
University of Bergen
Department of informatics

Exploring Capability-based security in

software design with Rust

Author: Kenneth Fossen

Supervisor: H̊akon Robbestad Gylterud

June, 2022

Abstract

Access control is one of the most critical aspects of software engineering when designing

secure software. In 2021, the Open Web Application Security Project (OWASP) [15] released

a new Top10 several years after its last release in 2017. “Broken Access Control” [11] made

a significant jump to the top of the list, marking it as the most prone and vital security

aspect of software development.

Previous research shows that security challenges, such as Confused Deputy [19], can be

solved with a capability-based approach. To achieve a capability-based system for REepre-

sentational State Transfer (RESTful) Application Programming Interfaces(APIs), we use the

Rust programming language to explore how we can create a capability design pattern. We

want to create a library for the developer to harness the power of capabilities when writing

the code, adhering to the capability properties and Principles of Least Privilege (PoLP), and

creating a RESTful API.

We created a capability library 5.8 we used to implement a RESTful API, simple-api 5.9,

connecting it with Grant Negotiation and Authorization Protocol (GNAP) into a proof-of-

concept capability-based system published on GitHub [10]. Resulting in successfully creating

capability-based access control for RESTful APIs. We show a use-case [27] where the core

access control model is Capabilities and potentially mitigates confused deputies in a RESTful

API software architecture.

Acknowledgements

I wish to thank my supervisor, H̊akon, for believing in this project and for letting me choose

to explore it in my way. Your guidance and discussions have been precious and vital to me

for this master’s thesis.

I want to thank my family for allowing me to explore and support my ideas to find my

path in life. Your support and always welcoming home have been a solid foundation for me

to reach as far into new worlds as possible.

Last but not least, a special thanks to Boisy. The one that has always been a happy face

next to me. He has been connecting me to new people for love and friendship, opened the

world for me in a completely new and different way, and made this journey balanced and a

true adventure in computer science and life.

Kenneth Fossen

01 June, 2022

ii

Contents

1 Introduction 1

1.1 Problem statement and motivation . 1

1.2 Related works . 5

1.3 Goals and research questions . 6

1.4 Chapter outline . 7

2 Rust & OWASP 8

2.1 Rust . 8

2.1.1 Benefits from Rust . 9

2.1.2 Traits in Rust . 13

2.2 OWASP - Software Security Recommendations 14

3 Access Control Models & Challenges 16

3.1 Access Control . 16

3.1.1 Access Control Lists (ACL) . 16

3.1.2 Role-based Access Control (RBAC) 17

3.1.3 Attribute-based Access Control (ABAC) 18

3.1.4 Capabilities - CBAC and Object Capabilities 19

3.2 Access Control Model Challenges . 21

3.2.1 Confused Deputy . 21

3.2.2 PoLP - Principle of Least Privilege 25

3.2.3 Myths around capabilities . 26

4 Tokens & Authorization Authorities 31

4.1 History of token security in APIs . 31

4.1.1 HTTP Cookie . 31

4.1.2 JSON Web tokens - JWTs . 33

iii

4.1.3 Macaroons . 34

4.1.4 Biscuits . 35

4.1.5 Opaque Tokens . 35

4.1.6 OAuth . 36

4.1.7 GNAP - Grant Negotiation and Authorization Protocol 37

5 Experiments and results 38

5.1 Evaluation criteria . 38

5.2 Defining our experiments . 39

5.3 Tools and Code . 40

5.3.1 Tools Setup . 40

5.3.2 Code repository . 40

5.4 Capability-based system . 41

5.4.1 System overview . 41

5.4.2 Filter and API Logic . 43

5.5 1a: Generic Type Parameters and Trait Bounds 44

5.5.1 1a: Results . 45

5.6 1b: Capability field inspired from TypeState 47

5.6.1 1b: Results . 49

5.7 1c: Capabilities using macros . 50

5.7.1 Previous work with macros . 50

5.7.2 Implemeting CapabilityApi with macro 52

5.7.3 1c: Results . 54

5.8 2a: Designing and creating a library . 55

5.8.1 Deciding design and developer interaction 55

5.8.2 The Library: capabilities . 55

5.8.3 Decisions made when designing the library 59

5.8.4 2a: Results . 60

5.9 2b: Putting it together to a RESTful capability system 61

5.9.1 Decisions made before implementing the capability system 61

5.9.2 Implementing a RESTful capability system 62

5.9.3 2b: Results . 66

6 Discussion, Conclusion and Future work 67

6.1 Discussion . 67

iv

6.2 Conclusion . 70

6.3 Future work . 71

Bibliography 74

A Trait and Bounds example 79

A.1 Full code for Trait and Bounds example . 79

B TypeState example 82

B.1 Full code for TypeState example . 82

v

List of Figures

3.1 CBAC: Principal Alice delegating ”read” to principal Bob for a resource . . 19

3.2 CBAC: Principal Alice accessing with ”read” on a resource 20

3.3 Confused Deputy: Well-intended Alice . 22

3.4 Confused Deputy: Ill-intended Eve . 22

3.5 Confused Deputy: Well-intended Alice with Capabilities 23

3.6 Confused Deputy: Ill-intended Eve with Capabilities 24

3.7 Capabilities: ACLs as columns and Capabilities as rows 26

3.8 Capabilities: ACLs as columns and Capabilities as rows with object references 27

3.9 Capabilities: Sharing . 28

3.10 Capabilities: Miller’s revokation factory [27, Figure 6] 29

5.1 System: Sketch of a capability-based system 42

5.2 System: Sketch of the API layer . 43

5.3 Sketch of a capability-based system . 61

5.4 GNAP: Redirect-based Interaction flow sketch from specification [35] 63

5.5 System: Sketch of the API layer . 65

vi

Listings

1.1 Intro: Library example: intro.rs . 4

2.1 Rust: Traits and Bounds Example: bounds.rs 10

2.2 Vectors: vectors.rs . 10

2.3 Rust: Procedural macro: macro.rs . 11

2.4 Rust: Partial procedural macro output: macro output.rs 11

2.5 Rust: Example input: svc.rs . 12

2.6 Rust: Example output: cargo watch -q -c -x ”expand –test svc” 12

3.1 ACL: Unix filesystem example . 17

4.1 Cookie: HTTP Request with Cookie . 32

4.2 JWT: Signature structure . 33

4.3 JWT: Resulting Token . 33

4.4 JWT: Expanded Header + Payload . 33

4.5 JWT: HTTP Authorization Header with JWT 34

5.1 Code: Repository layout . 41

5.2 Traits: struct . 44

5.3 Traits: capability read and create trait 44

5.4 Traits: service struct . 44

5.5 Traits: service trait . 44

5.6 Traits: main . 45

5.7 Traits: init struct . 46

5.8 TypeState: module and struct . 47

5.9 TypeState: private module and traits . 47

5.10 TypeState: Capability CreateRead trait 48

5.11 TypeState Example: main . 48

5.12 Macro: Mullaly’s Capability example [30]: impl Capability 50

5.13 Macro: Mullaly’s macro example [30] . 51

vii

5.14 Macro: capability! macro use and result . 51

5.15 Macro: Excerpt from: CapabilityApi . 52

5.16 Macro: Testing Bearer token with: CapabilityApi 53

5.17 Lib: service usage . 56

5.18 Lib: service generated code . 56

5.19 Lib: capabilities usage . 56

5.20 Lib: capabilities generated code . 56

5.21 Lib: capability usage . 57

5.22 Lib: Excerpt from capability fn code generated 57

5.23 Lib: filter example . 59

5.24 GNAP: GrantRequest JSON from step (2) 64

5.25 GNAP: Granted Access Token JSON from step (9) 64

A.1 Trait and bounds example: trait-boundsexamplebounds.rs 79

B.1 TypeState example: trait-boundsexampletypestate.rs 82

viii

trait-bounds example bounds.rs
trait-bounds example typestate.rs

Chapter 1

Introduction

1.1 Problem statement and motivation

Access control is one of the most critical aspects of software engineering when designing

secure software. It determines how a user can interact with and manipulate data described

by the software. The most common access control models are Access Control Lists (ACL),

Role-Based Access Control (RBAC), and Attribute Based Access Control (ABAC). Choosing

a good access control model and implementation for the software is not easy. When Open

Web Application Security Project (OWASP), in 2021, released their newest Top 10 [15]

describing the latest web security trends, “Broken Access Control” [11] had become the

topmost important security issue in software development.

In OWASP’s description of “Broken Access Control” they describe access control as

the following; “Access control enforces policy such that users cannot act outside of their

intended permissions” [11]. As software designs are now more complex and distributed, they

are more prone to confused deputy problems. Norm Hardy wrote a paper named “Confused

Deputy”[19] describing how a user interacting with another privileged process is tricked

with valid input to overwrite sensitive information outside the user’s intended permissions,

naming it the confused deputy problem. This problem occurs because two principals act

together: (1) the user with limited access and (2) the process with access to the sensitive

data. Hardy argues how access control models such as ACL are not capable of solving

1

confused deputy problems and that we need Capability-based Access Control (CBAC) to

solve this. In CBAC, capabilities are unforgeable tokens describing the authorization to

access a resource for a principal. Capabilities may be transferred between principals. In

Hardy’s example, a transferred capability would grant access to the user’s resources without

compromising access to sensitive resources. Hence, it will allow access to the requested user

resources without confusing the privileged process.

Modern software architecture has embraced the REpresentational State Transfer (REST-

ful) [9] Application Programming Interface (API) style and has since 2005 been increasing

in popularity[26]. RESTful API style has many benefits. It is easy to understand due to its

design around the well-known HTTP protocol. A RESTful API is based on HTTP protocol,

processing requests and responds with the content the user requested in a structured way.

One of the constraints in a RESTful API design is statelessness. Statelessness ensures that

RESTful APIs are not designed to handle sessions state, e.g. authentication [21], making

RESTful APIs prone to Cross-site request forgery (CSRF).

CSRF is the modern version of the confused deputy, where the user’s web browser is

targeted and tricked into sending forged requests to a trusted RESTful API. OWASP has

a good description of this in a banking example [36] of how CSRF is executed. A CSRF

attack can have severe consequences for the targeted user, e.g., deleting resources without

the user knowing. One way of reducing the attack surface of CSRF is to reduce the user’s

permissions to the strictly-needed permissions for the intended user interaction. Restricting

the user’s permissions is also known as Principle of Least Privilege (PoLP). This principle

applies not only to the user’s access permissions but also to browsers and RESTful API

running access permissions. RESTful APIs are recommended to run as a limited-service

account in the hosting operating system, giving only access to open ports and access to

necessary files needed to serve the user request.

Since the idea of capabilities arrived in 1975 [37], there has been a debate about their

usability. Miller’s paper “Capabilities myths demolished”[27], tries to answer the usability

claims of capabilities, arguing against the common misconceptions about capabilities. PoLP

and capabilities work in tandem. Capabilities provide fine-grained access control through

unique and shareable tokens, while PoLP limit the user and services to only have access

permissions to the intended resources in the software design.

2

When designing security for a single Service-Oriented Architecture (SOA) or Microservice

Architecture (MSA), there are many different concerns. Access control is one of the impor-

tant choices that software architects are faced with in any software design, and it dictates

how a user interacts and accesses resources. Today’s recommendations for access control

in RESTful APIs are RBAC and ABAC, depending on which fits the needs best suited for

the organization size and structure. RBAC will give coarse-grained access control to the

system that is suitable for many systems. However, depending on the system design and

its needs, this might lead to “Role explosion”. Role explosion happens as the organization

evolves and the intended role changes or a person hired for a position is acquiring more roles

to perform their intended job. In ABAC, role-explosion is not a concern, as the attributes

defined on the resource, user, the environment, or a combination of the listed is granting

access to resources defined by a policy. Because of this, National Institute of Standards and

Technology (NIST) has listed ABAC as the preferred model for access control. Either choice

of these approaches, the choice is making many decisions for the developers and software

architecture.

Authorization, “To grant a principal access to certain information”[37], is another im-

portant aspect to consider. Today the industry-standard is OAuth and is a authorization

framework for RESTful API supporting both RBAC and ABAC. It is built on a series of

Request For Comments (RFC), building on top of each other, making OAuth complex and

hard to implement correctly. In this thesis, we will use Grant Negotiation Authorization

Protocol (GNAP) instead of OAuth. GNAP is a transactional authorization protocol that

tries to remove the complexity that OAuth has introduced; it also removes the need for

browser that OAuth is dependant on and that the new version of OAuth v2.1 is also trying

to fix. GNAP also supports RBAC, ABAC, and CBAC.

When it concerns security with RESTful APIs in MSA, Tetiana Yarygina at UiB wrote

her Ph.D. thesis on the topic in 2018, “Exploring Microservice Security”[40] concluding that

the field of security and microservices was very sparsely researched, even with the rise in

popularity in the industry for this new architecture. Continuing in her paper “Overcoming

Security Challenges in Microservice Architectures”[40], Yarygina looks at the importance

of trust between microservices, introducing the MissFire framework to establish Mutual

Transport Layer Security (mTLS) trust between microservices to limit the attack surface.

Yarygina’s MissFire is successfully limiting some of the scopes of confused deputy problems

in MSA design but not eliminating it. MissFire mainly limits services to communicating to-

gether at the network level and keeps communication confidential. MissFire changes nothing

3

regarding what privileges the service is running with or what it has access to once approved

to talk to another host. Still, the microservice with a certificate has access to all RESTful

endpoints on the targeted microservice, making it able to post data with the user context to

this service.

Due to this, we are motivated in this thesis to explore how we can implement CBAC

to mitigate confused deputies in RESTful APIs. We will use Rust as our programming

language to explore how we can structure the design of the code to achieve capabilities

for executing the corresponding code blocks. After exploring a few approaches, we will

choose one approach and implement it as a library, such as in listing 1.1. We will use

this library to build a RESTful API as part of a capability system. This library will aid

the developer in creating capabilities (line 1) for data structures and connect them to a

function block (line 17). Rust will, together with the library, give early feedback to the

developer resulting in a more secure code and design in production. The capability system

will be built on top of this library, helping us harness the transactional powers of GNAP

and mitigate potentially confused deputies in the design for future RESTful APIs. We have

published code for the full proof-of-concept on GitHub under the following repo: https:

//github.com/spydx/capability-poc/.

Listing 1.1: Intro: Library example: intro.rs

1 #[capabilities(Delete, id = "id")]
2 pub struct Orders {
3 id: i32,
4 name: String,
5 }
6

7 #[service(SqliteDb, name = "db")]
8 #[tokio::main]
9 async fn main() -> Result<(), std::io::Error> {

10 let connection_string = "sqlite::memory:".to_string();
11 let _pool = CapService::build(connection_string)
12 .await
13 .expect("Failed␣to␣create␣database");
14 Ok(())
15 }
16

17 #[capability(Delete, Orders)]
18 fn delete_order(order: Orders) -> Result<(), CapServiceError> {
19 let res = sqlx::query!(r#"DELETE␣FROM␣orders␣WHERE␣id␣=␣$1"#, order.id)
20 .execute(&self.db)
21 .await
22 .map_err(CapServiceError);
23

24 Ok(())
25 }

4

https://github.com/spydx/capability-poc/
https://github.com/spydx/capability-poc/

1.2 Related works

In 1975’s paper “The protection of information in computer systems”[37], the capabilities

idea arrived, and there have been several papers that are important for our work here.

Closely related work to our work is Mark Samuel Miller’s dissertation “Robust Composi-

tion: Towards a Unified Approach to Access Control and Concurrency Control”[28]. Miller

is exploring the E language with its capability design to build robust and unified access con-

trol in a desktop application and distributed system. Miller is also exploring Concurrency

Control; this is out of the scope of our work. Besides that, Miller’s work is very similar to

our approach, but their design is in the desktop application.

The paper “Capability Myths Demolished”[27], arguing for many of the misconceptions

that have arisen over time around the CBAC system. It explores these misconceptions

through 3 Myths, Equivalence, Confinement, and Irrevocability, that we cover to understand

what a capability-based system is for our work.

