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Abstract 
 
Over the last years, the field of hybrid modeling, the concept of combining data-

driven machine learning models and numerical solution methods to simulate a 
physical system, has seen an immense increase in research. This new paradigm 
within modeling uses its predictor capabilities from neural networks to uncover the 
unknown physics of the underlying system, and bridges these hidden physics with 
the strong mathematical foundation of numerical integrators and the governing 
equations of the physical system. Even though hybrid modeling is being introduced 
into many different fields of research, one field which so far has lacked a more 
detailed investigation is the field of n-body problems. This field also represents the 
class of non-linear systems of O.D.Es. with symplectic structure. The n-body 
problem has through the ages been a source of countless scientific discoveries and 
is still of great interest to this day. As an application, this thesis will look at the 
problem of n-body dynamics of planetary motion, more specifically, the simulation 
of the main celestial bodies of the Solar System. As the first to create a hybrid 
model for the n-body problem of such size (𝑛 > 3), this thesis will show, through a 
series of important observations and modeling approaches, that hybrid modeling of 
the n-body problem can be achieved. The results will also show that the subsequent 
model can improve the results of a standard physics-based model, the standardized 
modeling approach for the n-body problem. To the best of the author’s knowledge, 
this thesis will also be the first to present a pure data-driven model for predicting 
the orbital motion of planets in our Solar System.  
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1 Introduction 
Over the last few decades, we have rapidly entered into the era of big data. With 

an exponential increase in available data within countless research fields, and the 
quality of data increasing (Cai, Zhu, 2015), it opens up more and more possibilities 
for all research to come. One field of research, which has greatly benefitted from 
big data, is the field of Machine Learning (M.L.) and data-driven models (D.D.M). 
Since D.D.Ms., as the name suggests, rely heavily on both quality and quantity of 
data, the introduction of big data has naturally made way for extensive research 
within this field. D.D.Ms. have already been shown to facilitate tasks within 
commercial application to the extreme and have shown to be forthcoming in 
obtaining new scientific knowledge and methods (Willard et al., 2020). Despite the 
persistent research within the field of D.D.Ms., we have only scratched the surface, 
and it is still viewed as a field of optimism and possibilities (Ford, 2018).  
 

In general, D.D.Ms. are any M.L. models governed exclusively by empirical data, 
and thus, do not take into consideration the fundamental mathematical and 
physical principles determining any underlying problem. The model can be viewed 
as a self-constructing algorithm not directly bounded by human knowledge and 
perspectives. Also, these models do not require much processing power when first 
established. As remarkable as they may sound, these models do not come without 
restrictions. Firstly, as previously stated, these models can be immensely data 
hungry when being constructed and rely heavily on the quality of the labeled data. 
Thus, the model can in general only be as good as the data presented. For modeling 
complex physical, biological, and engineering systems, there is still a large data gap, 
which in many cases leaves us with a frail and divergent model (Raissi, Perdikaris, 
Karniadakis, 2017). Secondly, as these models omit the fundamental mathematics 
and physics of a given problem, the results of such a model are not as theoretically 
justifiable.  

 
In contrast, Physics-Based models (P.B.M.), are models derived from the 

governing equations of the problem and appropriate numerical solution methods, 
and thus are theoretically well grounded. These models are used extensively within 
all field of science and engineering, where one seeks to explain and simulate a 
physical system. P.B.Ms. have also been fundamental in obtaining new scientific 
knowledge through the ages and are still a cornerstone for new scientific discoveries 
(Daw et al., 2017). Though its theoretic principles offer sound and intelligible results, 
this obligation towards the known physics is also one of its drawbacks. In the case 
of describing complex dynamical system (e.g., planetary motion, detailed 
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population growth, groundwater flow), especially, the P.B.M. is only a 
simplification of the real-world problem. As restrictions are made to the systems 
(e.g., number of variables, domain size), the unavoidable numerical errors (i.e., 
rounding errors and truncation errors), and the exclusion of yet unknown physics, 
results in the model not capturing the whole truth. Another flaw is also the slow 
and expensive computations that drives the model for complex problems.   

 
A conclusion drawn from the previous statements finds that D.D.Ms. and P.B.Ms. 

individually will in many cases yield incomplete results. This gives rise to the idea 
a synergistic relationship between the presented models, a hybrid model. By 
combining the theoretically grounded P.B.M. with the unconventional algorithms 
of the D.D.M., one can arrive at a more accurate solution still abiding the law of 
physics. Also, by this synergy, a more inexpensive model can be created. This new 
paradigm within modeling has over the last years seen a rapid increase in research, 
and there exist already large amounts of published papers on this topic (Daw et al., 
2017; Blakseth, Rasheed, Kvamsdal, San, 2022; Raissi, Perdikaris, Karniadakis, 
2017; Willard et al., 2020). Early research, though limited to simplified and isolated 
problems, have already shown great promise for this modeling approach.  

 
The goal of this thesis is to analyze the results of a P.B.M., D.D.M., and hybrid 

model, to see how the performances stand in comparison to each other for a specified 
problem. To obtain these results, each model must first be constructed and tuned 
to yield comparable results. The P.B.M. will be a simple model, i.e., using a lower 
order numerical integrator and solving a restricted system (see chapter 3). The 
D.D.M. will be constructed through a series of simplified scenarios to see which 
elements must be included to arrive at a model comparable to the P.B.M. (see 
chapter 4). The hybrid model, presented as a Hybrid-Physics-Data-Residual model 
(H.P.D.R.M., see chapter 5), will try to combine the previously mentioned P.B.M. 
and D.D.M. The P.B.M. will give an approximated solution to the problem, with 
the D.D.M. producing an additive residual term to compliment the P.B.M. solution. 
The conclusion of this work is based on extensive numerical implementations and 
investigations (see Appendix A.2). The main software development is built on the 
PyTorch framework (Paszke, et al. 2019).  
 

The focus of this thesis will be the n-body problem for planetary motion, with 
the main problem being simulating the Solar System for all 𝑛 = 8 planets (see 
chapter 2). The n-body problem (not only for the case of planetary motion) have 
been of key interest for scientist for centuries, and its research have has led to 
countless new theories and scientific discoveries, and is still studied to this day. The 
n-body problem for planetary motion describes a system fluctuating between 
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relativistic and classical mechanics. Implementing classical mechanics can result in 
a too simplified problem, yet, enforcing a relativistic approach may prove too 
convoluted and computationally expensive. The standard approach for simulating 
n-body problems is still by the use of P.B.Ms., and not much research has been 
done on the field in relations to D.D.Ms. and hybrid models. The most advanced 
work in D.D.M. for the n-body problem to date was completed by Breen, Foley, 
Boekholt, Zwart (2020), which gave evidence to support that D.D.Ms. can 
outperform P.B.Ms. for n-body problems Here, a D.D.M. for predicting a chaotic 
three-body system was constructed, and the system simulated was 2 dimensional 
with particles of equal mass and zero initial velocity. As this thesis tackles D.D.M. 
and hybrid model for the n-body problem for 𝑛 > 3, to the best of the author’s 
knowledge, it is the first thesis to construct and study such models for a system of 
this size. For the problem of thesis, a classical mechanics approach is used for 
describing the dynamical system. As mentioned, this approach may be deemed too 
simple for the true solution to transpire. This where the D.D.M. is implemented to 
uncover the unknown physics of the relativistic. For the pure D.D.M., the model 
should produce results describing both the known and unknown physics, though for 
the H.P.D.R.M., the D.D.M. should generate results expressing the unknown 
physics and a correction for the simplification and numerical errors of the P.B.M.  
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2 Mathematical modeling of the n-body problem 
As the title suggests, this thesis will aim at hybrid modeling of the n-body 

problem. The application for the hybrid model in chapter 5 will be grounded in 
solutions to the n-body problem derived from Hamiltonian mechanics. Specifically, 
dynamical systems of planetary motions. The mathematical model presented in the 
following sections will be the basis for the numerical model in chapter 3 later used 
for solving the n-body problem. This numerical model will again be a basis for the 
main aspect of this thesis, the final hybrid model. Firstly, the general n-body 
problem will be presented from a physics-based point-of-view, together with some 
historical context. Later, a restricted n-body system of planetary motions will be 
described in general terms, which is the main system to be modeled in this thesis. 
Lastly, the n-body problem, both 𝑛 = 2 and 𝑛 ≥ 3, for planetary motion will be 
derived mathematically with the use of Hamiltonian dynamics.  
 

2.1 The n-body problem 
In general , n-body problems are problems which describe the motion of n-many 

particles within a given dynamical system, where usually the particles interact 
under the influence of some type of physical force. These types of problems arise 
within systems of celestial bodies under the influence of gravitational forces, charged 
particles effected by electrostatic forces (Synge, 1940), amongst others. Its fields of 
application are vast, and by defining “particles” within the given system in specific 
ways, like viewing clusters of particles as a single particle, n-body problems can 
help simulate even more dynamical systems, e.g., describing star clusters (Heggie 
et al., 2003) and galaxy interactions (Renaud, Appleton, Xu, 2010). Due to its 
extensive applicability, the n-body problem has been of peak interest for 
astronomers, physicists, and mathematicians over the last several hundred years 
(Greenberg, 1990; Diacu, 1996). The theoretical study of the n-body problem was 
though limited to the coarse qualitative dynamics of the system, and to a lower 
number of bodies. This limitation has been somewhat lifted over the last decades 
due to the introduction of high-speed computers, and different solution and 
simulation methods (Greenberg, 1990). The study of the n-body problem has given 
way for much of the theoretical work within cosmology, solid state physics, 
differential equations, and potential theory (Greenberg, 1990). 
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Historically , the mention of the n-body problem dates back to the late 17th 
century, where it was first stated in Newton’s Principia as an initial value problem 
of ordinary differential equations for celestial mechanics. This formulation of the 
problem did not include any gravitational forces acting upon planets, but Newton 
mentioned in the same publication that some interactive forces must be present 
(Diacu, 1996). Daniel Bernoulli completely solved the 𝑛 = 2 problem in 1710, 
though a solution for the 𝑛 = 3 problem would bogle the mind of mathematicians 
and physicist for the coming centuries. In 1885, in honor of King Oscar II of Norway 
and Sweden, a prize was established for whoever could find a convergent power 
series of the initial value problem stated in Newton’s Principia, amongst three other 
questions. None of the papers submitted managed to find a solution, however, Henri 
Poincaré was awarded the prize for his exceptional contributions which bolstered 
our understanding of the dynamical system, known today as Hamiltonian systems 
(Diacu, 1996). This contribution later gave Poincaré the fundamentals for his world-
renowned chaos theory and has inspired many other branches of mathematics.  
 

2-body problem:  For a closed 2-body system with constant magnitude of 
velocities and without perturbations, it is relatively easy to arrive at an analytical 
solution. As mentioned above, Bernoulli already solved the problem back in 1710. 
His version of the problem, a version which may be considered the easiest n-body 
problem, was constructed by assuming two point-masses with one mass being fixed 
and one free-moving (Winter, 1941; Diacu, Holmes, 1999). By this assumption, 
most 2-body problems can be reduced to what sometimes are referred to as multiple 
1-body problems. These problems are somewhat more of a mathematical 
idealization than a real-world physics problem. This assumption leads to bodies 
moving towards an unmoving center, with only one force acting, an uncommon 
situation, except for special cases and controlled laboratory experiments.  
 

Restricted 3-body problem:  As in the 2-body case, one can reduce the problem 
by looking at negligible masses and fixed particles to find an analytical solution for 
a restricted 3-body system. Even for a 3-body problem without these restrictions a 
global solution can be found, in the form of a series expansion. This was done by 
Sundman, though it was restricted to the case of non-zero angular momentum 
(Wang, 1991) and could therefore not be generalized. 
 

n ≥ 3-body problem:  There has been a misunderstanding regarding the general 
n-body problem that is still spread today. As there exist multiple proofs for the 
non-integrability of the n-body problem (Bruns, 1887), these results have been 
interpreted by many as that the problem is unsolvable. These results only relate to 
one solution method, thus do not prove the problem unsolvable. As it turns out, 
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the n-body problem has actually been solved. Though Sundman failed to arrive at 
a generalized global solution, the problem of zero angular momentum was later 
solved when Wang (1991) published a paper with a global solution using series 
expansion for the general 𝑛 ≥ 3 - body problem. The problem with this solution, as 
mentioned in the paper, is that the convergence rate of the series is so slow that 
one does not obtain a useful solution (Wang, 1991). But even though the result of 
Wang makes the general n-body problem integrable, the slow convergence rate 
makes numerical methods the go-to method for solving 𝑛 ≥ 3 - body problems (for 
more information, see Diacu 1996). 
 

2.2  n-body problem of planetary motions 
Until now, the general n-body problem has been discussed, which is applicable 

within many fields. From here on out, even though many concepts are usable for 
other n-body problems, only the n-body problem from a celestial mechanics point 
of view (i.e., planetary motion) will be considered. 
 

As mentioned in the previous section, it is hard to describe the motions for an 
arbitrary 𝑛 ≥ 3 -body problem and arriving at a useful solution. The difficulty is 
also increased when looking at bigger, unrestricted 𝑛 ≥ 3 - body systems. Here, 
from what looks like a stable system, from a mathematical point of view, chaos can 
arise, where small perturbations can propagate and accumulate to large, chaotic 
behaviors (Alligood, Sauer, Yorke, 1996). In specific applications, the chaotic 
behavior of a n-body system may be the core interest to examine; however, this is 
not the case for this thesis, as the system to be modeled, described later in this 
section, has a Lyapunov time (i.e., the timescale for which a dynamic system can 
be predicted) much larger (𝑇խ = 2 ⋅ 10ϩ) (Hayes, 2008) than the time simulated. 
By the restrictions applied to system throughout this section, the system will be 
kept stable and, as a secondary effect, the possibility of chaotic behaviors is 
prevented.  

 
As previously stated, when describing a problem of planetary motion, as for all 

other physical systems, some simplification must be made. The first part to consider 
is the domain itself. The domain considered is reduced to roughly the size of orbit 
the outermost celestial body one wants to observe, and the influence from all bodies 
outside the domain is being neglected. At this point, a n-body system may look 
something like this (see figure 1): 
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with 𝝉ք being torque of planet 𝑖, and 𝑭քӴօ being the gravitational force planet 𝑖 
exert on planet 𝑗. For the case of this thesis, the domain will be restricted by the 
orbit of the outmost planet of our Solar System (i.e., Neptune), with the origin 
being located at the center of mass for the Sun. One could consider the solar system 
barycenter (i.e., center of mass of 𝑛 ≥ 2 bodies, which all bodies orbit) as the origin, 
but for simplification purposes, the Sun, as mentioned, is chosen.   
 

