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Abstract
We describe a number theoretic view on binary shift registers. We illustrate this approach 
on some basic shift registers by revisiting known and obtaining new results, which we 
prove using tools from basic number theory, including modular arithmetic.
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1  Introduction

The cycles produced by binary shift registers, as well as the representative member used 
to denote them, are for reasons of brevity sometimes given in decimal notation instead of 
as binary sequences, see for example [3, 6, 12]. This simple observation piqued our inter-
est to investigate an alternative view on the theory of shift registers where we move away 
from the traditional approach of binary sequences and work entirely with the correspond-
ing integers.

After providing basic information on the necessary theory using the new approach in 
Section  2, we apply it on some basic registers to study their cycle structure (Section  3) 
and adjacency graphs (Section 4) using tools from basic number theory, including modular 
arithmetic. Apart from re-obtaining known results, our contributions include simple crite-
ria for determining cycle lengths, the enumeration of cycles of fixed length, and a new con-
nection between the pure and complemented cycling and summing registers.

Our main aim is to provide a unified description of this number theoretic approach. Its 
general usefulness as a tool for studying shift registers beyond the examples given here 
remains to be seen.
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2 � From binary sequences to modular arithmetic

Any non-singular binary feedback shift register of order n can be defined in terms of a 
bijective map g ∶ �

n
2
→ �

n
2
 given by

for some Boolean function F ∶ �
n−1
2

→ �2 [4].
We can shift from binary tuples to modular arithmetic by considering each k-tuple 

(s0,… , sk−1) ∈ �
k
2
 as the binary representation of the integer 

∑k−1

i=0
si2

k−1−i ∈ ℤ2k . The cor-
responding functions will be F ∶ ℤ2n−1 → ℤ2 and g ∶ ℤ2n → ℤ2n given by

Rewriting this in terms of the support of F, namely the set D ⊆ ℤ2n−1 such that x ∈ D if and 
only if F(x) = 1 , we obtain

We can also define the complemetary map of gn,D as gn,D = gn,ℤ
2n−1⧵D

.

Example 1  Two basic, yet important maps are gn,∅ , called the Pure Cycling Register of 
order n ( PCRn ), and its complementary map gn,ℤ2n−1

 , called the Complemented Cycling 
Register of order n ( CCRn ). For brevity we will be respectively denoting them by gpn and 
gcn . They are given by

and

Cycle structure   For each x ∈ ℤ2n , the smallest i ∈ ℤ such that x = gi
n,D

(x) is called its 
period with respect to gn,D and denoted by pgn,D (x) , where gi

n,D
 denotes the composition of 

gn,D with itself i times. Each map gn,D partitions ℤ2n into cycles. We say x1, x2 ∈ ℤ2n belong 
to the same cycle if and only if x2 = gi

n,D
(x1) for some i such that 1 ≤ i < pgn,D (x1) . We shall 

denote each cycle by Ct where t is its smallest member. The number of elements in a cycle 
is called its length and equals their period. In case there is a single cycle we call it a maxi-
mal length or full or de Bruijn cycle. Mykkeltveit [9] proved the conjecture of Golomb [4] 
that no more than Z(n) = 1

n

∑
d∣n �(d)2

n∕d cycles can be obtained from any map gn,D , where 
� is Euler’s Totient function.

Example 2  The 8 cycles from PCR5 are C0 = {0} , C1 = {1,2,4,8,16} , C3 = {3,6,12,24,17} , 
C5 = {5,10,20,9,18} , C7 = {7,14,28,25,19} , C11 = {11,22,13,26,21} , C15 = {15,30,29,27,23} , 

(1)g(s0,… , sn−1) = (s1,… , sn−1, s0 ⊕ F(s1,… , sn−1)),

g(x) =

{
2x + F(x) mod 2n if x < 2n−1

2x + 1 − F(x − 2n−1) mod 2n if x ≥ 2n−1.

(2)gn,D(x) =

{
2x + 1 mod 2n if x ∈ D, or x ≥ 2n−1 and x − 2n−1 ∉ D

2x mod 2n otherwise.

(3)gpn (x) =

{
2x mod 2n if x < 2n−1

2x + 1 mod 2n if x ≥ 2n−1
= gcn (x)

(4)g
c
n

(x) =

{
2x + 1 mod 2n if x < 2n−1

2x mod 2n if x ≥ 2n−1
= g

p
n

(x) .
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and C31 = {31} . The 4 cycles from CCR5 are C0 = {0,1,3,7,15,31,30,28,24,16} , C
2
= 

{2,5,11,23,14,29,26,20,8,17} , C4 = {4,9,19,6,13,27,22,12,25,18} and C10 = {10,21}.

