conducted before outliers were removed.
4Every 25th bad-quality scan (described in section 3.2.2) is excluded from the illustration.
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marked in red, are categorized as inadequate for the retrieval algorithm to perform well and
are therefore removed entirely from the retrieved data set.

It is noticeable that the 28th, 29th, and 30th of September and 3rd of October are left with few
snapshots. For a complete overview of distorted data per day, see Table 4.1. On the respective
days, the distorted data was reported to be 96.7%, 92%, 88.3%, and 77.8%.

The wind speed figure (upper) shows no evident pattern generating the insufficient snapshots.
However, one possible explanation emerges when looking at the wind direction (lower). A
clear relationship arises between the insufficient snapshots and the blue bands, indicating
crosswind effect (ranging from 30◦ to 80◦ and from 210◦ to 260◦), also seen in figure 3.11.
One can therefore imagine that the majority of the bad-quality snapshots (besides every 25th

scan) are caused by the crosswind effect. Due to the similarities in outlier clusters found in
figure 4.1, snapshots measured in the crosswind directions were examined and found to be of
bad-quality. Examples of this are depicted in appendix 6.

As previously mentioned, the turbines are scanned by the LiDAR of the type AREVA M5000-
116, which has a cut-in wind speed of 4m/s and a cut-out wind speed of 25m/s (see Table 3.1).
The lower grey band found in the retrieved wind speed image indicates cut-in wind speed,
i.e. when the turbine is not operating. We expect the turbine to induce minimal wake and
turbulence in these periods. The graphic does not include the region indicating cut-out wind
speed because no data values were detected above ∼25m/s. From visual inspection, it appears
that the non-operating snapshots are of high-quality, and are not removed in this work due to
the large amount of data discarded.

Figure 4.2: Overview of insufficient data as a function of time for both wind speed (top) and direction
(bottom). The grey band, indicating wind speed below cut-in wind speed, is below 4m/s. The blue
band’s indication crosswind effect in the lower image ranges from 30◦ to 80◦ and from 210◦ to 260◦.
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Table 4.1: Table overview of removed snapshots per day from the final processed retrieved data used
for POD.

Distorted data

Date (2016) 24.09 25.09 26.09 27.09 28.09 29.09 30.09 01.10 02.10 03.10

% 24.2 32.3 53.5 9.3 96.7 92 88.3 15.3 20.5 77.8

4.1.3 Local Peak Removal
The two final steps in the data processing of the LiDAR data presented in section 3.2.2, are
local peak removal and interpolation. In figure 4.3, four visually improved snapshots that have
undergone local peak removal and interpolation are presented alongside the original velocity
field. The figures 4.3 a-d have the processed image on the left and the original image on
the right. Moreover, are figure 4.3 a and b of the u velocity component, whereas figure 4.3
c and d are of the v component. We see clear visual improvements for the u component, in
the sense that the wake dynamics become more prominent when some local peaks around
AV7 are removed. The fields that initially were monotonic at 0m/s become more dynamic.
We find at least one clear peak in the lowermost images, resulting in increased wind speed
variability in the processed snapshots. Hence, the illustrations suggest that the local peak
removal algorithm combined with linear interpolation increases the resulting image at the time
incidents are presented. However, snapshots not affected by the algorithm were detected.
Moreover, new local peaks occurred as local peaks were removed in some cases.
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(a) v component (b) v component

(c) u component (d) u component

Figure 4.3: Figure illustrating the improvement in data quality due to local peaks removal, by compar-
ing original and processed snapshots. The leftmost snapshot in each subfigure is of the processed data
(local peak remover and interpolation), whereas the image on the right is the original snapshot (in each
figure). The upper row (a) and (b) reflects the v component of the velocity field, and the lower row (c)
and (d) are the u field.

4.2 Reconstruction of the Velocity Field
By varying the number of POD modes (rank), r, to include in the approximation of the original
field, as described by equation (3.14), one can visually compare the reconstructed wind fields
with their corresponding real wind fields. By increasing the rank, we find that adding more
modes increases the accuracy of the reconstructed wake area, as expected. Even though the
snapshots provide some visual indication of how much energy the modes cover, it is beneficial
to exterminate the eigenvalues following the mode examined. This section presents the results
for both the standard and stochastic POD.

4.2.1 Standard POD
The following section presents the results from the standard POD of wind speed (u and v
component), obtained for both retrieved and WRF-PALM data, to facilitate comparison. The
results are separated into three contributions; the energetic coverage, visual inspection, and
the RMSE calculations. Firstly, are the variance and cumulative variance (energetic coverage)
visualized, thereafter are the outcomes of the POD (visual inspection) presented, and finally
are RMSE calculations displayed.

Figure 4.4 a and c exhibits the variance of the POD modes, and figure 4.4 b and d the respective
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cumulative variance increasing with POD modes for the retrieved and WRF-PALM data, re-
spectively. By choosing a rank to reconstruct the wind field according to, the reproduced wind
field contains some percentage of the total energy captured by the entire covariance matrix.
The optimal rank can be indicated by investigating the eigenvalues of this matrix. Hence, fig-
ure 4.4 indicates the minor rank possible to reconstruct the wind fields efficiently, by providing
information about the energy of each POD mode.

Figure 4.4 b reports that the first mode captures ∼30% of the total kinetic energy captured
by the entire retrieved data matrix displayed equation (3.17). From the subplot in figure 4.4
a, we get the impression that the first 6-7 modes represent most of the energy, and thereafter
the energetic contribution decreases significantly. From inspecting figure 4.4 b, we find that
the energetic coverage is >60% at 7 modes. Figure 4.4 a exhibits that close to ∼70 modes are
required before the energy contribution is in the order of 10−3.

Figure 4.4 c shows that the first mode captures >80% of the total kinetic energy for the WRF-
PALM data. Hence, the remaining modes are responsible for the residual of ∼20%. The shape
of both figure 4.4 c and d suggests that the increase in energy by adding more modes is modest
compared with what was for the LiDAR data (see figure 4.4). Figure 4.4 c indicates that only
2 to 5 modes effectively capture enough energy to reconstruct the wind fields. From the fifth
mode on, the energetic contribution by increasing the number of modes is minimal. From
inspecting figure 4.4 d, we find that the energetic coverage is >90% at 5 modes. Additionally,
information found in figure 4.4 c is that only ∼20 modes are required before the energetic
contribution by adding more modes is in the order of 10−3.

Hence, the variances indicates ∼7 and ∼5 modes for the retrieved and WRF-PALM data,
respectively. However, we notice that the difference in energetic contribution at the respective
modes for the two data sets are relatively great.

(a) Retrieved variance (b) Retrieved cumulative variance

(c) WRF-PALM variance (d) WRF-PALM cumulative variance

Figure 4.4: Eigenvalues (a) and cumulative eigenvalues (b) are obtained from the covariance matrix of
retrieved snapshots, whereas (c) and (d) is obtained from the WRF-PALM covariance matrix.
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By combining variance and modal plots, we obtain a more comprehensive overview of the
energetic contribution related to each POD mode. With the information provided by figure 4.4
in mind, we can now explore the modes with their respective variance. The overall results of
the two data sets are represented at a chosen time and date. The retrieved data used to represent
the results is 01.10.2016 at ∼16:17, and the WRF-PALM data is from 22.11.2015 at ∼00:33.
Firstly, the results for the retrieved data are depicted in figure 4.5, and then the results for the
WRF-PALM data are presented in figure 4.6.

In figure 4.5, the results from applying POD to the retrieved data are depicted. The recon-
structed fields are found on the left, and the original wind fields on the right. The u field is
found in the upper figures, and the v field in the lower figures. The modes presented are within
the range from 1 to 501 POD modes included in the reconstruction.