Ekaterina Shmeleva’s thesis is a state-of-the-art master thesis “How Microservices are

Changing the Security Landscape”[38] and the paper “Architecting with Microservices: A

systematic mapping study”[7]. Both show the lack of research and usage of CBAC in modern

software architectures like SOA and MSA.

Also, the freshest security books out of the press; “API Security”[23] and “Microser-

vice Security In Action”[39], barely mentions CBAC and capability based security for their

targeted readers, the modern and security-oriented software developer.

Tetiana Yargina’s dissertation “Exploring Microservices Security”[40], where she imple-

ments the MissFire framework to mitigate trust issues in a microservice architecture. Miss-

Fire is targeting security at the network layer between services. Our work is naturally an

extension of hers by adding capabilities to enable services to communicate together, miti-

gating the confused deputy even further.

5

1.3 Goals and research questions

The overall goal of this thesis is to explore and evaluate how we can implement CBAC

with Rust in a RESTful API. We will look at the built-in language features, e.g., traits and

macros, and how they can assist us in creating a capability design for our desired API. After

exploring these approaches (experiment 1a–c), we will choose one approach (experiment 2a)

and implement a library, letting the developer develop a capability-based RESTful API. We

will then integrate the API with an authorization authority (experiment 2b), e.g., GNAP,

and build a client to connect it for a proof-of-concept capability-based system.

We will attempt to answer the following questions to evaluate capability-based access

control as a viable option for access control in this system. We will evaluate if it further

enhances security in the architecture design and limits “confused deputy” problems in the

architecture in question.

Research Questions:

• RQ1: Can we structure our code or utilize Rust’s ecosystem to achieve CBAC within

a RESTful API?

• RQ2: Can CBAC give fine-grained access control and avoid confused deputy problems

in a RESTful API?

• RQ3: Could GNAP help us realize capability-based fine-grained access control in a

RESTful API?

Evaluation criteria We then will evaluate experiments 1a–c against the following evalu-

ation criteria, but not limited to:

– It should be clear to the developer when a capability operation, such as Read, is needed.

– The code design should not increase code complexity.

– The code design should be generalizable into a library.

6

For experiment 2, we will evaluate the solution against the following criteria, but not

limited to:

– Adhering to the code design should be easy for the developer.

– The code design should clarify what capabilities are needed.

– Should reduce the likelihood of any confused deputy in the RESTful API.

1.4 Chapter outline

A short introduction to the content in each chapter of this thesis:

Chapter 2 - Rust & OWASP This chapter will introduce Rust’s essential language

features and why we do not use some. We will explain the importance of OWASP and its

findings relevant to our thesis.

Chapter 3 - Access Control Models & Challenges Provides an overview of Access

Control models, covering the most common access control models and capabilities. The next

part of this chapter covers the confused deputy, principal of least privilege, and capability

myths that we need to understand before evaluating our experiments.

Chapter 4 - Tokens & Authorization Authorities It introduces an overview of differ-

ent types of tokens, where we will cover the essential properties of the different token types

before we choose one to use in this thesis. Lastly, we will cover two authorization authorities,

the well-known OAuth and the new GNAP, currently in draft.

Chapter 5 - Experiments and Results This chapter contains the design approaches we

evaluated and their evaluation results against the evaluation criteria. We will go through the

design choices and how we developed the library, and how our capability system, together

with the library and GNAP, pan out.

Chapter 6 - Discussion, Conclusion and Future work Finally, we will discuss our

results and review them in the context of previous research and on research goals. We will

reflect and conclude before we mention future work.

7

Chapter 2

Rust & OWASP

In this chapter, we will start by getting an introduction to the essential features of Rust,

continuing with an overview of the software security landscape from OWASP through the

last decade, mentioning the challenges in securing web applications and OWASPs findings

important for this thesis.

2.1 Rust

Rust is a young programming language that is also gaining popularity. It has been voted

the most beloved programming language on the yearly Stack Overflow Developer Survey [32]

polls.

Rust is known for its approach to memory safety with its unique ownership feature and

avoids many issues that its counterparts C/C++ are challenged with when writing low-

level code managing memory. Ownership is a set of three rules the Rust compiler checks

at compile time and helps manage memory without a garbage collector. The first rule is

(1) that each variable in Rust has an owner, (2) there can only be one owner, and (3) the

variable is dropped when the owner goes out of scope. The borrow-checker validated these

ownership rules when compiling, preventing memory issues and eliminating the need for a

garbage collector. Rust is also a competitor to C/C++ regarding runtime speed with its

high-performance multi-threading as Rust can interface C/C++ libraries with its Foreign

8

Function Interface (FFI). Other languages such as Java are also memory-safe and popular

Object Oriented Programming language (OOP) choices for modern software development.

Java uses a garbage collector to manage memory and requires a Java Virtual Machine (JVM)

that acts as a runtime engine to execute. On the other hand, Rust does not require a similar

runtime environment and compiles directly to the target platform. Also, Rust is not a OOP

but has traits and trait bounds that support OOP features.

Rust’s borrow-checker, strongly typed language, macros, and tooling makes it excellent

for secure software development of APIs and as a systems language. Companies such as

Amazon and Microsoft are actively advocating the use of Rust, and more companies are

searching for Rust developers. Linux Kernel recently adopted Rust as an official language.

Rust has an active community that has provided tools such as Clippy cargo clippy and

cargo check. These tools are excellent at providing early warning about potential problems

and other errors in the code, allowing the developer to correct these before it becomes a more

significant issue later in the development process. Rust’s compiler, by default configured to

fail a release build, cargo build --release if the compiler produces any warnings. These

warnings are configurable, but Rust ships with a strict default policy. Warnings can come

from various sources, e.g., unused imports, unused variables, and dead code. This nagging

from the compiler about warnings and errors will either force the developer to better code

hygiene or warning message fatigue. Nevertheless, overall it is a feature that helps the Rust

community keep conforming to Rust’s idiom and write better code. Popular IDE tools such

as VSCode, CLion, and IntelliJ all have plugins actively maintained by the Rust community,

striving to enhance the developer experience. Rust Weekly is a newsletter that informs the

community on the latest developments regarding the language and its tooling.

2.1.1 Benefits from Rust

In this thesis project, we would like to utilize Rust’s strongly typed language, traits, and

macros to give the compiler the ability to let the developer know as early as possible that

the developer is adhering to our capability pattern.

With traits, we will define the shared behavior for our design. Traits are similar to Java’s

interfaces, where we define the expected implementation signatures and then let the user

9

implement them. Interfaces in Java or any other OOP support inheritance in the form of

a hierarchy. Rust’s traits do not support inheritance. Instead, Rust has implemented trait

bounds to allow the developer to expect a trait to be implemented for a type. This short

example 2.1 shows how traits are similar to interfaces. To pass any object of type T to he

function check_birthday_for (line 13), we are required to implement the trait BirthDay

for the type T (line 9). The main method and implementation details for has_birthday

method are omitted.

Listing 2.1: Rust: Traits and Bounds Example: bounds.rs

1 trait BirthDay {
2 fn has_birthday(&self) -> bool;
3 }
4

5 struct Person {
6 birthday: DateTime<Utc>,
7 }
8

9 impl BirthDay for Person {
10 fn has_birthday(&self) -> bool { ... }
11 }
12

13 fn check_birthday_for<T: BirthDay>(person: T) -> bool {
14 person.has_birthday()
15 }

Furthermore, Rust has macros that we will use to simplify our Metaprogramming. Rust

has two different forms of macros, macro_rules! are declarative macros procedural macro

are function-like macros. macro_rules! is commonly used to express code better. An

example of this vec![] macro takes several inputs but always creates a Vec::new() of the

desired types. E.g. vec![0, 1] 1 will create a vector of length 2, with type i32, and

numbers 1 and 2, removing our burden to create a new vector, and push two numbers onto

the vector, as shown in the following example 2.2 (line 2 - 4).

Listing 2.2: Vectors: vectors.rs

1 let macro_list = vec![1,2];
2 let mut manual_list = Vec::new(); // mutable
3 manual_list.push(1);
4 manual_list.push(2);
5 assert_eq!(macro_list, manual_list); // true

Procedural macros we use to decorate struct’s and functions in Rust. The

procedural macro then converts the e.g struct into a TokenStream that we can manipu-

late. A TokenStream is the code that the developer has written, parsed into a fully typed

10

and Abstract Syntax Tree (AST) that we can work with programmatically. A small example

of how we use our procedural macro #[capabilities] 2.3 to specify the behavior for our

code and view the generated code adhering to our specified behavior 2.4. We will explain

this code in detail in experiment 1c 5.7.

Listing 2.3: Rust: Procedural macro: macro.rs

1 #[capabilities(Delete)]
2 pub struct Person {
3 personnumber: i64,
4 firstname: String,
5 lastname: String,
6 }

Listing 2.4: Rust: Partial procedural macro output: macro output.rs

1 pub struct Person {
2 personnumber: i64,
3 firstname: String,
4 lastname: String,
5 }
6

7 pub trait CapDeletePerson:
8 Capability<Delete<Person>, Data = Person, Error = CapServiceError>
9 {

10 }
11 impl CapDeletePerson for CapService {}

Macros benefit us because it removes the boilerplate code that our design needs. We will

use a combination of the procedural macro and macro_rules! in our library to achieve the

desired behavior. Both macros work well together to help us remove and make the design

ad-hear to our design goals without the developer having to do much.

During the development of the library, we depended on Rust’s tooling to expand the

code to catch any potential problems. Rust tools cargo expand and cargo watch made

this process manageable. Expanding and continuously updating the output as we were

developing, making it easier to catch failed macro expansions or compile errors as we were

developing the library as shown in the following code example 2.5 and 2.6.

11

Listing 2.5: Rust: Example input: svc.rs

1 use capabilities::SqliteDb;
2 use capabilities_derive::service;
3

4 #[service(SqliteDb, name = "megakult")]
5 #[tokio::main]
6 async fn main() -> Result<(), std::io::Error> {
7 let connection_string = "sqlite::memory:".to_string();
8 let _pool = CapService::build(connection_string)
9 .await

10 .expect("Failed␣to␣create␣database");
11 Ok(())
12 }

Listing 2.6: Rust: Example output: cargo watch -q -c -x ”expand –test svc”

1 use capabilities::SqliteDb;
2 use capabilities_derive::service;
3 use sqlx::Pool;
4 use async_trait::async_trait;
5 pub struct CapService {
6 megakult: SqliteDb,
7 }
8 pub struct CapServiceError;
9 impl CapService {

10 pub async fn build(conf: String) -> Result<Self, crate::CapServiceError> {
11 let con = Pool::connect(&conf)
12 .await
13 .expect("Failed␣to␣connect␣database");
14 Ok(Self { megakult: con })
15 }
16 }
17 /* shortened for readbility */
18 pub trait Capability<Operation> {
19 type Data;
20 type Error;
21 #[must_use]
22 #[allow(clippy::type_complexity, clippy::type_repetition_in_bounds)]
23 fn perform<’life0, ’async_trait>(&’life0 self,__arg1: Operation,) -> Output =

↪→ Result<Self::Data, Self::Error>
24 >
25 where
26 ’life0: ’async_trait,
27 Self: ’async_trait;
28 }
29 #[allow(dead_code)]
30 fn main() -> Result<(), std::io::Error> {
31 let body = async {
32 let connection_string = "sqlite::memory:".to_string();
33 let _pool = CapService::build(connection_string)
34 .await
35 .expect("Failed␣to␣create␣database");
36 Ok(())
37 };
38 /* removed tokio build */
39 }

12

2.1.2 Traits in Rust

Rust uses traits to implement reusable behavior for our data types and thus supports poly-

morphism. There are two types of traits one is trait objects and the other is trait bounds.

Trait objects are more general traits that treat the type more as an object; if it has a

foo, it must be a bar. Also known as duck typing in dynamic languages, this may introduce

some performance impact because we are using dynamic dispatching, and the Rust compiler

does not know all our types before run time.

Trait bounds we use with generics, enabling the developer to implement required behavior

for our specified type T. In our code example 2.1, our developer has to implement the trait

BirthDay for our type T. If our developer does not implement this trait for our type, the

compiler will return an error until we have implemented this trait. When the compiler finds

the trait, we can pass any T + BirthDay to our method check_birthday_for. We will be

using trait bounds to implement capabilities in our library.

Rust is not a OOP in the same sense as Java. In Rust, objects can hold data through

its data types struct and enum, and this complies with some definitions of OOP. Using

the keyword impl, a programmer will add an implementation code block for a named trait.

Using the keyword pub when defining fn in our trait code block, the programmer will decide

what should be the public methods for the trait we implement for our structs or enum’s.

There is no support for inheritance in Rust. struct or enum can not inherit any behavior

from any parent data type how a class in Java can inherit from one or more interfaces,

abstract class, or classes.

13

2.2 OWASP - Software Security Recommendations

OWASP is a non-profit organization that produces recommendations for software security.

They have an extensive list of best practices and how to mitigate several problems. It also

maintains a list of the most common vulnerabilities in software, named OWASP Top10 [15].

Since 2003 it has been regularly updated. However, in later years there have been some gaps

in the releases of their Top 10. There was a 4-year gap between the two latest releases, 2017

and 2021. In the 2021 Top10, three issues stand out from the crowd and are interesting for

this thesis.

Our main concern is the 2017 Top10 “A05:2017 - Broken Access Control” that rose from a

fifth place to a solid number one issue “A01:2021 - Broken Access Control”[11] in application

security. OWASP is in it’s description of this category mentioning “Violating the principle of

least privilege”, “Cross-Site Request Forgery”, “CORS misconfiguration allows API access

from unauthorized/untrusted origins”, and “Accessing API with missing access controls for

POST, PUT and DELETE” as primary problematic causes for these problems to occur in

today’s software. Further, from their data analysis, 94% of the applications showed that

they had a form of broken access control, and avoiding the “confused deputy” is not easy.

Careful planning and an attentive developer are needed to be able to mitigate “confused

deputy” problems such as CSRF. Cross-Origin Resource Sharing (CORS) policies will help

the browser limit the simplest forms of CSRF, but relying only on CORS will not mitigate

all CSRF problems.

Also, today’s RESTful API design is not inherently ad hearing to the PoLP described

in 3.2.2. Commonly APIs are running as a system service user or restricted system service

user in the Operating System (OS). However, the developer is usually free to request any

stored objects from the database or filesystem that the user-context has access to when the

API is running in the OS. Not restricting the service user privileges has been the source of

many problems, especially SQL-Injection (SQLi) attacks or reading secrets from configura-

tion files stored together with the attacked API. Design patterns such as Command Query

Responsibility Segregation (CQRS) split the model into two separate responsibilities, dis-

playing data and updating data. The display model of the data is limited to a read-only

database connection, and updating the data has access to update the same data in the

database. They are separating the concerns and limits SQLi and moving the application

towards PoLP.

14

In 2017, the second biggest problem was “A02:2017 - Broken Authentication”. This

category has now been renamed and dropped on 2021’s Top 10 to a seventh-place, “A07:2021

- Identification and Authentication Failures”[14]. This category contains problems such as

exposing session identifiers in the URL or reusing session identifiers. Reusing or storing

session identifiers in cookies makes it easy to hijack sessions. The topic is also covering

storing passwords with outdated cryptographic libraries or just allowing the use of simple

to guess passwords such as qwerty or any password listed on the 10.000 Most Common

Password list [1].

Insecure Design [12] is a security concern in today’s software development trends. Insecure

design is a new category for 2021 and targets the control design of the architecture. This

category targets issues concerning the lifecycle of the development process and how threat

modeling the application can mitigate weaknesses in the architecture design.

A concern is also “A06:2017 - Security Misconfiguration”, this topic has taken a small

step up to fifth-place “2021:A5 - Security Misconfiguration”[13]. Showing that this still is

a major challenge for developers and administrators when shipping new software. Issues

covered in this topic include improperly configured permissions and unnecessary privileges

for the services. The misconfiguration itself is not something that the developer alone can

change, but writing software that ad hears to PoLP 3.2.2 would reduce the impact of this

problem for both the system administrator and developer.