Complements and weights  For x ∈ ℤ2n , its complement is x = 2n − 1 − x and its weight, 
denoted by wt(x) , is the number of ones in its binary representation. By (1) we can deduce 
that wt(x) − 1 ≤ wt(gn,D(x)) ≤ wt(x) + 1 , and clearly

Example 3  The function F in (1) for PCRn is 0 and for CCRn 1 for all inputs. Thus, for any 
x ∈ ℤ2n , PCRn simply cyclically shifts the binary representation of x and therefore

CCRn also complements the last bit after shifting, thus weights differ by one:

If the complements of a cycle’s elements are all on one cycle of the same length, we say 
the two cycles are the complement of each other. A self-dual cycle is one that is its own 
complement, and thus has to have even length.

Example 4  In PCR5 , the complements of C0 , C1 , C3 and C5 are respectively C31 , C15 , C7 and 
C11 . Every CCR5 cycle is self-dual.

Adjacency graphs  The adjacency graph of a map gn,D is the undirected connected graph 
with vertices the map’s cycles, and for each x ∈ ℤ2n−1 an edge labelled x between the cycle 
containing x and the cycle containing gn,D(x) . An edge from a cycle to itself is called 
intracyclic, and extracyclic otherwise. For brevity, we represent multiple edges between 
two cycles by a single edge labelled by the set of the corresponding labels that we call the 
adjacency set.

(5)wt(x) = n − wt(x).

(6)wt(gpn (x)) = wt(x).

(7)wt(gcn (x)) =

{
wt(x) + 1 if x < 2n−1

wt(x) − 1 if x ≥ 2n−1.

Fig. 1   The adjacency graph of PCR
5
 (above) and CCR

5
 (below)
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Example 5  The adjacency graphs of PCR5 and CCR5 are given in Fig. 1.

The study of adjacency sets provides guidelines for joining and splitting cycles from a 
map gn,D . Adding an element of an adjacency set to D if it does not exist, or removing it 
if it does, affects the cycles connected by the edge it labels. If the edge is extracyclic then 
the two cycles sharing it merge into a single cycle, otherwise the corresponding cycle splits 
into two cycles. By joining all cycles, we obtain a de Bruijn cycle.

Two distinct x1, x2 ∈ ℤ2n−1 belong to the same adjacency set in the graph of a map gn,D 
if either 

A.	 x1 and x2 belong to the same cycle and gn,D(x1) and gn,D(x2) belong to the same cycle, in 
which case we shall call x1 and x2 an intracyclic pair, or

B.	 x1 and gn,D(x2) belong to the same cycle and x2 and gn,D(x1) belong to the same cycle, in 
which case we shall cal x1 and x2 an extracyclic pair.

Example 6  An intracyclic pair in the graph of PCR5 are 2 and 4 which are on C1 while 
gcn (2) = 5 and gcn (4) = 9 are on C5 . An extracyclic pair in the graph of CCR5 are 5 and 10 
since 5 and gpn (10) = 20 are on C2 , and gpn (5) = 10.

The two conditions for intracyclic pairs can be expressed formally as (a1 ) x2 = gi
n,D

(x1) , 
and (a2 ) gn,D(x1) = g

j

n,D
(gn,D(x2)) , for some i, j such that 1 ≤ i < p1 and 1 ≤ j < p2 , where 

p1 = pgn,D (x1) and p2 = pgn,D (gn,D(x1)) . Together they imply

Remark 1  Conditions  (a1 ) and  (a2 ) are equivalent to x1 = g
p1−i

n,D
(x2) and 

gn,D(x2) = g
p2−j

n,D
(gn,D(x1)) respectively. Hence, if one member of an intracyclic pair satisfies 

(8) with the pair of exponents (i, j), the other member satisfies it with the pair of exponents 
(p1 − i, p2 − j).

Similarly, the two extracyclic pair conditions can be expressed as (b1 ) x1 = gi
n,D

(gn,D(x2)) 
and (b2 ) x2 = g

j

n,D
(gn,D(x1)) , for some i, j such that 1 ≤ i < p1 and 1 ≤ j < p2 , where p1 and 

p2 are as above. Together they imply

3 � On the cycle structure of some basic shift registers

3.1 � The pure cycling register

PCRn was defined in Example 1. Since gpn (2
n − 1) = 2n − 1 , the PCRn cycle C2n−1 is of length 

1. For any x ∈ ℤ2n ⧵ {2
n − 1}, (3) can be expressed as

(8)gn,D(x1) = g
j

n,D
(gn,D(g

i
n,D

(x1))).

x1 = gi
n,D

(gn,D(g
j

n,D
(gn,D(x1)))).

