
University of Bergen
Department of informatics

Visual specification of multi-way

data-flow constraint systems

Author: Daniel Berge

Supervisors: Mikhail Barash, Jaakko Järvi

May, 2022

Abstract

User interfaces are costly to develop and difficult to get correct. Estimates place the

effort of programming UIs between 30% and 60% of the total programming effort of

applications. One reason for why graphical user interface (GUI) programming is difficult

is that there are lots of interdependencies between widgets, and they easily get lost in

code.

This thesis is motivated by increasing the effectiveness of GUI programming, making

the gap between code and behavior smaller, by replacing a lot of the code with a visual

diagram that the programmer draws interactively. We are tackling this problem with a

declarative programming approach based on multi-way data-flow constraint systems.

This thesis shows that data-flow constraint system based GUI programming makes the

visual specification of GUIs feasible and that implementing visual cues to users is cheap

in the approach — we show through small experiments that programmers save effort and

users benefit. This thesis suggests how to simplify the programming of user interfaces,

and get rid of complicated event-handling that most GUI code essentially has.

The visual client developed in this thesis project is built on top of the HotDrink library.

HotDrink is a library that is used for writing GUIs declaratively, making multi-way data-

flow constraint systems and maintaining dependencies explicit. HotDrink offers a good

platform for creating a visual tool; the visual tool can merely edit HotDrink constraints

and make them visible to the programmer, and ultimately to the user.

We create a visual tool for creating HotDrink applications. The tool is able to create

constraints between widgets, in a visual way, that generates correct constraint systems

written in HotDrink. The tool is able to generate complete programs that implement

both the Hypertext Markup Language specification (the view) and the HotDrink code

(the model).

Acknowledgements

First and foremost, I would like to thank my supervisors Mikhail Barash and Jaakko

Järvi for their support and guidance. Their knowledge and experience have been invalu-

able in the development of this thesis.

I would also like to thank my friends at the university for their help, support and many

great conversations over lunch.

Lastly, I would like to thank my family for their support throughout the degree and

this thesis.

Daniel Berge

01 May, 2022

Contents

1 Introduction 1

1.1 Thesis outline . 2

2 Background 4

2.1 Motivation . 4

2.2 Constraint system . 6

2.3 HotDrink . 7

2.4 Visual programming . 8

2.5 Technologies . 8

2.5.1 TypeScript . 10

2.5.2 React . 10

2.5.3 Eclipse Xtext . 11

3 A visual language for HotDrink specifications 12

3.1 Form designer . 12

3.1.1 Visual representation of constraints 15

3.1.2 Running and exporting . 19

3.2 Constraint editor . 20

3.2.1 Code view . 20

3.2.2 Visual programming interface . 21

4 Implementation 25

4.1 Form Designer . 25

4.2 Visual programming interface . 26

4.3 HotDrink . 28

4.3.1 Components and constraints . 28

4.3.2 Serialization and deserialization 29

5 Case study — Norwegian tax form 31

i

6 Usability test 35

6.1 Setup . 35

6.2 Results . 36

6.2.1 Feedback . 37

6.3 Summary . 39

7 Related work 40

7.1 Constraint systems . 40

7.1.1 Amulet Environment . 40

7.1.2 ConstraintJS . 41

7.2 Form builders . 41

7.2.1 JotForm . 42

7.2.2 Microsoft Visual C# Express . 42

7.2.3 Delphi . 43

7.3 Lowcode / no code environments . 43

7.3.1 Pure Data . 44

7.4 Visual programming environments . 44

7.4.1 LabVIEW . 44

7.4.2 Empirical evidence for and against visual programming 45

7.5 Language workbenches . 46

7.5.1 Eclipse Xtext . 46

7.5.2 Langium . 46

7.5.3 Whole platform . 47

7.5.4 MetaEdit+ . 47

8 Conclusion and future work 50

8.1 Conclusion . 50

8.2 Future work . 50

List of Acronyms 53

Bibliography 54

A DSL standard library 58

ii

List of Figures

1.1 The 3-layer architecture of the visual editor. 1

2.1 A covid vaccination form, where the user is not able to submit valid input. 4

2.2 A form for applying for Finnish citizenship, where the user is not able to

remove the first trip. ”Matkan kohde puuttuu” means that the destination

of the trip is missing, ”Matkan alkuaika puuttuu” means that the start time

of the trip is missing and ”Matkan loppuaika puuttuu” means that the end

time of the trip is missing. 5

2.3 Example of a Blockly application, printing ”Hello World!” three times [2]. 9

2.4 Example of a visual data-flow diagram, adding two numbers together [15]. 9

3.1 A form with fields firstname and lastname, with lastname selected

(Layer 1). 13

3.2 The properties panel shows the properties of the selected lastname element

(Layer 1). 14

3.3 Highlighted elements while in new constraint-mode (Layer 2). 15

3.4 A constraint connected to two variables, with a method with one ouput

variable (Layer 2). 16

3.5 Hovering over a method will highlight the data-flow of the method. Here

the effect of hovering over the method Divide is shown (Layer 2). 17

3.6 Hovering over a method will highlight the data-flow of the method. Here

the effect of hovering over the method Multiply is shown (Layer 2). . . . 17

3.7 The WHAP constraint system example illustrated as a graph [25]. 18

3.8 WHAP example visualized in the visual editor (Layer 2). 19

3.9 An example of run-mode with the implementation of WHAP. 19

3.10 Codeview implementation of converting celsius to fahrenheit, showing

autocomplete when writing celcius. (Layer 3). 20

3.11 Visual programming interface calculating the max value of two inputs

(Layer 3). 22

iii

4.1 An example method implementation using our visual programming inter-

face built with Rete. This method checks if a number is positive and

returns true or false accordingly. 27

5.1 Norwegian tax form using HotDrink, JavaScript and HTML. 31

5.2 Norwegian tax form in the visual editor’s design mode. 32

6.1 When clicking on Create method, an input field and two buttons appear. 37

6.2 The top part of the constraint editor. 38

6.3 Visual programming blocks showing sockets between width, height and a

multiplication block. 39

7.1 Example of comma separated list of names, using ConstraintJS. The code

for this application is shown in Listing 7.1. 42

7.3 Some screenshots of the related works presented in this chapter. 49

iv

List of Tables

6.1 A table of the results of the usability test. Green (•) means that the

participant completed the task successfully. Yellow (G#) means that the

participant completed it, but it either took a long time or multiple tries.

Red (◦) means that the participant failed to complete the task and we had

to intervene to help the participant complete the task. White (-) means

that the task was skipped. 36

A.1 Visual blocks available in the standard DSL library (Layer 3). 58

v

Listings

2.1 Temperature converter using HotDrink’s DSL. 7

2.2 A counter example implemented in React with hooks [5]. In React, hooks

can be created to define state in the application; here we use a hook to hold

the counter value. Using React.useState we get a value and a function

to set the value. We define our own increment function to increment the

count, and call this when the user clicks the button. The incremented

value will then be updated in the JSX tree (JSX is React’s way of defining

HTML and JS together). 10

3.1 WHAP implemented in HotDrink. 18

3.2 Generated code output of maximum value example. The first line finds

the maximum of the two input variables, and the second line returns the

maximum value (Layer 3). 21

3.3 The grammar of the DSL in EBNF (Layer 3). 23

3.4 Example of a visual block implemented using the DSL (Layer 3). 23

3.5 Contains example of a visual block using the DSL (Layer 3). 23

4.1 Storable format of temperature converter example in JSON. 30

5.1 Norwegian tax form constraints in HotDrink, calculating tax and income,

with deduction. 33

7.1 A ConstraintJS example, listing commander names in a list [35]. The

following is a template that is connected to the ConstraintJS constraint

system. The DOM elements are bound to the constraint system, such

that when a change occurs in either of the input elements, values are

automatically changed in the unordered list. The application produced by

this code can be seen in Figure 7.1. 41

vi

Chapter 1

Introduction

HotDrink [26], a JavaScript library for creating multi-way data-flow constraint systems

is used throughout the thesis and the tools developed are built on top of it. In this thesis

we create a visual editor for multi-way data-flow constraint systems. In the editor we can

design form applications with GUI elements and create HotDrink constraint systems to

handle the data-flow. The editor consists of three layers, illustrated in Figure 1.1.

Figure 1.1: The 3-layer architecture of the visual editor.

The form designer (layer 1) is where the GUI elements are created and modified. The

form designer contains a library of GUI elements, which the user can drag and drop onto

the form. The constraints designer (layer 2) is where the user can create constraints and

add methods to these constraints. The constraints are created in the same window as the

form designer, where the constraint is connected to the GUI elements. The constraint

editor (layer 3) consists of two editors: a visual programming interface and a code editor.

The visual programming interface is where the user can edit methods visually. The

1

visual programming interface includes a library of coding blocks, which can be connected

to the input and output nodes. The code editor contains code for each method, and the

developer can edit methods using JavaScript code.

To make the visual programming interface more customizable, we created a domain

specific language (DSL) for creating coding blocks to be used in the interface. This makes

it possible for others to change the standard library and make their own coding blocks,

instead of relying on the standard library. The DSL is implemented with Xtext [18] and

it has a variety of different features, which makes it possible to create all kinds of coding

blocks.

When the user is satisfied with the form application, the user can both test it out

by running the application inside the visual editor and export the code to run in the

browser.

We evaluated the visual editor by implementing GUIs with it, and assessing the

outcome and the process. Concretely, we create a tax form that contains multiple data-

flows, using HotDrink both both with and without our visual editor. The form provides

a benchmark to compare the different methods of creating HotDrink applications. The

prototype evaluation allowed us to evaluate if the visual editor can create the same

applications as the non-visual editor and to evaluate the performance of the visual editor.

To test the usability of the visual editor we conducted a usability test on five users.

They were asked to perform a series of tasks to create an application with the editor. The

test was also conducted to get feedback on usability and to get a better understanding

of how users interact with our visual editor.

1.1 Thesis outline

Chapter 1 An introduction to GUI programming using multi-way data-flow constraint

systems and how we are using them to create visual diagrams.

Chapter 2 Background information about HotDrink and visual programming.

Chapter 3 Overview of the visual editor for HotDrink, including its features and limi-

tations.

