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Abstract

We discuss the local and global solutions of the Rabi model in Garnier form, a linear sys-
tem of first order differential equations, with complex rational coefficients. The analytic
continuation of the local solutions are described by a monodromy group, which gives a
matrix representation of the fundamental group of the punctured Riemann sphere. A
detailed geometric description of linear systems of first order differential equations is
given, in terms of a local family of connection forms on a principal bundle. The geomet-
ric description reveals the Frobenius integrability conditions, which are used to obtain
necessary and sufficient conditions for an isomonodromic deformation of the Rabi model.
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Chapter 0

Introduction

The Rabi model [Rab36], describes a light-atom interaction in quantum physics, where
the frequency of the light is very close to the natural frequency of the atom. It is a rel-
atively simple, but analytically solvable model. The Rabi model has recently attracted
attention due to experimental and mathematical reasons [Bra11], with applications in
quantum optics [Ved05] and quantum computing [Pel et al.95]. The Rabi model is de-
scribed by a certain Hamiltonian function. The eigenvalue problem for this Hamiltonian
can be reformulated as a linear system of first order differential equations, that are dealt
with in this thesis (see [CAQ15]), the so-called Rabi model in Garnier form [Iwa et
al.91]. In the thesis we focus on studying the integrability properties of the Rabi model,
by applying the isomonodromic approach.

Hilbert’s twenty-first problem in his celebrated list put forth in 1900 (1902 in English)
[Hil02], can be roughly stated as to show that there always exists a linear second order
differential equation of the Fuchsian class (see Definition 1.2.2), with given singular
points and monodromy group (see Section 1.4.4). This problem was for a long time
thought to be solved by Plemelj in 1908 [Ple64], however as late as in 1990, a paper given
by Bolibrukh [Bol90] not only proclaimed an error in Plemelj’s proof, but also gave a
counterexample to the problem stated by Hilbert. A more general converse problem is
the direct monodromy problem. Its objective is to find a monodromy group, given a linear
second order differential equation with both Fuchsian and non-Fuchsian singular points.
Further, if such a monodromy group is found, the isomonodromic problem concerns
with finding a family of linear second order differential equations, all sharing the same
monodromy group and singular points.

The direct monodromy problem is a construction problem, and the challenges mostly
lie in dealing with the Stokes phenomenon at non-Fuchsian singular points, and compu-
tation of analytic continuation.

The isomonodromic problem have been studied since the early 20th century. The
Fuchsian case, when the singularities of the differential equation are only simple poles,
has as integrability conditions the classical Schlesinger equations [Sch12]. The necessary
and sufficient condition for the solution of an isomonodromic problem in the Fuchsian
case, was formulated first in [Sch12], and are called the Schlesinger equation for the
integrability condition. Later, the term “Schlesinger equations” was adapted to any
isomonodromic problem, and we follow this convention in the thesis.

The largest milestone in the modern development of isomonodromic deformations, is
due to Jimbo, Miwa and Ueno in [JMU81], [JM81a], [JM81b]. In these three influential
papers they show necessary and sufficient conditions for isomonodromic deformation in
the case of poles of an arbitrary order.

All the above problems can be dealt with by using second order linear scalar equa-
tions, or first order linear systems of two equations. We will be considering the latter.

The Schlesinger integrability conditions for an isomonodromic problem, can be rewrit-
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ten in the form of non-linear second order scalar differential equations, in certain cases
this non-linear equation is one of the so called Painlevé equations, see [Fok et al.06].
There are six Painlevé equations, and their solutions can be regarded as a generalization
of classical special functions, usually called the “Painlevé transcendents”. They are an
important tool for studying the isomonodromic problem, see [Con et al.99].

This thesis will regard the direct monodromy problem, and isomonodromy problem,
posed for the Rabi model in Garnier form, in the paper [CAQ15]:

(1) dΦ

dz
· Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

= A(z), A : S \ { 0, t,∞} →M2(C),

where σ3 is the third Pauli matrix, A0 and At are constant matrices, and the function
A has poles at z = 0, z = t and z = ∞. The scheme is to solve the direct monodromy
problem for equation (1) with fixed t, and then solve the isomonodromy problem by
imposing conditions on (1) such that the obtained monodromy group stay fixed, while
varying the parameter t ∈ S \ { 0,∞}.

In Chapter 1 we start with constructing local solutions of (1), in particular, substan-
tial effort is made to describe the Stokes phenomenon around the non-Fuchsian point
at z = ∞, see Section 1.3. The universal covering space of the domain S \ { 0, t,∞},
is constructed, and the local solutions are analytically continued into a global solution
on this universal cover. We then give an introduction to monodromy theory, and de-
rive expressions for the canonical monodromy group (see Definition 1.4.7), by using the
constructed global solution.

Chapter 2 gives a geometric description of first order linear system of differential
equations. First we give an introduction to principal bundles with a connection, then
we explain how a first order linear system fits into the theory. We then give an explicit
construction of such a principal bundle, and relate the meaning of a solution to the
differential equation, with a horizontal section of the principal bundle. Finally we give
existence and uniqueness results through Frobenius integrability, and show how this
infers solutions of the differential equation. The geometric language allows us to make a
bridge between the integrability condition for the isomonodromic problem for (1), and
the classical Frobenius Theorem from differential geometry.

Chapter 3 deals with the isomonodromic problem related to (1). After an intro-
duction giving the relevant Definitions, we give motivation to why one might expect
isomonodromic deformations for (1). We then follow [JMU81], and derive necessary
conditions for isomonodromic deformations. Finally we were able to give the exact
equations governing the isomonodromic flow, from different perspectives.

To facilitate the reading of the thesis, the Appendix gives a summary of useful facts
and constructions on complex holomorphic manifolds. The proofs of the statements are
collected from known sources, and is often a combination of several results in order to
adapt the statement to our needs. It is included to make the thesis self sufficient, but
is not to be regarded as an achievement of the thesis. In particular, we show how an n-
dimensional complex holomorphic manifold, has a complex n-dimensional vector space as
tangent space, called the holomorphic tangent space, see Definition A.1.6. The Appendix
also contains a detailed description of analytic continuation on a Riemann surface and
the construction of the universal covering space of a Riemann surface, together with an
inherited manifold structure.
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Table 1: Comparison of terminology in mathematical and physical gauge theory. The
table has been provided through the courtesy of [Wik22]. We do not touch on all of
these subjects in the thesis.

Mathematics Physics

Principal bundle
Instanton sector or
charge sector

Structure group
Gauge group or
local gauge group

Gauge group
Group of global gauge
transformations or
global gauge group

Gauge transformation
Gauge transformation or
gauge symmetry

Change of local trivialisation Local gauge transformation
Local trivialisation Gauge
Choice of local trivialisation Fixing a gauge
Functional defined on the
space of connections

Lagrangian of gauge theory

Object does not change
under the effects
of a gauge transformation

Gauge invariance

Gauge transformations that
are covariantly constant with
respect to the connection

Global gauge symmetry

Gauge transformations which
are not covariantly constant
with respect to the connection

Local gauge symmetry

Connection Gauge field or gauge potential

Curvature
Gauge field strength
or field strength

Induced connection/covariant
derivative on associated bundle

Minimal coupling

Section of associated
vector bundle

Matter field

Term in Lagrangian functional
involving multiple different
quantities (e.g. the covariant
derivative applied to a section
of an associated bundle, or a
multiplication of two terms)

Interaction

Section of real or complex
(usually trivial) line bundle

(Real or complex) Scalar field
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Chapter 1

The direct monodromy problem

1.1 Context for solving the first order linear system
Definition 1.1.1 Linear system of differential equations on Riemann surface.
Let M be a Riemann surface and let U ⊂M an open set. A linear system of 2 differential
equations on U is an equation

(1.1) dΦ

dz
· Φ−1 = A, where A : U →M2(C)

is given, and where we intend to find a function Φ : U → GL2(C) that satisfy the
equation.

Definition 1.1.2 Fundamental solution of linear system.
Let M be a Riemann surface and let U ⊂M be an open connected set. If a function

Φ : U → GL2(C) ⊂M2(C)

satisfies the differential equation (1.1) in U , then this solution will be called a funda-
mental solution of the equation in U .

Given a fundamental solution of equation (1.1) in an open set U ⊂ M , any other
solution of equation (1.1) in U is equal to Φ up to right multiplication by a constant
invertible matrix C, where their domains coincide (see Lemma 1.2.2). Thus if the fun-
damental solution has a prescribed value at a point z0 ∈ U , it is the unique solution in
U which satisfy the differential equation, and has this initial value.

We will now foreshadow the geometric description in Chapter 2, and compare it with
the analytic viewpoint. The differential equation gives rise to the construction of a trivial
principal bundle:

Q
(
(S \ { zj }mj=1 , GL2(C), π

)
' S \ { zj }mj=1 ×GL2(C),

see Definition 2.1.1 and Corollary 2.3.1. Each point z ∈ S \ { zj }mj=1, is the projection of
a fiber π−1(z) = { [α, z, b] | b ∈ GL2(C) } , in Q, where the fiber is isomorphic to GL2(C).
And to each point p ∈ Q, there exists an unique integrable submanifold S ⊂ Q, with
horizontal tangent space by Theorem 2.4.1. By Theorem 2.4.2, this is means that we
have local existence of fundamental solutions to (1.1), unique up to an initial condition.
The right multiplication of Φ by constant invertible matrices, is linked to the right
action of GL2(C) on Q. The analogous description on the principal bundle, is that given
a horizontal section Φ̃ : U ⊂ S \ { zj }mj=1 → π−1(U), (which is equivalent to a local
fundamental solution Φα in U , by Theorem 2.3.1), the right action of GL2(C) on Q,
induces a right action on sections:

Φ̃(z) . C = [α, z,Φα(z) · C] .
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Moreover, if q = p . C, where q, p ∈ π−1(z) and C ∈ GL2(C), then the right action of
GL2(C), moves the unique submanifold through p to the unique submanifold through q,
that is, moves the unique local fundamental solution Φα, with [α, z,Φα(z)] = p into the
unique local fundamental solution Φα · C, with [α, z,Φα(z) · C] = q.

The differential equation we are considering in this thesis is the so-called Rabi model
in the standard Garnier form:

(1.2) dΦ

dz
· Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

= A(z),

where

• A : S \ { 0, t,∞} →M2(C),

• σ3 =

(
1 0
0 −1

)
is the famous third Pauli matrix,

• the matrices A0 and At are constant in z, and are diagonalizable:

A0 = P (0)Λ
(0)
0

(
P (0)

)−1
, At = P (1)Λ

(1)
0

(
P (1)

)−1

with eigenvalues (Λ
(j)
0 )11, (Λ

(j)
0 )22 such that (Λ

(j)
0 )11 − (Λ

(j)
0 )22 /∈ Z \ { 0 }, for

j = 0, 1.

It is clear that this is a first order linear system, with rational coefficient functions. The
primary goal is to describe a fundamental solution of (1.2)

Φ : S \ { 0, t,∞} → GL2(C),

that is defined at every point of S \ { 0, t,∞}. This is not possible, as Φ will in general
be a multivalued function. To work around this problem, we will in Chapter 1 first
spend considerable effort in solving the system locally. In particular the solutions in
the punctured neighbourhoods around the singularities 0, t,∞ requires us to be extra
careful.

1.2 Local solutions of Rabi-model in Garnier form

1.2.1 Classifying the singular points

We consider the Rabi model in the standard Garnier form from equation (1.2). By
following the general approach introduced in [Fok et al.06], we can find local solutions
of such equations. The interesting and important information is the behaviour of the
system around the singular points { 0, t,∞} of (1.2).

Definition 1.2.1 Singularities of a function with values in M2(C).
Let M be a Riemann surface and U ⊂M an open subset of M . Let f : U\{ z0 } →M2(C)
be holomorphic on U \ { z0 } ⊂M . Then

• the point z0 is a removable singularity of f if there exists a holomorphic function
g : U →M2(C), such that g(z) = f(z) for all z ∈ U \ { z0 }, i.e. g is a continuous
extension of f .

• the point z0 is a pole of f if there exists a holomorphic function g : U → M2(C),
such that g(z0) 6= 0 and

g(z) = (z − z0)
nf(z)

for all z ∈ U \ { z0 }, for some n ∈ N1. If such a function exist, then the smallest
n such that the condition holds is called the order of the pole at z0.
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• the point z0 is an essensial singularity of f , if it is not a removable singularity or
a pole of f .

The above Definition gives names to singularities for a function. When the function
A defines a differential equation like equation 1.1, we will give the singularities related
to the differential equation different names.

Definition 1.2.2 Singularities of differential equation.
Let M be a Riemann surface and U ⊂M an open subset of M . Consider the linear first
order differential equation (1.1)

dΦ

dz
· Φ−1 = A.

Let A : U \ { z0 } →M2(C) be holomorphic on U \ { z0 }, then

• if A has a removable singularity at z0, we will say that z0 is a regular point of the
system, and that the system is regular at z0. The system will also be called regular
at any point in U \ { z0 }.

• if A has a pole at z0 of order 1, we will say that z0 is a Fuchsian singular point at
z0.

• if A has a pole at z0 of order n > 1, we will say that z0 is a non-Fuchsian singular
point at z0.

• If A has a pole of order n at z0, the number r = (n−1) is called the Poincaré rank
of the singularity of A at z0. Hence if A has a pole of order 2 at a point z0, then
the corresponding system A has a non-Fuchsian singularity at z0 of Poincaré rank
1.

We start by classifying the singularities of (1.2). Evidently we have a Fuchsian point
at z0 = 0 and another Fuchsian point at z1 = t. We look for singularities at z = ∞. We
introduce the chart ϕ∞ on S \ { 0, t,∞}:

(1.3)
ϕ∞ : S \ { 0, t,∞} → C \

{
0, 1t
}

z 7→ 1
z = ξ

and substitute into equation (1.2).

dΦ

dz
Φ

(
1

z

)−1

=
dΦ

dξ

dξ

dz
Φ

(
1

z

)−1

= −ξ2dΦ
dξ

Φ(ξ)−1 =
σ3
2

+A0ξ +
At

1
ξ − t

=⇒ dΦ

dξ
Φ(ξ)−1 = − σ3

2ξ2
− A0

ξ
− At
ξ(1− tξ)

We do a partial fraction decomposition on the rightmost term and thus for |z| > t,
equation (1.2) under the transformation (1.3) takes the form

(1.4) dΦ

dξ
Φ(ξ)−1 = − σ3

2ξ2
− A0 +At

ξ
−

∞∑
k=0

Att
k+1ξk

It is now clear that the system (1.2) has a non-Fuchsian singular point at z2 = ∞ of
Poincaré rank r = 1.
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1.2.2 Transformations of the differential equation

If we precompose A : S \ { 0, t,∞} → M2(C) with a Möbius transformation, the dif-
ferential equation still contains exactly the same information, but in a new coordinate.
We will regard Möbius transformations as “allowable” transformations of the differential
equation (1.1). However, the transformation through a Möbius transformation, should
be distinguished contextually from using a chart on S \ { 0, t,∞}, regarding it as a
manifold, like in (1.3).

We classified two Fuchsian points and one non-Fuchsian point of Poincaré rank 1, of
A. We note that by using a Möbius transformation of the Riemann sphere, the three
points { 0, t,∞} can be moved to arbitrary points on S by a conformal map.

As a motivation for the next Definition, we will again foreshadow the geometric
description in Chapter 2. In particular, we have that the function A, from the differential
equation (1.2), is, up to the sign, the coefficient function of a Lie algebra valued 1-form
Aα on S \ { 0, t,∞}. By Definition 2.3.2, this Lie algebra valued 1-form, gives rise to a
family of local connection forms

{Aβ : Uβ → T ∗Uβ ⊗ gl2(C)}β∈J ,

on S \ { 0, t,∞}. The members Aβ of a family of local connection forms are related by

Aβ = Ad(gβα) ◦Aα +
(
g−1
βα

)∗
θ,

where gβα = fβ, is a transition function on the principal bundle. The set of transition
functions with right hand side index α, is defined to be the indexed set

{ fβ : Uβ → GL2(C) }β∈J

of every GL2(C) valued, holomorphic functions locally defined on M . Written in matrix
notation, and recalling thatAα = −A dz, we write out the expression using the coefficient
functions and obtain by Proposition 2.2.2:

Aβ

(
d

dz

)
= −B = gβα ·

(
−A

)
· g−1
βα −

dgβα
dz

· g−1
βα .

Definition 1.2.3 Gauge equivalent systems of differential equations.
Let M be a Riemann surface and consider two linear systems of differential equations
defined on an open subset U ⊂M :

dΦ

dz
Φ−1 = A : U → GL2(C),

dΨ

dz
Ψ(z)−1 = B : U → GL2(C).

The two systems are called gauge equivalent on U if there exists a holomorphic function
g : U → GL2(C) such that

B = g · A · g−1 +
dg

dz
· g−1, on U.

In terms of the solutions of the differential equations: Ψ = g · Φ on U .

Thus solving the differential equation in equation (1.2), is the same as solving a gauge
equivalent system. As long as you know the transition function g, you change between
the equations and thus also between the solutions.

We will show that any solution to an equation of the form (1.1) have to satisfy the
famous Liouville formula.
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Lemma 1.2.1 [Tes12] Liouville formula.
Let M be a Riemann surface and U ⊂ M a open subset of M . Consider a differential
equation

dΦ

dz
Φ−1 = A, A : U →M2(C).

Then any solution Φ : U → GL2(C) to this differential equation satisfies(
d

dz
det(Φ)

)
1

det(Φ)
= trace (A) .

In particular
det (Φ) = constant ⇐⇒ trace (A) = 0.

We can use the Liouville Lemma to impose a traceless property up to gauge equiva-
lence on the differential equation. This will be useful in Chapter 3.

Proposition 1.2.1 Traceless A up to gauge equivalence.
Let M be a Riemann surface and U ⊂ M an open, connected, simply connected subset
of M . Let A be the coefficient function of a differential equation

dΦ

dz
· Φ−1 = A, A : U →M2(C).

Consider the family of gauge equivalent systems of differential equations related to A:{
B =

dΦ

dz
· Φ(z)−1

∣∣∣B = g · A · g−1 +
dg

dz
· g−1, g : U → GL2(C) holomorphic

}
There exists an element B of the family with trace(B) = 0.

Proof. Consider A = dΦ
dz Φ

−1. Let z0 ∈ U be a fixed point, define the function

g(z) = exp

(
−1

2

∫ z

z0

trace (A(ω)) dω

)
I.

This function is well defined since: U is open and connected, thus path connected; U
is simply connected, so the integral does not depend on the path of integration. The
function is obviously holomorphic. Notice that

dg

dz
= −1

2
trace(A)g, and g−1(z) = exp

(
1

2

∫ z

z0

trace(A(ω))dω

)
I.

Then
B = gAg−1 +

dg

dz
g−1 = A− 1

2
trace(A)I

is gauge equivalent to A, here we used that the scalar part of g commutes with A.
Further

trace(B) = trace

(
A− 1

2
trace(A)I

)
= trace(A)− 1

2
trace(A) trace(I) = 0.

■

The following simple Lemma will be essential when we argue for uniqueness of the
local fundamental solutions we find for our system. It also makes analytic continuation
effortless.
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Lemma 1.2.2 Constant matrix relation.
Consider the differential equation

dΦ

dz
Φ−1 = A, A :M →M2(C)

where M is a Riemann surface. Let Φ1 : U1 → GL2(C) and Φ2 : U2 → GL2(C) be two
solutions of the system on open sets U1, U2 ⊂M with U1 ∩ U2 6= ∅. Then Φ2 = Φ1Ck in
each connected component Vk of U1 ∩ U2, where Ck is a constant non-singular matrix.

Proof. Consider the matrix ratio C = (Φ1)−1Φ2 defined on U1 ∩ U2. We compute the
derivative of C w.r.t. z ∈ V ⊂ U1 ∩ U2. Consider a chart ϕ : V → ϕ(V ) ⊂ C, then

dC

dz
=

d

dω

(
C ◦ ϕ−1(ω)

) ∣∣∣∣
ω=ϕ(z)

=
d

dω

((
Φ1 ◦ ϕ−1(ω)

)−1
Φ2 ◦ ϕ−1(ω)

) ∣∣∣∣
ω=ϕ(z)

Differentiating using the Leibniz rule and the derivative of the inverse of a matrix:

= −
(
Φ1 ◦ ϕ−1(ω)

)−1
(
d

dω
(Φ1 ◦ ϕ−1(ω))

)(
Φ1 ◦ ϕ−1(ω)

)−1 (
Φ2 ◦ ϕ−1(ω)

) ∣∣∣∣
ω=ϕ(z)

+
(
Φ1 ◦ ϕ−1(ω)

)−1
(
d

dω
(Φ2 ◦ ϕ−1(ω))

) ∣∣∣∣
ω=ϕ(z)

.

By using the fact that Φ1 and Φ2 solve the same differential equation we obtain, and
writing ϕ−1(ω) = z

= −Φ1(z)−1A(z)Φ1(z)Φ1(z)−1Φ2(z) + Φ1(z)−1A(z)Φ2(z) = 0

Thus the derivative of C : U1 ∩ U2 → GL2(C) is identically zero. Hence by Lemma
A.1.2, on each connected component Vk of U1 ∩ U2, C(z) = Ck, a constant matrix. Ck
is non-singular since Φ1 and Φ2 is non-singular. ■

1.2.3 Fundamental solutions around regular points

Let a ∈ S \ { 0, t,∞}. Then a is a regular point of

dΦ

dz
Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

= A(z).

We start by rewriting the expression for A into a series expression in (z−a). The terms
A0
z and At

z−t are both devolved using the geometric series:

A0

z
=

A0

a
(
1− z−a

−a

) = A0

∞∑
k=0

(−1)k
(z − a)k

ak+1
, for |z − a| < |a|

At
z − t

=
At

(a− t)
(
1− z−a

t−a

) = −At
∞∑
k=0

(z − a)k

(t− a)k+1
, for |z − a| < |a− t|

Hence we obtain the expression

dΦ

dz
Φ(z)−1 = A(z) =

∞∑
k=0

A
(a)
k+1(z − a)k,(1.5)

A
(a)
1 =

σ3
2

− A0

a2
− At

(t− a)2
, A

(a)
k+1 = (−1)k

A0

ak+1
− At

(t− a)k+1
(1.6)
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We expect a holomorphic solution to this problem, and propose the following ansatz:

Φ(a)(z) =
∞∑
k=0

Ψ
(a)
k (z − a)k, Ψ

(a)
k ∈M2(C), Ψ

(a)
0 := I

We put the ansatz into equation (1.5) and obtain

∞∑
k=0

(k + 1)Ψ
(a)
k+1(z − a)k =

( ∞∑
k=0

A
(a)
k+1(z − a)k

)( ∞∑
k=0

Ψ
(a)
k (z − a)k

)

=
∞∑
k=0

k∑
l=0

A
(a)
k+1−lΨ

(a)
l (z − a)k

Equating the coefficients we obtain

Ψ
(a)
k+1 =

1

k + 1

k∑
l=0

A
(a)
k+1−lΨ

(a)
l , Ψ

(a)
0 := I

Hence we obtain a formula determining all the coefficients uniquely. The following
Theorem gives the convergence radius of the series solution.

Theorem 1.2.1 [[Sib90], T.1.8.2, T.1.8.3] Existence of fundamental solution
and radius of convergence.
Consider the system dΦ

dz = A(z)Φ(z) in a series representation around a regular point a.
Consider a formal series solution centred at the regular point a:

Φ(a)(z) =

∞∑
k=0

Ψ
(a)
k (z − a)k.

If the minimum radius of convergence of all entries (A)ij is R, then the radius of con-
vergence of the series solution Φ(a) is also R.
Further if Ψ(a)

0 = Φ(a)(a) ∈ GL2(C) then Φ(a) ∈ GL2(C).

Hence we can conclude that we have found a fundamental solution (see Definition
1.1.2)

Φ(a)(z) =

∞∑
k=0

Ψ
(a)
k (z − a)k

where

Ψ
(a)
k+1 =

1

k + 1

k∑
l=0

A
(a)
k+1−lΨ

(a)
l , Ψ

(a)
0 := I

determine the coefficients uniquely. The series converges in the disc

B(a,R) = { z ∈ S \ { 0, t,∞} | | z − a| < R = min { | a− t|, |a| } } .

We chose Φ(a)(0) = Ψ
(a)
0 = I, to obtain one specific solution. Any other solution to (1.2)

in the disk B(a,R), can be obtained by right multiplication by a constant matrix.
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1.2.4 Fundamental solution around the Fuchsian singular point at the
origin

We start by finding the local solution of the equation around the point z0 = 0. We
introduce similar notation as [Fok et al.06] and write equation (1.2) as

dΦ

dz
Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

=
A0

z
+
σ3
2

−
∞∑
k=0

At
tk+1

zk

=
A

(0)
0

z
+

∞∑
k=0

A
(0)
k+1z

k,

A
(0)
0 = A0, A

(0)
1 =

σ3
2

− At
t
, A

(0)
k+1 = − At

tk+1

(1.7)

Here the subscripted 0 is an index and the superscripted (0) relates the matrix to
the pole at z0 = 0, note that A(0)

0 = A0. We use the diagonalization of the matrix A(0)
0

to be able to define an ansatz:

A
(0)
0 = P (0)Λ

(0)
0 P (0)−1

Consider the following ansatz:

(1.8) Φ(0)(z) = P (0)

( ∞∑
k=0

Ψ
(0)
k zk

)
exp

(
Λ
(0)
0 log(z)

)
, Ψ0

0 = I

Here Ψ
(0)
k are complex matrices to be determined. The function exp is the matrix

exponential function, that is to be distinguished from the scalar exponential function,
z 7→ ez. Also the branch of the logarithm is yet to be determined and will be chosen
when doing an analytic continuation

We differentiate the ansatz

dΦ(0)

dz
= P (0)

( ∞∑
k=0

Ψ
(0)
k+1(k + 1)zk

)
exp

(
Λ
(0)
0 log(z)

)
+ P (0)

( ∞∑
k=0

Ψ
(0)
k zk

)
Λ
(0)
0

z
exp

(
Λ
(0)
0 log(z)

)
and multiply A(z) with the ansatz (1.8)

A(z)Φ(0)(z) =
A

(0)
0

z
P (0)

( ∞∑
k=0

Ψ
(0)
k zk

)
exp

(
Λ
(0)
0 log(z)

)
+

( ∞∑
k=0

A
(0)
k+1z

k

)
P (0)

( ∞∑
k=0

Ψ
(0)
k zk

)
exp

(
Λ
(0)
0 log(z)

)
equating the two expressions through the ODE, left multiplying by P (0)−1 and can-

celling the exponential factor we obtain

∞∑
k=0

Ψ
(0)
k+1(k + 1)zk +

∞∑
k=0

Ψ
(0)
k+1Λ

0
0z
k

=
∞∑
k=0

P (0)−1A
(0)
0 P (0)Ψ

(0)
k+1 +

∞∑
k=0

k∑
l=0

P (0)−1A
(0)
k+1−lP

(0)Ψ
(0)
l
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By the above diagonalization P (0)−1A
(0)
0 P (0) = Λ

(0)
0 . We equate the coefficients of zk

and obtain the following recursive formulas for the coefficients Ψ
(0)
k+1

Ψ
(0)
k+1(k + 1) +

[
Ψ

(0)
k+1,Λ

(0)
0

]
=

k∑
l=0

P (0)−1A
(0)
k+1−lP

(0)Ψ0
l , k ≥ 0[

Ψ
(0)
0 ,Λ

(0)
0

]
= 0

We can solve the first formula for the coefficients in the matrix Ψ
(0)
k+1 and obtain the

following explicit formula

(
Ψ

(0)
k+1

)
ij
=

∑k
l=0 P

(0)−1A0
k+1−lP

(0)Ψ0
l

k + 1 + (Λ
(0)
0 )jj − (Λ

(0)
0 )ii

, k ≥ 0

Ψ
(0)
0 = I

This formula determines the coefficients Ψ
(0)
k uniquely, so we conclude that (1.8) is

a formal solution. The series will converge in a neighbourhood of z0 = 0 by Theorem 5
in [Bal00].

To summarize we found the local fundamental solution (see Definition 1.1.2)

(1.9) Φ(0)(z) = P (0)

( ∞∑
k=0

Ψ
(0)
k zk

)
exp

(
Λ
(0)
0 logα0

(z)
)
,

in the branched neighbourhood z ∈ B(0, R0) \ { reiα0 | r ≥ 0 } of z = 0. The series in
the solution converges by Theorem 5 in [Bal00], and the branch of the logarithm in the
expression will be chosen later, when we do an analytic continuation of the solution.

Definition 1.2.4 Canonical fundamental solution in a branched neighbourhood
of a Fuchsian point.
We define

Φ(j)(z) = P (j)

( ∞∑
k=0

Ψ
(k)
k (z − zj)

k

)
exp

(
Λ
(j)
0 logα(z − zj)

)
,

for z ∈ B(zj , R) \ { zj + reiα | r ≥ 0 } ,

where: P (j) is orthonormal with eigenvalues in descending order and Ψ
(j)
0 = I, to be the

canonical fundamental solution of equation (1.2) in the branched neighbourhood B(zj , R)\
{ zj + reiα | r ≥ 0 } of the Fuchsian point zj.

1.2.5 Fundamental solution around the Fuchsian singular point at t

We now similarly find a fundamental solution around the Fuchsian singular point z1 = t.
We do a change of coordinates in (1.2) for ease of notation and expand the remaining
expressions into a Taylor series of z − t = η so we obtain

(1.10) dΦ

dz
Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

=
At
z − t

+

(
σ3t+ 2A0

2t

)
+

∞∑
k=1

A0

tk+1
(z − t)k

dΦ

dη
Φ(η)−1 =

A
(1)
0

η
+

∞∑
k=0

A
(1)
k+1η

k
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Here again we have introduced a similar notation as in [Fok et al.06].
We use the diagonalization

(1.11) A
(1)
0 = P (1)Λ

(1)
0 (P (1))−1,

and propose the following ansatz:

(1.12) Φ(1)(η) = P (1)

( ∞∑
k=0

Ψ
(1)
k ηk

)
exp

(
Λ
(1)
0 log(η)

)
Putting the ansatz into (1.12) we obtain

dΦ(1)

dη
= P (1)

( ∞∑
k=0

Ψ
(1)
k+1(k + 1)ηk

)
exp

(
Λ
(1)
0 log(η)

)
+

(
P (1)

∞∑
k=0

Ψ
(1)
k ηk

)
Λ
(1)
0

η
exp

(
Λ
(1)
0 log(η)

)
=

(
A

(1)
0

η
+

∞∑
k=0

A
(1)
k+1η

k

)(
P (1)

∞∑
k=0

Ψ
(1)
k ηk

)
exp

(
Λ
(1)
0 log(η)

)
.

We multiply on the left by P (0)−1, cancel the exponential factor and equate the
coefficients of ηk

(1.13) Ψ
(1)
k+1(k + 1) +

[
Ψ

(1)
k+1,Λ

(1)
0

]
=

k∑
l=0

P (1)−1A
(1)
k+1−lP

(1)Ψ
(1)
l , k ≥ 0

the same formula as for the pole z0 = 0 up to the eigenvalues of A(i)
0 .

We obtain an explicit formula for the coefficients of Ψ(1)
k(

Ψ
(1)
k+1

)
ij
=

∑k
l=0 P

(1)−1A
(1)
k+1−lP

(1)Ψ
(1)
l

k + 1 + (Λ
(1)
0 )jj − (Λ

(1)
0 )ii

, k ≥ 0

Ψ
(1)
0 = I

Thus the series in the ansatz is determined uniquely by this formula. We have found
a canonical fundamental solution (see Definition 1.2.4) in a branched neighbourhood of
the Fuchsian point z1 = t given by

(1.14) Φ(1)(z) = P (1)

( ∞∑
k=0

Ψ
(1)
k (z − t)k

)
exp

(
Λ
(1)
0 logα1

(z − t)
)
,

z ∈ B(t, R1) \ { reiα1 | r ≥ 0 } .

The series in the solution converges by Theorem 5 in [Bal00], and the branch of the
logarithm in the expression, will be chosen later, when we do an analytic continuation
of the solution.

1.2.6 Formal solution around the non-Fuchsian singular point

Lastly we find the solution of the system around the non-Fuchsian singular point z2 = ∞.
Previously we derived the form of the equation under the transformation z 7→ 1

z = ξ,
(1.4). We write it out using the notation in [Fok et al.06].
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(1.15) dΦ

dξ
Φ(ξ)−1 = − σ3

2ξ2
− A0 +At

ξ
−

∞∑
k=0

Att
k+1ξk =

A
(∞)
−1

ξ2
+
A

(∞)
0

ξ
+

∞∑
k=0

A
(∞)
k+1ξ

k

The coefficient matrix A(∞)
−1 is diagonal. To be consistent with the notation we write

A
(∞)
−1 = P (∞)Λ

(∞)
−1 P

(∞)−1 =

(
1 0
0 1

)(
−1

2 0
0 1

2

)(
1 0
0 1

)
= −1

2
σ3,

where σ3 is the famous third Pauli-matrix. We propose the following ansatz:

(1.16) Φ(∞)(ξ) = P (∞)

( ∞∑
k=0

Ykξ
k

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 logα2

(ξ) +
∞∑
k=1

Λ
(∞)
k

k
ξk

)
,

where Y0 = I, Yk is off-diagonal and Λ
(∞)
k are all diagonal and to be determined. Putting

the ansatz into equation (1.15) and immediately cancelling the exponential terms we
obtain

P (∞)
∞∑
k=0

Yk+1(k + 1)ξk + P (∞)

( ∞∑
k=0

Ykξ
k

)(
Λ
(∞)
−1

ξ2
+

Λ
(∞)
0

ξ
+

∞∑
k=0

Λ
(∞)
k+1ξ

k

)

=

(
A

(∞)
−1

ξ2
+
A

(∞)
0

ξ
+

∞∑
k=0

A
(∞)
k+1ξ

k

)
P (∞)

( ∞∑
k=0

Ykξ
k

)

Multiplying out and equating the coefficients of ξk we obtain

Yk+1(k + 1) + Yk+2Λ
(∞)
−1 + Yk+1Λ

(∞)
0 +

k∑
l=0

YlΛ
(∞)
k+1−l

= Λ
(∞)
−1 Yk+2 + P (∞)−1A

(∞)
0 P (∞)Yk+1 +

k∑
l=0

P (∞)−1A
(∞)
k+1−lP

(∞)Yl k ≥ 1

and for k = 0 :

Y1Λ
(∞)
−1 + Y0Λ

(∞)
0 = Λ

(∞)
−1 Y1 + P (∞)−1A

(∞)
0 P (∞)Y0

Recalling that Y0 = I and including the terms with Yk+1 in the sums we obtain

[Yk+2,Λ
(∞)
−1 ] + Λ

(∞)
k+1 = P (∞)−1A

(∞)
k+1P

(∞)

+

k+1∑
l=1

(
P (∞)−1A

(∞)
k+1−lP

(∞)Yl − YlΛ
(∞)
k+1−l

)
− (k + 1)Yk+1, k ≥ 1

and for k = 0 :
[Y1,Λ

(∞)
−1 ] + Λ

(∞)
0 = P (∞)−1A

(∞)
0 P (∞)

These formulas determine Yk uniquely as off-diagonal matrices, and Λ
(∞)
k as diagonal

matrices. Indeed we have the explicit formulas for k ≥ 0
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(Y1)ij =


0 for i = j

P (∞)−1A
(∞)
0 P (∞)

(Λ
(∞)
−1 )jj−(Λ

(∞)
−1 )ii

for i 6= j
(1.17)

(Λ
(∞)
0 )ij =

{
(P (∞)−1A

(∞)
0 P (∞))ij for i = j

0 for i 6= j
(1.18)

(Yk+2)ij =


0 for i = j(

P (∞)−1A
(∞)
k+1P

(∞) +

k+1∑
l=1

(
P (∞)−1A

(∞)
k+1−lP

(∞)Yl − YlΛ
(∞)
k+1−l

)
− (k + 1)Yk+1

)
ij

(Λ
(∞)
−1 )jj−(Λ

(∞)
−1 )ii

for i 6= j

(1.19)

(Λ
(∞)
k+1)ij =

{(
P (∞)−1A

(∞)
k+1P

(∞) +
k+1∑
l=1

(
P (∞)−1A

(∞)
k+1−lP

(∞)Yl − YlΛ
(∞)
k+1−l

)
− (k + 1)Yk+1

)
ij

for i = j

0 for i 6= j
(1.20)

It is possible to rewrite the solution (1.16) to the form

Φ(∞)(ξ) = P (∞)

( ∞∑
k=0

Ψ
(∞)
k ξk

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 logα2

(ξ)

)

Indeed we equate the proposed expression with the solution (1.16) and note that the
matrices in the exponential are diagonal, hence they commute with each other. We can
thus rewrite the sum in the exponential as the product of the matrix exponentials and
right multiply by

exp

(
Λ
(∞)
−1

ξ
− Λ

(∞)
0 logα2

(ξ)

)
to obtain

( ∞∑
k=0

Ψ
(∞)
k ξk

)
=

( ∞∑
k=0

Ykξ
k

)
exp

( ∞∑
k=1

Λ
(∞)
k

k
ξk

)
=

( ∞∑
k=0

Ykξ
k

) ∞∑
l=0

(∑∞
k=1

Λ
(∞)
k
k ξk

)l
l!

We write out the first terms in the rightmost expression

I + Λ
(∞)
1 ξ +

1

2
(Λ

(∞)
2 + (Λ∞

1 )2)ξ2 +

(
Λ
(∞)
3

3
+

Λ
(∞)
1 Λ

(∞)
2

2
+

(Λ
(∞)
1 )3

6

)
ξ3 . . . =:

∞∑
k=0

Dkξ
k

Note that the coefficient matrices Dk are all diagonal. We then carry out the multipli-
cation of the two series and equate the coefficients of ξk

Ψ
(∞)
k =

k∑
l=0

YlDk−l.

We conclude that we have found a formal solution of (1.15)

(1.21) Φ(∞)(ξ) = P (∞)

( ∞∑
k=0

Ψ
(∞)
k ξk

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 logα2

(ξ)

)

= P (∞)

( ∞∑
k=0

Ψ
(∞)
k ξk

)
exp

(
Λ(∞)(ξ)

)
,

in a branched neighbourhood of ξ = 0. We have found formulas that determine the co-
efficient matrices uniquely. In general the series in the above solution does not converge,
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hence this is only a formal solution, see [Fok et al.06] and [Bal00]. The exponential, and
logarithmic terms are of course well defined for

ξ ∈ B(0, R2) \ { reiα2 | r ≥ 0 } ,

where α2 is the angle of the branch cut.
We will interpret the solution as an asymptotic expansion of a fundamental solution

as z → ∞, see Definition 1.3.1. In the next Section we show how this interpretation leads
to the Stokes phenomenon, which further gives a nice description of how the solution
behaves in sectors centered at the non-Fuchsian singular point.

1.3 The Stokes phenomenon for the non-Fuchsian singular
point

In this Section we will in great detail describe the solution around the non-Fuchsian point
z2 = ∞. In Section 1.2.6 we found a formal solution, valid in a branched neighbourhood
around z2 = ∞. It is a formal solution, since the series in the expression is a formal
series. In the following Section we will show that on sectorial domains, centered at
ξ = 0 ⇐⇒ z2 = ∞, it is possible to find holomorphic solutions to equation (1.15).
Finally, we can analytically continue these solutions along loops encircling z2 = ∞.

