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Abstract
As 5G-networks are deployed worldwide, mobile edge computing (MEC) has been
developed to help alleviate resource-intensive computations from an application.
Here, IoT devices can offload their computation to an MEC server and receive the
computed result. This offloading scheme can be viewed as an optimization problem,
where the complexity quickly increases when more devices join the system. In this
thesis, we solve the optimization problem and introduce different strategies that
are compared to the optimal solution. The strategies implemented are full local
computing, full offload to an MEC server, random search, optimal solution, Q-
learning, and a deep Q-network (DQN). The main objective for each strategy is to
minimize the total cost of the system, where the cost is a combination of energy
consumption and delay. However, as the number of devices in the system increases,
the results view numerous challenges. This thesis shows that the performance of
random search, Q-learning, and DQN strategies are very close to the optimal solution
for up to 20 devices. However, the results show generally poor performance for the
strategies that can address more than 20 devices. In the end, we further discuss the
performance and convergence of a DQN in MEC.
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Chapter 1

Introduction

1.1 Motivation
In the past decade, the computational capacity of mobile devices has increased
and has become an essential part of our day-to-day life. As mobile technologies
continue to improve, new resource-intensive applications such as augmented reality,
virtual reality, or online gaming can be utilized to a greater effect for business
and entertainment purposes. These applications require a significant amount of
resources from the device. Therefore, it is essential to develop new solutions to
resource-intensive computations to mitigate these limitations.

In the following years, 5G networks will be deployed worldwide and provide
higher connectivity and availability to users. With the expansion of 5G infrastruc-
ture, mobile edge computing (MEC) has been developed to solve resource-intensive
computations and bring computation environments closer to the user. The users
can send their computations to high-performance edge servers and receive the re-
sult of the computation. Although this solution may solve many of the issues with
resource-intensive computations, it does not consider an efficient offloading scheme
between multiple users, edge servers, or base stations.

Historically, mobile devices have been limited to standard communication meth-
ods such as text messaging and calls. With the introduction of smartphones and
other IoT devices, the computational environment has become more dynamic. Here,
neural networks and machine learning algorithms can be utilized as efficient tools
for offloading and adaption to frequent changes in a device for better handling of
the dynamic environment.

Machine learning algorithms that employ neural networks are a relatively new
area of research that has seen significant advancements in the past decade and will
continue increasing as machines become more capable of solving more advanced
problems. However, in terms of finding an improved offloading scheme for MEC, a
machine learning model with good performance that can scale for a higher number of
devices is yet to be developed. The offloading scheme between users and edge servers
has high computational complexity and is commonly viewed as an optimization
problem.
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1.2 Objective
This thesis aims to examine the use of reinforcement learning (RL) techniques,
such as Q-learning and deep reinforcement learning (DRL), to find optimal resource
allocations for offloading computations in MEC. These techniques will be compared
and analyzed to heuristic solutions in the form of full local and full offloading to
the edge server, random search, and a brute force of optimal solutions for different
action vectors and resource allocations. Previous studies in the field of MEC will
also be explained and reviewed.

1.3 Thesis Organization
• Chapter 2: Overview of relevant key concepts from MEC, RL, neural net-

works, and DRL

• Chapter 3: Overview of relevant related work within MEC, specifically RL
and DRL

• Chapter 4: Explanation of methodology, strategies implemented, and model
architecture

• Chapter 5: Detailed information of the results and findings

• Chapter 6: Conclusions regarding results obtained, and suggested future
work

• Chapter 7: Appendices

2



Nomenclature

uniform(S) A number drawn uniformly at random from a set S

DQN Deep Q-network

DRL Deep reinforcement learning

MAE Mean absolute error

MEC Mobile edge computing

MGD Mini-batch gradient descent

MSE Mean squared error

RL Reinforcement learning

SL Supervised learning

TD Temporal difference

[n] {1, 2, . . . , n}, where n is a positive integer

β Size of the agent’s neighborhood

f Allocation vector

α Action vector

Θ Neural network parameters

Θ− Target neural network parameters

η Learning rate for neural networks

γ Discount parameter

E Expectation operator

E Replay buffer

N Set of devices

Nα Set of offloading devices

3



X Sets

X Random variables

∇ Gradient operator

νπ Value function in RL

ψ Maximum number of steps the agent can make

φ Available computational capacity left on server

ζ Number of discrete allocation quantities

b Length of replay buffer

M Size of random mini-batch taken from the replay buffer

X Matrices

x Vectors
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Chapter 2

Background

For a better understanding of the model and architecture described later in the
thesis, the fundamental concepts of MEC, machine learning, and deep learning will
be explained. This chapter aims to provide a general understanding of the concepts
within these areas for a more comprehensive analysis of methods and techniques
used in Chapter 4.

2.1 Introduction to Mobile Edge Computing
This section provides an introduction to MEC and provides the basis of methods
used. Unless otherwise specified, expressions, figures, and examples are taken from
[1].

2.1.1 Mobile Edge Computing

MEC, also referred to as multi-access edge computing, is a recently emerged tech-
nology that provides cloud computing capabilities at the edge of the mobile network,
within the radio access network, and in close proximity to users, as stated in [2].
MEC aims to provide enhanced computing capabilities with low latency for a better
user experience. An MEC system is structured with multiple layers: user layer, edge
layer, and cloud layer as illustrated in Figure 2.1.

User Layer

The user layer consists of several different IoT devices ranging from smartphones
and laptops to vehicles and sensors that need to execute a computation. The com-
putations, which vary for each device, are sent to the edge layer using wireless
communication and separated into different networks.

The first network is the heterogeneous network and consists of devices that re-
quire high data rates. Here, a significant number of small macro base stations are
deployed in populated areas to provide high connectivity and reduce the power con-
sumption for mobile devices. Each base station is equipped with powerful computing
equipment, to which mobile devices can offload their tasks.

The second network is the vehicular network which consists of transportation
units, pedestrians, and roadside units. A roadside unit is a wireless communica-
tion device with computing capabilities that enables communication between trans-
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Figure 2.1: MEC architecture.

portation units, pedestrians, and nearby infrastructures, such as traffic lights or
roadblocks, to improve safety in traffic and hinder violations. The vehicular net-
work allows for smart applications, such as media streaming in cars or parking
identification, to be utilized to a greater effect in traffic and provide a higher quality
of service.

The third and last network is the device-to-device (D2D) network. The device-
to-device network is a peer-to-peer network where IoT devices communicate directly
through a wireless link. This network distributes the computing capabilities through-
out the network where devices can offload tasks to other devices in addition to an
edge server.

Edge Layer

The edge layer consists of several distributed servers with enhanced computing capa-
bilities that aim to solve tasks from the user layer and can be deployed to different
areas such as subway stops, highways, and airports to reduce latency. An edge
server’s main goal is to efficiently solve both time-sensitive and computing-intensive
tasks through an offloading scheme. Therefore, an edge server for the heterogeneous
network needs enhanced communication resources such as bandwidth and transmis-
sion power to efficiently solve tasks. In contrast, an edge server for the vehicular
network needs computing resources in the form of CPU power, while an edge server
for the D2D network needs larger caching resources in terms of memory capacity.

Cloud Layer

In the last layer, the cloud layer, multiple edge servers are connected through the
cloud. The cloud layer can utilize data mining techniques to train large neural net-
works to help edge servers allocate resources more efficiently. Furthermore, the cloud
layer is also able to store higher amounts of network metadata such as network con-
nections, type of computation, and device information that will be too overwhelming
for the edge server. Additionally, with the help of the cloud layer, edge servers will
also be more efficiently managed and secured.
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2.1.2 Offloading Schemes

One of the major challenges in MEC for IoT devices is the decision between local
execution or offloading. There exist multiple different offloading schemes that can
be utilized, with some key differences between them that will be discussed.

Local Execution

The first scheme is full local execution. With this scheme, the device solves the whole
computation locally with the available resources on the device. If the computation
is large, the device can suffer due to limited resources. However, local execution
might be a faster solution if the MEC server is severely occupied or if the delay to
the MEC server is large.

Full Offloading

The second offloading scheme is full offloading to the MEC server. This scheme
offloads the whole computation to the MEC server with enhanced computing capa-
bilities. If there are few devices in the system or the device needs to execute a large
computation, offloading to an MEC server might be a faster solution.

Partial Offloading

The last offloading scheme for a device is partial offloading. Instead of a computation
being offloaded as a whole, it will be separated into multiple segments where one
computationally intensive part will be offloaded, and the other parts will be executed
locally. The challenge for partial offloading is understanding which segments of a
task should be offloaded and which should be executed locally. For simplicity, the
rest of the thesis will concentrate on an offloading scheme where a task is offloaded
or executed locally as a whole.

2.1.3 Performance Metrics

Regardless of the selected offloading scheme, a good offloading scheme is commonly
measured with performance metrics such as task execution delay and energy con-
sumption. This can be described as an optimization problem, which will be further
discussed in Chapter 4. There have been different proposals to minimize both task
execution delay and energy consumption for a system with numerous devices, edge
computing servers, and base stations. Some papers only focus on minimizing one
aspect of the offloading process, while others focus on a trade-off between task ex-
ecution delay and energy consumption. Other performance metrics such as quality
of service, response time, confidentiality, security, and bandwidth have also been
researched. However, these performance metrics are not too common in research on
optimal offloading schemes in MEC.

2.2 Machine Learning
This section provides an introduction to the concepts of machine learning, specifi-
cally RL. Unless otherwise specified, formulas and examples used are taken from [3].
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2.2.1 General Knowledge of Machine Learning

As a sub-domain of artificial intelligence (AI), machine learning uses mathematical
models to assist a computer in learning to solve a task from experience. The machine
learning algorithm can make predictions on new unseen tasks by identifying patterns
and correlations in a dataset, commonly referred to as training data. The objective
of a good machine learning algorithm is to measure the accuracy or reward of the
prediction made. This can be achieved in multiple ways with different learning
techniques. Therefore, the different learning techniques in machine learning are
commonly divided into supervised learning (SL), unsupervised learning (UL), and
RL.

Supervised Learning

In SL, the machine learning algorithm interacts with a labeled dataset. The labeled
dataset is a set of desired input and output pairs, where the model aims to find the
correct output from the input. When the SL model makes a prediction, the accuracy
of that prediction is measured with a loss function. For each training iteration, the
model aims to minimize the loss. Common subsections of SL include regression
problems, classification problems, decision trees, and neural networks.

Unsupervised Learning

In UL, the dataset is unlabeled and unstructured. Here, the algorithm aims to
find structure and patterns within the dataset to group data together, referred to
as a clustering problem. Furthermore, the algorithm may as well find associations
between the data, often referred to as an association problem. Common methods
of UL include hidden Markov models and game-AI, in addition to clustering and
association problems.

2.2.2 Reinforcement Learning

In RL, an agent interacts with the environment using a control-theoretic trial and
error approach to obtain rewards for favorable actions and punishments for incorrect
actions. The agent stores rewards and actions performed in a table, Qtable, to learn
from previous interactions. For a more detailed overview, when the agent observes
the current state, st, at time step t from the environment, the agent will perform an
action, at, to transition to the next state, st+1, and receive a reward, rt+1, that is
calculated from the reward function, as illustrated in Figure 2.2. For each episode,
consisting of multiple time steps t, the agent aims to maximize the cumulative reward
based on a policy π. In RL, policy, reward function, value function, and model are
the essential components of an RL system.

Policy

The agent’s policy follows a probability distribution, π(at|st) = Pr(At = at|St = st),
where there is a direct mapping between the current state of the agent, st, and the
probabilities of selecting an action, at, from that state. The policy determines the
behavior of the agent and follows a stochastic distribution over at ∈ A(st) for every
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Figure 2.2: RL interaction model.

st ∈ S. A policy method can be implemented as a function, lookup table, or a
computational search algorithm.