(9)gpn (x) = 2x mod 2n − 1.
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The length of the cycle containing x ∈ ℤ2n ⧵ {2
n − 1} is equal to the period pgpn (x) , the 

smallest positive exponent i such that 2ix ≡ x mod 2n − 1 , or equivalently

the multiplicative order of 2 modulo this ratio. It follows that when x is coprime to 2n − 1 , 
its period is equal to n, the maximum possible. Therefore, there are at least �(2

n−1)

n
 cycles of 

length n.

Proposition 1  The length of any PCRn cycle divides n.

Proof  Suppose a PCRn cycle has length k not dividing n, in which case n = ak + b for posi-
tive integers a and b < k . For every element x in the cycle we have 
gn
pn
(x) = 2nx ≡ x mod 2n − 1 , where 2nx = 2ak+bx = 2b2akx ≡ 2bx mod 2n − 1 since 

2kx ≡ x mod 2n − 1 . Thus 2bx ≡ x mod 2n − 1 , a contradiction on the minimality of k. □

Let �n(k) denote the number of PCRn cycles of length k. This number is in fact equal 
to the number of binary Lyndon words and irreducible polynomials of degree k over ℤ2 
[2, 13] restricted to divisors of n:

where � is the M ̈obius function.
Golomb [4] proved that PCRn partitions ℤ2n into exactly Z(n) cycles. Summing �n(k) 

over all divisors of n, an alternative formula can be obtained.

Corollary 1  [13] The number of PCRn cycles is

Remark 2  This viewpoint reveals that the PCRn cycles (excluding C2n−1 ) are in fact the 
same as the cyclotomic classes of 2 modulo 2n − 1 defined by Carlet et al. [1] in a different 
context. These authors also showed that the cardinality of these classes is given by (10) and 
that their number is 

∑
d∣2n−1 �(d)∕pgpn

(d).

It is easy to check that gpn (x) = gpn (x) , hence every PCRn cycle has a complement 
(that pgpn (x) = pgpn

(x) also follows from (10)). By (6), all elements in a cycle have the 
same weight, henceforth the weight of the cycle. These two observations together with 
(5) imply that for each cycle of weight w there exists a distinct cycle of weight n − w of 
the same length, with the exception of self-dual cycles, which might exist if n is even 
and w = n∕2 . Since such a (self-dual) cycle contains both x and x , we have 
2ix ≡ −x mod 2n − 1 for some positive exponent i. Simplifying and combining with 
(10) gives

(10)2i ≡ 1 mod
2n − 1

gcd(x, 2n − 1)
,

�n(k) =

⎧
⎪⎨⎪⎩

1

k

∑
d∣k

�(d)2
k

d if k ∣ n

0 otherwise,

Z(n) =
∑
d∣n

1

d

∑
d�∣d

�(d�)2
d

d� .
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This condition cannot hold if x is coprime to 2n − 1 as 2n∕2 + 1 ≢ 0 mod 2n − 1.
Let ZO(n) and ZE(n) respectively denote the number of PCRn cycles of odd and even 

weight, and �O
n
(k) and �E

n
(k) those of odd and even weight and length k. From the above 

we can deduce that for odd n, complementary cycles have different weight parity, thus 
�O
n
(k) = �E

n
(k) = �n(k)∕2 and ZO(n) = ZE(n) = Z(n)∕2 . We will complete the picture by 

determining these numbers also for even n, in which case complementary cycles have 
the same weight parity. Knowing �n(k) and Z(n), it in fact suffices to obtain �O

n
(k) and 

ZO(n).

Proposition 2  For any x ∈ ℤn , its weight wt(x) is divisible by n∕pgpn (x).

Proof  Consider x ∈ ℤn of period pgpn (x) = k . We have 2kx ≡ x mod 2n − 1 which means 
2n − 1 divides (2k − 1)x , and since k divides n, (2n − 1)∕(2k − 1) =

∑n∕k

i=1
2n−ki divides x. In 

other words, x = a
∑n∕k

i=1
2n−ki for some integer 0 ≤ a ≤ 2k − 1 . Letting a =

∑k−1

j=0
aj2

j , 
where the aj ∈ {0, 1} , we get x =

∑n∕k

i=1

∑k−1

j=0
aj2

n−ki+j . The weight of x would be a multiple 
of n/k provided the powers of 2 in this sum are all distinct. This is indeed the case, as other-
wise we would have 2n−ki+j = 2n−ki

�+j� for distinct 1 ≤ i, i� ≤ n∕k and 0 ≤ j, j� ≤ k − 1 , 
implying k(i� − i) = j� − j , a contradiction since j − j� ≤ k − 1. □

Corollary 2  The weight of any PCRn cycle of length k is divisible by n/k.