1.3.1 Asymptotic expansions and existence Theorem in sectorial do-
mains

First we define what we mean by an asymptotic expansion.

Definition 1.3.1 Asymptotic expansion of a function.
Given a function f : Σ →M2×2, defined in the sectorial domain

Σ = { z ∈ C | 0 < |z| < R, α < Arg(z) < β } .

If to every closed subsector S ⊂ Σ and for each fixed N ∈ N we have:∥∥∥∥∥f(z)−
N∑
k=0

akφk(z)

∥∥∥∥∥ = O(φN+1), as z → 0 in S,

then we say that the series
∑∞

k=0 akφk(z) is an asymptotic expansion of the function f
in Σ.

We remark that the asymptotic expansion is in general a divergent series. However
the Definition state that: each truncation of the series converge to the function f as
z → 0, where f in general has a non-removable singular point at 0. In this sense, even
though the series diverge, it describes well the behaviour of the function f around its
singular point.

In our case the sequence of functions in the series are φk(ξ) = ξk. We will find
that the solution obtained in equation (1.21) is an asymptotic expansion as ξ → 0 of an
actually existing solution Φ, of the equation (1.15).

The following Theorem give us fundamental solutions in an open sector with a certain
bounded central angle. The midline of the sector can point in arbitrary directions.

Theorem 1.3.1 [T.12.3 in [Was87]] Existence of fundamental solutions of non–
fuchsian system in sectors around a singular point.
Consider the system

dΦ

dξ
Φ(ξ)−1 = A(ξ) =

∞∑
k=−r−1

Ak+1ξ
k
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where A is a N ×N matrix valued function, holomorphic in the sector Σ,

Σ = { ξ ∈ S | 0 < ξ < R, θ1 < Arg(ξ) < θ2, 0 < θ2 − θ1 <
π

r
}

where 0 is a singularity of Poincaré rank r of the system. Suppose the matrix A−r is
diagonalisable, such that A−r = PΛ−rP

−1, where the eigenvalues of A−r are all distinct.
Suppose there exists a formal solution of the system in a neighbourhood of 0, in the

form

(1.22) Φ(ξ) = P

( ∞∑
k=0

Ψkξ
k

)
exp

( −1∑
k=−r

Λk
k
ξk + Λ0 logα(ξ)

)

=: P

( ∞∑
k=0

Ψkξ
k

)
exp(Λα(ξ))

where Λk is diagonal for all k ∈ {−r,−r + 1, . . . , 0 }. The series in this solution is only
formal. Also α is a branch cut of the logarithm chosen outside the sector Σ. Then there
exists a holomorphic function

Ψ̂Σ : Σ → GL2(C)

such that the system possesses a fundamental solution of the form

ΦΣ(ξ) = P Ψ̂Σ(ξ) exp(Λα(ξ)).

Also Ψ̂Σ has the formal series as an asymptotic expansion, that is

(1.23)

∥∥∥∥∥Ψ̂Σ(ξ)−
N∑
k=0

Ψkξ
k

∥∥∥∥∥ = O(ξN+1), ξ → 0, ξ ∈ Σ.

Thus for any ray out from 0, we can find a sector symmetric around the ray, with
central angle less than π

r , where we have a fundamental solution. The condition on the
central angle to be less than π

r is not in general sharp. We will soon discover that we
sometimes can extend the domain of the fundamental solution given by Theorem 1.3.1
into larger sectors.

Remark.
If the function Ψ̂Σ can be analytically continued to a single valued function in a punc-
tured neighbourhood U∗ of ξ = 0, then 0 is a removable singularity. Indeed, since the
asymptotic expansion hold in the whole punctured neighbourhood, we have

lim
ξ→0

Ψ̂Σ(ξ) = lim
ξ→0

∞∑
k=0

Ψkξ
k = Ψ0.

Thus ξ = 0 is a removable singularity of Ψ̂Σ, and it is holomorphic in the whole neigh-
bourhood. Then since the asymptotic expansion of Ψ̂Σ, i.e. the formal series

∑∞
k=0Ψkξ

k,
holds in U∗, the series converges, and we do not need Theorem 1.3.1 to obtain a solution.
Thus in general we expect the sectorial domain of a solution given by Theorem 1.3.1 to
have a central angle less than 2π.

1.3.2 Stokes rays and Stokes sectors

Definition 1.3.2.
Consider the system from Theorem 1.3.1 with the formal solution

Φ(ξ) = P

( ∞∑
k=0

Ψkξ
k

)
exp

( −1∑
k=−r

Λk
k
ξk + Λ0 logα(ξ)

)
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in a punctured neighbourhood of ξ = 0. The rays in the complex plane defined by the
condition

Re
(
(Λ−r)22 − (Λ−r)11

ξr

)
= 0

⇐⇒ Arg(ξ) =
Arg ((Λ−r)22 − (Λ−r)11)

r
+
π

2r
(2n+ 1) =: θn n ∈ Z

are called Stokes rays and are denoted by ln. The angle that defines a Stokes ray ln, is
denoted by θn.

If we consider the formal solution (1.21) we found for the non-Fuchsian singular point
we obtain two Stokes rays. Indeed, we have Poincaré rank r = 1 and by (1.15)

Λ
(∞)
−1 = −1

2
σ3 =

(
−1

2 0
0 1

2

)
.

So Definition (1.3.2) gives

θn = Arg (1) +
(2n− 1)π

2
=

(2n− 1)π

2
, n ∈ Z

Hence we obtain 2 distinct Stokes rays

l2n+1 = l1 =
{
ξ ∈ C | 0 ≤ |ξ|, Arg(ξ) = −π

2
= θ1

}
(1.24)

l2n = l2 =
{
ξ ∈ C | 0 ≤ |ξ|, Arg(ξ) = π

2
= θ2

}
(1.25)

Proposition 1.3.1.
Consider a system as in Theorem 1.3.1, with a non-Fuchsian singular point of Poincaré
rank 1.

dΦ

dξ
Φ(ξ)−1 =

∞∑
k=−2

Ak+1ξ
k,

with a formal solution given by

Φ(ξ) = P

( ∞∑
k=0

Ψkξ
k

)
exp

(
−Λ−1

ξ
+ Λ0 logα(ξ)

)
Let Σ1,Σ2 be open sectors at 0 such that their intersection Σ1 ∩ Σ2 contains exactly

one Stokes ray ln, in the direction θn. Let

Φ1 : Σ1 → GL2(C), Φ2 : Σ2 → GL2(C)

where
Φ1(ξ) := P Ψ̂1(ξ) exp

(
−Λ−1

ξ
+ Λ0 logα(ξ)

)
Φ2(ξ) := P Ψ̂2(ξ) exp

(
−Λ−1

ξ
+ Λ0 logα(ξ)

)
be fundamental solutions as given by Theorem 1.3.1, in particular they both satisfy

the asymptotic condition (1.23)∥∥∥∥∥Ψ̂j(ξ)−
N∑
k=0

Ψkξ
k

∥∥∥∥∥ = O(ξN+1), ξ → 0, ξ ∈ Σj ,

where the truncated series
∑N

k=0Ψkξ
k is the one from the formal solution of the system.

Then Φ1 = Φ2 on Σ1 ∩Σ2, in particular the holomorphic functions Ψ̂1 and Ψ̂2 agree
on a subsector, hence we can regard them as a direct analytic continuation of each other.
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Proof. Let Φ1 and Φ2 be fundamental solutions in sectors Σ1 and Σ2 respectively. As-
sume that they satisfy the asymptotic condition in Σ1∩Σ2. By Lemma 1.2.2 C = Φ−1

1 Φ2

is constant on Σ1 ∩ Σ2. We will show that C = I. We evaluate the limit

lim
ξ→0

C = C = lim
ξ→0

(Φ1)
−1Φ2

By the asymptotic condition we have

lim
ξ→0

(Φ1)
−1Φ2 = lim

ξ→0

(
P Ψ̂1(ξ) exp (Λ(ξ))

)−1 (
P Ψ̂2(ξ) exp (Λ(ξ))

)
= lim

ξ→0
exp (−Λ(ξ)) (I +O(ξ)) exp (Λ(ξ))

Since Λ(ξ) is diagonal we can write the matrix out with the scalar exponential function
of its eigenvalues. We obtain

lim
ξ→0

(
e−(Λ(ξ))11 0

0 e−(Λ(ξ))22

)(
1 +O(ξ) O(ξ)
O(ξ) 1 +O(ξ)

)(
e(Λ(ξ))11 0

0 e(Λ(ξ))22

)
multiplying out we get

(1.26) C = lim
ξ→0

(
1 +O(ξ) e(Λ(ξ))22−(Λ(ξ))11O(ξ)

e(Λ(ξ))11−(Λ(ξ))22O(ξ) 1 +O(ξ)

)
=

(
C11 C12

C21 C22

)
.

Hence to conclude we need that the real parts of the exponential functions are negative
in some subsector of Σ1 ∩ Σ2. The exponent in the exponential can be written out

(Λ(ξ))jj − (Λ(ξ))ii =

(
−Λ−1

ξ
+ Λ

(∞)
0 log(ξ)

)
jj

−
(
−Λ−1

ξ
+ Λ

(∞)
0 log(ξ)

)
ii

= −(Λ−1)jj − (Λ−1)ii
ξ

+
(
(Λ

(∞)
0 )jj − (Λ∞

0 )ii

)
log(ξ)

When taking the limit ξ → 0, the sign of

Re
(
−(Λ−1)jj − (Λ−1)ii

ξ

)
, σij := sign

(
Re
(
−(Λ−1)jj − (Λ−1)ii

ξ

))
will decide whether the limit exists or not. We find its zeroes. Let (Λ−1)jj − (Λ−1)ii =
rΛe

iArg((Λ−1)jj−(Λ−1)ii) and ξ = rξe
iArg(ξ)

0 = Re
(
−(Λ−1)jj − (Λ−1)ii

ξ

)
= Re

(
−rΛ
rξ
ei(Arg((Λ−1)jj−(Λ−1)ii)−Arg(ξ))

)
Since the eigenvalues are distinct and rΛ > 0, this happens if and only if

cos

(
Arg ((Λ−1)jj − (Λ−1)ii)−Arg(ξ)

)
= 0

⇐⇒ Arg(ξ) = Arg ((Λ−1)jj − (Λ−1)ii) +
(2n+ 1)π

2
n ∈ Z.

Finally since cosine changes sign at each zero, we have that σij changes exactly when
ξ pass the rays defined by

(1.27) Arg(ξ) = Arg ((Λ−1)jj − (Λ−1)ii) +
(2n− 1)π

2
n ∈ Z.

Since the sector Σ1 ∩ Σ2 contains exactly one such ray, the sector contains a subsector
where σ12 = −1 and on the other side of the ray σ21 = −1. Hence in the respective
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subsectors the component C12 will have a real negative exponential in the limit and in
the other subsector C21 will have a real negative exponential in the limit. Then we have
that

C =

 1 lim
ξ→0

e(Λ(ξ))22−(Λ(ξ))11O(ξ)

lim
ξ→0

e(Λ(ξ))11−(Λ(ξ))22O(ξ) 1

 = I

We can choose to evaluate the two limits in different subsectors of Σ1∩Σ2 since we know
the limit exist, since C is constant. Thus the path we evaluate the limit along does not
change the value of the limit. ■

Figure 1.1: Here two sectors Σ+
n and Σ−

n

overlap in a sector with central angle δ > 0.
Also there is a Stokes ray ln located in this
subsector.

We now make one final key observa-
tion. By Theorem 1.3.1 we have existence
of a fundamental solution in an arbitrary
open sector with central angle less than
π
r . If two such solutions overlap on one
Stokes ray, then the solutions will be iden-
tical where they coincide. Hence we can
extend our solution. The angle between
consecutive Stokes rays are

θn+1 − θn =
π

2r
(2n+ 1− (2n− 1)) =

π

r
,

hence if two sectors, Σ+
n ,Σ

−
n overlap in a

sector with central angle δ > 0, and a
Stokes ray is exactly in the sector Σ+

n ∩Σ−
n ,

then we will have one solution defined in
the sector Σ+

n ∪ Σ−
n , with central angle

2π
r − δ.

Definition 1.3.3.
We fix a δ > 0 and consider a Stokes ray
ln directed in the angle θn. Consider the sectors

Σ−
n =

{
ξ ∈ C | 0 < |ξ| < Rn, θn−1 +

δ

2
< Arg(ξ) < θn +

δ

2

}

Σ+
n =

{
ξ ∈ C | 0 < |ξ| < Rn, θn −

δ

2
< Arg(ξ) < θn+1 −

δ

2

}
Σn := Σ+

n ∪ Σ−
n is called a Stokes sector associated to the Stokes ray ln.

Σn =

{
ξ ∈ C | 0 < |ξ| ≤ Rn, θn−1 +

δ

2
< Arg(ξ) < θn+1 −

δ

2

}
Remark that in a Stokes sector Σn, by Theorem 1.3.1 and Proposition 1.3.1 we have

an unique solution of the form

ΦΣn(ξ) = P Ψ̂(ξ) exp(Λα(ξ))

such that Ψ̂ is an asymptotic expansion of the formal solution

Φ(ξ) = P

( ∞∑
k=0

Ψkξ
k

)
exp(Λα(ξ)).

Thus the Stokes sectors are exactly the largest sectors where there exist a unique solution,
with a given asymptotic expansion.
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If we consider the Stokes rays obtained in (1.24), we obtain two different Stokes
sectors for our system:

Σ2n+1 = Σ1 =

{
ξ ∈ C | 0 < |ξ| < R, −3π

2
+
δ

2
< Arg(ξ) <

π

2
− δ

2

}
(1.28)

Σ2n = Σ2 =

{
ξ ∈ C | 0 < |ξ| < R, −π

2
+
δ

2
< Arg(ξ) <

3π

2
− δ

2

}
(1.29)

each containing exactly one Stokes ray, see Figure 1.2.

(a) Σ1, the first Stokes sector,
symmetric around the Stokes ray
l1 in the direction θ1 = −π

2 .

(b) Σ2, the second Stokes sector,
symmetric around the Stokes ray
l2 in the direction θ2 = π

2 .

Figure 1.2

1.3.3 Fundamental solutions in the Stokes sectors

We will now combine the results from the two previous sections, to obtain fundamental
solutions in the sectors around the non-Fuchsian point, z2 = ∞.

Figure 1.3: Definition of the logarithm with
singularity at zj , in an arbitrary branched
neighbourhoods around zj .

In order to be precise in the follow-
ing construction, we first define the loga-
rithm centered at a point zj with an ar-
bitrary branch cut αj 6= 0 mod 2πi. Let
b c denote the floor function and find the
whole number n =

⌊αj

2π

⌋
. We round to-

wards zero if αj < 0. Let 0 < x < Rj and
denoting the branch at zj with angle αj
by b

(j)
αj , we define ζz to be any path from

zj + x to z ∈ B(zj , Rj) \ b(j)αj such that
ζz ⊂ B(zj , Rj) \ b(j)αj , see Figure 1.3. Note
that B(zj , Rj) \ b(j)αj is simply connected,
so when we integrate along ζz, the integral
is invariant of the choice of path between
zj + x and z.

Definition 1.3.4 Logarithm with
branch αj at zj.
Let n =

⌊αj

2π

⌋
rounded towards zero, and ζz

be defined as above, see Figure 1.3. The
logarithm with branch αj 6= 0 mod 2πi,
at zj is defined by

logαj
: B(zj , Rj) \ b(j)αj → C
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logαj
(z − zj) :=

∫
ζz

1

ω − zj
dω + ln(x) + 2πin

If we analytically continue the logarithm with branch cut αj at zj along a path η
which encircles zj once counter-clockwise, we obtain:

(1.30)
(
logα

)
η
(z) =

∫
ζz∗η

1

ω − zj
dω + ln(x) + 2πin = logα(z) + 2πi.

Hence the analytic continuation
(
logα

)
η

of the logarithm logα, along a path η that
encloses 0 is not a function in B(0, R) \ { 0 }.

We previously obtained the following formal solution in the whole punctured neigh-
bourhood of z2 = ∞, z = 1

ξ :

Φ(∞)(ξ) = P (∞)

( ∞∑
k=0

Ψ
(∞)
k ξk

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 log(ξ)

)

We consider the Stokes sector

Σ1 =

{
ξ ∈ C | 0 < |ξ| < R, −3π

2
+
δ

2
< Arg(ξ) <

π

2
− δ

2

}
.

From the Definition of Σ1, we have the subsectors Σ−
1 and Σ+

1 which both has central
angle less than π/1 = π. Thus by Theorem 1.3.1 we obtain solutions

Φ
(∞)

Σ−
1

= P (∞)Ψ̂−
1 exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 log π

2
(ξ)

)

Φ
(∞)

Σ+
1

= P (∞)Ψ̂+
1 exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 log π

2
(ξ)

)
in the respective sectors. Notice that we now use Definition 1.3.4, and choose the branch
cut α = π

2 , since this branch is outside the domain of both the functions. This coincides
with the principal logarithm when the argument is less than π

2 .
By Proposition 1.3.1 we have that the solutions Φ

(∞)

Σ−
1

and Φ
(∞)

Σ+
1

coincide in the
subsector

Σ−
1 ∩ Σ+

1 = { ξ ∈ C | 0 < | ξ < R|, −π − δ

2
< Arg(ξ) <

−π + δ

2
} ,

hence we obtain that Φ
(∞)

Σ+
1

is a direct analytic continuation of Φ(∞)

Σ−
1

, and we can regard
them as one solution defined in Σ−

1 ∪ Σ+
1 = Σ1

(1.31) Φ
(∞)
Σ1

(ξ) = P (∞)Ψ̂1(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 log π

2
(ξ)

)
, ξ ∈ Σ1

Σ1 =

{
ξ ∈ C | 0 < |ξ| < R, −3π

2
+
δ

2
< Arg(ξ) <

π

2
− δ

2

}
.

We emphasis that

• P (∞) is a constant matrix that diagonalizes A(∞)
−1 . In our case the gauge rep-

resentation (Definition 1.2.3) of the system (1.1) is chosen such that P (∞) = I.
However, it is important for the analysis that we keep track of the matrices P (i),
i ∈ { 0, 1,∞}.
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• Ψ̂1 : Σ1 → GL2(C) is a holomorphic function, with asymptotic expansion equal to
the series expression in the formal solution (1.21). Remark that similarly to the
logarithmic function, the function Ψ̂1 : Σ1 → GL2(C) is defined on a branched
cut neighbourhood of ξ = 0, a singular point of the function. Indeed, more hard
analysis work can show that Ψ̂1 can be analytically extended as we let δ → 0, in
Definition 1.3.3 of the Stokes sector. Thus obtaining a branched neighbourhood
domain. As we will show in Section 1.3.4, the function can be analytically continued
around ξ = 0, to a multivalued function. The graph of its analytic continuation, is
a Riemann surface Γ ⊂ Σ1 × GL2(C), with similar traits as the Riemann surface
of the logarithm, see Figure 1.7.

• The logarithm in the exponential term has a branch cut chosen to be α = π
2 which

is outside the domain. Hence the logarithm is defined in the whole domain of the
function Φ

(∞)
Σ1

.

• The solution Φ
(∞)
Σ1

is the unique fundamental solution to the system (1.15) in the
Stokes sector Σ1 with asymptotic expansion equal to the formal series solution
(1.21) and logarithm branch π

2 . In the formula for the coefficients of the formal
series, there is a choice of the matrix Ψ

(∞)
0 = I. Different choices gives different

series expressions, however they are all in the end related by right multiplication
of constant matrix, by Lemma 1.2.2.

Similarly we find a fundamental solution in the Stokes sector

Σ2 =

{
ξ ∈ C | 0 < |ξ| < R, −π

2
+
δ

2
< Arg(ξ) <

3π

2
− δ

2

}

(1.32) Φ
(∞)
Σ2

= P (∞)Ψ̂2(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 log 3π

2
(ξ)

)
, ξ ∈ Σ2

The solution Φ
(∞)
Σ2

is the unique fundamental solution to the system (1.15) in the Stokes
sector Σ2 with asymptotic expansion equal to the formal series solution (1.21) and log-
arithm branch 3π

2 .
Together the two solutions Φ(∞)

Σ1
,Φ

(∞)
Σ2

in the respective sectors give solutions at every
point in the punctured neighbourhood of ξ = 0. We notice that the differences in the
expressions for the functions are the holomorphic functions, Ψ̂1 and Ψ̂2, obtained from
Theorem 1.3.1, and the branch of the logarithm.

1.3.4 Analytic continuation around a non-Fuchsian singular point

The goal is to obtain an analytic continuation of the solution Φ
(∞)
Σ1

along paths encircling
the singular point ξ = 0. This will in general not give us a function, since if a path ν∞
goes once counter-clockwise around ξ = 0, the analytic continuation of the logarithm
stops being a function, see equation (1.30).

Consider the solutions Φ
(∞)
Σ1

and Φ
(∞)
Σ2

obtained in the Stokes sectors Σ1 and Σ2 re-
spectively, see Section 1.3.3. The Stokes sectors intersect into two connected components
U1 = Σ1 ∩ Σ2 ∩ {Re(ξ) > 0 } and U2 = Σ1 ∩ Σ2 ∩ {Re(ξ) < 0 }:

(1.33) U1 =

{
ξ ∈ C

∣∣∣∣ 0 < |ξ| < R, −π
2
+
δ

2
< Arg(ξ) <

π

2
− δ

2

}
,

(1.34) U2 =

{
ξ ∈ C

∣∣∣∣ 0 < |ξ| < R,
π

2
+
δ

2
< Arg(ξ) <

3π

2
− δ

2

}
,

see Figure 1.4.
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Figure 1.4: The two connected components
U1 and U2 of the intersection Σ1 ∩ Σ2 and
the loop ν∞.

We will now analytically continue the
solution Φ

(∞)
Σ1

along the loop ν∞, encir-
cling ξ = 0 once counter-clockwise. At
first we are interested in the sector U1,
since the path ν∞ starts at x = ν∞(0) and
moves counter-clockwise around ξ = 0.
We expect in general the two solution
Φ
(∞)
Σ1

, Φ
(∞)
Σ2

to be different, see the Re-
mark following Theorem 1.3.1. But the
solutions solve the same linear differen-
tial equation in a common domain, so by
Lemma 1.2.2 we can find a constant in-
vertible matrix S1 such that

Φ
(∞)
Σ2

= Φ
(∞)
Σ1

S1, in U1.

The branch-cuts of the logarithms in Φ
(∞)
Σ1

and Φ
(∞)
Σ2

were chosen outside the respec-
tive sector domains. Thus the branch cuts
are not in U1 either. Actually we notice
that in U1 the logarithms log π

2
and log 3π

2

coincide (see Definition 1.3.4):

log π
2
(ξ) :=

∫ ξ

x

1

ω
dω + ln(x), ξ ∈ Σ1

log 3π
2
(ξ) :=

∫ ξ

x

1

ω
dω + ln(x), ξ ∈ Σ2

where the integrals can be taken along any path between x and ξ since the sectors are
simply connected.

We can now construct an analytic continuation of the function Φ
(∞)
Σ1

along ν∞, where
the first step involves that Φ

(∞)
Σ2

S−1
1 is a direct analytic continuation of Φ(∞)

Σ1
since they

coincide in the sector U1. See Appendix B for details on analytic continuation. We
remark that the analytic continuation is now defined in Σ1 and Σ2. In U1 ⊂ Σ1 ∩Σ2 the
two expressions coincide, but in U2 they will in general not coincide, if they did, that
would again make ξ = 0 into a removable singularity.

Figure 1.5: Here we see the Stokes sectors Σ1,Σ2 and Σ3 and the loop ν∞ from two
different perspectives. In the right illustration, the multivalued argument function is
plotted on the vertical axis.
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If we want to complete the analytic continuation along ν∞ we need to find a function
defined in a sector that intersects Σ2 and contains the Stokes ray l3 = l1, pointed in the
direction θ3 = 3π

2 . Also the function need to coincide with Φ
(∞)
Σ2

in a common subsector.
The obvious choice for the sector is Σ3, see Figure 1.5. In particular the second connected
component U2 will be the common subsector of Σ2 and Σ3. However the function Φ

(∞)
Σ1

will obviously not work, since the analytic continuation of the logarithm (outlined above)
has a term +2πi added when continued along ν∞ back into Σ1. We thus try the function

(1.35) Φ
(∞)
Σ3

(ξ) := P (∞)Ψ̂1(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 (log π

2
(ξ) + 2πi)

)
, ξ ∈ Σ3

Σ3 =

{
ξ ∈ C | 0 < |ξ| < R,

π

2
+
δ

2
< Arg(ξ) <

5π

2
− δ

2

}
= Σ1

We see that this function is related to Φ
(∞)
Σ1

simply by

(1.36) Φ
(∞)
Σ3

= Φ
(∞)
Σ1

exp
(
2πiΛ

(∞)
0

)
.

This shows that Φ(∞)
Σ3

solves (1.15), since it is a right multiplication by a constant invert-
ible matrix of a known solution. By Proposition 1.3.1 we actually obtain immediately
that this is the unique solution in Σ3 that has the asymptotic expansion

Φ(∞)(ξ) = P (∞)

( ∞∑
k=0

Ψ
(∞)
k ξk

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0

(
log π

2
(ξ) + 2πi

))
.

Hence since Φ
(∞)
Σ2

and Φ
(∞)
Σ3

both solve the same differential equation in U2 (1.34),
we have by Lemma 1.2.2 that there exists a constant invertible matrix S2 such that

Φ
(∞)
Σ3

= Φ
(∞)
Σ2

S2, in U2.

Hence Φ
(∞)
Σ3

S−1
2 is a direct analytic continuation of Φ(∞)

Σ2
, and we thus obtain that the

analytic continuation of Φ(∞)
Σ1

along ν∞ (see Definition B.1.5) is

(1.37)
{(

Σ1,Φ
(∞)
Σ1

)
,
(
Σ2,Φ

(∞)
Σ2

S−1
1

)
,
(
Σ3,Φ

(∞)
Σ1

exp
(
2πiΛ

(∞)
0

)
S−1
2 S−1

1

)}
.

In particular, in Σ3 we have

(1.38)
(
Φ
(∞)
Σ1

)
ν∞

= Φ
(∞)
Σ3

S−1
2 S−1

1 = Φ
(∞)
Σ1

exp
(
2πiΛ

(∞)
0

)
S−1
2 S−1

1

in the neighbourhood Σ3 of ν∞(1). This function does again solve the differential equation
(1.15) in Σ3 since it is a right multiplication by a constant matrix of a known solution.

Remark.
It is pedagogical to denote the sector domain of Φ

(∞)
Σ3

by Σ3 and the angles defining
the sector by the angles one would use to describe the path starting at ξ = 1 = e2πi0,
encircling ξ = 0 and ending at ξ = 1 = e2πi. This is because later, the domain S \
{ 0, t,∞} will be exchanged with its universal covering space, constructed using the
path-space construction in Theorem B.2.1.

The construction of Φ
(∞)
Σ3

in the Stokes sector Σ3 can be generalized to all Stokes
sectors Σn, summarized in the following Theorem:
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Theorem 1.3.2 Unique fundamental solutions in every Stokes sector.
Consider the system (1.15) with the formal solution (1.21):

Φ(∞)(ξ) = P (∞)

( ∞∑
k=0

Ψ
(∞)
k ξk

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 logα(ξ)

)
.

In the odd numbered Stokes sectors (1.28)

Σ2n+1 =

{
ξ ∈ C | 0 < |ξ| < R,

(4n− 3)π

2
+
δ

2
< Arg(ξ) <

(4n+ 1)π

2
− δ

2

}
there exists a unique fundamental solution to (1.15) with the asymptotic expansion equal
to the formal solution with logarithm log π

2
(ξ) + 2πin. The solutions are given by

(1.39) Φ
(∞)
Σ2n+1

= Φ
(∞)
Σ1

exp
(
2πinΛ

(∞)
0

)
, in Σ2n+1, n ∈ Z

Φ
(∞)
Σ2n+1

(ξ) = P (∞)Ψ̂1(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0

(
log π

2
(ξ) + 2πin

))
, ξ ∈ Σ2n+1, n ∈ Z

In the even numbered Stokes sectors (1.29)

Σ2n+2 =

{
ξ ∈ C | 0 < |ξ| < R,

(4n− 1)π

2
+
δ

2
< Arg(ξ) <

(4n+ 3)π

2
− δ

2

}
there exists a unique fundamental solution to (1.15) with the asymptotic expansion equal
to the formal solution with logarithm log 3π

2
(ξ) + 2πin. The solutions are given by

(1.40) Φ
(∞)
Σ2n+2

= Φ
(∞)
Σ2

exp
(
2πinΛ

(∞)
0

)
, in Σ2n+2, n ∈ Z

Φ
(∞)
Σ2n+2

(ξ) = P (∞)Ψ̂2(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0

(
log 3π

2
(ξ) + 2πin

))
, ξ ∈ Σ2n+2, n ∈ Z.

Moreover in any two consecutive Stokes sectors Σm and Σm+1, the intersection is
given by two connected components U1 and U2 (see equation (1.33), (1.34) and Figure
1.4):

U1 = Σm ∩ Σm+1 ∩ {Re(ξ) > 0 } , U2 = Σm ∩ Σm+1 ∩ {Re(ξ) < 0 }

• If m = 2n+ 1 is odd we have

Φ
(∞)
Σ2n+2

= Φ
(∞)
Σ2n+1

S2n+1 in U1.

where S2n+1 is a constant invertible matrix given by the formula

S2n+1 = exp
(
−2πinΛ

(∞)
0

)
S1 exp

(
2πinΛ

(∞)
0

)
and

S1 :=
(
Φ
(∞)
Σ1

)−1
Φ
(∞)
Σ2

, in U1.

• If m = 2n+ 2 is even we have

Φ
(∞)
Σ2n+3

= Φ
(∞)
Σ2n+2

S2n+2 in U2,

where S2n+2 is a constant invertible matrix given by the formula

S2n+2 = exp
(
−2πinΛ

(∞)
0

)
S2 exp

(
2πinΛ

(∞)
0

)
and

S2 :=
(
Φ
(∞)
Σ2

)−1
Φ
(∞)
Σ3

=
(
Φ
(∞)
Σ2

)−1
Φ
(∞)
Σ1

exp
(
2πiΛ

(∞)
0

)
, in U2.
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Proof. We present the proof assuming m = 2n+ 1 is odd, similar arguments hold when
m is even.

The existence of a fundamental solution with the given asymptotic expansion in a
sector Σm = Σ2n+1 follows from the fact that: Φ

(∞)
Σ2n+1

:= Φ
(∞)
Σ1

exp
(
2πinΛ

(∞)
0

)
has

the given asymptotic expansion, and it also solves the differential equation (1.15) since
it is a right multiplication by a constant matrix of a known solution, see (1.31). The
uniqueness is given by Proposition 1.3.1.

The fact that
Φ
(∞)
Σ2n+2

= Φ
(∞)
Σ2n+1

S2n+1 in U1,

for some S2n+1 ∈ GL2(C) is just Lemma 1.2.2. To obtain the formula we remark that
in U1 the following equations hold:

Φ
(∞)
Σ2n+2

= Φ
(∞)
Σ2n+1

S2n+1 = Φ
(∞)
Σ1

exp
(
2πinΛ

(∞)
0

)
S2n+1

Φ
(∞)
Σ2n+2

= Φ
(∞)
Σ2

exp
(
2πinΛ

(∞)
0

)
= Φ

(∞)
Σ1

S1 exp
(
2πinΛ

(∞)
0

)
We equate the expressions and cancel the fundamental solution Φ

(∞)
Σ1

. Here it is im-
portant that it is a fundamental solution, in the sense that it is an invertible matrix.
Solving for S2n+1 we obtain S2n+1 = exp

(
−2πinΛ

(∞)
0

)
S1 exp

(
2πinΛ

(∞)
0

)
. ■

1.3.5 Stokes matrices and Stokes parameters

Definition 1.3.5 Stokes matrices.
The constant matrices Sm, relating the solution between consecutive Stokes sectors Σm
and Σm+1 in Theorem 1.3.2 are called Stokes matrices.

Proposition 1.3.2 Form of Stokes matrices.
A Stokes matrix Sm is always in triangular form

Sm =

(
1 sm
0 1

)
or Sm =

(
1 0
sm 1

)
If S2n+1 is upper triangular then S2n+2 will be lower triangular. Similarly if S2n+2 is
upper triangular then S2n+1 will be lower triangular.

Fixing a choice of the diagonalizing matrix P (∞), fixes the Stokes matrices.Permuting
the eigenvectors in P (∞) changes Sm from upper to lower triangular (respectively from
lower to upper triangular).

Remark.
The statement of this Proposition is slightly different for Stokes matrices of dimension
higher then 2. Then we may need to permute the eigenvalues of the matrix Λ

(∞)
−1 and

accordingly permute the eigenvectors in the matrix P (∞), in order to put the Stokes
matrix into a triangular form. See [Fok et al.06, p.56-57] for details.

Proof. The proof has a similar setup as Proposition 1.3.1. By Theorem 1.3.2 we have
that the solutions are related by

Φ
(∞)
Σm+1

= Φ
(∞)
Σm

Sm

in the subsector U = U1 or U = U2 (see equation (1.33) and (1.34) and Figure 1.4)
depending on whether m is odd or even. We also know that the logarithms in Φ

(∞)
Σ2n+1

and Φ
(∞)
Σ2n+2

coincide in U1 and Φ
(∞)
Σ2n+2

and Φ
(∞)
Σ2n+3

coincide in U2.
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The solutions also share the same asymptotic expansion given by the formal solution:

Φ(∞)(ξ) = P (∞)

( ∞∑
k=0

Ψ
(∞)
k ξk

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 logαm

(ξ)

)
.

We consider the limit Sm = lim
ξ→0

Sm = lim
ξ→0

(
Φ
(∞)
Σm

)−1
Φ
(∞)
Σm+1

where ξ is kept in U . The
left equality comes from the fact that Sm is a constant matrix, see Lemma 1.2.2. We do
the same calculation as in Proposition 1.3.1, and obtain equation (1.26):

(1.41) Sm = lim
ξ→0

(
1 +O(ξ) e(Λ(ξ))22−(Λ(ξ))11O(ξ)

e(Λ(ξ))11−(Λ(ξ))22O(ξ) 1 +O(ξ)

)
=

(
1 S12
S21 1

)
.

Again by the same argument as in Proposition 1.3.1, the terms S12 and S21 are zero if
and only if the exponential function has non-positive exponent. That is,

lim
ξ→0

(Sm)12 = 0 ⇐⇒ Re

−

(
Λ
(∞)
−1

)
22

−
(
Λ
(∞)
−1

)
11

ξ

 ≤ 0

Since we do not have any Stokes rays in U , we know that by the Definition 1.3.2 of
Stokes rays,

Re

−

(
Λ
(∞)
−1

)
22

−
(
Λ
(∞)
−1

)
11

ξ

 = a12(ξ) 6= 0.

Hence we have by continuity of a12, connectivity of U and the intermediate value The-
orem that either a12(ξ) < 0, in U or a12 > 0, in U . If we compare with (Sm)21 we get
the same relation, but with opposite sign dependency:

lim
ξ→0

(Sm)21 = 0 ⇐⇒ Re

−

(
Λ
(∞)
−1

)
11

−
(
Λ
(∞)
−1

)
22

ξ

 < 0.

We arrive at the following conclusion:

(1.42) a12(ξ) = Re

−

(
Λ
(∞)
−1

)
22

−
(
Λ
(∞)
−1

)
11

ξ

 < 0

at one point in U (and consequently at every point in U), if and only if Sm have the

form: Sm =

(
1 0
sm 1

)
. If not then

−a12(ξ) = Re

−

(
Λ
(∞)
−1

)
11

−
(
Λ
(∞)
−1

)
22

ξ

 < 0, in U

and Sm =

(
1 sm
0 1

)
. Notice that the above condition (1.42) on a12 does not depend on

m. This proves that we always have a triangular form.
We show the second statement of Theorem. If Sm is upper triangular and m is odd,

then U = U1 = Σm ∩ Σm+1 ∩ {Re(ξ) > 0 } and −a12 < 0 in U1. Then m+ 1 is even so
the formula

Sm+1 =
(
Φ
(∞)
Σm+1

)−1
Φ
(∞)
Σm+2
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holds in U2 = Σm ∩ Σm+1 ∩ {Re(ξ) < 0 }, and we will get the same condition (1.42),
but for Sm+1. In U2, a12 < 0, since a12 will change sign exactly when going from U1 to
U2, this follows directly from Definition 1.3.2 and since the Stokes rays are “between”
U1 and U2, see Figure 1.4. Hence a12 < 0 in U2 and Sm+1 will be lower triangular. The
result now follows by induction.

The dependency on P (∞) follows from the fact that A(∞)
−1 = P (∞)Λ

(∞)
−1 (P (∞))−1. So

changing the order of the columns in P (∞), changes the index of the eigenvalues (Λ(∞)
−1 )jj .

■

Definition 1.3.6 Stokes parameters.
The complex number sm, determining the Stokes matrix

Sm =

(
1 0
sm 1

)
or Sm =

(
1 sm
0 1

)
is called a Stokes parameter.

Using the expression Λ
(∞)
−1 = −1

2σ3 =

(
−1

2 0
0 1

2

)
into Proposition 1.3.2, we obtain

the Stokes matrices S1 and S2 as:

(1.43) S1 =

(
1 0
s1 1

)
, S2 =

(
1 s2
0 1

)
The other Stokes matrices are obtained through the relations from Theorem 1.3.2:

S2n+1 = exp
(
−2πinΛ

(∞)
0

)
S1 exp

(
2πinΛ

(∞)
0

)
, n ∈ Z

S2n+2 = exp
(
−2πinΛ

(∞)
0

)
S2 exp

(
2πinΛ

(∞)
0

)
, n ∈ Z.

By computing the above matrix products we obtain similar relations for the Stokes
parameters:

s2n+1 = s1e
2πin

(
(Λ

(∞)
0 )11−(Λ

(∞)
0 )22

)
s2n+2 = s2e

2πin
(
(Λ

(∞)
0 )22−(Λ

(∞)
0 )11

)
(1.44)

We see by the above discussion that we only need two consecutive Stokes parameters,
e.g. s1 and s2, to determine all the Stokes matrices, and thus glue together all the
solutions from Theorem 1.3.2 in the Stokes sectors around ξ = 0.

1.3.6 Summary of solutions around the non-Fuchsian singular point

The goal was to find a local solution of the first order linear system of differential
equations:

(1.45) dΦ

dξ
Φ(ξ)−1 =

A
(∞)
−1

ξ2
+
A

(∞)
0

ξ
+

∞∑
k=0

A
(∞)
k+1ξ

k

around ξ = 0.

A
(∞)
−1 = P (∞)Λ

(∞)
−1 P

(∞)−1 =

(
1 0
0 1

)(
−1

2 0
0 1

2

)(
1 0
0 1

)
= −1

2
σ3

where σ3 is the famous third Pauli-matrix.
In Section 1.2.6 we found a formal solution (1.21) of the system (1.45) in a branched

neighbourhood of ξ = 1
z = 0.

Φ(∞)(ξ) = P (∞)

(
I +

∞∑
k=1

Ψ
(∞)
k ξk

)
exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 logα(ξ)

)

32



• The formal solution involves a choice of the eigenvector matrix P (∞) which diago-
nalizes the matrix A(∞)

−1 = P (∞)Λ
(∞)
−1 P

(∞)−1. We chose P (∞) = I.