Chapter 4 Discussion about important parts of the implementation of the visual editor.

Chapter 5 A case study, implementing a Norwegian tax form using standard HotDrink

with Hypertext Markup Language (HTML) and comparing it to implementing it using

2

our visual editor.

Chapter 6 A report of usability tests to test the usability of the editor, with results and

feedback.

Chapter 7 Related work, looking at a number of different related works and comparing

them to our implementation.

Chapter 8 A conclusion and discussion of some possible future work.

3

Chapter 2

Background

2.1 Motivation

There are many GUIs in the world and many of these are bad GUIs. Developers often

make mistakes when developing GUIs and the users have to deal with the consequences;

sometimes these mistakes are so bad that the users have to abandon the application. One

such example is the GUI for a covid vaccination booking system, shown in Figure 2.1,

where the user is not able to submit a valid input, even though it is valid according to

the GUIs error message.

Figure 2.1: A covid vaccination form, where the user is not able to submit valid input.

Another example of a bad GUI is Figure 2.2 that shows a system for applying for

Finnish citizenship. To apply, the user needs to enter all their travels abroad, but the

user cannot remove the first trip, because of wrong validation: even though data is entered

for the first trip, a validation error is shown saying that the data is missing.

In GUI programming there are many interconnections between elements, and these

can be hard to program correctly and maintain. The above examples are consequences

4

Figure 2.2: A form for applying for Finnish citizenship, where the user is not able to
remove the first trip. ”Matkan kohde puuttuu” means that the destination of the trip is
missing, ”Matkan alkuaika puuttuu” means that the start time of the trip is missing and
”Matkan loppuaika puuttuu” means that the end time of the trip is missing.

of this. GUI programming can be tedious; the code managing a GUIs event handling is

often complicated, time-consuming to write and error prone. Studies [28, 33] have shown

that the total development time of user interfaces is between 30 and 60 percent of that

of the whole application.

A promising technology for less tedious GUI programming is constraint systems, which

are a way to describe the relationships between elements. HotDrink is a GUI framework

that uses constraint systems in order to create GUIs that are easy to use and maintain.

While HotDrink tackles the problem of event handling code in many ways, there is cur-

rently no visual editor that makes it easy to create HotDrink applications with low code

or no code.

5

This thesis focuses on making it easier for programmers and UX designers to visually

understand the logic behind multi-way data-flow constraint systems by allowing them

to create constraint systems using a visual editor. The visual editor has features that

make it possible to create form-based applications without writing any code: a visual

programming interface will create code blocks that generate code. The programmer can

also combine visual specifications with regular JavaScript code.

While HotDrink is a programming framework directed to developers, we are interested

in creating an interface for both non-developers and developers. With the visual editor,

more users can be involved in the design of an application. As a result, more users might

use the HotDrink library and understand the value of multi-way data-flow constraint

systems.

HotDrink’s current DSL for specifying constraint systems may feel unfamiliar com-

pared to mainstream programming languages. A HotDrink specification essentially de-

scribes a graph, which may be difficult to see from a textual representation. A visual

syntax is therefore more natural for constraint system specifications.

The goal of this thesis is to show that data-flow constraint system based GUI pro-

gramming makes visual specification of GUIs feasible, and that implementing visual cues

to users is straightforward in the chosen approach. GUIs should be easy to develop to

keep time to market low and be cost competitive. A visual editor for HotDrink that saves

development time is beneficial to the user.

2.2 Constraint system

In GUI programming constraint systems can be helpful in different programming tasks. A

constraint system consists of variables and constraints, where constraints are the relations

between the variables. A constraint system can automatically maintain a set of relations

between variables, specified by constraints. In a constraint system, if the value of one

variable changes so that one or more constraints are violated, a constraint solver can

compute and assign new values for other variables so that the violated constraints are

re-enforced [29].

A multi-way data-flow constraint system breaks down the relation that should hold

for the constraint’s variables to a set of functional dependencies. To specify a multi-way

data-flow constraint, the programmer must thus implement a set of functions. It is the

programmer’s responsibility to guarantee that these functions always compute a result

that satisfies the constraint [29].

6

2.3 HotDrink

HotDrink is a JavaScript library for developing web user interfaces [23]. It allows devel-

opers to create multi-way data-flow constraint systems. Constraint systems are specified

either using HotDrink’s DSL, which is designed specifically for creating constraint sys-

tems, or with JavaScript using HotDrink’s Application Programming Interface (API)

directly.

Listing 2.1: Temperature converter using HotDrink’s DSL.
1 var celsius , fahrenheit;
2
3 constraint TemperatureConverter {
4 toFahrenheit(celsius -> fahrenheit) => celsius * (9/5) + 32;
5 toCelcius(fahrenheit -> celsius) => (fahrenheit - 32) * (5/9);
6 }

The main concepts of a HotDrink constraint system are components, constraints,

methods and variables. Listing 2.1 shows an example constraint system that could be

used in a GUI that converts temperature values from fahrenheit to celsius and vice

versa, written using HotDrink’s DSL. This specification defines one HotDrink component,

a container of constraints and variables. On the first line, we declare the component’s

variables, in this case fahrenheit and celsius. On line 3 we define a constraint with

two methods, toFahrenheit and toCelcius. The first method converts the celsius

variable to fahrenheit and the second method converts the fahrenheit variable to

celsius. With this constraint in place, HotDrink will ensure that the two variables

always represent the same temperature value, in different units. If we change the value of

the celsius variable, the fahrenheit variable will automatically be updated according

to the given formula, and vice versa.

Programs developed using HotDrink follow the Model-View-ViewModel (MVVM) pat-

tern. In this pattern the model is responsible for the business data of the application. The

view is responsible for presenting the data to the user and the viewmodel is responsible

for supplying and managing the data and handling user actions. HotDrink’s purpose is

to implement the view-model part of MVVM [26].

To use HotDrink in a web application, bindings have to be added between HotDrink

and the GUI elements. One-way data-flow from HotDrink to GUI elements is created by

subscribing to changes on HotDrink variables, and updating the GUI when any changes

occur, or subscribing to changes in the GUI and updating HotDrink variables when

changes occur. Both directions of subscribing can be implemented between a GUI element

7

and HotDrink variable, which creates a two-way binding. With such bindings in place,

the data in the GUI elements will stay in sync with the data in the constraint system.

Since HotDrink variables are observables [13], it is easy to implement a suite of functions

that create bindings between the view and the viewmodel.

2.4 Visual programming

A language that uses graphical elements to represent an application, where the graphical

elements can be converted to code is called a visual programming language (VPL) [20].

Usually, programming happens by writing text in a code editor, where programmers

have to learn concepts of programming to create applications and understand program-

ming language syntax. For non-programmers, this is not ideal as users rather want to

create applications with a process that makes sense to them [19]. Visual programming

has the potential of making it easy to create simple applications using graphical elements,

instead of worrying about programming language syntax. Another potential benefit of

visual programming is that it requires less typing, which reduces the likelihood of typing

errors. The visual notation may also be easier to get started with: instead of having to

learn a possibly complex syntax of a new programming language, the programmer can

focus on learning the concepts of the language.

A well-known example of a VPL is Blockly, a language developed by Google [2].

Blockly programmers use code blocks to visually create applications. Code blocks can

only be composed in ways that form syntactically valid programs. Programmers do not

thus have to worry about syntax. Blockly is widely used to introduce new learners to

programming, to help them understand simple programming concepts. An example of a

Blocky application is illustrated in Figure 2.3.

The visual presentation of Blockly emphasizes scopes and loops, which is a good fit

with traditional programming. An alternative to block-based representation is a graph

notation, with nodes representing computations and edges the flow of data. See Figure 2.4

for an example of such a visual programming diagram. This representation is a suitable

method for programming with data-flow constraint systems.

2.5 Technologies

In building our programming environment, we relied on several tools and technologies.

We give a brief overview of these tools below.

8

9

Figure 2.3: Example of a Blockly application, printing ”Hello World!” three times [2].

Figure 2.4: Example of a visual data-flow diagram, adding two numbers together [15].

2.5.1 TypeScript

TypeScript is a statically typed programming language that builds on JavaScript. It

allows developers to write type-safe code and later convert TypeScript to JavaScript,

which means that TypeScript runs anywhere JavaScript runs [6]. Because of its static

typing TypeScript code is less error-prone than JavaScript code, and TypeScript code is

considered to be easier to maintain. In this thesis, TypeScript is used to create the visual

editor and it is used in combination with React.

2.5.2 React

React [14] is a JavaScript library for building user interfaces. React’s goal is to make

it easy to create interactive GUIs. React is component-based and it uses a declarative

programming paradigm to build GUI components that are rendered to the DOM. React

handles all state of a GUI: each component has its own state. React responds to all state

changes by re-rendering the component. This architecture has shown to be suitable for

creating web applications with different scales of complexity [14]. In the visual editor,

state is handled by React and every GUI element is a React component. To get an idea

of how React works, see Listing 2.2.

Listing 2.2: A counter example implemented in React with hooks [5]. In React, hooks

can be created to define state in the application; here we use a hook to hold the counter

value. Using React.useState we get a value and a function to set the value. We define

our own increment function to increment the count, and call this when the user clicks

the button. The incremented value will then be updated in the JSX tree (JSX is React’s

way of defining HTML and JS together).
1 export function Counter () {
2 const [count , setCount] = React.useState (0);
3
4 function increment () {
5 setCount(count + 1);
6 }
7
8 return (
9 <div >
10 <h1 >Counter </h1 >
11 <p>{ count}</p>
12 <button onClick ={ increment}>
13 increment
14 </button >
15 </div >
16);
17 }

10

2.5.3 Eclipse Xtext

Xtext is a framework for the development of programming languages and DSLs. From a

grammar and semantics specification, Xtext produces a parser, linker, type checker and

compiler, as well as editing support for any editor that supports the Language Server

Protocol [18]. In this project, we use Xtext to create a DSL for programming blocks to

a visual diagram, as explained in Section 3.2.2.

11

Chapter 3

A visual language for HotDrink

specifications

The purpose of creating a visual editor for HotDrink is to allow users to visually create

HotDrink applications with constraint systems. As discussed in Section 2.3, constraint

systems consist of components, constraints, methods and variables. The editor needs to

be able to create these and bind them to GUI elements.