Reward Function

The reward function is crafted with the goal of providing information about the
behavior of the agent, specifically how well it can learn. A properly constructed
reward function accelerates the learning process by simplifying the distinction be-
tween good and wrong actions. When the agent interacts with the environment,
the reward function provides feedback to the user with the rewards of the actions
the agent performs. As previously mentioned, the agent’s goal is to maximize the
overall reward. However, for the agent to fulfill this goal, it has to balance between
exploration and exploitation. If the agent performs an action that leads to a low
reward in the next state, it might change the policy and disregard actions that yield
higher rewards in future states.

Value Function

The value function,
νπ(s) = Eπ[Gt|St = s], ∀s ∈ S, (2.1)

estimates the long-term reward the agent can accumulate given the current state,
st, and the policy, π, where Eπ is defined as the expected value given the agent’s
policy. The random variable Gt is the expected return the agent can achieve for a
given time step and is calculated as

Gt =
∞∑
i=0

γiRt+i+1 = Rt+1 + γGt+1, (2.2)

where γ is defined as the discount parameter and determines how much future values
should be considered, commonly set to be 0 ≤ γ ≤ 1. By considering future states,
the value function prevents the agent from failing to explore states that potentially
yield higher rewards.

Model

The model is an environment that the agent interacts with and consists of states
and actions. The environment can be designed in many unique ways. For example,
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a common way of implementing an RL model is using a grid with positions as states
and the action being transitioning between positions, or the environment can be a
trading platform where a state is the current stock price, and action is whether to
sell, buy, or hold.

2.2.3 Optimality in Reinforcement Learning

We begin by defining the action-value function as

Qπ(s, a) = Eπ[Gt|St = s,At = a]. (2.3)

Qπ(s, a) is a value indicating how good an action is from the current state while
following a given policy. First define an optimal policy as π∗ = argmaxπQπ(s, a).
For a policy, π, to be classified as an optimal policy, there has to exist at least one
policy that is equal to or better than every other policy. The optimal value function
following an optimal policy can be defined according to

ν∗(s) = max
π

νπ(s), s ∈ S. (2.4)

The optimal value function ensures that the agent can accumulate the optimal long-
term reward. After this, we define the optimal action-value function according to

Q∗(s, a) = max
π

Qπ(s, a) (2.5)

where the agent follows an optimal policy. It can be shown that

ν∗(s) = max
a
Q∗(s, a), (2.6)

which leads to

Q∗(s, a) = Eπ∗ [Gt|St = s,At = a] (2.7)
= Eπ∗ [Rt+1 + γν∗(St+1)|St = s,At = a] (2.8)
= Eπ∗ [Rt+1 + γmax

a′
Q∗(St+1, a

′)|St = s,At = a]. (2.9)

Furthermore, even though there might exist several optimal policies, the Q∗ values
are unique as stated in [4].

The Q-learning algorithm, defined by

Q(st, at)← Q(st, at) + η[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)], (2.10)

performs temporal difference (TD) updates to state-action pairs with respect to the
step-size parameter η, where 0 ≤ η ≤ 1. Here, TD updates means that Q(st, at)
is iteratively updated as the agent traverses the states. Furthermore, Q-learning is
off-policy in the sense that Q directly approximates Q∗ regardless of the policy the
agent follows. In Q-learning, the policy only depends on which state-action pair can
be traversed as long as the agent can repeatedly update Q(st, at).

2.3 Deep Learning
This chapter provides an introduction to the concepts of deep learning for a more
thorough understanding of the neural network used in Section 4.4.6. Unless other-
wise specified, formulas and examples are taken from [5].
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2.3.1 Feedforward Neural Network

A feedforward neural network, often referred to as a multi-layer perceptron, is a
network where each neuron in the previous layer is directly connected to a neuron
in the next layer. The goal of a feedforward neural network, denoted as

y = f(x;Θ), (2.11)

is to approximate a function, f ∗, by mapping input, x, to the category, y, and learn
the corresponding parameters of the approximation, denoted as Θ.

As the input information, x, is passed forward through the network, hence the
name feedforward, the series of functions,

f(x) = f 3(f 2(f 1(x))), (2.12)

approximate the input from the previous function where each function is a layer
in the network. If a network is composed of two layers or more, referred to as the
depth of the network, it is called a deep neural network, hence the terminology deep
learning. The last layer of the network, the output layer, outputs the approximation
of f ∗(x), based on the input x, to be as close to Equation (2.12) as possible. With
the purpose of making the best approximation, the network evaluates each hidden
layer for each training point by learning the best method to approximate f ∗(x).

2.3.2 Linear Neural Network

A linear neural network is a feedforward neural network, denoted as

ŷ = Θx+ b, (2.13)

where each layer in the network is a linear function that takes a vector, x ∈ Rn, as
input and multiplies all the weights, Θ ∈ Rm×n, together with a bias denoted as b.
The set of weights determines how much value each prediction has in this network,
where 0 ≤ θij ≤ 1. If the value of the weight, θij, is increased, the network will favor
the corresponding feature, xi, when predicting ŷ. On the other hand, if θij = 0 the
corresponding feature is not considered. A linear function is derived from the linear
regression formula, which does not include a bias.

By adding a bias to each layer, referred to as an affine transformation, the
mapping from features to predictions is converted from a linear function to an affine
function and does not have to pass through the origin of a graph. The bias can be
considered as an additional set of weights where there is a bias toward b if there is
no input to the model. In the end, even though it is an affine function, it is still
commonly referred to as a linear function.

2.3.3 Activation Function

An activation function is a function used to compute values for each hidden layer in
the neural network. There exist multiple different activation functions with a variety
of different use cases. The most frequently applied is the rectified linear activation
function, denoted as

g(z) = max{0, z}, (2.14)
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and commonly referred to as ReLU. With this activation function, each neuron’s
output is reduced to zero for negative outputs by selecting the maximum of the
input and zero. This selection solves the vanishing gradient problem where learning
becomes unstable due to the neural network not being able to minimize the loss
function and update the parameters correctly. However, as a result of selecting the
maximum of zero and the input, negative outputs of the previous layer will result
in the dead neurons problem, where the value of some neurons will remain zero and
never be updated.

One solution addressing this issue is leaky rectified linear unit, denoted as

g(z) = max{0, z}+ κmin{0, z}, (2.15)

and referred to as leaky ReLU. This activation function controls the angle of negative
values with a small slope compared to a flat slope in ReLU and is used in problems
suffering from sparse gradients. The parameter for the negative slope, referred to as
κ, is a hyper-parameter set before training initiates, where the default value is set
to 0.01.

2.3.4 Loss Functions

In neural networks, when the network is fed with input and generates predictions on
those inputs, it has to determine how accurate the generated predictions are. The
loss function compares the generated predictions to the expected output values.
There exist multiple different loss functions, with the most common being mean
absolute error (MAE) and mean squared error (MSE). The MAE loss function,
denoted as

L(y,p) =
1

M

M∑
l=1

|pl − yl|, (2.16)

is commonly used for regression type problems where the function calculates the
absolute difference between the target and the generated prediction, where M is
the number of samples from a dataset, pl ≜ pl({θij};D) is the prediction where i, j
range over the number of neurons, D contains samples of the dataset, and yl is the
target.

The MSE loss function, denoted as

L(y,p) =
1

M

M∑
l=1

(pl − yl)2, (2.17)

calculates the squared Euclidean distance between the value of the target and the
value of the prediction. Similar to the MAE loss function, the MSE loss function is
used for regression problems. However, it is susceptible to outliers where predictions
from the neural network are not centered around a mean value.

To prevent outliers from having a significant impact on the loss function, the
Huber loss, invented by Peter J. Huber [6], can be adopted. The Huber loss function,
denoted as

L(y,p) =
1

M

M∑
l=1

{
1
2
(pl − yl)2 if |pl − yl| < δ,

δ(|pl − yl | − δ
2
) otherwise,

(2.18)
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uses a combination of MSE and MAE to calculate the loss between the target and
the generated predictions. By utilizing a hyper-parameter, δ, the Huber loss func-
tion can apply the strengths of both MAE and MSE where both loss functions are
differentiable. This ensures that the loss is not susceptible to outliers and provides
further smoothness.

2.3.5 Backpropagation

After calculating the loss of the neural network’s prediction using a loss function
described in the previous section, the neural network now aims to minimize the
loss function by updating its weights and biases using, e.g., gradient descent (as
described next in Section 2.3.6). Hence, the partial derivatives of the loss function
with respect to the weights of the network need to be calculated. This is done
using the chain rule and iterating through the network backward, hence the name
backpropagation. Backpropagation was first presented by Rumelhart et al. in [7]
and works as follows.

The network’s output for each neuron, ok, is calculated according to

ok = g(wk) = g

(∑
k

θhkoh

)
, (2.19)

where k is the index for the neurons in the preceding layer,

wk ≜
∑
h

θhkoh (2.20)

is the weighted sum of the outputs from all the neurons in the preceding layer, θhk is
the weight between the h-th neuron of the previous layer and the k-th neuron of the
present layer, and g(·) is the activation function, e.g., the ReLU activation function.

To identify the change, we use the chain rule and calculate the change in a
particular weight according to

∂L

∂θik
=
∂L

∂ok

∂ok
∂θik

=
∂L

∂ok

∂ok
∂wk

∂wk

∂θik
. (2.21)

From Equation (2.19), we can calculate the term ∂ok
∂wk

as

∂ok
∂wk

=
∂g(wk)

∂wk

, (2.22)

and
∂wk

∂θik
=

∂

∂θik

∑
h

θhkoh = oi (2.23)

according to (2.20). Now, we introduce a useful notation,

δk ≜ −
∂L

∂wk

= − ∂L
∂ok

∂ok
∂wk

. (2.24)

Substituting Equation (2.23) and Equation (2.25) in Equation (2.21), we obtain

∂L

∂θik
= −δkoi, (2.25)
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which suggests that the weight θik can be updated according to θik ← θik + ∆θik
with

∆θik = ηδkoi, (2.26)

where η is the learning rate set to 0 ≤ η ≤ 1.
To compute δk, we consider two cases. First, if the k-th neuron is an output

neuron in the last layer, then we have ok = pk, and from Equation (2.24) δk becomes

δk = −
∂L

∂ok

∂ok
∂wk

= − ∂L
∂pk

∂g(wk)

∂wk

. (2.27)

Otherwise, if the k-th neuron is not an output neuron in the last layer, the chain rule
is utilized to iterate backward through each layer in the network using the recursive
formula

δk = −
∂L

∂ok

∂ok
∂wk

= −
(∑

j

θkjδj

)
∂g(wk)

∂wk

, (2.28)

where j is the index for the neurons in the next layer associated with the k-th neuron
of the current layer.

2.3.6 Gradient Descent

Gradient descent is a form of gradient-based learning in which the neural network
learns by stepping toward a local minimum. There exist several different extensions
of the gradient descent algorithm, with the most common being stochastic gradient
descent (SGD), batch gradient descent (BGD), and mini-batch gradient descent
(MGD). Every gradient-based learning algorithm aims to minimize the loss function
by first doing backpropagation and finding the slope, and then stepping toward the
minimum. For example, for a given linear neural network, y = f(x;Θ), a gradient
descent algorithm aims to discover the quickest direction f is decreasing. This can
be achieved by taking the negative of each gradient in the network and reducing f
in the direction of the negative gradient according to

xt+1 = xt − η∇xf(x), η > 0, (2.29)

and is performed at every training step. Here, η is the learning parameter and is
used to specify the step size, t is a given training step, and ∇xf(x) is the gradient
of all the partial derivatives of f(x) comprised as a vector. Even though all the
different versions of gradient descent aim to find the local minimum, there are some
key differences between the gradient descent extensions.