• The formal solution involves a formal series, which does not converge. The coef-
ficients of the series is uniquely determined by the recurrent formulas in Section
1.2.6, up to the choice of the first matrix Ψ

(∞)
0 , which we chose as Ψ

(∞)
0 = I.

If we change this matrix, the recurrent formulas generate a different series (still
divergent), and the two solutions are related by right multiplication by a constant
matrix by Lemma 1.2.2.

• Finally there is a choice of the branch cut for the logarithm which appears in
the formula. When finding the solutions of (1.45) which actually exist, we use
several different branches to obtain several distinct solutions in sectors covering
the punctured neighbourhood of ξ = 0.

Definition 1.3.7 Canonical formal solution.
The formal solution outlined above, found in Section 1.2.6 is called the canonical formal
solution of system (1.45).

Theorem 1.3.1 gives us the existence of a fundamental solution in sectors of central
angle less than π, such that the formal solution is an asymptotic expansion of this
fundamental solution. Further Proposition 1.3.1 says that if there is exactly one Stokes
ray in the domain of the solution given by Theorem 1.3.1, then this solution is the only
solution in its domain with the formal solution as an asymptotic expansion. Remark
that here we fix a branch cut for the logarithm in the formal solution.

The Stokes sectors are defined with the goal of being the largest sectorial domain
where Theorem 1.3.1 give a unique solution, given a formal solution with a fixed loga-
rithmic branch.

Definition 1.3.8 Canonical fundamental solution in Stokes sectors.
The solutions

Φ
(∞)
Σ2n+1

= P (∞)Ψ̂1(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0

(
log π

2
(ξ) + 2πin

))
, ξ ∈ Σ2n+1, n ∈ Z

Φ
(∞)
Σ2n+2

= P (∞)Ψ̂2(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0

(
log 3π

2
(ξ) + 2πin

))
, ξ ∈ Σ2n+2, n ∈ Z.

defined in the Stokes sectors

Σ2n+1 = Σ1 =

{
ξ ∈ C | 0 < |ξ| < R, −3π

2
+
δ

2
< Arg(ξ) <

π

2
− δ

2

}
.

Σ2n+2 = Σ2 =

{
ξ ∈ C | 0 < |ξ| < R, −π

2
+
δ

2
< Arg(ξ) <

3π

2
− δ

2

}
are called the canonical fundamental solutions in the Stokes sectors Σ2n+1 and Σ2n+2

respectively.

The canonical fundamental solutions are of course, as discussed above, uniquely
determined by the canonical formal solution. By Theorem 1.3.2, these two solutions
can be used to generate all fundamental solutions in sectorial domains at ξ = 0 such
that the formal solution is its asymptotic expansion, with the correct branch cut for the
logarithm.

Further, given a solution in a Stokes sector,we can do an analytic continuation along
any path in the punctured neighbourhood B(0, R)\{ 0 }, by utilizing the Stokes matrices
which connect the solutions:
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• If m = 2n+ 1 is odd we have

Φ
(∞)
Σ2n+2

= Φ
(∞)
Σ2n+1

S2n+1, in U1.

where S2n+1 is a constant invertible matrix given by the formula

S2n+1 = exp
(
−2πinΛ

(∞)
0

)
S1 exp

(
2πinΛ

(∞)
0

)
, S1 =

(
1 0
s1 1

)
• If m = 2n+ 2 is even we have

Φ
(∞)
Σ2n+3

= Φ
(∞)
Σ2n+2

S2n+2, in U2

where S2n+2 is a constant invertible matrix given by the formula

S2n+2 = exp
(
−2πinΛ

(∞)
0

)
S2 exp

(
2πinΛ

(∞)
0

)
, S2 =

(
1 s2
0 1

)
1.3.7 The Stokes phenomenon

The Stokes phenomenon is the situation where two different solutions of a differential
equation admit the same asymptotic expansion [Fok et al.06].

In our case we showed that each connected component of the intersection between
Stokes sectors, is a sector without any Stokes rays. As Proposition 1.3.2 shows, the
Stokes matrices which relate the solutions in this sector is in general not the identity.
Following [Fok et al.06], we make the following Definition:

Definition 1.3.9 Stokes phenomenon data.
Given the canonical formal solution of (1.1) around a non-Fuchsian singular point z0
of Poincaré rank r > 0, and the canonical fundamental solutions in the Stokes sectors.
The set

SPhz0 := {Λ(z0)
−r , . . . ,Λ

(z0)
−1 ,Λ

(z0)
0 ;S1, S2, . . . , S2r }

is called the Stokes phenomenon data corresponding to a non-Fuchsian singular point z0.

In the case of (1.45)

(1.46) SPh∞ = {Λ(∞)
−1 ,Λ

(∞)
0 ;S1, S2 }

Proposition 1.3.3 [Fok et al.06, Th. 1.1.5].
Consider two systems of differential equations

dΦ

dz
= A(z)Φ(z),

dΥ

dz
= B(z)Υ(z)

that have the same point z0 ∈ S as a irregular singular point, both of Poincaré rank
r > 0. Moreover, suppose that

SPhz0(A) = SPhz0(B)

Then the above systems are locally gauge equivalent, i.e.,

A = gBg−1 +
dg

dz
g−1, in B(z0, R).

The Theorem is stated in a more general setting than we need. Details on the
canonical solutions in the general setting can be found in [Fok et al.06].
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Proof. Let {Φn }2r+1
n=1 and {Υn }2r+1

n=1 denote the sets of canonical solutions of the two
systems defined in the same Stokes sectors Σn. Recall that the Stokes sectors are deter-
mined by the Stokes rays which in turn is determined by Λ−r. The following equation
shown in (1.35) hold in general:

Φ2r+1(z) = Φ1(z) exp
(
2πiΛ

(z0)
0

)
We will prove the existence of g : B(0, R) → GL2(C) such that Φn(z) = g(z)Υn(z)

and thus by Definition 1.2.3 the two systems will be gauge equivalent.
Define

g(z) = Φ1(z)Υ1(z)
−1, z ∈ Σ1

Here the inverse means the inverse matrix operation. This makes g into a holomorphic
GL2(C) valued function in Σ1, since the canonical solution Φn and Υn are fundamen-
tal, holomorphic solutions. We now analytically continue g around the punctured disk
B(z0, R) \ { 0 }.

We know by the construction in the previous sections that starting in Σ1 we can
analytically continue Φ1 and Υ1 along

ν0 : [0, 2π] → S

t 7→ z0 +
R
2 e

it

a path looping counter-clockwise around z0. Thus for z ∈ Σn, we can restrict ν0 such
that ν0|[0,tn](tn) ∈ Σn. Then the following equations hold:

Φν0|[0,tn]
(z) = Φn(z)S

−1
n−1S

−1
n−2 . . . S

−1
1

Υν0|[0,tn]
(z) = Υn(z)S

−1
n−1S

−1
n−2 . . . S

−1
1

Hence g also admits an analytic continuation along ν0 :

gν0|[0,tn]
(z) = Φn(z)Υ

−1
n (z)

Hence we have that in each Stokes sector gν0|[0,tn]
is an invertible, holomorphic func-

tion. Further in the Stokes sector Σ2r+1 :

gν0|[0,t2r+1]
(z) = gν0(z) = Φ2r+1(z)Υ

−1
2r+1(z)

= Φ1(z) exp
(
2πiΛ(z0)

o

)
exp

(
−2πiΛ

(z0)
0

)
Υ1(z) = g(z)

Hence g is analytically continued to the whole punctured disc, and thus z0 is a removable
singularity of g. Thus g is holomorphic in B(z0, R). ■

Proposition 1.3.3 shows that the Stokes phenomenon data, together with the canon-
ical formal and fundamental solutions, uniquely describes the local behaviour around a
non-Fuchsian singular point, of course up to right multiplication by a constant matrix.

1.4 A fundamental solution on the universal cover of the
punctured Riemann sphere

In this Section we will describe a global solution of the differential equation (1.2). From
the local solutions found in Section 1.2 and 1.3.6, it is clear that a “global solution” de-
fined on M = S \{ 0, t,∞} would be a multi valued function. The main goal in Chapter
1 is to describe this multi valued function, in an effective and detailed manner. This
is done by utilizing the monodromy theory, see Section 1.4.4. In order to describe and
understand the monodromy theory, it is wise to construct the solution on the universal
covering space M̃ , of M = S \ { 0, t,∞}, as a single valued globally defined function.
This requires some tedious calculations, and a lot of compositions with charts and pro-
jections, but has the benefit of giving a clear meaning and explanation to all the different
terms that show up along the way. E.g. connections matrices (Definition 1.4.3).
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1.4.1 The universal holomorphic cover of the punctured Riemann sphere

In this thesis the model space is M = S \ { 0, t,∞}. This is a connected complex
holomorphic manifold of dimension one, i.e. a Riemann surface, see Example A.1.1.
The Definition and construction of an universal holomorphic covering can be found in
Appendix B.2.

Corollary 1.4.1 of Theorem B.2.1.
Let M = S \ { 0, t,∞}. There exists a simply-connected Riemann surface M̃ and a
holomorphic map p : M̃ → M such that (M̃,M, p) is a universal holomorphic covering,
see Definition B.2.1.

The universal cover M̃ consists of homotopy classes of curves ζ, from a basepoint
zb ∈ M , to any other point on M . We will use the notations [z, ζ] and z̃ for points on
M̃ , the latter when we don’t need to be specific about where z̃ is in the fiber π−1(z).

The covering map p : M̃ → M takes a neighbourhood Ũ[z,ζ], and projects it to the
neighbourhood U of z ∈ M . The charts on M̃ is characterized by first a projection
p|Ũα

: Ũα → Uα then followed by either ϕ0(z) = z or ϕ∞(z) = 1
z , see Example A.1.1.

The fundamental group of M = S\{ 0, t,∞} can be identified. Consider the following
sequence of homeomorphisms:

S \ { 0, t,∞} ' C \ { 0, 1 } ' R2 \ { 0, 1 } ' “figure-eight-space”.

where the last homeomorphism is obtained by a deformation retract, see [Mun00] for a
more detailed description. The homeomorphism S \ { 0, t,∞} → “figure-eight-space”,
induces an isomorphism of fundamental groups. It is well known that the fundamental
group of the “figure-eight-space” is isomorphic to the Free group on two elements, F2.
This group has an easy description: Let the elements a and b be the “generating”
elements of the group, and e the identity element, where we always write “ae” as “a”,
etc. Then

F2 = { all words made by the letters a, a−1, b and b−1 | e = aa−1, a−1a, bb−1, b−1b } .

There should exist two elements that can generate all the elements of the group π1(M, zb) =
π1(S\{ 0, t,∞} , zb). We will represent these two elements by homotopy classes [γ0], [γ1] ∈
π1(M, zb). A representative of [γ0] is a loop starting at zb going close to 0, looping 0
once counter-clockwise and then going back to zb. [γ0]

−1 is of course the homotopy
class represented by γ−1

0 , which is γ0 traversed clockwise, similarly for [γ1]−1. Obviously
there is not only one such homotopy class that can be used to represent the element
going around 0. But we can make the choice clear by first removing some lines from
M = S \ { 0, t,∞}.

Consider the following lines on the sphere S, see Figure 1.6:

L0 = { the short segment of the great circle connecting zb and 0 }
L1 = { the short segment of the great circle connecting zb and t }
L∞ = { the short segment of the great circle connecting zb and ∞}

if we define

(1.47) M̂ := (S \ {L0, L1, L∞ }) ∪ { zb } ⊂ S \ { 0, t,∞} ,

then evidently M̂ is a simply connected subset of M , see Figure 1.6. On M̂ there is up
to homotopy a unique choice of a loop γ0 going from zb, counter-clockwise around 0 and
back to zb, without enclosing any of the other punctured points. Similarly for t and ∞.

It is clear from Figure 1.6 and a topological mind-argument that the path γ0 ∗ γ1
can be stretched around the sphere to prove that its homotopic to the loop γ−1

∞ , from zb
clockwise around ∞. We formulate the result as a Lemma.
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Lemma 1.4.1 Homotopy relation in fundamental group of S \ {0, t,∞}.
Consider the elements [γ0], [γ1], [γ∞] ∈ π1(S \ { 0, t,∞} , zb), represented by the loops in
Figure 1.6. The following relation holds:

[γ0] ∗ [γ1] ∗ [γ∞] = [zb].

The group π1(M, zb) is isomorphic to F2, and we can thus generate the group using
the two elements [γ0], [γ1] as generators.

1.4.2 Analytic continuation of the solutions around Fuchsian points

Figure 1.6: S\{ 0, t,∞} with the cuts L0, L1

and L∞. The indicated red paths are repre-
sentatives of the homotopy classes [γ0], [γ1]
and [γ∞]

In Section 1.2 we found local solutions of
the system in equation (1.2) around every
point in S \ { 0, t,∞}. In particular the
solutions Φ(0) in equation (1.9) and Φ(1)

in equation (1.14) involve a logarithmic
term which cannot be defined in a punc-
tured neighbourhood of z0 = 0 or z1 = t
respectively. However, when we change
the domain to M̃ , the universal cover of
M = S\{ 0, t,∞}, we can take advantage
of the fact that M̃ is simply connected and
thus define the logarithm everywhere in
M̃ . We already did a similar construction
when we constructed the solutions Φ(∞)

Σ2n+1

and Φ
(∞)
Σ2n+2

in Section 1.3.4.
The local solutions Φ(0) and Φ(1), of

the differential equation (1.2) around the
Fuchsian points z0 = 0 and z1 = t, respec-
tively, are given by

Φ(0)(z) =P (0)

( ∞∑
k=0

Ψ
(0)
k zk

)
exp

(
Λ
(0)
0 logα0

(z)
)
, z ∈ B(0, R0) \ b(0)α0

,

Φ(1)(z) =P (1)

( ∞∑
k=0

Ψ
(1)
k (z − t)k

)
exp

(
Λ
(1)
0 logα1

(z − t)
)
, z ∈ B(t, R1) \ b(1)α1

,

where b(j)αj = { zj + reiαj ∈ S \ { 0, t,∞} | r ≥ 0 } with z0 = 0 and z1 = t. We will now
do an analytic continuation of the solutions along loops around the singularities. Since
the solutions are similar we can do the construction for the solution of the form

(1.48) Φ(j)(z) = P (j)

( ∞∑
k=0

Ψ
(j)
k (z − zj)

k

)
exp

(
Λ
(j)
0 logαj

(z − zj)
)
,

z ∈ B(zj , Rj) \ b(j)αj , j = 0, 1. Let 0 < x < Rj and consider a loop νj : I → B(zj , Rj),
starting at zj + x, going once counter-clockwise around zj . We want to continue analyt-
ically Φ(j) along νj and obtain a function (Φ(j))νj , defined in a neighbourhood of zj +x.
However, this is easy, since the series

P (j)
∞∑
k=0

Ψ
(j)
k (z − zj)

k,

converges in B(zj , Rj), and is thus not changed under the analytic continuation. hence
we only need to analytically continue the logarithmic term, see Figure 1.7. By equation
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(1.30) we obtain:

(1.49)
(
Φ(j)

)
νj
(z) = P (j)

( ∞∑
k=0

Ψ
(j)
k (z − zj)

k

)
exp

(
Λ
(j)
0

(
logαj

(z − zj) + 2πi
))

= Φ(j)(z) exp
(
2πiΛ

(j)
0

)
1.4.3 Construction of a fundamental solution on the universal cover of

a punctured Riemann sphere

Figure 1.7: The Riemann surface of the log-
arithm, obtained as a graph of the analytic
continuation of the logarithm in C \ { 0 }.
The vertical axis represent the imaginary
part of the logarithm, and the colour gra-
dient the real part.

The goal is to give a fundamental solution
to the system of equations:

(1.50) dΦ

dz
Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

= A(z)

As we have seen, when analytically con-
tinuing the local solutions around the sin-
gularities, one obtains multivalued func-
tions. We will thus change the domain M
of the differential equation (1.50) into M̃ ,
the universal covering space of M . We can
then construct a global holomorphic solu-
tion on M̃ , using Corollary B.1.1, where
we exploit the fact that M̃ is path con-
nected and simply connected. We first de-
fine the differential equation (1.50) on the
universal cover M̃ of M .

Definition 1.4.1 Differential equation
on a holomorphic covering space.
Let (M̃,M, p) be a holomorphic covering.
Let D be a differential operator acting on
functions defined on M . We define a differential operator D̃ on M̃ by D̃ := D ◦ p.

By Definition 1.4.1 we have that

(1.51) dΦ̃

dz̃
Φ̃(z̃)−1 = A ◦ p(z̃) = σ3

2
+

A0

p(z̃)
+

At
p(z̃)− t

=
σ3
2

+
A0

z
+

At
z − t

is a differential equation defined on M̃ . We note that by Corollary B.2.1, the function
A◦ p : M̃ →M2(C) is holomorphic. The main goal is to prove the existence of Φ̃ : M̃ →
GL2(C), solving equation (1.51). We give a summary of the tools we have available:

• In Sections 1.2 and 1.3 we found local solutions for (1.50) at every point z ∈
S \ { 0, t,∞}. We also found solutions around the singular points. These solutions
depend, in particular, on a choice of a branch for the logarithmic expressions
appearing in their formulas. By lifting the problem into M̃ this choice will no
longer be needed, as the logarithm can be defined everywhere in M̃ .

• In Section 1.4.2 we found an explicit formula for the analytic continuation of the
local solutions around the Fuchsian singular points z0 = 0 and z1 = t, along a path
encircling the point zj once.

• Around the non-Fuchsian singular point z2 = ∞ the Stokes phenomenon appears,
and the solutions are pretty complicated as shown in Section 1.3. Nevertheless,
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given the Stokes sector Σ1 at ∞, and a solution Φ
(∞)
Σ1

in the given sector, it is
possible to continue analytically this function around the non-Fuchsian singular
point z2 = ∞, using the solutions in the different Stokes sectors, as shown in
(1.37).

• In Section 1.4.1 we constructed the universal holomorphic covering space M̃ of
M . This is a simply connected Riemann surface. In Appendix B we prove the
monodromy Theorem B.1.1, and its important Corollary B.1.1, on a Riemann
surface. The Corollary states that if we have a function Φ̃ : Ũ → GL2(C), locally
defined on M̃ , then if Φ̃ can be analytically continued along ny path on M̃ , we can
extend Φ̃ into an unique globally defined holomorphic function Φ̃ : M̃ → GL2(C).

• In Section A.1 we have defined the meaning of dΦ̃
dz̃ at a point z̃ ∈ M̃ . From Section

1.4.1 we know that we have two types of charts on M̃ , the type ϕ̃0 = ϕ0 ◦ p|Ũ and
ϕ̃∞ = ϕ∞ ◦ p|Ũ . To be consistent we will only use ϕ̃0. Let ϕ̃0 = ϕ0 ◦ p|Ũ : Ũ →
U ⊂ C \ { 0, t }. Since ϕ0(z) = z, we can identify the chart ϕ̃0 with p|Ũ .

dΦ̃

dz̃

∣∣∣∣
z̃

:=
d

dω

(
Φ̃ ◦ ϕ̃−1

0 (ω)
) ∣∣∣∣

ϕ̃0(z̃)=z

=
d

dω

(
Φ̃ ◦ p|−1

Ũ
(ω)
) ∣∣∣∣

p(z̃)=z

.

We will now construct a global solution of (1.51) on M̃ , by analytically continuing
a local solution defined in a neighbourhood of a particular point zb, the basepoint from
the construction of the universal cover M̃ . We will follow the convention in [Fok et
al.06] and choose the basepoint zb for the universal cover M̃ , in the Stokes sector Σ1 at
z = ∞ ⇐⇒ ξ = 1

z = 0. To be consistent we will now denote points on S\{ 0, t,∞} only
by the identity chart ϕ0(z) = z. Changing between the charts ϕ0 and ϕ∞ on S\{ 0, t,∞}
the Stokes sector Σ1 transforms as:

Σ1 =

{
ξ ∈ C \

{
0,

1

t

} ∣∣∣∣ 0 < |ξ| < R, −3π

2
+
δ

2
< Arg(ξ) <

π

2
− δ

2

}
(1.52)

ϕ−1
∞ (Σ1) =

{
z ∈ S \ { 0, t,∞}

∣∣∣∣ 1

R
< |z|, −π

2
+
δ

2
< Arg(ξ) <

3π

2
− δ

2

}
(1.53)

We can choose a condition Φ̃[zb,zb] ∈ GL2(C) for the solution to satisfy at [zb, zb], the
point in the fiber above zb reached by the constant loop. This is the initial value of the
system. Recall the canonical solution Φ

(∞)
Σ1

in the Stokes sector Σ1, given in Definition
1.3.8,

Φ
(∞)
Σ1

(ξ) = P (∞)Ψ̂1(ξ) exp

(
−
Λ
(∞)
−1

ξ
+ Λ

(∞)
0 log π

2
(ξ)

)
, ξ ∈ Σ1

and the chart
ϕ∞ : S \ {0, t,∞} → C \ { 0, 1t }

z 7→ 1
z = ξ

We note that ϕ−1
∞ (Σ1) is evenly covered by p, since it is open, connected and simply-

connected, see the construction in Theorem B.2.1.

Remark.
The logarithm with branch 0 < α∞ < 2π in the chart ϕ∞(z) = 1

z = ξ centered at ξ = 0,
is defined in Definition 1.3.4 by

logα∞ : B(0, R∞) \ { b(∞)
α∞ } → C,
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logα∞(ξ) :=

∫
ζξ

1

ω
dω + ln(xξ)

We insert ξ = ϕ∞(z) = 1
z , and thus define a function in a branched neighbourhood of

z2 = ∞ on S \ { 0, t,∞}. The branched neighbourhood B(0, R∞) \ { b(∞)
α∞ } is mapped

bi-holomorphically through ϕ−1
∞ (ξ) = 1

ξ to the branched neighbourhood(
S \ { 0, t,∞} \ cl

(
B
(
0, 1/R∞

)))
\
{
re−iα∞ | r ≥ 1/R∞

}
.

In particular, ϕ−1
∞ (xξ) =: xz, the path ζξ is mapped to ηz = ϕ−1

∞ (ζξ), and the derivative
of this reparametrization is given by

dϕ∞
dz

=
dξ

dz
= − 1

z2
.

Using the integration variable ω for ξ and s for z, we compute

(1.54) logα∞ (ϕ∞(z)) =

∫
ζξ

1

ω
dω + ln(xξ)

=

∫
ηz

s

(
− 1

s2

)
ds+ ln

(
1

xz

)
= −

∫
ηz

1

s
ds− ln(xz) = − log−α∞(z).

We will use this formula to express the logarithm centered at z2 = ∞, when using the
chart ϕ0 on S \ { 0, t,∞}.

Let p|Σ̃[zb]
denote the restriction of p to the sheet above ϕ−1

∞ (Σ1) containing [zb, zb].
We now define a holomorphic function in the sector

(1.55) Σ̃[zb] = p|−1
Σ̃[zb]

◦ ϕ−1
∞ (Σ1)

=
{
[x, η] ∈ M̃ | x ∈ ϕ−1

∞ (Σ1) , η ∼ ζzb,x, ζzb,x ⊂ ϕ−1
∞ (Σ1)

}
⊂ M̃,

where for any x ∈ ϕ−1
∞ , ζzb,x is a path between zb and x, contained in ϕ−1

∞ (Σ1), and η is
homotopic to ζzb,x.

Proposition 1.4.1 Defining a function seed.
The function

Φ̃ : Σ̃[zb] ⊂ M̃ → GL2(C)

[z, ζ] 7→ Φ
(∞)
Σ1

◦ ϕ∞(z)E(∞)
Φ̃([zb, zb]) := Φ̃[zb,zb](1.56)

Φ̃([z, ζ]) = Φ
(∞)
Σ1

◦ ϕ∞ ◦ p([z, ζ])E(∞)

= P (∞)Ψ̂1 ◦ ϕ∞(z) exp
(
−zΛ(∞)

−1 − Λ
(∞)
0 log−π

2
(z)
)
E(∞)

is a holomorphic function defined in the neighbourhood Σ̃[zb] ⊂ M̃ of [zb, zb], with the
constant matrix E(∞) determined by

E(∞) :=
(
Φ
(∞)
Σ1

◦ ϕ∞ (zb)
)−1

Φ̃[zb,zb].

It is the unique solution to equation (1.51) in Σ̃[zb] (1.55) which equals Φ̃[zb,zb] at [zb, zb].
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Proof. To show that the function is well defined, the only thing to check is that we can
define E(∞) as promised. Indeed since Φ

(∞)
Σ1

is a fundamental solution, see Definition
1.1.2, it is an invertible matrix at each point ξ = 1

z . Hence we can define E(∞) by:

E(∞) :=
(
Φ
(∞)
Σ1

◦ ϕ∞ (zb)
)−1

Φ̃[zb,zb].

we note that at [zb, zb]

Φ̃([zb, zb]) = Φ
(∞)
Σ1

◦ ϕ∞ ◦ p([zb, zb])E(∞) = Φ̃[zb,zb].

The function is holomorphic since it is a composition of holomorphic functions:

Φ̃([z, ζ]) = Φ
(∞)
Σ1

◦ ϕ∞ ◦ p([z, ζ]) : Σ̃[zb] ϕ−1
∞ (Σ1) Σ1 GL2(C)

p ϕ∞ Φ
(∞)
Σ1

p being holomorphic by Corollary 1.4.1, ϕ∞ since it is a chart and Φ
(∞)
Σ1

by its construc-
tion in Section 1.3.3.

We show that Φ̃ solves equation (1.51) by calculating dΦ̃
dz̃ Φ̃

−1 in the chart

ϕ̃ = ϕ0 ◦ p
∣∣
Σ̃[zb]

: Σ̃[zb] → C \ { 0, t } .

First we compute the function composed with the inverse chart

Φ̃ ◦ ϕ̃−1(ω) = Φ
(∞)
Σ1

◦ ϕ∞ ◦ p ◦ p
∣∣−1

Σ̃[zb]
◦ ϕ−1

0 (ω) = Φ
(∞)
Σ1

◦ ϕ∞(ω) = Φ
(∞)
Σ1

(
1

ω

)
= Φ

(∞)
Σ1

(ξ).

Then the result is trivial since

d(Φ̃ ◦ ϕ̃−1(ω))

dω

(
Φ̃ ◦ ϕ̃−1(ω)

)−1
=
dΦ

(∞)
Σ1

(ξ)

dξ

dξ

dω

(
Φ
(∞)
Σ1

(ξ)
)−1

,

which solves (1.50) by what we showed in Section 1.3.3. The uniqueness follows from the
fact that any other solution to (1.51) in Σ̃[zb] is equal to Φ̃ up to right multiplication by
a constant matrix, see Lemma 1.2.2. However since the functions agree at [zb, zb], this
constant matrix is the identity. ■

The constant matrix E(∞) depends on the initial condition Φ̃[zb,zb]. The usual con-
vention is to choose the initial condition Φ̃[zb,zb] such that E(∞) = I, see [Fok et al.06]
and [JMU81]. We will follow this convention and thus we give the following definition.

Definition 1.4.2 Connection matrix related to z2 = ∞.
The constant matrix E(∞) defined in Proposition 1.4.1 is called the connection matrix
related to z2 = ∞. The initial condition in Φ̃ can be chosen as

Φ̃[zb,zb] = Φ
(∞)
Σ1

◦ ϕ∞(zb),

and thus
E(∞) =

(
Φ
(∞)
Σ1

◦ ϕ∞(zb)
)−1

Φ̃[zb,zb] = I

The function Φ̃ : Σ̃[zb] → GL2(C) from Proposition 1.4.1 will now be continued
analytically using Corollary B.1.1. In order to apply the Corollary we need to show that
Φ̃ can be continued analytically along any path ζ̃ in M̃ .
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Proposition 1.4.2 Analytic continuation of Φ̃ along any path in M̃ .
The holomorphic function

Φ̃ : Σ̃[zb] → GL2(C)

[z, ζ] 7→ Φ
(∞)
Σ1

◦ ϕ∞(z)E(∞)
Φ̃([zb, zb]) := Φ̃[zb,zb]

can be continued analytically along any path in M̃ .

Proof. Let ζ̃ : I → M̃ be a path in M̃ starting at [zb, zb], ending at [z, ζ]. By the
construction of the universal covering (M̃,M, p) in Section B.2 we know that the path
ζ̃ projects to the path ζ = p ◦ ζ̃ in M through the covering map p. Since M̃ is simply
connected, an analytic continuation along ζ̃ is invariant up to the homotopy-class of ζ̃.
Since the image ζ̃(I) is compact, we can cover it by a finite set { D̃k }

n

k=0 of open sets
such that:

• The functions p|D̃k
: D̃k → Dk ⊂ M, is bi-holomorphic, and {Dk }nk=0 are open

discs in S \ { 0, t,∞}.

• There exists a partition

{ 0 = a0, a1, . . . , an, an+1 = 1 }

of I such that ζ̃([ak, ak+1]) ⊂ D̃k.

• The sets D̃k is chosen small enough so that in Dk ⊂ M there exists a solution
Φk := Φ(a) : Dk → GL2(C) of (1.50) by using one of the local solutions Φ(a),
constructed in Section 1.2. Φ0 is chosen to be Φ

(∞)
Σ1

◦ ϕ∞
∣∣
D0

.

• By Corollary B.2.1 in each D̃k we can define the holomorphic function

Φk ◦ p : D̃k → GL2(C).

Adapting to the proof in Proposition 1.4.1, it is easy to show that Φk ◦ p solves
(1.51) in D̃k.

Compare with Definition B.1.5 we see that we need to figure out how to glue together
solutions Φk ◦ p and Φk+1 ◦ p in D̃k ∩ D̃k+1. This is dealt with by once again appealing
to Lemma 1.2.2. We let C0 = E(∞). Inductively, having defined Ck, we let

Ck+1 :=
(
Φk+1 ◦ p ◦ ζ̃(ak+1)

)−1
(
Φk ◦ p ◦ ζ̃(ak+1)

)
Ck

=
(
Φk+1 ◦ ζ(ak+1)

)−1
(Φk ◦ ζ(ak+1))Ck

Then we define the functions

(1.57)
Φ̃k : D̃k → GL2(C)

[z, ζ] 7→
(
Φk ◦ p([z, ζ])

)
Ck

that still solve (1.51) since it is a constant matrix times a known solution. We thus
obtain that

Φ̃0 = (Φk ◦ p([z, ζ]))C0 =
(
Φ
(∞)
Σ1

◦ ϕ∞ ◦ p
∣∣
D̃0

)
E(∞) = Φ̃

∣∣
D̃0
,

and

Φ̃k ◦ ζ̃(ak+1) =
(
Φk ◦ ζ(ak+1)

)
Ck =

(
Φk+1 ◦ ζ(ak+1)

)
Ck+1 = Φ̃k+1 ◦ ζ̃(ak+1),

by the Definition of Ck+1. The latter implies that Φ̃k = Φ̃k+1 in D̃k ∩ D̃k+1 since they
differ only by a constant matrix, i.e. the identity matrix. We conclude that (Φ̃k, D̃k)

n
k=0

is an analytic continuation of Φ̃ along ζ̃. ■
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Definition 1.4.3 Connection matrices of an analytic continuation along a path.
Let (Φ̃k, D̃k)

n
k=1 be an analytic continuation of Φ̃, as defined in Proposition 1.4.2, along

a path ζ̃, where Φ̃k = (Φk ◦ p)Ck. The matrices {Ck }nk=0 defined by

C0 = E(∞) :=
(
Φ
(∞)
Σ1

◦ ϕ∞(zb)
)−1

Φ̃[zb,zb]

Ck+1 :=
(
Φk+1 ◦ ζ(ak+1)

)−1
(Φk ◦ ζ(ak+1))Ck

are called the connection matrices of the analytic continuation.

Figure 1.8: Paths from zb to the Fuchsian
singular points.

We will now highlight some very signif-
icant connection matrices. Recall the sub-
set M̂ ⊂ M = S \ { 0, t,∞} from (1.47),
see Figure 1.8. M̂ is actually evenly cov-
ered by p, since it is open, connected and
simply connected. Define the paths ζ0
and ζ1 in M̂ to start at zb and end in
B(0, R0) \L0 ⊂ M̂ and B(t, R1) \L1 ⊂ M̂
respectively. Since M̂ is simply connected,
there is up to homotopy classes only one
choice of these paths once the endpoints
are fixed and we force the paths to begin
on a counter-clockwise journey around zj ,
see Figure 1.8. The specific position of the
endpoint does not matter for the following
discussion.

Having defined ζ0 and ζ1 we can by
Lemma B.2.1 uniquely lift the paths to
ζ̃0 : I → M̃ and ζ̃1 : I → M̃ , to paths
starting at [zb, zb] ∈ M̃ . Also these paths
lie entirely in the sheet above M̂ containing [zb, zb].

The open, connected, simply connected sets B(0, R0) \L0 and B(t, R1) \L1 are both
evenly covered by p. Let Ũ (0) and Ũ (1) denote the respective sheets over B(0, R0) \ L0

and B(t, R1) \ L1, with ζ̃0(1) ∈ Ũ (0) and ζ̃1(1) ∈ Ũ (1). By using Proposition 1.4.2 to
continue analytically Φ̃ along ζ̃0 and ζ̃1 we obtain analytic continuations of Φ̃ into Ũ (0)

and Ũ (1), which we will denote as (Φ̃)ζ̃0 and (Φ̃)ζ̃1 .
Recall now the local solutions around 0 and t from equation (1.48)

Φ(j)(z) = P (j)

( ∞∑
k=0

Ψ
(j)
k (z − zj)

k

)
exp

(
Λ
(j)
0 logαj

(z − zj)
)
, z ∈ B(zj , Rj) \ b(j)αj

with, j ∈ { 0, 1 }. We choose the branch cuts α0 and α1 in (0, 2π] and to align with the
cuts L0 and L1 in M = S \ { 0, t,∞}. We define the holomorphic functions

(1.58) Φ(j) ◦ p : Ũ (j) → GL2(C), j ∈ { 0, 1 } .

Obviously these functions solve the differential equation (1.51), and is thus by Lemma
1.2.2 related to the analytic continuations (Φ̃)ζ̃j by constant matrices, which importance
is emphasized by giving them their own Definition.

Definition 1.4.4 Connection matrices related to z0 = 0 and z1 = t.
Consider the analytic continuations (Φ̃)ζ̃0 and (Φ̃)ζ̃1 of Φ̃ into the neighbourhoods Ũ (0)

and Ũ (1) of ζ̃0 and ζ̃1 respectively. Consider also the local solutions Φ(j) ◦p, j ∈ { 0, 1 },
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defined in equation (1.58). The matrices E(0) and E(1) defined by

E(0) :=

(
Φ(0)
α0

◦ p([ζ0(1), ζ0])
)−1

(Φ̃)ζ̃0([ζ0(1), ζ0])

E(1) :=

(
Φ(1)
α1

◦ p([ζ1(1), ζ1])
)−1

(Φ̃)ζ̃1([ζ1(1), ζ1])

are respectively called the connection matrix related to z0 = 0 and the connection matrix
related to z1 = t.

Note that these matrices are just the last connection matrices of the analytic contin-
uation of Φ̃ along ζ̃0 and ζ̃1 respectively, see Definition 1.4.3. They are also independent
of how we analytically continue Φ̃ along ζ̃0, respectively ζ̃1, and at what point in U (0)

respectively U (1), we use to define them, by Lemma B.1.1 and Corollary B.1.1.
We conclude this Section with a Theorem summarizing the results.

Theorem 1.4.1 Global fundamental solution on M̃ .
Consider the differential equation (1.51) defined on the Riemann surface M̃ . There exists
a holomorphic function

Φ̃ : M̃ → GL2(C), Φ̃([zb, zb]) = Φ̃[zb,zb],

that is a global solution to equation (1.51). This is the unique solution with Φ̃([zb, zb]) =
Φ̃[zb,zb].

Moreover consider the neighbourhoods Σ̃[zb], Ũ (0) and Ũ (1) of [zb, zb], [ζ0(1), ζ0] and
[ζ1(1), ζ1], respectively. In these respective neighbourhoods Φ̃ is given by

Φ̃([z, ζ]) = Φ
(∞)
Σ1

◦ ϕ∞ ◦ p([z, ζ])E(∞)

= P (∞)Ψ̂1 ◦ ϕ∞(z) exp
(
−zΛ(∞)

−1 − Λ
(∞)
0 log−π

2
(z)
)
E(∞),

Φ̃([z, ζ]) = Φ(0) ◦ p([z, ζ])E(0) = P (0)

( ∞∑
k=0

Ψ
(0)
k zk

)
exp

(
Λ
(0)
0 logα0

(z)
)
E(0),

Φ̃([z, ζ]) = Φ(1) ◦ p([z, ζ])E(1) = P (1)

( ∞∑
k=0

Ψ
(1)
k (z − t)k

)
exp

(
Λ
(1)
0 logα1

(z − t)
)
E(1),

where E(∞), E(0) and E(1) are the connection matrices related to the singular points
z2 = ∞, z0 = 1 and z1 = t, respectively.
Letting Φ̃[zb,zb] = Φ

(∞)
Σ1

◦ ϕ∞(zb), gives E(∞) = I, and thus Φ̃ with E(∞) = I is uniquely
determined by the canonical formal solution, see Definition 1.3.7.

Definition 1.4.5 Canonical global fundamental solution.
The solution Φ̃ : M̃ → GL2(C) to (1.51) with E(∞) = I and the canonical formal solution
(see Definition 1.3.7) as asymptotic expansion, is called the canonical global fundamental
solution of (1.51).

1.4.4 Monodromy theory

In Theorem 1.4.1 we obtained a global fundamental solution to the differential equation
in equation (1.51). However, the solution is obtained through analytic continuations of
the locally constructed solutions from Section 1.2 and 1.3. Such a solution is hard to
work with, and impractical for calculations. To solve this problem there is developed a
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Figure 1.9: Sheets above ϕ−1
∞ (Σ1). If γ en-

circles other singularities than z2 = ∞, the
visualization is more complicated. The red
dashed line is the Stokes ray ϕ−1

∞ (l2), see
equation (1.28) and Figure 1.2.

monodromy theory, which describes how a
local solution on M changes when analyt-
ically continued along loops from the fun-
damental group of M . The goal is to rep-
resent the fundamental group π1(M, zb)
by constant matrices in GL2(C), such that
analytic continuation along a loop [γ], is
obtained simply by right multiplication by
a constant matrix.

Consider a fundamental solution

Φ̃ : M̃ → GL2(C), Φ̃([zb, zb]) = Φ̃[zb,zb],

of (1.51), as given by Theorem 1.4.1,
not necessarily with E(∞) = I. Recall
the Stokes sector ϕ−1

∞ (Σ1) from equation
(1.53), which is evenly covered by p : M̃ → M , that is, the preimage of ϕ−1

∞ (Σ1) by the
projection p is given by:

p−1(ϕ−1
∞ (Σ1)) =

∐
[γ]∈π1(M,zb)

Σ̃[γ],

=
∐

[γ]∈π1(M,zb)

{
[x, η] ∈ M̃ | x ∈ ϕ−1

∞ (Σ1), η ∼ γ ∗ ζzb,x, ζzb,x ⊂ ϕ−1
∞ (Σ1)

}
see Figure 1.9 and Theorem B.2.1. In this disjoint union, the sheet Σ̃[γ] is the unique
sheet above ϕ−1

∞ (Σ1) containing γ̃(1) = [z, γ]. Here γ̃ : I → M̃ , is the unique lift of
γ : I →M , such that γ̃ starts at [zb, zb].