Reading through the OWASP Top10, we can see that the terrain has changed significantly.

The new security landscape puts more responsibility on the individual developer to attain

new knowledge and adapt and comply with newer security standards to develop secure code.

In 2017, “A01:2017 - Injections” was the biggest problem that has dropped by 2 places to

“2021:A03 - Injection”. Some frameworks have adapted to such a challenge, such as Entity

Framework Core in .Net to mitigate SQL Injections in .NET Projects. Similar frameworks

exist for Java, Rust, Go, and other languages that handle database interactions. Injection

vulnerabilities are not just limited to SQLi, but SQLi is a good reference point to show how

the community has evolved to face and mitigate the challenges the developers are facing

when developing software. As we are attempting in this thesis, the community has actively

worked for better frameworks, making the development process safer and resulting in more

secure software.

15

Chapter 3

Access Control Models & Challenges

3.1 Access Control

This chapter will briefly cover the relevant forms of access control models and then cover the

topics around the PoLP and CBAC. It starts with the basics of plain ACL, before we move

on to RBAC and ABAC. Lastly, we will cover PoLP and an in-depth view of CBAC. It will

give us a historical view of how access control has evolved. Access control dictates how we

intend the user to be able to interact with data in our software, and it also dictates how a

user can interact with data in our software. Proper access control is crucial when it comes

to how we design secure software.

3.1.1 Access Control Lists (ACL)

ACL is commonly used in file systems when controlling access to resources, restricting access

based on the identity of the access request. ACL are lists containing entries of user identities

and allowed actions on a resource. An example of this is the UNIX filesystem 3.1 where

determining access based on the identity of the user with the permissions r (read), w (write),

or x (execute) are stored in the filesystem and honored by the OS.

16

Listing 3.1: ACL: Unix filesystem example

1 > ls -la
2 total 0
3 drwxr-xr-x 5 kenneth staff 160 Apr 5 10:48 .
4 drwxr-xr-x 153 kenneth staff 4896 Apr 5 10:48 ..
5 -r-xr-xr-x 1 kenneth staff 0 Apr 5 10:48 read_execute_file.txt
6 -r--r--r-- 1 kenneth staff 0 Apr 5 10:48 read_file.txt
7 --w------- 1 kenneth staff 0 Apr 5 10:48 write_file.txt
8 -rw---xr-- 1 kenneth staff 0 Apr 5 10:48 own_readwrite_everyone_read.txt
9 >

The access control listing -r-xr-xr-x is divided into four parts; the type, the owner, a

group, and everyone; {type}{owner}{group}{everyone}. The type is one letter, describing

if the object is a director d or a file -. The first three positions list the permissions for the

object owner, the three successive positions are for the group, and the three last positions

describe everyone’s permissions.

In the above example 3.1, the user “kenneth” has several files stored in a directory. In

line 8; -rw---xr--, our user “kenneth” has been granted read and write on the file named

own_readwrite_everyone_read.txt. The group “staff” is granted execute on the same

file, and everyone can read our file.

It works well when one principal acts on the resources, not when two principals act

together, such as in Hardy’s example where the service (compiler) is the confused deputy.

ACL has no way of expressing the need for a service to access the other principal’s files and

also store sensitive data in a different location. If the service principal is granted access

through a group, it will be granted access to all files in the filesystem where the group is

attributed access. It is a violation of PoLP and still makes it prone to overwriting files for

different principals than the two principals acting together.

3.1.2 Role-based Access Control (RBAC)

RBAC has been the most popular choice to manage many users over a large organization. It

defines relations for users to roles to mimic the organizational structure, such that it can be

applied to resources for access control. We define roles through their intended purpose in the

organization and grant them privileges to the required resources needed to accomplish the

specified role. We assign user identities to one or more roles, enabling the user to perform

their tasks in the organization. An example of this is the predefined roles within the Windows

17

OS such as the Users- and Administrators-role. Users is giving access to login and run

pre-installed software within the OS, and Administrators access to administer all aspects

of the OS.

Its flexible model is one of its advantages for managing and structuring access controls

in an organization. RBAC together with a directory service, e.g., Azure Active Directory,

gives a central identity manager to administer roles and users. The challenges start when

the organization evolves and when roles change, and it may lead to more roles than intended

where we get a phenomenon that we call “role explosion”[16]. Role explosion does not make

RBAC an insufficient alternative for access control, but in some organizational hierarchies,

other access control models may be a more suitable option.

3.1.3 Attribute-based Access Control (ABAC)

ABAC is the next iteration of access control models, trying to solve the role explosion

problem that RBAC has. ABAC differs from RBAC in that we do not only rely on roles

for granting access. We can evaluate any attribute on the subject, on the resource, type of

action, and attribute in the environment. Administrators have to use these attributes to

write access control policies stored at the policy decision point (PDP), to grant access to

resources.

When an access request arrives at the resource, a policy enforcement point (PEP) inspects

and generates a request to a PDP to evaluate and result in access granted or denied. The

third part of this model is the policy information point (PIP), which will provide information

about external attributes if requested from the PDP.

With its complex architecture, ABAC may not be suitable for smaller organizations, but

it is a good alternative for larger enterprises experiencing role explosion.

18

3.1.4 Capabilities - CBAC and Object Capabilities

Saltzer is the first to mention capability in his paper “The protection of information in

computer systems” [37]. The definition Saltzer uses of a capability is “In a computer system,

an unforgeable ticket, which when presented can be taken as incontestable proof that the

presenter is authorized to have access to the object named in the ticket”. In a modern web

application, a token is a type of ticket that Saltzer describes. The token can be any unique

information stored in, e.g., a Cookie 4.1.1, Opaque Token 4.1.5, or JWT 4.1.2, to mention a

few types, representing the right to access the desired resource.

The token held by a principal has several properties in a capability system; it can be

revoked, shared with other principals (delegation) 3.1, and avoids confused deputy prob-

lems 3.2.1. Revocation in the capability context means that we can request a token invali-

dated to an authority. The token holder can no longer use this token to access the described

resource in the token. Delegation is the property of sharing a capability with different prin-

cipals, e.g., user or service, to lend them access to the required resource. Capabilities enable

us to avoid confused deputy by leveraging PoLP, further discussed in the sections “Confused

Deputy” 3.2.1 and “PoLP” 3.2.2.

Figure 3.1: CBAC: Principal Alice delegating ”read” to principal Bob for a resource

There are two main types of capability systems one is object-capabilities and the other

is CBAC. Some programming languages have object capabilities, and examples of such lan-

guages are Mark Miller’s E used in his dissertation [28], and the later Pony that has arrived

as a newcomer to the field. Jessica Hillert wrote her Bachelor’s thesis on the comparison

19

of Capability Systems in the following languages; Encore, Pony, and Rust [20], where Rust

fared rather poorly with object-capabilities. There have been recent discussions in the Rust

community [24] [25] to implement new keywords in Rust to support a capability system in

the language. Our implemented library is inspired by the works of Zack Mullaly [30], giving

us a simple foundation for object-capability in the language through the use of Macros in

Rust. The other capability system, CBAC, is a central authority that will contain a file de-

scriptor table that stores tokens listing their granted access and token owners. The principal

holding a token is the owner, and this token will, when trying to access a resource, be passed

to the resource and evaluated for granting access.

Figure 3.2: CBAC: Principal Alice accessing with ”read” on a resource

There are, unfortunately, some myths that have arisen over time regarding capability-

based systems. These myths will be covered in the section “Myths around capabilities” 3.2.3,

and they are primarily based on misunderstandings regarding capabilities.

20

3.2 Access Control Model Challenges

3.2.1 Confused Deputy

When two principals act together, depending on the access control model, the principal

acting on behalf of another principal might be subject to being a confused deputy. Hardy

exemplifies this in his paper [19] with regards to ACL in a filesystem. Using Hardy’s example,

there are two principals. We have a principal component we will call the compiler and a

principal component we will call the user. When the user submits its request to the compiler,

the user specifies the input file for the compiler to compile and the output destination for the

compiled file. This compiler also tracks how much time a user consumes for billing purposes

and stores this in a sensitive data area. The compiler must have access to read the user’s

input file, write at the user-selected destination, and write to the sensitive data area for

billing. A well-intended user (Alice) 3.3 submitting the parameters app.rs and app.out

will not confuse the compiler. An ill-intended user (Eve) 3.4 submitting the parameters

app.rs and /billing/eve.csv to the compiler will result in the compiler overwriting the

sensitive billing information for Eve, resulting in the compiler being a confused deputy.

In our example, the user does not have access to sensitive billing information. However,

since the compiler does, it allows the user to specify writing to the sensitive data area. Since

the compiler allows this, it has to distinguish between legal and illegal parameters deciding

where to read from and where to write, making it prone to being a confused deputy. Having

such logic inside the compiler can become a challenging maintenance task. Each system is

different, and there might be edge cases that the logic will not catch. Hence it is better to

look to other options, such as capabilities 3.1.4 and the principle of least privilege 3.2.2, to

solve the confusion for the deputy.

In a capability-based system, when the user is submitting their input and output files.

Under the hood, they also delegate a unique token, representing their access to their input

and output files, to the compiler service. The compiler does not need access to the user files

and runs with fewer privileges. When the user delegates a token, this token will grant the

necessary access for the compiler to read and write at the user-specified locations.

21

Figure 3.3: Confused Deputy: Well-intended Alice

Figure 3.4: Confused Deputy: Ill-intended Eve

22

The following figures show the previous example with capabilities. First is our user

Alice 3.5 that has two tokens for each of her files and passes these to the compiler allowing it

to write to the filesystem for the specified files. Second is our user Eve 3.6 trying to confuse

the compiler with an invalid token for the file Eve has specified for her output file, resulting

in an access denied by the filesystem. The compiler also has a private token granting write

access to the sensitive data area.

Hardy’s example is for services and a filesystem residing inside an operating system, but

compared to software design today, one will find a similar pattern in modern web application

design. A web application runs in the browser and usually interacts with a RESTful API.

These two components can be candidates for confused deputy, the browser through well-

known attach vectors such as XSS and CSRF, and the RESTful API in further interacting

with other RESTful APIs, e.g., microservice architecture and services, such as in Hardy’s

example.

Figure 3.5: Confused Deputy: Well-intended Alice with Capabilities

23

24

Figure 3.6: Confused Deputy: Ill-intended Eve with Capabilities

3.2.2 PoLP - Principle of Least Privilege

Principle of Least Privilege, also known as Principle of Least Authority, is the concept of

only granting the needed privilege to a principal to let it achieve its designated job. The

definition of a privilege is an allowed action on a resource object given to a principal, e.g.,

opening a network port for listening or reading a file from the filesystem. From our confused

deputy problem 3.2.1, we can see that giving the compiler access to all files in the filesystem

will be granting this principal too much access. Even if we change to the RBAC model, we

will be prone to the same challenges since the roles must overlap, not limiting the compiler’s

access and granting access to too much in the filesystem.

Sandboxing is also a different way of achieving lesser privileges, but this approach does

not strip the principal from its privileges, but instead, it limits the reach of the principal

to be inside a sandbox. In our confused deputy example 3.2.1, sandboxing will not limit

Eve 3.4 to overwrite the sensitive billing information since the compiler principal still has

access to this file. Sandboxing is, therefore, not the same as PoLP.

Capabilities can help achieve a very fine-grained PoLP. With capabilities, we can strip the

principal for the compiler only to request one capability, to write billing information to the

sensitive data area. The compiler now only has access to the sensitive data area and nothing

else on the system. Whenever a user wants to request compile-time, they have to share their

capabilities for the files they have access to, letting the compiler use these capabilities to

access the necessary files to fulfill the user request, such as in Alice’s well-intended example

with capabilities 3.5.

PoLP is an essential part of securing systems and how we design our software. As

Software Engineers, we write code in a context where we later apply restrictions such as

security unless we already are using frameworks helping us. Rust is such an example, as the

language promises memory safety through the borrow-checker but still does not restrict us

from creating any software we want.

25

3.2.3 Myths around capabilities

Since the first mention of capabilities, there have been discussions and myths surrounding the

understanding of capabilities. Miller’s Capability Myths Demolished [27] lists three myths

that we will briefly describe here. (1) the equivalence myth, (2) the confinement myth, and

(3) the irrevocability myth.

The equivalence myth is the belief that ACLs are the same access matrix and that ACLs

are columns and capabilities are rows in this matrix 3.7. As Miller points out, this matrix

does not do capabilities justice, as the model the matrix represents is not flexible enough.

Miller further visualizes this example by showing the same matrix as object references instead

of a matrix 3.8. The critical part shown in this visualization is that the arrows in the ACL

model point to the subjects (user) and that the visualized capabilities point to the resource

subject from the holding subject (user). The visualization shows how inherently different the

two models are and that comparing ACLs-as-columns and capabilities-as-rows is not correct.

Figure 3.7: Capabilities: ACLs as columns and Capabilities as rows

26

27

Figure 3.8: Capabilities: ACLs as columns and Capabilities as rows with object references

The confinement myth is about with whom and how to share capabilities between subjects

in a capability-based system. The misconception is that Alice can share a capability with

Bob, and then Bob can share this capability further without restrictions, e.g., with Eve.

In this example, our subject Alice does not have to be authorized with both subjects Bob

and Eve to share the ”read” with Bob for Eve 3.9 (Unconfined). Trust is a critical part of

capabilities, and to be able to share a capability with another subject, the sharing subject

Alice, in this example, has to have an authorized path for both subjects to share a capability,

such as in the figure 3.9 (Confined). Miller lists KeyOS as a project that has achieved

confinement.

Figure 3.9: Capabilities: Sharing

The irrevocability myth is linked to the confinement myth and argues that one cannot

revoke access in a capability-based system when sharing a capability with a subject. A

capability is a reference with access privileges to a resource subject, and since the capabilities

are with the capability holder, one cannot revoke this capability from the holder. Miller’s

solutions to revocation in a capability-based system are that we can compose new capabilities.

One capability we call revokable, and a capability we call sharable, referencing the revokable

capability. We share the shareable capability with Bob, letting Bob access the resource

through the revokable. Once we want to revoke Bob’s access, we revoke the revokable

capability breaking the composition and restricting Bob’s access, such as in figure 3.10.

28

Figure 3.10: Capabilities: Miller’s revokation factory [27, Figure 6]

A widespread misconception Miller describes is capabilities-as-keys and a very intuitive

way of describing capabilities, although not entirely correct. An example of capabilities as

keys is a user’s story of collecting documents from a safe deposit box. The user arrives at the

counter, asking the clerk (deputy) to collect our fictive box 123 and handing the clerk a copy

of their key for this box, allowing the clerk to unlock and retrieve the box and hand it to the

user to collect the requested documents. This example gives the main idea of capabilities

but fails to show the other properties of capabilities and has led to widespread belief in the

irrevocability- and confinement-myth.

Miller states that this misconception, capabilities-as-keys, fails to honor the Composabil-

ity of Authorities- and Access-Controlled Delegation Channels-property. Composability of

Authorities (Property E) [27, Figure 13] is that we view users and resources as subjects in

a capability-based system, making access and authorization unified to create a network of

authority relations, and such as the Confined part in figure 3.9. Access-Controlled Delega-

tion Channels (Property F) [27, Figure 13] require treating all entities as subjects and that

composability of subjects is a restriction of delegation of keys. E.g., if two subjects are not

composed in a network, the delegation of a key is not feasible between the subjects.

29

Miller argues well against these myths and shows several cases of how others, e.g., KeyOS

and confinement [27, p.5], have resolved these myths. Still, the myths are persistent,

and there are misunderstandings regarding capabilities, especially the capabilities-as-keys

metaphor.

30

Chapter 4

Tokens & Authorization Authorities

4.1 History of token security in APIs

This chapter will introduce the most widely used tokens used for session management in

RESTful APIs. We will introduce HTTP Cookies, explain their use-case, and describe

JSON Web Tokens (JWT) and Opaque Tokens. Further, we will mention the new kids on

the block, Macaroons and Biscuits. We will also cover the delegation and authorization

authorities OAuth and GNAP. GNAP is currently in the review process at IETF. Both

support the most widely used tokens for session handling and authorization.