The next simplification is the exclusion of all non-planet celestial objects (e.g., 
asteroids, dwarf planets, moons), but the Sun. This yields a 𝑛 = 9 – body system 
(i.e., the Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune). 
For this problem, the inclusions of the smallest and outmost planets may not be 
necessary (e.g., Neptune, Mercury), as big contrasts between distances, masses, and 
orbital periods result in these bodies having a relatively small influence on the 
system. The magnitudes of the contributions by these bodies may also increase 
rounding errors in solutions of the total system. The inclusion of these planets, and 
the exclusion of larger collections of bodies (e.g., the main asteroid belt), may also 
contribute to imbalance in the conservation of energy of the system, as will later 
be shown, the dynamics of the system (i.e., a Hamiltonian system) should conserve 
the systems total energy (see eq. (13) section 2.3). Even though the exclusion or 
inclusion of different celestial objects will affect the results, the assumption is made 
that the restricted system constructed in this thesis is sufficient for describing its 
real-life counterpart.  
 

Figure 1: Example of 3-body system. 
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Another simplification is to look at the celestial bodies as point particles, 
consequently the assumption is made that the celestial bodies have no volume. A 
result of this simplification of this is that one can neglect the spin of the celestial 
bodies, as point particles do not have spin. This leads the torque of each body to 
be omitted, and figure 1 is reduced to figure 2: 

 
By this assumption one also assumes that the torque of the celestial bodies has 
negligible effect on the total system. As volume is not a parameter included in the 
calculation of the Hamiltonian, the omission of spin and volume makes the overall 
mathematical setup much easier (see section 2.3 and eq. (3)). The effects of 
relativity, gravitational waves and other non-gravitational forces are also neglected 
to make the problem simpler to solve. 
 

2.3  n-body problem described by Hamiltonian mechanics 
To find a solution to the n-body problem, the governing system of the bodies 

must be described. For describing the system, Hamiltonian mechanics are 
introduced (for equations and derivations, see Goldstein, Poole, Safko, 2002). A 
Hamiltonian system is a dynamical system (i.e., the state of the system varies with 
time over a geometrical domain) where the dynamics of the system conserves the 
total energy, i.e., the Hamiltonian (see eq. (13)). In physics, one can think of a 
dynamical system as one that describes changes in planetary orbits, particles in an 
electromagnetic field etc. Together with Hamiltonian mechanics, the Universal Law 

Figure 2: Example of simplified 3-body system. 
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of Gravitation will be used to model and find an approximated solution for n-body 
the problem. General relativity can be applied to further bolster the accuracy of 
the approximation, though its setup is much more complicated to due additional 
factors like distortion in the space-time continuum (Chisari, Zaldarriaga, 2011), and 
therefore not included in this mathematical model.  
 

First, let the Hamiltonian be defined as: 
  

 ℋ(𝒙, 𝒑) = ௽ 𝒙̇𝑖𝒑𝑖

𝑛

𝑖=1

− ℒ(𝒙, 𝒑, 𝑡) (1) 

 
with ℒ  being the Lagrangian of the system, defined as ℒ(𝒙, 𝒑, 𝑡) = 𝑇(𝒑(𝑡)) −

 𝑉(𝒙(𝑡)), the difference between the total kinetic energy 𝑇(𝒑), and the potential 
energy 𝑉(𝒙), with 𝒙(𝑡) the position and 𝒑(𝑡) the momentum.  
Letting: 

         𝒑 = 𝒎𝒗        (2)         and         𝑇 (𝒑) = 1
2
𝑚𝒗ϵ         (3) 

 
with 𝒗(𝑡) being the velocity. Due to the simplifications in section 2.2, the kinetic 
energy can be written as in eq. (3), with the rotational kinetic energy being omitted. 
The summation term of ℋ can be written as: 
 

 
௽ 𝒙̇ք𝒑ք

։

ք=φ
= ௽𝑇(𝒑ք)

։

ք=φ
=  𝑇(𝒑) 

 
(4) 

the sum of the kinetic energy of all components in the system, i.e., the total kinetic 
energy. The Hamiltonian ℋ can then be written as: 
 
 ℋ(𝒙, 𝒑, 𝑡) = 𝑇(𝒑(𝑡)) +  𝑉 (𝒙(𝑡)) (5) 

 
the sum of the total kinetic and potential energy of the system.  
 

Two-body problem: To understand the general formulation of the n-body 
problem, it is easier to start by considering a two-body system, the easiest being 
the case of one stationary and one free-moving particle. By The Universal Law of 
Gravitation, the interactive force between two objects in a gravitational field is 
defined as:  

 

 𝑭(𝒓) = −
𝐺𝑀𝑚

|𝒓|ଶ
𝒓ො (6) 
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𝐺 being the gravitational constant, 𝑀 the mass of the stationary particle, 𝑚 the 
mass of the free-moving particle, |𝒓| the Euclidean distance (𝑙ϵ 𝑛𝑜𝑟𝑚) between the 
particles, 𝒓ො the outward unit vector in radial direction. Together with the definition 
of potential energy, the gravitational potential energy is given by: 
  

 𝑉 (𝒙) = ௲ 𝑭(𝒓) ⋅ 𝑑𝒓
 

ฑ
= −௲ − 𝐺𝑀𝑚

|𝒓|ϵ
|۵|

�
𝒓 ̂𝑑𝒓 = 𝐺𝑀𝑚

|𝒙|
 (7) 

 
with |𝒙| being the Euclidean distance. The Hamiltonian for the two-body problem, 
together with eq. (2) and eq. (3), can then be written as: 
 

 ℋ(𝒙,𝒑) = 𝒑ϵ

𝟐𝑚
− 𝐺𝑀𝑚

|𝒙|
 (8) 

 
The derivatives are then given as: 
 

 
𝜕ℋ
𝜕𝒑

= 𝒑
𝑚

         (9)         and         𝜕ℋ
𝜕𝒙

= 𝐺𝑀𝑚
|𝒙|ϯ

𝒙  (10) 

 
and, assuming that the system is described by the Hamiltonian equations:  
 

     𝑑𝒙
𝑑𝑡

= 𝜕ℋ
𝜕𝒑

        (11)        and           𝑑𝒑
𝑑𝑡

= − 𝜕ℋ
𝜕𝒙

        (12) 

 
the total energy of the system is conserved, as:  
 

 
𝑑ℋ
𝑑𝑡

= 𝜕ℋ
𝜕𝒙

𝑑𝒙
𝑑𝑡

+ 𝜕ℋ
𝜕𝒑

𝑑𝒑
𝑑𝑡

= 𝜕ℋ
𝜕𝒙

𝜕ℋ
𝜕𝒑

− 𝜕ℋ
𝜕𝒑

𝜕ℋ
𝜕𝒙

= 0 (13) 

 
As the Hamiltonian system constructed is a consequence of the simplification made 
to the physical system, it should be noted that the conservation of energy is a key 
property that will play a significant role when choosing a numerical integrator for 
solving the system and when analyzing results. By using eq. (9)-(12), the dynamic 
of the planetary two-body system is then given by: 
 

 
𝑑𝒙
𝑑𝑡

= 𝒑
𝑚

 (14) 

and: 
 

 
𝑑𝒑
𝑑𝑡

= − 𝐺𝑀𝑚
|𝒙|ϯ

𝒙 = − 𝐺𝑀𝑚
|𝒙|ϵ

𝒙̂ (15) 
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n-body problem: If one now considers 𝑛 + 1  particles, indexed 0 → 𝑛 , the 
Hamiltonian in a “stationary” frame of reference will be given by:  
 

 ℋ(𝒙φ,… ,𝒙։, 𝒑غ, … , 𝒑։) =  ௽(
ੰ𝒑օੰو

2𝑚օ
− 𝐺௽

𝑚օ𝑚և

ੰ𝒙օ − 𝒙ևੰ

օ−φ

և=Ј
), 𝑙 ≠ 𝑗

։

օ=φ
 (16) 

 
where index 𝑗 represents the planet whose total energy is being calculated, and 
index 𝑙 represents the planet interacting with 𝑗. The outer sum collects the energy 
of every particle, while the inner sum gathers all the gravitational forces acted upon 
planet 𝑗. The 𝑙 = 0 index is used for the Sun, and as the Sun is kept at the origin, 
𝑗 = 0  is omitted from the outer sum. The equations governing position and 
momentum are then:  

 
𝑑𝒙օ

𝑑𝑡
=

𝒑օ

𝑚օ
 (17) 

and: 

 
𝑑𝒑օ

𝑑𝑡
= −𝐺௽

𝑚օ𝑚և

ੰ𝒙օ − 𝒙ևੰϯ
ऺ𝒙օ − 𝒙ևऻ

։

և=Ј
, 𝑙 ≠ 𝑗 (18) 

 
Closed-form ODE description: Finally, the solution vector of the system can be 

written on the form 𝑦 = [𝒙φ, … , 𝒙։, 𝒑φ,…𝒑։], with motions of the Hamiltonian 
system described by the ODE-system of general form: 

  

 
𝑑𝒚
𝑑𝑡

= 𝐹(𝒚), 𝑤ℎ𝑒𝑟𝑒 𝒚 = [𝒙,𝒑] (19) 

 
or rewritten in the two components: 
 

 ৎ
𝒙̇ = ∇֋ℋ(𝒑, 𝒙)

 
   𝒑̇ = −∇֓ℋ(𝒑, 𝒙)

 (20) 

 
where 𝒙̇, 𝒑̇ being the derivatives with respect to time of 𝒙, 𝒑, and ∇֋, ∇֓ being 
the gradient with respect to moment and position, respectively. This is the system 
which will be solved later in chapter 3. As the solar system contains more than two 
bodies, when trying to describe it using the system above, one cannot find a closed 
form global solution for the system. Therefore, a numerical integrator will be used 
in chapter 3 to find a numerical solution.  
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The reason for working with Hamiltonian mechanics is grounded in two main 
properties of Hamiltonians systems. Given ℋ(𝒙, 𝒑)  is a smooth, real-valued 
function, the Hamiltonian system eq. (20) is (Harrier, 1999):  

1) Energy conserving (see eq. (13)) 
2) Symplectic  

The first property is something that comes naturally when wanting to simulate 
physical problems, as for classical mechanics, we want the total energy of the system 
conserved. The second property comes from the fact that the Hamiltonian lies on 
a symplectic manifold in phase-space, with natural splitting in the position and 
momentum component. A manifold can be loosely described as a topological space 
that local resembles Euclidean space. The symplectic structure (in ℝϵ for simplicity) 
refers to the conservation of the area in phase-space (𝑑𝑝 ∧  𝑑𝑞) of the flow 𝜑֏(𝑦) 
for all t. The flow 𝜑֏(𝑦) of the system is the trajectory of the solution 𝑦 trough the 
vector field in phase-space. This symplectic property can then be described in a 
simplified manner as: the area constructed from the position 𝑞 and momentum 𝑝 
components of the solution 𝑦 is constant as the solution advances trough phase-
space in time, given an initial condition (𝑞Ј, 𝑝Ј); with phase-space being a space 
where each point represents a possible state of the system. All ODEs that satisfy 
the Hamilton’s equation of motion have a symplectic flow 𝜑֏, which is a result of 
the following theorem (Hairer, Wannar, Lubich, 2006):  
 
 Theorem 1  
𝐿𝑒𝑡 𝑓: ℝϵտ → ℝϵտ 𝑏𝑒 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑙𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒. 𝑇ℎ𝑒𝑛, 𝒚஠ = 𝑓(𝒚) 𝑖𝑠 𝑎 
𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖𝑡𝑠 𝑓𝑙𝑜𝑤 𝜑֏(𝒚) 𝑖𝑠 𝑠𝑦𝑚𝑝𝑙𝑒𝑐𝑡𝑖𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 
𝒚 ∈ ℝϵտ 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑠𝑚𝑎𝑙𝑙 𝑡. 
 
As a direct consequence, symplecticity becomes a characteristic property of the 
Hamiltonian system eq. (20), which will later be a key-element when choosing a 
numerical integrator for solving the problem.  
 

Transformed Hamiltonian:  The general Hamiltonian, as shown in the equations 
in this chapter, is dependent on the momentum 𝒑 and position 𝒙. Later, in chapter 
3, when solving the Hamiltonian system numerically, a transformed system is used 
where the equations are dependent on the velocity 𝒗 instead of the momentum 𝒑. 
This is merely done for convenience when handling data. From system eq. (20), by 
eq. (2), (17) and (18), let: 
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−∇֓ℋऺ𝒑օ, 𝒙օऻ =
𝑑𝒑օ

𝑑𝑡
= 𝑚օ

𝑑𝒗օ

𝑑𝑡
 

= −𝐺∑ ֈՏֈՑ
ੰ۵Տ−۵Ցੰɘ

ऺ𝒙օ − 𝒙ևऻ
։
և=Ј

 = −ℱऺ𝒗օ, 𝒙օऻ = −𝑓ऺ𝒙օऻ 
(21) 

and 
 ∇֋ℋऺ𝒑օ, 𝒙օऻ = ۭՏ

ֈՏ
= 𝒗օ = 𝒢ऺ𝒗օ, 𝒙օऻ = 𝑔(𝒗օ) (22) 

 
By this transformation, the assumption is made that the system conserves the 
Hamiltonian properties I and II as mentioned above. The transformed closed-form 
ODE-system then becomes: 
 

 𝑑𝒚̃
𝑑𝑡 = 𝐹(𝒚̃), 𝑤ℎ𝑒𝑟𝑒 𝒚̃ = [𝒙, 𝒗] (23) 

 
or, as in system eq. (20), rewritten in the two components: 
 

 ৎ
𝒙̇ = 𝑔(𝒗)

 
     𝒗̇ = −𝑓(𝒙)

 (24) 

 
Let it be emphasized that 𝑓 and 𝑔 are independent of velocity 𝑣 and position 𝑥, 
respectively, as this is a key property when relating system eq. (24) to the numerical 
integrator in section 3.1. 
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3  Physics-based modeling of the n-body problem 
As we try to obtain a deeper understanding of the complexity of the physical 

world around us, we have often reached out to physics-based models (P.B.M.) to 
learn relationships between variables and get insight into yet unobserved situations. 
These models have helped us discover knowledge within many fields of physics, 
mathematics, and engineering (Daw et al., 2017) and are still the go-to models for 
many applications (Blakseth, Rasheed, Kvamsdal, San, 2022). Especially for the 
application in this thesis, the n-body problem, physics-based models are frequently 
used (Heggie, 2005), where their use has made space-travel possible, amongst many 
other breakthroughs (Diacu, 1996). 