By projecting the solution Φ̃ down to M , we will for each [γ] ∈ π1(M, zb) obtain a
local solution to

(1.59) dΦ

dz
· Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

,

given by

(1.60) Φ[γ] : ϕ−1
∞ (Σ1) → GL2(C), Φ[γ](z) := Φ̃ ◦

(
p
∣∣
Σ̃[γ]

)−1
(z).

Lemma 1.4.2 Properties of projected solution.

i. For each [γ] ∈ π1(M, zb), the function Φ[γ] solves equation (1.59), and describes
the global solution Φ̃ in the sense that

Φ̃
∣∣
Σ̃[γ]

= Φ[γ] ◦ p

ii. The analytic continuation of Φ[γ] along [η] ∈ π1(M, zb) is given by(
Φ[γ]

)
η
= Φ[γ ∗ η]

iii. Given two elements [γ], [η] ∈ π1(M, zb), the functions Φ[γ], and Φ[γ ∗η] are related
by a constant matrix mη

γ ∈ GL2(C):

Φ[γ ∗ η] = Φ[γ]mγ
η
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Proof. We first prove that Φ[γ] solve (1.59). By how we constructed Φ̃, we have by
(1.57):

Φ̃([z, ζ]) = (Φk ◦ p([z, ζ]))Ck =
(
Φ
(∞)
Σ2n+1

◦ ϕ∞ ◦ p([z, ζ])
)
Ck,

where
Φ
(∞)
Σ2n+1

◦ ϕ∞ : ϕ−1
∞ (Σ1) → GL2(C)

is a canonical solution in the Stokes sector ϕ−1
∞ (Σ2n+1) = ϕ−1

∞ (Σ1), for some n ∈ Z, see
Definition 1.3.8. Hence

Φ[γ](z) =

(
Φ
(∞)
Σ2n+1

◦ ϕ∞ ◦ p ◦
(
p
∣∣
Ũ[z,γ]

)−1
(z)

)
Ck =

(
Φ
(∞)
Σ2n+1

◦ ϕ∞(z)
)
Ck.

Φ[γ] is a right multiplication multiplication by a constant invertible matrix, of a known
solution. We conclude that Φ[γ] solve (1.59). By the Definition of Φ[γ]:

Φ̃
∣∣
Σ̃[γ]

= Φ̃ ◦
(
p
∣∣
Σ̃[γ]

)−1
◦ p = Φ[γ] ◦ p,

thus finishing the proof of property i.
We show property ii. Recall how we continue Φ̃ analytically in the proof of Proposi-

tion 1.4.2. We do it exactly by constructing an analytical continuation (Dk,Φk)
n
k=0 in M

along η, and then lifting the pairs (Dk,Φk)
n
k=0 into (D̃k, Φ̃k)

n
k=0 by demanding that Dk

is evenly covered (open, connected and simply connected). Remark that D̃n ⊂ Σ̃[γ ∗ η],
hence for [z, ζ] ∈ D̃n we have that:(

Φ[γ]
)
η
(z) =

(
Φ[γ]

)
η
◦ p([z, ζ]) = Φn ◦ p([z, ζ])

= Φ̃
∣∣
Σ̃[γ∗η]([z, ζ]) = Φ[γ ∗ η] ◦ p([z, ζ]) = Φ[γ ∗ η](z),

by using property i.
Property iii. is just Lemma 1.2.2, once we know that Φ[γ] and Φ[γ ∗ η] solve (1.59),

which they do by property i. ■

We can now define the general monodromy map of π1(M, zb).

Definition 1.4.6 The general monodromy map.
Let

m =
{
mη
γ ∈ GL2(C)

∣∣∣(Φ[γ])η = Φ[γ ∗ η] = Φ[γ]mη
γ , [γ], [η] ∈ π1(M, zb)

}
be the constant matrices defined by Lemma 1.4.2. The map

φ : π1(M, zb)× π1(M, zb) → m ⊂ GL2(C)(
[γ], [η]

)
7→ mη

γ

is called the general monodromy map related to Φ̃ (with a prescribed initial condition).

By Property i. of Lemma 1.4.2, the general monodromy map related to a function
Φ̃ tells you how the solution through a point [zb, γ] in the fiber p−1(zb), changes when
analytically continued along [η] ∈ π1(M, zb).

We will need the following Lemma, which will also be useful later, in order to prove
some distinguishing properties of φ.

Lemma 1.4.3 Analytic continuation of constant multiplication.
Let f : U ⊂M → GL2(C) be an analytic function defined in an open set U on a Riemann
surface M . Let be A ∈ GL2(C) a constant matrix. If f can be analytically continued
along η : I →M , then

(f ·A)η = (f)η ·A,
that is, the analytic continuation of f · A along η, is equal to the analytic continuation
of f along η, multiplied by A.
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Proof. From Definition B.1.5 there exists an analytic continuation (fk, Dk) of f along η.
g = f · A : U → GL2(C) is analytic and it obviously also has an analytic continuation
along η, given by (gk = fk · A,Dk). It is then clear by induction and extensive use of
Lemma B.1.1, that since f0 · A = g0 in D0, then we have fn · A = gn in Dn. Hence by
definition, (f)η ·A = (g)η. ■

Proposition 1.4.3 Properties of the general monodromy map.
Consider the general monodromy map related to Φ̃:

φ : π1(M, zb)× π1(M, zb) → m ⊂ GL2(C)(
[γ], [η]

)
7→ mη

γ
.

• φ depends on the initial value Φ̃[zb,zb] of Φ̃: If Φ̃1, Φ̃2 : M̃ → GL2(C), and
Φ̃2
[zb,zb]

= Φ̃1
[zb,zb]

C, then
φ2 = C−1φ1 C.

• φ has the following properties:

φ
(
[γ], [η1] ∗ [η2]

)
= φ

(
[γ], [η2]) φ([γ], [η1]

)
(1.61)

φ
(
[γ], [η1] ∗ [η2]

)
= φ

(
[γ], [η1]

)
φ
(
[γ] ∗ [η1], [η2]

)
(1.62)

φ
(
[γ1] ∗ [γ2], [η]

)
=
(
φ
(
[γ1], [γ2]

))−1
φ
(
[γ1], [η]

)
φ
(
[γ1], [γ2]

)
(1.63)

φ
(
[γ] ∗ [η], [η−1]

)
= φ

(
[γ], [η]

)−1
= φ

(
[γ], [η−1]

)
,(1.64)

for any [γ], [γ1], [γ2], [η], [η1], [η2] ∈ π1(M, zb), where the products between the φ’s
are matrix products.

Proof. To prove the first statement, we consider two functions Φ̃1, Φ̃2 : M̃ → GL2(C),
such that Φ̃2

[zb,zb]
= Φ̃1

[zb,zb]
C. We use Lemma 1.4.2 and compute

φ2
(
[γ], [η]

)
=
(
Φ2[γ](zb)

)−1
Φ2[γ ∗ η](zb) =

(
Φ̃1([zb, γ])C

)−1
Φ̃1([zb, γ ∗ η])C

= C−1
(
Φ1[γ](zb)

)−1
Φ̃1(zb)C = C−1φ1

(
[γ], [η]

)
C

We now prove the relations with φ. Relation (1.62) is easy to prove using Lemma
1.4.2. Let [γ], [η1], [η2] ∈ π1(M, zb), then we have

φ
(
[γ], [η1] ∗ [η2]

)
= φ

(
[γ], [η1 ∗ η2]

)
= (Φ[γ](zb))

−1Φ[γ ∗ η1 ∗ η2](zb)
= (Φ[γ](zb))

−1Φ[γ ∗ η1](zb)mη2
γ∗η1 = mη1

γ m
η2
γ∗η1 = φ

(
[γ], [η1]

)
φ
(
[γ] ∗ [η1], [η2]

)
To prove relation (1.61), we again use Lemma 1.4.2 and also need to use Lemma

1.4.3. Starting exactly as in the previous equation we obtain

φ
(
[γ], [η1] ∗ [η2]

)
= (Φ[γ](zb))

−1Φ[γ ∗ η1](zb)mη2
γ∗η1 =

(
Φ̃[γ]

)−1 (
Φ̃[γ]mη1

γ

)
η2

= (Φ[γ])−1
((

Φ[γ]
)
η2

)
mη1
γ = (Φ[γ])−1Φ[γ]mη2

γ m
η1
γ = φ

(
[γ], [η2]) φ([γ], [η1]

)
.

Relation (1.63) is just a combination of the two first, where

[γ] 7→ [γ1], [η1] 7→ [γ2], [η2] 7→ [η],

and then solving for φ
(
[γ1] ∗ [γ2], [η]

)
.
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For relation (1.64) we first prove

(1.65) φ
(
[γ] ∗ [η], [η−1]

)
=
(
Φ[γ]mη

γ

)−1
Φ[γ ∗ η ∗ η−1]

=
(
mη
γ

)−1
(Φ[γ])−1Φ[γ] = φ

(
[γ], [η]

)−1
.

Then using relation (1.63) together with (1.65):

φ
(
[γ] ∗ [η], [η−1]

)
= φ

(
[γ], [η]

)−1
φ
(
[γ], [η−1]

)
φ
(
[γ], [η]

)
⇐⇒ I = φ

(
[γ], [η−1]

)
φ
(
[γ], [η]

)
.

■

Some authors, e.g. [Fok et al.06], define “the” monodromy representation as the map
φ([zb], ·) : π1(M, zb) → m. This

• depends on the choice of the initial value Φ̃[zb,zb] of the function Φ̃Σ̃[zb]

• depends on the choice of the local solution Φ[zb], that all the monodromy matrices
are calculated relative to

• does not show how the two above choices affect the chosen monodromy represen-
tation.

Definition 1.4.7 Monodromy representations.
Consider the general monodromy map related to Φ̃:

φ : π1(M, zb)× π1(M, zb) → m ⊂ GL2(C)(
[γ], [η]

)
7→ mη

γ
.

For each [γ] ∈ π1(M, zb), we define an anti representation of π1(M, zb) into the
subgroup m[γ] ⊂ m ⊂ GL2(C) by

φ([γ], ·) : π1(M, zb) → m[γ] ⊂ m ⊂ GL2(C)
[η] 7→ mη

γ

called the monodromy representation related to [γ] ∈ π1(M, zb). The subgroup m[γ] is
called the monodromy group related to [γ]. It is an anti representation in the sense that

φ
(
[γ], [η1] ∗ [η2]

)
= φ

(
[γ], [η2]) φ([γ], [η1]

)
,

which is (1.61) in Proposition 1.4.3.

The monodromy representation related to [zb] ∈ π1(M, zb):

φ([zb], ·) : π1(M, zb) → m[zb] ⊂ m ⊂ GL2(C)
[η] 7→ mη

zb
,

is called the canonical monodromy representation. The subgroup m[zb] is called the canon-
ical monodromy group. The elements mγ

zb of the canonical monodromy group m[zb],will
from now on be denoted by mγ. The particular elements mγ0, mγ1 and mγ∞, the image
of the loops [γ0], [γ1] and [γ∞] see Section 1.4.1, will be denoted by m(0), m(1) and m(∞)

respectively.

Corollary 1.4.2 Representation conjugation relation.
The monodromy representation related to [γ], is related to the canonical monodromy
representation by conjugation:

mη
γ = (mγ)−1mηmγ ,

for every [η] ∈ π1(M, zb). Thus m[zb] = m.
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Proof. Apply the third relation, equation (1.63) from Proposition 1.4.3 to φ([zb]∗[γ], [η]) =
mη
γ . ■

Corollary 1.4.3 Free group relation in the canonical monodromy group.
The group m is generated by m(0) and m(1). Further the following relation holds

m(∞)m(1)m(0) = I

Proof. Both statements are a direct consequence from the fact that π1(M, zb) is generated
by [γ0], [γ1] and that the canonical monodromy representation is an anti homomorphism.
Thus the subgroup m[zb] is generated by m(0) and m(1), and by Corollary 1.4.2 the entire
monodromy group m is generated by m(0) and m(1).

The free group relation from Lemma 1.4.1 reads

[γ0] ∗ [γ1] ∗ [γ∞] = [zb] ⇐⇒ [γ0] ∗ [γ1] = [γ∞]−1.

Hence by using (1.61) from Proposition 1.4.3, we obtain

φ
(
[zb], [γ0] ∗ [γ1]

)
= φ

(
[zb], [γ1]

)
φ
(
[zb], [γ0]

)
= m(1)m(0) = (m(∞))−1.

■

The canonical monodromy representation is uniquely determined by the canonical
global solution Φ̃ from Definition 1.4.5. As Corollary 1.4.2 show, given a global solution
Φ̃, the canonical representation can be used to express any other representation. And
choosing two initial values A,B for Φ̃[zb,zb], the canonical monodromy representations
are related by φA = A−1BφBB−1A. However by Proposition 1.4.1 and Definition 1.4.2,
choosing Φ̃[zb,zb] is equivalent to choosing E(∞), and to simplify the canonical monodromy
representation we can always let E(∞) = I, as in Definition 1.4.2. We summarize this
Section on monodromy theory with a Theorem stating the relevant results.

Theorem 1.4.2 Unique canonical monodromy representation.
Given the differential equation

dΦ̃

dz̃
Φ̃(z̃)−1 =

σ3
2

+
A0

z
+

At
z − t

with the canonical global solution Φ̃ : M̃ → GL2(C), as in Definition 1.4.5, uniquely
determined by the canonical solution in the Stokes sector Σ1 and E(∞) = I. Then there
exists a unique canonical monodromy representation

φ([zb], ·) : π1(M, zb) → m ⊂ GL2(C)
[η] 7→ mη ,

into the monodromy group m. The group m is generated by the two elements m(0) and
m(1). Moreover, if ζzb,z : I → ϕ−1

∞ (Σ1), and [γ], [η1], [η2] ∈ π1(M, zb), then the following
relations hold:

Φ̃([z, γ ∗ ζzb,z]) = Φ[zb](z)m
γ =

(
Φ
(∞)
Σ1

◦ ϕ−1
∞ (z)

)
mγ(1.66)

m(∞)m(1)m(0) = I(1.67)

(mγ)−1 = m(γ−1)(1.68)
φ
(
zb, [η1] ∗ [η2]

)
= mη2mη1 .(1.69)
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1.4.5 Generators for the canonical monodromy group

Figure 1.10: The paths ζ0 and ζ1, goes from
zb, into a neighbourhood of the Fuchsian sin-
gular points z0 = 0 and z1 = t, respectively,
and are used to calculate the monodromy
generators. ζ0 ∗ ν0 ∗ ζ−1

0 and ζ1 ∗ ν1 ∗ ζ−1
1

are homotopic to γ0 and γ1, respectively (see
Figure 1.6).

In Section 1.4.1 we described the holo-
morphic covering (M̃,M, p) and found
that the fundamental group of M = S \
{ 0, t,∞} is isomorphic to the free group
generated by two elements. We con-
structed two elements [γ0] and [γ1] which
we can use to represent the fundamental
group π1(M, zb), and we derived the free
group relation in Lemma 1.4.1. In Sec-
tion 1.4.4 we described the monodromy
theory, and how to obtain representa-
tions of the fundamental group, as matrix
groups acting on solutions to the differen-
tial equation in equation (1.51). Corollary
1.4.3 shows that the canonical monodromy
group is also generated by two elements
m(0) and m(1), and how the free group
relation translates through the canonical
monodromy representation. If we can find
formulas for the generators m(0),m(1) to-
gether with m(∞), we can use Corollary
1.4.3 to obtain relations between the ele-
ments of m(0), m(1) and m(∞).

We now want to find formulas for

(1.70) m(0) = φ
(
[zb], [γ0]

)
, m(1) = φ

(
[zb], [γ1]

)
, m(∞) = φ

(
[zb], [γ∞]

)
.

The procedure for finding the formulas for m(0) and m(1) are identical, and will be
handled together using the usual notation m(j) = m(0),m(1), j ∈ { 0, 1 }. In M , the path
γj (defined in Section 1.4.1, see Figure 1.6), is homotopic to the concatenation of the
paths ζj , νj , and ζ−1

j , see Figure 1.10.

(1.71) γj ∼ ζj ∗ νj ∗ ζ−1
j .

Here ζj is the path defined in Section 1.4.3 that goes from zb ∈ ϕ−1
∞ (Σ1) into the branched

neighbourhood B(zj , Rj) \ b(j)αj of zj , such that ζj ⊂ M̂ ⊂M . And νj is a loop at ζj(1),
going once around the singular point zj , see Figure 1.10.

We will obtain the formulas by using the analytic continuation already calculated in
Section 1.4.2 and 1.4.3. We start of with considering the analytic continuation of Φ[zb]
along ζj . This we already did in Section 1.4.3. Recall that Ũ (j) ⊂ M̃ is the sheet above
the branched neighbourhood B(zj , Rj) \Lj of zj , with ζj(1) ∈ Ũ (j), defined right before
Definition 1.4.4. Then by Theorem 1.4.1:

(1.72)
(
Φ[zb]

)
ζj

= Φ̃ ◦
(
p
∣∣
Ũ(j)

)−1
= Φ(j) ◦ p ◦

(
p
∣∣
Ũ(j)

)−1
E(j) = Φ(j)E(j)

Now we can analytically continue the function in equation (1.72) along the loop νj ,
that goes once counter-clockwise around the Fuchsian singular point zj . In equation
(1.49) we obtained that(

Φ(j)
)
νj
(z) = Φ(j)(z) exp

(
2πiΛ

(j)
0

)
, z ∈ B(zj , Rj) \ b(j)αj

.

We can then use Lemma 1.4.3 and obtain:

(1.73) (Φ[zb])ζj∗νj =
(
Φ(j)E(j)

)
νj

=
(
Φ(j)

)
νj
E(j) = Φ(j) exp

(
2πiΛ

(j)
0

)
E(j)
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The last step is to analytically continue the function in equation (1.73) along ζ̃−1
j .

Using equation (1.49), Lemma 1.4.3 and noting ζj ∗ ζ−1
j is homotopic to the constant

path at zb, we obtain

(Φ[zb])ζj∗νj∗ζ−1
j

(z) =
(
Φ(j)(z) exp

(
2πiΛ

(j)
0

)
E(j)

)
ζ−1
j

(z)

=
(
Φ(j)

)
ζ−1
j

(z) exp
(
2πiΛ

(j)
0

)
E(j) = Φ[zb]

(
E(j)

)−1
exp

(
2πiΛ

(j)
0

)
E(j).

We summarize the result in the following Proposition

Proposition 1.4.4 Formulas for the generators of the canonical monodromy
group.
The analytic continuation of Φ[zb] =

(
Φ(∞) ◦ ϕ∞

)
E(∞) along the loop γj at zb is given

by: (
Φ[zb]

)
γj

=
(
Φ(∞) ◦ ϕ∞

)
E(∞)

(
E(j)

)−1
exp

(
2πiΛ

(j)
0

)
E(j)

Thus the generators m(0) and m(1) of the canonical monodromy group m[zb], is given by

m(0) =
(
E(0)

)−1
exp

(
2πiΛ

(0)
0

)
E(0), m(1) =

(
E(1)

)−1
exp

(
2πiΛ

(1)
0

)
E(1)

where Λ
(j)
0 is diagonal with diagonalization

Λ
(0)
0 =

(
P (0)

)−1
A0P

(0), Λ
(1)
0 =

(
P (1)

)−1
AtP

(1).

We now find a formula for m(∞) = φ
(
[zb], [γ∞]

)
. We will analytically continue

Φ[zb] =
(
Φ
(∞)
Σ1

◦ ϕ∞
)
E(∞),

along γ∞, the loop going once counter-clockwise around the non-Fuchsian point z2 = ∞.
Notice from Figure 1.10, that this path is entirely contained in the two Stokes sectors
Σ1 ∪ Σ2. From equation (1.38) and Lemma 1.4.3 we obtain(

Φ[zb]
)
γ∞

=
((

Φ
(∞)
Σ1

◦ ϕ∞
)
E(∞)

)
γ∞

=
(
Φ
(∞)
Σ1

◦ ϕ∞
)
γ∞

E(∞)

=
(
Φ
(∞)
Σ1

◦ ϕ∞
)
exp

(
2πiΛ

(∞)
0

)
S−1
2 S−1

1 E(∞).

We summarize the result in the following Proposition.

Proposition 1.4.5 Formula for the monodromy matrix related to z2 = ∞.
The analytic continuation of

Φ[zb] =
(
Φ
(∞)
Σ1

◦ ϕ∞
)
E(∞)

along the loop γ∞ at zb is given by:(
Φ[zb]

)
γ∞

=
(
Φ
(∞)
Σ1

◦ ϕ∞
)
exp

(
2πiΛ

(∞)
0

)
S−1
2 S−1

1 E(∞)

Thus the monodromy matrix m(∞) is given by

m(∞) =
(
E(∞)

)−1
exp

(
2πiΛ

(∞)
0

)
S−1
2 S−1

1 E(∞) †
= exp

(
2πiΛ

(∞)
0

)
S−1
2 S−1

1 ,

where Λ
(∞)
0 is a diagonal matrix given by

Λ
(∞)
0 = −diag

((
P (∞)

)−1
(A0 +At)P

(∞)

)
††
= −diag ((A0 +At)) .

† : If E(∞) = I.
†† : If P (∞) = I.
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Chapter 2

Geometric description

2.1 A connection on a principal bundle
In this Section we will define a principal bundle and three equivalent notions of a con-
nection on a principal bundle. See [KN63] for more theory on differential geometry.

Definition 2.1.1 Principal bundle.
Let M be a complex manifold and G a complex Lie group (see Definition A.2.1). A
(holomorphic) principal bundle over M with structure group G consists of a complex
manifold P and an action

µ : P ×G → P
(p, a) 7→ p . a

of G on P such that

i. G acts freely on P from the right, that is:

• action: p . e = p and
(
(p . a) . b

)
= p . (a · b), for every a, b ∈ G and p ∈ P ,

where a · b denotes the product in G.
• free: for a, b ∈ G, if there exists an element p ∈ P such that p . a = p . b, then
a = b.

ii. M is the quotient space of P by the equivalence relation induced by G, M = P/G.
That is, if p, q ∈ P , then p ∼ q if and only if q = p . a for some a ∈ G. Further,
the associated projection π : P →M is holomorphic.

iii. P is locally trivial, that is every point z ∈ M has a neighbourhood U such that
π−1(U) is isomorphic with U ×G. More specifically there exists a bi-holomorphic
map: φ : π−1(U) → U × G, of manifolds, called a local trivialization of P , such
that the following diagram commutes

π−1(U) U ×G

U G

φ

π
pr1

pr2

Note that we can write φ = π× g, where we define g : π−1(U) → G by g = pr2 ◦ φ.
Additionally we require from φ that

g(p . a) = g(p) · a

Thus if q = p . a, we have

φ(q) =
(
π(p . a), g(p . a)

)
=
(
π(p), g(p) · a

)
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A principal fiber bundle will be denoted by P (M,G, π) where P is called the total space,
M is the base space, G the structure group and π is the projection.

Notational note: the right action µ : P ×G→ P , induces two holomorphic maps

µα : P → P
p 7→ p . a

and µp : G → P
a 7→ p . a

by keeping the right or respectively left, coordinate constant. In particular the map µa
is frequently denoted by Ra in other literature. We will reserve the notation Ra for the
map induced by the multiplication in G.

In the Definition we required the action to be free. Together with Property ii., the
action is transitive (only) on the fibers π−1(z), thus G acts regularly on the fibers of P .
Indeed, let p, q ∈ P . Then, p, q ∈ π−1(z) ⇐⇒ there exists an a ∈ G such that p . a = q.

Definition 2.1.2 Isomorphism of principal bundles.
The principal bundles P (M,G, π) and P ′(M ′, G′, π′) are isomorphic if there exists a bi-
holomorphic map Ψ : P → P ′ and an isomorphism of Lie groups ψ : G → G′ such
that

(2.1) Ψ(p . a) = Ψ(p) . ψ(a)

Such an isomorphism induces a map from M to M ′. Indeed, if z ∈ M , the fiber
π−1(z) is mapped by Ψ into a single fiber of P ′ by equation (2.1). Thus the following
diagram commutes:

P P ′

M M ′

π

Ψ

π′

We say that a principal bundle P (M,G, π) is trivial if P is isomorphic (in the category
of principal bundles) to M ×G.

Proposition 2.1.1 Characterization of trivial bundles.
A principal fiber bundle P (M,G, π) is trivial if and only if there exists a global holomor-
phic section s :M → P of the projection map π.

Proof. If such a section exists, we define the map Ψ :M ×G→ P by
Ψ = µ ◦

(
(s ◦ pr1)× pr2

)
, (z, a) 7→ s(z) . a. Evidently this map is a bi-holomorphic map

between manifolds, since for a fixed z, Ψ(z, ·) is a Lie group isomorphism from G onto
the fiber π−1(z).

Conversely, if M×G is isomorphic to P (M,G, π) under Ψ, we can define s = Ψ(·, e) :
M → P . ■

We will familiarize ourself with the local trivialization of a principal bundle P (M,G, π),
in particular how to change between the local trivializations, Property iii. in Definition
2.1.1. On a non-empty intersection Uα ∩ Uβ ⊂ M , consider the trivializations φα and
φβ such that:

Uα ∩ Uβ ×G π−1
(
Uα ∩ Uβ

)
Uα ∩ Uβ ×G

G Uα ∩ Uβ G

pr1
pr2

φβ

π

φα

pr1
pr2

Let gα = pr2 ◦ φα and gβ = pr2 ◦ φβ . Define the function g̃αβ : π−1
(
Uα ∩ Uβ

)
→ G by

g̃αβ(p) = gα(p) · (gβ(p))−1.
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This function is constant on each fibre, since

g̃αβ(p . a) = gα(p . a) ·(gβ(p . a))−1 = gα(p) ·a ·a−1 ·(gβ(p))−1 = gα(p) ·(gβ(p))−1 = g̃αβ(p).

Definition 2.1.3 Transition functions on M .
The function gαβ : Uα ∩Uβ → G defined such that gαβ ◦ π = g̃αβ, is called the transition
function on M between the trivializations φα and φβ.

Proposition 2.1.2 Transitive relation of transition functions.
Let gαβ, gβγ and gαγ be the transition functions between the trivializations φα, φβ and
φγ, where Uα ∩ Uβ ∩ Uγ 6= ∅. Then if e is the identity element of G:

i. gαβ · gβα = e

ii. gαβ · gβγ = gαγ

Proof.

i. gαβ ◦ π · gβα ◦ π = g̃αβ · g̃βα = gα · (gβ)−1 · gβ · (gα)−1 = e

ii. gαβ ◦ π · gβγ ◦ π = g̃αβ · g̃βγ = gα · (gβ)−1 · gβ · (gγ)−1 = gα · (gγ)−1 = g̃αγ = gαγ ◦ π.

■

Even though there in general does not exists global sections s :M → P of a principal
bundle, there exists local sections. It will be useful to define a local section related to
each trivialization.

Definition 2.1.4 Trivial section of a trivialization.
Consider a principal bundle P (M,G, π) and a trivialization φα = π × gα. Define the
trivial section sα : Uα → π−1(Uα), by sα(z) = φ−1

α (z, e).

Proposition 2.1.3 Relations with trivial sections.
Consider the trivializations φα = π × gα and φβ = π × gβ, where Uα ∩ Uβ 6= ∅, the
associated transition function gαβ and the trivial sections sα and sβ. Then

i. sβ = sα · gαβ

ii. gα ◦ sα = e

iii. gαβ = (gβ ◦ sα)−1 = gα ◦ sβ

Proof.

i. φα ◦ sβ(z) =
(
z, gα ◦ sβ(z)

) iii.
=
(
z, gαβ(z)

)
= φα

(
sα(z) · gαβ(z)

)
=⇒ sβ = sα · gαβ

ii. gα(sα(z)) = gα ◦ φ−1
α (z, e) = e

iii. gαβ = gαβ ◦ π ◦ sα = (gα · (gβ)−1) ◦ sα
ii.
= (gβ ◦ sα)−1

gαβ = gαβ ◦ π ◦ sβ = (gα · (gβ)−1) ◦ sβ
ii.
= gα ◦ sβ

■

Proposition 2.1.4 [Prop 5.2, Ch.1 in [KN63]] Construction of a principal
bundle.
Let M be a complex manifold, {Uα }α an open covering of M and G a complex Lie
group. Given a holomorphic function fαβ : Uα ∩Uβ → G, for every non-empty Uα ∩Uβ,
in such a way that the relations in Proposition 2.1.2 are satisfied. Then we can construct
a principal bundle P (M,G, π), where the transition functions will be given by { fαβ }.
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We will now turn our focus to the tangent space of P . In Section A.1 we give a
detailed description of the (holomorphic) tangent space of a complex manifold. At each
point p of a n-dimensional complex manifold P , there is a related n-dimensional complex
vector space which we call the tangent space of P at p. The tangent space consist of all
C-linear derivations of holomorphic function germs at the point p. On a principal bundle
P (M,G, π), we have some additional structure than on just a manifold. In particular,
the projection π : P →M induces linear maps from the tangent space of P at p, to the
tangent space of M at π(p), for each p ∈ P .

π : P → M, π∗,p : TpP → Tπ(p)M.

The kernel of the map π∗,z, is a linear subspace of TpP for each p ∈ P . The dimension
of the subspace will equal the dimension of the Lie group G, since the right action of G
preserves the fibers of P .

Definition 2.1.5 Vertical tangent space of a principal bundle.
Given a principal bundle P (M,G, π), the kernel Vp of the differential of the projection,
ker(π∗,p) is a subspace of TpP , for each p ∈ P . Vp is called the vertical subspace of TpP.
It is also called the vertical tangent space of P at p. A vector field v ∈ X(P ) is called
vertical, if v(p) ∈ Vp, for all p ∈ P . The vertical bundle is the distribution V ⊂ TP ,
consisting of all vertical vectors.

Proposition 2.1.5 Vertical tangent space and fundamental vector fields.
Consider a principal bundle P (M,G, π) with vertical tangent space Vp at p ∈ P . Let
X(P ) denote the vector fields on P . Then

i. V is involutive, that is if v, w ∈ X(P ) are two vertical vector fields of P , such that
vp, wp ∈ Vp, then also [v, w]p ∈ Vp for each p. By the Frobenius Theorem 2.4.1, V
is an integrable distribution (see Definition 2.4.1).

ii. The distribution V ⊂ TP is G-invariant, in the sense that (µa)∗Vp = Vp . a,
where µa : P → P , such that p 7→ p . a, the right action of G on P , with a fixed
group element a ∈ G.

iii. There exists a Lie algebra homomorphism

σ : g → X(P ),

that maps X ∈ g into a vector field σX, called a fundamental vector field on P .
Pointwise it is defined by

(σX)p = σpX := (µp)∗,eX,

where X ∈ g and µp : G → P , is the right action of G on P with a fixed point
p ∈ P . It is a Lie algebra homomorphism in the sense that

σ[X,Y ]g = [σX, σY ]X(P ), for any X,Y ∈ g.

For each p ∈ P , σp := (µp)∗,e : g → Vp ⊂ TpP is a vector space isomorphism. So
the fundamental vector fields are all vertical.

iv. Locally, if φα = π × gα trivialises P (M,G, π) in π−1(Uα) and θ : G→ T ∗G× g is
the Maurer-Cartan form on G (Definition A.2.5), then

σ ◦ (g∗αθ) = IV , (g∗αθ) ◦ σ = Ig.

v. (µa)∗,pσpX = σp . a
(
Ad
(
a−1
)
X
)
, where X ∈ g and Ad : G→ Aut(g) is the adjoint

representation of G in g, see Definition A.2.4.
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Proof. Proof given in the Appendix, Proposition A.3.1. ■

In the absence of any additional structure, there is no standard complement to Vp ⊂
TpP . The next Definition formalises the wanted properties of such a complementary
subspace.

Definition 2.1.6 Principal connection.
Consider a principal bundle P (M,G, π) with vertical tangent space Vp at each p ∈ P .
A principal connection on P is a holomorphic choice of subspaces Hp ⊂ TpP at each
p ∈ P , called the horizontal subspaces, such that :

i. Tp = Vp ⊕Hp

ii. (µa)∗,pHp = Hp . a

The horizontal bundle is the distribution H ⊂ TP , consisting of all horizontal vectors.
A section s : U ⊂M → π−1(U) ⊂ P is called a horizontal section, if it is a holomorphic
section with s∗,zTzU ⊂ Hs(z).

Thus, a principal connection is a G−invariant distribution H ⊂ TP , complementary
to V ⊂ TP . The dimension of the horizontal subspace is equal to the dimension of M .
Indeed, the projection map induces a vector space isomorphism π∗,p|Hp : Hp → Tπ(p)M .

Lemma 2.1.1 [Prop 1.2, Ch.1 in [KN63]] Horizontal lift.
Given a principal connection H ⊂ TP on a principal bundle P (M,G, π). The projection
π : P → M induces a vector space isomorphism π∗,p|Hp : Hp → Tπ(p)M . For every
vector field Z on M , there is a unique horizontal lift Z̃ of Z, where Z̃ is a horizontal
vector field on P . The lift Z̃ is invariant by G, in the sense that

(µa)∗,pZ̃p = Z̃p . a.

Conversely, every horizontal vector field Z̃ on P , invariant by G, is the unique hor-
izontal lift of a vector field Z on M .

Proof. The fact that π∗,p
∣∣
Hp

is an isomorphism follows directly from the fact that
ker(π∗,p) = Vp ∩ Hp = { 0 }. Since it is an isomorphism, given a vector field Z on
M , the existence and uniqueness of Z̃ is clear. The fact that Z̃ is holomorphic, follows
from the fact that if we consider a trivialization φ : π−1(U) → U ×G, and consider any
vector field Z ′ on U × G, such that (pr1)∗ = Z, then (φ−1)∗Z

′ is a holomorphic vector
field on π−1(U). Its horizontal component is Z̃. Finally

π∗,p . a ◦ (µa)∗Z̃p = π∗,pZ̃p = Zπ(p).

Here we used the G invariance of π. But also

π∗,p . aZ̃p . a = Zπ(p . a) = Zπ(p).

Conversely, let Z̃ be a horizontal vector field on P , invariant by G. For every z ∈M ,
pick a p ∈ P such that π(p) = z. Then define Zz := π∗,pZ̃p. This construction is
independent of which p we chose in the fiber over z. Indeed if q = p . a, then π∗,qZ̃q =
π∗,p . a ◦ (µa)∗Z̃p = π∗,pZ̃p = Zπ(p), by the G invariance of Z̃. It is obvious that the lift of
Z is Z̃. ■

The following diagram gives an overview of some of the maps we have defined on
TpP . Here we use a trivialization φα = π × gα with p ∈ π−1(Uα). Let φα(p) = (z, a)
then
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(2.2)
Hp TpP Vp

TzM TaG g

ιHp

(gα)∗,pπ∗,p

ιVp

≀horizontal lift

θa

∼

σp ≀

Definition 2.1.7 Chart basis for the horizontal tangent space.
Let a principal bundle P (M,G, π) with a principal connection H ⊂ TP be given. The
chart basis for the horizontal tangent space Hp is given by the horizontal lift of the basis
for Tπ(p)M : {

∂̃

∂zk

}n
k=1

=

{
∂̃

∂z1
,
∂̃

∂z2
, . . . ,

∂̃

∂zn

}
,

where
{

∂
∂zk

}n
k=1

is the basis for Tπ(p)M .

The vertical tangent space Vp is defined by the means of the kernel of a linear map,
namely the tangential map of the projection π from P to M . Similarly to Vp, we can
give an equivalent characterization of a principal connection on P , by the means of the
kernel of a linear map.

Definition 2.1.8 Connection form.
Consider a principal bundle P (M,G, π). A function ω : P → T ∗P ⊗ g, on P , is called
a connection form on P if it satisfies:

i. ω(σX) = X, for every fundamental vector field σX ∈ X(P ) and every X ∈ g.

ii. (µa)
∗ω = Ad(a−1) ◦ ω, that is, ωp . a

(
(µa)∗,pvp

)
= Ad(a−1) ◦ ωp(vp), for every

tangent vector vp ∈ TpP , every a ∈ G and every p ∈ P .

A map from P to T ∗P ⊗ g is called a Lie algebra valued 1-form on P .

Proposition 2.1.6 Characterization of a principal connection by a connection
form.
Consider a principal bundle P (M,G, π). Given a principal connection H ⊂ TP we
define a connection form ω on P by:

ω : P → T ∗P ⊗ g,

ωp : TpP → g

vp 7→ ωp(vp) =

{
X, if vp = σX
0, if vp ∈ Hp

And given a connection form ω on P , we define a principal connection H ⊂ TP by

Hp := ker(ωp).

Proof. Proof given in Appendix, Proposition A.3.2. ■

We will make one more characterization of a principal connection. We will define a
family of Lie algebra valued 1-forms, each locally defined on M , the base space. Together
they contain the same information as the connection form on P . In the diagram in
equation (2.2), we see that g∗αθ : P → T ∗P ⊗ g defines how the connection form should
deal with vertical tangent vectors. Since dim(Vp) = dim(G) and dim(Hp) = dim(M),
we need dim(M) number of equations to define the horizontal tangent space at p ∈ P .
Thus 1-forms on M is able to capture the information that defines the horizontal tangent
spaces.
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Definition 2.1.9 Family of local connection forms.
Consider a principal bundle P (M,G, π) with local trivializations

{φα = π × gα : π−1(Uα) → Uα ×G }α

and transition functions gαβ : Uα∩Uβ → G (see Definition 2.1.3). A family of local con-
nection forms on M , is a family of Lie algebra valued 1-forms {Aα : Uα → T ∗Uα ⊗ g}α
on M , where {Uα }α gives an open cover of M , and whenever Uα ∩ Uβ 6= ∅:

Aβ = Ad (gβα) ◦Aα + g∗αβθ.

Proposition 2.1.7 Characterization of a connection form by a family of local
connection forms.
Consider a principal bundle P (M,G, π) with local trivializations

{φα = π × gα : π−1(Uα) → Uα ×G }α

and transition functions gαβ : Uα ∩ Uβ → G. Recall the trivial sections sα : Uα →
π−1(Uα) from Definition 2.1.4. Given a connection form ω on P , we define a local
family of connection forms on M by

Aα := s∗αω.

And given a local family of connection forms {Aα }α on M , we define a connection form
ω on P by in each trivialised set π−1(Uα) defining

ωα := Ad
(
(gα)

−1
)
◦ π∗Aα + g∗αθ.

Then any pair ωα and ωβ agree on π−1 (Uα ∩ Uβ), and {ωα }α defines a connection form
ω on P .

Proof. Proof given in Appendix, Proposition A.3.3. ■

In summary we have given three equivalent descriptions of a “connection” on P :

1. a principal connection, which is a G-invariant horizontal distribution H ⊂ TP ,

2. a connection form ω on P , which is a Lie algebra valued 1-form on P , satisfying
ω
(
σX
)
= X and µ∗aω = Ad

(
a−1
)
◦ ω,

3. a family of local connection forms {Aα }α on M , which is a family of Lie algebra
valued 1-forms on M , such that Aβ = Ad (gβα) ◦Aα + g∗αβθ.

Definition 2.1.10 A connection on a principal bundle.
Let P (M,G, π) be a principal bundle. If P possesses either a principal connection,
a connection form or a family of local connection forms, then we simply say that P
possesses a connection.

By the means of Proposition 2.1.6 and Proposition 2.1.7 we will switch between the
different perspectives when convenient.

