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Abstract

When generating RSA keys, proper random generators are crucial. If the generators are
not truly random, keys may be generated with the same factors, making them vulnerable
to compromise. Doing a simple greatest common divisor computation would reveal
the secret factors. We collected over 159 million unique RSA public keys from the
Certificate Transparency logs, which is, to our knowledge, the largest set used for such
an analysis so far. Our goal was to check if any of these keys shared factors, thus
allowing us to compute the private keys easily. To do this, we implemented a batch
greatest common divisor algorithm used for this purpose in previous studies.

Our result from checking the 159 million RSA keys was that we factored eight keys,
all of which were issued by the same certificate authority. We then gathered more than
700,000 keys from that particular certificate authority, of which we were able to factor
355 keys. We reached out to the issuer of the broken certificates, and they launched an
investigation into our findings. Their investigation concluded that all broken keys were
generated by a single user who they claim had abused their system.
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Chapter 1

Introduction

In this chapter we will cover some relevant history and terminology as well as the
general area in which we will operate.

1.1 History

Cryptography has been used since the time of the Roman empire to conceal or hide
messages from prying eyes. It is historically tied to governments and military services
to communicate securely. In order to achieve this, two parties need to have a shared
secret or key. The parties can then use this key to encrypt some message, called plain-
text, by scrambling the message into something meaningless, called a ciphertext. The
other party that receives this ciphertext can then decrypt the ciphertext with the key to
recover the message.

One example of an old encryption algorithm is the Caesar cipher. The cipher was
used in the Roman empire and today is considered basic. It works by shifting the
alphabet by some k positions to the right. For instance, if k = 2 then the plaintext "abc"
would encrypt to the ciphertext "cde" [33]. Since then, cryptography has evolved to
ensure that it is as hard as possible for anyone not knowing the key to figure out the
plaintext given the ciphertext.

By the time of the second world war in 1939, cryptography was widely used and
deployed by military services. By then, cryptography was more advanced and relied
on portable mechanical machines to perform encryption and decryption such as the
famous Enigma machine. As the main principle had not changed, namely that the par-
ties that communicated had to possess the same key, this required significant logistics.
Therefore each soldier or spy on the field needed the same key as the one receiving their
messages. The distribution and replacing of keys is called key distribution. Key distri-
bution is one of the main drawbacks of symmetric cryptography. The main problem is
scaling, because communication between two parties is quite easy, but what if hundreds
or thousands of people need to communicate with each other? Then key distribution
becomes a demanding task. As the key needs to be secret, it is costly to distribute the
keys.

As computers became more common and connected throughout the *80s and *90s,
the desire to communicate securely online had clear benefits. This development also
meant that the scale of communicating parties exploded. Now key distribution was a
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limiting factor.

Asymmetric cryptography is relatively new and was discovered in the 70s and is
different from symmetric cryptography, which is the type of cryptography we have dis-
cussed so far. The main difference is that asymmetric cryptography has two keys, one
for encrypting (public key) and one for decrypting (private key). Also, only knowing
the public key, it should be practically impossible to find the private key. This is very
useful as one could give the public key to everyone in the world, who could then send
encrypted messages only you can decrypt.

Asymmetric cryptography could in theory replace symmetric cryptography but as
symmetric cryptography is much faster therefore we still use it every day. Asymmetric
cryptography is therefore used when smaller amounts of information should be en-
crypted, such as encrypting a symmetric key. This is done by encrypting the symmetric
key with a public key and sending it to the owner of the private key. Now the owner
can decrypt the key and start using symmetric encryption. The combination of the two
methods provide cryptographers with great tools to build complex systems achieving
secure communication between parties that have never communicated with each other
before. We will look at some of them in this thesis.

As the world became more interconnected the trust online started to decrease, as
people and systems were vulnerable to hacking. The field of cybersecurity is about
protecting systems and information. Here we define some of the basic objectives when
protecting information.

Confidentiality refers to keeping information secret, for instance passwords, med-
ical journals, sensitive information etc. should be confidential. This is something most
people can relate to, by not wanting to share private information with third parties.
Confidentiality is the original purpose of encryption, to conceal secret information so
third parties can not read them. This is commonly achieved by using either symmetric
or asymmetric encryption.

Integrity refers to the certainty and accuracy of some information, such as a doc-
ument with your signature on it. If it is possible to forge your signature or change the
document after you signed it, the document would not have integrity. So integrity is
the certainty that the content of a message has not changed in transit between its sender
and receiver. Integrity can be achieved by using digital signatures, which is one form
of asymmetric cryptography. Digital signature users have a private key, and as long as
the key is secret, the only person who could have signed a document is the owner of
the key.

Authentication is the process of verifying the identity of an entity. This is often
an initial step in a process for obtaining sensitive information. For example by logging
into your bank, you have to be authenticated to ensure you have privileges to obtain
your banking information and make payments. As we will see in Chapter 2, certificates
play an important role in authentication.

Non-repudiation means it should not be possible to send a message and later claim
you did not send it [33]. This is an important feature when building complex systems,
as this helps in achieving transparency and responsibility. Non-repudiation can also be
achieved by using digital signatures.

We will now see how asymmetric and symmetric cryptography help us in achieving
these goals.



1.1 History 3

1.1.1 Symmetric Cryptography

We will not go into details about symmetric cryptography, but cover what is relevant for
this thesis. Symmetric cryptography is as previously mentioned cryptography where
the same key is used for encryption and decryption. This is the fastest way to do
encryption today, and one example of such a symmetric encryption algorithm is the
Advanced Encryption Standard (AES) [10]. It is important that the encryption and
decryption is fast, as the amounts of data in modern applications is ever increasing.
As an example the quality of pictures and videos keep getting better and their file size
keep increasing. The rise of cloud computing and storage also means large amounts of
traffic. Symmetric encryption ensures confidentiality as long as the keys are managed
securely. The drawback of symmetric cryptography is the need for key distribution.

Message Authentication Codes

A Message Authentication Code (MAC) is a way of authenticating the origin of a mes-
sage using symmetric cryptography. This is done by two parties again sharing a com-
mon secret key. A MAC algorithm takes a secret key and the message as input, and
produces an output called a tag. This way the tag depends on the secret key. So when a
sender sends a message along with a tag, the recipient calculates the tag using the mes-
sage and the same secret key and compares the computed tag with the received one. If
they are equal the recipient is sure that the sender possesses the same secret key and
that the received message is exactly the same as the one that was sent. That is, MAC
ensures authentication and integrity of messages, based on a pre-shared key [33].

1.1.2 Asymmetric Cryptography

Asymmetric cryptography is as previously mentioned cryptography where two different
keys are used. The public key is used for encryption and the private key is used for
decryption. This is slightly misleading particularly for RSA as both keys actually can
decrypt and encrypt, but the names simply refer to which key is secret and which key
1s public.

Asymmetric cryptography is used for many purposes, including confidentiality, au-
thentication, and integrity. One example of an asymmetric encryption algorithm is
RSA, which we will discuss in more detail in Chapter 3. Today asymmetric cryptogra-
phy is mostly used for key exchange using certificates and signatures. We will discuss
certificates further in Chapter 2.

Digital Signatures

Digital signatures are a way of signing some data digitally using asymmetric cryptog-
raphy. Digital signatures has some resemblance to MACs. A digital signature is done
by "encrypting" a message with a private key, then sending this "ciphertext" along with
the original message. This way a recipient can decrypt the "ciphertext" using the pub-
lic key and verify that the decrypted message is identical to the original message. To
get the decrypted message to be identical to the original one, should only be possible, if
the sender has the private key. If you are certain that only one particular person has the
private key and signs with it, then using a digital signature authenticates this person.
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Integrity comes from the fact that the computed and received signatures should be
identical. Non-repudiation and authentication is achieved when the only person able
to sign, is the person with the private key. Therefore a digital signature provides au-
thentication, integrity and non-repudiation. This is why, today, we can sign documents
online and have them count as legal signatures [33].