4.1.1 HTTP Cookie

In the early 1990s, the HTTP Cookie was created by Lou Montulli [2]. Montulli worked

at Netscape Communications, the company responsible for the popular Netscape Navigator

browser. There was a demand to manage sessions in the stateless protocol HTTP, and the

browsers needed aid in managing the sessions. The first version of Cookie appeared in 1994,

and the following year got patented in 1995, and soon after, all major browsers supported

Cookies.

A Cookie consists of a string name, string value, and optional attributes stored in the

browser and sent with HTTP requests to the targeted API, line 3 in following example 4.1.

Cookies are small and comes in several types, that all have different properties and use cases.

31

Listing 4.1: Cookie: HTTP Request with Cookie

1 GET /cookie_demo.html HTTP/2.0
2 Host: www.kefo.no
3 Cookie: session_id=supersecretid; Secure; HttpOnly; SameSite=Strict

The Session Cookie stores a session-id used to identify the user and session at the API.

When users close their tab or browser, the browser deletes all Session Cookies. The Persistent

Cookie stores long-term information for the user; this can be session ids or other preferences

for the user when visiting specific web pages. Setting a Persistent Cookie expiration time

and the browser will invalidate the Cookie.

Since these cookies persist, they have also been used to track user movement when visiting

other web pages, such as integrated Facebook modules in specific web pages allowing visitors

to share articles they read on Facebook. The Facebook module will read the user’s cookies

for Facebook details and submit information about the web page the visitor is visiting and

other details to Facebook. Persisting sensitive session information and tokens for the user

makes the user vulnerable to tracking and stolen sensitive information; since the persisted

information is still accessible after the browser has reopened.

Over the years, new attributes, also known as flags, have been introduced for the Cookie

standard to mitigate the attack surface for leaking sensitive information stored in the browser.

A Secure flag was introduced to instruct the browser only to send this Cookie with an HTTP

request if the request connection was over HTTPS. If the request connection is not secured,

the browser will not add this Cookie to the HTTP request.

An HttpOnly flag has been added to limit cross-site scripting (XSS) and cross-site request

forgery (CSRF). The HttpOnly flag tells the browser to restrict access to Cookies accessible

through simple JavaScript running in the browser. XXS and CRSF attacks dependent on

JavaScript will reduce the attack surface but not eliminate it just by setting the HttpOnly

flag.

Later SameSite was introduced to mitigate CSRF attacks further. SameSite is also client-

side protection, and it mitigates CSRF by restricting where the browser is sending cookies.

It has three levels, Strict, Lax , and None. These tell the browser how strict it should be

when evaluating the policy and if it should send cookies to third-party web pages. Cookies

are beneficial but can be easily misused to id and track users across web pages. Cookies are

still widely used to store important and functional user information, e.g., user personalizing

and user sessions for their web experience.

32

4.1.2 JSON Web tokens - JWTs

JSON Web Tokens (JWT) was published in 2010 and has become the industry stan-

dard. IETF has drafted and documented JWT in the IETF OAuth Request for comments

RFC7519 [22]. JWT’s purpose is to transfer claims between two parties safely. It achieves

this by encoding the header and payload with base64url encoding. The encoded header and

payload, together with a dot symbol (.), are then used to create a cryptographic signature

for the token, appending the signature to the end of the token 4.2.

Listing 4.2: JWT: Signature structure

1 HMACSHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload),
2 "secret_key")

The result is a three-part string that we call JWT 4.3 used to submit as a token with the

HTTP packet. The first part (line 1) of JWT is the header describing the algorithm used to

sign the JWT. The second part (line 2) is the payload we would like to share, and this section

is readable by anybody intercepting this token in transit. The signature is appended at the

end (line 3). A common misconception is that JWTs are encrypted, and one cannot read

the payload of the JWT. They are signed so no parties can tamper with the payload on an

issued JWT, but everyone can extract the header and payload. Storing sensitive information

in the payload is, therefore, not recommended. The following example 4.4 is the expanded

version of our example token in 4.3.

Listing 4.3: JWT: Resulting Token

1 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9 // header
2 .eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Iktlbm5ldGgifQ // payload
3 .F9qNfWupLEACGLUysYgtcDbYNRQspzcgtpXBbaaUgas // signature

Listing 4.4: JWT: Expanded Header + Payload

1 { // header
2 "alg": "HS256",
3 "typ": "JWT"
4 },
5 { // payload
6 "sub": "1234567890",
7 "name": "Kenneth"
8 }

33

JWTs are used with an authorization authority, such as OAuth 4.1.6 or GNAP 4.1.7, to

transfer claims from the authority to the client to grant access to a resource server. A client

adds the JWT to an HTTP Header called Authorization 4.5 and prefixes it with Bearer .

It is named Bearer since the JWT is self-contained and carries claims for the resource service

to evaluate.

Listing 4.5: JWT: HTTP Authorization Header with JWT

1 Authorization: Bearer eyJhbG..J9.eyJb..m5ldGgifQ.F9qN..baaUgas //shortened version

The resource server first validates the signature for the transferred Bearer token and

then inspects the claims before granting access. There have been several attacks with Bearer

tokens, where attackers have exploited the JWT signatures verification process in specific

libraries [31]. This process has been called “Signature Stripping”, and the error occurs due

to incorrect implementation of the signature verification process in the libraries and not

because of the JWT standard.

Since Bearer tokens such as JWT are self-contained, stealing a Bearer token through XSS

or CSRF can have severe consequences for the user. The resource server cannot distinguish

from whom the token is arriving, granting access to the attacker on the resource server.

4.1.3 Macaroons

Researchers at Google created Macaroons in 2014 [4], and they designed Macaroons with

the web and distributed systems in mind. Macaroons are pretty similar to JWTs as they

solve the same problem of transferring claims between two parties, and both are signed so

that no parties can tamper with the claims in transfer. Macaroon’s claims are different

from JWTs claims because Macaroons present their claims as caveats. We can have one

or multiple caveats inserted into a Macaroon, and these caveats are rules to be evaluated

granting specific permissions. A caveat can specify, e.g., access to upload a picture to a

specific destination and use authorization logic to grant access to resources. “Macaroons are

credentials, not capabilities, because the possession of a macaroon is a necessary, but not a

sufficient condition for granting authority.”[4] the authors write in their paper. We rely on

tokens being capabilities for this thesis, but we could design and enhance with Macaroons

in our implemented library and authorization authority.

34

4.1.4 Biscuits

Developed at Clever Cloud and announced in 2021 by Geoffroy Couprie [6], Biscuit is trying

to combine the best of all worlds. Decentralized validation from JWTs 4.1.2, flexible rights

management using an authorization logic language such as Macaroons 4.1.3, small size such

as Cookies 4.1.1, and can be treated as Opaque Tokens 4.1.5 by an authorization authority.

Biscuits are therefore called an “authentication and authorization token”[6]. It managed

access to Clever Cloud’s systems, and Macaroons did not fit their use case. Biscuits have

much to offer and fit very well with our use thesis case since Biscuits are capabilities-based.

Unfortunately, it lacks some implementations; it is ready for serverside Rust but not currently

ready for a simple Javascript web client.

4.1.5 Opaque Tokens

Opaque tokens differ from the previously mentioned tokens. They do not carry any infor-

mation between parties (JWT), they do not have any caveats (Macaroons), and they do not

carry any security policy enforcement (Biscuits). Opaque tokens are only random strings

that have meaning to the authorization authority. There are several ways an opaque token

can be meaningful for the authorization authority, e.g., it can be a primary key in a token

table listing the token’s properties, such as a file descriptor table. The downside to this;

each request with an opaque token has to validate the token at an authorization authority

endpoint. In some designs, having to validate each token at the authorization authority will

create a bottleneck and limit the application’s responsiveness. For our proof of concept, we

have used opaque tokens in our GNAP 4.1.7 implementation. We chose this approach since

we do not need to transfer any claim with the token (JWT), and our token table is supposed

to work in the same sense as a file descriptor table.

35

4.1.6 OAuth

OAuth has become the leading authorization and access delegation standard at version

2.0 and is now considered the industry standard. OAuth is defined as a framework in

RFC6749 [18] for authorization and authentication.

The rise of mobile apps in 2010 has reshaped the security considerations required to

interact with an authorization framework. The design of OAuth relies on the user being able

to be redirected, and the assumption from OAuth is that the user is using a web browser.

It is problematic for mobile apps, and there was no native support for it initially. OAuth

has since been extended with different extensions to support the needs and demands in the

market.

OAuth is designed to support four grant types: Authorization, Implicit Flow, Password

and Client Credential, and Authorization Code flow. Implicit flow is the most used grant flow

in OAuth. Since the initial RFC5849 [17] specification of the OAuth in 2010, the security

landscape has changed a lot. At that time, the Implicit flow was the recommended way of

interacting with JavaScript apps but now is considered insecure by default [5].

Since the specification has evolved to adapt to the security landscape, the Authorization

Code flow is now the recommended flow. The Authorization Code flow has also been ex-

tended to mitigate leakage and other security concerns when using this flow. Proof Key for

Code Exchange (PKCE) RFC7636 was added to Authorization Code to prevent Cross-Site

Response Forgery (CSRF). Following that, RFC8252 extended RFC7636, PKCE for mobile.

These extensions are just a small example of how the specification has evolved and how

challenging it may be to work with the OAuth specification.

Aaron Parecki has a blog post [33] about how confusing OAuth 2.0 can be due to the

number of extensions in OAuth 2.0, arguing for a new version of OAuth, version 2.1. Parecki

is now sitting in a working group trying to address this challenge with OAuth 2.0, cleaning

it up for OAuth 2.1. Parecki is also working with Justin Richer for the Grant Negotiation

and Authorization Protocol (GNAP).

36

4.1.7 GNAP - Grant Negotiation and Authorization Protocol

GNAP is a new transactional protocol for delegating authorization. Justin Richer is still

drafting this protocol [35] together with Parecki and Fabien Imbault. This protocol’s primary

goal is to learn from the evolution of the OAuth framework to create a better-suited protocol

for authorization.

OAuth’s challenges come from the fact that they rely on a web browser and cannot solve

without breaking changes in their standard. GNAP is designed not to depend on a web

browser for its authorization flows but to support a flow for a web-browser redirect. GNAP

supports four flows, Redirect-based interaction, User-code Interaction, Async Authorization,

and Software-only Authorization.

GNAPs transactional approach is a strength of GNAP, and through GNAP’s Request

and Response messages, it is easy to request a token for a set of attributes, a token for a

capability, or request multiple tokens at once. The documentation for the GNAP message

format is also well documented in an interactive webpage to help the developer understand

the usage of the different types of messages. The current designed version of GNAP supports

out-of-the-box RBAC, ABAC, and CBAC. Unfortunately, not all aspects of capability-based

access control are drafted yet for the protocol, and examples of such are delegation and con-

finement. Through discussions with Richer, the protocol’s design can support confinement

and delegation, but it is not the focus of the working group at the current time.

Another aim of the GNAP protocol is that the specification should be so precise that

the job from specification to implementation should not be too much of a challenge for the

developer.

We will be implementing the Redirect-based interacting flow in GNAP for our capability-

based proof of concept.

37

Chapter 5

Experiments and results

This chapter will describe the approaches we have taken and the results from trying to

introduce a capability-based code design into Rust in experiment 1 and for a capability-

based system in experiment 2. We will use the evaluation criteria listed in section 1.3. We

will begin by defining the evaluation criteria, experiments, tools and code, the capability-

based system, and the environment we used for our setup before getting into the experiments

and results.

5.1 Evaluation criteria

We will go through three approaches (experiments 1a–c) to introduce a capability-based sys-

tem for our developer in the Rust programming language and evaluate against the following

evaluation criteria:

– It should be clear to the developer when a capability operation, such as Read, is needed.

– The code design should not increase code complexity.

– The code design should be generalizable into a library.

For experiment 2, we choose the experiment from 1a–c that meets most evaluation crite-

ria. We will (2a) create a library, 2b and implement a capability-based system for a RESTful

API and then evaluate the solution against the following criteria:

38

– Adhering to the code design should be easy for the developer.

– The code design should clarify what capabilities are needed.

– Should reduce the likelihood of any confused deputy in the RESTful API.

5.2 Defining our experiments

We have looked into three approaches to creating a pattern with Rust to give us a capability

design. We studied native language features and evaluated them against the evaluation

criteria. The definition of our experiments is as follows:

1a. Generic Type Parameters and Trait Bounds 5.5 We try to model a simple

capability model with generic type parameters and trait bounds in a manner that can be

generalized and reused easily for the developer.

1b. Capability field inspired from TypeState 5.6 Using inspiration from the TypeS-

tate library to create a capability field capable of holding the action a capability should be

able to perform in the code.

1c. Using macros in Rust 5.7 We will look at macros in Rust and see how this can

generate code for us, and look at previous work where Zack Mullay is discussing in a blog

post about the capability design of code in Rust [30] and build on this knowledge to create

a CapabilityApi.

2a. Designing and creating a library 5.8 After evaluating these approaches (1a–c), we

picked the most suitable from the results of the evaluating criteria. We proceeded to design

and create a library to use in the capability system we will build in experiment 2b.

2b. Capability-based system We built a complete capability-based system containing

a RESTful API using our capability library, an implemented version of GNAP, and a web

client. We evaluate the solution against the second criteria 5.1.

39

5.3 Tools and Code

5.3.1 Tools Setup

For development, we installed Rust stable and added the nightly version of Rust. Rust

comes with great tooling, and we have added some tools to the toolkit to enhance our

development experience. We mainly used the build-in cargo command to build and manage

the project. We also installed cargo tools such as sqlx for SQL support and cargo-watch

and cargo-expand to view generated code from macros. Since we are building a library with

macros, we have also become dependent on Rust nightly features in the language installed,

and rust-toolchain has this specified where nightly is required.

Further, we have used Docker to containerize all the system’s components and used

docker-compose to make the process easier for evaluating the proof-of-concept. Building the

client, we have used NextJS, which requires npm installed. We have also containerized the

client application with Docker.

We used VSCode 1.66 as IDE and Rust-Analyzer extension to get language features into

VSCode. A MacBook Pro 2019 with a 2,4 GHz Quad-Core Intel Core i5 processor and 16Gb

memory running macOS Monterey v12.3.1 was used during the development process.

5.3.2 Code repository

We have published code for the full proof-of-concept on GitHub under the following repo:

https://github.com/spydx/capability-poc/. This repo consists of submodules, requiring

this clone command when cloning: git clone --recurse-submodules <repo>.

There are several essential parts of this repository. In the listing 5.1 the critical directories

from the root have been labeled. Everything in this repository is built manually with cargo

and npm or through docker-compose from the root.

40

https://github.com/spydx/capability-poc/

Listing 5.1: Code: Repository layout

1 | - README.md
2 | - cap-client // web client
3 | \ capabilities // capability library
4 | - capabilities-derive // derive macros in the library
5 | - src // additional code for the library
6 | - capabilityapi // experiment 1c
7 | - docker-compose.yml // system setup
8 | - dockerfiles // buildfiles for docker
9 | - gnap // GNAP protocol and AS

10 | - gnap-cli // simple test client for GNAP
11 | - simple-api // experiment 2 built with capabilities lib
12 | - trait-bounds // code examples for trait-bounds, and typestate

5.4 Capability-based system

The experiments 1a–c described in 5.2 focues on the code design, 2a on Library and API

Logic shown in section 5.4.2 and experiment 2b decribed in 5.2 focues on the overall picture

described in section 5.4.1.

5.4.1 System overview

The desired capability-based system we would like to achieve is a system consisting of four

components. The web app is responsible for holding the user’s capabilities received from the

authority server (AS) as tokens and using these tokens when interacting with the RESTful

API. The AS stores and maintains the capabilities and tokens in a database. The RESTful

API validates these tokens to a capability in a module called filter and passes the capability

to the logic of the API. The logic handles the database connection and interacts with the

data in the database. The interaction between all the components is in 9 steps, as shown in

the following simplified figure 5.1.