The visual editor consists of two views: the form designer and the constraint editor.

The form designer is the main view, where the user creates GUI elements and links them

together with constraints. The constraint editor is where the user edits constraints. In

the constraint editor, the user can choose between a visual editor and code editor.

Our tool consists of three layers:

• Layer 1: The design editor for adding and editing GUI elements.

• Layer 2: The visual editor for creating constraint systems and connecting them to

graphical user interface elements.

• Layer 3: The constraint editor, which defines the logic of the constraint system.

3.1 Form designer

Layer 1 consists of three parts: a library of GUI elements, a canvas where the application

is designed, and a properties panel where the user can edit the properties of a selected

element or constraint.

12

Figure 3.1: A form with fields firstname and lastname, with lastname selected (Layer
1).

The library of GUI elements shows thumbnails of full elements, mimicking what they

will look like on the canvas. To add a new element, the user can drag and drop a miniature

element onto the canvas. When dropping an element onto the canvas, it becomes a part

of the user’s application. Elements on the canvas can be selected and dragged around,

to produce the desired layout of the application. In addition, users can drag the edges of

each element to resize them to a desired width and height. Elements cannot be dragged

or resized outside the canvas border. See Figure 3.1 for an example of a form application,

where the lastname element is selected.

The properties panel shows the properties of the currently selected element. Figure 3.2

shows the properties of the selected lastname element from Figure 3.1. On the properties

panel, the user can inspect and edit some of the properties of the element, such as id,

height, width, value, elementkind, subtype and type of Binding. The subtype and type of

Binding are dropdown menus with multiple options. The subtype property represents the

type of the input element, such as text, number, date, button, etc. The type of binding

represents what attribute the binding is going to bind to, for example, value, disabled or

checked.

Constraints are created in the new constraint-mode, which the user can enter with

the Create Constraint button. In this mode, every available element on the canvas will

be highlighted (in green), and the user can click on an element to select it. The user can

select any number of elements, and confirm the creation of a constraint after the desired

elements are selected. The newly created constraint will then appear on the canvas next

to the chosen elements as a circle, linked together with red connections. The connections

will be either read connections, which means that the constraint can use the value of an

element, or as a write connection, which means the constraint will be able to update an

element’s value. The constraint that is created is empty; to add logic to the constraint

one needs to add methods.

Methods are created in the new method -mode, which the user can enter by selecting

a constraint and clicking the Add Method button. Every element that is connected to

13

14

Figure 3.2: The properties panel shows the properties of the selected lastname element
(Layer 1).

Figure 3.3: Highlighted elements while in new constraint-mode (Layer 2).

the selected constraint will then be highlighted (in green). The user can then select the

output variables of the method, which can be one or many. By clicking the confirm

button the visual editor will create a new method inside the constraint, and the method

will be linked to the selected elements as output connections.

Similar to elements, the user can also drag constraints around. This is purely a matter

of convenience for the developer: the position of a constraint on the canvas has no impact

on the form design itself as constraints are not a visible part of the application at runtime.

As seen in Figure 3.1 and Figure 3.3, the canvas has a grid on the background. The

grid has a snapping feature to make it easier to position elements. With the grid, users

can see exactly where they have to place elements to get them in the correct x and y

positions compared to other elements. If the user misses by a few pixels, the snapping

feature will help to position the element correctly. The grid is not visible to the end-user

of the form, it is only for designing the application.

3.1.1 Visual representation of constraints

Layer 2 is the constraint builder, where users can create multi-way data-flow constraint

systems. Multi-way data-flow constraint systems are best visualized as a graph, as the

underlying structure is an oriented bipartite graph [29]. Our visual editor visualizes the

constraint system as graphs, our representation consists of two different graphs. The

first one concerns the constraint view, where there are two types of nodes: constraint-

nodes and variable-nodes with their connections being undirected. The other one is the

method view, where there are two types of nodes: method-nodes which are subnodes of

the constraint-nodes and variable-nodes with their connections being directed.

The methods of a constraint are visualized as enclosed in the node that represents the

constraint. The methods are shown as a list; the user can click on each method to see

and edit either the code of the method or its visual representation in a dialog box.

15

The visual representation of a constraint can have a number of different connections,

and each connection can either be from the variable to the constraint or from the con-

straint to the variable. The former means that a method in the constraint will be able

to read values from the variable, and the latter that a method in the constraint will be

able to write values to the variable. Which kind of a connection the user needs to create

depends on how the data-flow is supposed to be implemented according to the business

logic of the application the user is creating. The data-flow can also be bidirectional, where

a constraint can both read from and write to a particular variable.

In HotDrink, the set union of all input and output variables in each method must be

the same for every method in a constraint. Our approach enforces this rule by automat-

ically making all variables in a constraint at least input variables for all methods. The

user can visually see which methods are connected to which variables with the arrows

from the constraint. An arrow pointing to an variable is an output connection and a

connection without an arrow is an input connection to the constraint.

For each constraint, the methods must adhere to a structual rule: for any two methods

in a constraint, m1 and m2, the set of output variables of m1 cannot be a subset of the

set of output variables of m2, and vice versa. This creates an upper bound of how many

methods a particular constraint can have. For example, if a constraint has two connections

to elements, say, to firstname and lastname, then the user can create a total of three

different methods, one with firstname, one with lastname and one with both as output

variables. However, the first of these cannot appear simultaneously with either of the

latter ones, since the output variables of the latter are subsets of those of the former.

Figure 3.4: A constraint connected to two variables, with a method with one ouput
variable (Layer 2).

In Figure 3.4, the constraint only has one output variable, and one method named

Method1 writing to this output variable. The method will be able to read values from both

variables, but it can only write a value to the output variable. The output connection

has an arrow pointing to the variable it writes to, whereas the input connection has no

arrow indicator, but is merely a line.

16

Figure 3.5: Hovering over a method will highlight the data-flow of the method. Here the
effect of hovering over the method Divide is shown (Layer 2).

Figure 3.6: Hovering over a method will highlight the data-flow of the method. Here the
effect of hovering over the method Multiply is shown (Layer 2).

Hovering over a method will highlight the read and write connections of the method.

The parts of the data-flow that are not relevant for that specific method, such as other

constraints and other method connections, will be grayed out. If a constraint has an

arrow pointing to a variable, and the user hovers over a method that only reads from

that variable, the arrow will be grayed out while the connection will be highlighted.

Examples of both full arrows and partly grayed arrows are shown in Figure 3.5 and

Figure 3.6.

17

Example: calculating the area and perimeter of a rectangle

Consider a constraint system example called WHAP, where W stands for width, H for

height, A for area and P for perimeter of a rectangle. The constraints in the WHAP

system ensure that the relations A = wh and P = 2(wh) always hold. In HotDrink the

code can be written as follows [25]:

Listing 3.1: WHAP implemented in HotDrink.
1 component whap {
2 var A=100, w, h, p;
3 constraint Pwh {
4 m1(w, h -> p) => 2*(w+h);
5 m2(p, w -> h) => p/2 - w;
6 m3(p, h -> w) => p/2 - h;
7 }
8 constraint Awh {
9 n1(w, h -> A) => w*h;
10 n2(A -> w, h) => [Math.sqrt(A), Math.sqrt(A)];
11 }
12 }

The component consists of two constraints. Pwh defines the relationship between the

width, height and perimeter. Awh defines the relationship between the width, height and

area. The constraint system can be visualized as shown in Figure 3.7.

Figure 3.7: The WHAP constraint system example illustrated as a graph [25].

When figuring out how to visualize constraints, we took inspiration from the kind

of graph representation of constraint systems shown in Figure 3.7. A WHAP constraint

system can be implemented in our visual editor and visualized as in Figure 3.8. In an

application developed for real users, the position of input boxes would be different, but

here we chose a layout that matches the layout the WHAP constraint system in Figure 3.7.

Our visual editor implementation of the WHAP constraint system looks similar to

the illustration Figure 3.7. The difference is that the visual editor groups the methods

to make it easier to see which methods are connected to which constraints. Another

difference is that the underlying graph has more connections, as in the visual editor every

connected element to the constraint is an input variable for every method. In the WHAP

18

Figure 3.8: WHAP example visualized in the visual editor (Layer 2).

illustration the inputs are only added to the relevant methods. Each method is labeled

the same as in the illustration, and every method has one output variable, except n1

which has two. The constraint connections are best visualized using the hover feature to

see the data-flow of each method.

3.1.2 Running and exporting

To test the application, the user can click on the Run button. This will open a dialog

window showing what the application will look like. The application is fully working with

an active constraint system where the constraint circles and grid from the form designer

are hidden. When the user is ready to distribute the application, the user can click on

the Export button. This will make a zip file, containing every asset needed to run the

application in a browser, including the constraint system. Unpacking the zip-file and

opening the HTML file will provide the user with a working application.

Figure 3.9: An example of run-mode with the implementation of WHAP.

19

3.2 Constraint editor

Layer 3 is the constraint editor, where users can edit the implementations of the methods

of constraints, i.e, add logic to constraints. Adding logic can be done in two different

ways: using the code editor or the visual editor.

3.2.1 Code view

The intended user group for the code view is software developers that know JavaScript.

In the code view, the developers have full flexibility to write their logic without any

restrictions, compared to the visual view where the user is restricted to visual code blocks

added from the library of code blocks, as explained in Section 3.2.2.

Figure 3.10: Codeview implementation of converting celsius to fahrenheit, showing
autocomplete when writing celcius. (Layer 3).

The code view consists of a JavaScript code editor built with Monaco, the same

editor that powers Visual Studio Code [9]. The editor features syntax highlighting and

autocomplete for JavaScript, as shown in Figure 3.10. In this view, the user can write

code for a specific method in the constraint system. The code has to return some value

to be a valid method, without a return value the method will have no effect. To interact

with the elements connected to the constraints, the method code needs to use the input

variables. Input variables are provided in the editor for the method the user is editing.

That way the user knows which variables are in scope. Figure 3.10 shows that fahrenheit

and celsius are available when editing the method. Output variable(s) are also shown,

and are most important when dealing with multiple outputs. When returning a value in

a method with multiple outputs, the user returns an array with the values. The order of

the values in this array has to be the same as the order of the output variables, otherwise

the values will be written to the wrong output variables. When the method is complete,

clicking the Save button will update the constraint system with the new method.