1.2 Cryptography today

From previously being used mainly by governments and military services around the
world, cryptography today is used by almost all people on the internet [18]. It is still
applied in governments and the military but is now also used in almost all civilian
electronic communications, including mobile communication, web browsing, email
traffic and more.

One reason, for the use of encryption, is that most information that we share and
communicate is considered private or non-public. There are obvious things we would
like to ensure are confidential and have integrity, such as online banking and private
communications. However, some information may still be considered public such as a
blog or a news site, but could still use encryption in transit to protect businesses and
people’s privacy. Another reason for the use of encryption today is that it is considered
a good security practice as we will see in Chapter 4.

Additionally the information can considered public today, such as reading the news
and browsing the web, may tell a lot about you. The advertisement business is a good
example on how this data is being used to send us ads more accurately. The danger
here is when a lot of public or private information is systematized and aggregated to
the point where queries like "what are the interests of this specific individual?" can be
answered with a high degree of accuracy. So knowing you read a specific article online
may not tell that much about you, but when considering every article you have read the
past year, this may form a pattern. This is not possible if all our digital activities are
confidential, and more importantly in this setting, anonymous. Today this is possible
because the services we use track, buy and sell this information in order to get paid for
showing advertisements to us [15]. If encryption was not used, this information could
be tracked and stored by Internet Service Providers or any other link between you and
the site you are visiting.

Our private conversations are perhaps one of the most important communications
where we want confidentiality and integrity. This could be for many reasons, but from
a security perspective, this is where we share our most private information. This is also
where we have the highest level of trust, so integrity is crucial, as messages from our
friends and family has trust that could be misused by a third party. So most messaging
services use encryption, such as email and messaging apps. The messaging platforms
want to provide the best service, so using encryption is now seen as a criteria for some
people in order to use their platform. We can see this as several of the most popular
chatting apps use encryption in their services, and promote the encryption in their cam-
paigns. There is also more laws implemented, mainly to protect privacy, by encrypting
personal data.

Practically all cryptography today happens digitally, primarily by standardized pro-
tocols that have been thoroughly scrutinized and tested. The field of cryptography can
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be considered both theoretical and practical. Cryptography aims to find secure algo-
rithms to use in communication and is primarily theoretical work. The practical part
is the translation of these algorithms to a program that can run on a computer, which
is also a vital part of cryptography. In addition, both theoretical and practical work is
done to try and probe systems and algorithms for vulnerabilities. This thesis is placed
in the latter category and will investigate the practical application of an asymmetric
cryptography algorithm called RSA.

When using the internet today we are typically use a browser or an app to com-
municate with some entity. The entity is often a server, which delivers some services
of a company, such as movies or articles. Most of this traffic uses encryption and in
this thesis we will look closer at some of the crucial aspects that allows this to happen
securely.

Today we use mainly a combination of symmetric and asymmetric cryptography as
a system. Chapter 2 will look closer at a protocol using this kind of combination .
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Chapter 2

Certificates

Public key cryptography has one shortcoming; the man in the middle attack. If two
users exchange public keys, how can they be sure that the key they receive is from the
other user?

2.1 The man in the middle attack

The man in the middle attack (MitM) is when an attacker controls the communication
channel we are using. The attacker can then read, write and manipulate the messages
we send and receive. As mentioned, to communicate using public-key cryptography,
you need to publish your public key. Doing so makes it possible for anyone to retrieve
your key and send you encrypted messages. The problem is, as seen in Figure 2.1, that
you can not know for sure who sent you the message. The attacker has a wide range

Send money Send money
< toY to X
You

Man in the middle Friend

Figure 2.1: Man in The Middle attack between you and your friend

of possible malicious acts in this scenario. They can be passive by decrypting, reading
and then encrypting the messages between you and your friend. Alternatively, they can
be active by replace parts of or the entire message you and your friend send, as seen in
Figure 2.1.

In Figure 2.2 we see how this can happen using public keys. When sending your
key to your friend, the attacker intercepts it and sends his key to your friend instead.
The attacker does the same when your friend sends his key, so you receive the attacker’s
key. Now the attacker controls the communication and the encryption. You and your
friend think you are talking to each other, but all messages go through the attacker who
can decrypt, read, modify and encrypt all messages before forwarding them. To solve
this problem, the parties need some amount of trust between them. The parties involved
need to be authenticated to ensure they are whom they claim to be. As we will see, this
authentication is the main problem with public-key cryptography.
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PK1 PK2 PK3

——PK1—> —PK2—>
<«—PK2— <«—PK3—

You Man in the middle Friend

Figure 2.2: Man in The Middle attack between you and your friend, here we see how the MiTM attack
works using public keys (PK)

Another consideration is knowing that the key your friend sends actually belongs
to him. It can still be someone else using his computer or, in some other way, have
access to his public and private key. Therefore, you only authenticate that the one you
are talking to has access to the private key corresponding to the public key you have
received. There needs to be something that binds your friend’s identity to his public
key, and this is done by using public-key certificates.

2.2 X.509 Certificates

A public-key certificate simply refers to a public key connected to some unique infor-
mation about the owner’s identity that is digitally signed. The unique information could
be a person’s name, name of a website or something else that is unique to the entity.
This binds your friend’s name to a specific public key, similar to the way an entry in a
phone book binds your name to your phone number.

Today the most used standard for digital certificates is the X.509 standard. This
standard comes from one of the world’s oldest international communications organiza-
tions [23], the International Telecommunications Union (ITU), who in 1988 approved
a standard named X.500, also called the Directory [24]. The X.500 was an interna-
tional standard for directory systems, where the X.509 standard for digital certificates
was named as the framework for authentication. The X.509 standard describes the for-
mat of public-key certificates, which, since then, has been updated and is widely used
today.

Today we mostly use X.509 version 3. The format has remained principally the
same, but some fields have been added over the years. In version 2, they added two op-
tional fields for identifiers for the subject (the one receiving the certificate) and issuer
(the one creating the certificate). The most significant change came in version 3, where
they added extensions, which anyone can create and use, giving the standard flexibility.
There are also some defined standard extensions, such as key usage. The key usage ex-
tension allows certificates to be used for specific purposes such as only for encryption,
key derivation, authentication etc. The format of X.509 certificate version 3 has these
fields in addition to the signature [9]:

1. Version Number- The version of X.5009 this certificate is using (1-3), this is mostly
version 3

2. Serial Number - The unique identifier for this certificate (Unique to the one cre-
ating it)
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3. Signature Algorithm Identifier - The algorithm which was used to sign this cer-
tificate

4. Issuer Name - The name and information about the entity that issued this certifi-
cate

5. Validity Period - The period this certificate is valid, given by a start and end time
6. Subject Name - The name of the subject for this certificate

7. Subject Public Key Information - The public key of the subject and the encryption
algorithm where the key should be used.

8. Extensions - optional extensions

These certificates binds the identity of an entity to a public key. The certificate itself
should be signed in order to verify that the certificate is genuine. Signing, as already
mentioned, verifies the integrity of a document and the authenticity of the sender. Back
to the example of a certificate resembling an entry in a phone book, the question now
1s who maintains the phone book?

2.3 Public Key Infrastructure

A PKI is the basis of pervasive security infrastructure whose services are
implemented and delivered using public-key concepts and techniques [3]

A PKI is an infrastructure that uses public-key concepts to manage and control certifi-
cates. PKI is the infrastructure to maintain the phone book of public keys and identities
securely.