41

42

Figure 5.1: System: Sketch of a capability-based system

5.4.2 Filter and API Logic

The structure of the RESTful API will consist of two parts, the filter, and the logic, where

the filter receives an HTTP request with a capability token, validates this token and retrieves

the capability it represents and passes this to the logic. The logic then executes the desired

code function that the capability authorizes access to and responds to the user request in a

RESTful API manner, such as shown in the seven steps in figure 5.2

Figure 5.2: System: Sketch of the API layer

43

5.5 1a: Generic Type Parameters and Trait Bounds

In the approach, we tried to use the generic type parameters and trait bounds to create a

design that will give the developer defining traits to implement a specific capability. We

are bounding the trait to the type, enabling the developer to use functions, such as read,

on a specific type when the developer has implemented the trait. Similar to the previously

mentioned example, traits and bounds in section 2.1.

We started with the idea of a data structure, e.g., Person 5.2, that we should be able to

create, store in the database, and read out from the database. We also created a trait that

will represent our capabilities, create and read, for the struct 5.3. The trait CreateRead<S>

contains our two capabilities, create line 2 and read line 3, and our developer has to implement

this trait to be able to use the functions from this trait on our struct Person.

Listing 5.2: Traits: struct

1 struct Person {
2 id: i64,
3 firstname: String,
4 lastname: String,
5 }

Listing 5.3: Traits: capability read and create trait

1 trait CreateRead<S> {
2 fn create(firstname: String, lastname: String) -> S;
3 fn read(id: i64) -> S;
4 }

Further, we wanted to store this information in the database and hence have a service

struct maintaining the database connection 5.4. Also, for this service, we specify a trait

requiring the type T to have CreateRead<T> implemented to accept only structs of type T

with this trait implemented, such as line 2 in the example 5.5.

Listing 5.4: Traits: service struct

1 struct Service {
2 con: Pool<Sqlite>,
3 }

Listing 5.5: Traits: service trait

1 #[async_trait]
2 trait DBCreateRead<T: CreateRead<T>> {
3 async fn read_db(&self, id: i64) -> T;
4 async fn create_db(&self, data: T) -> T;
5 }

44

Implementing these mentioned traits for the struct Person and Service, we can, from our

main 5.6, create a Person struct on line 9 and create the Service on line 8. We can now call

on the functions on line 10 to store the Person and on line 11 to read it from the database.

For a complete implementation listing of this example, see Appendix A.1

Listing 5.6: Traits: main

1 async fn main() {
2 let con_str = "sqlite:bounds_persons.db";
3 let db: Pool<Sqlite> = SqlitePoolOptions::new()
4 .connect(con_str)
5 .await
6 .expect("Failed␣to␣create␣database");
7

8 let _service = Service { con: db };
9 let _p1 = Person::create("Kenneth".to_string(), "Fossen".to_string());

10 let create_res = Service::create_db(&_service, _p1).await;
11 let read_res = Service::read_db(&_service, create_res.id).await;
12 assert_eq!(create_res, read_res);
13 }

5.5.1 1a: Results

This approach works as it gives us a sense of capabilities needed to create and read from

the database. It gives the developer a pattern to work out from and shows the developer’s

intention when reading the code. This code runs and is working as intended, and extending

this example to be a RESTful API would give us a working example such as the intended

system overview figure 5.1. We would get a token with capabilities over HTTPS to validate

and run the correct functions, but we would lose the token information when running our

functions. The advantage of this approach is that we use straightforward language features

and do not have to implement libraries to follow this design.

There are, however, many other downsides to this approach. Our developers do not have

to act according to the design, making it prone to circumvent our intentions. An example 5.7

is that since our struct Person is globally implementing CreateRead, creating the struct from

its language initializer is not prohibited on line 1. Further, the developer can call create_db

on line 6 with the newly created struct without limitation since the struct Person already

implements the required trait, making the developer able to act outside its bounds.

45

Listing 5.7: Traits: init struct

1 let _p2 = Person {
2 id: rand::random(),
3 firstname: "Kenneth".to_string(),
4 lastname: "fossen".to_string(),
5 };
6 let _p2_createdb = Service::create_db(&_service, _p2).await;

Also, when expanding to several different capability traits in this design, we would get

code duplication. An example of this is wanting to create the capability traits CreateRead

and CreateDelete. Because Rust requires us to implement functions create and read for the

CreateRead trait, and the functions create and delete for the CreateDelete trait. Since Rust

requires us to implement two create functions, we will get duplicate implementations leading

to developer confusion and more code to maintain.

This approach may lead to more confusion since the design does not restrict the developer

from following the design accordingly and the presence of code duplicates. Also, this design

has no token information when executing functions, e.g., a read capability, not eliminating

confused deputy in our code when acting with other principals such as the database.

46

5.6 1b: Capability field inspired from TypeState

This work is inspired from the work of José Duante and Antonió Ravara’s “Retrofitting

TypeState into Rust” [8]. TypeState enables structs to change behavior after running a

function that changes the internal state of the struct. Their example is a Lightbulb, which

has two states, on and off. When the Lightbulb is on, we can only turn it off, and vice

versa. Extending TypeState to a capability, we could use the state of the struct to specify

the capabilities it carries, e.g., it only has the read capability, and only the read function is

available on the struct.

To get this code to work, we need to define a module line 1 for the struct to live inside. We

would create the struct with the data fields we need and add a field describing the capability

for the struct 6 inside this module. We are typing the struct with a capability type named

Caps and are storing the capability in a field named cap in the example 5.8.

Listing 5.8: TypeState: module and struct

1 mod person {
2 use async_trait::async_trait;
3 use sqlx::{Pool, Sqlite};
4

5 #[derive(Debug, PartialEq)]
6 pub struct Person<Cap: Caps> {
7 pub id: i64,
8 pub firstname: String,
9 pub lastname: String,

10 pub cap: Cap,
11 }
12 ...
13 }

Further, we use a private module inside the data structures module to create private traits

inside to handle the state changes for the data structure and manipulate the capability we

need 5.9.

Listing 5.9: TypeState: private module and traits

1 mod __private {
2 pub trait Caps {}
3 }
4

5 pub trait Caps: __private::Caps {}
6 impl<__T: ?::core::marker::Sized> Caps for __T where __T: __private::Caps {}
7 #[async_trait]
8 impl __private::Caps for CreateRead {}

47

Then we can add the traits that we would want the developer to implement for the struct

inside the module containing our data structure. For this example 5.10, we have added the

trait CreateReadCap and a struct CreateRead. CreateReadCap is defined to contain two

functions, create and read from the database.

Listing 5.10: TypeState: Capability CreateRead trait

1 #[derive(Debug, PartialEq)]
2 pub struct CreateRead;
3 #[async_trait]
4 pub trait CreateReadCap {
5 async fn create(
6 db: &Pool<Sqlite>,
7 firstname: String,
8 lastname: String,
9) -> Person<CreateRead>;

10 async fn read(db: &Pool<Sqlite>, id: i64) -> Person<CreateRead>;
11 }

After the developer has implemented the necessary traits for the Person struct on line 6

in listing 5.8. The developer can in the main function (listing 5.11) call to create a Person

with the capability CreateRead on line 8, making available the create function on line 9

and read function on line 13 on the data structure. Implementation of the traits has been

omitted and is part of the appendix B.1 as a complete implementation listing.

Listing 5.11: TypeState Example: main

1 async fn main() {
2 let connection_string = "sqlite:persons.db";
3 let database = SqlitePool::connect(connection_string)
4 .await
5 .expect("Failed␣to␣get␣database");
6

7 let p_created =
8 Person::<CreateRead>::
9 create(&database, "Kenneth".to_string(), "Fossen".to_string())

10 .await;
11

12 let p_read = Person::<CreateRead>::
13 read(&database, p_created.id)
14 .await;
15 }

48

5.6.1 1b: Results

This approach wraps everything into a module for each struct and organizes the code’s public

and private parts. The module contains a private module that maintains the capabilities for

the struct, and it also contains the implementation of the essential traits for these capabilities,

ensuring correct implementation. Supplying the CreateDelete struct to the Person struct

will reveal only these functions for the developer, e.g., Person::<CreateDelete>::read,

cleanly maintaining the object’s capability and making it clear to the developer. Supplying

the capability this way may seem unfamiliar to the developer, but it shows the developer’s

intent well in the code. The shown implementation does not encapsulate a unique token

with its capabilities. However, since the capabilities are structs, we could extend the struct

to carry the token to be passed further down the line, e.g., to functions and databases,

making it compatible with a future capability database. The capability field approach is

well-designed, cleanly putting everything into a module for the developer to maintain and

relatively straightforward to use when developing.

On the other hand, this module has to contain everything regarding the struct. All

imports, traits, implementations, structs, and functions must reside inside the module, which

could lead to some confusion for the developer, making the learning curve for the design

steeper. Manually maintaining this capability module for the struct can be a challenge.

However, creating a sound library such as TypeState to manage the struct will relieve manual

work for our developer. Also, the same problem occurs in this design as in E1a 5.5, that

we will get duplicate implementations of code for certain combinations of capabilities, e.g.,

CreateRead and CreateDelete will have a duplicate Create function required by the traits.

Due to the duplicate code issu¡

49

5.7 1c: Capabilities using macros

In this experiment, we need to provide some background in 5.7.1 on previous relevant

work that we will use to describe the foundation for our example implementation in Capa-

bilityApi 5.7.2. We will review the example implementation CapabilityApi with the same

design in section 5.7.3, look at its results, then extract and design a library from the results

of CapabilityApi in section 5.8 to use in the last experiment in section 5.9.

5.7.1 Previous work with macros

Inspiration for this work came from Zack Mullaly’s discussions [29] and his work with

macros [30]. Macros are a powerful feature in the Rust language that enables the devel-

oper to generate code from a simple pattern. An example of an earlier discussed macro

that is very useful is the vec! macro (line 1 in listing 2.2), which uses the macro_rules!

keyword in the background to generate the required code structure.

In Mullaly’s discussions, he describes the following example 5.12 of how we can use

traits and structs to guard and compose capabilities in Rust. He starts by defining a data

structure, e.g., line 1, that he would like to store in a database. Then he creates structs that

describe capabilities, e.g., line 7 Save<T>(pub T) and Update<T>(pub T). These can hold

the required data structure and describe the capability to perform. Continuing, he defines a

trait that he implements the capability for the database. To save a user in the database, the

developer needs to use the handle_user_registration<DB> function, where our database

(DB) has the constraint Capability<Save<User>> implemented on line 23.

Listing 5.12: Macro: Mullaly’s Capability example [30]: impl Capability

1 struct User {
2 pub email_address: String,
3 pub password_hash: String,
4 pub username: String,
5 }
6

7 struct Save<T>(pub T);
8 struct Update<T>(pub T);
9

10 struct SQLite {
11 db: Connection,
12 }
13

50

14 impl Capability<Save<User>> for SQLite {
15 type Data = User;
16 type Error = DatabaseError;
17

18 fn perform(&self;, save_user: Save<User>) -> Result<User, DatabaseError> {
19 // Execute a SQL query.
20 }
21 }
22

23 fn handle_user_registration<DB>(db: &DB;, user: User) -> Result<User, DatabaseError>
24 where DB: Capability<Save<User>>
25 {
26 db.perform(Save(user))
27 }

Listing 5.13: Macro: Mullaly’s macro example [30]

1 macro_rules! capability {
2 ($name:ident for $type:ty,
3 composing $({$operations:ty, $d:ty, $e:ty}),+) => {
4 trait $name: $(Capability<$operations, Data = $d, Error = $e>+)+ {}
5

6 impl $name for $type {}
7 };
8 }

Mullaly continues to explain how his example can be generalized to a macro called

capability! in listing 5.13 that he uses to compose new capabilities from these basic build-

ing blocks 5.12. Using the capability macro from 5.13, such as in example 5.14, generates

a trait and impl and specifies the traits it requires in the design. On line 1 we invoke the

macro capability! and it creates the traits needed for their implementation, e.g., line 6

and line 11. The developer can now implement these traits and use the earlier exempli-

fied structure to require the data structure to be wrapped in capabilities when passed to

functions performing actions against the database. This approach is similar to the earlier

“Generics and TraitBounds” example 5.5. However, using a macro will create a capability

to compose fine-grained traits for the developer, and we will implement this approach in the

next section.

Listing 5.14: Macro: capability! macro use and result

1 capability!(CanChangeAndDeleteUserData for SQLite,
2 composing { Save<User>, User, DBError },
3 { Update<User>, User, DBError },
4 { Delete<User>, (), DBError });
5

6 trait CanChangeAndDeleteUserData:
7 Capability<Save<User>, Data = User, Error = DBError>
8 + Capability<Update<User>, Data = User, Error = DBError>
9 + Capability<Delete<User>, Data = (), Error = DBError {}

10

11 impl CanChangeAndDeleteUserData for SQLite {}

51

5.7.2 Implemeting CapabilityApi with macro

We implemented a version of the capability macro into a project called CapabilityApi (found

in the repository 5.3.2 under capabilityapi). The CapabilityApi follows the same design as

Mullaly and uses the macro more or less as he described it. We changed the macro to support

async operations, making us dependent on a particular async_trait crate because of using

the sqlx crate when doing SQL queries. The rest we left intact such as Mullaly’s example.

In the example 5.15 from our implementation of CapabilityApi, we focus only on one

capability, CanReadUserData defined on line 2. This capability is accessible through an

HTTP GET request to the URL http://localhost:8080/users/{id}, where {id} is a

string identifier for the user. When the HTTP Server receives the request, the function

get_user on line 4 get executed and calls handle_find_user<DB> on line 13. In the handler

the Read capability is passed db.perform(Read(name)).await on line 17, and performs

the implemented trait Capability<Read<String>> for Database on line 25 resulting in

returing the requested data from the database to user through the initial function call.

We can now interact with our design through HTTP requests, successfully adhering

to Mullaly’s design with an HTTP Server. We did not extend CapabilityApi to use an

HTTP request filter to interpret tokens to types, as this is considered a part of the next

experiment 5.9. We did extend the HTTP server with a simple filter to grant access when

receiving a Bearer token containing the string “Kenneth”, tested and shown in listing 5.16.

Listing 5.15: Macro: Excerpt from: CapabilityApi

1 capability!(CanReadUserData for Database,
2 composing {Read<String>, User, DatabaseError});
3 // GET http://localhost:8080/users/{id}
4 pub async fn get_user(user: web::Path<String>, pool: web::Data<Database>) -> impl

↪→ Responder {
5 let parsed_user: String = user.into_inner();
6 let db = pool.get_ref();
7 let u = handle_find_user(db, parsed_user)
8 .await
9 .expect("Failed␣to␣find␣user");

10 serde_json::to_string(&u).unwrap()
11 }
12

13 pub async fn handle_find_user<DB>(db: &DB, name: String) -> Result<User,
↪→ DatabaseError>

14 where
15 DB: CanReadUserData,
16 {
17 db.perform(Read(name)).await

52

18 }
19

20 #[async_trait]
21 impl Capability<Read<String>> for Database {
22 type Data = User;
23 type Error = DatabaseError;
24

25 async fn perform(&self, find_user: Read<String>) -> Result<Self::Data,
↪→ Self::Error> {

26 let userid = find_user.0;
27 let record = sqlx::query!(r#"SELECT␣*␣FROM␣users␣WHERE␣name␣=␣$1"#, userid,)
28 .fetch_one(&self.db)
29 .await
30 .map_err(e e);
31

32 let user = match record {
33 Ok(r) => User {
34 name: r.name.unwrap(),
35 password: r.password.unwrap(),
36 },
37 _ => return Err(DatabaseError),
38 };
39

40 Ok(user)
41 }
42 }
43

44 pub struct Database {
45 pub db: Pool<Sqlite>,
46 }
47

48 pub struct User {
49 pub name: String,
50 pub password: String,
51 }

Listing 5.16: Macro: Testing Bearer token with: CapabilityApi

1 #!/bin/bash
2 URL="http://localhost:8080/users/"
3 HTTPCODE=‘curl -s -o /dev/null -s -w "%{http_code}\n" $URL‘
4 if [$HTTPCODE = "401"]; then
5 echo "Access␣denied␣to␣$URL"
6 fi
7

8 echo "With␣Token␣for:␣$URL"
9 curl -s -H "Authorization:␣Bearer␣Kenneth" $URL | jq

53

5.7.3 1c: Results

The CapabilityApi example was easy to write and modular to fit most needs when structuring

the code. One of the obvious challenges with this design is to make the developer adhere to

the design and implement all the traits.