 
The term physics-based model may not be as familiar as its building blocks; the 

mathematical equations based on physical foundations for which the system is 
described, and the numerical solution method used to approximate solutions and 
simulate the system. This term P.B.M. has recently been more frequently used and 
is sometimes used in the context of machine learning (M.L.), where one wants to 
separate P.B.M. from the model derived from M.L. (e.g., Blakseth, Rasheed, 
Kvamsdal, San, 2022; Daw et al., 2017; Willard et al., 2020). 

 
 In the following chapter, a numerical solution method (the symplectic Euler 

method) for solving the n-body problem will be presented together with some 
specific properties shared by the Hamiltonian structure of system eq. (20) and the 
numerical integrator. At the end, numerical results will be presented, where these 
results will be the baseline for which this thesis seeks improvement.  
 

3.1 Time integrator: 
As mentioned earlier, system eq. (20) must be solved numerically to arrive at a 

useful solution for the 𝑛 ≥ 3  - body problem. To arrive at such a solution, 
Symplectic Euler, also known by names such as Euler-Cromer and Semi-Implicit 
Euler, is implemented. This numerical method is a one-step, first-order symplectic 
method based on the Explicit and Implicit Euler method. This method is derived 
by approximating a discrete solution of 𝒑(𝑡ք+φ) and 𝒙(𝑡ք+φ) at a given timestep 
𝑡ք+φ = 𝑡ք + ∆𝑡 with the use of the known solution 𝒑(𝑡ք) and 𝒙(𝑡ք), where ∆𝑡 is the 
chosen timestep size for every update of the system. As one of its names suggests, 
the method is semi-implicit due to the use of both an implicit step: 
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 𝒑ք+φ = 𝒑ք − ∆𝑡∇֓ℋ(𝒑ք+φ, 𝒙ք) (25) 
 
and an explicit step: 
 
 𝒙ք+φ = 𝒙ք + ∆𝑡∇֋ℋ(𝒑ք+φ, 𝒙ք) (26) 

 
as the solution method for approximating the system’s next state. This yields, by 
use of the transformed Hamiltonian system eq. (24) above: 
 
 𝒗ք+φ𝑚 = 𝒗ք𝑚 − ∆𝑡𝑓(𝒙ք)  (27) 

 

 𝒗ք+φӴօ = 𝒗քӴօ − ∆𝑡𝐺 ௽
𝑚և

ੰ𝒙քӴօ − 𝒙քӴևੰϯ
(𝒙քӴօ − 𝒙քӴև)

։

և=Ј
 (28) 

 
an explicit one-step discretization of 𝒗, only dependent on 𝒙, where idices 𝑗 and 𝑙 
represents the planets as used in eq. (21) and eq. (22).  
And: 
 𝒙ք+φ = 𝒙ք + ∆𝑡𝑔(𝒗ք+φ) (29) 

 
                               𝒙ք+φӴօ = 𝒙քӴօ + ∆𝑡𝒗ք+φӴօ  (30) 
 

also, an explicit one-step discretization, this time for 𝒙 though dependent on both 
𝒙 and 𝒗. 

 

3.1.1.   Properties of Symplectic Euler: 
There are many choices for a time integrator. Some standard choices are methods 

such as the Explicit or Implicit Euler, but for solving a Hamiltonian system, 
Symplectic Euler is a superior choice. One of the main reasons being connected to 
the energy preserving properties of the Hamiltonian. Though similar to the Explicit 
Euler, by adding an implicit term to the method one arrives at a method with 
almost energy preserving properties, unlike Explicit Euler. The reason is that the 
Symplectic Euler is, as the name suggests, a symplectic integrator by theorem 2 
(DeVogelaere, 1956), which implies that the method has a discrete flow 𝜑̂֏ with 
symplectic structure, thus having the properties of symplecticity as for the 
Hamiltonian system eq. (20). 
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Theorem 2 
𝑇ℎ𝑒 𝑠𝑜 − 𝑐𝑎𝑙𝑙𝑒𝑑 𝑆𝑦𝑚𝑝𝑙𝑒𝑐𝑡𝑖𝑐 𝐸𝑢𝑙𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 

 

I) ৎ
𝒑ք+φ = 𝒑ք − ∆𝑡∇֓ℋ(𝒑ք+φ, 𝒙ք)

 
𝒙ք+φ = 𝒙ք + ∆𝑡∇֋ℋ(𝒑ք+φ, 𝒙ք)

     𝑜𝑟     II) ৎ
𝒑ք+φ = 𝒑ք − ∆𝑡∇֓ℋ(𝒑ք, 𝒙ք+φ)

 
𝒙ք+φ = 𝒙ք + ∆𝑡∇֋ℋ(𝒑ք, 𝒙ք+φ)

 

 
𝑎𝑟𝑒 𝑠𝑦𝑚𝑝𝑙𝑒𝑐𝑡𝑖𝑐 𝐵 − 𝑠𝑒𝑟𝑖𝑒𝑠 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 1. 

 
The reason for not conserving the energy exact is that one cannot have 
symplecticity and exact energy conservation at the same time, as shown by Hairer 
and summarized in the theorem below (see Hairer, 2006 for more details): 
 

Theorem 3 
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟  

 𝑎 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑤𝑖𝑡ℎ 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 ℋ:𝑈 → 𝑹,𝑎𝑛𝑑  
 𝑡ℎ𝑒 𝑠𝑦𝑚𝑝𝑙𝑒𝑐𝑡𝑖𝑐 𝐸𝑢𝑙𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 𝑏𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 2  

𝐴𝑠 𝑙𝑜𝑛𝑔 𝑎𝑠 {𝒚։ = (𝒙։, 𝒑։)} 𝑠𝑡𝑎𝑦𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠𝑒𝑡, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑓𝑜𝑟 𝑡։ = 𝑛ℎ 𝑎𝑛𝑑     
ℎ → 0,    
 ℋ(𝒚։) = ℋ(𝒚Ј) +  𝒪(ℎφ) +  𝒪ऺ𝑡։𝑒−ᆼ/ᇑփऻ, (31) 

 
𝑤ℎ𝑒𝑟𝑒 𝛾 > 0 𝑜𝑛𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑒𝑡ℎ𝑜𝑑, 𝑎𝑛𝑑 𝜔 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 − 
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑜𝑟 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 
 
As pointed out by Hairer; as ℎ becomes sufficiently small, the second error term in 
eq. (31) becomes exponentially small on exponentially large timescales, and we are 
left with a method that conserves the Hamiltonian up to a bounded error 𝒪(ℎ֍) on 
such a timescale. The approximated solution on the symplectic manifold by the 
integrator may be perturbed from the real solution, but the perturbation is of a 
lower order than non-symplectic integrators, and it turns out to be a linear drift in 
the perturbation (Benettin, Giorgilli, 1994), which gives good approximation for 
long-term solutions. 
 

As this method is still first order, its global truncation error is directly 
proportional to the step-size ∆𝑡 (see figure 6 section 3.3); but as this method is a 
symplectic integrator, there is an almost guarantee for periodicity and the error is 
given an artificial bounded oscillation, unlike Explicit Euler, where the error 
increases with time (Hairer, 2006). 

 
Another benefit to the Semi-Implicit Euler is its simplicity. Though formulated 

as containing an implicit step, the way it is implemented, by first calculation eq. 
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(28) then eq. (30), lead to a purely explicit scheme. This is due to the variable 
independence of system eq. (24), though the method will still preserve the properties 
of the general Symplectic Euler by theorem 2. As the outline of the method shows 
resemblance to a two-step Explicit Euler, its implementation is simple, and it has 
relatively low computational cost compared to other symplectic integrator and the 
Implicit Euler.  

 

3.2  Data by NASA for initial state and comparable solution of 
the planetary system 

As mentioned at the start of this chapter, the goal for this P.B.M. is to simulate 
the Solar System by solving eq. (24) with use of the numerical integrator described 
by eq. (28) and (30). For solving the problem there is the need for initial data. As 
the n-body problem for the solar system does not have a useful analytical solution, 
the initial data, and comparable exact solutions for error-estimate at later timesteps, 
cannot be calculated. This gives the need to obtain comparable data by observation. 
In this thesis, data for the state vectors 𝒔 = (𝒙, 𝒗) =  (𝑥, 𝑦, 𝑧, 𝑣֓, 𝑣֔, 𝑣֕) and 
different parameters of each planet in the Solar System are obtained through 
NASAs JPL Horizons data system. As this data system does not state errors in 
their values (except for a few parameter), and one can assume that NASA has 
managed to obtain data more precise than what this P.B.M. can achieve, the data 
from NASA are treated as the exact solution to the system eq. (24) when 
considering initial condition and error-estimates. The data from NASA is obtained 
using a discretization with step-size ∆𝑡 = 10min. As eq. (28) shows, there is also 
the need of values for the parameters 𝑚 (i.e., mass of the celestial bodies). These 
are retrieved directly from the JPL Horizons website1. State vectors are retrieved 
through jplhorizons, a module of the Python package Astroquery, which queries 
information from the JPL Horizons data system (see Appendix A.1) The state 
vectors queried through jplhorizons are given with a position and velocity 
component. Due to this fact, as mentioned in section 2.3, the system eq. (24) to be 
solved is given by (𝒙, 𝒗), and not (𝒙, 𝒑), for easier handling of data. 
 

Units: The parameters 𝑚 are stated in SI-units (International System of Units) 
due to the magnitude, though the state vectors are stated in AB-units 
(Astronomical System of Units) due to astronomical quantities tending to have 
large magnitudes impractical to express in SI-units. This leads to the necessity of 
rewriting constants and parameters in units which gives values within the same 
scale. To obtain this, the following conversions have been made (see table 1): 

 
1 https://ssd.jpl.nasa.gov/horizons/app.html#/ 
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 Table 1: SI-units to AB-units conversions. 

 

3.3  Numerical results: 
The first numerical results in this section are obtained by applying the Symplectic 

Euler with initial conditions from NASA (see table 17, Appendix A.1) over a period 
of approximately 𝑇 ≈ 225 years, with a fixed timestep of 1 day (i.e., ∆𝑡 = 1  as 
time unit is in astronomical units; see table 1). The period 𝑇 is an arbitrary choice 
for the P.B.M., but not so much for the final data-driven model of section 4.3. 𝑇 is 
therefore kept constant over the two models for convenience when comparing results. 
The timestep is fixed to ∆𝑡 = 1 to make a coarse discretization and lower the 
accuracy of the P.M.B. This timestep is clearly large, as the innermost planet has 
an orbital period of approximately 88 days. The large timestep comes though with 
some benefits: the low computational cost. This low computational cost is a key 
aspect of the hybrid model in chapter 5.  

  

 
2 Universal Gravitational constant 

Symbol in 
Equations 

Quantity/ 
Constant  

Value Astronomical 
Base Unit (AU) 

Value SI Base 
Unit 

x Distance 1 𝑎𝑢 1.495979707 ⋅ 10φφ 𝑚 
𝑣 Velocity 1 𝑎𝑢 ⋅ 𝑑𝑎𝑦−φ 1.73146 ⋅ 10φ 𝑚 ⋅ 𝑠−φ 
𝑚 Mass 1 𝑀⊙ 1.98850 ⋅ 10ϯЈ  𝑘𝑔 
𝑡 Time 1 𝑑𝑎𝑦 8.6400 ⋅ 10Κ 𝑠 
𝐺 U.G. constant2 6.67430 ⋅ 10−φφ 

 
𝑎𝑢ϯ𝑀⊙

−φ𝑑𝑎𝑦−ϵ 2.95926 ⋅ 10−φφ 𝑚ϯ𝑘𝑔−φ𝑠−ϵ 

Figure 3: 3d plot of PBM results vs. NASA data over 225 years. 
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Figure 3 and 4 show a 3d and 2d plot, respectively, of the results from the P.B.M. 

against the data from NASA. The plots show a clear overlap between the numerical 
and exact solution for all the planets, except for the innermost planet. For the 
innermost planet one can see that at the P.B.M. increases the semi-minor axis in 
comparison to the exact solution, and that there is a large fluctuation in the semi-
major axis of the innermost planets orbit. The periodic instability of the orbit is 
most likely due to the large timestep used in comparison to the orbital period of 
the planet. The actual motion of the orbit of the innermost planet may also be 
affected by gravitational forces not correctly described by the Hamiltonian system 
eq. 20 and may need a more relativistic approach.  

 
Table 2 shows the average absolute and relative error of both position and 

velocity for each planet. The Sun is not included in the table as it stays fixed at 
the origin, and thus the errors are zero. The absolute errors are calculated using 
the Frobenius norm eq. (32), a matrix norm defined in the same manner as the 
standard 𝐿ଶ-vector norm eq. (36), for the Euclidean distance between the P.B.M. 
solution matrix 𝐴 ̂and the solution matrix 𝐴. The relative error is calculated in the 

Figure 4: 2d plot of PBM results vs. NASA data over 225 years. 
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same manner, just normalized using the Frobenius norm of the solution matrix 𝐴, 
eq. (33). 

 ੸𝐴̂ − 𝐴੸
է

= ఇ௽ ௽ੰ𝑎ք̂օ − 𝑎քօੰϵ
։

օ=Ј

ֈ

ք=Ј

  (32) 

 
੸𝐴̂ − 𝐴੸

է
‖𝐴‖է

=
అ∑ ∑ ੰ𝑎ք̂օ − 𝑎քօੰϵ

։
օ=Ј

ֈ
ք=Ј

 

అ∑ ∑ ੰ𝑎քօੰϵ
։
օ=Ј

ֈ
ք=Ј

 
 (33) 

 
The errors are then scaled by the square root of number of steps, 

√
𝑚, and 

averaged of the time-interval 𝑇, such that the errors becomes comparable for 
different methods. 
 