The main tasks at hand for a PKI is certificate issuance and revocation as well as
key management. Certificate issuance is the act of creating and giving a new certificate
to an entity. Before issuing a certificate, the identity and credentials of the entity must
be verified by some means. A PKI also needs to be capable of the opposite, namely
certificate revocation. This is when a certificate is, for some reason, revoked before its
expiration date. There are several reasons for this, such as the private key being stolen,
lost or used fraudulently. A PKI must also manage the keys, such as private keys of
users. The PKI manages the keys to be able to backup or recover lost or stolen keys.
It can also be updating keys for security purposes [33]. This should be done in such a
way that the one managing the private keys cannot read or use them in any way as this
would defeat the purpose of private keys.

Today there are several PKI models based on different trust models we will look at
some of them.

2.3.1 Certificate Authorities

Today the most used PKI model is based on Certificate Authorities (CA). The model
is based on trusting a third party known as a CA. In PKIs using CA, the trust is a
hierarchical model in where a root CA sits at the top. A CA is responsible for binding
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the identity of an entity to a public key. This means that they need to vouch for binding
an entity’s identity to a public key in the form of signing their certificate [3]. A CA
essentially manages certificates. They create, issue and revoke certificates. Today there
are hundreds of CAs worldwide, and as a whole, they follow a hierarchical model of
trust.

When you need a certificate today, you can ask a CA for one. The CA will then
do some kind of verification of your identity. For instance, as a business or a domain,
they will ask for some document proving you are the owner of the business or domain.
There are some standards for this verification, Organisation Validation (OV), Domain
Validation (DV) and Extended Validation (EV) where EV is the most comprehensive
[7]. Then they will create a certificate, sign it with their private key and issue it to you.
When you want to communicate with your friend again, you can send your certificate.
Your friend can then retrieve the CA’s public key to verify the signature on the certifi-
cate. Now, as long as he trusts the CA, he knows he is talking to you as long as he uses
the public key stated on the certificate. However, how does your friend know he has the
CA’s original public key?

The CA’s certificate is signed by another CA, the same way the original CA signed
your certificate. This forms a chain of certificates. At the end of this chain is a top CA,

Q Q

A A
Y Y

< >

Root|CA 1 Root|CA 2

LK

CA 1 2 CA3 CA4
Signed
Certificate
_— >
You

Friend

Figure 2.3: Hierarchical CA model. To be able to verify your friend’s certificate there needs to be
a path between you. Here we can see the root CAs signing each others certificates, known as cross-
certification.

also known as a root CA, as seen in Figure 2.3. The root CA has a self-signed certificate
that its public key can verity, this is called a trust-anchor. This act of verification of a
root CA is, in the end, no different than your friend self-signing his certificate. The
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difference 1s that a root CA 1is a business that relies on trust to survive and should be
audited frequently. When you send your certificate to your friend, it is necessary to also
send the certificate chain. This is because your friend might not know the CA you have
used, or, more importantly, does not have their certificate. So when you send the whole
chain, he can then verify each certificate and its signature up to a root CA. Then the
requirement is simply that your friend has a way to get the root CA’s certificate. This
model has several variations, such as a more strict model where there is only one root
CA that you and your friend trust.

2.3.2 Web of Trust

The web of trust model is based on each user being its own CA. The model was pub-
lished and used in Pretty Good Privacy (PGP) by its creator Phil Zimmermann in ver-
sion 2.0 in 1992 [36]. PGP is an email program where the users create certificates
linked to their email addresses. This way, every user can issue certificates for them-
selves. The users sign their certificates and send them to their friends, who also can
sign the user’s certificate, as seen in Figure 2.4. Their signatures are appended to the
certificate. This way, a certificate can get many signatures which help to verify the cer-
tificate’s authenticity. The user has good control over the protocol and can decide the
level of trust for other users. [33].

—> ‘ Trust \

— | Friend 1
You > ‘ > ‘ > ‘
Friend 2 Person 1 Person 2

Figure 2.4: Web of Trust, Relies on implicit trust between parties. The figure shows how using web of
trust you can implicitly trust someone you personally don’t know such as person 2.

As users gather certificates, they are added to a list with two values associated with
each user and their certificate. These values are the levels of trust associated with a
certificate, where there are two central values. The first is called the "key legitimacy
field" and is the trust in the user and its keys validity. The second is called the "owner
trust field" and is the trust of the user to sign other certificates. Together these fields
determine to which degree the user trusts other users.

There are degrees of trust, so you do not necessarily trust everyone your friend
trusts. As you have the two fields associated with your friend, it is possible to trust
him, but not trust his friends. There are some drawbacks of this model, one being
its scalability. This model suits small groups where people know each other. It is
harder for larger groups or companies since not everyone knows each other, and it is
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also difficult to enforce uniform policies. Another drawback is the level of technical
understanding required to use it. Users must create and sign certificates, maintain the
list of certificates, as well as how much trust they have in them [33].

2.3.3 Web PKI model

When browsing the web today, we primarily use the web PKI model, which in essence
is a list of root CAs that comes with our browser [3]. As long as the website we visit
has a certificate that can be validated up to a root CA from this list, the certificate
is considered genuine. This is only true as long as all signatures are verified and all
certificates are in their validity periods. The independent root CAs can be seen as
a strict hierarchical model, and the browser trusts all the root CAs. Today this list
consists of around 150 CAs, some more or less known. Some devices also come with
such a list, which some browsers such as Chrome use instead of having their own list.

The advantages of this model are its simplicity and its ability to scale well. The
model also has some drawbacks. The main issue is that someone else is deciding whom
you should trust. The user can change this list, but most users do not know how or what
to change. Another drawback is the equal trust the CAs have. For example, if one CA
would issue a certificate to someone malicious for the Google domain, the browser
would see this as valid. The point here is that the model trusts each CA equally and
thus is only as strong as its weakest link. To continue to the next drawback, say a CA
was bad or had its keys lost or stolen. How would this be handled? The CA should
obviously no longer be trusted, but there is no complete and general way of distrusting
or revoking the CAs in the web model.

For example, this has occurred in the past with the CA Diginotar, which was hacked
in 2011. The attack led to rogue certificates being issued by "Diginotar" and trusted
by web browsers worldwide. The attack used these rogue certificates in a large scale
MiTM attack on around 300,000 users. The investigation [22] showed that there were
shortcomings in the security at Diginotar. "Diginotar’s" false certificates were used
for almost two months. So what happens in cases like this? It is up to the browsers
to remove the root certificates and publish an update. In Diginotar’s case, the major
browsers distrusted Diginotar’s certificates, and Diginotar declared bankruptcy a few
months later. As a curiosity, this event was what inspired the creation of the CT logs
which we talk about in Chapter 4.

Another thing to point out is the terms and conditions, and the responsibility be-
tween a user and a CA. Consider a situation where you only trust one CA out of hun-
dreds. Then you can use their services and agree to some terms and conditions that
outline both parties’ responsibilities. This gives you hundreds of options for terms and
conditions as you can choose any of the CAs. The web PKI model removes this agree-
ment or at least the opportunity of this agreement between a CA and you. Instead, it
is replaced by a browser or large corporations, such as Apple and Google, which uses
hundreds of CAs and limit the number of terms and conditions.

The Web PKI model has changed somewhat since its beginning, for example, by the
Certificate Transparency (CT) initiative by Google. This initiative gives some trans-
parency to the web PKI model by encouraging certificates to be added to logs open
for anyone to read and verify. The encouragement lies in treating websites that have
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not uploaded their certificate as less secure by the browser [14]. As each certificate’s
certificate chain is uploaded, this also gives insight into who issued and signed the cer-
tificates. We will come back to the CT logs in Chapter 4.

2.4 Secure communication between webservers

When we are browsing the internet, we usually communicate with some server some-
where. One of the most widely used protocols to achieve this securely, is the Transport
Layer Security (TLS) protocol using the described web PKI model. TLS is used in
most internet traffic, as it ensures authentication via the web PKI model and integrity
and confidentiality of the communication using public key and symmetric cryptogra-

phy.