In CapabilityApi, the developer must create all the possible mutations needed in the

capability macro. The design requires the developer to know and understand the structure

before using the macro. Having no knowledge or struggling to understand the design, it is

easy to circumvent the capabilities needed for interacting with the database intentionally or

unintentionally. The design is unclear when a capability, such as Read, wraps a struct.

There are a few quirks, especially when accessing data in the Capability trait, where

we have to use find_user.0 to access the required string identifier, line 26. Mullaly’s

capabilities also do not carry the token of a capability but are extendable to do it.

The overall design looked promising, and we decided to generalize this structure and

macro into a library to help the developer adhere to the design and make it clear when

developing what capabilities are needed to be passed to functions to perform the required

interaction.

54

5.8 2a: Designing and creating a library

In experiments 1a–c, the resulting main challenge is the amount of work the developer has to

do to adhere to the design. It is also unclear when to use a capability and if the developer has

implemented it for a particular struct. These issues are essential to address because if they

are not, the developer may not see the use of such a library. We chose to use experiment 1c

(CapabilityApi) 5.15 approach since it evaluated well against our evaluation criteria. We will

call this library Capabilities and store the source code in the folder named capabilities in

the repository 5.3.2.

5.8.1 Deciding design and developer interaction

From CapabilityApi, maintaining the code for the developer would become a challenge. To

mitigate this, we had to think about how the developer should be interacting when using

this capability design. We have seen several successful libraries in the Rust Community,

e.g., Serde crate, that uses Procedural Macros with annotations to aid the developer. This

approach is quite common in Rust, not only for external libraries but also for Rust’s language

features, such as deriving a debug trait on a struct, e.g., #[derive(Debug)].

We decided that a similar approach might be an excellent way to remove some confusion

and ease the developer’s work to maintain the code design. We will create three procedural

macros to be used to connect the design described in experiment 1c 5.15 together. These

macros will do the job for the developer to adhere to the intended design.

5.8.2 The Library: capabilities

The library will contain all three macros and a filter. They are named service,

capabilities, and capability. The first macro, service, will be responsible for wrap-

ping the external entity we want to interact with a capability. In this example 5.17, we are

annotating the main function to add a global service entity, such as in line 1, for our SQLite

database. We added a custom name, “db”, for the field name holding the database for our

service instance, making it accessible to the developer by that name. The macro generates a

55

hidden struct called CapService containing the field name “db” and a corresponding struct

CapServiceError for error handling, shown in the example listing 5.18. There can only be

one usage of this macro in our codebase, as it generates a static name for the service struct.

Listing 5.17: Lib: service usage

1 #[service(SqliteDb, name = "db")]
2 #[actix_web::main]
3 async fn main() -> Result<(), std::io::Error> {
4 ...
5 }

Listing 5.18: Lib: service generated code

1 use sqlx::Pool;
2 use async_trait::async_trait;
3 pub type SqliteDb = Pool<Sqlite>; //custom type stored in the lib
4 pub struct CapService {
5 db: SqliteDb,
6 }
7

8 pub struct CapServiceError;

The second macro, capabilities, is used on data structures that we want to pass to

the service, and it also lists the capabilities we want to perform against the service. In the

example listing 5.19, we can see on line 1 that we want the capabilities Create, Read, and

Delete on the Bowl data structure, and we also have to specify the identifier field for the

struct. The macro invokes an enhanced version of the capability macro that generates all the

traits, such as in listing 5.20, connecting the struct to the CapService that the service macro

created. The developer can now create functions that will issue the capability operation for

the data structure against the service using the third macro.

Listing 5.19: Lib: capabilities usage

1 #[capabilities(Create, Read, Delete, id = "id")]
2 pub struct Bowl {
3 id: i64,
4 name: String,
5 }

Listing 5.20: Lib: capabilities generated code

1 pub trait CapCreateBowl: Capability<Create<Bowl>, Data = Bowl, Error =
↪→ CapServiceError> {}

2 impl CapCreateBowls for CapService {}
3

4 pub trait CapReadBowl: CapabilityTrait<Read<Bowl>, Data = Bowl, Error =
↪→ CapServiceError> {}

5 impl CapReadBowl for CapService {}
6

56

7 pub trait CapDeleteBowl: Capability<Delete<Bowl>, Data = Bowl, Error =
↪→ CapServiceError> {}

8 impl CapDeleteBowl for CapService {}

The third macro is capability, and we append it to functions that we would like to

perform a capability operation for a capability specified on the data structure. Each func-

tion can only implement one capability, such as in this example 5.21, Create for the Bowl

data structure on line 9. The signature for the create_db_bowl has to be written by the

developer, but the Rust compiler will warn if this signature is not compatible with the

macro definition. This warning could be anything from returning other structs than Bowl

and not using CapServiceError as an error value. As seen in this example, the capability

provided is not limiting the SQL operations the developer can perform in the function as

we perform both INSERT and SELECT. We will discuss this further in the design choices

section for the library 5.8.3. The defined function create_db_bowl goes through a trans-

formation when the macro is applied to it and spits out the indented design shown in ex-

ample 5.22. The body of the function gets preserved and injected into the perform section

of the impl CapabilityTrait<Create<Bowl>> for CapService on line 16. To reach the

perform section of the code in 5.22 the design, we validate the capability received from the

client against the correct capability for a CapCreateBowl. In the example, we need a Create

capability to pass data further specified on line 9.

Listing 5.21: Lib: capability usage

1 #[capability(Create, Bowl)]
2 pub fn create_db_bowl(bowl: Bowl) -> Result<Bowl, CapServiceError> {
3 let _res = sqlx::query!(r#"INSERT␣INTO␣bowls␣(name)␣VALUES␣($1)"#, bowl.name)
4 .execute(&self.db)
5 .await
6 .expect("unable␣to␣create␣bowl");
7 let b = sqlx::query_as!(Bowl, r#"SELECT␣*␣FROM␣bowls␣WHERE␣name␣=␣$1"#, bowl.name)
8 .fetch_one(&self.db)
9 .await

10 .expect("Didn’t␣fint␣any␣bowls");
11 Ok(b)
12 }

Listing 5.22: Lib: Excerpt from capability fn code generated

1 pub async fn create_db_bowl<Service>(
2 service: &Service,
3 param: Bowl,
4 cap: ::capabilities::Capability,
5) -> Result<Bowl, CapServiceError>
6 where
7 Service: CapCreateBowl,
8 {

57

9 let valid = ::capabilities::Create { data: param };
10 if valid.into_enum().eq(&cap) {
11 service.perform(valid).await
12 } else {
13 Err(CapServiceError)
14 }
15 }
16 impl CapabilityTrait<Create<Bowl>> for CapService {
17 type Data = Bowl;
18 type Error = CapServiceError;
19 fn perform<’life0, ’async_trait>(&’life0 self, action: Create<Bowl>,
20) -> ::core::pin::Pin<
21 Box<dyn ::core::future::Future<Output = Result<Self::Data, Self::Error>>
22 + ::core::marker::Send
23 + ’async_trait,>,>
24 where ’life0: ’async_trait, Self: ’async_trait,
25 {
26 Box::pin(async move {
27 if let ::core::option::Option::Some(__ret) =
28 ::core::option::Option::None::<Result<Self::Data, Self::Error>>
29 {
30 return __ret;
31 }
32 let __self = self;
33 let action = action;
34 let __ret: Result<Self::Data, Self::Error> = {
35 let bowl: Bowl = action.data;
36 {
37 // injected function block specified by the developer
38 }
39 };
40 #[allow(unreachable_code)]
41 __ret
42 })
43 }
44 }

We need to map external capabilities to these internal functions in the last connecting

piece to have a RESTful API. The library provides an HTTP filter mapping external capa-

bilities from a client to these functions generated by the above macros. An HTTP request

with a capability token will run the function with the corresponding capability. In the ex-

ample 5.23, we are viewing the HTTP Handler for creating a new bowl. The filter has

preprocessed the incoming capability from a Bearer token to the Capability on line 5. The

filter gives us the correct capability to pass on to the create_db_bowl function under the

name variable name cap. We proceed to validate, as shown in example 5.22 on line 10, the

required capability against the received capability and throws an error if invalid. A full list-

ing of the implementation and expanded code is available in the repository (see section 5.3.2)

under the folder simple-api as a file named simple_api.rs. The filter implementation is

explained in experiment 2b 5.9 because the implementation depends on the choices made for

the capability system.

58

Listing 5.23: Lib: filter example

1 #[post("/bowls/")]
2 pub async fn create_new_bowl(
3 json: web::Json<BowlsDTO>,
4 svc: web::Data<CapService>,
5 cap: Capability,
6) -> impl Responder {
7 let svc = svc.get_ref();
8 let newbowl: Bowl = Bowl {
9 id: 0,

10 name: json.name.to_owned(),
11 };
12

13 println!("{:#?}", newbowl);
14 println!("Cap:␣{:#?}", cap);
15 match create_db_bowl(svc, newbowl, cap).await {
16 Ok(bowl) => HttpResponse::Ok().json(bowl),
17 _ => HttpResponse::BadRequest().json("{␣\"request\":␣\"bad␣request\"␣"),
18 }
19 }

5.8.3 Decisions made when designing the library

When writing the procedural macros library, there was a decision only to develop this library

to a proof-of-concept (PoC) for capabilities. We implemented only a few capabilities named

Create, Read, Update, Delete, ReadAll, DeleteAll, and UpdateAll to not let the scope

get too big.

Also, we decided that these capabilities should not carry the unique token that arrives

from the web client. There are no existing databases that support capabilities when querying

for data, so there is no need to preserve this information. The capabilities are extendable

for this feature, with some work for future databases that support capabilities.

We are not restricting the developer when writing an SQL Statement inside a capability

function block, e.g., a DELETE SQL statement inside a function that only has a Create listed

as their capability, such as mentioned when explaining the capability macro in section 5.8.2.

The decision not to restrict this is because we would want to have a database that supports

receiving capabilities such that the mentioned case is not a problem.

Further, we have used static names for the CapService and CapServiceError, restricting

the developer to only have one service in their API. We could add a feature for the developer

59

to name the struct himself or keep the default name when needed. We wanted to avoid too

many new parameters for this PoC library and not increase the learning curve.

Lastly, all the macro-generated structs, traits, implementations, and fn blocks are in the

same scope where they are used, meaning that we can only create a single file API for the

developer. A single file API will suffice for the PoC, but it will become a problem for larger

projects and needs a resolution before being used in such a manner. The implementation for

Simple–api is this way; everything is stored in the file main.rs and works as intended.

5.8.4 2a: Results

We created a library with three procedural macros to implement the design we used in

CapabilityApi. The macros in the library do most of the work for the developer and reduce

the design burden. The developer only needs to understand how the macros are connected

to use this library. When using, e.g., the capabilities macro on a struct, we must implement

the missing traits before our code compiles. Later extending the capabilities for a struct

is done by adding the capability operation, e.g., Update, to the capabilities macro for

the struct and implementing the corresponding capability function block. Together with the

implementation-specific filter, the macros give the developer an easy task adhering to the

indented capability design and harnessing its features described in API Overview figure 5.2

Currently, there are several limitations to how to use this library, and they are all men-

tioned earlier in this section 5.8.3. The most significant limitation for developers is that they

cannot structure the code exactly the way they want. We have only tested the library with

simple data models. Complex models such as a Person data structure also containing a list

of Addresses could pose a problem and might need an extension of the library. These issues

need to be verified and solved in the future development of the library. Also, the macros

are not validating that the code block’s content is doing the correct capability operation,

e.g., a function annotated with Update and the developer writes a DELETE SQL statement.

Having capability tokens such as Biscuits and a database that handles data querying with

such tokens could solve this.

60

5.9 2b: Putting it together to a RESTful capability

system

In experiment 2b, we are looking to integrate the previously created library 5.8 from 2a and

a client with an authorization server (AS) in a distributed system, such as in the following

figure 5.3. We will first cover a few design choices to limit the implementation scope to get

a proof-of-concept. Then we will shortly describe the work we did on GNAP, describe the

interactions in the capability system, and visualize the interactions flow between the different

components when trying to achieve the described capability system in section 5.4 and shown

in figure 5.3.

Figure 5.3: Sketch of a capability-based system

5.9.1 Decisions made before implementing the capability system

OAuth is the dominant authorization authority framework in the industry, but it has issues

that they are trying to resolve in the next iteration of the OAuth version. Justin Ritcher

has been working with OAuth and has seen these problems and created OAuth.XYZ, now

61

named GNAP, to address OAuths issues. To avoid the complex nature of OAuth and remove

the requirement for a browser, we have chosen to use a minimal implementation of GNAP

as the authorization authority server (AS). We have only implemented the Redirect-based

Interaction flow to reduce the scope, as it is the most suitable flow for a web client. GNAP

relies on the Signing HTTP Messages standard [3], and this standard is still in revision, and

there are no working implementations in Rust. We decided not to implement this central

security feature in GNAP since we are not evaluating the security for GNAP but are instead

harnessing the power of GNAP’s transactional approach. In the Tokens & Authorization

Authorities (chapter 4), we reviewed several token types that can carry capabilities, and we

have chosen for simplicity to use Opaque Tokens 4.1.5. An Opaque Token is a random string

token that does not serve any meaning except at the AS. Future development of the library

should consider switching to Biscuits 4.1.4 or similar tokens that are capability capable.

5.9.2 Implementing a RESTful capability system

Since GNAP is still in draft at Internet Engineering Task Force (IETF) and only has reference

implementation in Java, we decided to extend an implementation we found in a repository

on GitHub from the user dskyberg at https://github.com/dskyberg/gnap. We cloned

and detached the repository when evaluating this GNAP implementation. We found the

implementation is partial and decided to extend it with Opaque Token generation, token

introspection, an authentication- and authorization page, and completed the Redirect-based

Interaction flow for the protocol. These features result in a minimum viable solution for

testing a capability system.

The Redirect-based Interaction flow seen in listing 5.4, which we implemented following

the GNAP draft for the AS, consists of 11 steps to make up a transaction.

(1) The user Starts a Session with the client, and (2) the client initiates a GrantRe-

quest 5.24 Requesting access from the AS. The request create an initial transaction holding

the claim (line 4–17).

(3) The AS responds with an Interaction Request containing a unique ID supplied to our

(4) client to redirect the user for (5) authentication and (6) authorization.

62

https://github.com/dskyberg/gnap

Figure 5.4: GNAP: Redirect-based Interaction flow sketch from specification [35]

(7) The AS will continue the process by redirecting the user back to the client with a

continuation id. (8) The client uses the supplied id in a Continuation Request sent to the

AS.

(9) The AS issues the granted access as capability tokens as shown in listing 5.25. The

Opaque token on 5, in this example, (10) is used when requesting to create a resource on

the RS, and (11) the RS responds accordingly.