BGD utilizes the whole dataset for gradient descent, making it computationally
expensive for large datasets. On the other hand, SGD is computationally efficient as
it only makes use of a single sample from the dataset to perform gradient descent.
However, due to it being a single sample only, it will often lead to a poor estimation of
the gradient. A good combination between BGD and SGD is MGD. MGD performs
gradient descent on a mini-batch of samples from the dataset. For each training step,
a mini-batch of samples of size M is uniformly selected from the training set. The
sample size is a hyper-parameter set before training initiates and held unchangeable
throughout the training process. Note that we use M as the size of a mini-batch for
the rest of the thesis.
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By utilizing the MGD algorithm, the gradient can be updated according to

Gt = ∇ΘL(y,p), (2.30)

where L is some loss function where the prediction p depends on the sampled mini-
batch and the weights Θ.

After the gradient update, it will step toward a minimum according to

Θt+1 ← Θt − ϵGt. (2.31)

MGD is often preferred over BGD and SGD due to higher performance and
accurate estimation of gradients. The algorithm may fit a larger dataset containing
millions of examples for a batch size of a few hundred examples. While MGD has
many good properties, it is essential that sampling is uniformly random. If samples
are highly correlated, it may cause the neural network to generalize poorly and
overfit. Furthermore, for the algorithm to be effective, it must be able to compute
the gradients with an unbiased estimate from the sample. Additionally, for smaller
datasets contrary to larger datasets, two succeeding mini-batch samples must also
be independent of each other for two succeeding gradient estimates to be distinct.

2.3.7 Optimization

As previously mentioned, a machine learning algorithm aims to minimize the loss
function by calculating the derivative of the gradients and stepping toward a local
minimum. The minimization of the loss function for neural networks is considered
to be a non-convex optimization problem with multiple local minimum points. The
network cannot determine if a local minimum is a global minimum, making opti-
mization difficult compared to convex optimization with a single global minimum.
Another issue with non-convex optimization is that the network might become stuck
at a saddle point when performing gradient descent. Since gradient descent performs
small local steps toward a minimum, it might become stuck at a local minimum point
surrounded by steep cliffs. Furthermore, since there is a limited correlation between
the local and global structure of the network, finding a global minimum is deemed
to be complicated.

Even though optimization in neural networks is considered incredibly challeng-
ing, some methods exist to increase learning acceleration. One such method is the
momentum algorithm. This algorithm introduces an additional parameter, µ, to
adjust the parameters through direction and speed. The main goal of momentum is
to solve poor conditioning and variance in the gradient. By setting momentum to be
the exponential decaying average of the negative gradient in combination with the
step size, η, the algorithm can determine the speed at which the previous gradients
decay according to

Vt ← µVt − η∇ΘL(y,p). (2.32)

After calculating the momentum, the parameter update can be calculated ac-
cording to

Θt+1 ← Θt + Vt. (2.33)

The step size, η, has a high correlation to the µ where a higher η than µ causes an
additional number of the previous gradients to influence the current direction.
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After momentum was introduced to optimize neural networks, several optimiza-
tion algorithms have been developed to include momentum. One popular optimiza-
tion algorithm often utilized for non-convex optimization with momentum is the
root mean squared propagation (RMSProp) algorithm. The RMSProp algorithm
utilizes an exponentially decaying average similar to momentum. However, instead
of determining the speed, the algorithm diminishes the previous extreme gradients
for quick convergence by taking the mean squared of the gradients moving average,
first by calculating the accumulated squared gradient element-wise as

Mt = Gt ⊙Gt, (2.34)

and then the parameters according to

∆Θt ← −
µ√

δ +Mt

⊙Gt, (2.35)

with Gt being the gradient, δ being a very small number for stable division, and
⊙ meaning that 1√

δ+Mt
is applied to Gt element-wise. Note that in this chapter

division, square, and multiplication with matrices is done element-wise. Instead of
a single fixed learning rate for weight updates, RMSProp will dynamically update
the weights by the magnitude of the moving average according to

Θt+1 ← Θt +∆Θt. (2.36)

Another common optimization algorithm for neural networks is the adaptive
moments estimation (Adam) optimizer introduced by Kingma and Ba in [8]. This
stochastic optimization algorithm is derived from RMSProp and momentum. How-
ever, there are some key implementation differences. Adam utilizes momentum for
direct approximation of the gradient compared to the mean square in RMSProp.
Furthermore, Adam introduces bias calculations for the first and second-order mo-
ments, where the first moment is referred to as the mean and the second referred to
as the uncentered variance. The bias for the first moment is calculated according to

Bt+1 ← p1Bt + (1− p1)Gt, (2.37)

while the second moment is calculated according to

Mt+1 ← p2Mt + (1− p2)Gt ⊙Gt. (2.38)

The correct bias approximation for the first moment can be calculated according
to

B̂t ←
Bt

1− pt1
, (2.39)

with the second moment according to

M̂t ←
Mt

1− pt2
. (2.40)

After the bias approximations are calculated, the weight change is calculated
according to Equation (2.36) with

∆Θt = −η
B̂t√
M̂t + δ

. (2.41)

By introducing bias approximations, Adam is considered a powerful tool for different
hyper-parameters, where p1 and p2 are universally set to be between 0.9 and 0.999.
Both η and µ are commonly set to be around 0.001.
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Figure 2.3: A DQN-model.

2.4 Deep Reinforcement Learning
This section provides an introduction to the concepts of DRL for a more thorough
understanding of the strategy used in Section 4.4.6. Unless otherwise specified,
formulas and examples are taken from [9] and [10].

2.4.1 Approximation of Q(s, a)

A deep Q-network (DQN) was first introduced by Mnih et al. in [9] to train an
agent to play Atari games. While Q(s, a) is updated iteratively in RL through
TD updates, Mnih et al. proposed to use a neural network to approximate the
action-value function Q(s, a;Θ) ≈ Q∗(s, a). Here, Θ is the network’s weights and is
referred to as a Q-network. A DQN is trained by minimizing

ESt,At

[
(yt −Q(St,At;Θ))2

]
(2.42)

for each training round t. Here,

yt = ERt+1,St+1 [Rt+1 + γmax
a
Q(St+1, a;Θ)|St = st,At = at] (2.43)

is the target vector, while following an ϵ-greedy strategy, described as follows. The
value of ϵ will decrease toward a greedy action selection at an episodic level, and is
a hyper-parameter set before training initiates. The agent will begin by selecting a
random action with probability ϵ before selecting a greedy action with probability
1 − ϵ as it continues to explore. By taking advantage of a neural network, DQN
can minimize the loss function by utilizing MGD for each step the agent performs.
The agent’s state is transmitted through the network as input for training before
the action with the highest Q-value is selected according to

at = argmax
a

Q(st, a;Θ). (2.44)
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This is portrayed in Figure 2.3 where the agent’s state is sent through the network to
approximate the action that yields the highest Q-value. The outputs of the neurons
of the hidden layers, denoted by o(j)i , and m being the number of neurons for each
hidden layer, aim to approximate the action yielding the highest Q(st, a).

2.4.2 Experience Replay

Different from classical RL, where the agent’s experiences are often stored in a
Qtable, a technique called experience replay is utilized in DQN. Experience replay
is a replay buffer with a fixed length b, E =

{
et(1) , et(2) , . . . , et(b)

}
, that stores the

agent’s interactions with the environment. An experience at a single time step t
is denoted as et = (st, at, rt+1, st+1). Here, we store the agent’s current state, st,
the agent’s action, at, the reward, rt+1, and the next state, st+1. During training,
we sample a random mini-batch from the buffer to update the Q-values for greater
data efficiency and to reduce the variance of updates. Random mini-batch sampling
is preferred over iterative sampling due to a high correlation between states that
may lead to inefficient learning. Furthermore, since each experience et will be used
for numerous weight updates in the neural network, the network may encourage
certain actions over others that may result in poor convergence. If this occurs, the
agent will be trapped in a bad local minimum and believe it has found an optimal
solution. In the end, for environments with state spaces exceeding the size of the
replay buffer, the agent overrides the existing experiences in the replay buffer with
new experiences.

2.4.3 Stable Training

In [10], Mnih et al. introduced a target network to DQN for more stable convergence.
The target network, referred to as Q̂ with weights Θ−, is another instance of the
already existing neural network, Q, used to produce the target according to

ŷt = ERt+1,St+1 [Rt+1 + γmax
a
Q̂(St+1, a;Θ

−)|St = st,At = at]. (2.45)

The network duplicates the weights of the Q-network to the target network every
C updates in order to produce the target ŷt. Here, the parameter C is a hyper-
parameter set before training initiates. By utilizing a target network, the algorithm
will become more stable whenever an update occurs in Q(st, a). It may also increase
Q(st+1, a) for every action. Furthermore, as a result of an increase in Q(st+1, a), the
target will also improve, leading to more consistent convergence. In the end, the
update parameter, C, has to be carefully selected through hyper-parameter testing.
If the network updates too often, parameters duplicated from the Q-network to
the target network, the agent may diverge to a worse policy by following a newly
updated target ŷt despite the fact that the previous policy might have yielded better
results.

The last modification proposed in Mnih et al. was a clipping of

rt+1 + γmax
a
Q̂(st+1, a;Θ

−)−Q(st, at;Θ) (2.46)

to be in the range of (−1, 1) for given Rt+1 = rt+1, St+1 = st+1, St = st, and
At = at. Here, clipping forces the network not to consider large errors that may
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cause divergence, resulting in further improvement of the stability of the algorithm.
For values produced by the loss function, the derivative of the absolute values will
be −1 if the produced value is negative and 1 for positive values.

2.5 Lagrange Multipliers
This section provides an introduction to Lagrange multipliers for a more thorough
understanding of the strategy used in Section 4.4.4 to solve the optimization prob-
lem. Unless otherwise specified, formulas and examples are taken from [11].

2.5.1 Introduction to Lagrange Multipliers

Lagrange multipliers are a mathematical optimization method on a function with
m variables to find the minimum or maximum with k constraints. For example, for
a given function with multiple variables, f(x), where x = (x1, x2, . . . , xm), and the
constraints c1(x), c2(x), . . . , ck(x) where cj(x) = 0, j = 1, 2 . . . , k, we can define the
Lagrangian function as

L(x, λ1, . . . , λk) = f(x) +
k∑

j=1

λjcj(x). (2.47)

We can calculate the partial derivatives as

∂L
∂xi

= 0, i = 1, 2 . . . ,m (2.48)

and
∂L
∂λj

= cj(x) = 0, j = 1, 2 . . . , k. (2.49)

Lagrange multipliers are commonly used to find the minimum or maximum inside
of a region, where the region is defined by the constraints.
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Chapter 3

Related Work

This chapter aims to provide a better overview of related work in the field of MEC,
specifically the use of RL, DRL, and different variants of DRL techniques. Each
paper will be described in detail with the proposed algorithm, simulation methods,
and results.

3.1 Reinforcement Learning
In [12], Wang et al. propose to utilize a Q-learning-based mobility management
scheme (QPI) to train an agent to find the optimal mobility management strategy
through trial and error. The paper’s objective is to train an agent to find the best
decisions in an environment with numerous obstacles. The users in the system are
first connected to the base station with the highest received signal strength (RSS).
After this, the users move between different base stations using an ϵ-greedy policy
to find the base station with the lowest task delay. Every time a user decides to
switch base stations, the Q-value must be calculated and updated. For simulation,
Wang et al. compare the performance of the QPI algorithm to local computation,
computation at a random base station, and at the base station with the highest
RSS. The proposed QPI algorithm can efficiently solve computation-intensive tasks
with a lower delay than the other strategies. In the end, through Q-learning, the
users can improve their decision-making in challenging environments.