Probing figure 4.5 a, illustrating the reconstructed field of one single mode, we see that the
reconstructed u and v fields mirror the respective initial snapshots rather poorly. These recon-
structions provide an indication of the turbine locations and the wake orientation for the v field
but cover no dynamics beyond this. As stated by Basitne et al., the first mode simply reflects
the large-scale horizontal motion of the wake [36]. Given that the respective energy captured
for this mode is ∼28%, this is as could be expected.

Assuming that the ∼7 first modes, which were found to capture the majority of the energy
for the retrieved data in figure 4.4, were enough to reconstruct the wind fields efficiently, the
energy captured by the reconstructions would be ∼63%. From a visual inspection of 7 modes
seen in figure 4.5 b, we find elements of the large-scale dynamics of the wakes in the original
wind fields. Since the u field at this time does not represent that many fluctuations, it appears
as if the u field is better described by this reconstruction. However, regarding the v field, we
can see clear discrepancies between the reconstructed field and the original field. It appears as
if the meandering and velocity recovery distance (see section 2.3.1) is not present. Moreover,
the centerline appears to be somewhat skewed (clockwise) compared with the original wake
centerline. These features are, as mentioned previously, of great importance for downstream
turbine loading and power calculations.

By inspecting figure 4.5 c including 21 modes, we see that 77% of the total energy is captured
in the reconstruction. The reconstructions appear to be significantly improved from the 7
modal reconstructions. Moreover, the reconstruction for the u field appears to be, more or less,
fully described by 7 modes. However, clear deviations are still detected for the v field.

As 50 modes are included, seen in figure 4.5 d, the reconstructed v field is starting to take shape.
Figure 4.5 e, depicting the reconstructions utilizing 101 modes, the meandering dynamics in
the original v field is clearly present. It is, however, noticed that by including 501 modes,
presented in figure 4.5 f, the improvements are even greater compared to the reconstruction
using 101 modes.

From the visual inspection, we get the impression that at least 50 modes are required in order
to recover the features seen in the original snapshot to some degree. The energy contribution
is above ∼84% for 50 modes.
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(a) 1 POD mode (b) 7 POD modes

(c) 21 POD modes (d) 50 POD modes

(e) 101 POD modes (f) 501 POD modes

Figure 4.5: Figures of the accumulated POD modes (i) used to reconstruct the retrieved data. In
every subfigure, the two upper figures are of the u field, whereas the lower ones show the v field. The
reconstructed fields are found in the left figures, and the original snapshots on the right. The number of
modes used in the reconstructions are (a) i = 1 (b) i = 7 (c) i = 21 (d) i = 50 (e) i = 101 (f) i = 501.
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Figure 4.6 is arranged with the reconstructed and original u field in the two images on the far
left before the reconstructed and original v field is presented in the two images furthest to the
right. The same number of modes seen in figure 4.5 is used for the WRF-PALM data.

Starting by exploring figure 4.6 a visually, which illustrates the reconstructed u and v fields of
the first mode, the original wind fields are not well recovered. It rather indicates the direction
of the wakes, as it did for the retrieved data. Moreover, as opposed to the retrieved data, it
appears to overestimate the fields’ values greatly. This is the case, despite an energy coverage
of ∼83.3%. As indicated by figure 4.4 c and d, two modes are rejected as sufficient for the
reconstructions of the original snapshots.

By investigating the reconstruction of 7 modes (figure 4.6 b), we see significant improvements
from the one modal reconstructions. The large-scale structures of the wake appear to be present
in both wind fields. However, the small-scale structures seems to be neglected entirely.

The reconstruction from 21 modes, figure 4.6 c, appears to perform very much the same.
Moving on to figure 4.6 d, the reconstruction of 50 modes is displayed. These indicated that
significantly more small-scale features of the wakes are present for the u field. However, the
improvements in the v field are somewhat modest in comparison. From figure 4.6 e, we get the
impression that by adding 101 modes in the reconstructions, small-scale dynamics are present
in both wind fields. It is however a significant change seen in the reconstructions utilizing 501
modes (figure 4.6 f), where both wind fields appear to be more or less perfectly described.

From the visual inspection of the reconstructed fields for the WRF-PALM data, we find that
including a minimum of 101 modes in the reconstructions captures the small-scale turbulent
structures relatively well. The energy contribution for 101 modes is ∼98%. Recovering only
large-scale features appears to be achieved with only 7 modes.
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(a) 1 POD mode (b) 7 POD modes

(c) 21 POD modes (d) 50 POD modes

(e) 101 POD modes (f) 501 POD modes

Figure 4.6: Figures of the reconstructed and original u and v components of the wind field obtained
from the WRF-PALM data. In every subfigure, the reconstruction at mode i of the u and v fields is
presented, from left, in the first and third snapshot. Their respective original snapshots are found in the
second and forth image, from left. The reconstructions are done with modes (a) i = 1 (b) i = 7 (c) i =
21 (d) i = 50 (e) i = 101 (f) i = 501.

RMSE. The Root Mean Square Error (RMSE) is calculated for a small area in front (without
wake) of and behind the rotor (with wake) and an area of interest. Henceforth, these are
referred to as area 1, area 2, and area 3, respectively. The areas for the retrieved data are
illustrated in figure 4.7 a and b, and figure 4.7 c and d for the WRF-PALM data. The relative
error for the respective areas are displayed in Table 4.2 and 4.3, for the retrieved and WRF-
PALM data, respectively.
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By inspecting the areas depicted in figure 4.7 a and b in the Table 4.2, an expected dispro-
portional relationship is detected between the number of modes included in the reconstruction
and the RMSE for the entire snapshot; an exponential increase in the number of modes re-
sults in a flattening of the RMSE. One interesting observation is made for 101 modes in the
u field, where an exception from this trend is observed. Moreover, we notice that the overall
RMSE for the v field in area 2 is relatively much higher than for the other areas, which is also
somewhat unexpected.

From Table 4.2, we find that 21 modes appear to perform well for area 1, in front of the
rotor, for both u and v. As area 1 covers the free-flow area, it may be an indication of that 21
modes performs well for this flow. However, the significant reduction is somewhat suspicious.
Moreover, for 21 modes, Table 4.2 reports a relatively small error in area 3 for the v field,
which mainly includes the meandering dynamics of the field. This is however not supported
by the visual inspection conducted in section 4.2.1. One reason could be that area 3 is placed in
the area where the tail of the wake is altering its direction (meandering). Hence, in the original
snapshot, this area is generally in the value of the free flow. In section 4.2.1, we found that
by including a limited number of modes, the wake tail was both shortened and the centerline
appeared to be skewed some degrees clockwise compared with the original snapshot. Thus,
the unexpected low RMSE value for area 3 could potentially be caused by that the area falls in
a free-flow area for the 21 modal reconstructions, without them accounting for the meandering
dynamics.

Comparing the RMSE values for 50 and 101 modes (Table 4.2), they appear to perform rela-
tively similarly. From the RMSE values, the u field is reconstructed better with 50 modes. For
the v field, on the other hand, the greatest difference is found in area 3, which mainly covers the
wake meandering features. Hence, are the values provided by Table 4.2 further substantiating
the findings from section 4.2.1, of that 100 modes are required in the reconstruction to cap-
ture the meandering features. By further investigating 501 modes, a significant improvement
in areas 1 and 2 is observed for the v field.

Table 4.3, displaying the RMSE for the WRF-PALM data, suggests that the relative error of
adding one single mode is relatively much more prominent than adding 5 modes and more.
This seems to be in line with the observations made from the energetic contribution and the
visual inspection, presented in section 4.2.1. As was seen for Table 4.2, the total RMSE is
continuously decreasing with an increasing number of modes for the WRF-PALM data as
well, with no exceptions. The RMSEs for the first mode are, however, detected as rather
high compared with the RMSE calculated for the retrieved data. This is probably due to the
overestimation of the wind field flow found in section 4.2.1. Therefore, neither the high RMSE
values nor the significant reduction from the first mode is unexpected observations.