Lemma 1  For positive integers n and k,

where �2 is the dyadic valuation, the highest power of 2 that divides an integer.

Proof  By Corollary  2, the weight of a PCRn cycle of length k is of the form wn/k, for 
0 ≤ w ≤ k . It is odd when both w and n/k are odd, the latter implying �2(n) = �2(k) , 
or equivalently that k = 2�2(n)d for any divisor d of n∕2�2(n) . Also, since ℤ2n con-
tains equally many elements of odd and even weight, 

∑
k∣n k �

O
n
(k) = 2n−1 . Therefore, ∑

d∣n∕2�2 (n) 2
�2(n)d �O

n
(2�2(n)d) = 2n−1 . Substituting n� = n∕2�2(n) in the sum’s range and the 

RHS, and applying M ̈obius inversion we obtain �O
n
(2�2(n)d) =

1

2�2 (n)d

∑
d�∣d �(d

�)22
�2 (n)

d

d�
−1 . 

Finally, using k = 2�2(n)d gives the required form. □

Summing �O
n
(2�2(n)d) over all divisors d of n∕2�2(n) we obtain ZO(n) . Then, we can obtain 

a closed formula for ZE(n) = Z(n) − ZO(n) , despite being unable to obtain a nice one for 
�E
n
(k) = �n(k) − �O

n
(k) . The proof is a straightforward simplification of this difference, 

using 
∑

d∣n f (d) =
∑

d∣n∕2�2 (n)
∑�2(n)

l=0
f (2ld).

2
pgpn

(x)

2 ≡ −1 mod
2n − 1

gcd (x, 2n − 1)
.

�O
n
(k) =

⎧
⎪⎨⎪⎩

1

k

∑
d∣

k

2�2 (n)

�(d)2
k

d
−1

if k ∣ n and �2(n) = �2(k)

0 otherwise,
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Corollary 3 

and

3.2 � The complemented cycling register

CCRn was defined in Example 1. For any x ∈ ℤ2n, (4) can be expressed as

It is easy to check that for any positive integer k we have

The length of the CCRn cycle containing x ∈ ℤ2n is equal to the period pgcn (x) , the smallest 
positive exponent i such that gi

cn
(x) = x . Using  (14) this is equivalent to 

2i(x + 1) ≡ x + 1 mod 2n + 1 , or

the multiplicative order of 2 modulo this ratio. It follows that when x + 1 is coprime to 
2n + 1 , the length of the cycle containing it is equal to 2n, the maximum possible. Hence, 
there are at least �(2

n+1)

2n
 cycles of length 2n.

Hauge [5] proved that the length of each cycle is even and divides 2n with an odd 
quotient. We reformulate this as follows.

Proposition 3  Any CCRn cycle has even length that divides 2n but not n.

Proof  From (14) we can see that g2n
cn
(x) ≡ x mod 2n + 1 , and since 2n ≡ −1 mod 2n + 1 , 

also that gn
cn
(x) ≡ x ≢ x mod 2n + 1 for all x ∈ ℤ2n . If a cycle had length k dividing n, that 

would contradict the inequality, and if it did not divide 2n then we would reach a contradic-
tion as in the proof of Proposition 1. Consequently, k is even. □

Proposition 4  All CCRn cycles are self-dual.

Proof  Consider any CCRn cycle and let 2p be its length and x one of its elements. We need 
to show that it also contains x . By Proposition 3, p must divide n with an odd quotient, say 

(11)
ZO(n) =

1

2�2(n)+1

∑
d∣

n

2�2 (n)

1

d

∑
d�∣d

�(d�)22
�2 (n)

d

d� ,

(12)ZE(n) =
1

2�2(n)+1

∑
d∣

n

2
�2 (n)

1

d

∑
d�∣d

�(d�)

�2(n)∑
l=0

2
2�2 (n)−l

d

d�
+l =

�2(n)∑
l=0

ZO
(
n

2l

)
.

(13)gcn (x) = 2x + 1 mod 2n + 1.

(14)gk
cn
(x) = 2

k(x + 1) − 1 mod 2
n + 1.