In [13], Hao et al. implemented a cognitive learning-based computation offloading
(CLCO) algorithm to find the optimal policy of offloading tasks in a multi-edge and
multi-user environment. The CLCO algorithm calculates pre-computation offloading
for each task in advance if the mobile device is in an idle state. After this, the CLCO
algorithm is utilized to optimize the offloading process when a device is not in an
idle state. For simulation, Hao et al. consider 5 edge servers with 300 mobile devices
attached. The results show that the CLCO algorithm has better performance for
task duration and larger data sizes than local and edge computation. In the end,
the algorithm is also capable of solving more extensive offloading computations more
rapidly compared to random and uniform offloading.
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3.2 Deep Reinforcement Learning
In [14], Zhang et al. utilize a DQN to find optimal offloading schemes for vehicles
in the heterogeneous vehicular network with multiple edge servers. The network is
trained on real-life traffic data with 1.4 billion GPS traces for 14000 taxis over a
3 week period. Furthermore, three heavily trafficked streets in China were chosen
based on traffic information from Google maps. For performance evaluation of
the DQN, other strategies such as the best transmission path, best MEC server,
greedy algorithm, and a game-theoretic approach are utilized. In the end, the DQN
performed better as an offloading utility for rush hour traffic and traffic density
compared to the other utilized strategies.

In [15], Huang et al. implemented a joint task offloading and bandwidth alloca-
tion (JTOBA) algorithm as a DQN to find a good offloading scheme for multiple
users. The JTOBA algorithm is compared to other strategies such as local only,
edge only, greedy, and the MUMTO algorithm, which is a multi-user multi-edge
algorithm proposed in [16]. For simulation, Huang et al. keep the total number of
users in the system fixed at 5 with 4 tasks per user. The total cost of each strategy
is simulated with an increased task size. The greedy strategy has the lowest cost
compared to JTOBA, MUMTO, edge, and local. However, the difference between
greedy and JTOBA is minimal compared to the other strategies. In the end, Huang
et al. compare the total cost performance of the JTOBA algorithm with respect
to different batch sizes, learning rates, and increased task sizes. The algorithm’s
performance is overall improved with a larger batch size, lower learning rate, and a
smaller task size.

In [17], Chen et al. utilize a DQN to find an optimal offloading scheme in a
multi-edge system. The different strategies implemented for comparison are local,
edge, and greedy, where the greedy strategy selects the minimum cost between local
and edge computation. For simulation, the number of base stations in the system
is set to 6. First, the average cost of the proposed DQN with different numbers
of layers and neurons is presented. Here, the average cost stops increasing after 4
layers and 512 neurons. After this, the total cost of all the strategies is presented
with energy unit arrival rates of 0.3 and 0.5, where the proposed DQN yielded a
lower total cost than the other strategies. Furthermore, the proposed DQN also
had fewer task drops between the different base stations with an increased energy
unit arrival rate, in addition to fewer handovers of tasks between the different base
stations for an increased energy unit arrival rate.

In [18], Li et al. utilize a DQN for task offloading via unmanned aerial vehicle
(UAV) based MEC. In a UAV-based system, the UAV acts as an edge server in close
proximity to users for reduced latency, where each user in the system offloads via
the UAV. However, the UAV can only serve one user at a time if the location of the
UAV is at a given access point due to limited computational capacity and energy.
For simulation, the number of users is set to 15 with 25 fixed access points for
communication between a user and the UAV. Furthermore, each user is randomly
scattered within these access points, while the height of the UAV is 100 meters.
The only utilized strategies in this paper are the proposed DQN and Q-learning.
For the results, both strategies are tested with 3 different battery levels for the
UAV. The DQN with the highest UAV battery level yielded the best possible return
over 800 training episodes, compared to the DQN with the second and third highest
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battery levels. The Q-learning strategy with the highest battery level had a worse
average return compared to the DQN with the lowest battery level. In contrast, the
second and third highest battery levels for Q-learning performed even worse. The
last simulation, which shows the relation between throughput and the number of
training episodes for different battery levels, shows that a higher battery level for
the UAV yields a higher throughput for each user in the network.

3.3 Variants of Deep Reinforcement Learning
In this section, other variants of DQN for MEC will be explained together with their
proposed algorithm and results.

In [19], Lu et al. implement the multi-agent deep deterministic policy gradient
(MADDPG) algorithm in combination with the soft actor-critic (SAC) algorithm
to find the best offloading scheme for a continuous action space. The MADDPG
algorithm is an extension of the DDPG algorithm that can train multiple agents si-
multaneously. In contrast, the SAC algorithm is an improved actor-critic algorithm
for maximized entropy RL. The paper’s objective is to prove that the MADDPG
algorithm, in combination with the SAC algorithm, has good convergence and is
capable of discovering an offloading policy for multiple devices in a continuous ac-
tion space. The MADDPG+SAC is compared to normal MDDPG, SAC, DDPG,
edge, and mobile strategies. For simulation, Lu et al. select information about edge
servers located in Melbourne from the EUA dataset. The proposed MADDPG+SAC
algorithm yields a higher average reward for 1000 training episodes compared to
MADDPG, DDPG, and SAC. For the next set of results with up to 1000 mobile de-
vices, the edge strategy yielded the best energy consumption while MADDPG+SAC
had the second-lowest. For total cost, the mobile strategy yielded the lowest cost,
with DDPG giving the second-lowest. Overall, MADDPG+SAC yielded the best
results for latency and task drop rate for up to 1000 devices but had poor overall
performance for total cost and energy compared to the other strategies.

In [20], He et al. utilize a double-dueling-deep Q-network for improved network-
ing, caching, and computing in the vehicular network that is formulated as a joint
optimization problem. The proposed algorithm is the only strategy implemented
in the paper other than the existing static scheme. However, He et al. have im-
plemented different versions of the algorithm. One without edge caching, another
without MEC offloading, and one without virtualization. For simulation, 5 base
stations with an MEC server connected and 1 mobile virtual private network. Both
the base stations and vehicles are randomly scattered in close proximity to each
other. The first result shows the convergence of the total utilities with respect to
the number of training episodes. Here, the proposed algorithm has significantly
higher total utility than the other versions, where the algorithm without virtualiza-
tion yields the worst results. The second result, which shows the total utility with
an increased content size, shows that the proposed algorithm is better equipped to
handle increased content size compared to the other versions. For the remaining
results, which describe the total utility with an increased charging price for access-
ing the base stations, increased charging price for MEC offloading, and increased
charging price for accessing the cache server, the proposed algorithm yielded the
highest total utility for every result. On the contrary, the existing static scheme
yielded the worst overall results.
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Chapter 4

Methodology and Model
Architecture

This chapter presents the strategies used in this thesis. First, the problem formu-
lation will be introduced along with the computation model. Each strategy will
be described in detail with model design and training algorithm implemented. Un-
less otherwise specified, formulas and expressions are taken from [21] and [22]. In
Chapter 5, the results and findings of each strategy will be presented and further
discussed.

4.1 Problem Formulation
We will begin with the assumption that there is a group of devices, denoted as

N =
{
1, 2, 3, . . . , N

}
, (4.1)

which have some resource-intensive tasks they seek to complete either locally or
through offloading to an MEC server with limited resources. Furthermore, we con-
sider that there exists a base station with an MEC server connected that the devices
interact with through wireless communication, as illustrated in Figure 4.1. Addi-
tionally, if several devices offload simultaneously, the bandwidth, denoted as W , will
be shared equally.

The task of each device is denoted as

Ri = (Bi, Di), i ∈ N . (4.2)

Parameter Bi is the size of the computation (in kilobytes) the device wants to solve.
The other parameter, Di, is the total number of CPU cycles required to complete the
task. BothDi andBi are positively related, whereDi remains unchanged throughout
the computation process. In the end, the task parameters are scheduled through
task profiles from an application and can vary between different applications.

In our system, we assume that each device has a task it wants to solve through
local computation or offloading to the MEC server. We denote the choice the device
i has made as αi = 0 for local computation and αi = 1 for offloading. For multiple
devices in the system, we define the action vector for the devices offloading decision
as α = [α1, α2, . . . , αN ]. Furthermore, for the sake of simplicity, we assume that the
task has to be solved as a whole and cannot be divided into multiple segments.
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Figure 4.1: MEC network model.

4.2 Computation Model
This section describes the formulas used to calculate energy, delay, and cost used in
the different strategies.

4.2.1 Local Computing Model

The local computing model is used when a device decides to execute a task locally.
The local execution delay, denoted as

T l
i =

Di

f l
i

, (4.3)

is composed of the total number of CPU cycles, Di, and the computational capacity
of the CPU denoted as f l

i . Essentially, T l
i determines how long it will take the device

to finish Ri, which can differ between devices based on the computing power of the
local CPU.

The energy used to finish Ri is calculated according to

El
i = ziDi. (4.4)

The formula for energy consumption is composed of the energy consumption per
CPU cycle, denoted as zi, and the total number of CPU cycles needed. For simplicity,
the energy consumption per CPU cycle is set to zi = 10−27(f l

i)
2 from [23].

The total cost of local computing can be calculated according to

C l
i = It

iT
l
i + Ie

iE
l
i, (4.5)
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and is derived from Equation (4.3) and Equation (4.4). Here, It
i and Ie

i stand for the
weights of time and energy, and must fulfil 0 ≤ It

i ≤ 1 and 0 ≤ Ie
i ≤ 1 in addition

to Ie
i + It

i = 1. Furthermore, as the weights may be different for each task, let us
assume that the weights remain unchanged throughout the computation process.

4.2.2 Offloading Model

The offloading computation model is used when a device chooses to offload a task
through wireless communication with the MEC server. First, the upload rate for
the devices is calculated according to

ri =
W

K
log

(
1 +

Pihi
W
K
N0

)
. (4.6)

The first parameter is the bandwidth, W, shared between all the K devices in the
system that choose to offload, Pi is the transmission power, N0 is the variance of
complex white Gaussian channel noise, and hi is the channel gain for the wireless
channel calculated as 1

d2i
where di is the distance from the device to the base station.

After the upload rate is calculated, each device will begin to upload input pa-
rameters to the base station before the computation task is transmitted to the MEC
server. The transmission delay can be computed according to

T o
i,t =

Bi

ri
. (4.7)

T o
i,t measures the time it will take to upload the computation task through wireless

communication with the MEC server.
After calculating the delay from the device to the server, we can calculate the

processing delay of the MEC server according to

T o
i,p =

Di

fi
. (4.8)

Here, T o
i,p is the time the MEC server uses to process and complete the task sent by

the device, where fi is a resource allocation from the MEC server to complete the
task on the offloading device’s behalf.

When the server has finished processing the computation, the delay of transmit-
ting the result of the computation from the server to the device can be calculated
according to

T o
i,b =

Bb

rb
. (4.9)

The download delay is calculated as the size of the processed computation, Bb, where
rb is the download rate from the server to the device. As a result of offloading, the
data size of the processed computation will be significantly lower compared to the
size of the computation task transmitted by the device. Additionally, the download
rate from the server to the device is considerably higher compared to the uplink rate
from the device to the server. With both the size of the processed result and the
increased download rate, we disregard this process for the sake of simplicity.
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In the end, as a combination of Equation (4.7) and Equation (4.8), we can
calculate the total delay from offloading to completing the task according to

T o
i =

Bi

ri
+
Di

fi
. (4.10)

The energy consumption from offloading the computation to the MEC server can
be calculated according to

Eo
i,p = PiT

o
i,p =

PiBi

ri
. (4.11)

Here, Pi is defined as the transmission power, where Eo
i,p determines how much

energy is used to send the computation task to the MEC server.
After calculating the energy used to transmit the computation task, we can now

calculate the energy used when the device is in an idle state according to

Eo
i,p = P s

i T
o
i,p =

P s
iDi

fi
, (4.12)

where P s
i is defined as the power consumption used by the device when idle. Eo

i,p
specifies how much energy is used to solve the computation.

In the end, using a combination of Equation (4.11) and Equation (4.12), we can
calculate the total energy consumption according to

Eo
i =

PiBi

ri
+
P s
iDi

fi
(4.13)

for the whole offloading process. The total cost can be calculated according to

Co
i = It

iT
o
i + Ie

iE
o
i , (4.14)

similar to the cost of local computing and with the same set of weights.

4.3 Optimization Problem
This section provides a deeper mathematical description of the optimization problem
and corresponding constraints.