Further inspection of Table 4.3 informs that the decreasing RMSE trend is not as prominent
for the WRF-PALM data as for the retrieved, and the RMSE calculations more frequently al-
ternate. Hence, the table can be understood in various ways and is somewhat hard to interpret.
However, this observation is also in line with the eigenvalues inspected in section 4.2.1. It
is somewhat unexpected that the visual improvements observed in section 4.2.1 were experi-
enced as significant, when both the RMSE calculations and energy added by increasing the
number of modes appear to be relatively small. One observation in line with this observation
is, however, the increase in the 501 modal reconstructions for the v field, which is reduced
relatively much from the 101 modal reconstructions.
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Comparing the u field calculations for 21 and 50 modes, the main differences are a significant
decrease, a slight increase, and a slight decrease for areas 1, 2, and 3, respectively. A visual
comparison is very much in line with the reported RMSE values. We see relatively much more
structures in the free-flow area in front of the turbine (area 1), substantiating the significant
RMSE decrease found, whereas, for area 2, the changes are modest. Perhaps somewhat sur-
prisingly is the decrease observed for area 3, as the visual improvements detected for this area
are rather great. By comparing the same modal reconstruction for the v field, we see that area
1 decreases, area 2 remains the same, and area 3 increases somewhat. As for the u field, are
the visual improvements in the free-flow area rather great, whereas area 2 remains similar. The
improvements in area 3 are not as prominent for the v field, and the results are therefore very
much in line with the RMSE values.

The reconstructions including 101 modes exhibit a decrease in all areas for both wind fields.
The values are reflected in the findings in section 4.2.1, and 101 modes appear to partly include
small-scale turbulent features. It is however inevitable that both the RMSE calculations and
the visual improvement for 501 modes are significantly improved.
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(a) (b)

(c) (d)

Figure 4.7: Illustration of the cross-section areas used for Root Mean Square Error (RMSE) calculation.
Area 1 is defined as the yellow scatter (square) in front of the rotor, area 2 as the blue scatter right
behind the rotor, and finally, area 3, indicated by black scatter, is an area of interest. We see the
retrieved data field (a) u and (b) v, and the WRF-PALM (c) u and (d) v velocity components.
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Table 4.2: RMSE and cumulative eigenvalues with mode, for POD on the retrieved data. RMSE is
calculated for the entire snapshot, area 1, 2, and 3. For further information about the areas, see figure
4.7.

RMSE for retrieved data
RMSE

u field v field

N modes
Cumulative
energy [%]

Total Area 1 Area 2 Area 3 Total Area 1 Area 2 Area 3

1 27.713 0.963 0.537 0.879 0.598 1.405 0.556 2.659 1.482
5 58.609 0.513 0.092 0.777 0.478 1.05 0.529 2.492 0.754
7 63.291 0.416 0.319 0.316 0.416 0.9308 0.91 1.709 1.058
21 76.941 0.350 0.197 0.201 0.659 0.697 0.185 1.613 0.308
50 84.130 0.254 0.225 0.181 0.166 0.572 0.628 1.283 0.378
101 88.771 0.257 0.224 0.162 0.181 0.480 0.613 1.274 0.197
501 97.453 0.188 0.109 0.177 0.2 0.272 0.219 0.700 0.157

Table 4.3: RMSE and cumulative eigenvalues with mode, for POD on the WRF-PALM data. RMSE is
calculated for the entire snapshot, areas 1, 2, and 3. For further information about the areas, see figure
4.7.

RMSE for WRF-PALM data
RMSE

u field v field

N modes
Cumulative
energy [%]

Total Area 1 Area 2 Area 3 Total Area 1 Area 2 Area 3

1 83.309 2.043 2.510 2.061 1.606 3.885 3.681 3.807 4.196
5 92.977 0.530 0.363 0.165 0.861 0.883 0.849 0.760 0.884
7 93.881 0.463 0.26 0.198 0.792 0.689 0.929 0.386 0.726
21 95.797 0.448 0.155 0.107 0.821 0.583 0.939 0.204 0.650
50 97.177 0.389 0.079 0.143 0.816 0.447 0.591 0.209 0.711
101 98.292 0.336 0.049 0.106 0.783 0.373 0.294 0.130 0.687
501 99.868 0.108 0.019 0.019 0.302 0.101 0.024 0.031 0.201

4.2.2 Stochastic POD
As we have seen from figures 4.5 and 4.6, the standard POD seems to provide reduced order
models of the wind fields for both data sets. However, the wake dynamics appears to be
significantly more smooth than the original wakes when considering only the first couple of
modes (∼ 60% for the LiDAR and ∼90% for the LES). In this section, the reconstructions
of changing the standard- with the stochastic temporal weighting coefficients, (ai with ãi) is
presented. The stochastic temporal weighting coefficients are constructed utilizing GPR.

Firstly, a sensitivity study is proposed for various parameters in the kernels explained in sec-
tion 3.3.2, which is required to obtain the stochastic temporal weighting coefficients. Finally,
are the parameters considered as best fitted used in a stochastic reconstruction for both the
retrieved and WRF-PALM data. The process is displayed in figure 4.8.
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Figure 4.8: Illustrations of the process (five steps) from standard POD to stochastic POD (the figure
uses WRF-PALM data). The temporal weighting coefficients obtained from the standard POD are the
starting point. Next, check whether the temporal weighting coefficients follow the Gaussian distribu-
tion. The third step involves finding the best kernel and hyper-parameters for the data investigated.
Thereafter, use the GPR to reproduce new, stochastic temporal weighting coefficients. We obtain the
stochastic field by replacing the ones produced in the standard POD.

Gaussian Distribution. Figure 4.9 illustrates histograms representing the probability den-
sity distribution of the temporal weighting coefficient, ai at the ith POD mode, for the retrieved
data (upper) and WRF-PALM data (lower). Their corresponding mean, µ , standard devia-
tion, σ , skewness, and kurtosis are found in the figures. As implied by the fitted Gaussian
distribution (red curve), the temporal weighting coefficients are relatively well described by
the distribution at the presented modes, both for the retrieved and WRF-PALM data. These
characteristics for ai allow us to apply the GP to the data.

(a) Retrieved a25 (b) Retrieved a50 (c) Retrieved a100

(d) WRF-PALM a25 (e) WRF-PALM a50 (f) WRF-PALM a100

Figure 4.9: Gaussian distribution (red curve) fitted to a subset of the time-dependent coefficient ai at
the ith mode, of the retrieved data ((a, b, and c) and WRF-PALM data (d, e, and f). Figures of mode of
(a, d) i = 25, (b, e) i =50, (c, f) i = 100.

Model Selection. In order to get an impression of suitable hyper-parameters and kernels
(explained in section 3.3.2) for the temporal weighting coefficients, obtained from the standard
POD of the retrieved and WRF-PALM data, we conduct a brief sensitivity study.
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Due to convenience and clarity in the plots, a limited time interval of 200 snapshots is chosen
to investigate closed for both data sets. This corresponds to the period ∼00:16 to ∼10:15 at
01.10.2016 for the retrieved data and ∼00:00 to ∼00:07 at 22.11.2015 for the WRF-PALM
data. In section 4.2.1, we found that ∼67% and ∼93% of the total energy is captured by
including 7 and 5 modes for the retrieved and WRF-PALM data, respectively. The following
sensitivity study utilizes the temporal weighting coefficients at these modes for the results.