 
੸𝐴̂ − 𝐴੸

է√
𝑚 ⋅ 𝑇

=
అ∑ ∑ ੰ𝑎ք̂օ − 𝑎քօੰϵ

։
օ=Ј

ֈ
ք=Ј

 

√
𝑚 ⋅ 𝑇

 (34) 

 
੸𝐴̂ − 𝐴੸

է
‖𝐴‖է

1√
𝑚 ⋅ 𝑇

=
అ∑ ∑ ੰ𝑎ք̂օ − 𝑎քօੰϵ

։
օ=Ј

ֈ
ք=Ј

 

అ∑ ∑ ੰ𝑎քօੰϵ
։
օ=Ј

ֈ
ք=Ј

⋅ 𝑚 ⋅ 𝑇
 (35) 

 
 

Table 2: Average absolute and relative error by PBM for position and velocity of each planet. 

 
By table 2, one can see that the average absolute error for the planets position is 
in general increasing for larger orbits, as expected when calculating absolute error 
for increasing values. For average relative error in positions, the results show a 

Celestial 
object  

Avg. absolute 
error (position)  

Avg. absolute 
error (velocity) 

Avg. relative 
error (position) 

Avg. relative 
error (velocity) 

Mercury 6.8067 ⋅ 10−ϩ 4.7571 ⋅ 10−Ϩ 5.9479 ⋅ 10−΅ 6.0021 ⋅ 10−΅ 

Venus 6.9013 ⋅ 10−ϩ 1.9551 ⋅ 10−Ϩ 3.3281 ⋅ 10−΅ 3.3719 ⋅ 10−΅ 

Earth 5.1918 ⋅ 10−ϩ 8.7784 ⋅ 10−΅ 1.8107 ⋅ 10−΅ 1.7801 ⋅ 10−΅ 

Mars 7.1478 ⋅ 10−ϩ 6.5433 ⋅ 10−΅ 1.6256 ⋅ 10−΅ 1.6382 ⋅ 10−΅ 

Jupiter 1.0662 ⋅ 10−Θ 1.5531 ⋅ 10−΅ 7.1360 ⋅ 10−ν 7.1807 ⋅ 10−ν 

Saturn 1.1771 ⋅ 10−Θ 6.8659 ⋅ 10−ν 4.2948 ⋅ 10−ν 4.2964 ⋅ 10−ν 

Uranus 1.1812 ⋅ 10−Θ 2.3975 ⋅ 10−ν 2.1405 ⋅ 10−ν 2.1311 ⋅ 10−ν 

Neptune 1.4212 ⋅ 10−ϩ 1.4697 ⋅ 10−φЈ 1.6469 ⋅ 10−φЈ 1.6348 ⋅ 10−φЈ 
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decrease in error for larger orbits. This is most likely due to the large timesteps in 
comparison to the orbital periods, as larger timesteps will cover a greater arc length 
for short orbital periods. The exception is the outermost planet, where the absolute 
value is the lowest of all the planets, though its relative error follows the previous 
statement.  This is most likely due to the overall error for the outermost being very 
low. For the average absolute error in velocities, the errors are decreasing with 
increase in orbit size. This fits well with the system simulated, as for the planets in 
the Solar System, larger orbits yields lower orbital velocities. The average relative 
error in velocities also supports this.  

 
The next result is a plot which shows the Hamiltonian calculated with respect to 

the numerical solutions by the P.B.M. against the Hamiltonian for the NASA data. 
The Hamiltonian by the P.B.M. appears to be bounded, with an oscillation in the 
7th significant figure. There also appears to be a small perturbation in the P.B.M 
Hamiltonian as it gets delayed over time compared to the Hamiltonian for the 
NASA data. This result fits well with theorem 3 and the subsequent statements in 
section 3.1.1, as the theory states that one should expect an almost conserved 
Hamiltonian and a small perturbation from the real solution. 

 
Table 3: Average absolute and relative error by PBM for the Hamiltonian. 

 
 
 

 
Table 3 shows the average absolute and relative errors for the P.B.M. 

Hamiltonian plotted in figure 5. The absolute error is calcutated using standard 𝐿ଶ-
vector norm eq. (36) for the Euclidean distance between the P.B.M. Hamiltonian 
vector 𝒚̂ and the solution Hamiltonian vector 𝒚. The relative error is calculated in 

 Avg. absolute error Avg. relative error  

Hamiltonian 2.4024 ⋅ 10−φϯ 1.8411 ⋅ 10−φЈ 

Figure 5: plot of Hamiltonian of PBM results vs. NASA data over 225 years. 
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the same manner, just normalized using the 𝐿ଶ-vector norm of the solution vector 
𝒚, eq. (37). 

‖𝒚̂ − 𝒚‖ϵ = ఇ௽|𝒚ք̂ − 𝒚ք|ϵ
։

ք=Ј

ɞ  (36) 

 

 
‖𝒚̂ − 𝒚‖ϵ

‖𝒚‖ϵ
=

అ∑ |𝒚ք̂ − 𝒚ք|ϵ
։
ք=Ј

ɞ

అ∑ |𝒚ք|ϵ
։
ք=Ј

ɞ
 (37) 

 
The errors are then scaled by the square root of number of steps, 

√
𝑛, such that 

the errors becomes comparable for methods with different timesteps. The errors are 
also scaled by the length of the time interval, 𝑇 , which yields an average error per 
timestep. This way, results by methods on different time intervals can be compared. 
 

‖𝒚̂ − 𝒚‖ϵ√
𝑛 ⋅ 𝑇

=
అ∑ |𝒚ք̂ − 𝒚ք|ϵ

։
ք=Ј

ɞ

√
𝑛 ⋅ 𝑇

 (38) 

 

 
‖𝒚̂ − 𝒚‖ϵ

‖𝒚‖ϵ

1√
𝑛 ⋅ 𝑇

=
అ∑ |𝒚ք̂ − 𝒚ք|ϵ

։
ք=Ј

ɞ

అ∑ |𝒚ք|ϵ
։
ք=Ј

⋅ 𝑛ɞ ⋅ 𝑇
 (39) 

 
The last numerical result is a plot which shows the 𝐿ଶ-error of the P.B.M against 

NASA data by eq. (36). The plot shows the local truncation error against a 
quadratic decrease in timesteps, and as the plot shows, the local truncation error 
of method is of order 𝒪(ℎϵ). Its global truncation error thus 𝒪(ℎφ), which agrees 
with the theorem 2. The plotted values can also be found in table 4. 

 

 
 

Figure 6: plot of the local 𝐿2-error of the PBM. 
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Table 4: Local truncation error by PBM for different timesteps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
∆𝒕 

 
‖𝒚̂ − 𝒚‖ 

‖𝒚ෝ − 𝒚‖(∆𝒕
𝟐 )

‖𝒚ෝ − 𝒚‖(∆𝒕) 

8
9੭  1.2722 ⋅ 10−ϯ − 

4
9੭  3.1759 ⋅ 10−Κ 2.4964 ⋅ 10−φ 

2
9੭  7.9364 ⋅ 10−Θ 2.4989 ⋅ 10−φ 

1
9੭  1.9839 ⋅ 10−Θ 2.4997 ⋅ 10−φ 

1
18੭  4.9606 ⋅ 10−ϩ 2.5004 ⋅ 10−φ 

1
36੭  1.2412 ⋅ 10−ϩ 2.5021 ⋅ 10−φ 

1
72੭  3.1140 ⋅ 10−Ϩ 2.5089 ⋅ 10−φ 

1
144੭  7.8937 ⋅ 10−΅ 2.5349 ⋅ 10−φ 
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4 Data-driven modeling of the n-body problem 
The world of Artificial Intelligence (A.I.) has come forth into the light of the 

general population over the last decades and have built huge expectations for what 
humans can achieve the decades to come. Some may say there is an overhype in 
the general population for the subject, though it is still a wide research field with 
many hidden possibilities (Ford, 2018).  

 
In the following chapter, a general introduction into the world of Artificial 

Intelligence, Machine Learning and Deep Learning will be given. Following, the 
basics of Neural Networks will be presented and accompanied by an example 
(section 4.2), to give the (particularly unexperienced) reader a general insight into 
Neural Networks – the conceptual setup procedure will remain the same for all 
Neural Network based models in this thesis; additionally, this simple example allows 
for a clear discussion of network optimization techniques. Later, in section 4.3, a 
pure data-driven model (D.D.M.), based on Neural Networks, will be presented as 
an alternative to the physics-based model (P.B.M.) in chapter 3 for modeling the 
n-body problem for planetary motion. The motivation for creating a pure D.D.M. 
for solving the n-body problem is that, after the model has been correctly set up 
and trained, the computational cost is very low in comparison to many highly 
accurate numerical integrator (Breen, Foley, Boekholt, Zwart, 2020). This data-
driven model will be one of the main components of the final hybrid-model 
presented in chapter 5 and will be responsible for an additive residual term which 
is used to improve the results for the physics-based model.  

 

4.1 Artificial Intelligence vs. Machine Learning vs. Deep 
Learning 

Some concepts which are often intertwined are the concepts of Artificial 
Intelligence, Machine Learning and Deep Learning. In the following section, a brief 
introduction to these concepts will be given, and how they are connected, so it is 
clear which concepts are used in this thesis.  
 

Through the ages, humans have searched for ways to efficiently execute tasks 
and improve performance. One of the ways we have managed to do this is through 
the means of Artificial Intelligence (A.I.). A.I. is not just another tool to improve 
our daily lives, it also helps us to further understand human beings and answer 
intricated questions about the world around us. The use of A.I. is nothing new, it 
dates back to the 1940s, and with its first conceptual mentioning as early as the 
1840s (Boden, 2016). A.I. enables us to perform tasks which normally would be 
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physically and/or temporally impossible by the human hand and mind. These tasks 
can come in the form of overwhelmingly long mathematical calculations, which by 
the human mind would take over a lifetime to complete, or in the form 
observational oriented tasks, where humans’ physical attributes makes certain 
observations impossible.  

 
To get a much clearer understanding of A.I., we need to look at its focal point: 

intelligence. From the Oxford Languages dictionary3 intelligence is defined as “the 
ability to acquire and apply knowledge and skills”. From this general definition one 
can see there are many opportunities for debate. Knowledge can be split up in 
different categories, same goes for skills, and there are many ways to apply skills 
and knowledge. This leads to different definitions of intelligence; some splitting the 
term into different subtypes, some based in biology, some based in psychology (for 
more in-dept information, see Boden 2016). 
 

Artificial intelligence is mostly known as the concept of replicating human 
behavior to be able to perform tasks which normally would require human 
intelligence, though A.I. is not confined to these biological mechanics found in 
humans. There is the possibility to create A.I. which completes these tasks based 
on methods very unlike those of the human mind. So, what is the difference, or 
rather the similarity, between Machine Learning (M.L.) and A.I.? A.I. is just an 
umbrella term that includes Machine Learning, amongst other things. A.I. can be 
as simple as a digital calculator, where one could execute basic arithmetic. This 
would be an explicit A.I., where we define every possible scenario and the desired 
outcome. Here, the algorithm, or the “skill” of the calculator is defined by us. For 
M.L., this would not be the case. To create a program which is based on M.L., we 
would design a program where the computer itself creates the “skills”. We can think 
of this as a Blackbox; we give the computer some input, and it produces some 
output. We do not know what happens inside the box, but by giving the program 
some correct solutions to compare its outputs to, the program itself can adjust 
parameters inside this Blackbox, so that in the end the output comes relatively 
close to the correct solutions. By doing this over and over for many different input-
output pairs, which can be referred to as the programs “learning process”, the 
program “learns” how to solve the given problem for different inputs.  
 

The kind of problems which can be solved by M.L. are generally divided into two 
categories: classification- and regression-problems. For classification-problems, a 
given input is sorted and produces a specific output within a limited amount of 

 
3 https://languages.oup.com/ 
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output labels, whereas for regression-problems, the output is a continuous number. 
Even though the computer itself is in charge of the “learning process”, we can define 
features of the inputs for which the program should priorities when learning. A 
classic example of this comes in the form of a classification problem:  
 
If you are designing a program to differentiate between cats and dogs, the program 
would look at all the features of dogs and all the features of cats and then try to 
compare these features to a given input, let’s say a picture of a cat or a dog. One 
could argue that cats and dogs have an infinite number of features, so this task 
would prove impossible for the program. What we can do then is give the program 
some features of the cat and dog to priorities, e.g., the shape of the face, tail etc., 
such that the program in many ways only looks at those features when classifying 
the picture. As there would still be some similarities between features of cats and 
dogs of specific breeds, the program is not guaranteed to successfully classify the 
picture every time, but it could still come close.  
 

Another way to approach M.L. is to exclude these features and let the program 
itself figure out which features to be prioritized. This is the concept of Deep 
Learning (D.L.) and is most known for its Artificial Neural Network (A.N.N.) 
approach, or just Neural Network (N.N.) for short. Its structure stems from the 
idea of replicating the human brain, with its billions of neurons layered up in a 
specific way.  
 

4.2  Neural Network implementation with example  
To further understand Deep Learning and especially how its implemented in this 

thesis, the following section will present a fairly “easy to implement” D.L. program. 
This D.L. program is a data driven model, i.e., the model is derived solely by 
considering empirical data, not by any knowledge of the physical process by which 
the output is obtained (Souza, Araújo, Mendes, J., 2016). The D.D.M. uses a fixed 
pipeline, which is the same for every D.D.M. in this thesis; though, some parts 
within the pipeline have small alterations from model to model. The foundational 
pipeline for the D.D.M. (see figure 7) is based on three components; the N.N. with 
its architecture, a loss function to be minimized, and an optimization step to 
optimize parameters. The goal is then to train the N.N. by going through the 
pipeline, such that in the end its output (the predictor) is close to the solution. 
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Guiding example: Mapping polar coordinates to Cartesian coordinates: 
Throughout this section, an example will be used to associate the D.D.M. with a 
simple problem and see how different elements affect the training and prediction 
quality of the D.D.M. The D.D.M. will try to learn eq. (40), where it will try to 
map polar coordinates to Cartesian coordinates.  
 

 খ𝑥 = 𝑟 𝑐𝑜𝑠 (𝜃)
𝑦 = 𝑟 𝑠𝑖𝑛 (𝜃) (40) 

 
Data: After the model’s purpose has been established conceptually, e.g., learn eq. 