4.3.1 Constraints

We begin by defining the total cost for all devices in the system according to

Ctotal =
N∑
i=1

(1− αi)C
l
i + αiC

o
i , (4.15)

and the corresponding action as αi ∈ {0, 1}. If the device i decides to offload the
task, Ri, to the MEC server, we set αi = 1. On the other hand, if the device chooses
local computing, we set αi = 0.

By utilizing Equation (4.15) we can define the offloading process as an optimiza-
tion problem. The objective is to find the optimal action vector, α = [α1, α2, . . . , αN ],
and resource allocation vector, f = [f1, f2, . . . , fN ], to minimize the total cost of the
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entire system as a combination of execution delay and energy consumption according
to

min
α,f

N∑
i=1

(1− αi)C
l
i + αiC

o
i . (4.16)

Since the action vector is a vector of binaries that increases rapidly as more de-
vices join, the optimization problem can be described as mixed integer non-linear
programming [24].

To find the optimal action and resource allocation vectors, we first define the
constraints of the system as:

C1 : αi ∈ {0, 1}, ∀i ∈ N (4.17)
C2 : 0 ≤ fi ≤ αiF, ∀i ∈ N (4.18)

C3 :
N∑
i=1

αifi ≤ F, ∀i ∈ N (4.19)

The first constraint, C1, refers to the decisions the devices can choose between,
where each device only can decide between offloading the task as a whole using the
offloading computing model or executing the task locally using the local computing
model. C2 prohibits the MEC server from allocating more than the total capacity to
an offloading device, while C3 states that the sum of resource allocations to offloading
devices should not exceed the total capacity of the MEC server. In the end, both [21]
and [22] have an additional constraint describing the maximum tolerable delay of an
offloading task, where [21] uses the maximum tolerable delay to limit the number
of states for their RL and DRL model. However, in this thesis, we aim to explore
as many states as possible. Therefore, we neglect introducing a maximum tolerable
delay for an offloading task.

4.4 Strategies
This section provides a thorough description of implemented strategies in this thesis.
Corresponding algorithms will be described in detail with important definitions and
theory.

4.4.1 Full Local

The full local strategy, Algorithm 1, initializes each device’s action to be set to local
computation, αi = 0, such that the action vector is α = [0, 0, . . . , 0], and the total
cost of the system is set to Ctotal = 0. After the action vector initialization phase,
corresponding parameters such as the size of computation, Bi, and the number of
CPU cycles, Di, are given as input along with local computation power, f l

i , and the
decision weights It

i and Ie
i .

We begin by calculating the delay, Equation (4.3), the energy consumption,
Equation (4.4), and the cost, Equation (4.5), for each device in the system. In the
end, the cost for each device is added together with the calculated cost of previous
devices. The result is the total cost of N devices in the system only performing local
computation.
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Algorithm 1: Full Local
Input: N , Bi, Di, f l

i , zi, It
i , Ie

i

Output: Ctotal

Ctotal ← 0 ▷ Set total cost of system
for i ∈ N do

T l
i ← Di

f l
i

▷ Calculate delay
El

i ← ziDi ▷ Calculate energy consumption
C l

i ← It
iT

l
i + Ie

iE
l
i ▷ Calculate cost

Ctotal ← Ctotal + C l
i ▷ Update total cost

return Ctotal

4.4.2 Full Offload

The full offload strategy, Algorithm 2, sets each device’s action to offload, denoted
as αi = 1. The action vector is comprised of α = [1, 1, . . . , 1] (thus, K = N)
and the total cost is set to Ctotal = 0. After the devices’ action vector has been
initialized, parameters such as the size of the computation, Bi, the number of CPU
cycles, Di, and the local computation power, f l

i , are given as inputs. Furthermore,
for offloading to the MEC server, several offloading parameters such as the devices’
bandwidth, W , the devices’ distance to the MEC server, d, the transmission power
consumption for offloading, Pi, and power when idle, P s

i , are also given as inputs
along with Gaussian channel noise, N0, and the total server capacity F .

The offloading strategy begins by calculating the resource allocations for the
total number of devices in the system. Here, each device in the system shares the
same amount of resources from the server. The resource allocation for each device is
calculated as the server’s total capacity divided by the number of offloading devices.
After this, the channel gain is calculated for each device based on the distance to
the MEC server and the uplink rate according to Equation (4.6). When the uplink
rate is calculated, the device’s delay is calculated according to Equation (4.10) and
the energy consumption according to Equation (4.13). In the end, the cost for each
device is added together with the calculated cost of previous devices. The result is
the total cost of N devices in the system only performing offloading to the MEC
server.

4.4.3 Random Search

The random search strategy, Algorithm 3, initializes each device’s action to be ran-
domly chosen between local computation or offloading to the MEC server, i.e., αi

is picked uniformly at random from {0, 1}. The action vector can be comprised in
several different ways, for example α = [0, 0, 1, 1, . . . , 0]. Furthermore, the other pa-
rameters for MEC are given as inputs similar to the full local and offload strategies,
with numSamples being the number of samples to generate.

The algorithm starts with initializing the current total cost, Ctotal, to zero and
the best total cost, Cb

total, to infinity. After this initialization step, we check for the
number of offloading devices from the action vector and give corresponding devices
resource allocations from the server. The resource allocations are created by giving
each offloading device a uniformly random number between zero and one, denoted as

28



Algorithm 2: Full Offload
Input: N , Bi, Di, It

i , Ie
i , F , W , N0, di, Pi, P s

i

Output: Ctotal

K ← N
Ctotal ← 0 ▷ Set total cost of system
for i ∈ N do

fi ← F
N

▷ Calculate rescource allocations
hi ← 1

d2i
▷ Calculate channel gain

ri ← W
K
log
(
1 + Pihi

W
K

N0

)
▷ Calculate uplink rate

T o
i ← Bi

ri
+ Di

fi
▷ Calculate delay

Eo
i ← PiBi

ri
+

P s
i Di

fi
▷ Calculate energy consumption

Co
i ← It

iT
o
i + Ie

iE
o
i ▷ Calculate cost

Ctotal ← Ctotal + Co
i ▷ Update total cost

return Ctotal

uniform([0, 1]). Next, the resource allocations are normalized by taking each device’s
random number and dividing it by the sum of each device’s random number before
it is multiplied by the server’s total capacity. The normalization step ensures that
the resource allocation for each device meets the constraints C1 and C2. On the
other hand, if the generated action vector is full local, we set the resource allocation
vector to be filled with zeros for the total number of devices in the system.

After the offloading devices have been given a resource allocation from the server,
we calculate the total cost according to Algorithm 4. Here, the set of offloading
devices is denoted as

Nα ≜ {i ∈ N : αi = 1}. (4.20)

Algorithm 4 takes an action and a resource allocation vector as inputs, in addition
to the MEC parameters from the full local and offload strategies, separates devices
for local and offloading computation, and outputs the total cost. After the cost
is calculated, the minimum of Cb

total and Ctotal is selected and Cb
total is updated

accordingly. In the end, the algorithm creates multiple different resource allocations
and returns the result of the allocation that yields the lowest total cost for the
number of samples given.

4.4.4 Optimal Solution

The optimal solution strategy exhaustively checks all the possible vectors α and
for each of them, uses Lagrange multipliers method to find the minimum total cost
according to Algorithm 5.

Lagrange Multipliers

When α is fixed1, we want to find the global minimum by finding the optimal
resource allocation vector f . As previously described in Section 4.3, the optimization
problem, Equation (4.16), is a function of the total cost for offloading devices and
local devices. We begin by neglecting the total cost for devices performing local

1In Lagrange multipliers derivations, we assume that α ̸= 0, i.e., Nα is not empty.
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Algorithm 3: Random Search
Input: N , F , numSamples
Output: Cb

total
Cb

total ←∞
for numSamples do

for i ∈ N do
αi ← uniform({0, 1})

if α ̸= 0 then
▷ Check for offloading devices

for i ∈ N do
▷ Calculate resource allocations

gi ←

{
uniform([0, 1]) if ai ≡ 1,

0 otherwise

for i ∈ N do
fi ← gi∑

gi
F ▷ Normalize resource allocations

else
f ← 0 ▷ Fill resource allocation vector with zeros

Ctotal ← TotalCost(α,f) ▷ Calculate cost according to Algorithm 4
if Ctotal < Cb

total then
Cb

total ← Ctotal ▷ Calculate lowest cost

return Cb
total

Algorithm 4: TotalCost
Input: N , α, f , Bi, Di, f l

i , zi, It
i , Ie

i , F , W , N0, di, Pi, P s
i

Output: Ctotal

K ← |Nα| ▷ Set number of offloading devices
Ctotal ← 0 ▷ Set total cost of system
for i ∈ N do

if αi = 1 then
hi ← 1

d2i
▷ Calculate channel gain

ri ← W
K
log
(
1 + Pihi

W
K

N0

)
▷ Calculate uplink rate

T o
i ← Bi

ri
+ Di

fi
▷ Calculate delay

Eo
i ← PiBi

ri
+

P s
i Di

fi
▷ Calculate energy consumption

Co
i ← It

iT
o
i + Ie

iE
o
i ▷ Calculate cost

Ctotal ← Ctotal + Co
i ▷ Update total cost

else
T l
i ← Di

f l
i

▷ Calculate delay
El

i ← ziDi ▷ Calculate energy consumption
C l

i ← It
iT

l
i + Ie

iE
l
i ▷ Calculate cost

Ctotal ← Ctotal + C l
i ▷ Update total cost

return Ctotal
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computation since they are not dependent on an allocation from the server to find
the optimal f , as stated in

argmin
f

∑
i∈Nα

Co
i . (4.21)

The optimization problem is convex in f , meaning that there exists a global mini-
mum.

After this, we show the full equation as a function of delay and energy according
to

argmin
f

[∑
i∈Nα

It
iT

o
i + Ie

iE
o
i

]

= argmin
f

[∑
i∈Nα

It
i

(
Bi

ri
+
Di

fi

)
+ Ie

i

(
PiBi

ri
+
P s
iDi

fi

)]
. (4.22)

Since many of the parameters are constants not dependent on an allocation from
the server, fi, we can exclude them from the optimization problem and reformulate
it as

argmin
f

[∑
i∈Nα

(
Di

fi
+
P s
iDi

fi

)]
= argmin

f

[∑
i∈Nα

Di(1 + P s
i )

fi

]
. (4.23)

Now, we can utilize Lagrange multipliers to solve the optimization problem. We
begin by defining the first constraint according to∑

i∈Nα

fi = F. (4.24)

This constraint states that we always allocate the full capacity of the MEC server
for the number of offloading devices in the system. It is better to utilize the whole
server capacity to give offloading devices as much resource allocation as possible for
minimization of the total cost for the whole system.

The second constraint states that an allocation from the MEC server has to be
a positive allocation according to ∑

i∈Nα

fi > 0. (4.25)

Since all the variables in this optimization problem are positive, the feasible of the
optimization problem is open and we conclude that a global minimum is not at a
border region.

First, we define the Lagrangian function as

L({fi : αi = 1}, λ) =
∑
i∈Nα

Di(1 + P s
i )

fi
+ λ

(∑
i∈Nα

fi − F

)
. (4.26)

Next, we take the partial derivative on Equation (4.26) with respect to fi, and
set it to 0:

∂L
∂fi

= 0, i ∈ Nα. (4.27)
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Furthermore, the partial derivative of Equation (4.26) with respect to λ is also
set to 0:

∂L
∂λ

= 0. (4.28)

We can now solve for λ as

λ =

(∑
i∈Nα

√
Di(1 + P s

i )

F

)2

. (4.29)

The same formulation is also applied to fi as

fi =

√
Di(1 + P s

i )

λ
. (4.30)

In the end, by combining Equation (4.29) and Equation (4.30) we can calculate
the function to find the optimal resource allocation according to

fi =

√
Di(1 + P s

i )∑
i∈Nα

√
Di(1 + P s

i )
F. (4.31)

Algorithm

The algorithm starts by generating all possible action vectors for the number of
devices in the system. For each action vector, we calculate the optimal resource
allocation for a given action vector using Equation (4.31). In the end, we calculate
the total cost Ctotal with the optimal resource allocation vector and return Cb

total of
all the generated action vectors and resource allocation vectors.