20

3.2.2 Visual programming interface

Compared to the code view, the visual programming interface is more restricted. The

user can only add predefined blocks to the interface and connect them to the input and

output variables of the method. The reason behind making the visual view restricted is

to make it more intuitive for non-programmers. That way methods can be created by

both programmers and non-programmers.

To make the interface consistent, the code blocks are added the same way as elements

to the form builder. The user can drag and drop the block from a list of miniature blocks

onto the interface and drag them around on a similar canvas to the form designer. Input

and output variables are added to the interface automatically according to the specifi-

cation of the method provided in the form designer. If two elements are connected with

a constraint, with one input element and one output element, the visual programming

interface will create one input and one output block, which can be connected with a logic

block. Sockets are the connections of a block, which can either be input or output. To

connect an input or output block with a logic block, the user has to click on the input

and output socket on each block, and a connection will be formed. When a connection

is formed from an input block to an output block, our application will generate code in

the background for the method, with the specification of the logic block and add it to

the constraint system when the user clicks the Save button.

Methods created with the visual programming interface can be changed in the code

view if the user wants to expand or change the logic of the method. If the method

is changed in the code view, it can not be converted back to the visual programming

interface. Enabling this is planned as future work, for further details see Chapter 8.

Figure 3.11 shows an example method in our visual editor. The method has two

inputs, num1 and num2, both input variables of type number in the form designer. They

are both connected to the logic block in the middle with connections between the sockets.

The output of the logic block is the output result, which is connected to the output

variable, which is also an input variable of type number. The red crosses on the top right

corner of each block are for deleting the block; they are shown when editing the method.

When this method is saved, it will generate code as in Listing 3.2. The code will find the

maximum value of the two numbers and return it as the result.

Listing 3.2: Generated code output of maximum value example. The first line finds the

maximum of the two input variables, and the second line returns the maximum value

(Layer 3).

21

Figure 3.11: Visual programming interface calculating the max value of two inputs (Layer
3).

1 const Max = Math.max(num1 , num2)
2 return Max;

A DSL for visual blocks

To make it easier for non-programmers to use the visual programming interface, we

created a standard library of blocks, and a DSL for extending this library with new

blocks. The DSL was implemented using Xtext. The DSL is a language that is used

to create visual programming blocks, in text form, that can be imported into the visual

programming interface. The goal of the DSL is to make it easy to make a library of

blocks that can be used to create simple HotDrink applications. These blocks should

not be complicated and should be easy to use. They need to contain at least one input

and one output since they are designed to use the input value in the code and output a

different value. The DSL ensures that these blocks are created in a type-safe way and

with a structure that can be imported to our visual programming interface.

We have created a standard library for the visual programming interface, containing

common logic blocks that are often used. Table A.1 shows the standard library. The

22

DSL language can also be used to create custom blocks, to be imported to the visual

programming interface. This makes our application extensible since the user can create

their own blocks and import them to the visual programming interface.

Listing 3.3: The grammar of the DSL in EBNF (Layer 3).
1 blockDeclaration = "block" name "{" { inputDeclaration } |

↪→ paramDeclaration | [codeDeclaration] "}" ;
2 codeDeclaration = "code" code ;
3 inputDeclaration = "input" name ;
4 paramDeclaration = "param" name ":" paramType ;
5 name = "a".."z" | "A".."Z" | "0".."9" ;
6 code = "’’’" ... "’’’" ;
7 paramType = "number" | "text" | "date" ;

The grammar of the DSL is shown in Listing 3.3. The DSL’s main entity is the block,

which is used to define a new visual block. A block can contain any number of inputs,

a param and one code. The inputs are used to define the input variables to the block,

which are meant to be connected from within another block. The code is used to define

the code logic of the block. The code written in the code field is the code that will be

the body of a HotDrink method. It must be written in JavaScript. As we can see in

Listing 3.4, the JavaScript code is written within triple quotation marks. The param is

used to define the type of the input field, which is placed on top of the block in the visual

editor and can be used together with the input variables in the code.

Listing 3.4: Example of a visual block implemented using the DSL (Layer 3).
1 block Add {
2 input number1
3 input number2
4 code ’’’number1 + number2 ’’’
5 }

Listing 3.4 shows an example of an addition block defined using the DSL. The block

has two inputs: number1 and number2. The purpose of this block is to return the sum of

both input numbers.

Listing 3.5: Contains example of a visual block using the DSL (Layer 3).
1 block Contains {
2 input str
3 param textBox: text
4 code ’’’str.contains(textBox)’’’
5 }

Listing 3.5 shows an example of a block that checks if a string contains a certain text

provided in a text box. The block has one input, str which is the string to be checked.

The the code of the block returns a boolean value, which is true if the string contains the

text, and false if it does not.

23

All the blocks that are available in the standard visual block library are listed in

Appendix A.

24

Chapter 4

Implementation

This chapter explains implementation details of different parts of our application. The

discussion is not exhaustive, we focus on those features described in Chapter 3 that are

interesting, tricky, or otherwise worth further elaboration.

4.1 Form Designer

Our implementation of the form designer is built using a library called Konva, which is

a JavaScript library for drawing complex canvas graphics [30]. We utilize Konva to draw

the elements onto the canvas and visualize the constraints. Konva supports events such

as drag-and-drop, hover, and click events. Konva draws graphics pixel by pixel, which

makes it possible to have full flexibility of what is drawn on the canvas. With Konva,

developers can add elements to the canvas with specific x and y coordinates, and design

the application exactly as their users want.

Before we adopted Konva, we considered implementing the form designer as an HTML

editor, where the user could add HTML elements to the canvas and manipulate them.

When dragging and dropping elements onto the page, the elements could be added to the

right place in the HTML tree and visualized on the canvas. This approach would also

have supported events, as events are built into HTML with JavaScript.

We did not go for this approach for a few reasons. HTML elements could be drawn

using standard HTML, but other elements, such as constraints, would have to be drawn

using SVG, Cascading Style Sheets (CSS), or HTML Canvas which are harder than using

25

the drawing library Konva. Another reason why we did not go for this idea was that

we wanted the application to be as generic as possible so that not only HTML could

be used in the future, but other formats or frameworks as well. Instead of the GUI

being stored as HTML, we thus created our own format to represent its elements, with

additional properties. This format is connected with Konvas API for drawing graphics,

which gave us full control over the data and the graphics in the form designer. This format

is exportable to HTML, and can be exported to other formats as well by implementing

a converter between the format and our data type.

In HotDrink the user can output multiple values from each method. Therefore, in

the code view the user can output multiple values using a list of variables. The length

of the list of variables should be the same as the number of outputs from the method.

Multiple outputs are not, however, supported by the visual programming interface. The

reason is that we wanted the visual programming interface to be a simple diagram with

some number of input fields, one logic block and only one output block. Multiple output

blocks would have complicated the logic blocks and required more outputs to be connected

from the logic blocks. Keeping the visual diagram simple makes the visual editor more

welcoming to non-programmers. In addition, the standard library only consists of blocks

with one output block, and one logic block. This means that the user can only connect

one output block to one logic block. There are no cases in the library that need multiple

outputs, but if in the future such need arises, multiple outputs could be added to the

interface as well.

4.2 Visual programming interface

As discussed in Chapter 2, there are different ways of doing visual programming. Our

main focus was to make this interface easy and understandable to everyone. We looked at

a number of different visual programming approaches and concluded that a diagram-like

syntax was the best fit for our application. Another approach we considered was using

Blockly, but we decided against it because using Blockly requires its users to understand

programming concepts, at least on some level [31].

Instead of Blockly, we looked into a JavaScript visual programming framework called

Rete. Rete is a modular framework that allowed us to create a node-based visual edi-

tor [15]. We believe that this approach is easier for end users to understand and use than

Blockly. In Rete, one can create multiple nodes that can be connected with connections

26

between input and output sockets. These nodes can be connected as a graph, and the

graph can generate JavaScript code line by line from each node.

We did not end up using Rete for the visual editor. We found that Rete both had a lot

of bugs and was outdated and not actively maintained. Therefore, we decided to make our

own visual programming interface, inspired by the Rete framework. Our implementation

had roughly the same features and it ended up having a lot fewer problems and thus it

is better for the user to use.

Using Rete one could create complicated graphs and have a lot of flexibility in the

way that one connects nodes. To keep method representations simple, we constrained

the visual editor to only contain one or more input nodes, one main logic node and one

output node. This way all programs will look quite similar, and the user will not have to

learn complex programming concepts to use the editor or to connect many different logic

blocks to create a program. This works reasonably well with HotDrink, since methods

in HotDrink applications are usually not that complicated, at least when we are creating

simple form applications.

Figure 4.1: An example method implementation using our visual programming interface
built with Rete. This method checks if a number is positive and returns true or false
accordingly.

Code generation was an interesting task, as visual programs are not mimicking exactly

what a textual program should do line by line. One of the main tasks was to share

variables between blocks. Each block has its own scope, and variables are not shared by

default. We implemented a way to share variables between blocks, by letting each block

pass its variables to the next blocks. The input and output sockets were used to keep

27

track of which blocks the variables should be passed to. This way the next block in the

diagram can use the variable name from the previous block to get the value.

An example of the generated code is shown in Listing 3.2. Here we pass two variables

from the two input nodes to the max block. The max value is then calculated in this

block and generates a variable with the result. The max value is passed to the output

node, which returns the passed value.

DSL for code blocks

The DSL for creating blocks for the library has to be interpreted by the visual editor.

Since the code written in the DSL is not a format that is understood by the visual editor,

we made the code convert to a readable format. Since JavaScript Object Notation (JSON)

is a format that is both easy to write and understand, we decided to use JSON. Using

Xtext, each time we make a change in a DSL program, the program is automatically con-

verted to JSON, which is then exported from the Integrated Development Environment

(IDE) and processed by the visual editor. This allows others to use and import programs

written in our DSL, as for example if someone wants to create a different library for the

visual editor.