(40), data associated with the task can be constructed. The data’s objective is to 
present the N.N. with enough general examples for it to be able to learn 
relationships between input and output data. This is one of the first modeling 
choices one has to consider. The finished D.D.M. is in most part defined by the 
data, and one has to carefully choose the N.N. input and output data in correlation 
to the overall idea of what the D.D.M. should resemble. This is why a D.D.M. can 
predict results not bound by mathematical and physical laws, as it only takes into 
account the data it is presented with. It should be stressed that the quality of the 
data can be paramount in the predictive capability of the model, as will be made 
clear in the results to come. In this example, to train the N.N., an input dataset of 
100 000  points 𝒙ք։֋֐֏ = (𝜃, 𝑟)  with 𝜃 ∈ [0, 2𝜋]  and 𝑟 ∈ [0, 100]  will be used, 
together with an output-dataset with corresponding points  𝒚֎֊և = (𝑥, 𝑦) by eq. (40). 
This matches each end of the mathematical algorithm the D.D.M. should reproduce, 
and it is up to the N.N. to find relationships between these datapoints.  
 

Forward Propagation: First is to feed forward the input 𝒙ք։֋֐֏ through the N.N. 
𝒩, where the N.N. preforms a computational algorithm defined by the modeler, 
and then outputs a predictor, 𝒚֋֍րտ, that is: 

 
 𝒩(𝒙𝑖𝑛𝑝𝑢𝑡) = 𝒚𝑝𝑟𝑒𝑑 (41) 

 

Figure 7: Basic N.N. pipeline. 
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This process is commonly referred to as Forward Propagation. The predictor, 𝒚֋֍րտ, 
is whatever the N.N. produces by sending the input through the network. The goal 
is to get 𝒚֋֍րտ = 𝒚֎֊և , which is done by training the N.N. (see the following 
paragraphs). For this example, the input for the N.N. is the point in polar 
coordinates, 𝒙ք։֋֐֏ = (𝜃, 𝑟) , and the output predictor is the corresponding 
Cartesian coordinate 𝒚֋֍րտ = (𝑥, 𝑦)֋֍րտ. This yields:  
 
 𝒩(𝜃, 𝑟) = (𝑥, 𝑦)𝑝𝑟𝑒𝑑 (42) 

 
Backward Propagation: The next step is to compare the predictor 𝒚֋֍րտ to the 

output 𝒚֎֊և; this is normally done through a loss function – this can be a crucial 
modeling step as there exist many different possibilities for different problems. The 
one used in this thesis, eq. (43), is the Mean Square Error (MSE), as its one of the 
most commonly used loss functions. The next step is an optimization step with the 
goal to minimize the loss function, i.e., the distance between predictions and output 
data: 

 𝑓և֊֎֎ = 1
𝑁 ௽ੱ𝒚օ

֋֍րտ − 𝒚օ
֎֊ևੱϵ

կ

օ=φ
→ 𝑚𝑖𝑛 (43) 

 
Here an optimization algorithm is used to calculate the gradients for the loss 

function, ∇𝑓և֊֎֎(𝒚ֆ), and to minimize the loss function with the use of these 
gradients, where 𝑘 is the iteration index of the optimization routine. The algorithm 
minimizes the loss function by eq. (44) (i.e., some form of gradient decent), where 
the basic idea is to follow the gradient backwards to minimize the objective function 
(i.e., the loss function) and updates the parameters (𝑤, 𝑏) (i.e., weights and biases, 
see neuron-to-neuron connection later in this section) in the N.N. respectively, 
where 𝛼։ is the step-size. 

 
 𝒚ֆ+φ  ≈  𝒚ֆ − 𝛼ֆ∇𝑓և֊֎֎(𝒚ֆ) (44) 

 
This step, together with the loss function step, is what is commonly referred to as 
Backward Propagation, which is due to the fact that the steps revolve around 
sending and tracking information backward through the N.N. This Backward 
Propagation is what makes the N.N. able to adjust to data and learn. It is important 
to note that the N.N. can adjust too much to the data and end up overfitting, that 
is, the N.N. does not generalize well and mostly only works for the specific case it 
is trained for. This can happen when the N.N. is too large in comparison to the 
data (there is in general no direct way of telling how big the network should be for 
a given problem, it is a process of trial and error), or by doing to many Backward 
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Propagations. A solution to overfitting is to implement different regularization 
methods, which will be introduced later in this section. 
 

As networks can be quite large and complicated, the optimization algorithm can 
be quite complicated as well. To stay concise and not go into too many details, the 
optimization algorithm used in the D.D.Ms. in this thesis, as in the case for the 
guiding example, is call ADAM. This algorithm is based on Adaptive Gradient 
Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp) to minimize 
the loss function, which is one of the most commonly used optimization algorithms 
(for more in-dept details, see Kingma, Ba, 2014). 
 

Train/Validation/Test - sequence: To track the learning process of the N.N., 
one can repeat the same process as in figure (7) but removing the optimization step, 
as shown in figure (8). This implementation is referred to as the validation sequence, 
and the former, the training sequence. This way, one gives the N.N. an input and 
checks the loss function to see if the difference between the predictor and the 
solution is small. This process would represent a genuine application of the N.N. 
and lets us know in some sense how the N.N. would perform if one would stop the 
learning process at that stage. When the training is complete, the test sequence is 
initiated. This is where one uses the N.N. in a real application with the use of inputs 
which have not been used for training and validations (see figure 8). If the N.N. 
performs as wanted at this sequence, the learning process is generally complete.  

 

Figure 8: Full D.D.M. pipeline. 
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N.N. Architecture: The N.N. step in the pipeline is as mentioned the part in 
which an input is passed through a machine code to produce a predictor. The way 
the N.N. arrives at the predictor is determined by how the N.N. architecture is 
defined. Defining the architecture is part of the modeling process; in general, the 
architecture is up to the modeler and can be constructed in countless ways, but 
there are some standardized approaches.  

 
For this example, a type of “Feedforward Deep Neural Network” (F.D.N.N) 

architecture is used. “Feedforward” meaning that the information travels along one 
direction; an input is given, and the N.N. passes the input through a series of 
various transformations and gives an output, the predictor. “Deep” refers the N.N. 
having multiple “hidden” layers of neurons it passes the input trough. These types 
of N.N. architectures are the quintessential deep learning models (Goodfellow, 
Bengio, Courville, 2016), though there are other types of architectures which can 
be used (e.g., “Recurrent” N.N., which are similar to “Feedforward” networks, but 
includes feedback connections).  

 
F.D.N.N. architectures consist in general on three types of layers: one input layer, 

one output layer, and “hidden” layers. The input layer is provided the input and 
the output layer returns the predictor. Each layer consists of neurons, each 
connected in-between layers. The “hidden” layers are layers where there is no clear 
interpretation of the role of each single neuron. This is where the N.N. updates its 
parameters during the Backward Propagation, where the modeler has no direct 
influence over what the parameter are set to and why. This can be considered the 
main “Blackbox” of the N.N. The number of “hidden” layers are chosen by the 
modeler, as well as the number of neurons in each “hidden” layer. For this example, 
the network consists of three “hidden” layers, each containing 50 neurons, as shown 
in figure 9. The input and output layers have both two neurons, one neuron for 
each element in (𝜃, 𝑟) in the input layer and for (𝑥, 𝑦) in the output layer. 
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Neuron-to-neuron connection: After defining each layer in the N.N., there is the 

need for defining how each layer is connected. The connections are between the 
neurons, where each neuron in one layer in the N.N. is connected to each neuron in 
the next layer. Each neuron in one layer defines an output, with its input given by 
all neurons the previous layer. The mapping between these inputs and outputs 
defines the neuron-to-neuron connection and is chosen by the modeler. The 
connections in this example (and for the remaining models of this thesis), as shown 
in figure 10, consists of three steps: one linear transformation, a probabilistic 
nullifying, and one non-linear transformation (an activation function). As a result 
of the linear transformation, each connection has its own parameters called weight 
and bias associated with it. These are the fitting parameters updated in the 
optimization step in the training sequence mentioned with figure 7. 

 
The linear transformation (eq. (45)) is carried out by calculating the weighted 

sum of the value 𝑎ֆ
ք  of each neuron 𝑛ֆ

ք  with respect to the associated weight 𝑤ֆӴօ
քӴք+φ 

and biases 𝑏ֆӴօ
քӴք+φ in connection with neuron 𝑛օ

ք+φ. Index 𝑖 represents layer number, 
𝑘 the neuron in layer 𝑖, and 𝑗 the neuron in layer 𝑖 + 1.  
 

 𝑎օ̃
ք+φ = ௽(𝑎ֆ

ք 𝑤ֆӴօ
քӴք+φ

։

ֆ=φ
+ 𝑏ֆӴօ

քӴք+φ) =  ௽(𝑎ֆ
ք 𝑤ֆӴօ

քӴք+φ
։

ֆ=φ
) + 𝑏օ

քӴք+φ (45) 

Figure 9: Example of F.D.N.N. architecture. 
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The value of the weights 𝑤ֆӴօ
քӴք+φ  can be view as indicating “how strong” the 

connection is between each neuron, that is: if the connection between neuron 𝑛ֆ=օ
ք  

in layer 𝑖 and neuron 𝑛օ
ք+φ in layer 𝑖 + 1 has a weight 𝑤ֆ=օӴօ

քӴք+φ  with relatively large 
magnitude compared to the weights 𝑤ֆ≠օӴօ

քӴք+φ  with respect to the surrounding neurons 
𝑛ֆ≠օ

ք , neuron 𝑛ֆ=օ
ք  will affect the value of neuron 𝑛օ

ք+φ the most.  
 

 
 The next step is a probabilistic nullifying, a “dropout”, as described in eq. (46), 

where 𝑃(𝑐) read ‘with probability c’. This step takes in the value 𝑎օ̃
ք+φ of neuron 

𝑛օ
ք+φ and sets 𝑎օ̃

ք+φ = 0 by a given possibility 𝑐. This “dropout” is a regularization 
technique which helps the N.N. during the training and is a way to reduce the 
number of neurons in the network, which can help with overfitting to the training 
data.  

𝑎օ̂
ք+φ = খ𝑎օ̃

ք+φ,      𝑤𝑖𝑡ℎ 𝑃(𝑐)
    0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (46) 

 
The last part of the connection is a non-linear transformation, which is referred 

to as an activation function within N.Ns. These are introduced to give the network 
the possibility to mimic non-linear functions, as a sequence of linear transformations 
would only result in one big linear transformation due to the principle of 
superposition. The non-linear transformation used in this example (and throughout 
the remainder of this thesis) is known as the Rectified Linear Unit (ReLU) 
activation function, as shown in eq. (47) and visualized in figure 11 below. 

Figure 10: Neuron-to-neuron connection. 
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𝜚ऺ𝑎օ̂
ք+φऻ = 𝑚𝑎𝑥(0, 𝑎օ̂

ք+φ) = ব
𝑎օ̂

ք+φ, 𝑎օ̂
ք+φ > 0

    0, 𝑎օ̂
ք+φ ≤ 0

 (47) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This yields the equation for the value of each neuron: 
 

𝑎օ
ք+φ =

⎩৑
⎨
৑⎧ϱ ন௽ॐ𝑎ֆ

ք 𝑤ֆӴօ
քӴք+φ॑

։

ֆ=φ
+ 𝑏օ

քӴք+φ঩ , 𝑤𝑖𝑡ℎ 𝑃(𝑐)

                                 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (48) 

 
The only exception to this equation is the connection between the last “hidden” 
layer and the output layer. Here, the linear transformation eq. (45) is the only step 
in the connection, though this can vary from problem to problem. This type of final 
connection is common in the case of regression problems, as in this thesis, though 
for classification problems one might use a SoftMax or Sigmoid function (Sharma, 
Sharma, Athaiya, 2017).   
 

4.2.1 Basic N.N. results: 
The following section shows the results of the plain D.D.M. presented in section 

4.2 applied to the example problem of mapping polar coordinates to Cartesian 
coordinates. As a reminder, the N.N. was trained with data of polar coordinates for  
𝜃 ∈ [0, 2𝜋] and 𝑟 ∈ [0, 100] . For testing the D.D.M., multiple datasets of polar 
coordinates along the boundary of different circles were used as inputs to see 
whether the D.D.M. managed to reproduce the same circles in Cartesian coordinates. 
The test data also contained out-of-distribution data (O.O.D.), data which lie 
outside the initial training data, used for evaluating the model’s generalization. 
Table 5 shows the different angles and radii for which the circles were represented 

Figure 11: ReLU activation function graph. 
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in polar coordinates and accuracy of the results from the D.D.M in comparison to 
the real solution. Figure 12 shows the plots of the same circles as predicted by the 
D.D.M.  

 
 
Table 5: Accuracy of DDM for unscaled data for mapping polar to Cartesian coordinates. 

Radian [𝟎, 𝟐𝝅] [−𝟐𝝅, 𝟎] [𝟐𝝅, 𝟒𝝅] 
Radius 0.5 1 10 50 100 0.5 1 10 50 100 0.5 1 10 50 100 
Accuracy 4% 18% 66% 87% 93% 0% 0% 1% 5% 0% 0% 0% 3% 8% 6% 

 
 
As table 5 shows, the D.D.M. in its current state only manages to produce valid 
results for circles with the largest radii, and for angles within the same period as 
the training data, [0, 2𝜋]. For the smaller radii, figure 12 shows that the D.D.M. 
manages to predict something resembling a circle, but the results are far from 
satisfying. For angles within [−2𝜋, 0] and [2𝜋, 4𝜋], table 5 shows that the D.D.M. 
is not able to predict the circles, and from figure 12 f), one can see that predictions 
are closer to a straight line. Every prediction for circles within the latter periods 
produces a similar plot to figure 12 f), therefore, these plots are omitted from this 
thesis. Figure 12 f) also shows another important results, which will also appear for 
other D.D.Ms. in this thesis: As the periods lie outside the training data (i.e., a 
O.O.D.), the D.D.M. does not manage to predict these circles due to the D.D.Ms. 
poor ability to extrapolate, which is a well-known but nevertheless important 
conclusion of this exercise. 
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Figure 12: plot of DDM predictors vs. exact solutions for 𝜃 ∈ [0, 2𝜋]:   

𝑎) 𝑟 = 0.5, 𝑏) 𝑟 = 1, 𝑐) 𝑟 = 10, 𝑑) 𝑟 = 50, 𝑒) 𝑟 = 100, 𝑓) 𝜃 ∈ [2𝜋, 4𝜋], 𝑟 = 100  
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4.2.2 Network optimization: 
Even though a N.N. can be constructed in countless ways and thereby yield 

multitudinous outcomes, there is still no guarantee that there exists a given 
configuration that will give satisfying results. As seen in section 4.2.1, a plain N.N. 
may not be sufficient. This is where different optimization techniques come to hand. 
Optimization techniques are direct implementations in the N.N. itself or in data 
pre-processing which can improve the results in numerous ways. One problem, 
overfitting as mentioned in section 4.2.1, can occur when the N.N. is too large or 
the N.N. is overtrained. Regularizations, some of the following optimization 
techniques, can help overcome this overfitting problem by either reducing the size 
of the N.N., by adding a penalty to the loss function, or by halting the training 
process of the N.N. Another problem can occur when the data given to the N.N. is 
not optimized. Here, data scaling, either as pre-processing or during training, can 
be implemented. This can help optimize the learning process of the N.N. by 
improving convergence of the loss function. One can also apply downsampling to 
the data to allow for more coarse data, which can allow the N.N. to learn 
correlations in data more easily. Another technique is pooling, where one gathers 
the data and only extracts the most prominent features, which can reduce the 
complexity of the data. The last optimization technique is hyperparameter 
optimization, where one fine-tunes the hyperparameters of the D.D.M. to improve 
the results in various ways. The mentioned optimization techniques only account 
for a handful of the optimization techniques available in the literature out there, 
but this thesis will focus on mentioned. In this following section, the different 
optimization techniques used in the D.D.Ms. throughout this thesis will be 
presented in more details.   
 