The optimal solution strategy has a significantly high complexity of O(N2N).
Since the algorithm is computationally expensive, it will only work for up to 20
devices in the system. This will be further elaborated on in Chapter 5.

Algorithm 5: Optimal Solution
Input: N , P s

i , Di

Output: Cb
total

Cb
total ←∞

for α ∈ {0, 1}|N | do
for i /∈ Nα do

fi ← 0

for i ∈ Nα do

fi ←
√

Di(1+P s
i )∑

i∈Nα

√
Di(1+P s

i )
F

Ctotal ← TotalCost(α,f) ▷ Calculate cost according to Algorithm 3
if Ctotal < Cb

total then
Cb

total ← Ctotal ▷ Calculate lowest cost

return Cb
total
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4.4.5 Reinforcement Learning

The RL strategy uses Q-learning to find the minimum total cost according to Al-
gorithm 6. Different from the previous strategies, we begin by defining the key
components of the RL system first introduced Section 2.2.2.

Components of the Reinforcement Learning System

State: In our RL system, a state is a combination of an action vector and a
resource allocation vector defined2 as st = (αt,ft) = (αt,1, . . . , αt,N , ft,1, . . . , ft,N).
Furthermore, we define the terminal state through available capacity on the MEC
server defined as

φt = F −
N∑
i=1

ft,i. (4.32)

If φt = 0, we have found a terminal state and will stop the training round.

Action: We define an action to transition to the next state as an increase of
server capacity allocated to some of the devices. The state is currently defined as
st = (αt,ft) and the action will be a change in ft (and, if needed, in αt) that leads
to the next state st+1 = (αt+1,ft+1).

Reward: As the agent interacts with the environment, it will receive a reward
after performing an action to transition from the current state to the next state. In
our system, we define the reward as

rt+1(st) =
Clocal − C(st)

Clocal
. (4.33)

As previously mentioned, the agent aims to maximize the cumulative reward and
minimize the system’s total cost. With this in mind, the reward function has to be
negatively correlated to the total cost. Here, Clocal is the total cost where every de-
vice in the system performs local computing and C(st) is the total cost of the agent’s
current state computed from Algorithm 4. We use Clocal as an initial benchmark.

Environment

The environment the agent interacts with is generated as the agent traverses the
states. For each state the agent is in, all possible next states will be generated with
the next action and resource allocation. The resource allocation for an offloading
device in a given time step is calculated according to

ft,i =
min

(
φt·β
F

+ 1, ψ
)
· F

β
(4.34)

for i ∈ Nα, where the server capacity is converted to several quantities and allocated
to offloading devices. Here, β is the size of the neighborhood for the agent to
explore and ψ is the maximum number of steps the agent can make. For example,
if the agent is in the full local starting state with 3 devices in the system, st =

2Note that α is in fact redundant as in every correct state we have that αi = 1 if and only if
fi > 0.
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(αt,ft) = ((0, 0, 0), (0, 0, 0)), a possible next state can be st+1 = (αt+1,ft+1) =
((0, 1, 1), (0, 3.25, 1.75)) where devices 2 and 3 choose offloading to the MEC server.
Since multiple devices decided to offload, the server will allocate from the available
computational resources, φt, to the offloading devices.

All the current states, along with the neighboring states, are stored in Qtable.
One row in Qtable is composed of a pair of the current state, st, and a single next
state st+1. Every possible next state is stored with the current state in a unique row
in Qtable. Furthermore, for each row in Qtable, we store the hash representation of
the state for faster identification of rows, the total cost of the current state, C(st),
the reward, rt+1, the remaining computational capacity of the MEC server, φt, and
at the end the Q-value for the current state and action, Q(st, at). For the next
state in the row, we store the total cost of the next state, C(st+1), and the available
computational capacity left from the next state, φt+1. As more devices join the
system, the state space will increase rapidly, and the size of Qtable will be enormous
with millions of possible entries.

Algorithm

The Q-learning algorithm starts with setting the initial state, s, to full local and
generating the neighborhood containing all possible next states. Each state is con-
verted to a hash representation for faster identification of rows. Then, the algorithm
selects a random state in Qtable. If the selected state is a terminal state, we stop
and pick another random state. On the other hand, if it is not a terminal state, we
choose a random action, receive the reward, and observe the next state. If the next
state is a terminal state, the agent stops and selects a new random state. Otherwise,
we store the next state and generate the corresponding neighborhood containing all
possible next states. After this, we perform a TD update on the Q-value for the
current state. After the Q-value is updated, the next state is set to be our current
state. The training continues until the number of episodes has ended. In the end,
we return the result of the best terminal state that yields the minimum total cost
from a selection of multiple terminal states.

4.4.6 DQN

The DQN strategy uses DRL to find the minimum total cost according to Algorithm
7. Similar to RL, we begin by defining the key components of the DRL system first
introduced Section 2.4 along with the components of the neural network imple-
mented first introduced in Section 2.3.

Components of the DQN

In this strategy, we always allocate server capacity in discrete quantities, such that
each ft,i is a multiple of F/ζ, where ζ is a positive integer.

State: For the DRL system, the state is defined the same way as for the RL
strategy, where st = (αt,ft) = (αt,1, . . . , αt,N , ft,1, . . . , ft,N) is the state at a given
time step t. Furthermore, the definition of a terminal state remains the same for
the DRL strategy as for the RL strategy. If a terminal state is found, we reset to a
full local starting position.
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Algorithm 6: Q-learning
Input: N , η, γ, numEpisodes
Output: Cb

total
Set s to full local
Store s in Qtable

for i ∈ [numEpisodes] do
Select non-terminal random s0 = (α0,f0) from Qtable

t← 0
while True do

Select random at from st
Execute at, obtain rt+1, and observe st+1

if st+1 is terminal then
Break

Q(st, at)← Q(st, at) + η[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]
Store st+1 in Qtable

t← t+ 1

Cb
total ← min{TotalCost(s) : s ∈ Qtable, s is terminal}

return Cb
total

Since we allocate to each device a multiple of F/ζ, the total number of states
can be calculated using a binomial coefficient for a given number of devices in the
system according to (

ζ +N

N

)
=

(ζ +N)!

N !ζ!
, (4.35)

Furthermore, the total number of terminal states in the system where φt = 0 is
calculated according to (

ζ +N − 1

N − 1

)
=

(ζ +N − 1)!

(N − 1)!ζ!
. (4.36)

The number of states and terminal states will increase rapidly as more devices
join the system. For example, for 3 devices in the system with ζ = 100, the total
number of states will be 176851 with 5151 terminal states. For 7 devices with
ζ = 100, the total number of states will increase to 26075972546 with 1705904746
terminal states. Both Equation (4.35) and Equation (4.36) will be used to describe
the rapidly increasing state-space further elaborated on in Chapter 5.

Action: An action is defined as an alteration of st = (αt,ft). More precisely,
an action allocates additional server capacity of F/ζ to one of the devices i0 ∈ N .
The next state st+1 is then defined by

ft+1,i =

{
ft,i if i ̸= i0,

ft,i +
F
ζ

otherwise
(4.37)

and

αt+1,i =

{
1 if ft+1,i > 0,

0 otherwise.
(4.38)
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The allocation is a part of the MEC server’s total capacity, where ζ determines how
many discrete allocation quantities should be given to an offloading device from the
server capacity.

Policy: The agent follows an ϵ-greedy policy as previously described in Sec-
tion 2.4. The agent begins by selecting random actions for a number of episodes
before selecting ϵ-greedy actions from the neural network.

Reward: The reward function is

rt+1(st, st+1) =
C(st)− C(st+1)

Clocal
. (4.39)

Instead of comparing the total cost of the current state with the total cost of local
computing done in the RL strategy, the reward function implemented in this strategy
uses the total cost of the current state and that of the next state for a more direct
evaluation of the agent’s path. The goal is to determine if the agent is able to find
the best course of action while interacting with the environment.

Environment

The environment the agent interacts with is stored in a replay buffer of a fixed
length b, which depends on the number of devices in the system. Before training
initiates, the replay buffer is filled up with uniformly random experiences from the
agent. By filling up the buffer with random experiences, the bias between the
agent’s experiences will be reduced, and the neural network will generalize better,
as previously discussed in Section 2.3.6. Furthermore, for each time step, t, we store
the agent’s current state, st, the agent’s action, at, the reward, rt+1, the next state
st+1, and a Boolean value Tt indicating if the next state is a terminal state or not.
The experience is denoted as et = (st, at, rt+1, st+1, Tt). After this, we utilize MGD
to sample a random mini-batch of size M from the buffer. Through the use of MGD,
we can fit exceedingly large state spaces for a batch size of a respectable size.

Neural Network

The neural network implemented is a linear neural network with 5 layers, 3 hidden
layers, and a leaky ReLU activation function as illustrated in Figure 4.2. The input
layer contains the agent’s current state. The number of neurons for the hidden
layers in the network is set to 192, 256, and 64, respectively, while the size of the
output layer is equal to the number of actions the agent may select from the input
state. The network also utilizes the Adam optimizer for improved optimization and
handling of bias.

The neural network architecture design is completed through hyper-parameter
testing and trial and error. Multiple different networks have been tested with differ-
ent hyper-parameters and number of devices. While a less complex neural network
was more stable for our problem formulation, the more complex network imple-
mented was overall better at the main objective of finding a lower total cost.
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Figure 4.2: The architecture of the implemented neural network.

Algorithm

The first stage of the algorithm starts by pre-filling the buffer with random experi-
ences up to the set buffer capacity. By pre-filling the buffer, the DQN algorithm will
converge more rapidly due to the batch being filled up with experiences as training
initiates rather than at a later stage. After this, the starting state is set to full local.
The training starts with the agent performing an action while following an ϵ-greedy
policy and transitioning to a new state, st+1, before the reward, rt+1(st, st+1), from
the transition is calculated. Then, after the reward is calculated, the algorithm
checks if the new state is a terminal state or not. If st+1 is a terminal state, the
Boolean terminal state flag, Tt, is set to true and false if not. The algorithm then
stores the experience, et, in the replay buffer.

The second stage of the algorithm begins with sampling M random experiences
from the replay buffer E = {et(1) , . . . , et(b)}, where the i-th sampled experience is
denoted as et(ji) = (st(ji) , at(ji) , rt(ji)+1, st(ji)+1, Tt(ji)). First, we calculate the tar-
get vector, ŷt = (ŷt(j1) , . . . , ŷt(jM )), by transmitting the states from the mini-batch
through the target network and selecting the maximum Q-value according to

ŷt(ji) ←

{
rt(ji)+1 + γmaxa Q̂(st(ji)+1, a;Θ

−) if Tt(ji) = 0,

rt(ji)+1 otherwise.
(4.40)

Next, the algorithm predicts the Q-values, Qpred
t =

(
Qpred

t(j1)
, . . . , Qpred

t(jM )

)
, on the model

Q according to

Qpred
t(ji)
←

{
Q(st(j) , at(j) ;Θ) if Tt(ji) = 0,

0 otherwise.
(4.41)

Next, we calculate the loss on ŷt and Qpred
t with the Huber loss function on the

whole mini-batch according to Equation (2.18), first presented in Section 2.3.4. The
gradient descent step is then performed on the loss where each gradient entry is
clipped to the range of (−1, 1). The weights from Q are then loaded onto Q̂ for
more stable training when

t mod C ≡ 0, (4.42)

where t is the current time step and C is the update frequency. In the end, after an
episode is finished, the ϵ is updated for an ϵ-greedy policy action selection according
to

ϵ← max{ϵmin, ϵ · ϵdecay}, (4.43)
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where ϵmin is the minimum allowed value of ϵ and ϵdecay is the rate to decay ϵ. Both
ϵmin and ϵdecay are hyper-parameters set before training initiates. Furthermore, the
total cost, Ctotal, is calculated for the given terminal state and compared to the
current best total cost Cb

total. If the algorithm is not able to find a better total
cost after 500 episodes, we terminate from further training. When that occurs,
the terminal state that yields the minimum total cost from a selection of multiple
terminal states is returned.