2i ≡ 1 mod
2n + 1

gcd (x + 1, 2n + 1)
,
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n = (2a + 1)p for some positive integer a. Then, 
x ≡ gn

cn
(x) ≡ g

2pa+p
cn

(x) ≡ g
p
cn
(x) mod 2n + 1 , thus x is indeed on the cycle. □

In fact, each cycle has the form {x1,… , xp, x1,… , xp} , where 2p is its length. From 
this, or alternatively by (13), we can also deduce that for any x ∈ ℤ2n,

Let �∗
n
(k) denote the number of CCRn cycles of length 2k.

Lemma 2  �∗
n
(k) = �O

n
(k).

Proof  By Proposition 3, 2k must divide 2n but not n. It is not difficult to check that for 
any integer n, the divisors of 2n that are not divisors of n are of the form 2�2(n)+1d where d 
divides n∕2�2(n) . Hence, 

∑
d∣n∕2�2 (n) 2

�2(n)+1d �∗
n
(2�2(n)d) = �ℤ2n � = 2n , which is exactly what 

we had in the proof of Lemma 1 for �O
n
(2�2(n)d) and thus M ̈obius inversion would yield the 

same expression. □

Golomb [4] states that CCRn generates Z∗(n) =
1

2n

∑
odd d∣n �(d)2

n∕d cycles. An alterna-
tive formula for this is (11), since by Lemma 2, Z∗(n) = ZO(n).

3.3 � The pure and complemented summing registers

Another two well-known examples of mutually complemetary shift registers are the Pure 
Summing ( PSRn ) and Complemented Summing ( CSRn ) registers of order n. As the name 
suggests, the function F in (1) for PSRn is the sum of its inputs modulo 2. Under the num-
ber theoretic viewpoint, the corresponding support is Dpsr = {x ∈ ℤ2n−1 | wt(x) is odd} . 
Using it in (2) we get the maps

and

At a first glance, a way to unify their description as we did for gpn and gcn in (9) and (13) is 
not evident. As a start, we can eliminate the current split (which is according to the parity 
of the weight) by mapping the elements of ℤ2n to the elements of ℤ2n+1 of either odd or even 
weight. One obvious way of doing this is by mapping elements with the chosen weight par-
ity to themselves, and mapping the rest of the elements to themselves plus 2n . This yields 
two invertible maps, one per weight parity, namely hn ∶ ℤ2n → {x ∈ ℤ2n+1 | wt(x) is even} 
and h�

n
∶ ℤ2n → {x ∈ ℤ2n+1 | wt(x) is odd} given by

and

(15)gcn (x) = gcn (x) = g

pgcn
(x)

2
+1

cn
(x).

(16)gpsrn (x) =

{
2x mod 2n if wt(x) is even

2x + 1 mod 2n if wt(x) is odd
= gcsrn (x),

gcsrn (x) =

{
2x + 1 mod 2n if wt(x) is even

2x mod 2n if wt(x) is odd
= gpsrn (x).

(17)hn(x) =

{
2n + x if wt(x) is odd

x if wt(x) is even
with h−1

n
(x) =

{
x if x < 2n

x − 2n if x ≥ 2n
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Note that by construction, for all x ∈ ℤ2n , wt(hn(x)) is even and wt(h�
n
(x)) odd. The next 

result establishes a connection between the four basic registers.

Theorem 1  For any x ∈ ℤ2n we have 

1.	 gpn+1 (hn(x)) = hn(gpsrn (x)) = gcn+1 (h
�
n
(x))

2.	 gpn+1 (h
�
n
(x)) = h�

n
(gcsrn (x)) = gcn+1 (hn(x))

Proof  Since all equalities can be proven in a similar way, we only provide proof for the first 
one. In fact, we will show that for any x ∈ ℤ2n,

By (17), for gpn+1 (hn(x)) we need to consider two cases, namely wt(x) even and 
odd. For wt(x) even, gpn+1 (hn(x)) = gpn+1 (x) = 2x mod 2n+1 = 2x , by (3) and 
since x < 2n means there is no modular reduction. Similarly, for wt(x) odd, 
gpn+1 (hn(x)) = gpn+1 (2

n + x) = 2x + 2n+1 + 1 mod 2n+1 = 2x + 1.
Next, by (16), we need to consider two cases for hn(gpsrn (x)) as well: wt(x) even and 

odd. For wt(x) even, hn(gpsrn (x)) = hn(2x mod 2n) , which by (17) further depends on the 
parity of wt(2x mod 2n) . This also being even means x < 2n−1 , and being odd means 
x ≥ 2n−1 . In the first case, hn(2x mod 2n) = 2x mod 2n = 2x , since there is no modular 
reduction. In the second case, hn(2x mod 2n) = (2x mod 2n) + 2n = 2x , since for the 
range of x we have 2x mod 2n = 2x − 2n . The case for wt(x) odd is almost identical, giving 
hn(gpsrn (x)) = 2x + 1 for both subcases, as required. □