The following figures, 4.10, 4.11,4.12, 4.13, and 4.14, present a selection of covariance ma-
trix with one associated random predicted function for each kernel presented in section 3.3.2;
the Squared Exponential (SE), exponential, γ-exponential, Rational Quadratic (RQ), and ran-
dom periodic kernel, respectively. The figures are all structured pairwise, with the covariance
matrix in the upper images and the corresponding predicted function in the lower images. The
covariance matrix image visualize the covariance, ki(t, t) at mode i, between the input values
at known time incidents, t. Green dots in the associated predicted functions indicates already
observed values at time, t. The red dots denote test data, which are observed values that have
not been used as input in the model, indicating the performance of the random predicted func-
tion for forecasts. The grey areas of 1, 2, and 3 standard deviations follow the predicted mean
curve, and all predicted functions are present within this grey area.

The noise and variance are kept constant for all kernels, for both the retrieved and WRF-PALM
data at 0.2 and 1, respectively. A "base case" with l = 1 been defined for all kernels (shown in
figure a in all subfigures), and moreover α = 1 and γ = 1 for the RQ and γ-exponential kernel,
respectively.

In figure 4.10, we see that increasing the hyper-parameter l increases the width of covariance
(figures 4.10 a, b, c, g, h, and i), which results in a smoother predicted function (figures 4.10
d, e, f, j, k, and l), and visa-versa. Increasing fluctuations result in a decreased standard
deviation range, restricting the predicted functions more to the training data. The SE kernel
appears to be able to construct both relatively smooth and fluctuating functions. Despite that
the observed WRF-PALM data points (figure 4.10 j, k, and l) display a much smoother curve
than the retrieved data (figure 4.10 d, e, and f) does, the SE kernel appears to be able to fit both
curves. The predicted area, indicated by the red dots, appears to be more or less independent
of the kernel.

Figure 4.11 indicated that the exponential kernel generally constructs a highly fluctuating pre-
dicted function for the retrieved and WRF-PALM data. By increasing the length scale, l, we
see the smoothening effect on the predicted functions. However, the effect is not nearly the
same as observed for the SE kernel. Moreover, the flattening effect is more prominent for
the WRF-PALM data presented in figure 4.11 l, than for the retrieved data in figure 4.11 f.
It also appears as, for the WRF-PALM data, that the test data area in the predicted functions
are somewhat more affected by the kernel hyper-parameters, using the the exponential ker-
nel. From figure 4.11 l, the predictions at unknown time incidents, t∗ are noticed to be much
broader than what it is for the fluctuating function presented in figure 4.11 j. For the retrieved
data, it appears to be very much the same as seen for the SE kernel.

The results utilizing the γ-exponential kernel, depicted in figure 4.12, is reminiscent of the
exponential kernel. For the γ-exponential kernel is the length scale, l, kept constant at 1. The
predicted functions are highly fluctuating for both data sets. Moreover, is the same pattern
seen for the predicted functions at unknown time incidents, t∗, for the SE kernel, also found
for this kernel. For the WRF-PALM data an γ = 0.5 (figure 4.12 k), the predicted function
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is somewhat more narrow in the test data area, compared with the other hyper-parameters.
The γ-exponential kernel is more adaptable then the exponential kernel, as it can vary both
the hyper-parameters, l and γ . Therefore, one can specify the fluctuations on a small and
large-scale more precisely.

The RQ kernel is displayed in figure 4.13. It is somewhat similar to the results presented for the
SE kernel. For this kernel, only α is changed. The effect of changing α is less visible than what
was by changing γ for the γ-exponential function. The predicted functions for the retrieved
data (figure 4.13 d, e, and f) and the WRF-PALM data (figure 4.13 j, k, and l) appear to be very
much alike. Extremities of the hyper-parameter was tested, and it was challenging to identify
any difference in the predicted functions because the functions are random. A slight difference
was detected by investigating the covariance matrices, which is visible from the inspection of
the covariance matrices. We found that the covariance matrix becomes somewhat more narrow
with increasing α . Additionally, we found that it performed similar to the SE when altering
the length scale, l.

The random, periodic kernel, illustrated in figure 4.14, behaves quite differently from the other
kernels. In general, it appears to be somewhat more sensitive to changes. The pattern of the
temporal weighting coefficients at mode 7 for the retrieved data appears to have a random
behavior. Hence, a smooth periodic function was challenging to fit the data, as no apparent
symmetry was found. By visually inspecting the predicted functions, we find that a small
length scale best fits the retrieved data, as seen in figure 4.14 b and e. The covariance func-
tion depicted in figure 4.14 c also performs well. In this case, however, only one period is
used, as seen in figure 4.14 f. For the WRF-PALM data, a fit for the period of 200 snapshots
investigated was not found (the results can be seen in section 6). However, by increasing the
period to 600 snapshots (∼20 minutes), the periodic kernel performed relatively well. As for
the retrieved data, a small length scale value was found to perform the best.
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(a) (b) (c)

(d) l = 1 (e) l = 0.5 (f) l = 5

(g) (h) (i)

(j) l = 1 (k) l = 0.5 (l) l = 5

Figure 4.10: Covariance matrices (upper) and corresponding predicted functions (lower) using the
Squared Exponential (SE) covariance function for constant noise = 0.2 and σ2 = 1. The six upper
paired figures ((a, d), (b, e), and (c, f)) are obtained from the retrieved data at a7, whereas the six lower
figures ((g, j), (h, k), and (i, l)) are from the WRF-PALM data at a5. (a, d) and (g, j) represents the "base
case", with l = 1. (b, e) and (h, k) are with l = 0.5, and finally (c, f) and (i, l) has l = 5.
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(a) (b) (c)

(d) l = 1 (e) l = 0.5 (f) l = 5

(g) (h) (i)

(j) l = 1 (k) l = 0.5 (l) l = 5

Figure 4.11: Covariance matrices and corresponding predicted functions using the exponential covari-
ance function for constant noise = 0.2 and σ2 = 1. The six upper paired figures ((a, d), (b, e), and (c,
f)) are using the retrieved data at a7, whereas the six lower figures ((g, j), (h, k), and (i, l)) are from the
WRF-PALM data at a5. (a, d) and (g, j) represents the "base case", with l = 1. (b, e) and (h, k) are with
l = 0.5, and finally (c, f) and (i, l) has l = 5.
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(a) (b) (c)

(d) l = 1, γ = 1 (e) l = 1, γ = 0.5 (f) l = 1, γ = 2

(g) (h) (i)

(j) l = 1, γ = 1 (k) l = 1, γ = 0.5 (l) l = 1, γ = 2

Figure 4.12: Covariance matrices and corresponding predicted functions using γ-exponential covari-
ance function for constant noise = 0.2, σ2 = 1, and l = 1. The six upper paired figures ((a, d), (b, e),
and (c, f)) are using the retrieved data at a7, whereas the six lower figures ((g, j), (h, k), and (i, l)) are
from the WRF-PALM data at a5. (a, d) and (g, j) represents the "base case", with γ = 1. Next, (b, e)
and (h, k) have γ = 0.5, and finally (c, f) and (i, l) have γ = 2.
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(a) (b) (c)

(d) l = 1, α = 1 (e) l = 1, α = 0.5 (f) l = 1, α = 2

(g) (h) (i)

(j) l = 1, α = 1 (k) l = 1, α = 0.5 (l) l = 1, α = 2

Figure 4.13: Covariance matrices and corresponding predicted functions using Rational Quadratic
(RQ) covariance function for constant noise = 0.2, σ2 = 1, and l = 1. The six upper paired figures ((a,
d), (b, e), and (c, f)) are using the retrieved data at a7, whereas the six lower figures ((g, j ), (h, k), and
(i, l)) are from the WRF-PALM data at a5. (a, d) and (g, j) represents the "base case", with α = 1. (b,
e) and (h, k) have α = 0.5, and finally (c, f) and (i, l) have α = 2.
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(a) (b) (c)

(d) l = 1, χ = 40 (e) l = 0.05, χ = 40 (f) l = 0.05, χ = 100

(g) (h)

(i) l = 0.5, χ = 150 (j) l = 0.05, χ = 170

Figure 4.14: Covariance matrices and corresponding predicted functions, using the random periodic
covariance function with constant noise = 0.2 and σ2 = 1. The six upper paired figures ((a, d), (b, e),
and (c, f)) are using the retrieved data at a7, whereas the six lower figures ((g, j), (h, k), and (i, l)) are
from the WRF-PALM data at a5. (a, d) have l = 1, χ = 40, (b, e) are with l = 0.05, χ = 40, and finally
(c, f) have l = 0.05, χ = 100. (g, i) have l = 0.2 and χ = 250, and (h, j) is with l = 0.05, χ = 600.