4.3 HotDrink

4.3.1 Components and constraints

In the background we use HotDrink’s API to create components and constraints. Our

convention is that there is only one component for each form application. This compo-

nent includes all variables (GUI elements) and all constraints that are connected to the

GUI elements. In addition to creating components and constraints, we also create the

binders between the HotDrink variables and GUI elements when the application is run

and exported to make the HotDrink constraint system connect to the GUI elements.

28

4.3.2 Serialization and deserialization

To export a constraint system, it has to be serialized into a storable format. There was no

implemented functionality to do this in the HotDrink framework. Therefore we decided

to implement serialization and deserialization as part of the framework.

The storable format has to store the state of the constraint system, which means

everything that is needed for a constraint system to be reconstructed. This includes the

components, constraints, methods and variables. This state from the storable format is

then deserialized into a new constraint system when an application is loaded. The format

is a JSON file, which is a format that is easy to both to write and parse, and understand.

The biggest challenge of storing constraint systems in a JSON format is that HotDrink

contains circular references for variables, and JSON does not support this. Therefore,

a simple toJson method in JavaScript is not enough in this situation. We needed to

implement custom serialization and deserialization to handle circular references. With

this storable format, we can export a constraint system from the visual editor, and use

it in an application. For example, the temperature converter in Listing 2.1 would be

exported as a JSON file as shown in Listing 4.1.

29

Listing 4.1: Storable format of temperature converter example in JSON.
1 {
2 "components":[
3 {
4 "name":"Component1",
5 "variables":[
6 {
7 "name":"celcius"
8 },
9 {
10 "name":"fahrenheit"
11 }
12],
13 "constraints":[
14 {
15 "name":"C2",
16 "constraintSpec":{
17 "methods":[
18 {
19 "nvars":2,
20 "ins":[
21 0,
22 1
23],
24 "outs":[
25 1
26],
27 "code":"(celcius , fahrenheit) => {\n

↪→ return celcius * (9/5) +
↪→ 32\n }",

28 "promiseMask":[
29 0,
30 0
31]
32 },
33 {
34 "nvars":2,
35 "ins":[
36 0,
37 1
38],
39 "outs":[
40 0
41],
42 "code":"(celcius , fahrenheit) => {\n

↪→ return (fahrenheit - 32)
↪→ * (5/9)\n }",

43 "promiseMask":[
44 0,
45 0
46]
47 }
48]
49 },
50 "optional":false
51 }
52]
53 }
54]
55 }

30

Chapter 5

Case study — Norwegian tax form

To evaluate the programming experience that our visual editor offers, we created an

example application in both standard HTML with JavaScript and HotDrink, and in our

visual editor. The goal of this case study was to evaluate how the development process

of HotDrink applications is affected by the visual specification and compare the results

of different methods of creating HotDrink applications. We were also interested to see if

we can create the same application in our visual editor to see if there are limitations that

the visual editor imposes.

Figure 5.1: Norwegian tax form using HotDrink, JavaScript and HTML.

The application we are evaluating is a Norwegian tax form, where the user can fill

out parts of the form and let HotDrink calculate the other fields using different formulas.

When changing fields, other fields will be automatically updated according to a formula

31

Figure 5.2: Norwegian tax form in the visual editor’s design mode.

in one of the methods in the constraint system. The form includes a number of data-flow

constraints which makes it a perfect example to showcase HotDrink’s usage. The purpose

of the tax form is to calculate the tax amount and net income from a given income, tax

percentage, and deduction. Alternatively, the application lets the user calculate the net

income when either the tax or the net income changes.

A prototype of the tax form can be seen implemented in the visual editor in Figure 5.2.

32

Listing 5.1: Norwegian tax form constraints in HotDrink, calculating tax and income,

with deduction.
1 var income , percentage , time , finnmark = false , deduction , tax ,

↪→ net_income;
2
3 constraint {
4 (income , percentage , deduction -> tax , net_income) => {
5 var newTax = (income * percentage / 100) - deduction;
6 var newNet_income = income - newTax;
7 return [newTax , newNet_income];
8 }
9 (tax , net_income , deduction , percentage -> income) => {
10 var newIncome = parseInt(net_income) + parseInt(tax);
11 return newIncome;
12 }
13 }
14
15 constraint {
16 (finnmark , time -> deduction) => {
17 var timeDeduction = 9163 * time;
18 var finnmarkDeduction = 20000;
19 if (finnmark) {
20 return timeDeduction + finnmarkDeduction;
21 } else {
22 return timeDeduction;
23 }
24 }
25 (deduction , finnmark -> time) => {
26 if (finnmark) {
27 return (deduction - 20000) / 9163;
28 } else {
29 return deduction / 9163;
30 }
31 }
32 }

The example has two constraints, which handle all logic of the application. The first

constraint on line 3 in Listing 5.1 has two methods for calculating to and from income

and net income, with tax and percentage. The first method calculates the tax and net

income from the given income and percentage and returns both of these variables. That

means that both of these will be updated in the GUI if the constraint is enforces using

the first method. The second method calculates the income from the given tax and net

income. This is the inverse of the first method and is used to calculate the income when

either the tax or the net income changes.

The second constraint has to methods, one calculating the deduction from the number

of months in Norway and if the user is eligible for the Finnmark deduction. The amount

of months spent in Norway is multiplied by 9163 NOK to get the total amount of month

deduction. Finnmark deduction is a fixed amount of 20000 NOK. The deduction is added

to the total amount of month deduction. The deduction is then returned as the total of

Norwegian kroner to be deducted from income. The other method calculates how many

months the user has spent in Norway from the total amount of deduction, and takes into

account whether the user is eligible for the Finnmark deduction.

33

Developing the tax form in the visual editor is markedly different from programming

it by textually writing code. In the latter, the programmer has to track a lot of details,

variable names, syntax and how the dependencies are formed in the code, where, as in

the visual editor, the programmer can see the direct mapping of the dependencies and see

exactly which fields are dependent on each other. With a single glance, the programmer

can be reassured that the network of dependencies is as expected. When writing code

textually, these details are not visible to the programmer, and the programmer has to

develop them themselves. As a result a visual editor has the potential to give a better,

faster and less error prone programming experience than a textual code editor.

The tax form we have developed is only one example, but it is indicative, as it already

makes the developing experience of HotDrink application much more pleasant. During

this thesis work we did not have the time and resources to conduct a larger study, but in

the future we believe it would be beneficial to conduct a study where different developers

would implement a larger number of GUIs, for example other tax forms, and compare

the results.

34

Chapter 6

Usability test

6.1 Setup

We conducted a usability test on the behavior of the visual editor, where users were

asked to create a form using our tool and test it out. The test was conducted using the

users’ web browsers. Following commonly accepted advice [34] we selected five users as

subjects: with adding more users, we are not likely to learn that much new about our

application’s usability.

The users were asked to follow the steps below to create a width, height, and area

calculator of a square.

1. Add three input fields to the canvas.

2. Set the id of these input fields to height, width and area.

3. Change these input fields to be of subType number.

4. Create a constraint between the three input fields.

5. Create two methods within the constraint, one for calculating area from width and

height and one to calculate from area to width and height.

6. Add logic to the method that calculates the area using the visual programming

interface, the method should return width ∗ height.

35

7. Write JavaScript code for the method with output variables width and height.

The method should return the square root of area for both outputs:
√
area. In

HotDrink to return multiple variables, the user has to return an array with these

variables.

8. Run the program and test with different numbers.

If the user was a non-programmer, they were be asked to skip step seven, as this is a

programming task.

6.2 Results

We conducted the test on a total of five users. We chose users with different backgrounds.

Three of them had either never used a visual programming tool, or had barely used a

visual programming tool. Two of them were quite familiar with other visual programming

tools. Four of these were programmers, and one was a non-programmer. The non-

programmer was asked to skip the programming task.

The five users used a range of different operating systems and some different browsers.

Three of them used Mac OS, one used Windows, and one used Linux. Three of them

used Chrome, one used Firefox, and one used Safari. As this is a web application, it

is important to test with different devices and browsers to ensure that the application

works the same on all of them.

Table 6.1: A table of the results of the usability test. Green (•) means that the participant
completed the task successfully. Yellow (G#) means that the participant completed it, but
it either took a long time or multiple tries. Red (◦) means that the participant failed
to complete the task and we had to intervene to help the participant complete the task.
White (-) means that the task was skipped.

Step

Participant 1 2 3 4 5 6 7 8

Participant 1 • • • • G# • • •
Participant 2 • • • • • • G# •
Participant 3 • • • • G# • • •
Participant 4 • • • ◦ ◦ G# - •
Participant 5 • • • • • G# • •

36

Four of the five users completed the task successfully, one failed to complete some of

the steps and we had to intervene to help them complete the task. All of these participants

had no experience with this exact tool prior to the test, which means that some yellow

fields were expected. The most important part of the task is that they were able to

complete it, and the result shows that most were able to manage just that.

6.2.1 Feedback

After the usability test, we got a good idea of what limitations the visual editor had.

We have identified some things that should be improved to make the visual editor more

usable. Below we list current limitations that should be improved, based on what the

users did and what they said.

Layer 1 — Form designer

In the form designer, dragging-and-dropping elements onto the canvas was a bit different

on Mac OS compared to the other operating systems. On Mac OS, the elements that

were dropped floated back to the start before they were shown on the canvas. The other

operating systems did not have this problem, and the elements were dropped on the

canvas without floating back.

Layer 2 — Creation of constraints

Figure 6.1: When clicking on Create method, an input field and two buttons appear.

37

When creating methods on a constraint, an input field for the name with a confirm

and cancel button is displayed, as shown in Figure 6.1. When this Create method -mode

is active, users have to click on the elements that should be output variables and write a

name for them. Some of the participants thought the Confirm and Cancel buttons were

only for the name of the method, but the Confirm button is also for creating the method.

Users do get a message that tells them that they also need to click on the elements on the

canvas to create the method, but some of the users did not read it. Therefore, it might

be a good idea to make this message more clear, for example by presenting it in an alert

box. The users do get an error message if they try to create a method without selecting

elements, so they finished the task without help either way.

One participant ended up creating methods with wrong output variables, and this

participant realized this after the method was created and looked for an undo button.

We do not have an undo and redo option in the visual editor so the participant had to

delete the method instead. Deleting is our intended solution to this problem, but an undo

button might be a better solution.