The length of the PSRn cycle containing x ∈ ℤ2n is equal to the period pgpsrn (x) , the 
smallest positive exponent i such that gi

psrn
(x) = x . By repeated application of Theorem 1 

this is equivalent to 2ihn(x) ≡ hn(x) mod 2n+1 − 1 , or

the multiplicative order of 2 modulo this ratio. It follows that when hn(x) is coprime to 
2n+1 − 1 , pgpsrn (x) = n + 1 , the maximum possible. Similarly, the length of the CSRn cycle 
containing x is the smallest positive i such that

the multiplicative order of 2 modulo this ratio, and when h�
n
(x) is coprime to 2n+1 − 1 , 

pgcsrn
(x) = n + 1 , the maximum possible.

From Theorem  1 and (6), we can deduce that there is a one-to-one correspondence 
respectively between the PSRn and CSRn cycles, and the PCRn+1 cycles of even and odd 
weight. For example, given a PSRn cycle {x1,… , xp} , then {hn(x1),… , hn(xp)} is a PCRn+1 

h�
n
(x) =

{
x if wt(x) is odd

2n + x if wt(x) is even
with h�−1

n
(x) =

{
x if x < 2n

x − 2n if x ≥ 2n.

gpn+1 (hn(x)) = hn(gpsrn (x)) =

{
2x if wt(x) is even

2x + 1 if wt(x) is odd.

2i ≡ 1 mod
2n+1 − 1

gcd (hn(x), 2
n+1 − 1)

,

2i ≡ 1 mod
2n+1 − 1

gcd (h�
n
(x), 2n+1 − 1)

,
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cycle of even weight. In the other direction, given for instance a PCRn+1 cycle {y1,… , yl} 
of odd weight, then {h�−1

n
(y1),… , h�−1

n
(yl)} is a CSRn cycle.

Let �n(k) and �∗
n
(k) respectively denote the number of PSRn and CSRn cycles of length k. 

The following corollaries stem from the observation above.

Corollary 4  The length of any PSRn and CSRn cycle divides n + 1.

Corollary 5  �n(k) = �E
n+1

(k) and �∗
n
(k) = �O

n+1
(k).

Golomb [4] states that PSRn generates S(n) = Z(n + 1) − Z∗(n + 1) cycles and CSRn 
generates S∗(n) = Z∗(n + 1) cycles, thus S(n) + S∗(n) = Z(n + 1) , all being later verified 
using the D-morphism introduced by Lempel [7]. We have just observed the latter in the 
discussion above, and can obtain the former two from Lemma 2 and Corollary 5, with (12) 
being an alternative formula to S(n) = 1

2(n+1)

∑
d∣n+1 �(2d)2

n+1

d  given in [11].

4 � On the adjacency sets of the pure cycling register

In this section we will show how the new approach can also be used for studying adjacency 
sets. We do so by revisiting those of PCRn.

We begin with the fact that by (15), if an edge exists between two PCRn cycles, then an 
edge exists between their complements, with the corresponding adjacency sets containing 
the complements of each other’s elements.

Next, by  (7), edges can only exist between cycles whose weights differ by one. As 
a consequence, no intracyclic edge exists in PCRn [5]. A contradiction with respect 
to weights asserts that no extracyclic pairs exist either: On one hand, since x2 < 2n−1 , 
gcn (x2) being on the same cycle as x1 implies wt(x1) = wt(gcn (x2)) = wt(x2) + 1 . 
On the other hand, since x1 < 2n−1 , gcn (x1) being on the same cycle as x2 implies 
wt(x2) = wt(gcn (x1)) = wt(x1) + 1.

Regarding intracyclic pairs, 0 and 2n − 1 , which have period 1, and 2n−1 − 1 , for which 
gcn (2

n−1 − 1) = 2n − 1 ∈ C2n−1 , need not be considered. For any x ∈ ℤ2n−1 ⧵ {2
n−1 − 1}, (4) 

can be expressed as

Using this with (9) and rearranging, (8) for PCRn becomes

for some i,  j such that 1 ≤ i < pgpn
(x1) and 1 ≤ j < pgpn

(gcn (x1)) . In fact, Lemma 3 below 
asserts that 1 ≤ i, j ≤ n − 1.