2.4.1 The TLS protocol

The TLS protocol is a protocol to achieve secure communication when using the Trans-
mission Control Protocol (TCP). This is done by a combination of cryptographic tools
and a PKI. The protocol works by defining a specific way to communicate between a
server and a client.

TLS protocol was first launched as Secure Sockets Layer (SSL) by Netscape, the
popular internet browser, in 1995. This was the second version, as the first version
was never published because of severe security flaws. The SSL protocol was widely
used and, as follows, thoroughly investigated. This resulted in new updates with better
security. The protocol was standardized by the Internet Engineering Task Force (IETF)
as TLS, a slight modification of SSL version 3 [26]. The protocol follows some steps

1&2
TCP connection

Hello

\ 4

3

rt
(//He,\\ﬁe///él
550 Enc(Pms
MAC
Client (//ﬁ7 Server
8 MAC

Figure 2.5: TLS 1.2 Rough outline of TLS setup.

to set up secure communication between two parties. The messages of TLS version 1.2
are shown in Figure 2.5.

1. It starts by setting up a TCP connection. TCP is the protocol used to send and
receive unencrypted messages. This starts with the client sending a message to
the server.
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2. The server responds and sets up the TCP connection. Now the client needs to
respond to use the connection.

3. Then, the client sends a list of cryptographic algorithms available along with a
random number used only once, called a nonce to the server

4. The server picks the best cryptographic algorithms and sends this along with its
public key certificate and a nonce to the client

5. The client can now authenticate the server by checking the certificate and its chain
up to aroot CA. Then the client extracts the public key and generates a Pre-Master
Secret (PMS), encrypts it using the public key and sends it to the server

6. The server can now decrypt the message to get the PMS, and both client and
server use a Key Derivation Function (KDF), a function to generate uniformly
random keys, to get the same Master Secret. They also generate some other keys
used for MAC

7. The client sends a MAC of all the previous messages

8. The server sends a MAC of all the previous messages. The fact that the server
and client share the same MAC key proves that the server must have the private
key associated with the certificate. This authenticates that the client is talking to
the server the certificate is issued to.

This is not all the complete details of the TLS protocol but a good overview [11].
As stated, the authentication comes from verifying the certificate and the server being
able to finish the handshake protocol successfully. The confidentiality comes from
the use of encryption, both symmetric and asymmetric. The integrity comes from the
use of MAC to ensure that no messages have been changed. The MAC also provides
authentication, but since it relies on the shared key, it relies on the former authentication
from the certificate. When these steps are done, the parties have a shared key they can
use to encrypt their messages with the agreed-upon symmetric encryption algorithm.
So if chosen, RSA can be used in two ways in TLS. It can provide authentication, as a
algorithm used for the signature on the certificate. It can also provide confidentiality,
as a encryption algorithm for the PMS.

For this thesis, it is important to notice the usage of certificates. When starting a
TLS connection, a certificate is used, and as we will see later, one way of collecting
RSA keys is to initiate a TLS connection and retrieve the certificate presented. One can
also do this on a broader scale by asking every IP address to set up a TLS connection
and collect the certificates presented. When asking for every IP address, this is called
an internet-wide scan.

Another thing to notice is the impact it would have if the RSA key from the certifi-
cate was used to encrypt the PMS, and that key was broken by someone malicious. The
malicious actor could then create the keys used to encrypt the communication, breaking
the encryption. In this case, both confidentiality and authentication are broken. This
is also true for messages between other parties that communicate with the server if the
same encryption method and the same key were used.

It is also possible to decrypt old messages. If the malicious actor recorded the en-
crypted communication, the actor could break the key and decrypt the messages at some
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later point in time. Forward secrecy prevents this and is one of several improvements
in TLS 1.3 [31].

Forward secrecy is when encrypted communication cannot be decrypted, even if
the private key used is compromised at some later point in time. This ensures that even
if someone were to log all your internet traffic, they would not be able to decrypt all
previous messages even by breaking the private keys used. One way of accomplishing
this is by using session keys. A session key is only used for one session, which could
be one message or a hundred, but the principle is that the key changes. This limits the
impact of cracking such a key to the specific session. The main idea is that it should be
impossible to get from one session key to the previous.
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Chapter 3
RSA and factoring

3.1 The RSA cryptosystem

In 1978 Rivest, Shamir, and Adleman discovered the first practical public-key encryp-
tion and signature scheme, referred to as RSA. The RSA scheme is based on a hard
mathematical problem, the intractability of factoring large integers [4]. The public-key
scheme’s goal is to establish a shared secret while communicating on an open channel,
and the RSA is one of these systems most frequently applied. In general these systems
were revolutionary and would end the ever-growing hassle of key management of sym-
metric encryption algorithms. In RSA, this is done by exchanging integers in a specific
way.

To generate a RSA key one should generate two distinct prime numbers of similar
sizes, p and ¢ (factors), and calculate their product n (modulus).

pq=n (3.1)

Next, choose the encryption exponent e which is often just a standard exponent. Finally,
compute the decryption exponent d by using Euler’s totient function. As Euler’s totient
function is very easy to calculate, if you know the factors of n, and very hard if you
don’t, we can see how it is infeasible to find d without knowing Euler’s totient function
of n. This is again only possible if we know the factors p and ¢ of n.

¢(n)=(p—1)(g—1) (3.2)
d=e"' mod ¢(n) (8.3)

Now we can see the relationship between e and d as
e-d=1mod ¢(n) (3.4)

In practical application, this is usually done differently to speed up the process of de-
cryption. The public key consists of the modulus n and the encryption exponent e. The
private key is the prime numbers p and g and the decryption exponent d. Now you can
send someone your public key and they could encrypt some message m by computing

c=m’modn (3.5)
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and you could decrypt it by computing

m= ¢! mod n (3.6)

We can see that this works as
(m®)? = m*? = m mod n (8.7)

The drawback of RSA is the speed at which one can encrypt and decrypt [33]. It is
mainly used in the early stages of communications to exchange symmetric encryption
keys in modern applications. This is, for instance, done by TLS as described in Chapter
2. RSA is one of the asymmetric encryption algorithms widely used for symmetric key
exchange.

3.1.1 Security in RSA

The security in RSA lies in the hardness of factoring large numbers. This is the main
security aspect, but there are other practical security aspects in applying RSA, as with
any cryptosystem. These can be parameter selection and how the system is used in
practice. Some examples of choices that could undermine the security are choosing
too small primes p and ¢ or incorrect use of padding. The RSA system is dependent
on using a suitable padding scheme, which adds randomness to the message to avoid
leaking information about the message being sent. Another important part is choosing
the p and ¢ so that it is infeasible to factor n. The primes should be large and about
the same bit-length, and the difference between them should not be too small. If the
difference is too small, then one could factor n simply by applying the square root and
looking at the primes close to it [4]. The reason for choosing primes that are roughly
the same bit length is to not be easily factored by the elliptic curve factoring algorithm,
which factors "small factors" fast. Today the size of p and ¢ should at minimum be
1024-bit or larger to be secure. That makes the modulus n a 2048-bit number.