Layer 3 — Constraint editor

Figure 6.2: The top part of the constraint editor.

One of the main problems we encountered while doing the usability tests was that the

participants did not understand how to get out of the constraint editor. There is a Save

button in the right corner of the editor, but this was not intuitive enough. Save and exit

might be a better name for the button, to make it more clear that this is the way to exit

the constraint editor.

A suggestion from one of the participants was to include the name of the method that

is being edited at the top of the constraint editor. This could be added at the top of the

editor between the buttons, to make it easier for the users to understand what method

they are editing.

In the visual programming interface, the user needs to click on the sockets to create

a connection. This was intuitive for most of the participants, but some of them tried to

38

Figure 6.3: Visual programming blocks showing sockets between width, height and a
multiplication block.

drag from them first. This might be a better solution since some of the participants were

slightly confused when they could not drag from the sockets.

Finally, we got feedback that the visual programming interface was small in size

compared to the content provided inside. The visual programming blocks take up a lot

of space, and there is not a lot of space inside the visual programming interface. It might

be a good idea to make the visual programming interface bigger so that the user can see

more of the content.

6.3 Summary

The feedback we got is a good indicator of what future work should be done. Many minor

things could be done to improve the usability of the visual editor. It would be beneficial

to have a new usability test after these improvements and see how the results improve.

Overall, we got a good idea of what the limitations of the visual editor were.

39

Chapter 7

Related work

There are a number of different works related to our application, which we will discuss

in the following sections.

7.1 Constraint systems

Besides GUI programming, constraint systems are used in other areas of software engi-

neering too. We discuss some of the most prominent applications below.

7.1.1 Amulet Environment

The Amulet Environment [32] is a programming environment that incorporates a number

of design and implementation innovations, such as new models for objects, animation,

output, input, commands, but most importantly, constraints. Amulet stands for Auto-

matic Manufacture of Usable and Learnable Editors and Toolkits. It was implemented

in C++, and it ran on a wide range of operating systems. The Amulet environment

integrates constraint solving with an object system. The object system is a prototype-

instance based system, which is used to represent the objects in the constraint system.

In the Amulet environment, a user operates with slots, which can contain either values

directly or expressions that when evaluated will emit a value. Like HotDrink, when there

is a change in the value of a slot that is referenced by a constraint, the corresponding

value expression is automatically re-evaluated [32].

40

7.1.2 ConstraintJS

ConstraintJS is a JavaScript library for creating constraints in dynamic web applications.

ConstraintJS enables the developer to create constraints, which are relationships that

are declared once and then automatically maintained. These constraints can be used

to control content and control display [36]. Similar to HotDrink, ConstraintJS allows

developers to specify their own bindings between constraint variables and Document

Object Model (DOM) elements [35]. ConstraintJS allows the developer to use mostly

HTML and CSS to declare the interactive behavior, rather than using large amount of

JavaScript [36]. Unlike HotDrink, ConstraintJS does not provide support for multi-way

constraints, but rather only supports one-way constraints, as the authors see multi-way

constraints as an unnecessary complication. instead of a benefit [36]. As seen in the

WHAP example, using multi-way data-flow constraints is beneficial; implementing the

example manually would require more work and be more error prone.

Listing 7.1: A ConstraintJS example, listing commander names in a list [35]. The fol-

lowing is a template that is connected to the ConstraintJS constraint system. The DOM

elements are bound to the constraint system, such that when a change occurs in ei-

ther of the input elements, values are automatically changed in the unordered list. The

application produced by this code can be seen in Figure 7.1.
1 <label>Title:</label>
2 <input class=’form -control ’ type=’text ’ cjs -out=’demonym ’
3 placeholder=’Demonym ’ value=’Commander ’ />
4
5 <label>Members (comma -separated):</label>
6 <input class=’form -control ’ type=’text ’ cjs -out=’items ’
7 placeholder=’Comma -separated items ’
8 value=’Kirk , Spock , Sulu , Uhura ’ />
9
10 <hr/> <label>Result:</label>
11
12 <ul class="list -group">
13 {{# each items.split(",")}}
14 <li class="list -group -item">
15 {{ demonym }} {{ @index }}: {{this}}
16
17 {{/ each}}
18

7.2 Form builders

Form builders are often used to create forms by dragging-and-dropping widgets on a

canvas. The following work uses form builders similar to our visual editor.

41

Figure 7.1: Example of comma separated list of names, using ConstraintJS. The code for
this application is shown in Listing 7.1.

7.2.1 JotForm

JotForm is an online form builder with a range of different library components, such as

input field, date-picker, dropdown list, checkbox, etc. These components can be dragged

and dropped onto the canvas of the end-user application being developed. JotForm is

mainly used to collect data from users and store the results in a database. Users can

define conditional logic between components to create dynamic forms. The conditional

creator supports most of the same operators as the form builder developed in this thesis.

However, JotFrom does not support presenting conditional logic in a diagram view, which

is in contrast to our solution, which supports visualizing the logic and data-flow of the

form. The target user base of JotForms is mostly non-programmers, who use the tool

mostly for creating different types of surveys [4].

7.2.2 Microsoft Visual C# Express

Microsoft Visual C# Express is a lightweight IDE used to develop Windows desktop

applications. The IDE contains an interactive GUI with a design mode that is used

to visually create Windows Forms applications. The design mode includes a library of

42

components (such as buttons and text boxes), which are common GUI elements in such

applications. Similarly to this thesis, the design mode also includes a properties panel,

which lets the user control the properties of each component. For a more fine-tuned

customization of the end-user application, a user can open the code view. The code view

shows the code that is generated by the design mode; this is where the user can edit

components as code, or to change the behavior of the application. The code view does

not have the same visual features as the design mode to create components, but the code

view is more flexible. The code is generated and edited in C#, which is the programming

language used by the IDE. As Microsoft Visual C# Express is designed to be used not

only by developers but also by hobbyists and students, a combination of both design

mode and code view makes development suitable for a wider audience of developers [19].

Microsoft Visual C# Express achieves much of the same as our form builder, with

similar features such as a design mode and a code editor. Their IDE does not however

have a visual programming interface where users can program application behavior using

visual components.

7.2.3 Delphi

Delphi is an IDE for creating native applications. The IDE has been used for a long time

primarily for creating native Windows applications, but Delphi can now also compile

natively to Android, iOS, macOS, and Linux [3]. Delphi is similar to Microsoft Visual

C# Express in that it contains an interactive design mode with a code editor that works

practically the same. Instead of C#, Delphi applications are written using a version of

the programming language Pascal. The editor has been around for many years; the first

version was released in 1995 and was called Borland Delphi [24]. The IDE has been

expanding its functionality over the years, but Delphi’s primary focus has always been

on the visual programming environment for rapid creation of native applications.

7.3 Lowcode / no code environments

To allow non-programmers to develop applications, there exists a range of environments

that do not require programming.

43

7.3.1 Pure Data

Pure Data can be used to create programs without writing a single line of code. Pure

Data is a visual programming language that can be used to process and generate sound,

video, 2D/3D graphics, interface sensors, input devices, and Musical Instrument Digital

Interface (MIDI) [12]. In pure data, user draws logic and data-flow interactively with

preprogrammed objects, which can be placed on a canvas. Data-flow is created by making

visual connections between objects. Each of these objects performs a predefined task

which can range from basic mathematical operators to advanced video encoding. Pure

Data is directed at a number of different use cases, and can be utilized by performers,

researchers, artists, and developers [12]. These users can use Pure Data for various

domain-specific purposes, with a range of different library objects.

7.4 Visual programming environments

Similar to our visual programming interface, there are other solutions that aim to provide

a visual programming environment for non-programmers. There is both evidence for and

against visual programming; we provide a summary of the two.

7.4.1 LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a visual program-

ming environment designed for scientists and engineers, and is used to develop programs

using a graphical notation. LabVIEW uses a powerful graphical programming language

called G, which aims at a significant increase in productivity, when compared to textual

programming [27].

Similar to our application, LabVIEW has a front panel, which is comparable to our

design view. In the front panel, a user can drag components onto a canvas, drag them

around, and resize them. The front panel includes a run mode, which is used to test the

program in a live environment.

LabVIEW also contains a block diagram, which is a graphical programming interface

for creating programs. The block diagram is similar to our visual language in the way that

it has blocks that are connected together with wires. The data-flow of programs is built

44

using these wires with a range of different blocks from a block library. LabVIEW’s block

diagram tool is of course quite advanced, with many more features than our visual editor,

such as the ability to create loops, functions, and provide error messages. LabVIEW is a

tool aimed for professional programmers.

7.4.2 Empirical evidence for and against visual programming

Visual Programming Languages and the Empirical Evidence For and Against [39] paper

by John Whitley discusses the evidence for and against the use of VPLs. The paper

summarizes empirical data relevant to VPLs and the results of research on VPLs [39].

Visual programming in the real world [22] is an industry-based study that found

empirical evidence for visual programming. The study claims that there are productive

use cases for the use of VPLs in real-world programming tasks [39]. In this study the

researchers had two teams of programmers, one team was using LabVIEW, a VPL, and

the other team was using text-based programming. Both teams were given the task of

developing an application for a customer in three months. Both teams received the same

amount of funding and the same requirements. After three months, the LabVIEW team

had a better result than the text-based team. The LabVIEW team was able to complete

all of the requirements given by the customer, including extra features. The text-based

team did not finish all of the original requirements and needed more time to finish [22].

One of the reasons behind LabVIEWs success was that the team had closer contact

with the customer, the customer was able to understand more of the development process

as they used a VPL. While the text-based team had not met their customers before the

presentation after three months [22]. If the text-based team also had met their customer,

the result might have had a slightly different outcome, but since the LabVIEW team was

that much more efficient, closer contact with the customer would likely not have made a

huge difference for the outcome.

Whitley found that in real-world programming tasks, visuals outperformed text nota-

tion in either time or correctness and even in both. Whitley also found that in situations

where people designed or worked with problem-solving, they performed better when in-

formation was presented in a consistent and organized matter, like with a VPL [39].