63

Listing 5.24: GNAP: GrantRequest JSON from step (2)

1 {
2 "access_token": [
3 {
4 "label": "create_bowls",
5 "access": [
6 {
7 "type": "waterbowl-access",
8 "actions": [
9 "create"

10],
11 "locations": ["http://localhost:8080/bowls/"]
12 }
13],
14 "flags": [
15 "bearer"
16]
17 },
18],
19 "client": "7e057b0c-17e8-4ab4-9260-2b33f32b2cce",
20 "interact": {
21 "start": ["redirect"],
22 "finish": {
23 "method": "redirect",
24 "uri": "localhost:8000/gnap/auth",
25 "nonce": "e744d1f0-e601-455f-a696-57c6b0a21280"
26 }
27 }
28 }

Listing 5.25: GNAP: Granted Access Token JSON from step (9)

1 {
2 "access_token": [
3 {
4 "label": "create_bowls",
5 "value": "Y6M65CQM2X4GJN8KY6FH8D8AHD28JX3G4WZP8JBEM77BTC5", //Opaque Token
6 "access": [
7 {
8 "type": "waterbowl-access",
9 "actions": [

10 "create"
11],
12 "locations": ["http://localhost:8080/bowls/"]
13 }
14],
15 "flags": [
16 "bearer"
17]
18 },
19],
20 }

64

We used the implementation Simple–api, that we created in section 5.8, as the resource

server (RS) for this experiment. The RS uses the created capabilities library to adhere to

the design and require, e.g., the capability Create to create a Bowl resource on the RS. To

make this interaction easier to work with, we also created a simple javascript client with

NextJS. The client follows the Redirect-based interaction flow with the AS and stores the

issued capabilities within the client. For each action we would like to achieve at RS, (1) the

client sends the correct capability token with the HTTP request to the RS. When the RS

receives an HTTP request with the token, (2) it introspects the token by passing it to the

introspection point on the AS. (3) If the token is valid, the AS responds with a capability

operation and resource path. (4) The capability operation is passed from the filter and

evaluated at the resource paths function, such as shown in figure 5.5. (5)(6)(7) only executes

if the capability is correct and can perform the correct operation.

Figure 5.5: System: Sketch of the API layer

We will not cover more implementation details of the GNAP protocol here. However, the

entire GNAP source code is accessible in the gnap folder located in the shared repository for

the proof-of-concept 5.3.2.

65

5.9.3 2b: Results

We have successfully created a capability system we described and created a sketch of in

section 5.4. The client holds the capabilities, the AS issues capabilities with tokens, action,

and a reference, and the RS maintains these capability restrictions through the created capa-

bilities library. The GNAP message format in a GrantRequest, contains enough information

to represent capabilities as object references and can be stored in the client, such as the

sketch from Capability Myths 3.8, and used when interacting with the RS. The capabilities

library aid the developer when creating the RS, as we previously evaluated. The capabilities

are coded into the RS dictating the required capability when interacting with data. The

filter helps the RS interact with the AS to evaluate the capability tokens received from the

client to the proper function calls in the RS.

We have only achieved the minimal features of a capability-based system. The current

design only allows the client to request a token with one capability action, such as the

GrantRequest for Create in listing 5.24. GNAP allows for more capability actions, e.g., the

actions array contains the actions create and read, but our design in the library does not

handle this case. Challenges such as delegation and confinement (Capability Myths 3.2.3

figure 3.9) are not solved. GNAP’s initial transaction design supports delegation and con-

finement, but none of the drafts for GNAP specify these properties; this is future work.

The entire solution has not been tested on a large scale, e.g., with multiple APIs and stress

testing. Also, it lacks a complete GNAP implementation and a management solution of the

possible capabilities and users in the system.

66

Chapter 6

Discussion, Conclusion and Future

work

In this chapter, we will take a second look at our research goals before we discuss the findings

in chapter 5. We will interpret the results and how they fare against our evaluation criteria

and discuss the capability-based system solution we created. This solution will provide

the basis for answering our research questions from section 1.3 in our conclusion before we

mention future work in the last part of this chapter.

6.1 Discussion

Our research goal is to implement CBAC in a capability-based system with RESTful APIs

to limit confused deputy problems. Previous research has shown that we can reduce possible

confused deputies between two principals acting together by harnessing the flexibility of

capabilities.

We decided to approach this using the Rust programming language, focusing on using

built-in language features to create a design pattern that could hold capabilities inside a

RESTful API. To achieve a capability-based system, we need an authorization authority,

and we chose GNAP because it supports capabilities. The design pattern and GNAP would

give us a capability-based system that supports CBAC.

67

We have shown two things through these experiments (1a–c and 2a–b). (1) We have

composed code in Rust, a non-capability language, into a design pattern and library that

enabled functions to require capability types to execute within a RESTful API. (2) Combin-

ing the RESTful API built with the created library with a GNAP AS in a system enables a

client to request capability tokens from the AS and use capability tokens to access the RS,

just as our RESTful API, to run functions in the code.

We were uncertain that using Rust would make this library possible as it is a non-

capability language and evaluates poorly in Hillert’s thesis [20]. However, surprisingly it has

powerful language abstractions that enabled us to create a design and implement this library

to ease the developer’s job in adhering to the created capability design within the RESTful

API.

The implemented library enables the developer to specify the available CRUD operations

for a data structure in the RESTful API. It aligns with the PoLP and shows the implemented

operations for the developer in the RESTful API. Issuing a valid token from the AS with an

unimplemented operation for a data structure will not result in any execution of functions

in the API. It is restricting users from ”acting outside their intended permissions” [11].

The myths Miller [27] describes have made it easier to see the difference between classic

RBAC and ABAC compared to CBAC. The illustration 3.8 shows us that the user principals

are holding the capabilities and not the resources. The capability-based system we have

created aligns with this visualization of the system as expected. The user authorizes the AS

to delegate the user’s capabilities to a client that uses these capability tokens to interact

with the RS principal.

Hardy [19] argued that such a capability-based system would reduce confused deputy

problems if not removing them, and we believe that this approach carries the same properties.

Also, GNAP needs an extension to support the last two properties, (1) delegation and (2)

confinement, which have not been implemented in this system.

We mentioned that this work would be an addition to the work of Yarygina. Append-

ing this capability-based system to her implementation of MissFire [40] will enable secure

communication between authenticated services and restrict function calls between each ser-

vice. Requests between the different RESTful APIs in an MSA have to be equipped with a

capability token to flow to other services.

68

We focused on design patterns that enabled capabilities that only use Rust’s built-in

language features that we could generalize to a library. We have shown through the creation

of the library that there is an approach that can resemble CBAC without having native

support for object capabilities in the language. However, there have been recent discussions

in the Rust community to enhance Rust’s approach to capabilities and solve the “context

problem”, such as these blog posts [25]and discussion [24]. If the Rust standard accepts

these discussed additions, it could lead to a different approach that may further enhance a

library, such as the created capabilities library in 2a 5.8

The library is also developed only as a proof-of-concept, and as mentioned 5.8, there are

several limitations due to the library’s design. The current state of the library does not make

it ready for production, but it is a start at approaching CBAC in a RESTful API.

Since the focus was not on the security of GNAP but on the transactional behavior of

GNAP and support for capabilities it provides, we skipped essential parts of the implemen-

tation mentioned in 5.9.1. There remains work to be done further to enhance this capability

system, and one of them is to ensure the GNAP security mechanisms work as intended in

this setup. Also, the draft we leaned on for implementing GNAP has expired, and a new

version of the document is in place. Other standards that we need to rely upon, e.g., Signing

HTTP Messages, are also currently in draft. The workgroup responsible for these drafts

also just had a hackathon where they uncovered several minor implementation challenges in

the reference implementation and walked away with new knowledge to add to GNAP [34].

Using such an early version of a protocol might be risky as it is subject to change or will not

make it out of the design phase. There seems to be a community around GNAP that wants

it to succeed. It might even take up the competition with today’s industry-standard OAuth

2 due to GNAP’s transactional approach to authorization.

Also, delegation and confinement are the two last parts of the capability system that

we need to implement, and they were excluded from the scope due to the share size of the

project. To achieve delegation and confinement, GNAP needs to be extended.

We represent capabilities in this system through Opaque Tokens. The tokens do not

carry any information, except capability operation and a resource reference, but not in the

same manner as JWTs or Biscuits, and were chosen for simplicity. However, we believe the

unique capability token should carry more information for fine-grained access control. In

the capability-based system, we created a capability that represents a table. We believe

69

a capability in this system should represent one row in the database instead. We chose

the capability-as-table approach since we believe the database should evaluate the token to

return the data for the capability. However, there is no such database or extension that

evaluates a capability to row to the writer’s knowledge at the time of writing. It is also why

the designed library does not carry the capability token into functions.

6.2 Conclusion

This research explores how we can achieve CBAC in a RESTful API using Rust and GNAP.

Through our experiment, we constructed a system so we can confidently answer the research

questions listed in 1.3.

RQ1: “Can we structure our code or utilize Rust’s ecosystem to achieve CBAC within a

RESTful API?”

Through experiment 1a–c, we explored a few approaches to incorporating capabilities

into the code itself. Two approaches showed some weaknesses that we would not want in our

design, but 1c, with the help of macros, we built a complete RESTful API that allowed us

to guide the developer to better decisions when creating the API. We successfully structured

the code and generalized it into a library through experiment 2a. Further, we used this

library in experiment 2b.

RQ2: “Can CBAC give fine-grained access control and avoid confused deputy problems in

a RESTful API?”

CBAC can, such as ABAC, give us fine-grained access control on actions when interacting

with the RESTful API. The library allows us to specify the actions available to the system’s

user that the developer implements. The current implementation of the library has coarse-

grained access control, and the access represents access to a table instead of a row of data.

We chose not to implement fine-grained, as we believe this would require a capability-based

database that supports representing a capability as a row and not a table.

70

We implemented a minimal version of a GNAP AS. Due to the lack of implementation of

standards required, e.g., Signing HTTP Messages for Rust, we did not implement security

features such as HTTP signing of messages the GrantRequest. Therefore we cannot docu-

ment removing any confused deputy, even though the theory of a capability-based system

suggests this.

RQ3: “Could GNAP help us realize capability-based fine-grained access control in a REST-

ful API?” The flexible format of Grant Requests and Responses in GNAP is undoubtedly

helping us construct capability-based access control. We are leaning on the current standard

that allows us to request multiple tokens with tiny scopes that give us a coarse-grained access

control. We could narrow this down to fine-grained access control with a capability-based

database.

We looked at different design patterns used internally in the API with Rust. We extracted

the design pattern to a library using Rust’s language features, making the developer’s job

easier. Further, we constructed a capability-based system using GNAP, the RESTful API,

and created a minimal client that would use capabilities to access the RESTful API. We

have created a capability-based system for the modern backend. The design adheres to the

properties of a capability-based system and can serve as a basis for future research on this

topic.

6.3 Future work

We now have proof-of-concept of a capability-based system within a RESTful API-style

architecture, and it can form the basis of future research regarding GNAP and CBAC in

RESTful APIs. Listed in no particular order are a few ideas to build on top of this research

we can suggest:

• When we created the library, we made some design choices that did not scale well in

other projects. Sorting these issues listed in 5.8.3 and supporting complex data models

would lead to a more adaptable library that can be tested for more extensive use cases

and measure performance against a similar ABAC solution.

71

• Another interesting approach would be to evaluate how this capability-based system

handles a complex microservice architecture. We have created a capability-based sys-

tem and only evaluated it as a single RESTful API and not against other architecture,

such as event-driven architectures.

• We build a minimal implementation of a client for the proof-of-concept. Researching

how a client would fare when each capability token is an object reference in a complex

model would help discover potential issues and limits and lead to best practices or

usability studies for clients in a capability-based system.

• A limitation of this thesis of CBAC in a capability-based system is that we lack a

database that supports receiving capability tokens. A capability database would receive

a capability token, and this would represent a row of data in a table. There are many

challenges in this scenario, such as connecting the API and the database? Who owns

the tables? How does this work with complex models? Having such a database could

let an API represent a database connection with a capability token. Then as a proper

capability-based system, letting the API pass capability tokens from the user to the

database to return data would further bring APIs closer to PoLP and reduce confused

deputies such as SQLi.

• We need tokens to support querying data from a capability-based database. Would

Biscuits suffice for this purpose? Can they be extended to serve this purpose? Also,

how would Biscuits or similar tokens fare in this capability-based system that we

created?

• GNAP is in development, and there are only a few libraries implementations for clients

and servers. This work is mainly done within the working group. However, they need

help researching different security aspects, such as fully implementing all the flows with

Signing HTTP Message support and similar projects that would help the standard

greatly toward finalization.

• Extending GNAP to support the two last capability myths, delegation, and confine-

ment, would require an extension of the GNAP core protocol into a new RFC.

72

73

Bibliography

[1] Wikipedia:10,000 most common passwords - wikipedia.

URL: https://en.wikipedia.org/wiki/Wikipedia:10,000 most common passwords.

[2] HTTP cookie.

URL: https://en.wikipedia.org/w/index.php?title=HTTP cookie&oldid=1081477230. Page

Version ID: 1081477230.

[3] Annabelle Backman, Justin Richer, and Manu Sporny. HTTP message signatures.

URL: https://datatracker.ietf.org/doc/draft-ietf-httpbis-message-signatures. Num

Pages: 82.

[4] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur Taly, Michael Vrable,

and Mark Lentczner. Macaroons: Cookies with Contextual Caveats for Decentralized

Authorization in the Cloud. In Proceedings 2014 Network and Distributed System

Security Symposium, San Diego, CA, 2014. Internet Society. ISBN 978-1-891562-35-8.

doi: 10.14722/ndss.2014.23212.

URL: https://www.ndss-symposium.org/ndss2014/programme/macaroons-cookies-contextual-

caveats-decentralized-authorization-cloud/.

[5] John Bradley, Andrey Labunets, Torsten Lodderstedt, and Daniel Fett. OAuth 2.0

Security Best Current Practice.

URL: https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16.

[6] Geoffroy Couprie. Biscuit, the foundation for your authorization systems - Clever

Cloud, April 2021.

URL: https://www.clever-cloud.com/blog/engineering/2021/04/12/introduction-to-

biscuit/.

74

https://en.wikipedia.org/wiki/Wikipedia:10,000_most_common_passwords
https://en.wikipedia.org/w/index.php?title=HTTP_cookie&oldid=1081477230
https://datatracker.ietf.org/doc/draft-ietf-httpbis-message-signatures
https://www.ndss-symposium.org/ndss2014/programme/macaroons-cookies-contextual-caveats-decentralized-authorization-cloud/
https://www.ndss-symposium.org/ndss2014/programme/macaroons-cookies-contextual-caveats-decentralized-authorization-cloud/
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16
https://www.clever-cloud.com/blog/engineering/2021/04/12/introduction-to-biscuit/
https://www.clever-cloud.com/blog/engineering/2021/04/12/introduction-to-biscuit/

[7] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Architecting with microser-

vices: A systematic mapping study. Journal of Systems and Software, 150:77–97, April

2019. ISSN 0164-1212. doi: 10.1016/j.jss.2019.01.001.

URL: https://www.sciencedirect.com/science/article/pii/S0164121219300019.

[8] José Duarte and António Ravara. Retrofitting typestates into rust. In 25th Brazilian

Symposium on Programming Languages, SBLP’21, page 83–91, 2021. doi: 10.1145/

3475061.3475082.

URL: https://doi.org/10.1145/3475061.3475082.

[9] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-

ture. 2(2):115–150. ISSN 1533-5399. doi: 10.1145/514183.514185.

URL: https://doi.org/10.1145/514183.514185.

[10] Kenneth Fossen. Exploring Capability-based security in software design with Rust, 6

2022.

URL: https://github.com/spydx/capability-poc.

[11] OWASP Foundation. A01 Broken Access Control - OWASP Top 10:2021, .

URL: https://owasp.org/Top10/A01 2021-Broken Access Control/.

[12] OWASP Foundation. A04 Insecure Design - OWASP Top 10:2021, .

URL: https://owasp.org/Top10/A04 2021-Insecure Design/.

[13] OWASP Foundation. A05 Security Misconfiguration - OWASP Top 10:2021, .

URL: https://owasp.org/Top10/A05 2021-Security Misconfiguration/.

[14] OWASP Foundation. A07 Identification and Authentication Failures - OWASP Top

10:2021, .

URL: https://owasp.org/Top10/A07 2021-Identification and Authentication Failures/.

[15] OWASP Foundation. OWASP Top 10:2021, .

URL: https://owasp.org/Top10/.