3.1.2 Factoring

If one could factor a 2048-bit integer quickly, RSA would be broken. Fortunately, this
is a hard problem that has been well studied, and so far, the largest number factored
that we know of is an 829-bit number [37]. The factorization problem is to factor a
large integer n into two or more distinct prime numbers on the form n = p'il . p§2 . pzk.
There are several algorithms to factor large integers. Some are specialised, while others
are general. The specialised algorithms take advantage of the factors being in some
special form. These generally perform better than the general-purpose algorithms but,
in return, can only factor some numbers. Some examples of special-purpose factoring
algorithms are trial division, Pollard’s rho algorithm and Pollard’s p — 1 algorithm.
Some general-purpose factoring algorithms are the quadratic sieve, and the general
number field sieve algorithms [4]. These algorithms are used to factor large integers,
and as the computers are getting faster and faster, the size of the numbers we can factor
is also growing. For example, the record mentioned above took more than 2700 core
years and used the number field sieve algorithm.
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3.2 Greatest common divisor and previous research

So factoring RSA keys is very difficult, but there are other threats to the security of
RSA. We are trying to test one of them, leveraging the fact that hundreds of millions
of RSA keys are publicly available. Because, what happens if two different RSA keys
share one factor?

In this case, it would be trivial to factor them by using the greatest common divisor
(GCD) algorithm. The GCD algorithm is an algorithm that, in our case, only takes two
numbers as input and outputs their greatest common divisor. So if we take the GCD of
15, whose factors are 3«5 = 15, and 25 = 5 x5 it would output 5, and if we used 15
and 4 it would output 1. An important note here is that since we work with RSA keys
n which are products of two primes p and g, the only factors of n are n, p,q, and 1.
Therefore, the GCD of two RSA keys that share a factor would return the shared factor
breaking both keys.

Today, the most used key size in RSA is 2048-bit, that is a 616-digit number repre-
sented in decimals. This means the prime numbers should be around 1024-bit in size
or a 308-digit number in decimal. Even though we only choose prime numbers from
this space, there are still more prime numbers than RSA keys in the world by far. In the
example of a 2048-bit RSA key, the primes of 1024-bit are then 308-digit numbers. An
approximation of how many primes one can choose from up to some x is x/In(x). Us-
ing this approximation and calculating the difference between x = 10°%® and x = 1037,
we find approximately how many primes we can choose for our 1024-bit primes. With
our example, this is roughly a 305-digit number. For comparison, an estimate of how
many atoms there are in the universe is 1034 an 85-digit number [5].

So, choosing the same prime twice should not be an issue, as the space to choose
prime numbers from is so large. Such a collision of numbers would be a miracle in a
perfect world. However, this is only the case if the prime numbers are actually picked
at random.

It turns out this was a severe problem discovered and disclosed by Heninger et al.
[21] and Lenstra et al. [28]. Heninger et al. [21] performed an internet-wide scan on
ports 443 (HTTPS) and 22 (SSH) to collect RSA keys and found 5.6 million and 3.8
million distinct RSA public keys, respectively. They also collected 3.9 million keys
from the SSL Observatory [13] totalling at 11 million distinct public RSA keys. They
factored 16,717 of these 11 million keys by taking the GCD between all pairs of the
RSA moduli.

Since then, the same experiment was done in 2016 by Hastings et al. [20] which
collected 81 million distinct RSA keys and factored over 313,000 of these. In 2019
Kilgallin et al. [25] collected around 57 million distinct RSA keys from an internet-
wide scan and was able to factor 249,548 of these keys. They attribute the high number
of broken keys to the rise of the Internet of Things (IoT), as IoT devices are primarily
lightweight and might have a poor entropy source. For comparison, Kilgallin et al. also
collected 100 million keys from the CT logs. For this data set, they were only able to
factor 5 keys.

The difference between the sources of the collections of RSA keys is essential. The
CT logs are certificates uploaded mostly by CAs, while an internet-wide scan might
return TLS certificates not created by real CAs. A TLS certificate returned from such
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a search might be in use or be created for testing purposes. The point here is that
there could be a difference in the quality of certificates found in CT logs and the TLS
certificates from a internet-wide scan. Another way of looking at it is that the TLS
certificates may be self-signed and used for personal use or only within organisations.
However, to have your certificate in a CT log, it must be signed by a CA trusted by
major browsers. The CA may also use their own software to generate the keys and
therefore, have more control over how you generate your keys. As the CA’s business
model is built on trust and security, they should be good at creating secure certificates
and strong keys.

Author Year | # of distinct RSA keys | # of factored keys | Percentage
Lenstra et al. [28] 2012 | 11 million 16,717 0.152 %
Henninger et al. [21] | 2012 | 6 million 12,934 0.215 %
Hastings et al. [20] | 2016 | 81 million 313,000 0.386 %
Kilgallin et al. [25] 2019 | 57 million 249,548 0.438 %
Kilgallin et al. * 2019 | 100 million 5 0.000005%

Table 3.1: Results from previous research. Here we can see the number of collected RSA keys and how
many of them were factored. *The 100 million RSA keys were collected from the CT logs.

It seems that the results of factoring depends on where the keys are collected from.
All previous studies mentioned have performed some degree of internet-wide scan and
this 1s where most keys are factored. Only the study from 2019 tries to factor keys from
the CT logs. A summary of previous research is given in Table 3.1 As of 2012, the
standard was 1024-bit keys, and now the standard is 2048-bit. The majority of RSA
keys found in the CT logs are 2048-bits. It is unclear what the key size was in the past
experiments, but most of them likely included key sizes of 1024-bit. We wanted to
replicate the GCD experiments done in 2012, 2016 and 2019, but we are exclusively
looking at 2048-bit keys.

3.3 Random number generators

To generate an RSA key, you need two random prime numbers, and these are critical
for the security of RSA. There are two types of random generators, a pseudorandom
number generator (PRNG) and a hardware random number generator (HRNG). The
PRNG is essentially an algorithm that quickly can generate large amounts of random
numbers given a seed. The seed initiates the generated sequence, so using the same
seed will generate the same sequence of random numbers. This is why the HRNG
is also used. HRNG is a slower generator but is supposed to be truly random. So
using the HRNG to seed the PRNG makes a truly random generator capable of quickly
generating large sequences of random numbers [33].

As already mentioned, Heninger et al. found some serious issues here. For exam-
ple, in Linux, when booting there was an entropy hole causing the random generators
to not generate random numbers, leading to the PRNG being essentially deterministic.
This would lead to RSA keys generated in this state being the same worldwide. An-
other finding was that most of the weak keys were generated in headless or embedded
devices. This is cause for concern, as the number of such devices increases faster than
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ever. As stated, Kilgallin et al. [25] factored many keys which they attribute to IoT de-
vices from their internet scan. From their CT log collection, they factored five keys. So
finding such weak keys which share one factor with another key could be a symptom
of a not so random PRNG or HRNG.

3.4 Factoring RSA Kkeys using greatest common divisor

3.4.1 GCD between all pairs

After collecting the large set of m RSA-moduli from the certificates, the analysis seems
quite simple on the surface: check if any of the 2048-bit integers share a factor that is
not 1. The naive solution is perhaps to simply run through all numbers and check the
GCD of all pairs.

GCD(n;,nj), where i < j <m (3.8)

Nevertheless, this will have O(m?) runtime, which takes too long when m is large.

Another approach is to multiply all the numbers together, dividing by the first num-
ber and checking the GCD of the large product and the first number. Then iterating
through all the numbers yields O(m) runtime.

GCD(nj,ny -ny-...-nj—1*Niy1-...-ny), where 1 <i<m (3.9)

The problem with this approach is that the product will be very large in terms of mem-
ory, and the operations, including this product, will be very slow.

To resolve both these issues, Heninger et al. [21] implemented an advanced GCD
algorithm. This algorithm tries to limit the number of operations on the large product
and use memory efficiently. The algorithm is based on the same approach as above,
except that instead of using the large product N in m operations, it uses a product and
remainder tree as seen in Figure 3.1.

Here we see the algorithm’s inner workings, namely the product tree and the re-
mainder tree. The algorithm is built on the following equation showing how we can
calculate the GCD of a large product and one of its factors.

ni...ny, mod n?
GCD(I’L,‘,I’LI-I’Lz-...-nl;l-I’Li+1-...'nm):GCD(I’L,', ! = !