Algorithm 7: DQN
Input: N , η, ϵ, ϵmin, ϵdecay, γ, M , C, numEpisodes
Output: Cb

total
Q← Model(N,N, η) with weights Θ ▷ Initialize model
Q̂← Model(N,N, η) with weights Θ− ▷ Initialize target model
Cb

total ←∞
Pre-fill buffer with random experiences
for i ∈ [numEpisodes] do

Set s0 = (α0,f0) to full local
t← 0
while st not terminal do

Select random at with probability ϵ according to the ϵ-greedy policy
Alternatively, at ← argmaxaQ(st, a;Θ)
Perform at from st, receive rt+1, and transition to st+1

Check if st+1 is terminal and set boolean flag Tt
Store experience et = (st, at, rt+1, st+1, Tt) in replay buffer
Sample M experiences (st(ji) , at(ji) , rt(ji)+1, st(ji)+1, Tt(ji)) from replay
buffer

Calculate ŷt according to Equation (4.40)
Calculate Qpred

t accroding to Equation (4.41)
Perform gradient descent on L(ŷt,Q

pred
t ) where gradient entries are

clipped to be in the range (−1, 1)
if t mod C ≡ 0 then

Load weights from Q to Q̂
t← t+ 1

Update ϵ according to Equation (4.43)
Ctotal ← TotalCost(st) ▷ Calculate cost according to Algorithm 3
if Ctotal < Cb

total then
Cb

total ← Ctotal

return Cb
total

4.5 Optimal Action-Value Function Q∗

The optimal action-value function Q∗ is given by a fixed point of the iterative process
in Equation (2.10) presented in Section 2.2.3, i.e.,

Q∗(st, at) = Q∗(st, at) + η[rt+1 + γmax
a
Q∗(st+1, a)−Q∗(st, at)]. (4.44)
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This can be further simplified to

Q∗(st, at) = rt+1 + γmax
a
Q∗(st+1, a). (4.45)

For a small number of devices, the number of states and actions is not too large.
Then, we can directly tabulate the optimal Q∗ for all states and actions, using the
boundary condition Q∗(s, ·) = 0 for any terminal state s.

Algorithm

Algorithm 8 tabulates Q∗. It works with all the states organized in layers. Layer l
consists of the states with total allocated server capacity lF/ζ. In particular, layer
l = 0 consists of the states where every device performs local computation, and layer
l = ζ consists of all the terminal states. If state st belongs to layer l, then after
performing action at the resulting state st+1 belongs to layer l + 1.

Initially, Q∗(s, ·) = 0 for all terminal states s. Further, if all the Q-values have
been calculated for layer l + 1, then the values for the states in layer l can be
calculated according to Equation (4.45).

Tabulating Q∗ is computationally expensive and only works for a small number
of devices. However, we can utilize the optimal Q∗ as a benchmark to evaluate the
convergence of the DQN. This will be further discussed in Chapter 5.

Algorithm 8: Optimal Action-Value Function
Input: γ, ζ
Output: Tabulated Q(s, a) for all s and a
for s in layer ζ do

Q(s, ·)← 0

for l = ζ − 1, ζ − 2, . . . , 0 do
for s in layer l do

for every action a from state s do
Calculate reward r for state s and action a
Let s′ be the result of performing a from s
if l ̸= ζ − 1 then

Q(s, a)← r + γ ·maxa′ Q(s
′, a′)

else
Q(s, a)← r

return Q(s, a) for all s and a
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Chapter 5

Results and Findings

This chapter presents the results from each strategy. Each result will be described
in detail. The first section, Section 5.1, provides the results of the total cost for each
strategy for different sets of devices. After this, Section 5.2 presents the total cost
for each strategy with both limited and increased server capacity. In Section 5.3, the
performance of the DQN are presented, and in Section 5.4 a discussion about the
convergence of the network. In the end, a conclusion about the results and possible
improvements will be further elaborated on in Chapter 6.

5.1 Total Cost
The main objective of this thesis is to examine the use of RL techniques, such as
Q-learning and DRL, to heuristic solutions in the form of full local and offload,
random search, and the optimal solution. For each strategy presented, we analyze
the performance to the optimal solution and determine if the strategy is able to
scale as more devices join the system. To simulate the results of each strategy, we
begin by generating 50 different sets of N devices. We then take the average of
each result, where the number of devices is increased from 3 up to 50. Since the
total cost is an enormous number, we divide it by 109 for better visualization. The
parameters for the MEC server and each device are generated according to Table A.1.
Each strategy presented is simulated on the same set of generated device parameter
settings for accurate performance estimation. For the random search strategy, we
set numSamples = 10.000 while the parameters for Q-learning and the DQN can be
found in Table A.2 and Table A.3, respectively. In the end, as the number of devices
in the system changes, the parameters are re-generated.

From Figure 5.1 we can observe the total cost, Ctotal, of each strategy as the
number of devices in the system increases. For 3 to 7 devices, the full local strategy
has the overall worst performance with a linear increase in total cost. The cost of
random search and Q-learning is equal to that of the optimal solution for 3 devices,
while the cost of DQN is very close, with only a 0.1 difference. For 4, 5, 6, and
7 devices, the performance of random search, Q-learning, and DQN is incredibly
close to the optimal solution with only an 0.001 to 0.2 difference. As previously
mentioned, the state space increases rapidly as more devices join. However, the
increase in the state space from 3 to 7 devices has little impact on the performance
of the DQN and Q-learning algorithm. At the same time, the random search strategy
is able to consistently generate close-to-optimal solutions.
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The results between each strategy become a little more apparent for 7 to 20
devices. We can observe that the total cost for the full offload strategy increases
exponentially as more devices join the system. The Q-learning, DQN, and ran-
dom search strategies are consistently close to the optimal solution, with minor
changes in cost between each strategy. As previously mentioned in Section 4.4.4
and Section 4.4.5, both the optimal and the Q-learning strategy have significant
scaling limitations. The computational complexity difference between 20 and 50
devices is tremendous for the optimal strategy. As already reported, the com-
plexity of the optimal strategy is O(N2N), meaning that for 20 devices, the op-
timal solution needs 20 · 220 = 20971520 iterations to find optimal resource alloca-
tions. For 50 devices, the number of iterations to calculate the optimal increases to
50 · 250 = 56294995342131200 and would not be solvable. The Q-learning strategy
has other scaling limitations. As an increasing number of devices join the system,
the size of Qtable increases to include millions to billions of possible states. The
result of the rapid growth of the size Qtable is a failure in the algorithm where the
agent cannot iteratively update the Q-value through TD updates for each state and
action pair.

For 50 devices, the performance difference between each strategy increases. As
more devices join the system, the random search strategy becomes increasingly worse
compared to the full local and DQN strategies. Since the number of different re-
source allocations increases, the number of samples needed to achieve good per-
formance also increases. Furthermore, we can observe that the DQN has worse
performance compared to full local. For 50 devices in the system, the state space
increases to 2.013×1040 with 6.708×1039 different terminal states, where both num-
bers are rounded to three decimal points and calculated from Equation (4.35) and
Equation (4.36). For the DQN algorithm to achieve good performance with such
a gigantic state space, the algorithm would have to train for an extensive period
of time where the size of the replay buffer, currently with 1.000.000 experiences,
would have to be increased considerably to successfully fit the increased state space.
Additionally, the architecture of the neural network should be modified with an in-
creased number of neurons and hidden layers to better accommodate the changes
in the state space in addition to other parameters utilized for the DQN. In the end,
while the full offload strategy can accommodate 50 devices, we can observe that the
total cost for the full offload strategy increases beyond the scale.

5.2 Increased Server Capacity
For the next simulation, we are interested in analyzing the performance of each
strategy with respect to both limited and increased server capacity for a set of
devices. The simulation is similar to the first simulation, where 50 different sets
of N devices are generated. We set N = 20 to visualize the performance of each
strategy better and generate the device parameter settings according to Table A.1
over different server capacities F . For the Q-learning strategy, we only change the
size of the neighborhood to be

β = 2 · F, (5.1)

while the number of resource allocations for the DQN, ζ, is kept linear in F . For
example, where we set F = 5 and ζ = 100 in the previous simulation, we now set
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F = 1 and ζ = 20 or F = 10 and ζ = 200 to keep the resource allocation for
each offloading device equal to changes in F . Otherwise, the other parameters in
Q-learning and DQN are kept equal.

From Figure 5.2 we can observe that the total cost decreases as the server capac-
ity is increased, with the exemption of the full local strategy that does not depend
on a resource allocation from the server. For server capacities from 1 to 3, the total
cost for the DQN and Q-learning strategies are very close to the optimal, while
the random search strategy starts off slightly worse but is able to improve. The
performance of the DQN strategy stagnates for server capacities between 3 and 12
compared to the strategies full offload, random search, Q-learning, and optimal.
Here, the random search and Q-learning strategies are close to the optimal strategy
but become slightly worse as the server capacity increases. For server capacities
between 12 and 15, the performance of the DQN strategy is improving. However, it
is not close to the optimal and is worse than random search and Q-learning. In the
end, the full offload strategy improves significantly for increasing server capacities,
while the random search and Q-learning strategies have the best overall performance
compared to the optimal strategy.

5.3 Performance of DQN
In this section, we present the performance of the DQN. We begin by displaying
the average loss and reward for N = 20 devices. For simulation purposes, we
generate 50 different sets of N devices and take the average reward and loss for
each training simulation, where the loss is calculated using the Huber loss function
from Equation (2.18). The device parameter settings are generated equally for this
simulation as the simulation in Section 5.1. Furthermore, we increase the number
of training episodes to 10.000 to better visualize the convergence of the network.

For the average loss plot, Figure 5.3, we can observe that for the first 2000
episodes, the loss becomes worse, and the agent diverges toward a worse policy. Fur-
thermore, for each 1000 episodes, we update the target network, Q̂, with the weights
from the Q network. Once this update occurs, the loss increases tremendously before
the network is able to reduce it. As previously discussed in Section 2.3.4, the goal
of the agent is to minimize the loss between the target and the predicted actions.
From episode 2000 to 4000, the loss remains at the same level as for the first 1000
episodes and is yet to converge. In the end, after 4000 training episodes, the agent
is finally able to reduce the loss for each weight update between Q and Q̂. However,
a loss of about 0.1 still remains at a high level after 8000 episodes, signifying that
the predictions made are still relatively poor. For comparison, the results of a good
prediction typically lead to a loss of about 0.005.

The goal of the agent is to maximize the long-term reward. From Figure 5.4,
we can observe that the overall reward increases for the first 2000 episodes and
stables out for the remaining training period. However, the reward fluctuates where
the reward for some of the later episodes is worse than for the first 2000 episodes.
The wavering performance of the DQN from this observation leads us to believe
that the network may suffer from catastrophic forgetting. There are two reasons
why catastrophic forgetting may occur. The first reason is due to the instability of
the neural network when approximating Q-values over large state spaces, as stated
in [25] by Roderick et al. As previously discussed, the state space increases rapidly
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when more devices join the system. The result of the increasing complexity makes
stable convergence more challenging. Furthermore, since the neural network learns
an approximation compared to a direct evaluation of the Q-function done in RL, the
network may increase the accuracy of the approximator at the expense of following
a worse policy. The result may lead to reduced loss at the expense of not choosing
the optimal action in a given state.