[16] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. A capability-based se-

curity approach to manage access control in the Internet of Things. Mathematical

and Computer Modelling, 58(5):1189–1205, September 2013. ISSN 0895-7177. doi:

10.1016/j.mcm.2013.02.006.

URL: https://www.sciencedirect.com/science/article/pii/S089571771300054X.

75

https://www.sciencedirect.com/science/article/pii/S0164121219300019
https://doi.org/10.1145/3475061.3475082
https://doi.org/10.1145/514183.514185
https://github.com/spydx/capability-poc
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/
https://www.sciencedirect.com/science/article/pii/S089571771300054X

[17] Eran Hammer-Lahav. The OAuth 1.0 protocol.

URL: https://datatracker.ietf.org/doc/rfc5849. Num Pages: 38.

[18] Dick Hardt. The OAuth 2.0 authorization framework.

URL: https://datatracker.ietf.org/doc/rfc6749. Num Pages: 76.

[19] Norm Hardy. The Confused Deputy, December 2003.

URL: https://web.archive.org/web/20031205034929/http://www.cis.upenn.edu/~KeyKOS/

ConfusedDeputy.html.

[20] Jessica Hillert. A Comparison of the Capability Systems of Encore, Pony and Rust.

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-395655.

[21] T. Inoue, H. Asakura, H. Sato, and N. Takahashi. Key Roles of Session State: Not

against REST Architectural Style. pages 171–178. IEEE, 2010. ISBN 978-1-4244-7512-

4. doi: 10.1109/COMPSAC.2010.64. ISSN: 0730-3157.

[22] Michael Jones, John Bradley, and Nat Sakimura. JSON web token (JWT).

URL: https://datatracker.ietf.org/doc/rfc7519. Num Pages: 30.

[23] Niel Madden. API Security in Action. Manning Publications, November 2020. ISBN

978-1-61729-602-4.

URL: https://www.manning.com/books/api-security-in-action.

[24] Tyler Mandry. Contexts and capabilities in Rust - Tyler Mandry.

URL: https://tmandry.gitlab.io/blog/posts/2021-12-21-context-capabilities/.

[25] Tyler Mandry. Blog post: Contexts and capabilities in Rust - language design,

December 2021.

URL: https://internals.rust-lang.org/t/blog-post-contexts-and-capabilities-in-rust/

15833.

[26] Ross Mason. How REST replaced SOAP on the web: What it means to you.

URL: https://www.infoq.com/articles/rest-soap/.

[27] Mark S Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability Myths Demolished.

page 15.

76

https://datatracker.ietf.org/doc/rfc5849
https://datatracker.ietf.org/doc/rfc6749
https://web.archive.org/web/20031205034929/http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
https://web.archive.org/web/20031205034929/http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-395655
https://datatracker.ietf.org/doc/rfc7519
https://www.manning.com/books/api-security-in-action
https://tmandry.gitlab.io/blog/posts/2021-12-21-context-capabilities/
https://internals.rust-lang.org/t/blog-post-contexts-and-capabilities-in-rust/15833
https://internals.rust-lang.org/t/blog-post-contexts-and-capabilities-in-rust/15833
https://www.infoq.com/articles/rest-soap/

[28] Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Con-

trol and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Mary-

land, USA, May 2006.

[29] Zack Mullaly. Using ”Capabilities” to design safer, more expressive APIs in Rust.

URL: https://www.reddit.com/r/rust/comments/7rmgxo/using capabilities to design safer more/.

[30] Zack Mullaly. Zack Mullaly, January 2018.

URL: https://web.archive.org/web/20180120000131/http://www.zsck.co/writing/

capability-based-apis.html.

[31] Parthipan Natkunam. JWT signature stripping attack: A practical primer.

URL: https://medium.com/geekculture/jwt-signature-stripping-attack-a-practical-

primer-2d8f9ca00c2f.

[32] Stack Overflow. Stack Overflow Developer Survey 2021, 2021.

URL: https://insights.stackoverflow.com/survey/2021/?utm source=social-

share&utm medium=social&utm campaign=dev-survey-2021.

[33] Aaron Parecki. It’s Time for OAuth 2.1.

URL: https://aaronparecki.com/2019/12/12/21/its-time-for-oauth-2-dot-1.

[34] Justin Richer. The GNAPathon.

URL: https://justinsecurity.medium.com/the-gnapathon-57ee110508ac.

[35] Justin Richer, Aaron Parecki, and Fabien Imbault. Grant negotiation and authorization

protocol.

URL: https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol. Num Pages:

168.

[36] Kirsten S. Cross Site Request Forgery (CSRF) | OWASP Foundation.

URL: https://owasp.org/www-community/attacks/csrf.

[37] J.H. Saltzer and M.D. Schroeder. The protection of information in computer systems.

Proceedings of the IEEE, 63(9):1278–1308, Sep. 1975. ISSN 1558-2256. doi: 10.1109/

PROC.1975.9939.

[38] Ekaterina Shmeleva. How Microservices are Changing the Security Landscape. Decem-

ber 2020.

77

https://www.reddit.com/r/rust/comments/7rmgxo/using_capabilities_to_design_safer_more/
https://web.archive.org/web/20180120000131/http://www.zsck.co/writing/capability-based-apis.html
https://web.archive.org/web/20180120000131/http://www.zsck.co/writing/capability-based-apis.html
https://medium.com/geekculture/jwt-signature-stripping-attack-a-practical-primer-2d8f9ca00c2f
https://medium.com/geekculture/jwt-signature-stripping-attack-a-practical-primer-2d8f9ca00c2f
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://aaronparecki.com/2019/12/12/21/its-time-for-oauth-2-dot-1
https://justinsecurity.medium.com/the-gnapathon-57ee110508ac
https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol
https://owasp.org/www-community/attacks/csrf

URL: https://aaltodoc.aalto.fi:443/handle/123456789/97601. Accepted: 2020-12-

20T18:14:19Z.

[39] Prabath Siriwardena and Nuwan Dias. Microservices Security in Action. Manning

Publications, July 2020. ISBN 978-1-61729-595-9.

URL: https://www.manning.com/books/microservices-security-in-action.

[40] Tetiana Yarygina. Exploring Microservice Security. The University of Bergen, October

2018. ISBN 978-82-308-3665-1.

URL: https://bora.uib.no/handle/1956/18696. Accepted: 2018-11-02T14:55:22Z.

78

https://aaltodoc.aalto.fi:443/handle/123456789/97601
https://www.manning.com/books/microservices-security-in-action
https://bora.uib.no/handle/1956/18696

Appendix A

Trait and Bounds example

A.1 Full code for Trait and Bounds example

Listing A.1: Trait and bounds example: trait-bounds\example\bounds.rs
1 use async_trait::async_trait;
2 use rand;
3 use sqlx::sqlite::SqlitePoolOptions;
4 use sqlx::{Pool, Sqlite};
5 use std::fmt::Debug;
6

7 #[derive(Debug, PartialEq)]
8 struct Person {
9 id: i64,

10 firstname: String,
11 lastname: String,
12 }
13

14 trait CreateRead<S> {
15 fn create(firstname: String, lastname: String) -> S;
16 fn read(id: i64) -> S;
17 }
18

19 impl CreateRead<Person> for Person {
20 fn read(id: i64) -> Person {
21 Person {
22 id: id,
23 firstname: "kenneth".to_string(),
24 lastname: "fossen".to_string(),
25 }
26 }
27

28 fn create(firstname: String, lastname: String) -> Person {
29 Person {
30 id: rand::random(),
31 firstname: firstname,
32 lastname: lastname,

79

trait-bounds\example\bounds.rs

33 }
34 }
35 }
36

37 struct Service {
38 con: Pool<Sqlite>,
39 }
40

41 #[async_trait]
42 trait DBCreateRead<T: CreateRead<T>> {
43 async fn read_db(&self, id: i64) -> T;
44 async fn create_db(&self, data: T) -> T;
45 }
46

47 #[async_trait]
48 impl DBCreateRead<Person> for Service {
49 async fn read_db(&self, id: i64) -> Person {
50 let r = sqlx::query!(
51 r#"SELECT␣id,␣firstname,␣lastname␣FROM␣person␣WHERE␣id␣=␣$1"#,
52 id
53)
54 .fetch_one(&self.con)
55 .await
56 .expect("Failed␣to␣query␣database");
57

58 Person {
59 id: id,
60 firstname: r.firstname,
61 lastname: r.lastname,
62 }
63 }
64

65 async fn create_db(&self, data: Person) -> Person {
66 let _r = sqlx::query!(
67 r#"INSERT␣INTO␣person␣(id,␣firstname,␣lastname)␣VALUES␣($1,␣$2,␣$3)"#,
68 data.id,
69 data.firstname,
70 data.lastname
71)
72 .execute(&self.con)
73 .await
74 .expect("Failed␣to␣insert␣Person␣into␣database");
75 data
76 }
77 }
78

79 #[tokio::main]
80 async fn main() {
81 let con_str = "sqlite:bounds_persons.db";
82 let db: Pool<Sqlite> = SqlitePoolOptions::new()
83 .connect(con_str)
84 .await
85 .expect("Failed␣to␣create␣database");
86

87 let _service = Service { con: db };
88

89 let _p1 = Person::create("Kenneth".to_string(), "Fossen".to_string());
90

91 let create_res = Service::create_db(&_service, _p1).await;

80

92

93 let read_res = Service::read_db(&_service, create_res.id).await;
94

95 let _p2 = Person {
96 id: rand::random(),
97 firstname: "Kenneth".to_string(),
98 lastname: "fossen".to_string(),
99 };

100 let _p2_createdb = Service::create_db(&_service, _p2).await;
101

102 assert_eq!(create_res, read_res);
103 println!("Create<{:#?}>␣->␣Read<{:#?}>", create_res, read_res);
104 }

81

Appendix B

TypeState example

B.1 Full code for TypeState example

Listing B.1: TypeState example: trait-bounds\example\typestate.rs
1 use async_trait::async_trait;
2 use person::*;
3 use sqlx::{Pool, Sqlite, SqlitePool};
4

5 mod person {
6 use async_trait::async_trait;
7 use sqlx::{Pool, Sqlite};
8

9 #[derive(Debug, PartialEq)]
10 pub struct Person<Cap: Caps> {
11 pub id: i64,
12 pub firstname: String,
13 pub lastname: String,
14 pub cap: Cap,
15 }
16

17 #[derive(Debug, PartialEq)]
18 pub struct CreateRead;
19 #[async_trait]
20 pub trait CreateReadCap {
21 async fn create(
22 db: &Pool<Sqlite>,
23 firstname: String,
24 lastname: String,
25) -> Person<CreateRead>;
26 async fn read(db: &Pool<Sqlite>, id: i64) -> Person<CreateRead>;
27 }
28 /*pub struct Delete;
29 pub trait DeleteCap {
30 fn delete(db: &Pool<Sqlite>,) -> Person<Delete>;
31 }
32 pub struct CreateDelete;
33 pub trait CreateDeleteCap {

82

trait-bounds\example\typestate.rs

34 fn create(db: &Pool<Sqlite>,firstname: String, lastname: String) ->
↪→ Person<CreateDelete>;

35 fn delete(db: &Pool<Sqlite>,) -> Person<CreateDelete>;
36 }
37 pub struct CreateUpdate;
38 pub trait CreateUpdateCap {
39 fn create(db: &Pool<Sqlite>,firstname: String, lastname: String) ->

↪→ Person<CreateUpdate>;
40 fn update(db: &Pool<Sqlite>) -> Person<CreateUpdate>;
41 }
42 pub struct CreateReadUpdate;
43 pub trait CreateReadUpdateCap {
44 fn create(db: &Pool<Sqlite>,firstname: String, lastname: String) ->

↪→ Person<CreateReadUpdate>;
45 fn read(db: &Pool<Sqlite>) -> Person<CreateReadUpdate>;
46 fn update(db: &Pool<Sqlite>,fistname: String, lastname: String) ->

↪→ Person<CreateReadUpdate>;
47 }
48 */
49 mod __private {
50 pub trait Caps {}
51 }
52

53 pub trait Caps: __private::Caps {}
54 impl<__T: ?::core::marker::Sized> Caps for __T where __T: __private::Caps {}
55 #[async_trait]
56 impl __private::Caps for CreateRead {}
57 /*
58 impl __private::Caps for Delete {}
59 impl __private::Caps for CreateDelete {}
60 impl __private::Caps for CreateUpdate {}
61 impl __private::Caps for CreateReadUpdate {}
62 */
63 }
64

65 #[async_trait]
66 impl CreateReadCap for Person<CreateRead> {
67 async fn create(db: &Pool<Sqlite>, fistname: String, lastname: String) ->

↪→ Person<CreateRead> {
68 let person = Person::<CreateRead> {
69 id: rand::random(),
70 firstname: fistname,
71 lastname: lastname,
72 cap: CreateRead,
73 };
74

75 sqlx::query!(
76 r#"INSERT␣INTO␣person␣(id,␣firstname,␣lastname)␣VALUES␣($1,␣$2,␣$3)"#,
77 person.id,
78 person.firstname,
79 person.lastname
80)
81 .execute(db)
82 .await
83 .expect("Failed␣to␣write␣to␣database");
84 person
85 }
86

87 async fn read(db: &Pool<Sqlite>, id: i64) -> Person<CreateRead> {

83

88 let r = sqlx::query!(
89 r#"SELECT␣id,␣firstname,␣lastname␣FROM␣person␣WHERE␣id␣=␣$1"#,
90 id
91)
92 .fetch_one(db)
93 .await
94 .expect("Failed␣to␣read␣database");
95

96 Person::<CreateRead> {
97 id: r.id,
98 firstname: r.firstname,
99 lastname: r.lastname,

100 cap: CreateRead,
101 }
102 }
103 }
104

105 #[tokio::main]
106 async fn main() {
107 let connection_string = "sqlite:persons.db";
108 let database = SqlitePool::connect(connection_string)
109 .await
110 .expect("Failed␣to␣get␣database");
111

112 let p_created =
113 Person::<CreateRead>::create(&database, "Kenneth".to_string(),

↪→ "Fossen".to_string()).await;
114

115 let p_read = Person::<CreateRead>::read(&database, p_created.id).await;
116

117 println!("{:#?}", p_created);
118 println!("{:#?}", p_read);
119 assert_eq!(
120 p_created, p_read,
121 "The␣to␣persons␣{:#?}␣and␣{:#?}␣are␣not␣equal",
122 p_created, p_read
123);
124 }

84

	Introduction
	Problem statement and motivation
	Related works
	Goals and research questions
	Chapter outline

	Rust & OWASP
	Rust
	Benefits from Rust
	Traits in Rust

	OWASP - Software Security Recommendations

	Access Control Models & Challenges
	Access Control
	Access Control Lists (ACL)
	Role-based Access Control (RBAC)
	Attribute-based Access Control (ABAC)
	Capabilities - CBAC and Object Capabilities

	Access Control Model Challenges
	Confused Deputy
	PoLP - Principle of Least Privilege
	Myths around capabilities

	Tokens & Authorization Authorities
	History of token security in APIs
	HTTP Cookie
	JSON Web tokens - JWTs
	Macaroons
	Biscuits
	Opaque Tokens
	OAuth
	GNAP - Grant Negotiation and Authorization Protocol

	Experiments and results
	Evaluation criteria
	Defining our experiments
	Tools and Code
	Tools Setup
	Code repository

	Capability-based system
	System overview
	Filter and API Logic

	1a: Generic Type Parameters and Trait Bounds
	1a: Results

	1b: Capability field inspired from TypeState
	1b: Results

	1c: Capabilities using macros
	Previous work with macros
	Implemeting CapabilityApi with macro
	1c: Results

	2a: Designing and creating a library
	Deciding design and developer interaction
	The Library: capabilities
	Decisions made when designing the library
	2a: Results

	2b: Putting it together to a RESTful capability system
	Decisions made before implementing the capability system
	Implementing a RESTful capability system
	2b: Results

	Discussion, Conclusion and Future work
	Discussion
	Conclusion
	Future work

	Bibliography
	Trait and Bounds example
	Full code for Trait and Bounds example

	TypeState example
	Full code for TypeState example