We note that we must have i + j ≠ n , otherwise the LHS of (18) would be congruent to 
0, leading to a contradiction as the RHS can never be congruent to 0. Then, the congru-
ence is solvable if and only if gcd (2i+j − 1, 2n − 1) = 2 gcd (n,i+j) − 1 divides 2j − 1 , which 
implies gcd (n, i + j) divides j.

Lemma 3  In PCRn , intracyclic pairs label edges between length n cycles only.

gcn (x) = 2x + 1 mod 2n − 1.

(18)−2(2i+j − 1)x1 ≡ 2j − 1 mod 2n − 1,
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Proof  Let x1 and x2 be an intracyclic pair in PCRn , and denote the length of the cycle con-
taining them by p1 , and that of the cycle containing gcn (x1) and gcn (x2) by p2 . To prove the 
lemma it suffices to show p1 = p2 = n.

First, multiplying both sides of (18) by 2p1 , using that 2p1x1 ≡ x1 mod 2n − 1 and apply-
ing (18) on the LHS, and rearranging, we obtain

We must have that each of the summands on the LHS is congruent to a distinct summand 
on the RHS modulo 2n − 1 . Such pairwise congruences are equivalent to pairwise congru-
ences in the exponents modulo n. The range of j implies j ≢ 0 mod n , hence the only pos-
sibility left is p1 ≡ 0 mod n giving p1 = n as required.

Next, we multiply both sides of (18) by 2p2 . On the LHS we have

where in the second step we used 2p2 (2x1 + 1) ≡ (2x1 + 1) mod 2n − 1 , and in the third we 
applied (18). Combining this with the RHS and rearranging, we obtain

Working as above, since i ≢ 0 mod n , we are left with p2 = n as required. □

Magleby [8] and Fredricksen (as acknowledged in [5]) proved in different ways that the 
adjacency sets in PCRn have size at most 2. The number of adjacency sets of this maximal 
size was determined in [10, 12] and later on in [5], each using a different method. We pro-
vide an alternative proof for both results.

Lemma 4  All intracyclic pairs in PCRn are disjoint.

Proof  Suppose on the contrary that there exist two non-disjoint intracyclic pairs in PCRn , 
say x1 with x2 and x1 with x3 . Apart from the exponent pair (i, j) that connects x1 and x2 as 
above and yields (18), there exists an exponent pair (i�, j�) , 1 ≤ i�, j� ≤ n − 1 , connecting x1 
and x3 and yielding

Multiplying both sides by 2i+j − 1 , applying (18) on the LHS and rearranging yields

Considering pairwise congruences as in the proof of Lemma 3, three cases arise:
First, i + j + j� ≡ i� + j� + j mod n , which implies i ≡ i� mod n . Then, as 

j ≢ i + j mod n , we are left with j ≡ j� mod n . Given that 1 ≤ i, j, i�, j� ≤ n − 1 , we must 
have i = i� and j = j� , yielding x2 = x3 and contradicting that they are distinct.

Second, i + j + j� ≡ j� mod n , implying i + j ≡ 0 mod n , which is impossible as we 
have seen that i + j ≠ n.

Third, i + j + j� ≡ i + j mod n implies j� ≡ 0 mod n and contradicts the range of j′.
Since all cases lead to a contradiction, our assumption must be false and all intracyclic 

pairs in PCRn must be disjoint. □

2p1 + 2j ≡ 2p1+j + 1 mod 2n − 1.

−(2i+j − 1)2p2 (2x1 + 1 − 1) ≡ −(2i+j − 1)(2x1 + 1 − 2
p2 ) ≡ 2

j − 1 + (2i+j − 1)(2p2 − 1) mod 2
n − 1,

2p2+i+j + 2j ≡ 2p2+j + 2i+j mod 2n − 1.

−2(2i
�+j� − 1)x1 ≡ 2j

�

− 1 mod 2n − 1.

2i+j+j
�

+ 2j + 2i
�+j� ≡ 2i

�+j�+j + 2j
�

+ 2i+j mod 2n − 1.
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Corollary 6  [8] The size of adjacency sets in PCRn is at most 2.

Proof  Suppose on the contrary that there exists an adjacency set in PCRn containing more 
than two distinct elements, and consider three of them. Since no extracyclic pairs exist in 
PCRn , pairwise these three elements form non-disjoint intracyclic pairs, in contradiction to 
Lemma 4. □

Corollary 7  [10, 12] In PCRn , adjacency sets of size 2 label edges between cycles of length 
n only.