2.2 Motivation for the geometric description
The main problem of this thesis is to describe the solutions of the linear system of first
order differential equations of the form

(2.3) A(z) =
dΦ

dz
· Φ(z)−1, A : S \ { zj }mj=1 →M2(C),
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where U ⊂ S \ { zj }mj=1 = M is an open subset of a punctured Riemann sphere. We
want to show the existence of functions Φ : U ⊂ S \ { zj }mj=1 → GL2(C), which locally
can solve the differential equation.

We give some motivation for trying to formulate the differential equation using dif-
ferential geometry. For comparison, we restate the relation that we called gauge equiv-
alence, see Definition 1.2.3.

Proposition 2.2.1.
Given a differential equation

A =
dΦ

dz
· Φ−1, A : S \ { zj }mj=1 →M2(C),

which is solved locally by Φα : Uα → GL2(C). Let fβ : Uβ → GL2(C) be a holomorphic
function on M such that Uα ∩ Uβ 6= ∅. Then the function Φβ := fβ · Φα solves the
differential equation

B = fβ · A · f−1
β +

dfβ
dz

· f−1
β =

dΦ

dz
· Φ−1.

Proof. We compute dΦβ

dz :

dΦβ
dz

=
dfβ
dz

· Φα + fβ ·
dΦα
dz

=
dfβ
dz

· Φα + fβ · A · Φα.

Then right multiplying by Φβ(z)
−1 = Φα(z)

−1 · fβ(z)−1

dΦβ
dz

· Φβ(z)−1 =
dfβ
dz

· fβ(z)−1 + fβ(z) · A(z) · (fβ(z))−1.

■

The relation between the functions A and B in Proposition 2.2.1 resembles the rela-
tions between the forms {Aα }, in a family of local connection forms, see Definition 2.1.9.

We will now explain in a geometric language how A is the coordinate function of a
Lie algebra valued 1-form on M . Given a holomorphic function Φ : U ⊂ M → GL2(C).
We differentiate the function, and write the equation

(A)z = −dΦ
dz

· Φ−1,

where (A)z : U →M2(C) denotes the function defined by this expression. The presence
of the minus sign is explained in the proof of Proposition 2.2.2. The function Φ is a map
between the complex manifold U ⊂ S \ { zj }mj=1 and the complex Lie group GL2(C). So
its tangential map is

Φ∗,z : TzU → TΦ(z)G, Φ∗,z

(
d

dz

)
=
dΦ

dz
.

The right multiplication of the group element Φ(z)−1 ∈ GL2(C) is thus interpreted as
(RΦ(z)−1)∗,Φ(z). A more geometric notation is

(A)z = −dΦ
dz

· Φ−1 = −(RΦ(z)−1)∗,Φ(z) ◦ (Φ)∗,z
d

dz

= −(LΦ(z))∗,Φ(z)−1 ◦ (RΦ(z)−1)∗,e ◦ (LΦ(z)−1)∗,Φ(z) ◦ (Φ)∗,z
d

dz
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= −Ad (Φ(z)) ◦
(
Φ∗θ

)( d

dz

)
,

where
θ : GL2(C) → T ∗GL2(C)⊗ gl2(C)

is the Maurer-Cartan form on GL2(C), see Definition A.2.5 and Ad : GL2(C) →
Aut(gl2(C)) is the adjoint representation of GL2(C) in gl2(C), see Definition A.2.4. We
conclude that

(2.4)
A = (A)z dz = −Ad (Φ) ◦ Φ∗θ : U GL2(C)

T ∗GL2(C)⊗ gl2(C) T ∗U ⊗ gl2(C) T ∗U ⊗ gl2(C)

Φ

θ

Φ∗ Ad(Φ)

is indeed a Lie algebra valued 1-form on U , where we identify the Lie algebra gl2(C) of
GL2(C) with M2(C).

By the discussion above, the function A : M → M2(C) on the RHS. of differential
equation (2.3) has the interpretation as the coefficient function of a Lie algebra valued
1-form.

(2.5) Aα = −A dz :M → T ∗M ⊗ gl2(C).

The following Proposition is formulated and proved by the author, and to the authors
knowledge, not found in other literature in this formulation.

Proposition 2.2.2.
Consider the Lie algebra valued 1-form

Aα = −A dz :M → T ∗M ⊗ gl2(C),

and the differential equation
A =

dΦ

dz
· Φ(z)−1

which is solved locally by Φα : Uα → GL2(C). Let fβ : Uβ → GL2(C) be a holomorphic
function on M such that Uα ∩ Uβ 6= ∅. Then the function Φβ := fβ · Φα defines the Lie
algebra valued 1-form:

Aβ = −Ad(Φβ) ◦ Φ∗
βθ,

such that
Aβ = Ad(fβ) ◦Aα + (f−1

β )∗θ, on Uα ∩ Uβ .

Or using the basis
{
d
dz

}
for TzM , and when G = GL2(C), then the function Φβ : fβ ·Φα

defines the coefficient function:

Aβ

(
d

dz

)
= −B = −

∂Φβ
dz

· Φβ(z)−1,

such that

Aβ

(
d

dz

)
= −B = fβ ·

(
−A

)
· f−1
β −

dfβ
dz

· f−1
β , on Uα ∩ Uβ .

Compare Proposition 2.2.2 with Proposition 2.2.1. Observe how the gauge equiv-
alence (see Definition 1.2.3), is exactly the change of local trivialization for the local
family of connection forms, when the dimension of the base space is 1, and the structure
group is GL2(C).
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Proof. The fact that Φβ defines the Lie algebra valued 1-form

Aβ : Uβ → T ∗Uβ ⊗ gl2(C),

is clear from what we showed leading up to Diagram (2.4).
We show that

Aβ = Ad(fβ) ◦Aα + (f−1
β )∗θ, on Uα ∩ Uβ .

Starting with the Definition of Aβ, we insert Φβ = fβ · Φα:

(2.6) Aβ = −Ad(fβ · Φα) ◦ (fβ · Φα)∗θ.

we compute:
(fβ · Φα)∗ = (Lfβ )∗ ◦ (Φα)∗ + (RΦα)∗ ◦ (fβ)∗.

Inserting this into (2.6) we obtain

Aβ = −Ad(fβ · Φα) ◦ θ
(
(Lfβ )∗ ◦ (Φα)∗ + (RΦα)∗ ◦ (fβ)∗

)
Writing out every term we obtain

= −(Lfβ )∗ ◦ (LΦα)∗ ◦ (Rf−1
β

)∗ ◦ (RΦ−1
α
)∗ ◦ (LΦ−1

α
)∗ ◦ (Lf−1

β
)∗ ◦ (Lfβ )∗ ◦ (Φα)∗

− (Lfβ )∗ ◦ (LΦα)∗ ◦ (Rf−1
β

)∗ ◦ (RΦ−1
α
)∗ ◦ (LΦ−1

α
)∗ ◦ (Lf−1

β
)∗ ◦ (RΦα)∗ ◦ (fβ)∗

cancelling expressions, we obtain

= −Ad(fβ) ◦ (RΦ−1
α
)∗ ◦ (Φα)∗ − (Rf−1

β
)∗(fβ)∗

= −Ad(fβ) ◦Ad(Φα) ◦ (LΦ−1
α
)∗ ◦ (Φα)∗ −Ad(fβ) ◦ (Lf−1

β
)∗ ◦ (fβ)∗

= Ad(fβ) ◦Aα −Ad(fβ) ◦ (Lf−1
β

) ◦
(
− (Lfβ )∗ ◦ (Rfβ )∗ ◦ (f

−1
β )∗

)
= Ad(fβ) ◦Aα +Ad(fβ) ◦Ad(f−1

β ) ◦ (Lfβ )∗ ◦ (f
−1
β )∗

= Ad(fβ) ◦Aα + (f−1
β )∗θ.

We notice that changing the sign of

Aα = −Ad(Φα) ◦ Φ∗
αθ,

changes the sign in front of (f−1
β )∗θ, and would give us a formula which did not coincide

with the one in Definition 2.1.9. ■

2.3 Construction of a principal bundle with a connection,
from a first order linear system of differential equa-
tions.

The scheme of the following construction is to construct a principal bundle
Q(M,GL2(C), π) with base space M = S \ { zj }mj=1 , structure group GL2(C), and tran-
sition functions gαβ which represent every GL2(C) valued, locally defined holomorphic
function on M . Then using the Lie algebra valued 1-form Aα in equation (2.5), we
construct a family of local connection forms on M .

We begin by defining the functions used to construct a principal bundle. These
functions will become the transition functions.
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Definition 2.3.1 Transition functions for the principal bundle.
Consider the indexed set { fβ : Uβ → GL2(C) }β∈J of every GL2(C) valued, holomorphic
functions locally defined on M . For each β, we define the functions

gβα : Uβ → GL2(C), gβα(z) = fβ(z) · e−1 = fβ(z),

where e ∈ GL2(C) is the identity matrix in GL2(C). And for each pair β, κ ∈ J we
define

gβκ : Uβ ∩ Uκ → GL2(C), gβκ(z) = fβ(z) · fκ(z)−1.

Remark.

• The choice of functions in Definition 2.3.1 includes the constant function gαα =
e : M → G, equal to the identity in GL2(C). This will make the principal bundle
Q(M,GL2(C), π) we construct, trivial, i.e. Q ' M × G, see Corollary 2.3.1.
However, still working with the principal bundle using different trivializations has
the benefit of giving us an equivalence class of differential equation. Then solving
one of them, we obtain solutions for the entire family by left multiplying with
transition functions, see Proposition 2.2.1. This makes the comparison with the
general theory of principal bundles and connection forms clearer.

• Even though the principal bundle will be trivial, the horizontal bundle coming
from the local family of connection forms will not be trivial, in the sense that
sα
(
TzM

)
6= Hsα(z), where sα(z) = φ−1

α (z, e), and sα(M) 'M × { e }.

• The functions gβα : Uβ → GL2(C) with one of the indices equal to α, are simply
special cases of gβκ : Uβ ∩ Uκ → GL2(C). These transition functions connects the
trivialization φα : Q→M ×G, to any of the other local trivializations.

It is easy to show that the relations in Proposition 2.1.2 are satisfied. Indeed

gβκ · gκβ = fβ · f−1
κ · fκ · f−1

β = e ∈ GL2(C).

gβκ · gκγ = fβ · f−1
κ · fκ · f−1

γ = fβ · f−1
γ = gβγ .

We will repeat the construction done in the proof of Proposition 2.1.4 for this special
case. The general proof is given in Proposition 5.2, Ch.1 in [KN63].

Corollary 2.3.1 Construction of the principal bundle Q(M,GL2(C), π).
Let M = S \ { 0, t,∞} be regarded as a complex manifold, with the open cover {Uβ }
such that for any Uβ ∩ Uk 6= ∅, we have the function gβκ : Uβ ∩ Uκ → GL2(C) from
Definition 2.3.1 satisfying the properties in Proposition 2.1.2. Then we can construct a
principal bundle Q(M,GL2(C), π), where the transition functions are given by { gβκ }.

Proof. Let Xβ = Uβ × GL2(C) for each β ∈ J , and let X =
∐
β∈J Xβ be the disjoint

union of the Xβ’s, such that each element of X is a triple (β, z, b), where β is the index,
z ∈M and b ∈ GL2(C). Evidently X is a complex manifold, since each Xβ is a complex
manifold. We introduce an equivalence relation on X:

(β, z, b) ∼ (κ, z′, c) ⇐⇒ z = z′ & b = gβκ(z) · c.

Evidently this is an equivalence relation, in particular transitivity utilizes the property
gβκ · gκγ = gβγ from Proposition 2.1.2. We define the topological space

Q = X/ ∼=
∐
β∈J

(Uβ ×GL2(C))/ ∼,
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where we give Q the quotient topology. Thus we have the projection

π : Q → M
[β, z, b] 7→ z

We now define the right action of GL2(C) on Q,

µ : Q×GL2(C) → Q(
[β, z, b], d

)
7→ [β, z, b · d]

this is well defined since if (κ, z, c) ∼ (β, z, b), then

µ
(
[κ, z, c], d

)
= [κ, z, c · d] = [β, z, gβκ(z) · c · d] = [β, z, b · d] = µ

(
[β, z, b], d

)
.

We check Property i. of Definition 2.1.1. The function is a right action, since if
p = [β, z, b] ∈ Q

µ(p, e) = µ
(
[β, z, b], e

)
= [β, z, b · e] = [β, z, b] = p,

µ(p, b · d) = µ
(
[κ, z, c], b · d

)
= [κ, z, c · b · d] = µ

(
[κ, z, c · b], d

)
= µ

(
µ
(
[κ, z, c], b

)
, d
)
= µ

(
µ(p, b), d

)
.

And it is free since: if d, h ∈ G and there exists an element p ∈ P such that

µ(p, d) = [β, z, b · d] = [β, z, b · h] = µ(p, h),

then
b · d = g(ββ)(z) · b · h = b · h ⇐⇒ d = h.

We will from now denote the product in GL2(C) by “·” and the right action of GL2(C)
on P by “ . ”.

Property ii. follows from the fact that π(p) = π(q) ⇐⇒ q = p . d for some
d ∈ GL2(C). Indeed this is true since if π(p) = π(q), we have q = [β, z, b] and
p = [κ, z, c]. By i. there exists a d ∈ GL2(C) such that b = gβκ(z) · c · d, then
p . d = [κ, z, c · d] = [β, z, gβκ(z) · c · d] = [β, z, b] = q. Conversely if q = p . d, then
π(p) = π(q) by the Definition of ∼.

To make P into a complex manifold, we first notice that, by the quotient map
X → Q = X/ ∼, each Xβ = Uβ ×GL2(C) is homeomorphically mapped onto π−1(Uβ).
We make Q into a manifold by requiring that π−1(Uβ) is an open submanifold of Q and
that the mapping X → Q = X/ ∼ is a bi-holomorphic map between Xβ = Uβ ×GL2(C)
and π−1(Uβ). This is well defined since the identification of [β, z, b] with [κ, z, gκβ(z) · b]
is made by means of a holomorphic map gκβ . The fact that Q is a complex manifold
and that the right action is holomorphic readily follows.

Finally we give a description of property iii., the local trivialization. By construction
we have for each Uβ the following commutative diagram:

π−1(Uβ) Uβ ×GL2(C)

Uβ GL2(C)

φβ

π
pr1

pr2

where φβ : π−1(Uβ) → Uβ ×GL2(C) is bi-holomorphic by how we defined the manifold
structure on Q. The maps φβ and gβ are explicitly given by

φβ
(
[β, z, b]

)
= (z, b), gβ([β, z, b]) = pr2 ◦ φβ = b.
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Thus
gβ([β, z, b] . c) = gβ([β, z, b · c]) = b · c = gβ([β, z, b]) · c.

So finally

gβ
(
[β, z, b]

)
·
(
gκ
(
[β, z, b]

))−1
= gβ

(
[β, z, b]

)
·
(
gκ
(
[κ, z, gκβ(z) · b]

))−1
= b · b−1gβκ(z),

so the transition function will exactly be given by gβκ. We also have the useful formulas:

φβ
(
[κ, z, c]

)
= (z, gβκ(z) · c), gβ

(
[κ, z, c]

)
= gβκ(z) · c.

The principal bundle Q(M,GL2(C), π) is trivial. Indeed, among the functions gβκ,
we have the function gαα = e : M → GL2(C), such that the local trivialization φα :
π−1(M) →M ×GL2(C), is in fact global. For any p ∈ Q, we have p = [α, z, a], for some
z ∈M , a ∈ GL2(C). Then

φα(p) = φα
(
[α, z, a]

)
= (z, a).

■

Now that we have defined a principal bundle Q(M,GL2(C), π), we will construct a
family of local connection forms on M . The one form Aα from equation (2.5) is defined
on the whole of M . We will define the rest of the family such that it satisfies the formula
in Definition 2.1.9.

Definition 2.3.2 A family of local connection forms on M .
Consider the principal bundle Q(M,GL2(C), π) from Corollary 2.3.1. Using the Lie
algebra valued 1-form Aα from equation (2.5), we define a family of local connection
forms

{Aβ : Uβ → T ∗Uβ ⊗ gl2(C)}β∈J ,

on M , given by
Aβ := Ad(gβα) ◦Aα + g∗αβθ,

for each β ∈ J , that is, one for each transition function gβα = fβ.

Lemma 2.3.1.
The family of Lie algebra valued 1-forms defined in Definition 2.3.2, is a family of local
connection forms. That is, for β, κ ∈ J such that Uβ ∩ Uκ 6= ∅

Aκ = Ad(gκβ) ◦Aβ + g∗βκθ.

Proof. Let β, κ ∈ J such that Uβ ∩ Uκ 6= ∅. Then

Ad(gκβ) ◦Aβ + g∗βκθ = Ad(gκβ) ◦
(
Ad(gβα) ◦Aα + g∗αβθ

)
+ g∗βκθ

= Ad(gκα) ◦Aα +Ad(gκβ) ◦ g∗αβθ + g∗βκθ

To conclude we need to show that

(2.7) Ad(gκβ) ◦ g∗αβθ + g∗βκθ = g∗ακθ.

We compute the term g∗βκθ = (gβα · gακ)∗θ, by using the Leibniz rule

(gβα · gακ)∗θ = θ
(
(gβα · gακ)∗

)
= θ
(
(Lgβα)∗ ◦ (gακ)∗ + (Rgακ)∗ ◦ (gβα)∗

)
= (Lgκα)∗ ◦ (Lgαβ

)∗ ◦ (Lgβα)∗ ◦ (gακ)∗ + (Lgκα)∗ ◦ (Lgαβ
)∗ ◦ (Rgακ)∗ ◦ (gβα)∗

(2.8) =⇒ g∗βκθ = g∗ακθ +Ad(gκα) ◦ g∗βαθ.
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Finally we compute g∗βαθ in terms of gαβ . We differentiate the constant map e = gαβ ·gβα

0 = (Lgαβ
)∗ ◦ (gβα)∗ + (Rgβα)∗ ◦ (gαβ)∗ ⇐⇒ (gβα)∗ = −(Lgβα)∗ ◦ (Rgβα)∗ ◦ (gαβ)∗

Applying θ on both sides:

(2.9) g∗βαθ = −(Lgαβ
)∗ ◦ (Lgβα)∗ ◦ (Rgβα)∗ ◦ (gαβ)∗ = −Ad(gαβ) ◦ g∗αβθ

Finally, we can conclude by inserting (2.9) into (2.8):

g∗βκθ = g∗ακθ −Ad(gκα) ◦Ad(gαβ) ◦ g∗αβθ ⇐⇒ Ad(gκβ) ◦ g∗αβθ + g∗βκθ = g∗ακθ.

which is exactly (2.7). ■

Corollary 2.3.2 Connection form and principal connection on
Q(M,GL2(C), π).
Consider the principal bundle Q(M,GL2(C), π) constructed in Corollary 2.3.1, together
with the family of local connection forms from Definition 2.3.2. The associated connec-
tion form ω on Q, is in each local trivialization

φβ = π × gβ : π−1(Uβ) → Uβ ×G,

given by
ωβ = Ad

(
g−1
β

)
◦ π∗Aβ + g∗βθ.

Moreover, using the trivialization

φα : π × gα : Q→M ×G,

ω is globally given by
ω = Ad

(
g−1
α

)
◦ π∗Aα + g∗αθ.

The horizontal bundle H ⊂ TP is given by

H = ker(ω) = ker
(
Ad
(
g−1
α

)
◦ π∗Aα + g∗αθ

)
.

Proof. This is just direct applications of Proposition 2.1.6 and Proposition 2.1.7. ■

As a summary of the above construction, we took every GL2(C) valued, holomorphic
function fβ : Uβ → GL2(C), locally defined on Uβ ⊂ M = S \ { zj }mj=1, and defined the
functions gβκ = fβ · f−1

κ . We then defined a principal bundle Q(M,GL2(C), π) with
base space M and structure group GL2(C), with the given functions gβκ as transition
functions. The Lie algebra valued 1-form Aα on M , was then used to construct a family
of local connection forms on M . The family of local connection forms {Aβ }β∈J on M ,
give a connection form ω on Q and a horizontal bundle H ⊂ TP .

The following Lemma and Theorem is formulated and proved by the author, and to
the authors knowledge, not found in other literature using this formulation. Remark
that the results are stated and proved for an arbitrary principal bundle possessing a
connection.

Lemma 2.3.2 Horizontal section formulated with different notion of a con-
nection.
Consider a principal bundle P (N,G, π), with principal connection H ⊂ TP , connection
form ω, and family of local connection forms {Aκ }κ∈J . Let Φ̂ : U → π−1(U) ⊂ P , be a
holomorphic section of P . The following statements are equivalent:

i. Φ̂ is horizontal (see Definition 2.1.6).
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ii. Φ̂∗ω = 0.

iii. For each trivialization φκ = π × gκ : π−1(Uκ) → Uκ × G, such that Uκ ∩ U 6= ∅,
the following relation holds:

Aκ = −Ad
(
gκ ◦ Φ̂

)
◦
(
gκ ◦ Φ̂

)∗
θ, in Uκ ∩ U.

Proof. First, i. ⇐⇒ ii. is obvious, since by Definition 2.1.6 of a horizontal section,
Φ̂∗,z(TzU) = HΦ̂(z) and by Proposition 2.1.6, HΦ̂(z) = ker(ωΦ̂(z)).

We show that ii. ⇐⇒ iii.
Given a trivialization φκ = π × gκ : π−1(Uκ) → Uκ × G, such that Uκ ∩ U 6= ∅, we use
Proposition 2.1.7 and compute

Φ̂∗ω = Φ̂∗ (Ad(g−1
κ ) ◦ π∗Aκ + g∗κθ

)
= Ad

((
gκ ◦ Φ̂

)−1
)
◦ Φ̂∗π∗Aκ + Φ̂∗g∗κθ,

using the co-functorial property of the pull-back and the fact that Φ̂ is a section:

(2.10) Φ̂∗ω = Ad

((
gκ ◦ Φ̂

)−1
)
◦Aκ +

(
gκ ◦ Φ̂

)∗
θ.

Solving (2.10) for Aκ, we obtain:

Aκ = Ad
(
gκ ◦ Φ̂

)
◦
(
Φ̂∗ω −

(
gκ ◦ Φ̂

)∗
θ
)
.

Now, it is obvious that iii. holds if and only if Φ̂∗ω = 0.
■

Theorem 2.3.1 Characterization of horizontal sections of a principal bundle.
Consider a principal bundle P (N,G, π), with a family of local connection forms {Aβ }β∈J .
Let β ∈ J . The following statements are equivalent:

i. There exists a horizontal section Φ̂ : Uβ → π−1(Uβ) ⊂ P .

ii. There exists a holomorphic function Φβ : Uβ → G, such that

Aβ = −Ad(Φβ) ◦ Φ∗
βθ, in Uβ ⊂ N.

iii. For each κ ∈ J such that Uκ ∩ Uβ 6= ∅, there exists a holomorphic function Φκ :
Uκ ∩ Uβ → G, such that

Aκ = −Ad(Φκ) ◦ Φ∗
κθ, in Uκ ∩ Uβ ⊂ N.

Moreover, if Uκ ∩ Uγ ∩ Uβ 6= ∅, we have the relation Φk = gκγ · Φγ.

Remark.
The fact that a function Φβ : Uβ → G, satisfies

Aβ = −Ad(Φβ) ◦ Φ∗
βθ, in Uβ ⊂ N,

can be written in terms of the coordinate functions related to the basis
{

∂
∂zk

}
for TzN .

If we consider
Aβ = (Aβ)k dz

k,

then
(Aβ)k = Aβ

(
∂

∂zk

)
= −Ad (Φβ(z)) ◦ (Φ∗

βθ)z

(
∂

∂zk

)
,
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in Uβ ⊂ N , for k ∈ { 1, . . . , dim(N) }. And if G = GLn(C):

(Aβ)k = Aβ

(
∂

∂zk

)
= −

∂Φβ
∂zk

· Φβ(z)−1,

in Uβ ⊂ N , for k ∈ { 1, . . . , dim(N) }.

Proof. We will show that i. =⇒ iii. =⇒ ii. =⇒ i..
We first show that i =⇒ iii. This is easy, since by Lemma 2.3.2 we have that Φ̂ is a
horizontal section if and only if for each trivialization φκ = π× gκ : π−1(Uκ) → Uκ ×G,
such that Uκ ∩ Uβ 6= ∅:

Aκ = −Ad
(
gκ ◦ Φ̂

)
◦
(
gκ ◦ Φ̂

)∗
θ, in Uκ ∩ Uβ .

We define the holomorphic function

Φκ : Uκ ∩ Uβ → G, Φκ := gκ ◦ Φ̂.

If Uκ ∩ Uγ ∩ Uβ 6= ∅, then by Definition 2.1.3

Φκ(z) = gκ ◦ Φ̂(z) = gκγ ◦ π ◦ Φ̂(z) · gγ ◦ Φ̂(z) = gκγ(z) · Φγ(z)

Hence i. =⇒ iii.
We show that iii. =⇒ ii. Assume that for each κ ∈ J , such that Uκ ∩Uβ 6= ∅, there

exists a holomorphic function Φk : Uκ ∩ Uβ → G with

Aκ = −Ad(Φκ) ◦ Φ∗
κθ, in Uκ ∩ Uβ ⊂ N.

Then in particular, for κ = β ∈ J , we have the function Φβ : Uβ → G, with

Aβ = −Ad(Φβ) ◦ Φ∗
βθ, in Uβ ⊂ N.

We show that ii. =⇒ i. Assume there exists a holomorphic function Φβ : Uβ → G,
such that

Aβ = −Ad(Φβ) ◦ Φ∗
βθ, in Uβ ⊂ N.

Using the local trivialization

φβ = π × gβ : π−1(Uβ) → Uβ ×G,

we define the section

Φ̂ : Uβ → π−1(Uβ), Φ̂(z) := φ−1
β

(
z,Φβ(z)

)
.

Obviously it is holomorphic since it is a composition of holomorphic functions. Notice
that

gβ ◦ Φ̂ = gβ ◦ φ−1
β

(
z,Φβ(z)

)
= pr2 ◦φβ ◦ φ−1

β ◦
(
IUβ

× Φβ
)
= Φβ ,

thus Φ̂ is horizontal by Lemma 2.3.2, since

Aβ = −Ad(Φβ) ◦ Φ∗
βθ = −Ad

(
gβ ◦ Φ̂

)
◦
(
gβ ◦ Φ̂

)∗
θ, in Uβ ⊂ N.

■

Relating this geometric construction to the problem of solving a differential equation
reveals that the given differential equation is just one of a family of differential equation.
If we find a solution Φβ of one of the equations Aβ, we can construct a solution for any
Aκ in the family such that Uβ ∩Uκ 6= 0, simply by multiplying by the transition function
Φκ = gκβ · Φβ. Theorem 2.3.1, shows that in this geometric setting, we can solve the
given differential equation in equation (2.3), by finding horizontal sections of Q.
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2.4 Frobenius integrability of horizontal distributions
In this Section we will use the knowledge of a connection on a principal bundle, to
construct a Lie algebra valued 2-form on P , called the curvature form. The curvature
form measures how far the horizontal distribution H ⊂ TP is from being involutive.
If the curvature form is zero, H will be integrable by the Frobenius Theorem 2.4.1.
This means that at any point p ∈ P there is an unique submanifold S of P , such that
TpS = Hp ⊂ TpP . We will use this to induce a horizontal section of P . Thus by Theorem
2.3.1, finding a solution to the differential equation (2.3).

We start of with giving the preliminary definitions, and the statement of the Frobe-
nius Theorem. The Frobenius Theorem is an essential tool in differential geometry. It
uses knowledge of a subbundle of the tangent bundle on a manifold P , with commuting
vector fields, in order to infer the existence of submanifolds of P . In order to present it,
we need some definitions.

Definition 2.4.1 Distributions, involutive and integrable.

• Let P be an n-dimensional complex manifold. An r−dimensional distribution on
P , is a collection D = {Dp | p ∈ P } of r−dimensional subspaces Dp ⊂ TpP , one
for each p ∈ P , that are holomorphic in the sense that they are locally described by
the span of r-holomorphic vector fields on P .

• A distribution is integrable if for any point p ∈ P there is an unique submanifold
S of P , such that the tangent space TpS = Dp ⊂ TpP .

• A distribution is said to be involutive if for any sections v, w : Ũ ⊂ P → D,
then the Lie bracket [v, w] is also a section of D. That is, if X(P ;D) denotes the
subspace of X(P ) consisting of sections on P with range in D, then D is involutive
if X(P ;D) is also a Lie subalgebra.

Theorem 2.4.1 [T.4.1, [Sha97]] The Frobenius Theorem.
Let P be an n-dimensional complex manifold with an r−dimensional distribution D ⊂
TP . Then D is integrable if and only if it is involutive.

We will now create tools in order to apply the Frobenius Theorem to a horizontal
distribution on a principal bundle. First we define the horizontal projection.

Definition 2.4.2 Horizontal projection.
Given a principal bundle P (M,G, π) with a connection H ⊂ TP . We define the hori-
zontal projection h : TP → H by for each p ∈ P :

hp : TpP → Hp

v 7→ hpv =

{
v, if v ∈ Hp

0, if v ∈ Vp

and then extending by linearity. We will let h∗p : T ∗
pP → H∗

p denote the dual maps of the
horizontal projection.

Remark that h∗ is not the pull-back by a holomorphic map. In particular, h∗ does
not commute with the exterior derivative on P .

Definition 2.4.3 Curvature form.
Consider a principal bundle P (M,G, π) and a connection H ⊂ TP , such that H =
ker(ω), where ω is the connection form. We define the curvature form to be the Lie
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algebra valued 2-form on P given by

Ω = h∗dω : P →
∧2

T ∗P ⊗ g

Ω(u, v) =
(
h∗dω

)
(u, v) = dω(hu, hv),

where d is the exterior derivative.

Using the coordinate independent formula for the exterior derivative of a 1-form, we
can give another expression for the curvature form. If u, v ∈ TpP :

(2.11) Ω(u, v) =
(
h∗dω

)
(u, v) = dω

(
hu, hv

)
= hu ω(hv)− hv ω(hu)− ω[hu, hv] = −ω[hu, hv],

here we used that hu ∈ ker(ω) since it is horizontal. We see that Ω = 0 if and only if
[hu, hv] is horizontal, for any u, v ∈ TpP . Thus H is an involutive distribution if and
only if Ω is zero. By the Frobenius Theorem 2.4.1, H is an integrable distribution if an
only if Ω = 0.

We will derive another formula for Ω, one that resembles the structure equation for
the Maurer-Cartan form, see Proposition A.2.2. As the construction from the previous
Section might have revealed, a connection form on a principal bundle is a generalization
of the Maurer-Cartan form on a Lie group.

Proposition 2.4.1 Structure equation for the curvature form.
Given a principal bundle P (M,G, π) with a connection form ω, and curvature form Ω.
Then

Ω = dω +
1

2
[ω ∧ ω],

that is, for any u, v ∈ TpP

Ω(u, v) = dω(u, v) +
1

2
[ω ∧ ω](u, v) = dω(u, v) + [ω(u), ω(v)]

(2.11)
= −ω[hu, hv].

The notation [ω ∧ ω] is explained in Proposition A.2.2.

Proof. Proof given in [KN63]. ■

Analogous to the family of local connection forms {Aβ }β on M , induced by a con-
nection form ω on P , see Proposition 2.1.7, we can induce a family of local curvature
forms {Fβ }β on M , by the curvature form Ω on P .

Definition 2.4.4 Family of local curvature forms.
Consider a principal bundle P (M,G, π) with a connection form ω and curvature form
Ω. Locally on M , we define a family of Lie algebra valued 2-forms, {Fβ }β,

Fβ : Uβ →
∧2

T ∗Uβ ⊗ g,

defined by
Fβ := s∗βΩ,

where sβ : Uβ → π−1(Uβ) is the trivial sections of the local trivializations of P , see
Definition 2.1.4.

Proposition 2.4.2 Structure equation for local curvature forms.
Let P (M,G, π) be a principal bundle with a connection form ω and curvature form Ω.
Let {Aβ }β be the family of local connections forms on M . Consider a family of local
curvature forms on M , induced by the curvature form Ω. Then

Fβ = dAβ +
1

2
[Aβ ∧Aβ ].

69



Proof. We use the structure equation for the curvature form in Proposition 2.4.1, and
compute

Fβ = s∗βΩ = s∗β

(
dω +

1

2
[ω ∧ ω]

)
= d(s∗βω) +

1

2
s∗β [ω ∧ ω] = dAβ +

1

2
[Aβ ∧Aβ ].

■

Corollary 2.4.1 Change of trivialization for local curvature forms.
A family of local curvature forms {Fβ }β∈J are related by

Fκ = Ad(gκβ) ◦ Fβ , for Uκ ∩ Uβ 6= ∅

Proof. We let Uκ ∩ Uβ 6= ∅, and use Proposition 2.4.1 combined with Definition 2.1.9

Fκ = dAκ +
1

2
[Aκ ∧Aκ]

= d
(
Ad(gκβ) ◦Aβ + g∗βκθ

)
+

1

2

[
Ad(gκβ) ◦Aβ + g∗βκθ, Ad(gκβ) ◦Aβ + g∗βκθ

]

= Ad(gκβ) ◦
(
dAβ +

1

2
[Aβ ∧Aβ ]

)
+ d(g∗βκθ)

+
1

2

(
[Ad(gκβ) ◦Aβ , g∗βκθ] + [g∗βκθ, Ad(gκβ ◦Aβ)] + [g∗βκθ, g

∗
βκθ]

)
= Ad(gκβ) ◦ Fβ + d(g∗βκθ) +

1

2
[g∗βκθ, g

∗
βκθ].

To conclude, we need to show that d(g∗βκθ) +
1
2 [g

∗
βκθ, g

∗
βκθ] = 0.

d(g∗βκθ) +
1

2

[
g∗βκθ, g

∗
βκθ
]
= g∗βκ

(
dθ +

1

2
[θ ∧ θ]

)
= 0

where the last equality follows from Proposition A.2.1. ■

We now return to the constructed principal bundle Q(M,GL2(C), π) from Corollary
2.3.1. Even without computing the terms in the structure equations in Proposition 2.4.1
or Proposition 2.4.2, we know that Ω = 0. This is simply due to a dimension argument.
Since the dimension of M is 1, the dimension of the horizontal tangent space is also 1.
Hence the bracket of horizontal vector fields is always zero. The Frobenius Theorem
thus apply, and at each p ∈ P , there exists a unique submanifold S ⊂ P , such that
TpS = Hp ⊂ TpP .

The two following Corollaries are proved for an arbitrary principal bundle, with an
integrable horizontal bundle. They are formulated and proved by the author, and to the
authors knowledge, not found in other literature in this formulation.

Corollary 2.4.2 Horizontal distributions induces sections from M to P .
Let P (M,G, π) be a principal bundle, with a connection H ⊂ TP . Assume H is inte-
grable, equivalently involutive, equivalently that the curvature form Ω is zero. Let S ⊂ P
be the unique submanifold through the point p ∈ P , such that TpS = Hp ⊂ TpP . Then in
a neighbourhood U ⊂ M of π(p) = z, there exists a horizontal section Φ̂ : U → S, such
that, Φ̂(z) = p.
The section is unique in the sense that: if there exists another horizontal section Ψ̂ :
U ′ → S, with Ψ̂(z) = p, then Φ̂ = Ψ̂ on U ∩ U ′.
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Proof. Since S is a submanifold there exists a chart ψ : S → Cn, where n =dim(Hp) =dim(M),
with ψ−1(0) = p. Since TpS = Hp,{

(ψ−1)∗,0
∂

∂xj

}n
j=1

is a basis for Hp. We have that

π ◦ ψ−1 : B(0, ϵ) ⊂ Cn → U ′ ⊂M

is a holomorphic function between two complex manifolds of dimension n. We will
show that π ◦ ψ−1 is locally invertible. By the (complex) inverse function Theorem
[FG02][p.33] we need to show that the Jacobian matrix of π ◦ψ−1 is non-zero at 0 ∈ Cn.
Let (U, z1, . . . , zn) be a chart around π ◦ ψ−1(0) = π(p) in M . We recall the chart basis{

∂̃
∂zk

}
for Hp (see Definition 2.1.7). For clarity we write S instead of ψ−1(B(0, ϵ)) etc.

The Jacobian is computed by considering

π ◦ (ψ−1) : Cn → S →M.

and mapping the basis for T0Cn through its tangential map:

(π ◦ ψ−1)∗,0 : T0C
n → Hp → Tπ(p)M

(π ◦ ψ−1)∗,0

(
∂

∂xk

)
= π∗,p ◦ (ψ−1)∗,0

(
∂

∂xk

)

= π∗,p

((
∂(ψ−1)

∂xj

)k
∂̃

∂zk

)
=

(
∂(ψ−1)

∂xj

)k
∂

∂zk
.

Thus we need to show that the matrix
(
∂(ψ−1)
∂xj

)k
is invertible. However this is exactly

the condition that
{
(ψ−1)∗,0

∂
∂xj

}n
j=1

is a basis for Hp. Thus, we conclude that by the
invertible function Theorem, that in a neighbourhood U of π ◦ψ−1(0) ∈M , there exists
a holomorphic function y : U → Cn, such that π ◦ψ−1 ◦ y(z) = z and y ◦π ◦ψ−1(x) = x.
We define the holomorphic section

Φ̂ : U → ψ−1
(
y(U)

)
⊂ S, z 7→ ψ−1◦y(z) = [α, π◦ψ−1◦y(z), gα◦ψ−1◦y(z)] = [α, z,Φα(z)].

Note that Φ̂ is actually a bi-holomorphic function. The fact that Φ̂∗,z
(
∂
∂zk

)
is horizontal,

is obvious since
Φ̂∗,z

(
∂

∂zk

)
= (ψ−1)∗,0

(
y∗,z

∂

∂zk

)
and the image of (ψ−1)∗ is horizontal, see Figure 2.1 for an illustration.

We now prove the uniqueness. Let q ∈ Φ̂(U) ⊂ S, π(q) = zq ∈ U . Since Φ̂ is a
bi-holomorphic section from U to Φ̂(U) = Ũ , it has inverse function π

∣∣
Ũ

. Hence there is
only one point in S above zq ∈M . Thus any other section Ψ̂′ : U ′ → S, with Ψ̂(z) = p,
Ψ̂∗,zTzU

′ = Hp, equals Φ̂ on U ∩ U ′. ■

Corollary 2.4.3 Relation between sections.
Consider a principal bundle P (M,G, π), with a connection H ⊂ TP . Let p, q ∈ P with
π(p) = z0 = π(q), and q = p . a. Apply Corollary 2.4.2 to obtain two unique sections
Φ̂p : U → Sp and Φ̂q : U → Sq, into two distinct submanifolds Sp and Sq of P , in a
common domain U ⊂M . Then Φ̂q(z) = Φ̂p(z) . a.
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Proof. By the uniqueness of Corollary 2.4.2, there is only one section Φ̂q : U → Sq, with
Φ̂q(z0) = q and Φ̂q∗,z(Tz0U) = Hq. Consider the section

Φ̂p . a : U → π−1(U).