Data scaling: One particularly important step to D.D.Ms. is the data itself. A 
big problem with data lies in the optimization step in the N.N. pipeline, where it 
updates the parameters in the N.N. with respect to the minimization of the loss 
function. If the dataset contains data of different scales, or data with large 
dispersion, the loss calculated from data of largest magnitudes will be prioritized 
by the optimization step. This is due to the fact that a change in the parameters 
associated with the path of the loss function backwards through the network would 
result in a greater minimization of the loss function, compared to the loss from data 
of smaller magnitude. This gives the need for data scaling, such that all the data 
in the dataset are set within the same magnitude, and thus, the network will not 
prioritize some data over other. This also helps improve the convergence of the loss 
function eq. (43). In this thesis standardization (or z-score normalization), eq. (49), 
is used to scale the data to get a mean of 0 and standard deviation of 1.  
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 𝒙̂ = 𝒙 − 𝜇
𝜎   (49) 

 
where 𝜇 is the mean and 𝜎 is the standard deviation of the given distribution,  𝒙 
is the datapoint, and 𝒙̂ is the standardized datapoint.  
 

Downsampling: If one is looking at dataset with e.g., timeseries (as will be the 
case for the main D.D.M. of this thesis in section 4.3) or other values from 
continuous functions with fine discretization, there may be too little change between 
datapoints, which can result in the N.N. not being able to learn the relationship 
between the points. In this case, downsampling may be an option. Downsampling 
in this case uses the same approach as downsampling in signal processing. The way 
downsampling is implemented in this thesis, as shown in example form in figure 13, 
is that the entire dataset is still used for training the N.N., but the solution the 
N.N. is comparing its predictor to is 𝑚 steps from the input datapoint (i.e., 𝑥ք →
𝑥ք+ֈ

֋֍րտ). From the N.N. point-of-view, the dataset is thereby downsampled by a 
factor 3. The discretization in the predictions of the N.N. will become coarser, but 
in return, the dataset will be larger and more detailed in comparison to training 
with an already coarse discretized dataset. Downsampling will not be implemented 
with this example but will be a key element of the main D.D.M. in section 4.3. 

 

 
Pooling: When constructing a N.N., one may end up with some part that 

contains too much information during a stage in training. The N.N. may 
correspondingly end up overfitting (i.e., adapting to the specific training-data, no 
generalizing) or may not be able to learn anything at all. It can be due to too large 
hidden layers, input-data with too many dimensions, or data too large along one 
dimension etc. One solution to this problem is the use of pooling. This can be done 
by taking all the data at a certain point in the Feedforward process, pooling them 
together, and returning some downsized version. This downsizing can be done in 
many different ways, with respect to different operations. In this thesis, the 
MaxPooling method is used. Here, the max value of a certain enclosed part of the 
data is used to shape a new representation of the data, as seen in figure 14. As with 

Figure 13: Example of downsampling with m=3; arrows shows which value DDM(𝑥ք) 
should compare its predictor with (𝑥ք+ϯ).  
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downsampling, pooling will not be implemented in this example but will be 
implemented within the main D.D.M. in section 4.3. 
 

  
Regularization: Regularization techniques are implementations one can make 

that reduces the chance of overfitting. There are many such techniques, but three 
are in focus in this thesis. The first technique is “drop-out”-regularization, as 
mentioned in more detail previously in section 4.2. In short, “drop-out” reduces the 
complexity (the size) of the N.N. and can help with overfitting.  

 
The next is L2-regularization, which is a penalty term added to the loss function 

eq. (43): 

 𝑓և̂֊֎֎ = 1
𝑁 ௽ੱ𝒚օ

֋֍րտ − 𝒚օ
֎֊ևੱϵ

կ

օ=φ
+ 𝜆௽ 𝑤ֆ

ϵ
ծ

ֆ=φ
→ 𝑚𝑖𝑛 (50) 

 
with 𝑤 being the weights and 𝜆 the regularization parameter; a scalar to weight 
the penalty term. In broad, it works the same way as “drop-out”, but instead of 
setting whole neurons to zero, it acts on the loss function such that larger weights 
get a larger penalty and gets reduces toward zero. Smaller weights, on the other 
hand, will be viewed as more optimal and not given such a large penalty. All the 
weights in the network will thereby be reduced towards zero and get a more even 
distribution. One can also use L1-regularization, which is the same concept but 
with the use of absolute values of the weights instead of the square.  
 

The last regularization technique is “early stop”, a straight-forward concept to 
implemented in the training-loop which stops the N.N. when no learning is taking 
place. It can be done in different ways; in this thesis, it is a monitoring of the loss 
function, and works such that if the loss function during the validation step of the 
N.N. does not decrease over a given number of iterations (epochs), the training 
stops. By looking at which iteration the global minimum of the loss function 
appeared, one can get a good idea of when to stop the training during a new training 
session, though this iteration number may vary from session to session due to the 
N.N.s random initialization of parameters (initial parameters are not actually 
random, but for the simplicity of this thesis, they will be viewed as random, see 
Yam, Chow (2000) for examples). 

 

Figure 14: Example of MaxPooling. 
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Hyperparameter optimization:  
As mentioned earlier in chapter 4, there are many different choices modelers have 
to make when designing a D.D.M. Except for the overall architecture, loss function 
and optimization algorithm, there are a handful of parameters one can set up and 
fine-tune to optimize the model, known as hyperparameters (Goodfellow, Bengio, 
Courville, 2016). The optimization of these hyperparameters is one of the most 
basic tasks in machine learning and there are several ways to do so (Hutter, 
Kotthoff, Vanschoren, 2019). This thesis uses a basic, more hands-on 
hyperparameters tuning-technique, which consists of training the N.N. for a certain 
set of hyperparameter values and reviewing the results to find the optimal values 
of the given hyperparameters (Claesen, De Moor, 2015). The following 
hyperparameters were considered when tuning the model: 
 

 Learning rate : the step-size 𝛼ֆ for eq. (44). 
 Epochs: number of times to iterate over the whole training dataset.  
 Mini-batch size : size of the subsets of the training dataset during one epoch, 

for which gradients and losses are calculated and optimized.  
 Drop-out: the probability 𝑐, see section above. 

 
Table 6 shows the results for different hyperparameters in comparison to accuracy 
and loss of both training and validation for the example problem given throughout 
section 4.2. The table only shows the 10 best results, as showing the rest does not 
serve any purpose for the rest of the thesis. One can see that there is no direct 
correlation between the different hyperparameters and the results, except the 
exclusion of dropout, which for this specific N.N. gave the best results. A learning 
rate of 𝛼 = 0.0005, mini-batch size of 64, and drop-out 𝑃(0) coincidentally gave 
the best results for the other D.D.Ms. in this thesis, so these hyperparameters will 
be kept at those values throughout the thesis.  
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 Table 6: Result of loss and accuracy with respect to hyperparameters of different values. 

 

4.2.3 Optimized N.N. results: 
The following results use the same setup as in section 4.2.1; the only exception is 

the implementation of optimization techniques, more specifically hyperparameter 
optimization, early stop, and data scaling. The data scaling in this D.D.M. is 
implemented a little different from the standardization used in the rest of the thesis. 
Here, 𝒚֋֍րտ and 𝒚֎֊և are both scaled by the 𝐿ϵ-norm of the solution 𝒚֎֊և before the 
loss function is calculated, such that there is an in-training data scaling. This 
prohibits the loss function from prioritizing large values when minimizing the loss 
function (i.e., for this examples, points at large radii). As the problem for the D.D.M. 
in section 4.2.1 was the bias toward learning points at large radii, this 
implementation should reduce the error for points at small radii.  
 
 

Table 7: Accuracy of DDM for scaled data for mapping polar to Cartesian coordinates. 

Radian [𝟎, 𝟐𝝅] [−𝟐𝝅, 𝟎] [𝟐𝝅, 𝟒𝝅] 
Radius 0.5 1 10 50 100 0.5 1 10 50 100 0.5 1 10 50 100 
Accuracy 90% 87% 86% 76% 74% 4% 5% 5% 9% 0% 6% 6% 2% 2% 0% 

 
 
Table 7 shows results for the same datasets as in section 4.2.1, though for this 
D.D.M. the predictions for the smaller circles have a much higher accuracy than 
for the D.D.M. in section 4.2.1. This implies that the data scaling implementation 
worked as expected. One interesting fact though, is that the accuracy for the larger 

Hyperparameters Learning results 
Learning 
rate 

Mini-batch 
size 

Drop-out Training 
accuracy 

Training 
loss 

Validation 
accuracy  

Validation 
loss 

0.0005 64 0.0 0.7840 0.0004325 0.8444 0.0001737 
0.0001 32 0.0 0.7773 0.0005654 0.8433 0.0002178 
0.0001 64 0.0 0.7892 0.0005493 0.8243 0.0002386 
0.0005 32 0.0 0.7518 0.0005998 0.8255 0.0002654 
0.0005 256 0.0 0.7630 0.0005605 0.7923 0.0003016 
0.0005 128 0.0 0.7669 0.0004923 0.7981 0.0003170 
0.005 128 0.0 0.6827 0.0009614 0.7926 0.0003539 

0.0005 128 0.01 0.6169 0.001477 0.7966 0.0003931 
0.0005 64 0.01 0.6305 0.001321 0.7977 0.0004037 
0.0001 32 0.01 0.5545 0.002325 0.7871 0.0004419 
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circles has dropped significantly. A more evenly spread accuracy for the different 
radii was expected. This reduction in accuracy for large radii can also be clearly 
seen in figure 15. The reason behind this reduction is unfortunately hard to point 
out. Table 7 and figure 15 f) also show, as in 4.2.1, that the D.D.M. do not handle 
extrapolation. This could be solved by including a larger dataset with angles over 
multiple periods or introducing a totally different N.N. architecture. This is not 
implemented as this problem only serves as an example and an introduction to the 
final D.D.M. of this thesis, and therefore these implementations would not be of 
interest.  
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Figure 15: plot of DDM with normalization predictors vs. exact solutions for 𝜃 ∈ [0, 2𝜋]:  

𝑎) 𝑟 = 0.5, 𝑏) 𝑟 = 1, 𝑐) 𝑟 = 10, 𝑑) 𝑟 = 50, 𝑒) 𝑟 = 100, 𝑓) 𝜃 ∈ [2𝜋, 4𝜋], 𝑟 = 100 
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4.3  D.D.M. for predicting planetary motion 
The main goal of this section is to see how well a D.D.M. based on the basic 

F.D.N.N. in section 4.2 can perform in comparison to the P.B.M. in chapter 3 for 
describing planetary motion. The dataset from NASA, presented in section 3.2, will 
also be used in this D.D.M. as training/validation data, as well as data for testing 
the D.D.M.  

 
The D.D.M. in this section is heavily based on the D.D.M. from 4.2, though there 

are some changes that will be established along the way. The way the D.D.M. and 
the results are presented in this section is by slowly increasing the complexity of 
the problem and do one implementation for improvement at a time, to isolate and 
clearly understand the different implementations and consequently improvements 
in the results. One substantial change from the previous D.D.M., which is added 
right from the start, is the input to the N.N. As the D.D.M. is trying to predict 
planetary motion closely resembling the P.B.M., a natural approach is to give the 
N.N. a state vector 𝒔 = (𝒙, 𝒗) =  (𝑥, 𝑦, 𝑧, 𝑣֓, 𝑣֔, 𝑣֕) at a time 𝑡ք , and let it 
predict the state vector at time 𝑡ք+φ, that is: 

 
 𝒩(𝒔֏) = 𝒔֏+φ

֋֍րտ (51) 
 
Since the position and the velocity of one body is of different magnitude, and to 
hopefully make it easier for the N.N. to see connection between values, a vector 
𝒙ք։֋֐֏ = (𝒙ք−φ, 𝒙ք) = (𝑥ք−φ, 𝑦ք−φ, 𝑧ք−φ, 𝑥ք, 𝑦ք, 𝑧ք) is used instead of the general 
state vector 𝒔, where index 𝑖 represent timestep. This results in: 

 
 𝒩(𝒙ք−φ, 𝒙ք) = 𝒙ք+φ

֋֍րտ (52) 
 
for each body. This approach removes the velocity component as a whole, and one 
would not be able to predict the velocity with help of the D.D.M. directly. This is 
not seen as an issue though, as velocity is a derivative of position, the motions of 
the planetary system can be described by predicting only positions for two 
successive timesteps. It is therefore hypothesized that the D.D.M. can make valid 
predictions without velocities.  

 
While training, the D.D.M. is given one input by NASA and predicts only one 

step with a step-size of ∆𝑡 = 10min. The D.D.M. cannot be trained to predict 
positions at smaller timesteps, as the training data from NASA has, as stated in 
section 3.2, a discretization with step-size of ∆𝑡 = 10min. Also, the loss function to 
be minimized during training is now given as:  
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 𝑓և֊֎֎ = 1
𝑁 ௽ੱ𝒙օӴք+φ

֋֍րտ − 𝒙օӴք+φ
֎֊և ੱϵ

կ

օ=φ
→ 𝑚𝑖𝑛 (53) 

 
When testing the D.D.M., two consecutive initial values are given from the NASA 
data, and the D.D.M. is tasked with predicting full orbits by using its previous 
prediction as the next input, that is: 
 
 𝒩ॐ𝒙ք−φ

֋֍րտ, 𝒙ք
֋֍րտ॑ = 𝒙ք+φ

֋֍րտ (54) 
 
The initial test data also lies toward the end of the training dataset, such that when 
the D.D.M. makes its prediction, it makes predictions both within and outside the 
training dataset in time.  
 