Proof  This is a direct consequence of Lemma 3 and Corollary 6. □

Theorem 2  [10, 12] In PCRn , the number of adjacency sets of size 2 is

Proof  Adjacency sets of size 2 in PCRn correspond to intracyclic pairs. Therefore, we 
begin by counting the number of suitable pairs of exponents (i,  j) that render  (18) solv-
able. As we have seen, we must have i + j ≠ n and gcd (n, i + j) dividing j. Any proper divi-
sor d of n is a possible gcd , and any integer m such that gcd (n,m) = d and 1 ≤ m ≤ n − 1 
(due to reduction modulo n in the exponents) is a possibility for i + j . There are �(n∕d) of 
them. The possibilities for j are the multiples of d excluding i + j (since i ≠ 0 ) such that 
1 ≤ j ≤ n − 1 . There are n∕d − 2 of them.

Next, for each suitable d, i and j there are 2d − 1 possible solutions to  (18) given by 
x1 = x0 +

2n−1

2d−1
k for each integer k in the interval 0 ≤ k ≤ 2d − 2 , where

We are only interested in those solutions such that both x1 < 2n−1 and x
2
= g

i

pn
(x

1
) < 2

n−1 . 
When d = 1 , there is a single solution, given by x1 ≡

∑−j(i+j)−1 mod n

l=1
2−1−l(i+j) mod 2n − 1 . 

It is in fact straightforward to verify that it satisfies (18). If x1 > 2n−1 then 2n−1 must appear 
as one of the summands, and we would have −1 − l(i + j) ≡ n − 1 mod n which is only 
possible if either 0 or n were in the range of the sum. This however does not happen as 
j(i + j)−1 ≢ 0 mod n . Thus all x1 are acceptable, and by Remark 1 and the fact that if the 
congruence is solvable for the pair of exponents (i,  j) then it is also solvable for the pair 
(n − i, n − j) , so are all the corresponding x2.

For d > 1 , we have x0 <
2n−1

2d−1
< 2n−1 due to the modulus, hence k = 0 is suitable. Since 

x0 is between 0 and the modulus, the maximum suitable value of k is km such that 
km

(
2n−1

2d−1

)
< 2n−1 and (km + 1)

(
2n−1

2d−1

)
> 2n−1 . After simple operations, this becomes 

2d−1 − 1 −
2n−1−2d−1

2n−1
≤ km < 2d−1 −

2n−1−2d−1

2n−1
 . Since the fraction is less than one, 

km = 2d−1 − 1 . Hence, the suitable solutions are for 0 ≤ k ≤ 2d−1 − 1 , which means that 
only 2d−1 out of the 2d − 1 possible solutions are suitable. With the same arguments as for 
the case d = 1 , x2 = gi

pn
(x0) corresponding to k = 0 is also suitable. The suitability of those 

corresponding to the remaining values of k is established by noticing that 

p(n) =
1

2

∑
d ∣ n

d ≠ n

�

(
n

d

)(
n

d
− 2

)
2d−1.

x0 = −2−1
(
2i+j − 1

2d − 1

)−1(
2j − 1

2d − 1

)
mod

2n − 1

2d − 1
.
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gi
pn
(
2n−1

2d−1
) = 2i

2n−1

2d−1
= (2n − 1)

2i−1

2d−1
+

2n−1

2d−1
≡

2n−1

2d−1
mod 2n − 1 , where in the third step we 

used the fact that d divides i (as it divides j) and thus 2d − 1 divides 2i − 1.
Finally, putting everything together gives us the number of suitable solutions to  (18). 

The required number of distinct intracyclic pairs is half this number as by Remark 1 we 
would be otherwise counting each pair twice. □

5 � Conclusions

We have presented an alternative view on binary feedback shift registers where we convert 
binary sequences to integers and use number theory to treat the related problems. We have 
tried to illustrate the approach by some examples on basic shift registers, and it seemed to 
be useful in determining cycle lengths and describing conditions for adjacency sets of size 
2 in the pure cycling register via simple congruences. It also led to uncovering a previously 
unknown connection between the pure cycling register and the cyclotomic classes defined 
in [1].

One of the differences with the traditional approach is that shift registers are now rep-
resented by two equations that depend on the support of their feedback function and the 
input. What facilitated the detailed study of the four basic examples presented here was our 
ability to obtain unified descriptions for them as a single equation irrespective of the input. 
This was made possible by the trivial support of two of them, and the simple support of the 
other two that lead to the discovery of an isomorphism between their description and that 
of the first two.

Determining more supports of feedback functions that can lead to unified descriptions, 
and more generally finding out whether this viewpoint will prove to be a useful tool in 
studying other shift registers or not is a natural direction for future work, as is generalising 
it to non-binary alphabets.
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