Kernel Performance Summary

Findings from the sensitivity study in section 4.2.2 indicates that l greatly dominates the shape
of the predicted function for all kernels. Increasing the length scale results in decreased fluctua-
tions. On this basis, the length scale appears to be the dominant hyper-parameter in all kernels.
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Decreasing γ for the γ-exponential kernel increases the fluctuations. The hyper-parameter α ,
for the RQ kernel, impacts the predicted functions minimally. We also learned that the value
of χ seems to be more data-dependent than the other hyper-parameters, and greatly affects the
pattern of the predicted curve. Moreover, the RQ and SE kernel appear to behave similarly,
and the same goes for the γ-exponential and the exponential kernel.

In common for the kernels, we found that increasing fluctuations generally decrease the stan-
dard deviation range. Hence, generating 10 random predicted functions of the fluctuating kind
would probably be more alike, than what 10 random smooth functions would have been. More-
over, the standard deviation range in the area of test data (red points) was observed to be wider
than the area for training data.

All kernels appear to perform somewhat similarly on both the fluctuating retrieved data at
mode 7 and the relatively smooth WRF-PALM data at mode 5. It is recognized that the ob-
served retrieved data is outside the standard deviation ranges for the smooth curves (e.g. figure
4.10 c and 4.14 a), whereas the fluctuating curves seem to fit better. As a consequence, the
predicted functions are more restricted and not that free to vary in this case. The observed
WRF-PALM data is, on the other hand, always observed to be within 3 standard deviations of
the predicted curve.

On a scale from 1-5, is the expected performance from visual interpretation of the various
kernels for the stochastic POD presented in Table 4.4, with k = ki(t, t ′) at the respective mode
i.

Table 4.4: Evaluation of the performance of various kernels based on visual interpretation using both
retrieved and WRF-PALM data, accompanied with the respective kernel formula, where k = k(t, t ′).

Kernel performance

Performance of dataset

Kernel Formula Retrieved WRF-PALM

SE k = σ2 exp
(
− (t−t ′)2

2l2

)
4 5

Exponential k = σ2 exp
(
− t−t ′

l

)
4 2

γ-exponential k = σ2 exp
(
−
(

t−t ′
l

)γ)
4 3

RQ k = σ2
(

1+ (t−t ′)2

2αl2

)−α

5 4

Periodic k = σ2 exp
(
−

2sin2( t−t′
χ

)

l2

)
1 2

Comments to Kernel Performance. The performance of each kernel determined based
on visual interpretation of the figures provided in section 4.2.2 is based on a rather subjective
evaluation, and can easily be interpreted in other ways. It is therefore conceivable that the in-
terpretation is misread. Moreover, as the grade of optimal fluctuation was unknown at the time
the sensitivity study was conducted, the kernels were evaluated mainly based on flexibility.
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Reconstruction using Stochastic POD

The reconstructed fields using the temporal weighting coefficients obtained from GPR are
presented with the corresponding reconstructed fields using standard POD and the original
snapshot. For the stochastic POD, the noise is kept at 0.2 and σ2 at 1. The entire snapshot
matrix is utilized for both data sets, at mode 5 to enable comparison. Hence, the following
section assumes that the effect of the hyper-parameters identified in section 4.2.2 for a limited
period, holds for the entire period time at 5 modes, for both data sets.

Since the stochastic temporal weighting coefficients rely on stochasticity, a stationary solution
calculated from one single predicted curve may become unstable. In order to address this, an
ensemble approach is utilized. By the ensemble approach, we mean that an average of over
five reconstructed velocity fields using the temporal weighting coefficients obtained from the
GPR and the truncated POD modes are used to find a stable solution [151].

Table 4.2.2 indicates that the SE and RQ kernel is expected to provide the greatest range of
reconstructed fields, hence possibly fitting both data sets. Therefore, the reconstruction of the
stochastic temporal weighting coefficients is calculated using the SE kernel, with the length
scale l = 0.5.

The results are presented in figure 4.15 and 4.16 for the retrieved and WRF-PALM data, re-
spectively. Both figures are arranged with the u and v fields on the left and right, respectively.
Each subplot is separated into three snapshots, where the leftmost snapshot is the reconstruc-
tion from the standard POD, the middle from the stochastic POD, and the rightmost for the
initial snapshot.

Comparing the three snapshots for the retrieved data in figure 4.15 a, we find some clear
deviations in the shape of the areas marked in blue. The two reconstructions (left and middle)
appear to be of a different shape than what is found for the original snapshot (right). This is
perhaps due to the low number of modes used in the reconstruction. Firstly, comparing the
reconstruction utilizing GP and the original snapshot, we find that the stochastic POD appears
to reconstruct the blue area in the middle in a rightward skewed orientation. The blue area in
the upper right corner seems to be overestimated, as for the free-flow (red). We find tendencies
of the blue area to the right for turbine 10 in the original snapshot present in the reconstruction
as well. By investigating the reconstructions from the standard and stochastic POD, we find
that the shape of the wake is comparable. It also appears as if the features from the standard
POD are reinforced. E.g. the lines in the free-flow area for the standard POD are more striking
in the stochastic POD. The same goes for the wake in the upper right corner.

In figure 4.15 b, we find that the values for the stochastic POD are more extreme than what
is found in the original snapshot. Hence, the blue area indicates the wake is smaller at both
turbine locations, and the free-flow wind speed appears to be increased. Investigating the
standard POD, we clearly see that features of the standard POD are enhanced in the stochastic
POD. Figure 4.15 c indicates that the standard and stochastic temporal weighting coefficients,
at the various points in time (snapshots), follow one another rather well. From the histograms
in figure 4.15 d, with associated statistics, we find that the functions are very much alike.

The results for the WRF-PALM data are presented in figure 4.16. From the first glance at figure
4.16 a and b, the stochastic GP appears to be less prominent as the retrieved data. However,
especially for the v field, it seems that the wake is directed towards the right for the three
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uppermost turbines.

Figure 4.16 c visualizes that the standard temporal weighting coefficients are totally covered
by the stochastic coefficients, indicating that fluctuations are added using the SE kernel with
the parameters specified previously. Despite that, the histograms in 4.16 d indicates that the
statistical distributions of the stochastic coefficients, ã5 and deterministic coefficients a5 are
comparable.

(a) u field, σ2 = 1, l = 0.5 (b) v field, σ2 = 1, l = 0.5

(c) a5 and predicted GP function ã5 (d) Histogram of a3 and ã3

Figure 4.15: Reconstruction of the (a) u and (b) v fields for the retrieved data using stochastic POD.
The associated figures (c) and (d) show statistics of the temporal weighting coefficients, a5, in relation
to the stochastic temporal weighting coefficients, ã3. (c) the predicted GP function for ã3 and (d) the
histograms.
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(a) u field, σ2 = 1, l = 0.5 (b) v field, σ2 = 1, l = 0.5

(c) Temporal weighting coefficients a5 and stochas-
tic temporal weighting coefficients ã5

(d) Histogram of temporal weighting coefficients
a3 and stochastic temporal weighting coefficients
ã3

Figure 4.16: Reconstruction of the (a) u and (b) v fields for the WRF-PALM data using stochastic
POD. The associated (c) predicted curve for the temporal weighting coefficients at mode 5, a5 and (d)
histogram of the temporal weighting coefficients, a3 and the stochastic temporal weighting coefficients,
ã3.