Historically flowcharts have been the primary visual tool for programmers. Two stud-

ies, one by Shiderman [38] and one by Ramsey, Atwood, and Von Doren [37] studied the

45

use of flowcharts as an aid to textual code, but they did not find any evidence that they

were a benefit to use with textual code [39]. Whitley found that the use of VPLs depends

on the task that is to be performed. It is important to consider the effects of VPL on a

range of different tasks. Another important issue to consider is whether the effect of VPLs

is large enough to be of practical interest [39]. An example of this is the spreadsheet, a

widely used tool for data analysis, and it is clear that it is a useful application.

There is both empirical evidence for and against VPLs. The empirical evidence for

VPLs shows that there is a need for VPLs to be used in real-world programming tasks.

The empirical evidence against VPLs shows that not every task is suitable for VPLs, and

that the use of VPLs depends on the task that is to be performed. We argue that our

VPL is useful in a number of different tasks, but some tasks are not suitable for our VPL.

This concides well with Whitley’s research.

7.5 Language workbenches

DSLs can be created with mainstream programming languages, but this often requires a

lot of work. To minimize work and make the creation of DSLs easier, there are multiple

Language Workbenches that help with the task.

7.5.1 Eclipse Xtext

As mentioned in Section 2.5.3, Xtext is a framework for developing programming lan-

guages and DSLs. The framework is used in the Eclipse IDE as a plugin. With Xtext, the

user can build full-featured text editors for both general-purpose languages and DSLs.

Building a grammar is easily done using the Xtext grammar language. The grammar

language is similar to the Extended Backus-Naur Form (EBNF) [18]. When building a

language, the user gets a fully-fledged IDE with language support for the new language,

with syntax highlighting and code completion, out of the box.

7.5.2 Langium

Langium is an open-source language engineering tool, with support for the Language

Server Protocol [7]. Langium is written in TypeScript and runs in Node.js. The goal

46

of Langium is to ”bring language engineering to the next level”, enabling the creation

of domain-specific languages in VS Code, Eclipse and other IDEs. Langium is based

on Xtext, and it has some of the same features, but with a different modern approach.

Langium keeps the concepts that have made Xtext successful but lifts them onto another

platform. The tool provides a grammar language for easily defining syntax rules and

structure for languages [7].

7.5.3 Whole platform

Whole platform is another Language Workbench. Like Xtext it is built on top of Eclipse.

The workbench can create new languages and manipulate them using domain notations.

With this workbench, domain experts can work together with programming experts,

where the domain experts write the business knowledge, and the programming experts

write the generators for the language [17].

7.5.4 MetaEdit+

MetaEdit+ is a graphical language workbench for designing domain specific languages.

MetaEdit+ includes a modeler, which provides a graphical interface through which to use

the language created in the workbench. The primary focus of this language workbench

is to create a tool that can be used to create domain specific languages without a single

line of code [8].

47

48

(a) A sample circuit, using the visual pro-
gramming interface of the Amulet environ-
ment [32].

(b) The design mode of Microsoft Visual
C# express, showing and example form,
dragging elements from the library to the
form will add it to the program [16].

(c) A form and a data module in the Delphi
7 IDE [11].

(d) The conditional creator of JotForm,
showing how to add logic to JotForm [4].

49

(e) Showing the volt to cm in LabVIEW
block mode, where the logic of the applica-
tion is developed [1].

(f) Showing a comparison between volt and
cm, with a stop button to end the program,
in the LabVIEW design mode [1].

(g) An example program in Pure Data that
will output Hello world [21].

Figure 7.3: Some screenshots of the related works presented in this chapter.

Chapter 8

Conclusion and future work

8.1 Conclusion

In this thesis work we constructed a visual programming tool that can be used to create

and visualize HotDrink applications. The thesis shows that a visual diagram helps the

programmer develop and track the dependencies of user interfaces that use data-flow

constraint systems. There is definitely audience for this program, it is suitable for every

programmer and non-programmer that wants to create applications with dependencies

between widgets.

Here we studied the complex dependencies that one encounters even within user in-

terfaces of relatively simple everyday applications. Such dependencies have not been

easily visualized in a visual representation before, since the dependencies tend to be im-

plemented in a complicated and adhoc way using event handing. This work relies on

data-flow constraint systems, enabling visual programming of these dependencies, and

performs an early evaluation of the benefits of such tools. There is obviously a benefit

of programming constraint systems visually versus textually as such tools provide the

programmer with substantional aid. Our end goal is to integrate tools developed here as

a mainstream tool for graphical interface programming.

8.2 Future work

Currently, we export the applications created in our visual editor to HTML and

JavaScript. In principle, we could also export to other formats or even frameworks,

50

for example to React, Angular, or Vue.js. With multiple export targets, developers could

choose which language or framework they want to continue with if developers want to

further expand the application after using our visual editor.

Another possible expansion would be to include different graphic designs in the export.

In React and other frameworks, some libraries can be used to style the elements in the

application. We could use a component library from these frameworks and use it to style

the elements in the application, for example, React’s MaterialUI [10].

Another natural future extension is to support more types of elements in the visual

editor’s design mode. Currently, we support text, button, date, checkbox and number.

We could add more types of elements, for example, image, audio, list, etc. This would

add more use cases: users would be able to visually create HotDrink applications with

more advanced elements.

There are also other possibilities regarding the visual programming interface. We

made a standard library that is easy to use and is not very complicated. We could add

a more advanced library that could cope with more complex operations, to make it more

adaptable for professional users. Also instead of having support for only one logic node at

a time, we could further expand this to support multiple logic nodes at a time. This would

make it possible to chain operations together, for example first multiplying variables and

then doing another operation on the result of the multiplication. Our reason for not

doing this was to keep the interface simple and easy to use.

In our DSL the block’s input and output variables are used as the names of the sockets

in the visual programming interface. These are to describe what goes in and what goes

out with each block. Since some of these blocks are very similar and have the potential to

be reused, an idea worth exploring is to add inheritance of blocks. An example of reuse

would be the Addition block and Multiplication block. These have similar inputs that

could be inherited from an abstract block. That way we only would need to write the

output code for each block.

Currently in the visual programming interface, code can be generated from visual

blocks and edited in the code editor. This is not possible the other way around, code

from the code editor cannot be edited in the visual programming interface. Such a round

trip feature would be useful, but quite demanding to implement.

After the usability test, we got some insights from users about the usability of our

visual editor. There are several smaller features that we could add or improve, mentioned

in Section 6.2.1.

51

To further evaluate and test the visual editor, we could create larger applications

with the editor, to experiment how the visual editor can be used in larger projects.

Applications with many dependencies between widgets are of particular interest. As our

visual editor is a working prototype, it can be used in real world projects to let users

create applications using HotDrink.

52

List of Acronyms

API Application Programming Interface.

CSS Cascading Style Sheets.

DOM Document Object Model.

DSL domain specific language.

EBNF Extended Backus-Naur Form.

GUI graphical user interface.

HTML Hypertext Markup Language.

IDE Integrated Development Environment.

JSON JavaScript Object Notation.

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

MIDI Musical Instrument Digital Interface.

MVVM Model-View-ViewModel.

VPL visual programming language.

53

Bibliography

[1] Basic LabVIEW Programming.

URL: https://www.halvorsen.blog/documents/teaching/courses/labview automation/

labview basic.php. [Accessed on 2022-03-21].

[2] Blockly.

URL: https://developers.google.com/blockly?hl=nb. [Accessed on 2021-12-02]. A

JavaScript library for building visual programming editors.

[3] Delphi: IDE Software Overview — Embarcadero.

URL: https://www.embarcadero.com/products/delphi. [Accessed on 2022-01-20].

[4] Free Online Form Builder & Form Creator | Jotform.

URL: https://www.jotform.com/. [Accessed on 2022-02-03].

[5] Introducing Hooks — React.

URL: https://reactjs.org/docs/hooks-intro.html. [Accessed on 2022-04-11]. A

JavaScript library for building user interfaces.

[6] JavaScript With Syntax For Types..

URL: https://www.typescriptlang.org/. [Accessed on 2022-01-15].

[7] Langium.

URL: https://langium.org. [Accessed on 2022-03-07].

[8] MetaCase — MetaEdit+ Workbench.

URL: https://www.metacase.com/mwb/. [Accessed on 2022-05-02].

[9] Monaco Editor.

URL: https://microsoft.github.io/monaco-editor/. [Accessed on 2022-01-25].

[10] MUI: The React component library you always wanted.

URL: https://mui.com/. [Accessed on 2022-05-09].

54

https://www.halvorsen.blog/documents/teaching/courses/labview_automation/labview_basic.php
https://www.halvorsen.blog/documents/teaching/courses/labview_automation/labview_basic.php
https://developers.google.com/blockly?hl=nb
https://www.embarcadero.com/products/delphi
https://www.jotform.com/
https://reactjs.org/docs/hooks-intro.html
https://www.typescriptlang.org/
https://langium.org
https://www.metacase.com/mwb/
https://microsoft.github.io/monaco-editor/
https://mui.com/

[11] An overview of the IDE: Delphi.

URL: http://etutorials.org/Programming/mastering+delphi+7/Part+I+Foundations/

Chapter+1+Delphi+7+and+Its+IDE/An+Overview+of+the+IDE/. [Accessed on 2022-03-

21].

[12] Pure Data — Pd Community Site.

URL: https://puredata.info/. [Accessed on 2022-01-07].

[13] Quickly understand JavaScript observables. Implement the Observable class from

scratch and understand what makes observables different from promises..

URL: https://www.stackchief.com/tutorials/JavaScript%20Observables%20in%205%

20Minutes. [Accessed on 2022-04-08].

[14] React — A JavaScript library for building user interfaces.

URL: https://reactjs.org/. [Accessed on 2022-01-15]. A JavaScript library for

building user interfaces.

[15] Rete.js.

URL: https://rete.js.org/#/. [Accessed on 2022-02-02].

[16] Visual Studio Express - A-SMIL.org.

URL: https://www.a-smil.org/index.php/Visual Studio Express. [Accessed on 2022-03-

21].

[17] Whole Platform - Home Page.

URL: https://whole.sourceforge.io/. [Accessed on 2022-04-29].

[18] Xtext — Language Engineering Made Easy!.

URL: https://www.eclipse.org/Xtext/. [Accessed on 2022-01-15].