Obviously, Φ̂p(z0) . a = p . a = q. Also,(
Φ̂p . a

)
∗,z0

(Tz0U) = (µa)∗,p ◦ Φ̂p∗,z0(Tz0U) = (µa)∗,pHp = Hq,

by Property ii. of a principal connection, see Definition 2.1.6. The image of Φ̂p . a induces
a submanifold through p . a = q ∈ P , with tangent space Hq. By the uniqueness of Sq
in the Frobenius Theorem, this submanifold is Sq (or at least a subset of Sq). Hence
Φ̂p . a : U → Sq, and thus Φ̂p . a = Φ̂q. ■

Theorem 2.4.2 Existence and uniqueness of local fundamental solutions to
(2.3).
Consider the differential equation (2.3):

A(z) =
dΦ

dz
· Φ(z)−1, A : S \ { zj }mj=1 →M2(C)

i. Let a0 ∈ GL2(C), and z0 ∈ S \ { zj }mj=1 = M . Then there is a neighbourhood
U ⊂M of z0, where there exists a unique fundamental solution Φα : U → GL2(C),
such that Φα(z0) = a0.

ii. If a0, b0 ∈ GL2(C), and the functions Φα : U → GL2(C) and Φ′
α : U ′ → GL2(C)

solves the differential equation with Φα(z0) = a0, Φ′
α(z0) = b0. Then Φ′

α = Φα ·
a−1
0 · b0 in U ∩ U ′.

Figure 2.1: The figure shows a section φα ◦
Φ̂ : U → U × G. The arrows illustrate
the horizontal tangent vectors, and the red,
blue and orange lines are the submanifolds
induced by the Frobenius Theorem. The
word "integrable", in integrable distribution,
refers to the vector field(s) which is "inte-
grated" to obtain the function Φ̂.

Compare this result with the findings
of Section 1.2.3, and Lemma 1.2.2.

Proof. We will give a guide on how to ap-
ply the above results in order to prove the
existence and uniqueness. First, the dif-
ferential equation is rewritten in geomet-
rical terms,

Aα = −A dz = −Ad(Φ) ◦ Φ∗θ,

and the function −A is interpreted as
the coordinate function of a Lie alge-
bra valued 1-form Aα, see equation (2.5).
We then construct the principal bundle
Q(M,GL2(C), π) in Corollary 2.3.1. Aα
defines a family of local connection forms
on M in Definition 2.3.2, and thus in-
duces a connection on Q(M,GL2(C), π),
see Corollary 2.3.2. By Theorem 2.3.1,
solving the differential equation

(2.12) A =
dΦ

dz
· Φ(z)−1

locally, is now equivalent to finding a hor-
izontal section Φ̂ : U → π−1(U) ⊂ Q.
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By Definition 2.4.3 of the curvature form of the connection, Ω = 0, since M has
dimension 1. Thus we can apply the Frobenius Theorem 2.4.1, which in each point
p ∈ Q, gives a unique submanifold S, with TpS = Hp. Now let z0 ∈M , a0 ∈ G. We then
obtain a unique point p = [α, z0, a0] ∈ Q, using the trivialization φα. Applying Corollary
2.4.2, we obtain a unique horizontal section Φ̂ : U → S, defined in some neighbourhood
U of z0, with Φ̂(z0) = [α, z0, a0] and Φ̂∗,z0(Tz0U) = Hp. Finally, Proposition 2.3.1 implies
that Φα = gα ◦ Φ̂ : U → GL2(C), is the desired solution.

The second statement is a direct consequence of Corollary 2.4.3. Indeed, if we let
p = [α, z0, a0] and q = [α, z0, b0], we have

Φ′
α(z) = gα ◦ Φ̂q(z) = gα

(
Φ̂p(z) . a−1

0 · b0
)
=
(
gα ◦ Φ̂p(z)

)
· a−1

0 · b0 = Φα(z) · a−1
0 · b0.

■

2.5 Necessary and sufficient conditions for holomorphic
deformations

Consider the differential equation

A(z) =
dΦ

dz
· Φ(z)−1, z ∈ S \ { zj }mj=1 =M.

In Theorem 2.4.2, we showed that at each point of M we can find a unique local solution
of the equation, satisfying an initial condition at that point. The idea is now to extend
the problem, with an additional parameter t ∈ C, such that

A(z) = Az(z, t),

and each solution on M can be deformed holomorphically by varying t in W ⊂ C.

Definition 2.5.1 Holomorphic deformation.
Consider the differential equation

(2.13) B(z, t) = ∂Φ

∂z
· Φ(z)−1, B :

(
S \ { zj }mj=1

)
×W →M2(C),

where W ⊂ C denotes an open subset of C and B depend holomorphically on z ∈ S \
{ zj }mj=1. If B depends holomorphically on t, we call the family {B(·, t) | t ∈W } a
holomorphic deformation of the differential equation (2.13)

We need some conditions on a solution Φ : U ⊂ M ×W → GL2(C), which should
come in form of a differential equation

At(z, t) =
∂Φ

∂t
· Φ(z, t)−1.

We want to employ the same ideas, and construct a principal bundle Q̃(M̃,GL2(C), π)
similar to Q (M,GL2(C), π) , but where the basespace will be have an additional complex
parameter t ∈W , for some W ⊂ C open and connected, that is:

M̃ = S \ { zj }mj=1 ×W =M ×W 3 (z, t).

If we then can find a family of local connection forms { Ãβ }β on M̃ , with vanishing
curvature form Ω̃ on Q̃, we can once again apply the Frobenius Theorem 2.4.1, Corollary
2.4.2 and Theorem 2.3.1. In particular, by Theorem 2.3.1, a solution Φ : U ⊂ M̃ →
GL2(C) of the two parameter problem, should satisfy

Ãα = −Ad(Φ) ◦ Φ∗θ = (Ãα)z dz + (Ãα)t dt
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−Az dz −At dt = −Ad(Φ) ◦ Φ∗θ

(
∂

∂z

)
dz −Ad(Φ) ◦ Φ∗θ

(
∂

∂t

)
dt,

where
{
∂
∂z ,

∂
∂t

}
is the basis for the tangent space T(z,t)M̃ ' TzM × TtC at (z, t) ∈ M̃ .

Or written in matrix group notation:

Ãα = −Az dz −At dt = −∂Φ
∂z

· Φ(z, t)−1 dz − ∂Φ

∂t
· Φ(z, t)−1 dt.

So, to employ the theory developed in Section 2.4 we need to find a coefficient function

(Ãα)t = −At : M̃ →M2(C).

If we can find a suitable −At, we can define a family of local connection forms{
Ãβ = Ad(gβα) ◦ Ãα + g∗αβθ

}
on M̃ . This induces a connection on Q̃, which by the Frobenius Theorem 2.4.1 gives an
integrable distribution H̃ ⊂ TQ̃ if and only if the associated curvature form Ω̃ vanishes.
Using Definition 2.4.4, this translates down to M̃ by requiring that the family of local
curvature forms {

F̃β = s∗βΩ̃ : Uβ →
∧2

T ∗Uβ ⊗ g
}

all vanish.

Lemma 2.5.1 Characterization of vanishing curvature form.
Given a principal bundle P (N,G, π), with a connection form ω on P , and associated
curvature form Ω on P . Then

Ω = 0 ⇐⇒ Fβ = s∗βΩ = 0, for every β ∈ J.

Proof. It is clear that if Ω = 0, then for any β, Fβ = s∗βΩ = 0.
Conversely, if Fβ = 0 for every β ∈ J , that means that for any p ∈ P , with π(p) = z

and for any u, v ∈∈ TzM :

Fβ(u, v) =
(
s∗βΩ

)
(u, v) = −ω

[
h ◦ (sβ)∗u, h ◦ (sβ)∗v

]
= 0.

From this we want to infer that for any horizontal tangent vectors ũ, ṽ ∈ Hp: −ω[ũ, ṽ] =
0. Thus it suffices to show that h ◦ (sβ)∗ : TzM → Hp is surjective. Recall that (sβ)∗
has rank dim(M) and that π∗ ◦ (sβ)∗ = 0. Thus (sβ)∗u has non-vanishing horizontal
component for any u ∈ TzM . If not then dim(ker((sβ)∗)) > dim(G) = dim(P )−dim(M),
a contradiction. Thus we conclude that h ◦ (sβ)∗ : TzM → Hp is surjective, and that
Ω = 0. ■

If we manage to define Ãα globally on M̃ , then F̃α will also be globally defined. By
Corollary 2.4.1 and Lemma 2.5.1, we have that

F̃α = 0 ⇐⇒ F̃β = 0, for every β ∈ J ⇐⇒ Ω̃ = 0.

Thus by the structure equation for local curvature forms (Proposition 2.4.2), it is nec-
essary and sufficient to show that

F̃α = dÃα +
1

2

[
Ãα ∧ Ãα

]
= 0.
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Theorem 2.5.1 Integrability conditions of horizontal distribution.
Consider the principal bundle Q̃(M̃,GL2(C), π), where

M̃ = S \ { zj }mj=1 ×W =M ×W 3 (z, t).

A local connection form, globally defined on M ,

Ãα = (Ãα)z dz + (Ãα)t dt = −Az dt−At dt,

gives rise to an integrable horizontal distribution H on Q̃ if and only if

F̃α = dÃα +
1

2

[
Ãα ∧ Ãα

]
= 0

⇐⇒ ∂(Ãα)t
∂z

− ∂(Ãα)z
∂t

+
[
(Ãα)z, (Ãα)t

]
= 0

Proof. The discussion above, proves the statement of the Theorem. All that is left, is to
prove the last formula. Since F̃α is a 2-form on a 2 dimensional manifold, it has a single
form in its basis, namely dz ∧ dt. Thus F̃α vanish if and only if the following expression
vanish: (

dÃα +
1

2

[
Ãα ∧ Ãα

])( ∂

∂z
,
∂

∂t

)
.

By computing we get

(2.14) d((Ãα)zdz + (Ãα)tdt) =
∂(Ãα)z
∂t

dt ∧ dz + ∂(Ãα)t
∂z

dz ∧ dt

=

(
∂(Ãα)t
∂z

− ∂(Ãα)z
∂t

)
dz ∧ dt.

Also

(2.15)
[
((Ãα)zdz + (Ãα)tdt)

(
∂

∂z

)
, ((Ãα)zdz + (Ãα)tdt)

(
∂

∂t

)]
=
[
(Ãα)z + 0 , 0 + (Ãα)t

]
Combining (2.14) and (2.15) we obtain(

dÃα +
1

2

[
Ãα ∧ Ãα

])( ∂

∂z
,
∂

∂t

)

=

(
∂(Ãα)t
∂z

− ∂(Ãα)z
∂t

)
(dz ∧ dt)

(
∂

∂z
,
∂

∂t

)
+
[
(Ãα)z, (Ãα)t

]
=
∂(Ãα)t
∂z

− ∂(Ãα)z
∂t

+
[
(Ãα)z, (Ãα)t

]
.

■

We summarize the discussion of this Section in a Theorem.

Theorem 2.5.2 Integrability condition of differential equations.
The system of differential equations{

Az(z, t) =
∂Φ
∂z · Φ(z, t)−1

At(z, t) =
∂Φ
∂t · Φ(z, t)−1

Az, At : M̃ →M2(C)

has local fundamental solutions Φ : U → GL2(C) if and only if
∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0.

Moreover, if such solutions exist, they satisfy:
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i. If a0 ∈ GL2(C), and (z0, t0) ∈ M̃ . Then there is a neighbourhood U ⊂ M̃ of
(z0, t0) where there exists a unique fundamental solution Φα : U → GL2(C), such
that Φα(z0, t0) = a0.

ii. If a0, b0 ∈ GL2(C), and the functions Φα : U → GL2(C) and Φ′
α : U ′ → GL2(C)

solves the differential equation with Φα(z0, t0) = a0, Φ′
α(z0, t0) = b0. Then Φ′

α =
Φα · a−1

0 · b0 in U ∩ U ′.

Proof. We give a guide on how to apply the geometric construction i order to infer the
result. A principal bundle Q̃(M̃,GL2(C), π) is constructed, similarly to Corollary 2.3.1.
On M̃ we have the Lie algebra valued 1-form

Ãα = −Az dz −At dt,

defined globally. Using the transition function on gβα, we define a family of local con-
nection forms {

Ãβ = Ad(gβα) ◦ Ãα + g∗αβθ
}
, on M̃.

By Theorem 2.5.1, this family of local connection forms give rise to an integrable
horizontal distribution H on Q̃ if and only if

F̃α = dÃα +
1

2

[
Ãα ∧ Ãα

]
= 0.

Inserting
(Ãα)z = −Az, (Ãα)t = −At

we obtain the condition
∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0.

Then using Corollary 2.4.2, we infer that for the unique submanifold S through a
point q ∈ Q̃, there exists a neighbourhood U ⊂ M̃ of π(q) and a horizontal section
Φ̂ : U → S, unique in U . Remark that if for each point q ∈ Q̃, there exists such a
horizontal section, then these sections give unique submanifolds at each q ∈ Q̃. Further,
by Theorem 2.3.1, this horizontal section is equivalent to the existence of a holomorphic
function

Φα = gα ◦ Φ̂ : U → GL2(C),

such that
Ãα = −Ad(Φα) ◦ Φ∗

αθ,

that is
−Az dz −At dt = −∂Φα

∂z
· Φ(z, t)−1 dz − ∂Φα

∂t
· Φ(z, t)−1 dt,

hence establishing the equivalence.

We show the first property of the local solutions: Given a0 ∈ GL2(C) and (z0, t0) ∈
M̃ . Then this gives a unique point q = [α, (z0, t0), a0] ∈ Q̃. Through this point there
exists a unique submanifold Sq. By the arguments from the above statement, there
exists a neighbourhood U ⊂ M̃ and a holomorphic function Φα : U → GL2(C), that
solves the differential equations. Also Φα is the only such function in U , by Corollary
2.4.2.

The second statement is a direct consequence of Corollary 2.4.3. Indeed, if we let
p = [α, (z0, t0), a0] and q = [α, (z0, t0), b0], we have

Φ′
α(z, t) = gα ◦ Φ̂q(z, t) = gα

(
Φ̂p(z, t) . a−1

0 · b0
)

=
(
gα ◦ Φ̂p(z, t)

)
· a−1

0 · b0 = Φα(z, t) · a−1
0 · b0.

■
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Chapter 3

Isomonodromic deformation

3.1 Introduction to isomonodromic deformations
In Chapter 1 we found local fundamental solutions of the differential equation

(3.1) dΦ

dz
Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

= A(z),

and then used these local solutions to construct a global fundamental solution

Φ̃ : M̃ → GL2(C)

on the universal covering space M̃ of M = S \ { 0, t,∞}. The function Φ̃ is the function
one obtains from taking a local solution of the above differential equation and analytically
continuing the solution along every path in M = S \ { 0, t,∞}. The function is defined
on the universal covering space of M in order to obtain a well defined function (not
multivalued).

In Section 1.4.4 we described the monodromy theory, a theory developed to ease
the work of calculating analytic continuation of local solutions of differential equations.
Further in Section 1.4.5 we derived formulas for the generators m(0) and m(1) of the
monodromy group m, and also a formula for the monodromy matrix m(∞) related to
z2 = ∞.

m(0) =
(
E(0)

)−1
exp

(
2πiΛ

(0)
0

)
E(0),(3.2)

m(1) =
(
E(1)

)−1
exp

(
2πiΛ

(1)
0

)
E(1),(3.3)

m(∞) =
(
E(∞)

)−1
exp

(
2πiΛ

(∞)
0

)
S−1
2 S−1

1 E(∞)(3.4)

Where

• E(0), E(1) and E(∞) = I are the connection matrices related to the respective
Fuchsian singular points z0 = 0, and z1 = t see Definition 1.4.4, and the non-
Fuchsian singular point z2 = ∞ see Definition 1.4.2.

• Λ
(0)
0 , Λ(1)

0 and Λ
(∞)
0 are the diagonal coefficient matrix of the logarithmic term, in

the respective local solutions around z0 = 0, z1 = t and z2 = ∞.

• S1 =

(
1 0
s1 1

)
and S2 =

(
1 s2
0 1

)
are the Stokes matrices, see Definition 1.3.5.

These formulas show explicitly what information one needs from the solutions of
equation A in order to represent the monodromy group m. Corollary 1.4.3 also give a
constraint on this information.

m(∞)m(1)m(0) = I
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Definition 3.1.1 Monodromy data.
The monodromy data of equation (3.1) is the set

M =
{
Λ
(0)
0 ,Λ

(1)
0 ,Λ

(∞)
0 ; s1, s2;E

(0), E(1), E(∞) = I
}
.

The monodromy data is exactly the information needed in order to construct the
canonical monodromy representation of the fundamental group.

The objective of this chapter is to show the existence of, and describe, isomonodromic
deformations of the system of differential equations (3.1). That is, we want to introduce
an additional parameter t ∈ C in the coefficient matrix A(z) in (3.1), and find a one
parameter family A(z, t) of coefficient matrices, all sharing the same set of monodromy
data. We will closely follow the reasoning in [Fok et al.06, Ch. 4].

Definition 3.1.2 Admissible deformations.
Consider the differential equation

B(z, t) = ∂Φ

∂z
· Φ(z)−1, B :

(
S \ { zj }mj=1

)
×W →M2(C)

where, W ⊂ C denotes an open subset of C and B depend holomorphically on z ∈
S \ { zj }mj=1 and t ∈W ⊂ C.
We call the holomorphic family {B(·, t) | t ∈W }, an admissible deformation of the dif-
ferential equation, if the following conditions are satisfied:

i. The number m of singular points in the variable z, does not depend on t, however,
the position of the singularities may very well vary with t.

ii. Around each singular point zj(t) there exists a disk Dj ⊂ S such that zj(t) ∈ Dj

for any t ∈W and Dj ∩Dk = ∅, for any j, k ∈ { 1, . . . ,m }.

iii. The Poincaré rank (Definition 1.2.2) of each singular point does not depend on t.

iv. The leading coefficient of the Laurent series of the matrices A(z, t) at each Fuch-
sian singular point, is diagonalizable with eigenvalues (Λ

(j)
0 )11, (Λ

(j)
0 )22 such that

(Λ
(j)
0 )11 − (Λ

(j)
0 )22 /∈ Z \ { 0 }, for j = 0, 1, where zj(t) is Fuchsian, for all t ∈W .

At non-Fuchsian singular points, the leading coefficient in the Laurent series should
be diagonalizable with distinct eigenvalues, for all t ∈W .

v. At the non-Fuchsian singular points zj, the Stoke sectors Σ
(j)
n (Definition 1.3.3)

can be chosen in such a way that they do not change under the map z 7→ z− zj(t),
for every t ∈W .

vi. Canonical solutions (see Definition 1.2.4 and 1.3.8) can be chosen in such a way
that they are holomorphic with respect to t, and for the canonical solutions near
an irregular singular point (see Definition 1.3.8), the asymptotic conditions (see
Definition 1.3.1) hold uniformly with respect to t ∈W .

It follows from Definition 3.1.2 and the general constructions of canonical solutions
in [Fok et al.06, Ch. 1] that if B(z, t) is an admissible deformation of

B(z, t) = ∂Φ

∂z
· Φ(z)−1,

then one can define the set of monodromy data in such a (not unique) way that all the
Stokes matrices and connection matrices are holomorphic functions of t ∈W .
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Definition 3.1.3 Isomonodromic deformation.
Consider the differential equation

B(z, t) = ∂Φ

∂z
· Φ(z)−1, where B :

(
S \ { zj }mj=1

)
×W →M2(C)

depend holomorphically on z ∈ S \ { zj }mj=1 and t ∈ W ⊂ C. We call the family
{B(·, t) | t ∈W } an isomonodromic deformation of the differential equation, if in ad-
dition to being an admissible deformation (Definition 3.1.2), one can construct a set of
canonical solutions such that the set{

Λ
(1)
0 , . . . ,Λ

(m)
0 ;S

(1)
1 , . . . , S

(1)
k1
, . . . , S

(m)
1 , . . . , S

(m)
km

;E(1), . . . , E(m)
}

does not depend on t ∈W .
Notational note: if zj is Fuchsian, the Stokes matrices S(j)

n is not defined, and thus
not included. The index kj counts the different Stokes matrices for the non-Fuchsian
singular point zj.

Returning to our system, we find that we can introduce the variable t ∈ W ⊂
S \ { 0,∞} , in such a way that the conditions in Definition 3.1.2 are satisfied. Fix
1 > ϵ > 0, and let B(0, ϵ) be the ball around 0 ∈ C of radius ϵ, and let B(0, 1ϵ ) be the
ball around 0 ∈ C of radius 1

ϵ . Then we can define

(3.5) Wϵ = B

(
0,

1

ϵ

)
\B(0, ϵ).

We consider again the linear differential equation (3.1), but now we let t ∈ Wϵ, and
also let A0 and At depend on t.

Proposition 3.1.1 An (almost) admissible deformation.
Consider the linear system of partial differential equations

∂Φ

∂z
· Φ(z, t)−1 =

σ3
2

+
A0(t)

z
+
At(t)

z − t
= Az(z, t)(3.6)

Az : S \ { 0, t,∞}×Wϵ →M2(C),(3.7)

where we assume that A0(t) and At(t) is diagonalizable with eigenvalues (Λ(j)
0 )11, (Λ(j)

0 )22

such that (Λ
(j)
0 )11 − (Λ

(j)
0 )22 /∈ Z \ { 0 }, for j = 0, 1. Then {Az(·, t) | t ∈W } is an

admissible deformation of equation (3.1) if and only if condition vi. of Definition 3.1.2
is satisfied. That is, if and only if canonical solutions can be chosen in such a way that
they are holomorphic with respect to t, and for the canonical solutions near the non-
Fuchsian point z2 = ∞, the asymptotic expansion (Definition 1.3.7) hold uniformly with
respect to t ∈W .

Proof. We verify the conditions of an admissible deformation. Condition i. is satisfied,
since z1 = t cannot merge with any of the other singularities, sinceWϵ = B

(
0, 1ϵ
)
\B(0, ϵ).

Also A0 and At does not depend on z, so the singularities cannot cancel. Condition ii. is
satisfied by how we defined Wϵ. Condition iii.: The Laurent expansion around z2 = ∞
of Az is given by

Az(z, t) = − σ3
2ξ2

− A0 +At
ξ

+
∞∑
k=0

A
(∞)
k+1ξ

k,

hence the Poincaré index at infinity is constant in t. Condition iv. is verified by the
hypothesis on the diagonalization of A0(t) and At(t) together with he fact that the
leading term in the Laurent expansion around infinity A

(∞)
−1 = −σ3

2 , is diagonal with
distinct eigenvalues and independent of t. ■

In the next Section we will explain why we expect to obtain an isomonodromic
deformation, from the deformation in Proposition 3.1.1.
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3.2 Motivation for expecting isomonodromic deformations
In order to infer why we expect the deformation in Proposition 3.1.1 to be isomon-
odromic, under possibly more restrictive conditions, we will do a simple counting argu-
ment. We will count the number of undetermined parameters in the coefficient function
of equation (3.1), and count the number of parameters in the monodromy data in Defi-
nition 3.1.1 and compare. If there are more undetermined coefficients in the coefficient
function, that suggests that it may be possible to parametrize the coefficient function in
such a way that the monodromy data stays fixed.

We define the singularity data of a first order linear system of differential equations.

Definition 3.2.1 Singular data.
Consider a first order linear system of differential equations with rational coefficients

B =
dΦ

dz
· Φ(z)−1.

If { zj }mj=1 denotes the singular points of B, consider the Laurent expansions

B(z) =
∞∑

k=−rj
A

(j)
k (z − zj)

k

of B centred at zj for j = 1, . . . ,m. We define the singular data of B as the set{
{ zj }j=1,...m ; {A(j)

−rj , . . . , A
(j)
0 }

j=1,...,m
; {P (j) }j=1,...,m

}
This Definition is made only to be consistent with the notations and Definitions

from [JMU81]. We will use the paper [JMU81] later, in order to state the necessary and
sufficient conditions for Az from Proposition 3.1.1 to be an isomonodromic deformation.

Lemma 3.2.1 Undetermined parameters of singular data.
Consider the linear system of differential equations

(3.8) A =
σ3
2

+
A0

z
+

At
z − t

=
dΦ

dz
· Φ(z)−1, A : S \ { 0, t,∞} →M2(C).

Up to Möbius transformations of S \ { 0, t,∞}, and gauge equivalence of (3.8) (see
Definition 1.2.3), the singular data of (3.8) has 7 undetermined complex numbers.

Proof. It is clear that the information in the singular data is in the case of B = A

contained in
{
{ 0, t,∞} ;

{
σ3
2 , A0, At

}}
. Further the matrix σ3 =

(
1 0
0 −1

)
is completely

determined. The singular points z0 = 0 and z2 = ∞ are also fixed. We are left with the
eight parameters in A0, At ∈ M2(C) and the movable singularity at z1 = t. Thus nine
undetermined parameters.

We will now induce conditions on A0 and At, to remove 2 parameters in total. By
Proposition 1.2.1 we can infer that there exists a gauge transformation of A, such that
trace(A) = 0. Thus we can assume that A is traceless. Moreover, if we compute:

0 = trace(A) = trace

(
σ3
2

+
A0

z
+

At
z − t

)
=

trace(A0)

z
+

trace(At)

z − t
.

It is clear that since A0 and At is independent of z, the above expression vanishes if and
only

(3.9) trace(A0) = 0 = trace(At).

It is clear that (3.9) gives 2 linearly independent equations on the 8 parameters in A0

and At. Thus the total number of unknowns in A0 and At is 6, and in A when we include
t ∈Wϵ, there are 7 unknowns. Hence the singular data of A also has 7 unknowns. ■
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Lemma 3.2.2 Undetermined parameters of monodromy data.
Consider the monodromy data (Definition 3.1.1) of equation (3.1)

M =
{
Λ
(0)
0 ,Λ

(1)
0 ,Λ

(∞)
0 ; s1, s2;E

(0), E(1), E(∞)
}
.

This set contains 6 undetermined complex numbers.

Proof. Similarly to the proof of Lemma 3.2.1, it is easier to work with the generators
m(0),m(1),m(∞) of the monodromy group, when counting the parameters. This is obvi-
ously equivalent to the monodromy data set in terms of undetermined parameters, since
the monodromy data is exactly the set needed to calculate the generators, see equation
(3.2), (3.3) and (3.4). We also remark that m(∞) is strictly not needed in order to gener-
ate the monodromy group, but is included to utilize the free group relation in Corollary
1.4.3.

In m(0),m(1),m(∞) there are a total of 12 parameters. First, we will induce that
the determinant of the matrices m(0) and m(1), equals unity. This gives 2 independent
constrains.

Indeed, if j = 0, 1

det
(
m(j)

)
= det

(
(E(j))−1 exp

(
2πiΛ

(j)
0

)
E(j)

)
= det

(
exp

(
2πiΛ

(j)
0

))
.

Now using the well known formula for matrix exponentials that

det (exp (A)) = exp (trace (A)) ,

see [Bel97], we obtain

det
(
exp

(
2πiΛ

(j)
0

))
= exp

(
2πi trace

(
Λ
(j)
0

))
= exp (0) = 1,

by using the traceless property of Aj = P (j)Λ
(j)
0 (P (j))−1 from the proof of Lemma 3.2.1.

The determinants
det(m(0)) = 1, det(m(1)) = 1

give 2 equations on the parameters. Additionally, we have the free group relation

m(∞)m(1)m(0) = I

which give an additional 4 equations. In total we have 12 parameters, and 6 constraining
equations, leaving us with 6 undetermined parameters. ■

Remark.
In the above proofs, it is of course important that the constraints are independent, in
the sense that two equations do not contain the same information encoded differently.
E.g. notice that the determinant of m(∞) can also be shown to be unity. However,
this is done by using the free group relation, hence we do not get a constraint that is
independent from the previous information.

By comparing Lemma 3.2.1 and Lemma 3.2.2 , we can conclude that that the singular
data contains an extra undetermined parameter, compared to the monodromy data.
This simple observation gives a relatively strong indication that it should be possible to
parametrise the singular data by a complex parameter, while keeping the monodromy
data fixed. This is exactly the scheme of isomonodromic deformations.
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3.3 Necessary and sufficient conditions for isomonodromic
deformations

From Theorem 2.5.2, we know that a system of differential equations{
Az(z, t) =

∂Φ
∂z · Φ(z, t)−1

At(z, t) =
∂Φ
∂t · Φ(z, t)−1

Az, At : S \ { 0, t,∞}×Wϵ →M2(C)

has local solutions Φ : U ⊂ S \ { 0, t,∞}×Wϵ → GL2(C) if and only if

(3.10) ∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0.

We want to determine the coefficient function At, such that the integrability condition
(3.10) is satisfied, and such that

{A(·, t) | t ∈ Ut} =

{
σ3
2

+
A0(t)

z
+
At(t)

z − t

∣∣∣ t ∈ Ut

}
is an isomonodromic deformation. We will derive the necessary conditions, and these
will turn out to actually be sufficient.

Denote S\{ 0, t,∞} by M , and the universal covering space of M by M̃ , see Corollary
1.4.1. Recall the projection

p : M̃ → M
z̃ = [z, γz] 7→ z

.

It is clear by Theorem 1.4.1, that for each t ∈ Wϵ, there exists an unique function
Φ̃(·, t) : M̃ → GL2(C), such that Φ̃(·, t) is the unique canonical fundamental solution to
the differential equation

(3.11) ∂Φ̃

∂z̃
· Φ̃(z̃, t)−1 =

σ3
2

+
A0(t)

p(z̃)
+

At(t)

p(z̃)− t
, z̃ ∈ M̃,

with E(∞) = I.
Let Ut be some open subset of Wϵ. We will assume now that {A(·, t) | t ∈ Ut } is an

isomonodromic deformation. In particular, we assume that the function

Φ̃ : M̃ × Ut → GL2(C),

is holomorphic in t, and that the asymptotic conditions around the non-Fuchsian point
z2 = ∞ holds uniformly in t, see Definition 1.3.7. This is condition vi. of Definition
3.1.2.

Theorem 3.3.1 Necessary conditions for isomonodromic deformation.
Assume that

{A(·, t) | t ∈ Ut} =

{
σ3
2

+
A0(t)

z
+
At(t)

z − t

∣∣∣ t ∈ Ut

}
is an isomonodromic deformation, with diagonalization matrices

P (0)(t), P (1)(t) and P (∞)(t) = I,

related to the canonical solutions

Φ(0)(z, t) = P (0)(t)

(
I +

∞∑
k=1

Ψ
(0)
k (t)zk

)
exp

(
Λ
(0)
0 logα0

(z)
)
,(3.12)

Φ(1)(z, t) = P (1)(t)

(
I +

∞∑
k=1

Ψ
(1)
k (t)(z − t)k

)
exp

(
Λ
(1)
0 logα1

(z − t)
)
,(3.13)

Φ(∞)(z, t) = P (∞)(t)

(
I +

∞∑
k=1

Ψ
(∞)
k (t)

1

zk

)
exp

(
−Λ

(∞)
−1 (t)z − Λ

(∞)
0 logα∞(z

)
,(3.14)
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where (3.12) and (3.13) comes from Definition 1.2.4, and (3.14) is the canonical formal
solution in Definition 1.3.7.
If Φ : Uz × Ut → GL2(C) is a local solution of the isomonodromic deformation, then Φ
also solves

At = − At
z − t

=
∂Φ

∂t
· Φ(z, t)−1,

where At : S \ { 0, t,∞}× Ut →M2(C) satisfy

∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0.

Moreover P (0) and P (1) satisfy the equations

dP (0)

dt
· P (0)(t)−1 =

At(t)

t
,

dP (1)

dt
· P (1)(t)−1 =

σ3
2

+
A0(t)

t
.

Proof. Consider the given local solution Φ : Uz × Ut → GL2(C) of the isomonodromic
deformation. As a function of z ∈ Uz, Φ can be related to the unique global solution
Φ̃(z̃, t) defined on the universal cover M̃ of M = S \ { 0, t,∞}, such that E(∞) = I:

Φ̃(z̃, t) = Φ ◦ p(z̃) · C,

for some C ∈ GL2(C).
We use Φ̃ to define the coefficient function Ãt : M̃ × Ut →M2(C):

(3.15) Ãt(z̃, t) :=
dΦ̃

∂t
· Φ̃(z̃, t)−1

Actually, Ãt is constant on each fiber π−1(z) ⊂ M̃ . Indeed, we consider
ğ[z, γ ∗ ζzb,z] ∈ M̃ , where [γ] ∈ π1(M, zb) and ζzb,z ⊂ M̂ , is the path (unique up to
homotopy) between zb and z, contained in M̂ . We have by Lemma 1.4.3, Theorem 1.4.2
and by the construction in Section 1.4.3:

Φ̃([z, γ ∗ ζzb,z], t) =
(
Φ̃([z, γ], t)

)
ζzb,z

=
(
Φ[zb](·, t)mγ

)
ζzb,z

=
(
Φ[zb](·, t)

)
ζzb,z

mγ = Φ̃([z, ζzb,z], t)m
γ .

Since the monodromy data is independent of t:

d

dt
mγ = 0,

we obtain:

Ãt([z, γ ∗ ζzb,z], t) =
∂
(
Φ̃([z, ζzb,z], t)m

γ
)

∂t
·
(
Φ̃([z, ζzb,z], t)m

γ
)−1

=
∂Φ̃([z, ζzb,z], t)

∂t
·mη

γ · (mη
γ)

−1 ·
(
Φ̃([z, ζzb,z], t)

)−1
= Ãt([z, ζzb,z], t).

Thus we can define a coefficient function At : S \ { 0, t,∞}× Ut →M2(C) by

(3.16) At

(
p(z̃), t

)
:= Ãt(z̃, t).

It is clear that close to the Fuchsian singular points, At can be described by

At(z, t) =
∂Φ(j)

∂t
· Φ(j)(z, t)−1, j = 0, 1.
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And close to the non-Fuchsian point z2 = ∞, we have the asymptotic behaviour:

lim
z→∞

At(z, t) = lim
z→∞

∂Φ(∞) ◦ ϕ∞
∂t

·
(
Φ(∞) ◦ ϕ∞(z, t)

)−1
.

We will now use the fact that the canonical solutions around the Fuchsian and non-
Fuchsian points are assumed to be holomorphic with respect to t. In the following
calculations we will do operations on the formal series in (3.14), as if it was a formal
series. When working with asymptotic expansions, this makes perfect sense. See [Was87]
for details. Also we will extensively use Lemma A.1.3.

Claim 1: Close to the Fuchsian point z0 = 0, At is given by

At(z, t) =
dP (0)

dt
· P (0)(t)−1 +O(z).

Indeed, we simplify the expression At(z, t) = ∂Φ(0)

∂t · Φ(0)(z, t)−1 with (3.12). Now we
suppress the t dependence to simplify the notation.

∂Φ(0)

∂t
· Φ(0)(z, t)−1 =

∂

∂t

(
P (0)

(
I +

∞∑
k=1

Ψ
(0)
k zk

)
exp

(
Λ
(0)
0 logα0

(z)
))

· Φ(0)(z, t)−1

=
∂P (0)

∂t
· (P (0))−1 + P (0)

(
dΨ

(0)
1

dt
z +O(z2)

)
(P (0))−1 =

dP (0)

dt
· P (0)(t)−1 +O(z).

Here we used the fact that d
dtΛ

(0)
0 = 0. This proves the claim.

Claim 2: Close to the Fuchsian point z1 = t, At is given by

At(z, t) =
dP (1)

dt
· P (1)(t)−1 − At(t)

z − t
−
(
σ3
2

+
A0(t)

t

)
+O(z − t).

Indeed, we simplify the expression At(z, t) =
∂Φ(1)

∂t · Φ(1)(z, t)−1 with (3.13).

∂Φ(1)

∂t
· Φ(1)(z, t)−1

=
∂

∂t

(
P (1)

(
I +

∞∑
k=1

Ψ
(1)
k (z − t)k

)
exp

(
Λ
(1)
0 logα1

(z)
))

· Φ(1)(z, t)−1

=
∂P (1)

∂t
· (P (1))−1

+ P (1)

( ∞∑
k=1

(
dΨ

(1)
k

dt
− (k + 1)Ψ

(1)
k+1

)
(z − t)k −Ψ

(1)
1

)
(I +O(z − t)) (P (1))−1

− P (1)
(
I +Ψ

(1)
1 (z − t) +O(z − t)2

)( Λ
(1)
0

z − t

)
(I −Ψ

(1)
1 (z − t) +O(z − t)2)

Here we used the fact that d
dtΛ

(1)
0 = 0. Keeping the terms of negative and zero power,

we are left with:

At(z, t)

=
dP (1)

dt
·P (1)(t)−1− P (1)Λ

(1)
0 (P (1))−1

z − t
+P (1)

(
[Λ

(1)
0 ,Ψ

(1)
1 ]−Ψ

(1)
1

)
(P (1))−1+O(z− t).
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Now we observe that from equation (1.11),

P (1)Λ
(1)
0 (P (0))−1 = A

(1)
0 = At.

And from equation (1.13) with k = 0,

[Λ
(1)
0 ,Ψ

(1)
1 ]−Ψ

(1)
1 = −

(
Ψ

(1)
1 + [Ψ

(1)
1 , Λ

(1)
0 ]
)
= −(P (1))−1A

(1)
1 P (1) · I

= −(P (1))−1

(
σ3
2

+
A0

t

)
(P (1)).

The claim follows.

Claim 3: The asymptotic expansion of At around the non-Fuchsian point z2 = ∞ is
given by:

(At)asymp = −
dΛ

(∞)
−1

dt
z +

[
dΛ

(∞)
−1

dt
, Ψ

(∞)
1

]
+O

(
1

z

)
= O

(
1

z

)
.

We use that P (∞) = I for every t, and compute the asymptotic expansion:

(At)asymp =
∂Φ(∞) ◦ ϕ∞

∂t
·
(
Φ(∞) ◦ ϕ∞(z, t)

)−1

=
∂

∂t

((
I +

∞∑
k=1

Ψ
(∞)
k

1

zk

)
exp

(
−Λ

(∞)
−1 z − Λ

(∞)
0 logα(z)

))

· exp
(
Λ
(∞)
−1 z + Λ

(∞)
0 logα(z)

)(
I −Ψ

(∞)
1

1

z
+O

(
1

z2

))

=

( ∞∑
k=1

dΨ
(∞)
k

dt

1

zk

)(
I −Ψ

(∞)
1

1

z
+O

(
1

z2

))

+

(
I +Ψ

(∞)
1

1

z
+O

(
1

z2

))(
−
dΛ

(∞)
−1

dt
z

)(
I −Ψ

(∞)
1

1

z
+O

(
1

z

))
Keeping the terms of negative and zero power, we are left with:

= −
dΛ

(∞)
−1

dt
z +

[
dΛ

(∞)
−1

dt
, Ψ

(∞)
1

]
+O

(
1

z

)
.

However, from equation (1.15)

Λ
(∞)
−1 = (P (∞))−1A

(∞)
−1 P

(∞) = A
(∞)
−1 = −σ3

2
,

so it is independent of t, proving the claim.
Using the claims, we will now give several arguments which will determine At

uniquely. We remark that by how At(·, t) is defined in equation (3.16), is at most
singular z0 = 0, z1 = t or z2 = ∞.

• from Claim 1, we see that At(·, t) has a removable singularity at z0 = 0, with

At(0, t) =
dP (0)

dt
· P (0)(t)−1.
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• Claim 3 shows that there also at z2 = ∞, is a removable singularity in z, and that
At vanishes at z2 = ∞. Hence there can be no terms with zero or positive powers,
except in a series with finite radius of convergence.

• Claim 2 gives a singular term − At
z−t , with a simple pole at z1 = t. If there where

other negative power terms of (z − t), they would appear in this expansion. Since
there can be no constant terms,

dP (1)

dt
· P (1)(t)−1 =

σ3
2

+
A0(t)

t
.