The respective RMSE errors are presented in Table 4.5. By comparing the numbers with the
standard POD, we find clear increased relative error for the WRF-PALM data. Somewhat
unexpected, the relative errors for the retrieved data are significantly lower.

Table 4.5: RMSE and cumulative eigenvalues for five POD modes, for retrieved and WRF-PALM data.
RMSE is calculated for the entire snapshot, area 1, 2, and 3. For further information about the areas,
see figure 4.7.

RMSE for stochastic
RMSE

u field v field
Data set N modes Total Area 1 Area 2 Area 3 Total Area 1 Area 2 Area 3

Retrieved 5 0.585 0.3 0.311 0.529 1.007 0.679 1.81 1.067
WRF-PALM 5 1.128 1.033 1.055 1.415 1.665 2.341 1.603 2.448
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Chapter 5

Comparison and Discussion

Within the scope of this study, the results are discussed and evaluated in the context of previous
work. In the following chapter, data used for validation of the retrieved data is discussed firstly.
Thereafter, the processing of the retrieved data is concerned. The retrieved and WRF-PALM
data are addressed next, with the focus on the differences separating them. Two types of
reconstructed fields using POD have been presented in the result section; standard POD and
stochastic POD. The procedures were conducted from both retrieved and WRF-PALM data,
and the number of modes considered as required for an efficient reconstruction is discussed.
The combination of POD and LiDAR data contributes to a more comprehensive understanding
of the POD technique in general, and moreover provides new insight into POD applied to more
realistic data sets such as LiDAR data, especially of higher value to the industry.

5.1 Data

Data for Validation

By separating the data presented in section 3.2 into data for POD and validation, the retrieved
and WRF-PALM data are used for POD, whereas the remaining cup anemometer, wind vane,
and SCADA data are used for validation. Common for the latter is that they are modestly pro-
cessed, where values detected outside a fixed threshold value labeled as outliers were removed.
As mentioned in the respective sections 3.2.2 and 3.2.3, various factors may impact the data
sets and reduce the data’s validation ability.

Based on the lack of information and inspection of the data, an assumption that the cup
anemometer and wind vane are not distorted was made (as no peaks were detected), which
is most likely an idealized assumption. Since this data is used for the retrieval and for data
processing of the retrieved data, this could impact the results presented. Moreover, the refer-
ence wind direction is used to determine cross-wind directions, which appears to be the main
contributor to the bad-quality data. Therefore, corrupted reference wind direction measure-
ments may remove high-quality data while leaving bad-quality data.

For the SCADA data, some outliers were detected and removed, as shown in the Table 3.4.
As explained in section 3.2.3, based on the sensor’s location on top of the turbine, it must be
assumed that the data is distorted to some extent from the rotor and/or neighboring wakes (see
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figure 3.4). Therefore, the SCADA data could potentially be highly corrupted. By investigating
the (reference) wind speed distribution, with the knowledge that southwest is the dominant
wind direction in this period (see section 3.2.2), the effects from neighboring wakes on the
SCADA data are probably moderate. The probability of disturbances caused by the rotor can,
on the other hand, not be eliminated.

Another aspect to consider is the vertical and horizontal displacement of the various data
sets, enabling local deviations to appear without necessarily being erroneous. The horizon-
tal distance between the SCADA and LiDAR data (and reference data) is nearly one kilometer
( 919m), offering the possibility for local differences [142]. Keeping in mind that the LiDAR
ranges from 23.5m to 290m .a.s.l. (see Table 3.4) and the area of interest (see figure 3.6), we
can roughly estimate the LiDAR scanning range to be from 90m to 190m. Hence, the ver-
tical difference between the LiDAR and the reference wind speed and direction, and SCADA
data are in a range from 0m to 100m, roughly speaking. We know, from section 2.3.3, that the
velocity of the wind varies with height. Therefore, it could be reasonable to think that height
differences like these could cause deviations in the various data sets. However, as found in
section 2.3, the profile is generally steep offshore, with a relatively homogeneously distributed
wind velocity with height. Moreover, the differences are greatest near the surface due to sur-
face friction. On this basis, and considering the figure 4.1, it is reasonable to assume that the
differences caused by vertical displacement in the SCADA and LiDAR data are minimal.

Overall, both the wind wane, cup anemometer, and SCADA data appear to coincide relatively
nicely, as visualized in figure 4.1. Thus, they are assumed to be applicable for providing a
relatively correct validation of the retrieved data. However, given the potential for distortion
(especially considering the SDADA data), it is somewhat unclear how the data sets behave this
similar.

LiDAR Processing

In section 4.1, the processing of the LiDAR data was elaborated on. After a subdomain was
chosen, and scans of data gaps were removed, the retrieval was enabled. From the analysis
of the retrieved data, we find that it is within reasonable values according to the validation
data. Moreover, the gaps in the retrieved data were found to be caused mainly by the cross-
wind effect. It’s debatable whether all of the scans removed in this range were of bad-quality.
However, as no algorithm was developed to identify low and high-quality snapshots, this was
determined to be a necessity to obtain the best quality data possible, as the number of low-
quality snapshots detected in the region was high. By developing an algorithm for such, one
could possibly reduce the number of snapshots removed to some degree.

One can speculate on whether a simple retrieval algorithm such as the one utilized in the work
of Krutova M. et al. [142], would have been sufficient in this work. This could make the
entire process even less complex, thus, more applicable to the industry. Moreover, the simple
retrieval algorithm would not remove every 25th scan.

Finally, a local peak removal and interpolation were conducted. As the local peak removal
algorithm was developed based on visual inspection of the time series together with the snap-
shot, on a randomly selected sample of the data, the possibility that it is not applicable for
other data sets, operates faulty, and/or decreases the quality in cases that were not inspected, is
possible. The interpolation method used in this work was simple linear interpolation. Hence,
the discussion of whether a more sophisticated peak removal and interpolation method would
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have increased the quality of the retrieved data is highly relevant.

Comparison of Retrieved and WRF-PALM Data used for POD

Before investigating the results provided by the POD, it is important to bear in mind the dif-
ference in the types of data sets that are being compared in this work. First of all, from the
previous section, we know that the retrieved data has undergone data processing, whereas the
WRF-PALM data was provided in high-quality. Therefore, there is a probability that the pro-
cessing of the LiDAR data was conducted fault, insufficiently, or excessively.

From Table 3.4, some of the major characteristics of the retrieved ad WRF-PALM data are
presented. The first clear difference emerging from the table is the time period, where the
retrieved data is collected for 10 days and one hour is collected for the WRF-PALM data. In
addition, produces the retrieved data one snapshot every 50th second, whereas one snapshot for
the WRF-PALM data is produced every 2nd second. Considering the periods investigated, the
result is a total number of 6000 and 1800 snapshots, respectively. On a smaller scale, one hour
of LiDAR data is described by initially 25 snapshots, whereas one hour of the WRF-PALM
data is described by 1800 snapshots. Additionally, since the LiDAR data only measures the
first 20 minutes in the hour, and not the remaining 40 minutes, the LiDAR data is measured in
an irregular temporal manner, whereas the WRF-PALM data is simulated on a regular temporal
resolution. On this basis, the retrieved data is expected to be relatively much more fluctuating
compared with the WRF-PALM data. Moreover, and enhancing the fluctuation pattern from
the retrieved data, is the fact that 45% of the retrieved data had to be removed due to bad-
quality. Thus, the final number of snapshots being compared, as explained in section 3.2.2 and
3.2.1, respectively, are 3293 (initially 6000) and 1800 number of snapshots.