4.3.1 One-body prediction 
Basic F.D.N.N.:  The first case is a simplified one, where only one body’s orbit is 

being predicted. As mentioned above, the N.N. takes in the position at two 
successive timesteps, 𝒙ք։֋֐֏ = (𝒙ք−φ,  𝒙ք), and returns the position at the following 
timestep, 𝒙ք+φ

֋֍րտ . The data from NASA, which provides 𝒙ք։֋֐֏  and 𝒙ք+φ
֎֊և , is pre-

processed by standardization as presented in section 4.2.2. The data used for 
training, validation and test is inside a timeframe of 10 periods for the specific body. 
By the use of the basic D.D.M. presented in 4.2, the model produces the following 
results:  
 

 
 

Figure 16: plots of DDM predictors vs. NASA data for one planet over 5 periods. 
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Table 8: Average absolute and relative error by DDM for one planet. 

 
 
 
As figure 16 shows, the D.D.M. did not manage to predict anything close to 
resembling an orbit. The reason for these predictions may be a result of the data 
having to fine discretization, which can result in the N.N. not being able to 
differentiate between points as well as it should. A solution to this problem may be 
to use a larger timestep when producing the dataset for training and validation. 
This, however, limits the amount of data for the N.N. to learn from. Another 
approach, which will be introduced next, is to include downsampling.  

 
Downsampled data: As mentioned as an optimization technique in section 4.2.2, 

one can apply downsampling to the input data to increase apparent coarseness of 
the dataset used in training and validation. By the method in figure 13, the amount 
of data is almost preserved, but the N.N. may be able to see connections between 
datapoints more efficiently. The following results are obtained by introduction this 
downsampling, with a downsampling of 𝑚 = 288 (as ∆𝑡 = 10min for the dataset, 
𝑚 = 288 results in the D.D.M. being able to predict a position every 2nd day): 
  

 
 

Table 9: Average absolute and relative error by DDM with sampling for one planet. 

 
 
 

Avg. absolute error  Avg. relative error  
1.372 0.001893 

Avg. absolute error  Avg. relative error  
0.02266 0.0007500 

Figure 17: plots of DDM with sampling predictors vs. NASA data for one planet over 5 periods. 
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As figure 17 and table 9 show, the N.N. is satisfyingly able to predict the orbits 
of one body. As figure 17 also shows, the D.D.M. was able to partially capture the 
oscillations in the z-axis and the shift in the z-axis for the full orbits in the x, y-
plane. The reason for not capturing these shifts and oscillations better, may be due 
to the fact that these orbits lie outside of the training data. Another reason may 
be the downsampling, which may result in much of the information for the changes 
in the z-axis disappearing. This fits well with the results of example problem in 
section 4.2, as the results indicated that the D.D.M. did manage to learn well within 
the domain of the given dataset and performs interpolation well, though the model 
do no handle extrapolation tasks well. This also fits well with the results of Wang 
et al. (2021), where it is shown that D.D.Ms. struggles with extrapolation of 
dynamical systems. It should be emphasized the smallness of the amplitude in the 
z-direction compared to the x- and y-axes; the deviation in the z-axis is therefore 
acceptable.  
 

4.3.2 Multi-body prediction  
Single N.N: The next step is to extend the problem to multiple bodies. This 

D.D.M., as in the D.D.M. above, has implemented the optimization techniques: 
downsampling, data scaling, hyperparameter optimization, and early stop, as 
described in section 4.2.2; however, there are a couple of differences in comparison 
to the simplified case in section 4.3.1:  

 
One of the main differences here is the input to the N.N. As there are 8 celestial 

bodies considered (as the Sun is fixed at the origin and thus not considered), the 
input to the N.N. is a 6 × 8 tensor, that is, 𝒙ք։֋֐֏ = (𝒙ք−φ,  𝒙ք) for each body. 
Another difference is the change of training dataset. As the D.D.M. above only 
considered one body, it was not necessary to include a large dataset over a large 
timeframe, only around ten periods were sufficient. As the D.D.M. now considers 8 
bodies, the training of the N.N. requires data sufficient to learn from multiple 
periods for each body. This results in a large dataset which spans at least 225 years. 
As this dataset is very large, it was reduced to a discretization with ∆𝑡 = 1h. This 
is believed to be sufficiently small timesteps to still maintain the essential 
information in the data. Yet, another consideration one has to make when 
considering multiple bodies is the difference in orbital periods 𝑇  (see table 17 in 
Appendix A.1 for orbital periods for each body). As the difference in the innermost 
and outermost bodies orbital periods is quite large, one has to make some 
compromises. From section 4.3.1, the results showed that a downsampling of 𝑚 =
288 was sufficient for a planet with that specific orbital period. An assumption is 
made that optimal results are obtained with: 
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 𝑛֎ռֈ֋ևք։ւ = 𝑇
∆𝑡 ⋅ 𝑚

= 𝑛
𝑚

 (55) 

 
where 𝑛 is the number of points along an orbit for one orbital period, and 𝑛֎ռֈ֋ևք։ւ 
is the number of points along an orbit for one orbital period after sampling is 
applied, and the latter is constant for each body. This assumption yields that the 
outermost planet must have such a coarse discretization along its orbit for the N.N. 
to be able to differentiate between points. As a compromise between the orbits for 
the two outermost planets, the downsampling is set to 𝑚 = 1500, which results in 
the D.D.M. being able to predict positions every 62.5 days. This timestep should 
be a problem for the innermost planets, as this timestep accounts for most of the 
bodies orbital period, but as the later results show, this is not directly the case.  

Figure 18: 2d plot of DDM predictors vs. NASA data. 
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Figure 18 and 19 shows the orbital prediction for each planet by the D.D.M. 

against the exact solution by the data form NASA. As the figures shows, the N.N. 
is unable to predict valid orbits for any of the planets. For the outermost planets, 
the D.D.M. did not come close to anything periodically. The reason may be a lack 
of data and thus the N.N. is not able to train these planets for enough orbital 
periods. This would explain the bad results of the outmost planets, but not the 
innermost, as these have multiple orbital periods contained within the dataset. It 
appears that the D.D.M. predicts some form of orbits for the innermost planets, 
though they seem unstable and chaotic. One could argue that the large timestep is 
the problem for the instability of the orbits of the innermost planets, but as later 
results will show, this is not the case. 
 

Another reason for the bad results over all planets may be that, after data scaling, 
the N.N. received data within a unit circle, which for the N.N. the position of these 
datapoints may seem random. The N.N. has no direct way to differentiate between 
points on one orbit compared to another orbit. The data is almost like a low-density 
point-cloud. As the results for one-body predictions were satisfying, one could 
presume that the N.N., with some alterations, would be able to predict multiple 
bodies. Or is this like the case of the analytical solution of the n-body problem, that 
with more bodies comes a greater difficulty (and at a certain point, an almost 
impossibility) to arrive at a solution. As this thesis will show in the following case, 
there is a way around this problem, and this is where the concept of N.N. really 
shines. 

Figure 19: 3d plot of DDM predictors vs. NASA data. 
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Combined N.Ns. : As mentioned in section 4.1, one of N.Ns. main concepts is 
that N.Ns. are allowed to learn by themselves, as we humans are not in control of 
how the N.N. learns and how the finally trained N.N. arrives at a prediction. In our 
understanding and calculations of physical problems, we are constrained by our 
formulations, thinking methods and the problems connection to other problems and 
concepts; this is also the case for the n-body problem. This is, however, not the 
case for the N.N; it can find connections through its hidden states that we as human 
normally would not arrive at (Willard et al., 2020) (Blakseth, Rasheed, Kvamsdal, 
San, 2022). Therefore, a N.N. can be constructed in many different ways and still 
solve the problem, though the accuracy would be connected to how the network is 
set up.  

 
This concept gives rise to the idea of setting up a global N.N. made up of many 

smaller local N.Ns., in comparison to the previous N.N., which was only one single 
large N.N. As one N.N. can predict the orbit of one body, given enough data, 𝑛 
N.Ns. could potentially predict orbits for 𝑛 bodies. To justify this setup, a 
connection between the smaller N.Ns. will be applied in the form of a pooling-layer, 
as mentioned in section 4.2.2. This gives the possibility for interaction between the 
local N.Ns. such that the global N.N. can make predictions for a coupled n-body 
system, instead of considering each body as its own closed system. The use of a 
pooling-layer is inspired by Alahi et al. (2016), amongst others, where the 
implementation of pooling-layers has been seen to yield satisfying results. The 
pooling-layer in this thesis, as shown in figure 20, takes in three hidden states from 
each local N.N., and returns the maximum from each of the three hidden states of 
each local N.N. All the maximum from all the local N.Ns. are then gathered into 
one tensor and used as input for the next hidden layer in each local N.N, together 
with the previous hidden state from each respective local N.N. This means that at 
the middle of each local N.N., the networks are fed a value from each other network, 
which in some way represents the interaction between each body. As these values 
are hidden states of the local N.Ns., they do directly have a physical interpretation, 
so the number of hidden states the local N.Ns. need to share is ambiguous. This 
final D.D.M. is, except for this new N.N. architecture including a pooling-layer, the 
same as in the previous D.D.M., with same sampling, data scaling, early stop, 
hyperparameter optimalization and dataset.  
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The following figure 21 and 22 shows the orbital prediction for each planet by 

the final D.D.M. against the exact solution by the data form NASA. This time, the 
predictions of the D.D.M. appears periodic and for all planets, except for the two 
outermost, follows the orbits produced by the NASA data well. These orbits, for 
both NASA and the D.D.M., are not smooth, though this is most likely a result of 
the large timesteps. The predictions for the two outermost planets do not coincide 
with the data from NASA, as in the case of the previous D.D.M. This is still most 
likely a result of the lack of data for multiple orbits, though for this D.D.M. the 
predictions more closely resemble orbits. The sudden stop in the prediction of these 
orbits is an accumulation of points at the point of extrapolation. This again agrees 
with the statement that D.D.Ms. do not extrapolate well. The outermost planet 
also has a large region of outlying points in the middle of the orbit. This is likely 
due to the same challenge as occurred with the one-body prediction in section 4.3.1. 
The rate of change in the position is very low for the outermost planets in 
comparison to the rest, which may result in the N.N. not being able to differentiate 
between values of two consecutive timesteps. As the downsampling was set to 

Figure 18: Global N.N. with n local N.Ns. and MaxPooling as interaction layer. 
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hopefully accommodate both the two outermost planets, the sampling may still be 
too high for the outermost planet. One could be tempted to increase the sample 
rate, though this would further increase the time between each prediction, which is 
already viewed as large.  

 
The predictions for innermost planets appear stable and periodic. As the 
downsampling was set so large, one would hypothesis that the N.N. would not be 
able to predict a satisfying orbit with such coarse data, especially from a numerical 
point of view. As the timesteps increases drastically, one cannot expect a numerical 
method to produce a satisfying approximated solution. This is not the case for 
D.D.Ms., as the results show that the D.D.M. is not restricted in the same way by 
steps-sizes as standard numerical methods.  By setting the steps-size such that none 
of the innermost planets do complete an exact period, the N.N. will be presented 
with the outline for the total period. As the dataset being large enough to contain 
multiple orbital periods of the innermost planets, after a small number of epochs, 
the training sequence has most likely already run through multiple periods of these 
planets, and thereby, the N.N. has managed to learn the orbits the N.N. should 
predict. This nicely demonstrate the fact that D.D.M. are only dependent on the 
data presented, not by the underlying physics and mathematics of the problem. 
The drawback to this implementation is that the practicality of the model would 
be highly reduced, as previously mentioned, it would only be able to predict 
positions for the planets every 62.5 days. 

Figure 19: 3d plot of DDM with pooling predictors vs. NASA data. 
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Table 10 below shows the average absolute and relative error for each planet by 
both the pooling and non-pooling D.D.M. The table shows a reduction in the errors 
for every planet in the pooling D.D.M. in comparison to the non-pooling D.D.M, as 
was hypothesized. For two outermost planets, the absolute error in both cases is 
significantly greater than for the other planets, which is to be expected for orbits 
of such magnitude, and with a lack of data. For the relative error, the non-pooling 
D.D.M. produces similar errors for every planet, which is probably due to the overall 
incompleteness of the model. The pooling D.D.M. yields, as previously stated, 
overall improved results. The results also shows that the D.D.M. handles the 
exclusion of velocities.  
 
 
 
 
 

Figure 20: 2d plot of DDM with pooling predictors vs. NASA data. 



53 
 

Table 10: Average absolute and relative error by DDM with and without pooling for each planet. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 DDM without pooling DDM with pooling 

Celestial 
object 

Avg. absolute 
error (position) 

Avg. relative 
error (position) 

Avg. absolute 
error (position) 

Avg. relative 
error (position) 

Mercury 8.4995 ⋅ 10−ϩ 8.2992 ⋅ 10−Ϩ 1.0290 ⋅ 10−ϩ 1.0048 ⋅ 10−Ϩ 

Venus 1.0766 ⋅ 10−Θ 5.8023 ⋅ 10−Ϩ 2.8340 ⋅ 10−Ϩ 1.5273 ⋅ 10−΅ 

Earth 1.5307 ⋅ 10−Θ 5.9658 ⋅ 10−Ϩ 2.7049 ⋅ 10−ϩ 1.0543 ⋅ 10−Ϩ 

Mars 3.6689 ⋅ 10−Θ 9.3260 ⋅ 10−Ϩ 8.4157 ⋅ 10−Ϩ 2.1392 ⋅ 10−΅ 

Jupiter 7.3813 ⋅ 10−Θ 5.5119 ⋅ 10−Ϩ 6.5533 ⋅ 10−ϩ 4.8936 ⋅ 10−΅ 

Saturn 1.7349 ⋅ 10−Κ 7.0840 ⋅ 10−Ϩ 1.2111 ⋅ 10−Θ 4.9452 ⋅ 10−΅ 

Uranus 5.6264 ⋅ 10−Κ 1.1303 ⋅ 10−ϩ 5.5237 ⋅ 10−Κ 1.1097 ⋅ 10−ϩ 

Neptune 6.7602 ⋅ 10−Κ 8.7341 ⋅ 10−Ϩ 4.1414 ⋅ 10−Κ 5.3506 ⋅ 10−Ϩ 
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5 Hybrid modeling of the n-body problem 
As we try to model real-life physical systems, there will always be limitations, 

both by the human mind and tools we use. Like in the case of chapter 2, the 
mathematical formulation of the n-body system is limited by our knowledge of 
physics and mathematics, and the resulting model is ignorant of any unknown and 
unobserved physics (Blakseth, Rasheed, Kvamsdal, San, 2022).  