• The O(z − t) term in Claim 2, could be a holomorphic function g, represented by
a series centered at z1 = t. However, since At, has no other singularities than in
z1 = t, the function g would be entire, and by Claim 3, it would be bounded. Hence
by the Liouville Theorem (see [Rud87]), it is constant. However, the expression
does not have a constant term. We conclude that the term O(z − t) ≡ 0.

• The term O(z) from Claim 1, is exactly the series expansion of − At
z−t around z0 = 0,

excluding the constant term.

− At
z − t

=
At
t

∞∑
k=1

zk

tk
, |z| < t.

We can conclude that

(3.17) At(z, t) = − At
z − t

,

and that

(3.18) dP (0)

dt
· P (0)(t)−1 = lim

z→t
− At
z − t

=
At
t
,

dP (1)

dt
· P (1)(t)−1 =

σ3
2

+
A0

t
.

By Theorem 2.5.2, the deformation is holomorphic precisely when:

∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0.

■

Remarkably, the necessary conditions from Theorem 3.3.1 are actually also sufficient.
The proof of this statement however, out of the scope of this thesis. The sufficiency was
first proven in the influential paper [JMU81] in great generality.

Theorem 3.3.2 [Th. 4.1 [JMU81]] Sufficient conditions for isomonodromic
deformations.
If Φ : Uz × Ut ⊂ S \ { 0, t,∞}×Wϵ → GL2(C) solve the differential equations

Az(z, t) =
σ3
2

+
A0(t)

z
+
At(t)

z − t
=
∂Φ

∂z
· Φ(z, t)−1,

At(z, t) = −At(t)
z − t

=
∂Φ

∂t
· Φ(z, t)−1,

the coefficient matrices satisfy the integrability condition

∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0.
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and the diagonalization matrices P (0)(t) and P (1)(t) satisfy

dP (0)

dt
· P (0)(t)−1 =

At(t)

t
,

dP (1)

dt
· P (1)(t)−1 =

σ3
2

+
A0(t)

t
,

then
{A(·, t) | t ∈ Ut} =

{
σ3
2

+
A0(t)

z
+
At(t)

z − t

∣∣∣ t ∈ Ut

}
is an isomonodromic deformation, in particular, the monodromy data (Definition 3.1.1)

M =
{
Λ
(0)
0 ,Λ

(1)
0 ,Λ

(∞)
0 ; s1, s2;E

(0), E(1), E(∞) = I
}
.

is independent of t.

3.4 Schlesinger equations and the Painlevé V equation
In the previous Section we showed that

{A(·, t) | t ∈ Ut} =

{
σ3
2

+
A0(t)

z
+
At(t)

z − t

∣∣∣ t ∈ Ut

}
is an isomonodromic deformation exactly when it is part of the total differential equation

Az(z, t) =
σ3
2

+
A0(t)

z
+
At(t)

z − t
=
∂Φ

∂z
· Φ(z, t)−1,

At(z, t) = −At(t)
z − t

=
∂Φ

∂t
· Φ(z, t)−1,

which satisfy the integrability condition

∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0,

and where the diagonalization matrices satisfy

dP (0)

dt
· P (0)(t)−1 =

At(t)

t
,

dP (1)

dt
· P (1)(t)−1 =

σ3
2

+
A0(t)

t
.

Among these conditions, the integrability condition is the only condition constrain-
ing the coefficients A0(t) and At(t) in the function Az. In this Section we will take a
closer look on these conditions. Remark that the integrability conditions gives a dif-
ferential equation in the variable t, for the matrices A0, At. Moreover, as is shown in
Corollary 3.4.1, the integrability condition is equivalent to a non-linear system of differ-
ential equations, called the Schlesinger equations. The Schlesinger equations are named
after German mathematician Ludwig Schlesinger, who did pioneering work in the field
of linear differential equations. In particular, he showed that the isomonodromic defor-
mation of any (generic) linear differential equations, all satisfy the (general form of the)
Schlesinger equations, in which Corollary 3.4.1 is a special case of.

Corollary 3.4.1 Schlesinger equations.
Consider the system of differential equations

Az(z, t) =
σ3
2

+
A0(t)

z
+
At(t)

z − t
=
∂Φ

∂z
· Φ(z, t)−1,

At(z, t) = −At(t)
z − t

=
∂Φ

∂t
· Φ(z, t)−1.
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The integrability condition

∂Az

∂t
− ∂At

∂z
+ [Az,At] = 0,

is equivalent to

dA0

dt
=

[
At
t
, A0

]
=

[
dP (0)

dt
·
(
P (0)

)−1
, A0

]
(3.19)

dAt
dt

=

[
σ3
2

+
A0

t
, At

]
=

[
dP (1)

dt
·
(
P (1)

)−1
, At

]
(3.20)

These equations are called the Schlesinger equations. The equations give two Lax pair
(L0,M0) and (L1,M1), where

L0 =A0 L1 =A1

M0 =
At
t

=
dP (0)

dt
· P (0)(t)−1 M1 =

σ3
2

+
A0

t
=
dP (1)

dt
· P (1)(t)−1

such that
dL0

dt
= [M0, L0]

dL1

dt
= [M1, L1]

L0(t) =P
(0)(t) · Λ(0)

0 · P (0)(t)−1 L1(t) =P
(1)(t) · Λ(1)

0 · P (1)(t)−1

see [BBT03] for more on Lax pairs.

Proof. We will calculate the left and the right hand side of the equation

∂Az

∂t
− ∂At

∂z
= [At,Az] .

Starting with the left hand side:

(3.21) ∂Az

∂t
− ∂At

∂z
=

dA0
dt

z
+

dAt
dt

z − t
+

At
(z − t)2

− At
(z − t)2

=
dA0
dt

z
+

dAt
dt

z − t

Then the right hand side

(3.22)
[
− At
z − t

,
σ3
2

]
+

[
− At
z − t

,
A0

z

]
+

[
− At
z − t

,
At
z − t

]
=

1

z − t

[σ3
2
, At

]
+

1

z(z − t)
[A0, At]

=
1

z − t

[σ3
2
, At

]
+

(
1

t(z − t)
− 1

zt

)
[A0, At]

=
1

z − t

[
σ3
2

+
A0

t
, At

]
+

1

z

[
At
t
, A0

]
Equating the coefficient functions in (3.21) and (3.22), we obtain

dA0

dt
=

[
At
t
, A0

]
and

dAt
dt

=

[
σ3
2

+
A0

t
, At

]
.

The statement with the Lax pairs are direct from the Definition of a Lax pair, see
[BBT03]. ■
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Thus by Corollary 3.4.1, we can solve the Schlesinger equations (3.19) and (3.20), if
we can solve the two first order systems of differential equations in t:

dP (0)

dt
· P (0)(t)−1 =

At(t)

t
,

dP (1)

dt
· P (1)(t)−1 =

σ3
2

+
A0(t)

t
.

In this thesis we have worked on the linear differential equation

(3.23) dΦ

dz
· Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

.

Under the Möbius transformation

z 7→ z

t
= w,

the equation transform into

(3.24) dΦ

dw
· Φ(w)−1 =

σ3t

2
+
A0

w
+

At
w − 1

.

An equivalent treatment of (3.24) as we have presented for (3.23), gives the total system
of differential equations

∂Φ

∂w
· Φ(w)−1 =

σ3t

2
+
A0(t)

w
+
At(t)

w − 1
,(3.25)

∂Φ

∂t
· Φ(ω)−1 =

σ3
2
w +

B

t
,(3.26)

where B depends on the matrices σ3
2 t, A0 and At in a complicated way. The Schlesinger

equations for this system are given by

dA0

dt
=

[
B

t
,A0

]
dAt
dt

=

[
σ3
2

+
B

t
,At

](3.27)

It is shown in [Fok et al.06] and [AK00] that if one parametrize the matrices A0, At and
B in a certain way, then using the Schlesinger equations in (3.27), one of the parameters
in At can be shown to satisfy the Painlevé V equation:
(3.28)

PV :
d2u

dx2
=

(
1

2u
± 1

u− 1

)(
du

dx

)2

− 1

x

du

dx
+

(u− 1)2

x2

(
αu+

β

u

)
+
γu

x
+
δu(u+ 1)

u− 1
,

where α, β, γ and δ are related to the eigenvalues of A0, At. The Painlevé equations, are
six non-linear second-order ordinary differential equations, with the “Painlevé’ property”:
the only movable singularities are the poles [Pai00]. Actually it is shown that any second
order ordinary differential equation of the form

uzz = R(z, u, uz),

meromorphic in z and rational in u and uz, can be put into one of fifty “canonical” forms,
see Painlevé’s original work [Pai00], [Pai02] or a summary in [Inc56]. Forty-four of the
fifty equations are reducible in the sense that they can be solved in terms of previously
known functions. The six Painlevé equations are the exceptions, and their solutions,
the Painlevé transcendents, give six new functions playing the same role in nonlinear
mathematical physics that the classical special functions, such as Bessel functions and
Airy functions play in linear physics, [Iwa et al.91], [Olv97].
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3.5 Future projects and possible directions
In this Section we briefly discuss some possible future projects, continuing the work of
the thesis.

The Painlevé V

The differential equation

dΦ

dw
· Φ(w)−1 =

σ3t

2
+
A0

w
+

At
w − 1

.

is equivalent to the differential equation treated in this thesis, by a simple Möbius trans-
formation ω 7→ zt. However, the Schlesinger equations in Corollary 3.4.1 and equation
(3.27), which are used to derive the Painlevé V in the latter case are different.

Conjecture 1.
Given the first order linear system of differential equations

dΦ

dz
· Φ(z)−1 =

σ3
2

+
A0

z
+

At
z − t

.

Then there exists a parametrization of A0 and At, such that the Schlesinger equations
(3.19) and (3.20) implies that one of the parameters satisfy the Painlevé V equation
(3.28).

One possibility is to find the relation between the matrix B in (3.27) and At by
“following” the Möbius transformation.

Continuing geometric description

There is a well developed theory of Riemann-Hilbert correspondence, which investigates
the correspondence between regular singular flat connections on algebraic vector bundles
and representations of the fundamental group, see [Kas84] and [Meb80]. This is exactly
the problem treated in this thesis, but in the category of algebraic vector bundles, instead
of complex principal bundles. It would be interesting to learn the techniques from
algebraic geometry, and find corresponding treatments for the complex analytic situation.
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Appendix A

Complex holomorphic manifolds

A.1 Complex manifolds and tangent spaces
Definition A.1.1 Holomorphic function of several variables .
Let f : V ⊂ Cn → C be a function. We say f is holomorphic if the function

f(z1, . . . , ω, . . . , zn)

is holomorphic in ω, when the other variables are fixed. That is, if it is holomorphic in each variable separately.
To denote the complex derivative w.r.t the complex variable zi we write

∂f

∂zi
.

If f : V ⊂ Cn → Cn, we say that f is holomorphic if for each k ∈ { 1, . . . , n } the function

fk := rk ◦ f : V → C

where rk : Cn → C is the k-th coordinate projection in Cn.

Evidently this is just an extension of the definitions given for smooth functions.

Definition A.1.2 Complex manifold.
A complex manifold M , of dimension n, is a smooth real manifold of dimension 2n admitting a holomorphic
atlas. That is an atlas U = { (Uα, φα) } containing charts (Uα, φα) where Uα ⊂M is open,

φα : Uα → φ(Uα) ⊂ Cn

is a homeomorphism, and for every pair (Uα, φa), (Uβ , φb) ∈ U the function

φα ◦ φ−1
b : φb(Ua ∩ Uβ) ⊂ Cn → Uα ∩ Uβ → φα(Uα ∩ Uβ) ⊂ Cn

is a holomorphic function between domains in Cn.

Remark.
If M is a complex manifold with atlas U = { (Uα, φα) }, then in particular M is a smooth real manifold. A
nice real atlas to use on M is the collection of real charts { (Uα, φ̃α) } where

φ̃α(p) = (z1(p), z2(p), . . . , zn(p)) = (x1(p), y1(p), x2(p), y2(p), . . . , xn(p), yn(p)) ∈ R2n

where zk(p) = xk(p) + iyk(p) is a coordinate function on Uα.

Definition A.1.3 Holomorphic functions defined on complex manifolds.
A function f : U ⊂ M → C defined on an open set U of a complex manifold M is holomorphic if for each
p ∈ U there is a chart (Uα, φα) such that p ∈ Uα ∩ U = U ′ and f ◦ φ−1

α : φα(U
′) → C is holomorphic.

The real manifold structure on a complex manifold M can also be used to define smooth complex valued
functions on M .
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Definition A.1.4 Smooth complex valued functions on a complex manifold.
Let M be a complex manifold and let f = u + iv : U → C be a complex valued function on M . Consider the
real charts (Uα, φ̃α) where φ̃α : U → R2n. Then the function f is smooth if for each p ∈ U there is a chart
(Uα, φ̃α) where p ∈ Uα ∩ U = U ′ and

u ◦ φ̃−1
α : φ̃α(U

′) ⊂ R2n → R

v ◦ φ̃−1
α : φ̃α(U

′) ⊂ R2n → R

are smooth functions.

Lastly we define holomorphic maps between complex manifolds.

Definition A.1.5 Holomorphic maps between complex manifolds.
Let M,N be complex manifolds with atlases U = {Uα, φα } and V = { (Vβ , ψβ) } respectively. A continuous
function f : M → N is holomorphic if for each p ∈ M there is a chart (Uα, φα) and a chart (Vβ , ψβ) with
f(Uα) ⊂ Vβ such that the function

ψβ ◦ f ◦ φ−1
α : φα(Uα) ⊂ Cm → ψβ(f(Uα)) ⊂ Cn

is holomorphic.

Definition A.1.6 Holomorphic tangent space of a complex manifold at point.
Let M be a complex manifold. Let HM,C(p) denote the C-algebra of holomorphic function germs at p ∈ M .
Consider the set

Der (HM,C(p) → C)

of C-linear complex derivations of the germs in HM,C(p). This is a complex vector space, which we will call
the holomorphic tangent space of M at p and denote it by TpM .

This Definition is a very natural extension of the similar Definition of the real tangent space of a smooth
manifold. However it is for now unclear how to describe the elements of this vector space using the complex
structure on M . We will now construct two equivalent viewpoints that justify the Definition.

Definition A.1.7 The real tangent space of a complex manifold.
Let M be a complex manifold. In particular it is a smooth real manifold. Let C∞

R (p) denote the R-algebra of
smooth real valued function germs at p. Consider the set

Der(C∞
R (p) → R)

of R-linear real derivations of the germs in C∞
R (p). This is a real vector space which we will call the real tangent

space of M at p ∈M , and denote it by TpMR.

Using the complex structure in the complex vector space Cn, we can induce a complex structure on the
real tangent space TpMR.

Definition A.1.8 Complex structure map on a real vector space.
Let V be a real even dimensional vector space. A complex structure map on V is a endomorphism J : V → V
such that J ◦ J = −I.

Let M be a complex manifold and consider the chart (Uα, φ̃α), with p ∈ Uα and

φ̃α : Uα → R2n.

This is a diffeomorphism between real smooth manifolds, thus at each point p ∈ Uα it induces an isomorphism
of their real tangent spaces :

(φ̃α)∗,p : TpMR → Tφ̃α(p)R
2n

If we consider Tφ̃α(p)R
2n with basis {

∂

∂xkR
,
∂

∂ykR

}n
k=1
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there is a natural complex structure map JR defined by

JR

(
∂

∂xkR

)
=

∂

∂ykR

JR

(
∂

∂ykR

)
= − ∂

∂xkR

for each k, and then extending by linearity. Using the map JR we define a complex structure map on the real
tangent space TpMR of M by

(A.1) J = (φ̃α)
−1
∗,pJR(φ̃α)∗,p

TpMR TpMR

Tφ̃αR
2n Tφ̃αR

2n

(φ̃α)∗,p

J

JR

(φ̃α)
−1
∗,p

In particular, on the basis
{

∂
∂xk

∣∣
p
, ∂
∂yk

∣∣
p

}
for TpMR, the complex structure map J is given by

J

(
∂

∂xk

∣∣∣∣
p

)
= (φ̃α)

−1
∗,pJR

(
∂

∂xkR

)
= (φ̃α)

−1
∗,p

(
∂

∂ykR

)
=

∂

∂yk

∣∣∣∣
p

J

(
∂

∂yk

∣∣∣∣
p

)
= (φ̃α)

−1
∗,pJR

(
∂

∂ykR

)
= (φ̃α)

−1
∗,p

(
− ∂

∂xkR

)
= − ∂

∂xk

∣∣∣∣
p

The pair (TpMR, J) is now a real vector space of dimension 2n with a complex structure map, so in order to
construct a complex vector space, we are missing multiplication by complex numbers. It is therefore natural to
define the complexification of the vector space, C ⊗ TpMR. The properties of the complexification of a vector
space V together with a complex structure map J , is summarized in the following Proposition.

Proposition A.1.1 [Bog91][Ch.3.2]Complexification of a vector space with a complex structure
map.
Let V be a real vector space of dimension 2n with a complex structure map J . Then

• C⊗ V is a complex vector space of dimension 2n

• J has an extension to C⊗ V , J̃ , given by

J̃(z ⊗ v) := z ⊗ Jv

We will suppress the notation for the tensor product when it cannot lead to confusion, thus we can write
the equation as

J̃(zv) := zJ(v)

• J̃ : C ⊗ V → C ⊗ V has two eigenspaces V 1,0 and V 0,1, of dimension n, related to the eigenvalues i,−i
respectively, such that

C⊗ V = V 1,0 ⊕ V 0,1 = V 1,0 ⊕ V 1,0.

• Given any set of n linearly independent vectors { vj }nj=1 in V , then { vj , Jvj }nj=1 is a basis for V . Further{
1
2(vj − iJvj)

}n
j=1

is a basis for V 1,0 and
{
1
2(vj + iJvj)

}n
j=1

is a basis for V 0,1.

• The dual space of C⊗ V can be written

(C⊗ V )∗ = V 1,0∗ ⊗ V 0,1∗ := V1,0 ⊗ V0,1

• If {αj }nj=1 are dual to { vj }nj=1 then the dual bases for the dual spaces V1,0 and V0,1 are given by
{αj − iJ∗αj }nj=1 and {αj + iJ∗αj }nj=1 respectively, where J∗ is the dual map of J .

We can now use all this information to describe the complexification of the real tangent space of M ,
C⊗ TpMR. We summarize the properties in the following Proposition.
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Proposition A.1.2 Complexified real tangent space of a complex manifold.
Let M be a complex manifold with its real tangent space at p, TpMR of real dimension 2n, together with the
complex structure map J , defined in (A.1). The complexified tangent space of M at p is the complex vector
space C⊗TpMR of complex dimension 2n, with the following properties, as a result of the previous Proposition.

• J has an extension to C⊗ TpMR, J̃ , given by

J̃

(
z
∂

∂xj

∣∣∣∣
p

)
= z

∂

∂yj

∣∣∣∣
p

, J̃

(
z
∂

∂yj

∣∣∣∣
p

)
= −z ∂

∂xj

∣∣∣∣
p

• C⊗TpMR = T 1,0
p M ⊕T 0,1

p M , where T 1,0
p M,T 0,1

p M is the eigenspaces of J̃ related to the eigenvalue i and
−i respectively.

• Since
{

∂
∂xj

∣∣
p
, ∂
∂yj

∣∣
p

}n
j=1

is a basis for TpMR, we have that

{
∂

∂zj

∣∣∣∣
p

}n
j=1

:=

{
1

2

(
∂

∂xj

∣∣∣∣
p

− i
∂

∂yj

∣∣∣∣
p

)}n
j=1

, is a basis for T 1,0
p M

{
∂

∂z̄j

∣∣∣∣
p

}n
j=1

:=

{
1

2

(
∂

∂xj

∣∣∣∣
p

+ i
∂

∂yj

∣∣∣∣
p

)}n
j=1

, is a basis for T 0,1
p M

• The complexified cotangent space, C⊗ T ∗
pMR = (C⊗ TpMR)

∗, of TpMR can be written

C⊗ T ∗
pMR = T 1,0

p M ⊕ T 0,1
p M := T ∗

p,1,0M ⊕ T ∗
p,0,1M{

dzjp
}n
j=1

:=
{
dxjp + idyjp

}n
j=1

, is the dual basis of the basis for T 1,0
p M{

dz̄jp
}n
j=1

:=
{
dxjp − idyjp

}n
j=1

, is the dual basis of the basis for T 0,1
p M

The subspace T 1,0
p M will be of special interest later. This is a n-dimensional complex vector space. We

can find a real isomorphism from T 1,0
p M to TpMR, the real tangent space of M . Further using the complex

structure map J on TpMR, we loose no information of the complex structure of T 1,0
p M going to TpMR.

Note that in the proceeding text we use the Einstein summing convention:
n∑
j=1

V j ∂

∂zj

∣∣∣∣
p

= V j ∂

∂zj

∣∣∣∣
p

Corollary A.1.1 [Bog91].
Consider the 2n dimensional real tangent space TpMR of M and the complex structure map J on TpMR defined
in (A.1). Consider also the subspace T 1,0

p M of C⊗TpMR with the complex structure map J̃ . Then there exists
a real isomorphism

χ : T 1,0
p M → TpMR

V = V j ∂
∂zj

∣∣
p

7→ Re(V j) ∂
∂xj

∣∣
p
+ Im(V j) ∂

∂yj

∣∣
p

such that
χ(J̃(V )) = J(χ(V )).

We now relate the derivation of smooth complex functions to derivation of smooth real valued functions.
Let C∞

M,C(p) be the C-algebra of smooth complex valued function germs at p. Consider Der(C∞
M,C(p) → C), the

C-linear derivations of the germs in C∞
M,C(p).

Lemma A.1.1 [Bog91].
Given a complex manifold M . Then

C⊗ TpMR'Der(C∞
M,C(p) → C)
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The isomorphism Ξ from Lemma A.1.1, tells us how we should evaluate an element V of TpMR on an
element F = f + ig ∈ C∞

M,C(p), i.e on smooth complex valued function germ at p, and that is by evaluating V
on the real and complex part of F = f + ig separately.

From now on we will identify the complexified tangent space C⊗ TpMR with Der(C∞
M,C(p) → C).

Corollary A.1.2.
Given a complex manifold M . Consider the complex vector space Der(C∞

M,C(p) → C) containing the subspace
Der(HM,C(p) → C) = TpM which is the holomorphic tangent space of M at p. A basis for Der(C∞

M,C(p) → C)
is given by {

∂

∂zj

∣∣∣∣
p

,
∂

∂z̄j

∣∣∣∣
p

}n
j=1

:=

{
1

2

(
∂

∂xj

∣∣∣∣
p

− i
∂

∂yj

∣∣∣∣
p

)
,
1

2

(
∂

∂xj

∣∣∣∣
p

+ i
∂

∂yj

∣∣∣∣
p

)}n
j=1

Hence

Der(C∞
M,C(p) → C) = Der(HM,C(p) → C)⊕Der(AHM,C(p) → C) = T 1,0

p M ⊕ T 0,1
p M

Where Der(AHM,C(p) → C) are the C-linear derivations of the antiholomorphic function germs at p.
In particular a basis for TpM is given by{

∂

∂zj

∣∣∣∣
p

}n
j=1

:=

{
1

2

(
∂

∂xj
− i

∂

∂yj

)}n
j=1

Proof. Follows directly from Proposition A.1.2, Lemma A.1.1 and the Cauchy-Riemann equations. ■

To summarize we defined the holomorphic tangent space TpM of M at p to be the complex vector space of
C-linear derivations of holomorphic function germs at p, Der(HM,C → C).

• The 2n dimensional real tangent space TpMR of M at p, that is obtained by regarding M as a smooth
real manifold, is real isomorphic to TpM (Corollary A.1.1, Corollary A.1.2).

• The 2n dimensional complexified real tangent space C⊗TpMR of M , is isomorphic to Der(C∞
M,C(p) → C),

the 2n dimensional complex vector space of C-linear derivations of complex function germs at p. If we
were interested in all smooth complex functions on a complex manifold, we would consider this space as
the tangent space.

• TpM is an n dimensional subspace of Der(C∞
M,C → C). Actually we showed that

Der(C∞
M,C(p) → C) = Der(HM,C(p) → C)⊕Der(AHM,C(p) → C),

where Der(AHM,C → C) is the complex vector space of C-linear derivations of antiholomorphic function
germs at p.

C⊗ TpMR T 1,0
p M ⊕ T 1,0

p M Der(HM,C(p) → C)⊕Der(AHM,C(p) → C)

TpMR T 1,0
p M TpM

π2

C∼

π1 π1

R∼ C∼

The construction of the holomorphic tangent bundle and the holomorphic cotangent bundle over M is now
completely analogous to the construction of the tangent bundle on a smooth real manifold, where we require
the chart to be holomorphic instead of smooth.

Example A.1.1 The Riemann sphere.
The Riemann sphere S, is the one-point compactification of the complex plane. That is
S = C ∪ {∞}, where we define the topology to be

• If U ⊂ S and ∞ /∈ U then U is open in S if it is open as a subset of C.

• If U ⊂ S and ∞ ∈ U , then U is open in S if C \ U is compact.
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This space is compact by construction, for a more detailed description see [Mun00]. An equivalent construction
can be done by the stereographic projection from the 2-sphere S2 \ { (0, 0, 1) } ⊂ R3, a real smooth manifold,
to C ' R2 where we map (0, 0, 1) to ∞, or even as the complex projective line P1C.

The Riemann sphere is a complex manifold. Indeed it is homeomorphic to the 2-sphere by the stereographic
projection, hence it is has a smooth manifold structure. It can be given a complex atlas by the two charts

φ0 : S \ {∞} → C

ω 7→ ω

when ∞ is not on the chart and as
φ∞ : S \ { 0 } → C

ω 7→ 1
ω

,

when 0 is not on the chart. Obviously the transition maps are holomorphic, and S is covered by the charts,
hence we have a holomorphic atlas. The coordinate functions will also be denoted by r1 ◦φα(ω) = id ◦φα(ω) =
z(ω)

Since S is locally homeomorphic to C, the holomorphic tangent space TωS of S at p is a one dimensional
complex vector space. In local coordinates it has the basis vector ∂

∂z

∣∣
ω
= d

dz

∣∣
ω
.

Lemma A.1.2 [Rud87] Constant function criterion.
Let M,N be two complex manifolds. Let U be an open connected subset of M , and consider f : U → N , a
holomorphic function. If f∗,p = 0 for every p ∈ U , then f is a constant function on U .

When we have a matrix power series, it is useful with a criterion on when we can expect the series to be
invertible as a matrix.

Lemma A.1.3 [Neu77] Neumann series inverse.
Consider the series

f(z) =
∞∑
k=0

Ak(z − a)k, Ak ∈M2(C),

convergent in the disc B(a,R). If A0 ∈ GL2(C), then there exists a 0 < δ ≤ R such that f(z) ∈ GL2(C) and

(f(z))−1 =
∞∑
n=0

(−1)n

( ∞∑
k=1

A−1
0 Ak(z − a)k

)n
A−1

0

for all z ∈ B(a, δ).

A.2 Complex Lie groups
Definition A.2.1 Complex Lie group.
Let G be a connected complex manifold. Then G is a complex Lie-group if it is also a group, such that the
group multiplication

µG : G×G → G
(g, h) 7→ gh

and the inversion
G → G
g 7→ g−1

are holomorphic maps between complex manifolds.

Definition A.2.2 Vector fields on complex manifolds and left invariance.
A holomorphic vector field X, on a complex manifold G, is a Section of the holomorphic tangent bundle TG,
i.e. X : M → TM such that π ◦X = idM , is holomorphic. We will only deal with holomorphic vector fields
and will therefore refer to them as simply vector fields. If G is a Lie group, and X is a vector field on G with
the property that (La)∗,bXb = Xa·b, then X is called left invariant.

Definition A.2.3 Lie algebra.
Let G be a complex Lie-group. We define its Lie algebra, g, to be the vector space of left invariant vector fields
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on G. On g we define the Lie bracket [−,−]g : g × g → g such that for any X,Y ∈ g and choosing f ∈ H
holomorphic functions at a points on G:

[X,Y ]gf = X(Y f)− Y (Xf).

The tangent space of G at the identity TeG can be identified with the Lie algebra g of G. Indeed we have
the C-linear isomorphism

g → TeG
X 7→ X(e) = Xe

by mapping a left invariant vector field X at any point a ∈ G to TeG by (La−1)∗,aXa = Xe.

Definition A.2.4 The adjoint representation.
Given a Lie group G with Lie algebra g. Consider the Lie group homomorphism Con: G→ Aut(G) where

Con(a) = La ◦Ra−1 = Ra−1 ◦ La : G → G
b 7→ aba−1

Taking the differential at the identity e ∈ G, of Con(a) : G→ G for each a ∈ G, we obtain a representation of
G in g called the adjoint representation.

Ad : G → Aut(g)

where
Ad(a) = Con(a)∗,e : g → g

X → (La)∗,a−1 ◦ (Ra−1)∗,eX

In particular Ad(a) preserves the Lie-bracket in g.

Since La : G → G is a bi-holomorphic function, its push forward maps vector fields to vector fields:
X 7→ (La)∗X. This can be utilized to obtain an isomorphism between the tangent bundle TG, and G× g, by
mapping

Υ : TG → G× g
Xa 7→

(
a, (La−1)∗Xa

)
For each a ∈ G we thus have (La−1)∗ ∈ Hom(TaG, g) ' T ∗

aG ⊗ g. We want to isolate the part of Υ that acts
on the tangent vectors.

Definition A.2.5 Maurer Cartan form.
Let G be a complex Lie-group with Lie algebra g. Consider

θ : G → T ∗G⊗ g
a 7→ θa

defined by
θa(Xa) = (La−1)∗Xa, Xa ∈ TaG

If x1, . . . , xn are local coordinates in a neighbourhood U of a ∈ G, ξ1, . . . , ξn is a basis for g, and X is a
vector field on U , we write

θ(X) =
(
θkj (a)dx

j ⊗ ξk

)
(X) := θkj (a)dx

j(X)ξk,

where θkj : U → C are holomorphic functions for every j, k ∈ { 1, . . . , n }. The map θ is called the left invariant
Maurer-Cartan form.

Proposition A.2.1 [Sha97] Properties of the Maurer Cartan form .
Let G be a Lie group with Lie algebra g, and let θ be the Maurer Cartan form on G. Then

1. On TeG = g, θ is the identity. θe(Xe) = Xe.

2. θ is left invariant, in the sense that it is invariant by left translations: (La)
∗θ = θ.

3. By right translations: (Ra)
∗θ = Ad(a−1) ◦ θ.
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The exterior derivative of the Maurer Cartan form has a particular nice form.

Proposition A.2.2 [Sha97] Structure equation.
Let G be a Lie group with Lie algebra g, and let θ be the Maurer Cartan form on G. Then

dθ +
1

2
[θ ∧ θ] = 0.

Here [−∧−] denotes the bracket of Lie algebra valued forms, that is if α, β : G→ T ∗G⊗g are Lie algebra valued
1-forms on G and X,Y ∈ X(G) are vector fields on G, then [α ∧ β](X,Y ) = ([α(X), β(Y )]− [α(Y ), β(X)]) .

A.3 Proofs from Chapter 2
Proposition A.3.1 Vertical tangent space and fundamental vector fields.
Consider a principal bundle P (M,G, π) with vertical tangent space Vp at p ∈ P . Let X(P ) denote the vector
fields on P . Then

i. V is involutive, that is if v, w ∈ X(P ) are two vertical vector fields of P , such that vp, wp ∈ Vp, then also
[v, w]p ∈ Vp for each p. By the Frobenius theorem, Theorem 2.4.1, V is an integrable distribution (see
Definition 2.4.1).

ii. The distribution V ⊂ TP is G-invariant, in the sense that (µa)∗Vp = Vp . a, where µa : P → P , such that
p 7→ p . a, the right action of G on P , with a fixed group element a ∈ G.

iii. There exists a Lie algebra homomorphism

σ : g → X(P ),

that maps X ∈ g into a vector field σX, called a fundamental vector field on P . Pointwise it is defined
by

(σX)p = σpX := (µp)∗,eX,

where X ∈ g and µp : G→ P , is the right action of G on P with a fixed point p ∈ P . It is a Lie algebra
homomorphism in the sense that

σ[X,Y ]g = [σX, σY ]X(P ), for any X,Y ∈ g.

For each p ∈ P , σp := (µp)∗,e : g → Vp ⊂ TpP is a vector space isomorphism. So the fundamental vector
fields are all vertical.

iv. Locally, if φα = π × gα trivialises P (M,G, π) in π−1(Uα) and θ : G → T ∗G × g is the Maurer-Cartan
form (Definition A.2.5), then

σ ◦ (g∗αθ) = IV , (g∗αθ) ◦ σ = Ig.

v. (µa)∗,pσpX = σp . a
(
Ad
(
a−1
)
X
)
, where X ∈ g and Ad : G → Aut(g) is the adjoint representation of G

in g, see Definition A.2.4.

Proof.

i. Let v, w ∈ X(P ) be two vertical vector fields on P . Then π∗v = 0 = π∗w. Let f ∈ H(z) be a holomorphic
function at z ∈M , then

π∗
(
[v, w]

)
f = v(w(f ◦ π))− w(v(f ◦ π)) = v(π∗w(f))− w(π∗v(f)) = 0.

ii. Let vp ∈ Vp, then (µa)∗vp ∈ Tp . aP and π∗,p . a ◦ (µa)∗,pvp = (π ◦ µa)∗,p vp = π∗,pvp = 0, since µa ◦ π = π.

iii. We consider the right action µ : P × G → P , fixing a point p ∈ P , we obtain the holomorphic function
µp : G→ P . Taking the tangential map at e ∈ G, we define σp := (µp)∗,e : g → TpP . We observe that if
X ∈ g and f ∈ H(z) is a holomorphic function at z ∈M , then if we denote the points in a neighbourhood
of e in G by x,

(π∗ ◦ σpXf)(x) = Xf (π ◦ µp(x)) = Xf (π(p · x)) = Xf(π(p)) = 0.

Thus σpX ∈ Vp for every X, since the function f ◦ π ◦ µp is constant.
The fact that σ is a Lie algebra homomorphism, follows from Proposition 4.1 Ch.1 in [KN63]. The rest
of iii. follows from iv.
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iv. If vp ∈ Vp and f ∈ H(p) is a holomorphic function at p ∈ P , we let c : B(0, ϵ) ⊂ C → π−1(Uα)
be a holomorphic function into π−1(Uα) with c′(0) = vp. By the trivialization we can write c(t) =
φ−1
α

(
z(t), a(t)

)
, for two holomorphic functions z : B(0, ϵ) → Uα and a : B(0, ϵ) → G. We notice that

φ−1
α

(
z, a · b

)
= φ−1

α

(
z, a
)
. b. We thus compute:

(σ ◦ (g∗αθ) vp) f =
(
(µp)∗,e ◦ (Lgα(p)−1)∗,gα(p) ◦ (gα)∗,pvp

)
f = c′(0)

(
f(p . gα(p)

−1 . gα)
)

inserting the derivative of the holomorphic function:

=
d

dt

∣∣∣∣
t=0

f
(
c(0) . gα

(
c(0)

)−1
. gα
(
c(t)
))

=
d

dt

∣∣∣∣
t=0

f
(
φ−1
α

(
z(0), a(0)

)
. a(0)−1 . a(t)

)
using φ−1

α

(
z, a · b

)
= φ−1

α

(
z, a
)
. b :

=
d

dt

∣∣∣∣
t=0

f ◦ φ−1
α

(
z(0), a(t)

)
+ 0

†
=

d

dt

∣∣∣∣
t=0

f ◦ φ−1
α

(
z(0), a(t)

)
+
d

dt

∣∣∣∣
t=0

f ◦ φ−1
α

(
z(t), a(0)

)
††
=

d

dt

∣∣∣∣
t=0

f ◦ φ−1
α

(
z(t), a(t)

)
=

d

dt

∣∣∣∣
t=0

f ◦ c(t) = vpf.

† : Here we use that vp = c′(0) is vertical, if f̃ = f ◦ φ−1
α

(
·, a(0)

)
: Uα → C :

0 = π∗vpf̃ =
d

dt

∣∣∣∣
t=0

f̃ ◦ π ◦ c(t) = d

dt

∣∣∣∣
t=0

f̃ ◦ z(t) = d

dt

∣∣∣∣
t=0

f ◦ φ−1
α

(
z(t), a(0)

)
.

††: This is just complex partial derivatives of a function f ◦ φ−1
α ◦ (z × a) : C× C → C.

Conversely, if X ∈ g, f ∈ H(e) is a holomorphic function at e ∈ G and x ∈ N(e), a neighbourhood of
e ∈ G, then we compute(

(gαθ) ◦ σvp
)
f(x) =

(
(Lga(p)−1)∗ ◦ (gα)∗ ◦ (µp)∗,evp

)
f(x) = vp

(
f
(
gα(p)

−1 · gα
(
µp(x)

)))
= vp

(
f
(
gα(p)

−1 · gα
(
p . x

)))
= vp

(
f
(
gα(p)

−1 · gα
(
p
)
· x
))

= vp
(
f(x)

)
.

v. If X ∈ g, f ∈ H(p) is a holomorphic function at p ∈ P and x ∈ N(e) ⊂ G, a point in a neighbourhood
N(e) of e ∈ G. Then:((

(µa)∗,p ◦ σpX
)
f
)
(x) =

((
(µa)∗,p ◦ (µp)∗,eX

)
f
)
(x) = X

(
f
(
µa ◦ µp(x)

))
= X

(
f
(
p . x . a−1

))
= X

(
f
(
p . a . a−1 · x · a−1

))
= X

(
f
(
µp . a ◦ La−1 ◦Ra ◦ (x)

))
=
((
σp . a ◦Ad

(
a−1
)
X
)
f
)
(x).

■

Proposition A.3.2 Characterization of a principal connection by a connection form.
Consider a principal bundle P (M,G, π). Given a principal connection H ⊂ TP we define a connection form
ω by:

ω : P → T ∗P ⊗ g,

ωp : TpP → g

vp 7→ ωp(vp) =

{
X, if vp = σX
0, if vp ∈ Hp

And given a connection form ω on P we define a principal connection H ⊂ TP by

Hp := ker(ωp).

Proof. Define ω as in the statement of the Proposition. Given a trivialization φα = π× gα of P , the inverse of
σ can also be explicitly given by g∗αθ by Proposition 2.1.5. Hence in π−1(Uα) the 1-form ω is given by

ωp : TpP → g

vp 7→ ωp(vp) =

{
(g∗αθ)p(vp), if vp ∈ Vp

0, if vp ∈ Hp
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We need to show that ω has the properties i. and ii. from Definition 2.1.8. Property i. is obvious from how
we defined ω. To prove property ii., we consider the situation when vp is horizontal and vertical separately.
If vp is horizontal, then (µa)∗,pvp ∈ Hp . a is still horizontal by property ii. from Definition 2.1.6 of a principal
connection, so ω

(
(µa)∗vp

)
= 0. Since Ad(a−1) is a linear map, Ad(a−1) ◦ ωp(vp) = 0.

If vp is vertical, we compute
(
µ∗aω

)
(vp) = ω

(
(µa)∗vp

)
, and note that by the bundle properties, (µa)∗vp ∈

Tp . aP is also vertical, thus

(A.2) g∗αθp . a
(
(µa)∗,pvp

)
=
(
Lgα(p . a)−1

)
∗,(gα(p . a))

◦ (gα)∗,p . a ◦ (µa)∗,pvp

We use the chain rule on the Maurer-Cartan form expression. The G−invariance of gα, see Definition 2.1.1,
ensures that

(gα)∗,p . a ◦ (µa)∗,p = (Ra)∗,gα(p) ◦ (gα)∗,p.