As a result of the high percentage of data removal for the retrieved data, scans where the
turbines are turned off have not been removed (wind speed below 4m/s). Figure 4.2 reflects
the data within these constraints. As the lowest mean wind speed value for the WRF-PALM
data was detected as 6.16m/s, these kinds of snapshots are assumed not to be present in the
WRF-PALM reconstruction. By not removing these scans from the retrieved data, we expect
them to affect the energy in the POD modes somewhat, but to what extent remains unknown.

The next observation is the spatial resolution, which reports a grid resolution of 25m for the
retrieved data, and 10m for the WRF-PALM data. Based on this information, we expect finer
results including more small-scale wake dynamics from the WRF-PALM data. By reading
further in Table 3.4, we find that the subdomain investigated for the retrieved data is very
much like the WRF-PALM data in the x-direction, whereas the WRF-PALM data covers over
three times the length of the retrieved data in the y-direction. Considering the x and y ranges
in conjunction with the resolution, we find that the WRF-PALM area is described by 23 times
more grid points than what the retrieved data is. The retrieved and WRF-PALM subdomains
can be seen in figure 3.6 and 3.2, respectively. Therefore, we can conclude that this will
affect the overall visual quality of the snapshots, and the number of small-scale dynamics
captured. Moreover, the relatively small subdomain chosen to investigate for the retrieved
data makes the visual interpretation somewhat complicated. In periods when the wake in the
retrieved data is not aligned with the y-direction, the wake is not covered by the subdomain.
Hence, the dynamics of the meandering are somewhat disrupted for these scans, in particular,
complicating the interpretation somewhat. Since the wake effect is a key interest in this work,
the subdomain is somewhat poorly chosen. On the other hand, is the performance of the POD
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algorithm unaffected by the area investigated, but rather the quality of the data.

One can in general say that for the purpose of exploring wake, the WRF-PALM data is defi-
nitely most suitable for this work. However, with the aim of the work in mind, the data quality
of the LiDAR is experienced and considered as of high-quality, enabling investigation of the
possibility of creating an applicable method for the industry, outscoring the currently analyt-
ical models. Considering the fact that one could never obtain the same temporal and spatial
resolution for real-life LiDAR measurements as what can be done for simulations, it appears
as if the snapshots moved forward with, are representative.

5.2 Proper Orthogonal Decomposition

5.2.1 Standard POD
As already elaborated on, is POD a widely used technique for reducing the order of a high-
dimensional system [10, 12, 27–35]. The aim of this work is to obtain the lowest rank possible,
while creating a useful low order description, in order to drive down the computational costs
as much as possible. Thus, a simple visual inspection is inadequate to determine the number
required. Naturally, as done in [12, 29, 31, 32, 35, 36, 43, 156, 159], the eigenvalues are
inspected together with the visual inspection. Moreover, as seen in [31, 33, 35, 151, 156, 157,
159], we have utilized a statistical tool, RMSE in this work, to gain a deeper understanding
of the data. The results of POD applied to the retrieved and WRF-PALM data in its entirety
clearly mirror the differences discussed in section 5.1.

An immediate visual inspection of figure 4.5 and 4.6 indicate that increasing the number of
modes of the reconstructions enhances the accuracy of the description of the wake and wind
flow in the original snapshots for the retrieved data and WRF-PALM data, respectively, as
seen in e.g. [31, 33, 34, 159] as well. Thus, for a precise description of the original snapshot,
a substantial amount of modes is required in the reconstruction.

Energetic Contribution (Eigenvalues) Firstly, the energy captured with the respective
POD mode is investigated in section 4.2.1. We find that the energy of the POD modes for the
WRF-PALM data (figure 4.4 c) decreases more rapidly than for the retrieved data (figure 4.4
a). As stated in the works [10, 28], the rate at which the energetic contribution decreases with
the increasing mode is heavily dependent on the width of the range the energy in the flow is
distributed over (see figure 2.2). Hence, if the energy is distributed over many modes, as seen in
the retrieved data, it may indicate a wide range of turbulent structures present in the snapshots.
Moreover, as found in the work of Bastine, D. et al. [31], the slow decaying variance with
modes indicate that more POD modes are required to cover a large part of the total energy. On
the contrary, a relatively narrow distribution of the energy, as we see for the WRF-PALM data,
can be interpreted as if there are not as many turbulent structures in the data. However, from
a brief look at figure 4.5, presenting a range of reconstructed wind fields of the retrieved and
WRF-PALM data, we get the impression that the matter is the opposite, and that the WRF-
PALM data appears to capture more scales of turbulence than what the retrieved data does.
A reasonable explanation for the wide distribution of energetic contribution for the retrieved
data can be due to the wide range of various snapshots (large period of time), measured during
varying atmospheric stability regimes. Hence, one can assume a great variation in snapshots
captured by the LiDAR. On the other hand, the snapshots obtained from the WRF-PALM
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simulation for one hour, dominated by unstable conditions, may be somewhat more similar in
dynamics. Hence, the nature of real-life measurements versus simulations, as discussed in the
previous section, is perhaps reflected in the distribution. A final aspect to consider is that the
grid points used to produce the fields are 1408 and 32400 for the retrieved and WRF-PALM
data, respectively. Intuitively, one finds more dynamics for the WRF-PALM data. Therefore,
one could speculate in whether the trend of the eigenvalues would have been more similar for
the two data sets if the wake dynamics covered in the snapshots from the retrieved data were
more similar.

The values of the eigenvalues reported in figure 4.4 are considered to be in line with the find-
ings of [35], where the energy captured was found to be approximately 21%, 72%, and 82%
for the first, 15th, and 30th mode respective. In comparison with the retrieved data used in this
work, the values were found to be approximately 28%, 63%, and 77% for the first, seventh and
21st mode, respectively.

The eigenvalues for the WRF-PALM data are in a different range, where the first mode ac-
counts for as much as 83% of the total energetic contribution in the covariance matrix, dis-
played in equation (3.17). These kinds of values are found in work of S. S. Ravindran [29].
The energetic contribution was found to be approximately 97% for the first three modes and
99.69% for the first sixth modes. In this work, one and seven modes were found to account for
approximately 83.3% and 93.9%.

RMSE As already mentioned, numerous works have incorporated the study of relative error
for validation of POD performance. Two areas within the wake region were investigated in
[33] for one specified mode using histograms and corresponding statistics. However, for the
majority of the error inspections regarding POD performance, various types of errors for the
entire snapshots are being compared [35, 36, 151, 156, 157, 159]. In the work of G. Dimitriu
et al., [156], RMSE was used for validation. The RMSE values were somewhat larger in this
study. By including 4 modes with respective cumulative energy of 91.74%, they found RMSE
for regular POD to be 0.1193. In contrast, we found 89% energy coverage for 101 modes
and 93% energy coverage for 5 modes, for retrieved and WRF-PALM data, respectively. The
former had total RMSE calculations for the u and v fields of 0.26 and 0.48, whereas the latter
had 0.53 and 0.88, respectively. However, this could be justified that both the retrieved are
real-life measurements, and the WRF-PALM data is generally less idealized compared with
other numerical techniques [156] as those used in the presented work.

As emerges from the studies is that the overall (total) error decreases with increasing POD
number, as is shown to be the case for this study as well, apart from a relatively small increase
for the retrieved data. Similar behavior as the one unexpected increase in total RMSE for the
retrieved u field at mode 101, displayed in Table 4.2, has been found in the previous study of
A. G. Buchan et al., [159]. As for that work, and considering the relatively large increase in
energy added, the reason is unknown. However, as the visual inspection indicates that the re-
construction is improved, and the error seems to be relatively small, the error is perceived as
not interfering with the overall results. Moreover, the general trend for the areas (areas 1, 2,
and 3) investigated is decreasing as well. However, a larger number of alternating behavior was
found here, especially for the WRF-PALM data. As no previous work investigating relative er-
ror of smaller areas is found to compare with, and the total error generally follows the patterns
from previous work, it is regarded as acceptable in this work. However, due to this uncertainty,
the RMSE is investigated together with the total RMSE and visual inspection in order to de-
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termine the data’s credibility. Some possible explanations are small temporal displacements
in the dynamic features of the wake. The increased observations for the WRF-PALM data are
most likely due to narrow energy distribution over POD modes.