[19] What is Visual Studio Express (VSE)? - Definition from Techopedia. November

2012.

URL: http://www.techopedia.com/definition/24334/visual-studio-express--vse.

[Accessed on 2022-03-10].

[20] Introduction to Visual Programming Language. September 2021.

URL: https://www.geeksforgeeks.org/introduction-to-visual-programming-language/.

[Accessed on 2021-12-02].

[21] Pure Data 2022.

URL: https://en.wikipedia.org/w/index.php?title=Pure Data&oldid=1072958158.

[Accessed on 2022-03-21]. Page Version ID: 1072958158.

55

http://etutorials.org/Programming/mastering+delphi+7/Part+I+Foundations/Chapter+1+Delphi+7+and+Its+IDE/An+Overview+of+the+IDE/
http://etutorials.org/Programming/mastering+delphi+7/Part+I+Foundations/Chapter+1+Delphi+7+and+Its+IDE/An+Overview+of+the+IDE/
https://puredata.info/
https://www.stackchief.com/tutorials/JavaScript%20Observables%20in%205%20Minutes
https://www.stackchief.com/tutorials/JavaScript%20Observables%20in%205%20Minutes
https://reactjs.org/
https://rete.js.org/#/
https://www.a-smil.org/index.php/Visual_Studio_Express
https://whole.sourceforge.io/
https://www.eclipse.org/Xtext/
http://www.techopedia.com/definition/24334/visual-studio-express--vse
https://www.geeksforgeeks.org/introduction-to-visual-programming-language/
https://en.wikipedia.org/w/index.php?title=Pure_Data&oldid=1072958158

[22] Ed Baroth and Chris Hartsough. Visual programming in the real world. In Vi-

sual object-oriented programming: concepts and environmentspages 21–42. Manning

Publications Co.USAJanuary 1995. ISBN 9780131723979.

[23] John Freeman, Jaakko Järvi, and Gabriel Foust. HotDrink: a library for web user

interfaces. ACM SIGPLAN Notices48(3): 80–83. September 2012. ISSN 0362-1340.

doi: 10.1145/2480361.2371413.

URL: https://doi.org/10.1145/2480361.2371413. [Accessed on 2021-11-10].

[24] Zarko Gajic. The History of Delphi. March 2017.

URL: https://www.thoughtco.com/history-of-delphi-1056847. [Accessed on 2022-03-

10].

[25] Jaakko Jaarvi. Hotdrink documentation.

URL: https://git.app.uib.no/Jaakko.Jarvi/hd4/-/blob/master/docs/tutorial/

tutorial.org. [Accessed on 2022-02-15].

[26] Jaakko Jaarvi. Introduction to HotDrink.

URL: http://hotdrink.github.io/hotdrink/howto/intro.html. [Accessed on 2022-01-

13].

[27] Jim Kring Jeffrey Travis. Labview for Everyone: Graphical Programming Made Easy

and Fun. Prentice Hall.2006. ISBN 0131856723; 9780131856721.

[28] Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith. Prop-

erty models: from incidental algorithms to reusable components. In Proceedings of

the 7th international conference on Generative programming and component engi-

neeringGPCE ’08. pages 89–98. New York, NY, USA2008. Association for Comput-

ing Machinery. ISBN 9781605582672. doi: 10.1145/1449913.1449927.

URL: https://doi.org/10.1145/1449913.1449927.

[29] Jaakko Järvi, Gabriel Foust, and Magne Haveraaen. Specializing planners for hierar-

chical multi-way dataflow constraint systems. ACM SIGPLAN Notices50(3): 1–10.

September 2014. ISSN 0362-1340. doi: 10.1145/2775053.2658762.

URL: https://doi.org/10.1145/2775053.2658762. [Accessed on 2021-12-02].

[30] Anton Lavrenov. Getting started with react and canvas via Konva.November 2020.

URL: https://konvajs.org/docs/react/index.html. [Accessed on 2022-02-02].

[31] Siti Nor Hafizah Mohamad, Ahmed Patel, Rodziah Latih, Qais Qassim, Liu Na,

and Yiqi Tew. Block-based programming approach: challenges and benefits. In

56

https://doi.org/10.1145/2480361.2371413
https://www.thoughtco.com/history-of-delphi-1056847
https://git.app.uib.no/Jaakko.Jarvi/hd4/-/blob/master/docs/tutorial/tutorial.org
https://git.app.uib.no/Jaakko.Jarvi/hd4/-/blob/master/docs/tutorial/tutorial.org
http://hotdrink.github.io/hotdrink/howto/intro.html
https://doi.org/10.1145/1449913.1449927
https://doi.org/10.1145/2775053.2658762
https://konvajs.org/docs/react/index.html

Proceedings of the 2011 International Conference on Electrical Engineering and In-

formaticspages 1–52011. doi: 10.1109/ICEEI.2011.6021507.

[32] Brad A. Myers. The Amulet User Interface Development Environment.

URL: https://www.cs.cmu.edu/afs/cs/project/amulet/www/papers/videoabs.html.

[Accessed on 2022-03-07].

[33] Brad A. Myers and Mary Beth Rosson. Survey on user interface programming. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

CHI ’92.pages 195–202.New York, NY, USAJune 1992. Association for Computing

Machinery. ISBN 9780897915137. doi: 10.1145/142750.142789.

URL: https://doi.org/10.1145/142750.142789.

[34] Jakob Nielsen. Why You Only Need to Test with 5 Users. March 2000.

URL: https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/.

[Accessed on 2022-04-25].

[35] Stephen Oney. ConstraintJS.

URL: https://soney.github.io/constraintjs/. [Accessed on 2022-03-01].

[36] Stephen Oney, Brad Myers, and Joel Brandt. ConstraintJS: Programming Interactive

Behaviors for the Web by Integrating Constraints and Statespages 229–238. Associ-

ation for Computing MachineryNew York, NY, USA2012. ISBN 9781450315807.

URL: https://doi.org/10.1145/2380116.2380146.

[37] H. Rudy Ramsey, Michael E. Atwood, and James R. Van Doren. Flowcharts versus

program design languages: an experimental comparison. Communications of the

ACM 26(6):445–449June 1983. ISSN 0001-0782. doi: 10.1145/358141.358149.

URL: https://doi.org/10.1145/358141.358149. [Accessed on 2022-01-31].

[38] Ben Shneiderman, Richard Mayer, Don McKay, and Peter Heller. Experimental

investigations of the utility of detailed flowcharts in programming. Communications

of the ACM 20(6):373–381June 1977. ISSN 0001-0782. doi: 10.1145/359605.359610.

URL: https://doi.org/10.1145/359605.359610. [Accessed on 2022-01-31].

[39] K. N. Whitley. Visual programming languages and the empirical evidence for and

against. 1996.

57

https://www.cs.cmu.edu/afs/cs/project/amulet/www/papers/videoabs.html
https://doi.org/10.1145/142750.142789
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://soney.github.io/constraintjs/
https://doi.org/10.1145/2380116.2380146
https://doi.org/10.1145/358141.358149
https://doi.org/10.1145/359605.359610

Appendix A

DSL standard library

Table A.1: Visual blocks available in the standard DSL library (Layer 3).

Block Inputs Params Explanation

Add 2 0 Adds the two inputs together.

AddWith 1 1 Adds the input with number given in param.

Subtract 2 0
Subtracts the first input with the second in-
put.

SubtractWith 1 1
Subtracts the input with the number given
in param.

Multiply 2 0 Multiplies the two inputs.

MultiplyWith 1 1
Multiplies the input with the number given
in param.

Divide 2 0
Divides the input dividend with the second
input divisor.

DivideWith 1 1
Divides the input with the number given in
param.

Mod 2 0
Modulo of the input dividend with the sec-
ond input divisor.

ModWith 1 1
Modulo of the input with the number given
in param.

LessThan 2 0
Returns true if first input is less than second
input.

MoreThan 2 0
Returns true if first input is more than sec-
ond input.

LessOrEqual 2 0
Returns true if first input is less or equal than
second input.

58

MoreOrEqual 2 0
Returns true if first input is more or equal
than second input.

IsPositive 1 0 Returns true if input is positive number.

IsNegative 1 0 Returns true if input is negative number.

IsZero 1 0 Returns true if number is zero.

IsOdd 1 0 Returns true if number is odd.

IsEven 1 0 Returns true if number is even.

Min 2 0
Returns the minimum number of the two in-
puts.

Max 2 0
Returns the maximum number of the two in-
puts.

Length 1 0 Returns the length of the input string.

Concat 1 1 Concats the input with the param.

Contains 1 1 Returns true if the input contains the param.

ToLowerCase 1 0 Returns the input string in lower case.

ToUpperCase 1 0 Returns the input string in upper case.

IsEmpty 1 0 Returns true if string is empty.

And 2 0 Returns true if both inputs are true.

Or 2 0 Returns true if one of the inputs are true.

Not 1 0
Returns the opposite of the boolean value in
input.

IsTrue 1 0 Returns true if input is true.

IsFalse 1 0 Returns true if input is false.

IsBefore 1 1
Returns true if input date is before param
date.

IsAfter 1 1
Returns true if input date is after param
date.

59

	Introduction
	Thesis outline

	Background
	Motivation
	Constraint system
	HotDrink
	Visual programming
	Technologies
	TypeScript
	React
	Eclipse Xtext

	A visual language for HotDrink specifications
	Form designer
	Visual representation of constraints
	Running and exporting

	Constraint editor
	Code view
	Visual programming interface

	Implementation
	Form Designer
	Visual programming interface
	HotDrink
	Components and constraints
	Serialization and deserialization

	Case study — Norwegian tax form
	Usability test
	Setup
	Results
	Feedback

	Summary

	Related work
	Constraint systems
	Amulet Environment
	ConstraintJS

	Form builders
	JotForm
	Microsoft Visual C# Express
	Delphi

	Lowcode / no code environments
	Pure Data

	Visual programming environments
	LabVIEW
	Empirical evidence for and against visual programming

	Language workbenches
	Eclipse Xtext
	Langium
	Whole platform
	MetaEdit+

	Conclusion and future work
	Conclusion
	Future work

	List of Acronyms
	Bibliography
	DSL standard library