Thus
(A.2) = (La−1)∗,a ◦

(
Lgα(p)−1

)
∗,ga(p)·a

◦ (Ra)∗,gα(p) ◦ (gα)∗,pvp

= Ad(a−1) ◦
(
Lgα(p)−1

)
∗,gα(p)

◦ (gα)∗,pvp = Ad(a−1) ◦ (g∗αθ)p(vp).

Conversely, given a connection form ω on P we define a principal connection by for each p ∈ P

Hp := ker(ωp).

Obviously this depends holomorphicly on p, since ωp is holomorphic. The direct sum is verified by the fact that
if vp ∈ ker(π∗,p) ⊂ TpP , then there exists a unique X ∈ g such that σpX = vp. But then ωp(vp) = ωp(σpX) =
X = 0 if and only if vp = σpX = 0, hence ker(ωp) ∩ ker(π∗,p) = { 0 }. Since dim(ker(π∗,p)) = dim(G), and
dim(ker(ωp)) = dim(M), we can conclude that TpP = Hp ⊕ Vp. Finally by property ii. of a connection form,

ωp . a
(
(µa)∗,pvp

)
= Ad

(
a−1
)
◦ ωp(vp),

it is clear that (µa)∗,pHp = Hp . a. ■

Proposition A.3.3 Characterization of a connection form by a family of local connection forms.
Consider a principal bundle P (M,G, π) with local trivializations {φα = π × gα : π−1(Uα) → Uα ×G }α and
transition functions gαβ : Uα ∩ Uβ → G. Recall the trivial sections sα : Uα → π−1(Uα) from Definition 2.1.4.
Given a connection form ω on P , we define a local family of connection forms on M by

Aα := s∗αω.

And given a local family of connection forms {Aα }α on M , we define a connection form on P by in each
trivialised set π−1(Uα) defining

ωα := Ad
(
(gα)

−1
)
◦ π∗Aα + g∗αθ.

Then any pair ωα and ωβ agree on π−1 (Uα ∩ Uβ), and {ωα }α defines a connection form ω on P .

Proof. We first show that given a connection form ω on P , we can define a family of local connection forms on
M . First, Aa is a well defined Lie algebra valued 1-form since if sα(z) = p, for z ∈ Uα,

Aα,z = (s∗αω)z : TzUα Tpπ
−1(Uα) g

(sα)∗,z ωp

We choose the cover {Uα }α to be a trivialising cover. Let Uαβ := Uα ∩ Uβ 6= ∅, and recall property i. from
Proposition 2.1.3, sβ = sα . gαβ . We want to show the change trivialization formula in Definition 2.1.9. We
compute:

Aβ = s∗βω = (sα . gαβ)
∗ω.

For notation we let z ∈ Uαβ , sα(z) = p ∈ P, gαβ(z) = a ∈ G and sβ(z) = p . a = sα(z) . gαβ(z). To continue we
need to calculate(

µ(sα, gαβ)
)
∗,z : TzUαβ Tpπ

−1(Uαβ)× TaG Tp . aπ
−1(Uαβ)

(sα)∗,z×(gαβ)∗,z (µ)∗,(p,a)
.

We need to use the “Leibniz rule” on the right action µ of G on P , see Proposition 1.4, Chapter I in [KN63].
If uz ∈ TzUα is a tangent vector to Uα at z ∈ Uα, sα(z) = p ∈ P and gαβ(z) = a ∈ G we get:

⋆ =
(
µ(sα, gαβ)

)
∗,zuz =

(
µa
)
∗,p ◦ (sα)∗,zuz +

(
µp
)
∗,a ◦ (gαβ)∗,zuz
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†
=
(
µa
)
∗,p ◦ (sα)∗,zuz + σp . a ◦ θα ◦ (gαβ)∗,zuz.

† : We used the fact that
(
µp
)
∗,a = σp . a ◦ θα

TaG g

Tp . aP

θa

(
µp

)
∗,a

σp . a

Indeed, this is true since if Xa ∈ TaG, and f ∈ H(p . a) is a holomorphic function at p . a ∈ P with x ∈ N(a) a
neighbourhood of a in G:(((

µp
)
∗,aXa

)
f
)
(x) = Xa

(
f
(
µp(x)

))
= Xa

(
f(p . x)

)
= Xa

(
f(p . a · a−1 · x)

)
= Xa

(
f
(
µp . a ◦ La−1(x)

))
=
((
σp . a ◦ (La−1)∗,aXa

)
f
)
(x) =

((
σp . a ◦ θa(Xa)

)
f
)
(x).

We have just justified ⋆, and can now calculate

Aβ,z =
((
µ(sα, gαβ)

)∗
ω
)
z

⋆
= ωp . a

((
µa
)
∗,p ◦ (sα)∗,z + σp . a ◦ θα ◦ (gαβ)∗,z

)
=
(
µ∗a ◦ ωp . a

)
p
◦ (sα)∗,z + θa ◦ (gαβ)∗,z

Here we used the defining property of ω, that ωp . a ◦ σp . aX = X, for X ∈ g. Now using the other defining
property of ω, that

(
µ∗aωp . a

)
p
= Ad

(
a−1
)
◦ ωp, we finally obtain

Aβ,z = Ad
(
(gαβ(z))

−1
)
◦ (s∗αω)z + (g∗αβθ)z = Ad (gβα(z)) ◦Aα,z + (g∗αβθ)z.

Thus the family of Lie algebra valued 1-forms transforms in the correct way when changing charts, and are
thus a family of local connection forms on M .

Conversely, given a family of local connection forms on M , we want to deduce the expression for ωα.
We want to construct {ωα }α such that ωα and ωβ coincide on π−1(Uαβ). Also we expect that Aα = s∗αωα.
Combining these reasonable expectations, we can on π−1(Uαβ) write:

Ad (gβα(z)) ◦Aα,z +
(
g∗αβθ

)
z
= Aβ,z = (s∗βωβ)z = (s∗βωα)z

Note that we use a subscripted z when a form on Uαβ is evaluated at z ∈ Uαβ . Keeping the leftmost and
rightmost expressions, and using property i. in Proposition 2.1.2 and property iii. in Proposition 2.1.3, we
obtain

(s∗βωα)z = Ad
(
(gαβ(z))

−1
)
◦Aα,z + (g∗αβθ)z = Ad

((
gα
(
sβ(z)

))−1
)
◦Aα,z +

(
(gα ◦ sβ)∗θ

)
z

Now using that Id = (π ◦ sβ)∗ = s∗βπ
∗ : T ∗

z Uαβ → T ∗
z Uαβ ,

= Ad

((
gα
(
sβ(z)

))−1
)
◦
(
s∗βπ

∗Aα
)
z
+
(
s∗βg

∗
αθ
)
z
=
(
s∗β
(
Ad
(
g−1
α

)
◦ π∗Aα + g∗αθ

))
z
.

Motivated by this calculation, we define

ωα := Ad
(
g−1
α

)
◦ π∗Aα + g∗αθ, on Uα.

Reversing the above calculation, we can conclude that ωα = ωβ on sβ(Uαβ). Using the trivialization map φβ,
sβ(Uαβ) is mapped to Uαβ × { e } ⊂ Uαβ ×G. It follows that ωα and ωβ agree on π−1(Uαβ) once we show that
both ωα and ωβ transelates by ωp . a = Ad

(
a−1
)
◦
(
µ∗a−1ωp

)
, since the action of G on π−1(π(p)) is regular, in

particular transitive. And indeed we have that for a−1 ∈ G, and π(p) = z

µ∗a−1ωα,p = µ∗a−1

(
Ad
(
g−1
α

)
◦ π∗Aα + g∗αθ

)
p
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= Ad
((
gα(p) · a · a−1

)−1
)
◦Aα

(
π∗,p ◦ (µa−1)∗,p . a

)
+
(
µ∗a−1g

∗
αθ
)
p . a

Using the bundle properties gα ◦ µa−1(p) = Ra−1 ◦ gα(p), and π ◦ µa−1 = π, we obtain

= Ad (a) ◦Ad
((
gα(p . a)

)−1
)
◦
(
π∗Aα

)
p . a

+
(
g∗αR

∗
a−1θ

)
p . a

.

By using Proposition A.2.1, we obtain

µ∗a−1ωα,p = Ad (a) ◦
(
Ad
((
gα(p . a)

)−1
)
◦
(
π∗Aα

)
p . a

+ (g∗αθ)p . a

)
= Ad (a) ◦ ωα,p . a,

and thus
Ad
(
a−1
)
◦ µ∗a−1ωα,p = Ad

(
a−1
)
◦Ad (a) ◦ ωα,p . a = ωα,p . a.

We have thus showed ω that is a well defined Lie algebra valued 1-form on P , given in π−1(Uα) by ωα, and
agreeing on overlaps. We have also showed that it satisfies property ii. in Definition 2.1.8. We have left to
show that it satisfies property i. in its Definition. That is, ω

(
σX
)
= X for every X ∈ g. This is easy since by

property iii. in Proposition 2.1.5, σpX is vertical for each X ∈ g. Hence σpX ∈ ker(π∗,p). By using property
iv. in Proposition 2.1.5:

ωα,p

(
σpX

)
= Ad

((
gα(p)

)−1
)
◦Aα,π(p)

(
π∗,p ◦ σpX

)
+
(
g∗αθ
)
p
◦ σpX =

(
g∗αθ
)
p
◦ σpX = X.

■
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Appendix B

Constructions on Riemann surfaces

B.1 Analytic continuation on a Riemann surface
We recall the Definition of a complex manifold.

Definition B.1.1 Complex holomorphic manifold and Riemann surface.
A complex manifold M , of dimension n, is a smooth manifold of dimension 2n admitting a holomorphic atlas.
That is an atlas U = { (Uα, φα) } containing charts (Uα, φα) where Uα ⊂M and

φα : Uα → φ(Uα) ⊂ Cn

and for every pair (Uα, φa), (Uβ , φb) ∈ U

φα ◦ φ−1
b : φb(Ua ∩ Uβ) ⊂ Cn → Uα ∩ Uβ → φα(Uα ∩ Uβ) ⊂ Cn

is a holomorphic function between Cn and Cn. A Riemann surface is a connected a 1-dimensional complex
manifold.

Definition B.1.2 Complex analytic function on a Riemann surface.
Let M be a Riemann surface, let (Uα, ϕα) denote the charts on M and let U be an open subset of M . A function
f : U → GL2(C) is called analytic if for every point z ∈ U there exists a chart (Uα, ϕα) with z ∈ Uα ⊂ U such
that f ◦ ϕ−1

α : ϕα(Uα) → GL2(C) is an analytic function from C to GL2(C).

Analytic continuation is a technique from complex analysis relying on the following essential fact:

Lemma B.1.1 The identity Theorem for analytic functions on Riemann surfaces.
Let f : U → GL2(C) and g : V → GL2(C) be analytic functions on U, V open subsets of M , a Riemann surface.
Assume also that U ∩ V is connected (if not one gets the result on each connected component of U ∩ V ). Then
either f = g on U ∩ V or f = g only on a discrete subset of U ∩ V .

Proof. We consider u = f − g, which is analytic on U ∩ V . First we show that if z0 ∈ Z(u) then z0 is either
an interior point or an isolated point. Let u(z0) = u ◦ ϕ−1

α (ω0) = 0. By analyticity we have

u ◦ ϕ−1
α (ω) =

∞∑
n=1

An(ω − ω0)
n, ω ∈ B(ω0, δ

′) ⊂ C

for some δ′ > 0. Assume that there exists an m > 0 such that ‖Am‖ 6= 0, and that Am is the first such matrix
in the series for u ◦ ϕ−1

α at ω0. Then

u ◦ ϕ−1
α (ω) =

∞∑
n=m

An(ω − ω0)
n = (ω − ω0)

m

(
Am +

∞∑
n=1

An+m(ω − ω0)
n

)

By continuity of the series on the right we have that there exists a δ′′ > 0 such that∥∥∥∥∥
∞∑
n=1

An+m(ω − ω0)
n

∥∥∥∥∥ < ‖Am‖ ,
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for |ω − ω0| < δ′′. Hence we have that for δ = min { δ′, δ′′ } and ω ∈ B(ω0, δ) \ {ω0 }: (ω − ω0)
n 6= 0 and

Am +
∑∞

n=1An+m(ω − ω0)
n 6= 0, hence u(z) 6= 0 in ϕ−1

α (B(ω0, δ)) \ { z0 }. This implies that z0 is an isolated
point in Z(u). However we assumed that there exists an Am 6= 0. If there does not exists such an Am then
u(z) = 0 in ϕ−1

α (B(ω0, δ
′)), which implies that z0 is an interior point in Z(u).

We show that int(Z(u)) is closed. Indeed if z1 ∈ (int(Z(u)))c, then by what we just showed either u(z1) 6= 0
or u(z1) = 0 and z1 is isolated. If u(z1) 6= 0, then by continuity of u ◦ ϕ−1

α there exists a δ > 0 such that for
z ∈ ϕ−1

α (B(ω1, δ)), u(z) 6= 0. Hence ϕ−1
α (B(ω1, δ)) ⊂ int(Z(u))c. And if z1 is isolated that implies that there

exists a δ > 0 such that u(z) 6= 0 for z ∈ ϕ−1
α (B(ω1, δ)). Thus we have ϕ−1

α (B(ω1, δ)) ⊂ int(Z(u))c. In both
cases we find that the complement of int(Z(u)) is open, hence int(Z(u)) is closed. Since U ∩ V is connected,
either int(Z(u)) = ∅ or int(Z(u)) = U ∩ V .

If int(Z(u)) = U ∩ V , then f = g on U ∩ V . And if int(Z(u)) = ∅, then we know it has to be discrete, so
f = g only on a discrete subset of U ∩ V . ■

The above Lemma shows that if the domain of an analytic function f : U → GL2(C), is extended by
another analytic function g : V → GL2(C), such that they agree on a non-discrete set, then this is the only
way to extend f analytically into V .

Definition B.1.3 Direct analytic continuation.
Let U, V ⊂M , where M is a Riemann surface. If f : U → GL2(C) and g : V → GL2(C) are analytic functions,
U ∩ V is non-discrete and f = g on U ∩ V then we say that the pair (g, V ) is a direct analytic continuation of
(f, U).

The idea of analytic continuation is to take an analytic function f : U → GL2(C), and try to extend its
domain by using Lemma B.1.1.

Definition B.1.4 A path.
Let M be a topological space. A path in M is a continuous function γ : [a, b] → M , from a closed interval of
R into M . We say the path starts at x ∈M if γ(a) = x, and ends at y ∈M if γ(b) = y.

Definition B.1.5 Analytic continuation along a path.
Let U ⊂ M , where M is a Riemann surface. Let γ : [a, b] → M be a path and f : U → GL2(C) an analytic
function, such that γ(a) ∈ U . We define the analytic continuation of (f, U) along γ by a finite sequence
(fk, Dk)

n
k=0 with the following properties:

• There is a collection of charts that can be numbered (possibly with repetition) (Uk, ϕk) such that

Dk := ϕ−1
k (B(ϕk(zk), rk)) = { z ∈ Uk | | ϕk(z)− ϕk(zk)| < rk }

where rk is chosen such that Dk ⊂ Uk, and D0 ∩ U 6= ∅.

• There exists a partition { a = a0, a1, . . . , an, an+1 = b }, of [a, b] such that γ([ak, ak+1]) ⊂ Dk.

• In each Dk there exists an analytic function fk : Dk → GL2(C) and in D0: f
∣∣
D0

= f0. fk = fk+1 in
Dk ∩Dk+1.

We denote fγ(z) = fn(z) for z ∈ Dn. This is an analytic function in Dn.

Remark.
We can also restrict γ to γ

∣∣
[0,ak]

and obtain analytic continuations into any of the other discs. Of course,
given a function f : U → GL2(C), such a setup may not exist. And if it exist, there is no reason for
g : ∪nk=0Dk → GL2(C), defined by fk = g in Dk to be a function. If for example f is the logarithm defined in
U = C \ {Re(z) ≤ 0 }, and γ is the unit circle traversed counter-clockwise. Then fγ(z) = log(z)+ 2πi. We will
come back to this example.

Lemma B.1.2 Independence of partition, discs and intermediate functions.
Let M be a Riemann surface, γ : [a, b] → M a path, (fk, Dk)

n
k=0 an analytic continuation of (f0, D0) along γ

and (gj , Ej)
m
j=0 an analytic continuation of (g0, E0) along γ. If f0 = g0 in a non-discrete subset of D0 ∩ E0,

then fn = gm in Dn ∩ Em 3 γ(b) = z1.
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Proof. Consider the refined partition { ci }p+1
i=0 of [a, b] consisting of the union of the two partitions Pf =

{ a = a0, . . . , an+1 = b }, Pg = { a = b0, . . . , bm+1 = b }, removing the duplicate endpoints, and then ordered.
There may still be other duplicates. We will prove by induction that:

For every i, γ([ci, ci+1]) ⊂ Dk ∩ Ej and fk = gj in Dk ∩ Ej , for some k, j.

• i = 0. Then γ([c0, c1]) ⊂ D0 and γ([c0, c1]) ⊂ E0 no matter if c1 = a1 or b1. Also by hypothesis f0 = g0
in a non-discrete subset of D0 ∩ E0, hence by Lemma B.1.1 on the whole D0 ∩ E0.

• Assume the induction hypothesis for i = l. Then we know that: γ([cl, cl+1]) ⊂ Dk ∩ Ej and fk = gj in
Dk ∩ Ej , for some k, j. Explicitly we have

γ([cl, cl+1]) ⊂ Dk, ak ≤ cl ≤ cl+1 ≤ ak+1

γ([cl, cl+1]) ⊂ Ej , bj ≤ cl ≤ cl+1 ≤ bj+1

So either cl+1 = ak+1, cl+1 = bj+1 if not we have the trivial cases cl+1 = ak or cl+1 = bk which immediately
imply cl = cl+1 and the statement is true.
Assume without loss of generality that cl+1 = ak+1. Then

γ([cl+1, cl+2]) ⊂ Dk+1, ak+1 = cl+1 ≤ cl+2 ≤ ak+2

γ([cl, cl+2]) ⊂ Ej , bj ≤ cl ≤ cl+2 ≤ bj+1

and we obtain that γ([cl+1, cl+2]) ⊂ Dk+1 ∩ Ej . Also we have γ(cl+1) ∈ Dk ∩Dk+1 ∩ Ej 6= ∅ and

fk+1 = fk = gj , in Dk ∩Dk+1 ∩ Ej

and thus by Lemma B.1.1 we have fk+1 = gj in Dk+1 ∩ Ej .

This process will continue until cp+1 = b. Then γ([cp, cp+1]) ⊂ Dk ∩ Ej and fk = gj in Dk ∩ Ej , for some
j, k. Then cp = an or cp = bm. Without loss of generality, assume the latter. Then j have to be m by the
algorithm from above.

γ([cp, cp+1]) = γ([bm, bm+1]) ⊂ Em = Ej

Also we have
ak ≤ cp < cp+1 = an+1 ≤ ak+1

Thus ak+1 = an+1 and k = n. We conclude that k = n and j = m so by the induction fn = gm in
Dn ∩ Em 3 γ(b). ■

If we analytically continue (f, U) along two paths γ : [a, b] → M and η : [c, d] → M such that γ(a) =
η(c) = z0 and γ(b) = η(d) = z1, we obtain to analytic functions fγ and fη defined in neighbourhoods of
γ(b) = η(d) = z1. Can we relate fγ and fη? The famous monodromy Theorem gives sufficient conditions for
when fγ = fη.

Theorem B.1.1 The monodromy Theorem.
Let U be an open and connected subset of M , a Riemann surface. Let f : V → GL2(C) be analytic with
z0 ∈ V ⊂ U . Assume f admits an analytic continuation along any path in U . Let γ and η begin at z0 and end
at z1 ∈ U . If γ and η are homotopic, then fγ = fη in a neighbourhood of z1.

Proof. Let H : [0, 1] × [0, 1] → U with H(τ, 0) = γ(τ), H(τ, 1) = η(τ) and H(0, s) = z0, H(1, s) = z1 be the
fixed point homotopy. We will denote H(τ, s) = γs(τ) for simplicity. Let

S = {u ∈ [0, 1] | fγ = fγu in a neighbourhood of γ(1) = z1 }

If we show S = [0, 1], then in particular fγ = fγ0 = fγ1 = fη in a neighbourhood of z1 and the proof is done. We
will use a connectivity argument on [0, 1]. First we note that u = 0 ∈ S, so ∅ 6= S ⊂ [0, 1]. S is open. Indeed
let u ∈ S. Then γu(τ) = H(τ, u) and fγu = fγ in a neighbourhood of z1. We choose an analytic continuation,
(fk, Dk)

n
k=0, of (f, V ) along γu, such that γu([ak, ak+1]) ⊂ Dk. Recall the chart (Uk, ϕk) with Dk ⊂ Uk and

Dk = { z ∈ Uk | | ϕk(z)− ϕk(zk)| < rk } .
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We want to show that for s close to u in [0, 1], we can use the same discs and functions as an analytic
continuation along γs. By Definition B.1.5, the only thing to show is that γs([ak, ak+1]) ⊂ Dk for each k, that
is ϕk ◦ γs([ak, ak+1]) ∈ B(ϕk(zk), rk) ⊂ C. Since H is a homotopy it is continuous and thus each ϕk ◦ γu is also
a continuous function, defined on the compact set [ak, ak+1]. By the max-min Theorem, there exists an ϵk > 0
such that

pk(τ) = |ϕk ◦ γu(τ)− ϕk(zk)| ≤ rk − ϵk,

where the equality holds for some τk ∈ [ak, ak+1]. Now define ϵ := mink { ϵk }. The function

ϕk ◦H : H−1(Dk) → C

is continuous and defined on the compact set H−1(Dk), compact since it is closed and bounded in I × I,
which is a subspace of R2. Hence it is uniformly continuous and hence there exists a δk > 0 such that if
‖(τ, s)− (τ ′, u)‖2 < δk then

|ϕk ◦H(τ, s)− ϕk ◦H(τ ′, u)| = |ϕk ◦ γs(τ)− ϕk ◦ γu(τ ′)| < ϵ,

for any pair of points in H−1(Dk). Finally if we define δ := mink { δk } then for any m ∈ { 0, 1, . . . , n }:

|ϕm ◦ γs(τ)− ϕm(zm)| ≤ |ϕm ◦ γs(τ)− γu(τ)|+ |γu(τ)− ϕm(zm)| < ϵ+ rm − ϵm ≤ rm

for τ ∈ [am, am+1] and ‖(τ, s)− (τ, u)‖2 = |s− u| < δ . Thus for |s− u| < δ we have that γs([ak, ak+1]) ⊂ Dk,
and we can conclude that

fγu = fn = fγs , in the whole of Dk.

Thus S is open.
S is also closed. Indeed if s ∈ [0, 1] \ S, then there does not exists a neighbourhood Us of z1 such that

fγ = fγs in Us. Exactly as before, there exists a δ > 0 such that we can use the analytic continuation
(fk, Dk)

n
k=0 of (f, V ) along γs, to give an analytic continuation of (f, V ) along γσ, where |s − σ| < δ. Then

evidently fγσ = fγs in Dn. And we can conclude that for σ ∈ [0, 1] such that |s− σ| < δ, there does not exists
a neighbourhood Uσ of z1 such that fγ = fγσ . Hence B(s, δ) ⊂ [0, 1] \ S and S is closed.

■

Corollary B.1.1 Analytic continuation into a function.
Let M be a Riemann surface and let U ⊂ M be connected, simply connected and open, z0 ∈ U with f : V →
GL2(C) analytic in a neighbourhood V of z0. Suppose f can be analytically continued along any path in γ in
U , which starts at z0. For any z ∈ U define a path γz : [0, 1] → U such that γz(0) = z0 and γz(1) = z. Then
the function g(z) := fγz(z) is analytic in U .

Proof. First since U is open and connected it is path connected, so we can always define γz. And since U is
simply connected, any paths from z0 to z will be homotopic. Hence g is well-defined since by the monodromy
Theorem if γz and ηz are to paths from z0 to z, then fγz = fηz . We show g is analytic. If z1 ∈ U there is an
analytic continuation (fk, Dk)

n
k=0, of f along γz1 . We remark that the function fn : Dn → GL2(C) is analytic

in Dn and that for each z ∈ Dn, g makes a new analytic continuation along γz in order to evaluate g(z) = fγz .
Lets show that g = fn in Dn. We can choose the path γz to be:

γz = γz1 ∗ γz1,z.

Here γz1,z is chosen to be inside Dn. We now observe that g(z) = fγz(z) is obtained by analytically continuing f
along the path γz = γz1 ∗γz1,z. When computing this analytic continuation we can use the analytic continuation
(fk, Dk)

n
k=0 that was used to analytically continue f along γz1 . We can do this since γz1,z ⊂ Dn. Hence

g(z) = fγz(z) = fn(z). ■

We have now outlined a technique to extend the domain of an analytic function, given another function that
coincide in some common domain with at least one limit point. When solving a differential equation a common
situation is that one can solve the equation locally. But the main goal is to give a global solution. We can then
apply analytic continuation, where the local solutions (fk, Uk) play the role of the analytic continuation, see
Definition B.1.5. If we additionally can find relations between the local solutions where their domains overlap,
we can along any path starting at a point z0, cover the path by local solutions (fk, Dk) and glue them together.

If we are to use Corollary B.1.1, we need to assure that the domain of the differential equation is simply
connected. This is a pretty big constraint, and in many situations, e.g. if the differential equations has
singularities, we do not in general have a simply connected domain. But all is not lost, there are tricks to alter
the domain of the problem into a simply-connected one.
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B.2 The universal cover of a Riemann surface

Definition B.2.1 Holomorphic covering and universal covering.

i) Let p : M̃ → M be a continuous surjective map between two topological spaces. The open set U ⊂ M is
said to be evenly covered by p if the inverse image p−1(U) can be written as the union of disjoint open
sets Vα in M̃ ,

p−1(U) =
∐
α

Vα.

Also for each α, the restriction of p to Vα is a homeomorphism of Vα onto U .

ii) A covering is a triple (M̃,M, p), where p : M̃ → M is a continuous and surjective function, and such
that every point z ∈M has a neighbourhood U that is evenly covered by p. M̃ is called a covering space,
M is called base space and p is called a covering map.

iii) Let M̃ and M be connected complex manifolds. A holomorphic covering, is a covering (M̃,M, p) with
the additional properties that the covering map p, is holomorphic as a map between manifolds and when
it evenly covers a neighbourhood U of z ∈M , p|Ũα

: Ũα → U is a biholomorphism.

iv) A universal covering is a covering (M̃,M, p) where the covering space M̃ is simply connected.

v) Let (M̃,M, p) be a covering and f : N → M a continuous function from some topological space N into
M . A lifting of f to M̃ is a continuous function f̃ : N → M̃ such that f = p ◦ f̃ i.e. the following
diagram commutes:

M̃

I M

pf̃

f

We are going to need two topological lemmas to be able to lift paths from a base space to a covering space.

Lemma B.2.1 [[Mun00][L.54.1]] .
Let (M̃,M, p) be a covering and p(z̃b) = zb. Any path ζ : I →M beginning at ζ(0) = zb has a unique lifting to
a path ζ̃ : I → M̃ , beginning at z̃b. I.e. such that ζ = p ◦ ζ̃.

Lemma B.2.2 [[Mun00][T.54.3]].
Let (M̃,M, p) be a covering and p(z̃b) = zb. If H : I × I → M is a homotopy between H(·, 0) = ζ0 and
H(·, 1) = ζ1, there is a unique lifting of H to a continuous map H̃ : I × I → M̃ such that

• H̃(0, 0) = z̃b.

• H̃ is a homotopy between H̃(·, 0) = ζ̃0, the unique lift of ζ0 starting at z̃b, and H̃(·, 1) = ζ̃1, the unique
lifting of ζ1 starting at z̃b.

Theorem B.2.1 [For81], [Lee03]. The universal cover of a connected complex manifold.
Let M be a connected complex manifold. Then there exists a connected, simply-connected complex manifold M̃
and a holomorphic map p : M̃ →M such that (M̃,M, p) is a universal holomorphic covering.

Proof. Fix zb ∈M . The construction will depend on this base-point, and a different choice of base-point gives
a covering space which is biholomorphic to the first.

Consider the set
M = { (z, ζ) | z ∈M, ζ is a path between zb and z } ,

and define the equivalence relation

(z, ζ) ∼ (z′, ζ ′) ⇐⇒ z = z′, and ζ is homotopic to ζ ′.

We define

M̃ :=M/ ∼ p := π1 : M̃ → M
[z, ζ] 7→ z

(B.1)
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and claim that (M̃,M, p) is a universal holomorphic covering.
Step 1. We define a topology on M̃ . Let [z, ζ] ∈ M̃ and U ⊂ M an open connected, simply-connected

neighbourhood of p([z, ζ]) = z, we will also refer to such a neighbourhood in M as admissible. Define a subset
Ũ[z,ζ] ⊂ M̃ by:

Ũ[z,ζ] = { [x, η] ∈ M̃ | x ∈ U and η ∼ ζ ∗ ζz,x, where ζz,x is a path from z to x, ζz,x ⊂ U }

Since U is simply connected all paths from z to x in U is homotopic. Let B be the family of all such Ũ . We
show B is a basis for a topology on Ũ .

• If [z, ζ] ∈ M̃ then [z, ζ] ∈ Ũ[z,ζ].

• Let [z, ζ] ∈ U[x,η] ∩ V[y,γ]. Then z ∈ U ∩ V and there exists an admissible neighbourhood W ⊂ U ∩ V of
z. Further

[z, ζ] ∈ W̃[z,ζ] ⊂ U[x,η] ∩ V[y,γ]
since every path µ ⊂W is also in U ∩ V .

Step 2. p : M̃ →M is a covering map, so (M̃,M, p) is a covering. To show this we note that since p := π1
it is obviously surjective and continuous. If z ∈M then z is contained in an open connected, simply-connected
neighbourhood U , and we have that

p|Ũ[z,ζ]
: Ũ[z,ζ] → U

is a homeomorphism for any ζ, since π1 is an open map. We want to show that

p−1(U) =
∐
[ζ]

Ũ[z,ζ],

where the union is taken over all homotopy classes [ζ] of paths ζ going from zb to z. We first show that any
point in p−1(U) is in this union. Let [x, η] ∈ p−1(U), by Definition x ∈ U and η is a path from zb to x. Consider

Ũ[z,ζ] = { [y, γ] | y ∈ U & γ ∼ ζ ∗ ζz,y } ,

where ζz,y is a path in U between z and y, U being open, connected and simply-connected. We define

ζ ′ := η ∗ ζx,z,

where ζx,z is a path in U between x and z. Then we have that ζ ′ is a path from zb to z, and its homotopy class
is thus included in the union above. We also have that

ζ ′ ∗ ζz,x = η ∗ ζx,z ∗ ζz,x ∼ η

as any closed path in U is homotopic to a point. Hence

[x, η] ∈ Ũ[z,ζ′] ⊂
⋃
[ζ]

Ũ[z,ζ].

We show that the union is disjoint. Assume to get a contradiction that [x, η] ∈ Ũ[z,ζ] ∩ Ũ[z,ζ′] where ζ 6∼ ζ ′. Let
ζx,z be a path in U from x to z, then

ζ ∼ η ∗ ζx,z ∼ ζ ′

by Definition of [x, η] ∈ Ũ[z,ζ] ∩ Ũ[z,ζ′]. We thus obtain the desired conclusion.
We also remark that the above proof shows that if [z, ζ] 6= [z, ζ ′] then if U is any admissible neighbourhood

of z, then Ũ[z,ζ]∩Ũ[z,ζ′] = ∅. And if [z, ζ] 6= [x, η], then obviously there are admissible neighbourhoods U, V ∈M

such that Ũ[z,ζ] ∩ Ṽ[x,η] = ∅ by the Hausdorff property in M . We have thus shown that M̃ is Hausdorff.
Step 3. M̃ is connected and simply-connected. We will show that M̃ is path connected. Let [z, ζ] ∈ M̃ . By

Lemma B.2.1, since (M̃,M, p) is a covering there exists a path ζ̃ : I → M̃ such that ζ̃ starts at ζ̃(0) = [zb, zb]
and ends at ζ̃(1) = [z, ζ].

M̃

I M

pζ̃

ζ

108



Here [zb, zb] denotes the equivalence class with basepoint zb and homotopy class equal to the constant path at
zb. Thus any point of M̃ is path connected to [zb, zb].

To show that M̃ is simply-connected, note that since p is continuous, p : M̃ →M induces a homomorphism
of fundamental groups, when fixing p([zb, zb]) = zb:

p∗ : π1(M̃, [zb, zb]) → π1(M, zb)

[ζ̃] 7→ [p ◦ ζ̃]

We will show that this homomorphism is trivial. Let [γ̃] be any element of π1(M̃, [zb, zb]). That is, γ̃ is a loop
at [zb, zb] in M̃ . Since p is continuous, ζ := p ◦ γ̃ is a path in M with ζ(0) = p ◦ γ̃(0) = zb = ζ(1). Thus
ζ : I → M has by Lemma B.2.1 a unique lift to a path ζ̃ in M̃ such that ζ̃ at ζ̃(0) = [zb, zb], thus γ̃ = ζ̃. We
also know by the construction of the lifted path that ζ̃(1) = [zb, ζ] = [zb, zb], which implies that ζ ∼ zb. Now
since we know that the unique lift of the constant path at zb in M is the constant path at [zb, zb] in M̃ , we can
conclude by Lemma B.2.2 that

γ̃ = ζ̃ ∼ [zb, zb].

Thus p∗ is a trivial map, and any loop in M̃ starting at [zb, zb] is homotopic to the point [zb, zb], which means
that M̃ is simply-connected.

Step 4. M̃ is a complex manifold. We have already shown that M̃ is Hausdorff. The map p : M̃ → M
is a local homeomorphism, hence since M is locally euclidean by charts ϕα : Uα → Cn we can compose these
charts with p. We restrict Uα to a neighbourhood U ′

α such that p|Ũ ′
α
: Ũ ′

α → U ′
α is a homeomorphism and

ϕ̃ := ϕ ◦ p : Ũ ′
α → Cn is a chart on M̃ .

To show that M̃ is second countable, we first prove that the fibers of p is countable, i.e. the set p−1(zb)
is countable. We have that for any [ζ] ∈ π1(M, zb), there is a representative ζ : I → M such that by Lemma
B.2.1, if we consider the unique lift ζ̃ of ζ, starting at ζ̃(0) = [zb, zb], the path ends at ζ̃(1) ∈ M̃ . This endpoint
is actually invariant of the representative chosen for [ζ] by Lemma B.2.2. Thus we can define the map

L : π1(M, zb) → p−1(zb)

[ζ] 7→ ζ̃(1)

We show that the fact that M̃ is path-connected leads to L being surjective and the fact that M̃ is simply
connected leads to L being injective. Let [zb, ζ] ∈ p−1(zb). Since M̃ is path connected there is a path γ̃ in
M̃ from [zb, zb] to zb, ζ. Then γ = p ◦ γ̃ is a loop in M at zb, hence [γ] ∈ π1(M, zb), and L([γ]) = [zb, ζ] by
Definition. For injectivity of L, let L([ζ]) = L([γ]). Then consider the lifts ζ̃ and γ̃, of the representatives ζ
and γ using Lemma B.2.1. Then

L([ζ]) = ζ̃(1) = γ̃(1) = L([γ]),

so since M̃ is simply connected we can find a homotopy H̃ between ζ̃ and γ̃ in M̃ . This implies that H := p◦H̃
is a homotopy between ζ and γ in M , thus [ζ] = [γ] and L is injective. Thus to show that pzb is countable
we can show that the homotopy group of M is countable. But this is covered by the known fact that the
fundamental group of a manifold is always countable, see [Lee11] Theorem 8.11.

We prove that M̃ is second countable. The set of all evenly covered open subset of M is an open cover for
M , so we can choose a countable subcover {Un }∞n=1 . Then for each Un we pick one basepoint zn ∈ Un,

p−1(Un) =
∐
j

(Ũn)[zn,ζnj ]

where the union goes over all [ζnj ] ∈ π1(M, zn), which is countable. Thus

{ (Ũi)[zi,ζij ] | zi ∈ Ui, [ζij ] ∈ π1(M, zi) }

is a countable open cover for M̃ , and each set (Ũi)[zi,ζij ] is second countable. Thus taking a countable basis for
each such set, gives a countable union of countable basis elements, thus finally a countable basis for M̃ .

To conclude that M̃ is a complex manifold, all that remains is to show that it has a holomorphic atlas. We
know that M possesses a holomorphic atlas

UM = { (ϕα, Uα) | ϕ : Uα → Cn } , ∀α, β ϕα ◦ ϕ−1
b : ϕb(Uα ∩ Uβ) ⊂ Cn → Cn, is holomorphic

Consider
UM̃ := { (ϕ̃α, Ũα) | ϕ̃α := ϕα ◦ p | Ũα

: Ũα → Cn }
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where Uα is shrunken accordingly so that p|Ũα
: Ũα → Uα is a homeomorphism. For any α, β we have that:

ϕ̃α ◦ ϕ̃−1
β = ϕα ◦ p|Ũα

◦ p|−1
Ũβ

◦ ϕ−1
β = ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ) ⊂ Cn → ϕα(Uα ∩ Uβ) ⊂ Cn

which is a biholomorphism by assumption.
Step 5. (M̃,M, p) is a holomorphic covering. We need to show by Definition B.2.1 that p is holomorphic

and that p|Ũα
: Ũα :→ U is a biholomorphism. Let [z, ζ] ∈ M̃ and let Ũ[z,ζ] = Ũ be a neighbourhood of [z, ζ]

such that p|Ũ (Ũ) = U is evenly covered, and such that we have charts

ϕ̃ = ϕ ◦ p|Ũ : Ũ → Cn, ϕ : U → Cn.

Then the result is trivial as:

ϕ ◦ pŨ ◦ ϕ̃−1 : ϕ̃(Ũ) Ũ U ϕ(U)
ϕ̃−1 p|Ũ ϕ

, ϕ ◦ p|Ũ ◦ ϕ̃−1 = ϕ ◦ p|Ũ ◦ p|−1
Ũ

◦ ϕ−1 = I

and similarly

ϕ̃ ◦ p−1
Ũ

◦ ϕ−1 : ϕ(U) U Ũ ϕ̃(Ũ)
ϕ−1 p|−1

Ũ ϕ̃
, ϕ̃ ◦ p|−1

Ũ
◦ ϕ−1 = ϕ ◦ p|Ũ ◦ p|−1

Ũ
◦ ϕ−1 = I

■

Corollary B.2.1.
Let (M̃,M, p) be a holomorphic covering and f :M → N a map into some complex manifold N . Consider the
function f̃ defined by

M̃

M N

p
f̃

f

f̃ := f ◦ p

Then f̃ is holomorphic if and only if f is holomorphic.

Proof. If f is holomorphic, then f̃ = f ◦ p is well defined since p is surjective, and is a composition of two
holomorphic maps and is thus holomorphic.
If f̃ is holomorphic, let z ∈M and let U be an evenly covered neighbourhood of z, such that p|Ũ : Ũ → U is a
biholomorphism. Then locally we can write f as

f = f̃ ◦ p|−1
Ũ

= (f ◦ p) ◦ p|−1
Ũ

which is a composition of holomorphic maps. Thus since f is holomorphic at any z ∈M , it is holomorphic in
M . ■
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