Hence, from inspection of previous work [10, 29, 31, 33, 35, 45], it appears as the eigenvalues
obtained from POD of both the retrieved and WRF-PALM data are in a realistic range, and
reflect the variety of data included in the data sets. As emerges from the results provided by
previous studies, it appears to be highly data-dependent.

5.2.2 Stochastic POD
Comparison. From the results obtained by utilizing the stochastic POD, we find one case
for the u and v field for both data sets investigated, accompanied by one time series and one
histogram at 5 and 3 modes, respectively. Comparing the histograms, they both offer informa-
tion that the statistics models generally preserve the statistical properties of the standard POD.
The largest deviations are found for the WRF-PALM data, and only kurtosis deviates more for
the retrieved data. From inspection of the predicted functions (figure 4.15 c and 4.16 c), we
find that there is included significantly more fluctuations into the stochastic temporal weight-
ing coefficients for the WRF-PALM data, than what is the case for the retrieved data. This
is because the same kernel and parameters are used for both data sets. From the sensitivity
study conducted in section 4.2.2, we found that the retrieved data fluctuates greatly, whereas
the WRF-PALM data has smooth characteristics. Hence, the predicted functions created for
the SE kernel are not providing any surprising aspects. It is, therefore, somewhat suspect that
changing the standard with the stochastic temporal weighting coefficients for the WRF-PALM
data appears to have a smaller effect than for the retrieved data. This may be, again, due to the
different spatial resolutions.

As the results from the stochastic POD are not striking as improving the results from the
standard POD greatly, one could debate whether this is due to the fact that the number of
modes suitable for a reconstruction were found to be in the range from 50 to 101 modes for
both data sets. However, by comparing the RMSE calculations for the stochastic POD found
in Table 4.5 and the standard pod (from Table 4.2 and 4.3), we find that the total errors have
been increased for both data sets. For the retrieved data, the total RMSE is moderate for both
the u and v fields. We notice, from inspection of the u field, that the error for area 1 and 3 have
increased, whereas for area 2 it has decreased. However, no clear improvement emerges from a
visual inspection of area 2. Hence, a suggested explanation is that the error decrease is mainly
caused by the decreased values for the blue area detected for the stochastic POD. Hence, as a
result from that the blue area is somewhat skewed for the stochastic POD, the error in this area
become smaller as well. The same assumptions for the v field.

For the WRF-PALM data, on the other hand, the errors are greatly increased for both wind
fields in all areas. As the stochastic fields were not visually interpreted as improved, this was
expected. However, an interesting observation is that the RMSE deviations from the standard
and stochastic WRF-PALM reconstructions are found to be relatively much greater than what
was the case for the retrieved data. Considering that the visual changes seemed to be larger
for the retrieved data. On the other hand, from the statistics provided by the histogram and
predicted functions, the difference between the standards and stochastic temporal weighting
coefficients was clearly found to be the largest for the WRF-PALM data.
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Gaussian Process (GP). In this work, GPR is found to decrease in performance of the
standard POD, as the deterministic weights were changed with the stochastic weights, both
statistically and visually. The results are not in line with previous studies such as [33]. How-
ever, keeping in mind the large range of possible kernels indicated by the sensitivity study, this
is possibly explained by the that only one kernel was used in this work.

Despite that a wide range of kernels can be created, it can be debated whether other methods
perhaps are more appropriate. Three methods were investigated in [10, 33], and two, including
GP, are found in [33]. Moreover, more sophisticated methods have been investigated, such as
those proposed by [160, 161]. These methods account for non-linear moments of the temporal
weighting coefficients. In common for these methods is that they require relatively much data,
which in turn is not applicable for efficient reconstructions. In addition to these methods, is
the Galerkin approach well-documented approach to including non-linearities into the system,
e.g. in [10, 26, 29, 35, 152].

Moreover, GPR has been used extensively in previous studies [27, 30] in combination with the
data-driven ROM. One debate addressed in [39], is that the prior function is supposed to be
determined by priory beliefs of the function. It is however determined most frequently based
on mathematical convenience.

The GP is, as seen throughout this study, very adaptable. There is both a positive and negative
aspect to this. It is beneficial due to its ability to costume the kernels for the specific system
investigated. However, as seen in this work, finding the optimal kernel is challenging and
time-consuming. The GP is not sparse and uses the entire time series given to it. In this
work, as the processes must be calculated several times for the number of ensembles used, the
computational time becomes unpractical and disables the efficient estimations applicable to
the industry.

A final aspect to keep in mind for the stochastic reconstruction is that the decomposition of the
wind field consists of two components. In this work, we only address the temporal component
of the total system. Therefore, the spatial components remain untreated.

Analytical models

From a brief comparison between the analytical models seen in section 2.4.1 and the recon-
structed wind fields visualized in figure 4.5, we get the impression that the POD performs
better when it comes to e.g. wake meandering, velocity recovery distance, and wake inter-
actions with shear and turbulence in the atmospheric boundary layer are undoubtedly more
present. By a brief inspection of the centerlines, we find that the analytical models are com-
pletely symmetrical. The reconstructed fields, on the other hand, we find several details added
in the wake dynamics, even at a few modes. However, as no validation study has been con-
ducted, the improvements are still unknown. Moreover, despite that the POD is a relatively
simple procedure for conducting wake estimations, it is not inevitable that the data input for
the analytical models is far easier to get a hold of. Another aspect to consider is that LiDAR
scans are limited to the range of the LiDAR. Thus, an entire wind farm cannot be investigated
with this procedure, whereas this is possible with the analytical models.
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Chapter 6

Conclusions and Future Work

The capabilities of POD have been investigated by using the technique on both LiDAR mea-
surements obtained from FINO1 during varying atmospheric conditions, and WRF-PALM data
simulated for one hour during unstable conditions. By utilizing standard POD, we have de-
composed the wind fields into temporal weighting coefficients and spatial POD modes. The
novelty of this work shows that POD is able to reconstruct wind flows captured by a LiDAR in
a reduced manner while preserving the large-scale structures of the wake flow. Additionally,
is the method shown to be efficient for the standard POD.

In order to incorporate stochasticity to the reconstructed wind fields, the deterministic temporal
components were replaced by predicted coefficients using the GPR. A sensitivity study further
substantiates the method’s dependence on kernel selection, with associated hyper-parameters,
for POD application. Moreover, the reconstruction of stochastic coefficients was showed to be
highly dependent on the original POD, as it appears that the GPR emphasizes patterns found
in the reconstruction of the standard POD. It emerges from the study that stochastic coeffi-
cients may include dynamics that are not present using the deterministic temporal weights.
In this work, one single kernel was investigated, which decreased the visual performance and
increased the relative error.

Hence, a more extensive investigation must be done in order to determine the ability of the
stochastic POD for real data such as LiDAR measurements. Despite the different data sets
investigated in the work, the results for both standard and GPR POD on LiDAR are considered
to be in line with the results obtained for the WRF-PALM data. Furthermore, it appears as the
stochastic POD potentially is applicable for LiDAR data.

Future work includes further investigation of stochastic models for LiDAR data and extending
to explore the spatial stochastic modes. A suggestion is to separate the LiDAR snapshots based
on stability, which was an initial thought for this study. Moreover, great insight is gained by
utilizing the reconstruction fields in power and load calculations.
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Figure 1: LiDAR snapshots in the cross wind range.
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