) (3.10)
n;

This is proven by Bernstein [6], the fundamental discovery is that the GCD operation
is equally valid if done on the fraction in Equation 3.10. This allows us to do the
GCD with far smaller numbers than the entire product, allowing us to use large inputs.
The tree structures are meant to reduce the amount of memory the algorithm needs to
keep in RAM at any given moment and reduce the number of operations on the large
products. This is done by building the structure in Figure 3.1 line by line from top
to bottom. The product tree is built by multiplying numbers as a binary tree, and the
remainder tree is the large product mod each node from the product tree squared.

In the product tree, we only keep the previous level in memory while calculating
the next level. While in the remainder tree, we need both the previous level and the
equivalent level in the product tree, so this is the most memory demanding process.
We can also see from the figure that the number of operations with the large product
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Figure 3.1: Product and remainder tree in GCD Algorithm

is reduced to two operations. We also note that in each level in the remainder tree, the
bit-length of the input is half of the inputs on the level above. So the bottleneck is at
the top nodes in the remainder tree. Here all the integers are huge and require a lot of
processing.

This is the algorithm Heninger et al. wrote in [21] but was updated by Hastings et
al. [20] to run on a distributed system in order to avoid the bottleneck at the top nodes
in the remainder tree. They called it the batch GCD algorithm.

3.4.2 Batch GCD algorithm

The batch GCD algorithm is similar to the algorithm described above, but instead of
having one product and remainder tree, it has several. The fundamental principle of the
algorithm is to split the initial list of keys into some K batches, then run the algorithm
on each batch as seen in Figure 3.2. Simply running the algorithm would only find
shared factors within each batch. In order to check if keys from different batches share
a factor, we need to run the algorithm K2 times because each batch’s large product
needs to be checked against all other remainder trees. This increases the runtime in
theory, but it makes the algorithm faster in practice. This is by controlling how large
the product at the root of the remainder tree can be, thereby controlling the scale of the
bottleneck. This also allows us to handle bigger sets of keys since each batch is smaller
in RAM than the whole set would be.

It is also worth mentioning that when checking a product from one batch against
a remainder tree from another, one should not divide by the modulus before doing the
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Figure 3.2: Product and remainder trees in Batch GCD Algorithm: The batch algorithm is
O(K*mlog(m)) since each batch needs to be checked against all other batches. Here we also note
the difference between checking "inside" a batch and checking across batches. In our implementation,
the large products Ny and every Nl-2 would be written to file

GCD at the bottom of the remainder tree. This is because the dividing step is partly to
remove the entire key, so it is not the result of the GCD. However, using a product and
a remainder tree from different batches would result in not finding the shared factor.
The algorithm we wrote is based on the one from Heninger et al. [21] and Kilgallin et
al. [25] but with some minor modifications. Both our and Heninger et al. algorithms
write each level in both the product and remainder tree to files. We used OpenMP [2],
and instead of writing all levels in the product tree to file, we wrote every other level,
as suggested by Kilgallin et al. Another change we made was calculating the squares
of the products in the product tree method instead of the remainder tree method. Here
we also wrote the product tree nodes squared to file as they are larger in size than the
remainders in the remainder tree. So when running the algorithm, what is calculated in
each run is the product N modulus of the product tree squared Nl-z. The value of Ni2 is
simply read from the file.

3.4.3 Optimizations

We also planned on not doing mod Nl-2 but mod N; when checking a product against a
remainder tree from a different batch. Doing this would decrease the overall run time
and use less memory but double the number of files written. In our approach, this would
mean writing every other level in the product tree to file, both squared and not squared.
In total, this would increase the memory usage by around 50%. When considering the
overall runs, the minority are done "within" the batches, and the majority are across
batches, so improving these runs would have the most impact.
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Chapter 4

Running the experiment in practice

This section will describe how we did the project in practice and cover the results.

4.1 Certificate Transparency logs

The CT logs are an initiative started by Google, that aims to provide more security
and transparency to the web PKI worldwide, by hosting servers from Google and other
companies that store TLS certificates. The main feature this provides is that anyone
could upload their certificates, however, most are uploaded by CAs. The logs can
then be verified and investigated by anyone. The CT logs are also created so that one
can only append new certificates and read existing certificates, stopping anyone from
tampering with the logs. Google also implemented Chrome in 2018 [14] so that a
website that has not uploaded its certificate will be treated as less secure than one that
has uploaded its certificate to the CT logs. This made it even more used, which led to
the logs vast number of certificates. When this is written, the logs contain over 6 billion
certificates stored in around 40 different logs [1].

We collected 159 million certificates which used 2048-bit RSA keys for our analy-
sis. This was the most time-consuming process in our experiment.

The majority of the logs are hosted by Google, which also holds the majority of the
certificates on their logs. All logs limit the maximum amount of certificates received
per request ranging from 32 to 1024 certificates. We wrote a script in Python inspired
by Sears [32] to collect certificates from one of Google’s logs named Argon 2021 [8].
This script would retrieve some certificates, check if they met our requirements, and
then write them to a file with their unique (for each log) index.

Our first requirement was that the certificates had actually been used and were not
pre-certificates, as some logs hold more pre-certificates than regular certificates. Pre-
certificates are essentially also X.509 certificates but cannot be used as one. The pri-
mary use of pre-certificates is to be uploaded to a CT log to retrieve a valid signed
certificate timestamp that can be added to the actual certificate. This makes it possible
to gather the relevant information in the actual certificate.

The next requirement was that the certificate contained a public RSA key of size
2048 bit. This filtering also elongated the time it took to obtain the certificates since
not all certificates met our requirements. Using these requirements to gather our 159
million certificates led us to check over 400 million certificates from Argon 2021.
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The log we chose had a limit of serving at most 32 certificates per request, and we
got around 150,000 certificates per hour per CPU. We used 23 CPUs in parallel, giving
an overall runtime for collecting 159 million certificates of around 48 hours. There
are ways this can be done somewhat faster using other tools and methods [32]. When
collecting all the certificates, we needed to extract the public key from the certificate
and write it to a file in a specific format for our algorithm. As we had collected the
certificates and created one large file for our algorithm, the final step was to remove all
duplicates from the file.

4.2 Running the batch GCD algorithm

When running the batch GCD algorithm, we also encountered the same bug in the GMP
library [19] as Heninger et al. did in their implementation [21]. The bug happens when
writing large numbers to a file, since the maximum output size GMP will write to file is
232 bits, equal to 4 GB. The squared product in our remainder tree exceeded this limit.
We only first encountered this when actually running the algorithm on our data set. The
bug is in the function mpz_out_raw, and we used Heninger et al.’s patch to proceed.

We split our input of 159,377,664 million RSA keys into K = 13 batches making
each batch holding around 12 million RSA keys. Each level in the product tree took 3
GB, and the same levels squared used 6 GB of disk memory. With the depth of each
tree being around 24, this would be 144 GB per tree, and with 13 such trees, it would
require around 1.8 TB of disk memory. To half this memory usage, we only stored
every other level of the trees as mentioned in Section 3.4.2. Our algorithm ran in 88
wall clock hours on 30 cores using 180 GB RAM at the maximum. It also used around
1 TB of disk memory for the files it wrote. Checking one product against another
batch’s remainder tree took around 30 minutes, and with K = 13 we had 169 such
"runs". We also added some dummy keys with shared factors to the data set to verify
that the algorithm actually would find them. If they were not found, it would indicate a
programming error.