Catastrophic forgetting is a recurring problem for neural networks when learn-
ing an approximation. Currently, no universal solution to the problem exists and
remains an active area of research. In [26], Kirkpatrick et al. proposes to use elas-
tic weight consolidation (EWC) to enable former tasks to remain unchanged when
generating new predictions. This will limit the occurrence of catastrophic forget-
ting. However, the results of the DQN with the EWC resulted in worse performance
compared to training 10 separate DQNs on Atari games. Kirkpatrick et al. be-
lieves the reduced performance occurs due to the weights for each game becoming
a tractable approximation of parameter uncertainty. As previously mentioned, we
train 50 separate DQNs and take the average over each result. Since training sepa-
rate DQNs yielded better results, we neglected to utilize EWC. Other measures for
limiting catastrophic forgetting in neural networks exist. However, these papers use
SL instead of DRL.

5.4 Convergence of DQN
In this section, we seek to further discuss the convergence and behavior of the DQN.
The predicted action from the DQN in a given state will be compared to the optimal
action from the optimal action-value function (computed using Algorithm 8). As
previously mentioned in Section 4.4.4, calculating the optimal action-value function
is computationally expensive and only works for a small number of devices. There-
fore, we generate one set of N = 3 devices with device parameter settings from
Table A.1. Furthermore, we set the number of training episodes to 10.000 to better
visualize the convergence and behavior of the network.

We begin by analyzing the behavior of the DQN on 3 different runs with the
same set of devices to see if the behavior of the network is different between the
runs. From Figure 5.5, we can observe that the runs are almost identical, where
the loss between each run only differs by about 0.001 to 0.01. This means that the
DQN will make many of the same predictions for the same set of devices with equal
device parameter settings.

For the next simulation, we want to analyze the predictions from the DQN
compared to the optimal action-value function Q∗. From Figure 5.5, we can observe
that the network is able to reduce the loss for each weight update from the Q-network
to the target network Q̂. In Figure 5.6, the loss is calculated between the Qpred

t and
Q∗. For the first 3000 episodes, the network is able to reduce the loss before it
stables out from episode 3000 to 5000. The loss between Qpred

t and Q∗ is incredibly
high and gives a good indication that the neural network is poor at predicting good
actions. From episode 5000 to 10.000, the network diverges, and the loss is equal to
that of the first 1000 episodes.

Even though the target network ensures more stability, it is not sufficient enough
to prevent divergence, where no solution currently exists. In [27], Hasselt et al.
introduces an empirical study to help identify the underlying problems causing di-
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vergence, where function approximation, bootstrapping, and off-policy learning are
referred to as the deadly triad of occurring learning divergence. For simulation,
Hasselt et al. ran 3 distinct simulations on Atari games with a DQN to observe if
the action-value function, previously explained in Section 2.2.3, reached unrealistic
values with equal hyper-parameters, referred to as soft divergence. The simulation
result showed that the DQN overestimates the results of the action-value function
when the value of ϵ tends toward a greedy action selection, even if the target net-
work can limit the problem from occurring at an earlier training stage. The result
of this overestimation leads to unreasonable high values for Q(st, at). For exam-
ple, if the optimal action from the optimal action-value function in a given state
is Q∗ = 10, an overestimated value from the neural network might be Qpred

t = 20.
When this occurs, the agent will select an action from the prediction made by Qpred

t

instead of Q∗ and transition to a different state. This will continue for each training
episode where the agent continues to deviate, leading to divergence. Hasselt et al.
believe the divergence becomes more apparent for more complex neural networks
compared to simpler networks. In our case, when the divergence begins at episode
5000, the value of ϵ has been at a greedy action selection for around 3000 episodes.
This leads us to believe that the network may also overestimate the action-value
function, leading to divergence.
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Figure 5.1: Total cost, Ctotal, for different number of devices, N . Numerical results
can be found in Table B.1.
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Figure 5.2: Total cost, Ctotal, for different server capacities, F , with N = 20 devices.
Numerical results can be found in Table B.2.
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Figure 5.3: Huber loss over 10.000 training episodes for N = 20 devices.
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Figure 5.4: Rewards over 10.000 training episodes for N = 20 devices.
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Figure 5.5: Huber loss between 3 different runs.
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Figure 5.6: Huber loss between predictions from the DQN and the optimal action-
value function.
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Chapter 6

Conclusions and Future Work

This chapter concludes the overall results described in Chapter 5 and presents sug-
gested future work. Further discussion about the positive aspects and limitations
of each strategy will be presented, specifically RL and DRL. The suggested future
work focuses on how the limitations of Q-learning and the DQN can be reduced and
different problem formulations.

6.1 Conclusions
In this thesis, we implemented different strategies in addition to solving the opti-
mization problem introduced in [21]. While the optimal strategy does not scale for
a growing number of devices, it acts as an essential benchmark for the other strate-
gies utilized. The performance of random search, Q-learning, and DQN strategies
are very close to the optimal strategy for up to 20 devices. However, the results
show generally poor performance for the strategies that can address more than 20
devices. Furthermore, for limited and increased server capacity with 20 devices, we
can observe that the random search and Q-learning strategies adapt well to changes
in server capacity, where the performance of full offload is only suitable for high
server capacities.

In Section 5.3 and Section 5.4, we discussed the performance and convergence
of the DQN. While several papers in Section 3.2 and Section 3.3 use DQN and
different variants of a DQN, there is little discussion of the general limitations and
convergence of a DQN in MEC. In this thesis, a more sophisticated benchmark
in the form of the optimal action-value function is implemented to evaluate the
convergence of the DQN better. From the results in Section 5.4, we can observe
that the DQN diverges when ϵ tends toward a greedy action selection. The result
of this divergence may lead to the agent not being able to find the minimum total
cost. We also believe that the DQN suffers from catastrophic forgetting due to
the fluctuating performance, as discussed in Section 5.3. Furthermore, the DQN
generalizes poorly when the number of devices in the system changes or for different
server capacities. As previously discussed, key parameters such as the size of the
replay buffer, the number of training episodes, and the architecture of the neural
network should be modified when the number of devices or server capacity change.
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6.2 Future Work
While the DQN suffers from both poor performance, convergence, and lack of gen-
eralization for the different number of devices in the system, several techniques can
be utilized to limit the problems that are not too common in research on MEC
with DRL. The first technique is called prioritized experience replay and was in-
troduced in [28]. Instead of uniform sampling from the replay buffer, prioritized
experience replay sample those experiences with high TD error to be retrained for
faster convergence. Furthermore, prioritized experience replay also introduces bias
and stochastic prioritization for improved diversity of experiences from each sample.

As previously discussed in Section 5.4, the DQN suffers from overestimation
leading to a higher loss for large-scale problems. In [29], Hasselt et al. propose to
use a double-deep Q-network (DDQN) to reduce overestimation by replacing

ŷt = rt+1 + γmax
a
Q(st+1, a;Θ

−) (6.1)

with
ŷDDQN
t = rt+1 + γQ

(
st+1, argmax

a
Q(st+1, a;Θ

−),Θ+
)
, (6.2)

where Θ+ denotes a second set of weights. Instead of a single max operation, DDQN
splits the operation into two separate operations, one for action selection and one for
evaluation. To the best of our knowledge, little research in MEC has been done with
a DDQN for more stable convergence and improved performance. Additionally, it is
worth mentioning that double Q-learning can be achieved without a neural network
by utilizing two Qtable, as discussed in [30]. However, double Q-learning is still
limited by exponential growth in the size of the Qtable, where the algorithm may fail
in updating the Q-values for each state and action pair.

Another possible improvement that can be utilized is a dueling-deep Q-network
as presented in [31] by Wang et al. In [10], Mnih et al. utilize a fully connected
convolutional neural network for the lower layers of the network. On the other hand,
Wang et al. propose to change the lower layers of the neural network to a stream
for separation of value and advantage functions. This can be converted to fit the
linear neural network utilized in this thesis. By changing Equation (6.1) into

ŷDuel
t = rt+1 + γ

(
ν(st;Θ

−, ρ) + (A(st, at;Θ
−, η)−max

a
A(st, a;Θ

−, η))
)
, (6.3)

the agent’s policy evaluation is improved over a series of actions where divergence is
less likely to occur. Here, ν(st;Θ−, ρ) is an estimate of the value function where ρ
is the learning parameter for ν, and A(st, at;Θ

−, η) is the advantage function with
η as the learning parameter. The advantage function measures the importance of
an action.

While different techniques can be utilized to improve the DQN presented in this
thesis, none of these techniques solves the problem of a rapidly increasing state space.
One solution is to change the problem formulation where the offloading decision and
resource allocation from the server is not stored as vectors dependent on the number
of devices in the system. One can, for example, change the problem formulation to
multi-agent RL similar to Lu et al. in [19], where the devices in the system act as
independent agents making their own decisions compared to a single agent presented
in this thesis. However, many of the same problems still persist if an RL strategy is
to be utilized in a real-world scenario.
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Appendix A

Utilized Parameters

A.1 Parameters for MEC

Parameters Values Descriptions

Bi uniform([300, 500]) Size of computation (Kbit/s)

Di uniform([900, 1100]) Number of CPU cycles (megacycles)

F 5 Server capacity (GHz/sec)

W 10 Bandwidth for offloading devices
(MHz)

N0 1 Gaussian channel noise

f l
i 1 Local CPU capacity (GHz/sec)

zi 10−27(f l
i)

2 Energy consumption per CPU cycle

di uniform([1, 200]) Distance from MEC server (meters)

Pi 500 Transmission power (mW)

P s
i 100 Idle power (mW)

It
i 0.5 Decision weight delay

Ie
i 0.5 Decision weight energy

Table A.1: Table of parameters utilized in MEC with values and descriptions.
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A.2 Parameters for Q-learning

Parameters Values Descriptions

η 0.8 Learning parameter

γ 0.95 Discount factor

ψ 3 Maximum number of steps

β 10 Size of neighborhood

numEpisodes 3000 Number of training episodes

Table A.2: Table of parameters utilized with values and descriptions for the Q-
learning strategy.

A.3 Parameters for DQN

Parameters Values Descriptions

η 0.00025 Learning parameter

γ 0.99 Discount factor

numEpisodes 3000 Number of training episodes

ϵ 1 Starting epsilon value

ϵdecay 0.995 Decay epsilon per episode

ϵmin 0.1 Minimum epsilon value

M 512 Batch size for sampling

ζ 100 Number of discrete allocation quanti-
ties of the server capacity

b 1000000 Total buffer capacity

C 100000 Frequency to update target network

Table A.3: Table of parameters utilized with values and descriptions for the DQN
strategy.
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Appendix B

Numerical Results

B.1 Total Cost

N Local Offload Random Optimal Q-learning DQN

3 3.011 1.290 1.290 1.290 1.303 1.290

4 4.003 2.110 2.078 2.075 2.109 2.094

5 5.003 3.226 3.013 3.007 3.046 3.101

6 6.009 4.428 3.899 3.888 3.974 4.025

7 6.998 5.859 4.823 4.806 4.869 4.997

10 9.964 11.362 7.716 7.655 7.772 8.002

15 14.973 24.651 12.746 12.582 12.856 13.288

20 19.969 42.852 17.811 17.515 17.750 18.697

50 49.929 258.842 68.358 − − 51.751

Table B.1: Numerical results between the different strategies divided by 109 for
different number of devices N .
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B.2 Server Capacity

F Local Offload Random Optimal Q-learning DQN

1 20.002 204.496 20.492 19.479 19.479 19.543

3 20.033 70.030 18.790 18.522 18.591 18.903

5 19.951 42.828 17.786 17.512 17.690 19.010

7 19.990 31.636 17.047 16.650 17.034 19.152

10 20.057 22.842 15.901 15.390 16.069 18.492

12 19.959 19.463 15.159 14.517 15.313 19.115

15 20.030 16.049 14.210 13.405 14.359 16.327

Table B.2: Numerical results between the different strategies divided by 109 for
different server capacities F with N = 20 devices.
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