4.3 Results

The algorithm found eight keys with shared factors out of the 159 million, in addition
to our dummy keys. We verified that the found factors were indeed primes and that
their products multiplied to the moduli given on the certificates. All the certificates
expired in early 2021, and as stated earlier, all keys were 2048-bit RSA keys. Upon
closer inspection of the broken RSA keys, we noticed that their certificates all were
issued by a CA named ZeroSSL. Another peculiar finding was that the domains on
the certificates were all Vietnamese. Other than this, we could not find any apparent
connection between the keys.

This result would in itself be pretty close to what Killigan et al. [25] found in
2019 when checking 100 million RSA keys from the CT logs, as they only factored
five. This, combined with our results, could suggest that around 0.000005% of the CT
logs are vulnerable to this method. As Killigan et al. did not reveal the source of the
vulnerable certificates, we cannot say if it’s the same as we found. Either way, this is a
low but still significant number of vulnerable certificates.
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4.4 ZeroSSL

ZeroSSL is a certificate authority with its main office in Vienna and a branch in London.
They have been in business since 2016 and now have more than 500,000 customers
worldwide [35].

After our initial results, we decided to continue to investigate why we only found
weak keys from ZeroSSL and wondered if there were more. We started a new collec-
tion, going through the entire Argon2021 database and only storing certificates issued
by ZeroSSL containing 2048-bit RSA keys. As Argon contains over 1,3 billion certifi-
cates, it took us around ten days using 25 CPUs. This resulted in a data set of 716,228
such certificates. We then ran the GCD algorithm once more on this data set and found
355 keys we were able to factor. Once more, most of the domains associated with
the certificates were Vietnamese, and those not under the .vn domain had Vietnamese
sounding names. Other than that, we did not find any connections between the certifi-
cates.

We used an online classification tool developed by Svenda et al. [34] on a subset
of the 355 keys, which classifies which library is most likely to have generated the
RSA keys. This is possible due to bias when choosing the prime numbers for the RSA
key. These results are not necessarily accurate as the classification tool needs large and
updated samples from each library to classify it correctly. That being said, the results
with 100% accuracy were that one of the following libraries generated these keys. This
could indicate which library generated the vulnerable keys, although we only found
ZeroSSL’s keys, suggesting that it might be a local issue.

* Cryptix JCE 2005 03 28
* FlexiProvider

* mbedTLS <=2.8.0

* Nettle <=2.0

* PuTTY

» Sage

* SunRSASign

We reached out to ZeroSSL by email about the broken keys on their certificates.
They quickly responded and wanted to know more about the vulnerability. We ex-
plained our experiment and our findings to them. They needed some of the certificates
involved to verify the finding, and we sent them the factored keys and corresponding
certificates. They started an investigation, and not long after, they responded with an
explanation.

When a customer at ZeroSSL wants to generate a certificate, they have two choices
on how to do so. The customer can either generate their own key and submit it, or
generate a key using ZeroSSL’s browser-based generator. In the case of the broken
RSA keys, all the domains belonged to one single user who ZeroSSL says abused their
systems by utilizing an automated browser. They concluded that this was most likely
the cause of our findings. As the user used ZeroSSL’s browser-based generator, such
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an automated browser could be the reason for the lack of randomness when choosing
the primes.

We can not verify that all the certificates belonged to the same person, but it can
make sense considering that most of the affected domains are Vietnamese or have Viet-
namese sounding names. Although the user used an automated browser to use Ze-
roSSL’s services, in the end, it was ZeroSSL’s browser-based generator that generated
the bad keys. The user probably did not know that using ZeroSSL’s service this way
would lead to insecure key generation. In any case, the probable cause for the factored
keys is still the underlying problem of lacking randomness.

Generally speaking, this is a serious security concern. In dealing with cryptography,
it is crucial that random generators are tested thoroughly on what is being generated by
it, as not implementing this properly could result in severe vulnerabilities.

4.5 Other observations

Here we discuss some peculiar things we found doing the experiment that we wanted
to include in the thesis.

4.5.1 Exponents

During our initial collection, we also stored any encryption exponent e that was not
65537, which by far was the most chosen exponent. The choice of exponent has some
conditions that need to be met and has a relation to the decryption exponent d as de-
scribed in Chapter 3. Beyond this, the choice of e or d and the calculation of the other
is individual. Primarily e = 65537 is used for efficiency reasons, and d is calculated
based on the chosen n. Reasons for altering this could be to speed up the process of de-
cryption or encryption by getting a low e or d. You can see the frequency of the other
exponents we found in Table 4.1.

One of the most used non-standard exponents we found is 3. This should be secure
to use, given that proper padding is used. Since padding is used by all serious libraries
implementing RSA, this should be safe [30] [33]. PKCS#1 gives recommendations for
implementing and using RSA and recommends using a suitable padding scheme such
as Optimal Asymmetric Encryption Scheme (OAEP) [29].

We also note the possibility of some of these exponents leaking factors of A(n)
described by Langkemper [27]. When generating e it needs to be coprime with A (n).
As n is chosen, a naive implementation could be to start at e = 65537 and check if its
coprime with e. If e is not coprime, one could increase e by two and check again. This
would however reveal that e = 65537 is a factor of A(n). For example, when starting
at e = 65537 and increasing by two and by chance ending up at 65541, we may expect
that both 65537 and 65539 are factors of A(n). If this is the case, it leaks information
on the factors of n.

Although not insecure, more careful consideration of how and why these exponents
were chosen in RSA would be interesting.
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Exponent | Frequency
35 39

3 37

65541 15

37 11

4097
7

5
64345
65569
17
34877
35697
38633
41749
52019
53827
56255
56527
57137
63515
63677

~

_L_L_L_L_L_L_L_L_L_L_L_LI\)N(DA

Table 4.1: Frequency of exponents used other than 65537, among 159 million different keys less than
200 had a different exponent. We list only the smallest exponents and the highest frequencies, the largest
exponent we found was 130377.

4.5.2 Multi Domain Certificates

As mentioned in Chapter 2 X.509 has an extension called subject alternative name
(SAN). The extension allows certificates to list multiple domains, emails, IP addresses,
and other identities to be associated with the certificate. As stated in RFC 5080 [9]:

Because the subject alternative name is considered to be definitively bound
to the public key, all parts of the subject alternative name MUST be verified
by the CA

So an user can request a certificate containing several domains, and as long as the
CA verifies that the user controls these domains, the certificate can be issued. Such
certificates that have several domains listed in the SAN extension are called Multi-
domain certificates [12]. We found some of these when working with the certificates
from the CT log.

One criteria for the batch GCD algorithm is that each RSA key is unique. That is,
there should be no duplicates when running the algorithm. This ensures that the factors
are found instead of n being returned as the GCD. We, therefore, needed to find and
remove all the duplicates in the 159 million keys.

From these 159 million keys, there were around 600,000 duplicates. By repeating
this process on the set of duplicates, we found that more than 10.000 keys had more
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than five duplicates. This means that at least the same RSA keys were uploaded to the
CT logs more than five times. However, it is more likely that the exact same certificate
had been uploaded several times.

Investigating these duplicates led to finding certificates using X.509 version 2 and
having the same certificate for many different and unrelated domains. Some of these
certificates had over 45 different domains with no apparent connection. We think it may
be linked to multi-domain certificates, but have no explanation for why X.509 version
2 was being used.

We visited some of the certificates associated domains to check their certificate
currently in use in 2022. Here we found at least one certificate using X.509 version 3
that had 100 domains listed as a SAN extension. This can be seen in Figure 4.1. The
purpose of a multi-domain certificate is to simplify the management of certificates for
users who own multiple domains. As Digicert writes [12]:

These certificates are ideal for securing many names across different do-
mains and subdomains

Extension Authority Key Identifier ( 2.5.29.35)
Critical NO
Key ID 25E218 OE B2 57 9194 2A E5 D4 5D 86 90 83 DE 53 B3 B8 92

Extension Subject Alternative Name ( 2.5.29.17 )
Critical NO

DNS Name ubunifukids.com

DNS Name vdmsapp.com

DNS Name app.thrive.uk.com

DNS Name 11e.n04h.de

DNS Name tamimaj.com

DNS Name staging.fliesenaufmass.de

DNS Name michael-kirchhoff.fastdocs.de

DNS Name www.march2020.date

DNS Name test-sales.viethas.com

DNS Name cortex.tst.synapsecloud.dataauchan.fr

DNS Name abonnement.avisendanmark.dk

DNS Name www.pocu.dk

DNS Name dorianfournier.fr

DNS Name www.abonnement.avisendanmark.dk

DNS Name www.justim.eu

DNS Name sevadental.cflock.in

DNS Name www.freckle.hk

DNS Name www.openstuff.in

DNS Name www.pure-health.in

DNS Name extranet.energies-score.fr

DNS Name water.sensesmart.in

Figure 4.1: Active X.509 Certificate issued by Google Trust Services found on a domain of an older
certificate from our search which had many duplicate keys. This specific certificate had 100 "alternative
subject name" with a wide variety of domains that seem completely unrelated

However, this also raises some questions that have yet to be answered. The ques-
tions we cannot seem to find answers to is, who controls the private key? Does every
domain listed in the SAN field store a copy of the private key? Regardless of the answer
to the latter question, how does the certificate serve as authentication of these domains?
Another question is that of securing several domains, perhaps by a single RSA key.
This should, of course, not be a problem as RSA is considered secure, but at least there
are some risks to be considered. A naive comparison is to passwords, you can choose
a password that will take hundred years to crack, but it is still considered a bad prac-
tice to reuse passwords. Certificates of this type could also be a more valuable target
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for attacks as the "prize" is larger. It is also more impacting should such a certificate
fail as multiple domains are affected. Again as RSA is considered secure, it should not
be an issue but is still something to consider. Secondly, there could be some added risk
to the user who may need to distribute the private key to all domains using the certifi-
cate. This could undoubtedly be achieved securely but what a user chooses to do or not
is hard to control.

These concerns may be minor, but the most significant concern is that of ownership.
Although not specified, the user should be one person or entity, as sharing a key with
another entity or person could undermine security. At best, a key can be shared be-
tween two entities that trust each other and have good intentions, but as with any other
password or other credentials, there is a risk involved when sharing them. At worst,
the entities do not trust each other and may wish to harm each other, and thus have the
ability to do so with the private key.

The certificate we found was issued by Google Trust Services and according to their
subscriber agreement [17]:

Subscriber will: (c) not use a Google-issued Certificate for or on behalf of
any other person, organization, or entity;

And from their certificate policy [16]:

The Certificate Warranties specifically include, but are not limited to, the
following: 1. Right to Use Domain Name or IP Address: That, at the
time of issuance, the CA (i) implemented a procedure for verifying that the
Applicant either had the right to use, or had control of, the Domain Name(s)

. and subjectAltName extension (or, only in the case of Domain Names,
was delegated such right or control by someone who had such right to use
or control);

For this specific CA and their subscriber agreement, it is clear that the user cannot use
the certificate on behalf of someone else. However, it is stated in the certificate policy,
that using the certificate on behalf of someone who has the right to the domain is legal.
This is the core of the issue of ownership.

The ownership issue is a matter between the CA and the user, but this question is
very hard, if not impossible, to answer for a third party. Checking if some domains
are owned or controlled by the same entity is no easy task. This also reduces the
accuracy of the information on the certificate as the subject or user may not be the one
the certificate is issued to. This is also a reason for not sharing a certificate between
entities. The issue is the lack of transparency to third parties, thus removing the option
of anyone finding vulnerabilities or bad practices. As this reduces the transparency and
accuracy of the certificates, this seems to be a strange direction to move towards.

This short investigation left us with more questions than answers and can be a topic
for further study.
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Chapter 5

Conclusion

We wanted to repeat past experiments with collecting RSA keys and checking if any
of them shared factors. So far the similar past experiments has mostly focused on
collecting RSA keys by scanning the internet. The latest experiment was done in 2019
and was the first, to our knowledge, to collect keys from the CT logs, sampling 100
million keys. We only collected certificates from the CT logs and exclusively gathered
2048-bit keys. Our collection of 159,377,664 distinct RSA keys is, as far as we know,
the largest such set used for checking of shared factors.

When running the algorithm the first time, we found eight keys with shared factors
all issued by the same CA named ZeroSSL. This led us to collecting all the RSA keys
issued by the ZeroSSL in the Argon2021 database and running the algorithm once
more. This time we factored 355 unique keys, including the original eight, out of a
set with more than 700,000 keys from ZeroSSL. After getting the results we contacted
ZeroSSL which launched an investigation concluding that all keys were from one user
who abused their browser-based generator by using an automated web browser. We
cannot verify that all the domains belonged to one user, but we think it can make sense
considering that most of the domains were Vietnamese or had Vietnamese sounding
names. Considering that the user was maybe not a "common" user of their software we
believe that ZeroSSL still has a vulnerability, as it is not clear why using an automated
browser should result in weak keys.

Going forward, the continued analysis of the practice of cryptography through the
CT logs still provides results. This thesis and the study from 2019 [25] has analysed
less than 5% of the overall 6 billion certificates uploaded to the CT logs since 2013.
Although there is a substantial difference in the results from the CT logs and from
internet-wide scans.

One important lesson we learned doing this is the importance of storing the data
systematically, as we did not use a database to store the certificates. We only stored
the RSA modulus and the respective index from the Argon2021 database. Since we
only operated on Argon 2021, this is a unique index which allowed us to easily fetch
a particular certificate if needed. This made the process more troublesome than if we
could simply sort and query specific requests.

Working with the CT logs has been fun, but there is definitely room for improvement
on the servers. While understanding that it is an issue of bandwidth and load balancing,
even the most basic task of retrieving entries takes a lot of time. Any sort of search
or filter options would really help to investigate the CT logs, perhaps such features
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would also decrease the overall requests. We sent some "unnecessary" requests while
looking for specific certificates based on the algorithm used, issuer, key size etc. We
also understand that this might not be their goal but either way it would help to be able
to have some basic filter or search options to make the CT logs more accessible for
research purposes.

If possible, the improvement to the batch GCD algorithm will allow larger and more
thorough investigations of the state of cryptography in practice. The algorithm is very
flexible in terms of resources, one could use a small computer with large amount of disk
memory and get a large runtime but still be able to process large inputs. Alternatively,
one needs less disk memory if there is more RAM available, this makes the algorithm
would run faster. Finally, after running such an experiment one could, given more
resources, keep adding new batches which would require less runtime to check. This
way one could eventually, over time, check the entire CT logs and add new batches as
the logs are updated.

The combination of improving or finding a better algorithm, and using more re-
sources will make it possible to check a substantial amount of the active certificates
from the CT logs. This may in turn discover vulnerabilities and make the overall web
PKI more secure. As mentioned in Chapter 4, investigating and auditing the theory
and practice of multi domain certificates may also improve the overall security and
transparency of the web PKI, as we mostly found questions instead of answers when
learning about them.

In the end, RSA is being replaced in the years to come by other public-key algo-
rithms mainly due to RSA not being quantum safe. This means RSA can be broken by
quantum computers, and as they are developed in the future, RSA will therefore not be
secure. In TLS version 1.3 static RSA is removed as a key exchange algorithm, but will
continue to be used for certificates and signatures [31]. So as people start using TLS
1.3 RSA will be less used. This shift could still take years, as people often use older
versions until no longer supported or critical vulnerabilities are found. So RSA and the
batch GCD algorithm will still be relevant for several years to come, and these kinds
of experiments will still provide valuable insight, until the world has phased out RSA
completely and transitioned to only using post quantum cryptography.
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