 
When one considers complex systems with no or limited useful solutions, like in 

the case of n-body systems, one will most likely turn to numerical solution methods 
to arrive at an approximate solution. This will in turn result in even more loss of 
similarity between the real system and the simulated one. In the end, P.B.Ms. will 
have limitations derived from many different aspects and only show part of the 
whole governing system (Blakseth, Rasheed, Kvamsdal, San, 2022). Another aspect 
is the computationally demanding process through which P.B.Ms. arrive at a 
solution. On the other hand, P.B.Ms. gives stable and predictable results, relatively 
easy to implement, easily explained and can be applied to a wide range of systems 
and scenarios.  

 
D.D.Ms., on the other hand, gives rise to some interesting ideas and application 

outside the reach of P.B.Ms. D.D.Ms. While limited by the availability of data for 
training and validation and thus not being as well suited for generalization as 
P.B.Ms., D.D.Ms. are not bounded by known physics and can develop their own 
relationships and patterns based on the data, and thus replicate the full physics of 
a system (Willard et al., 2020). The goal is therefore to combine elements of the 
P.B.M. and the D.D.M. to arrive at a solid model that encapsulates the strength 
of both models, hence the hybrid model. By having the basic physics described by 
the P.B.M., one can expect stable and justifiable results by the solid mathematical 
foundation of the numerical integrator and system equations. The D.D.M. will 
thereafter introduce the unknown physics to the results of the P.B.M., such that 
the final results yield a much closer approximation to the exact solution of the 
problem. The D.D.M. could also correct any numerical errors which appears. Also, 
by introducing the D.D.M., one will likely have the possibility for implementing a 
simpler P.B.M. such that the overall computational cost is lowered. These hybrid 
models are still restricted by availability of data, but early attempts have already 
shown promising results on improved accuracy of such models (Willard et al., 2020).  

 
In this chapter, a hybrid model will be suggested and discussed for improving the 

results of the P.B.M. from section 3.3. This improvement will be accomplished by 
predicting residuals, in the form of an additive term, using the D.D.M. from section 
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4.3.2. As in the case of chapter 4, important observations and improvements will 
be introduced along the way, where in 5.2.2 the final hybrid model will be presented 
with results.  

 

5.1  Constructing the hybrid model  
When constructing a hybrid model, there are three main aspects to consider: (1) 

the P.B.M., (2) the D.D.M., and (3) how the latter parts are combined. (1) is 
usually straight forward as the P.B.M. generally only serves the purpose of 
obtaining an approximation to the real solution. Though, there is a choice to be 
made, which in essence is the complexity of the P.B.M. More complex P.B.Ms. are 
usually more accurate but also computationally heavy; thus, one may want to 
choose a simpler model to lower the computational cost. (2) is very ambiguous and 
relies heavily on how the D.D.M. and P.B.M. should work together; thus, (3) must 
first be defined. This thesis uses a hybrid model based on two simpler hybrid models: 
a basic hybrid-physics-data model (H.P.D.M.), and a residual model (R.M.). Both 
concepts are introduced in the following. 

 
Remark: The equations following in this section uses 𝐬 as input and output 

variables instead of 𝒙, as used throughout chapter 4. The motivation for this change 
of variables is that the model now considers state vectors 𝒔 = (𝒙, 𝒗), not only 
positions 𝒙. This do not change the fundamentals of the equations, only simplifies 
notation. 

 
Hybrid-Physics-Data model:  The H.P.D.M. (Daw et al., 2017). is a model which 

uses the P.B.M. as mentioned above, but the D.D.M is designed and used in such 
a way that it takes in the output from the P.B.M. as its input: 
 
 𝑃𝐵𝑀(𝒔ք) = 𝒔ք̂+φ (56) 

 
where in the context of planetary motions is the state vector of the system, and 
outputs an improved approximation to the real solution, that is: 
 
 𝐷𝐷𝑀(𝒔ք̂+φ) = 𝒔ք+φ

֋֍րտ   (57) 
 
Alternatively, the input for the D.D.M. can be altered such that the D.D.M. used 
both 𝒔ք and 𝑃𝐵𝑀(𝒔ք), that is:  
 
 𝐷𝐷𝑀(𝒔ք, 𝒔ք̂+φ) = 𝒔ք+φ

֋֍րտ (58) 
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This model closely resembles the pure D.D.M. from section 4.3.2, though by 
introducing 𝑃𝐵𝑀(𝒔ք) as input, instead of only using predictions from the D.D.M. 
as inputs, the D.D.M. is more bounded by the underlying physics of the problem 
(Rai, Sahu, 2020). 

 
Residual model: Another hybrid model is the R.M. It is one of the simplest 

hybrid models and most commonly used ones (Daw et al., 2017). This model uses 
the P.B.M. in the same manner as the H.P.D.M., though the D.D.M.’s prediction 
differs. Here, the D.D.M. uses the same input as the P.B.M. to predict a residual, 
𝒓𝒆𝒔ք+φ

֋֍րտ, which is then added to the P.B.M. output to produce the final prediction, 
that is: 
 𝑃𝐵𝑀(𝒔ք) + 𝐷𝐷𝑀(𝒔ք) = 𝒔ք̂+φ + 𝒓𝒆𝒔ք+φ

֋֍րտ = 𝒔ք+φ
֋֍րտ (59) 

 
This approach is viewed as a simpler task than improving 𝒔ք̂+φ as in the H.P.D.M. 

above. In R.Ms., the D.D.M. is tasked with learning the uncaptured physics of the 
P.B.M. and the systematic errors of the numerical method itself. There is, however, 
no direct synergy between the P.B.M. and the D.D.M., and even though the D.D.M. 
is entrusted in capturing systematic biases of the P.B.M., the D.D.M. is not given 
any direct information regarding the P.B.M. This can be solved by the following 
hybrid model. 

 
Hybrid-Physics-Data-Residual model:  The innovative hybrid model, termed 

hybrid-physics-data-residual model (H.P.D.R.M., or sometimes H.P.D.-Res.) (Daw 
et al., 2017), is the combination of the previously mentioned hybrid models, 
H.P.D.M. and R.M. This model uses the same structure as the R.M., only the 
D.D.M. uses the same inputs as the H.P.D.M., that is: 

 
 𝐷𝐷𝑀(𝒔ք, 𝑃𝐵𝑀(𝒔ք) ) = 𝒓𝒆𝒔ք+φ

֋֍րտ (60) 
 
as shown in figure 23. This gives the final hybrid model: 

  
 𝑃𝐵𝑀(𝒔ք) + 𝐷𝐷𝑀(𝒔ք, 𝑃𝐵𝑀(𝒔ք) ) = 𝒔ք̂+φ + 𝒓𝒆𝒔ք+φ

֋֍րտ = 𝒔ք+φ
֋֍րտ (61) 

 
The way this model is constructed, it inherits the advantages from both its parent 
models. As H.P.D.R.M. uses the same inputs as H.P.D.M. for its D.D.M., i.e., (𝒔ք,
𝒔ք̂+φ), it simplifies the process of learning residuals; the D.D.M. now receives 
information regarding the results of the P.B.M. (Daw et al., 2017). Additionally, 
by using these inputs, the model is also restricted by the underlying physics, as in 
the case of the H.P.D.M. The D.D.M. of this model is also tasked with the simpler 



57 
 

process of predicting residuals suchlike the R.M, in contrast with the H.P.D.M., 
whose task is to predict the optimal approximation 𝒔ք+φ

֋֍րտ directly. 
 

When it comes to training/validating the model, the loss function of the D.D.M. 
part of the hybrid model must be defined. By eq. (61), it is clear that 𝑃𝐵𝑀(𝒔ք) 
must the calculated before the D.D.M. can predict the residuals. At the same time, 
the solution is defined as: 
 𝒔ք+φ − 𝑃𝐵𝑀(𝒔ք) = 𝒓𝒆𝒔ք+φ

֎֊և  (62) 
 
The D.D.M. is needed to minimize the loss function, which is now defined as:  

 

 

𝑓և֊֎֎ = 1
𝑁 ௽ੱ(𝒔օ̂Ӵք+φ + 𝒓𝒆𝒔օӴք+φ

֋֍րտ ) − 𝒔օӴք+φ
֎֊և ੱϵ

կ

օ=φ
→ 𝑚𝑖𝑛 

 

⟺ 𝑓և֊֎֎ = 1
𝑁 ௽ੱ𝒓𝒆𝒔օӴք+φ

֋֍րտ − (𝒔օӴք+φ
֎֊և − 𝒔օ̂Ӵք+φ)ੱϵ

կ

օ=φ
→ 𝑚𝑖𝑛 

 

 

 ⟺ 𝑓և֊֎֎ = 1
𝑁 ௽ੱ𝒓𝒆𝒔օӴք+φ

֋֍րտ − 𝒓𝒆𝒔օӴք+φ
֎֊և ੱϵ

կ

օ=φ
→ 𝑚𝑖𝑛 (63) 

 

5.2 Hybrid-Physics-Data-Residual model for the n-body 
problem 

In this section, the H.P.D.R.M. for modeling the n-body problem will be 
presented. The entire solar system is considered but for simplification purposes, 
residuals for only one planet is predicted. When constructing the H.P.D.R.M., the 
pipeline from figure 23 is used. This is how the model will look from a 
testing/application point-of-view. For the case of training/validating the model, the 
approach is somewhat different. This thesis tackles two approaches when setting 
up the training phase: 1) single-step training method, and 2) multi-step training 
method.  

 

Figure 21: Pipeline for the H.P.D.R. model. 
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Approach 1)  considers a single timestep (𝑛 = 1) in the training phase, that is: 
the N.N. takes in one input and returns one output, for the loss function eq. (63) 
to thereafter be calculated and minimized. For this case, a pre-constructed dataset 
with approximated solutions from the P.B.M., 𝒔ք̂+φ  (eq. (56)), is needed. The 
D.D.M. will take in a collected input from both the NASA dataset and the P.B.M. 
dataset, predict the residual by eq. (60), minimize eq. (63), and then repeat this 
process for every datapoint in the datasets. This is in line with the general way the 
D.D.Ms. throughout this thesis have been trained and is the easiest to implement 
and fastest approach of the two.   
 

Approach 2)  aims to stabilize the D.D.M. by minimizing the loss function for a 
more global version of the truncation error of the P.B.M., instead of evaluating the 
local truncation error as in approach 1. This approach takes into account 𝑛 
timesteps in the training phase, which implies: the N.N. goes through multiple 
timesteps before minimizing the loss function. Here, the P.B.M. and the D.D.M. 
work in tandem right from the start of the training phase. The pipeline from figure 
23 is used for 𝑛 consecutive timesteps, hence the multi-step. Eq. (61) is used for the 
first timestep, being based on the initial condition, and eq. (64) for the consecutive 
𝑛 − 1 timesteps, being based on predictions and approximations from the D.D.M. 
and P.B.M., respectively:  

 
 𝑃𝐵𝑀ॐ𝒔ք+φ

֋֍րտ॑ + 𝐷𝐷𝑀ॐ𝒔ք+φ
֋֍րտ, 𝑃𝐵𝑀ॐ𝒔ք+φ

֋֍րտ॑ ॑ = 𝒔ք̂+ϵ + 𝒓𝒆𝒔ք+ϵ
֋֍րտ = 𝒔ք+ϵ

֋֍րտ (64) 
 

The loss function measures the difference between the predictions and solutions 
for all considered timesteps, which yields two 𝑛 × 𝑠𝑖𝑧𝑒(𝒔) tensors of predicted 
residuals and solution residuals, respectively, to be evaluated in the loss function, 
which now is defined as:  

 

 𝑓և֊֎֎ = 1
𝑁 ௽ ௽ੱ𝒓𝒆𝒔օӴք+φ

֋֍րտ − 𝒓𝒆𝒔օӴք+φ
֎֊և ੱϵ

։

ք=φ

կ

օ=φ
→ 𝑚𝑖𝑛 (65) 

 
In short, this method evaluates the error of the predictions the N.N. makes over 

𝑛 timesteps, and is in line with the iterative process of the test-phase/real-world 
application of the H.P.D.R.M. This method, though the slowest and somewhat 
harder to implement, may yield a more stable H.P.D.R.M. which has a higher 
tolerance for poor predictions.  
 

Another change from the previous P.B.M. and D.D.M. is the size of the dataset 
used in training the H.P.D.R.M. The dataset considered is a subset of the data used 
for the previous models and spans approximately merely the first 900 days of the 
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total dataset. The assumption is made that this dataset is sufficient for training the 
D.D.M. sub-model of the H.P.D.R.M. The reason for this reduced dataset 
assumption stems from another assumption: a correction made to the state vector 
for a single planet, results in overall improved results for the entire system. This 
gives the possibility to only looking at residuals for a single planet, which simplifies 
the problem. The planet whose state vector will be corrected, is the innermost 
planet of the Solar System. This is motivated by the fact that this planet yields the 
overall largest error in the results from the P.B.M., as shown in table 2. This planet 
also has the smallest orbital period, thus a dataset of 900 days represents multiple 
periods for the given planet. This is expected to be sufficient for the D.D.M. to 
predict satisfying residuals. 80% of the dataset is used for training, thus the D.D.M. 
have O.O.D. for testing which contains multiple orbital periods.   
 

5.2.1 Position-based Hybrid-Physics-Data-Residual model  
When creating D.D.Ms. for predicting planetary motion throughout this thesis, 

only positions were considered so far. It was viewed as a simplification for the 
overall model to omit velocities, and it was hypothesized that the D.D.M. could 
perform well even when excluding this vital information; to compensate the lack of 
velocities as inputs, it should be however stressed, that positions for two consecutive 
timesteps were used instead. (It should be noted that two consecutive timesteps are 
being used in the H.P.D.R.M. as well, though for another purpose, as stated in 
section 5.1). As section 4.3.2 showed, this hypothesis turned out true. A natural 
question then arises for the H.P.D.R.M. in response to these results: Can one make 
similar simplification to the H.P.D.R.M. (i.e., omitting velocities) as for the pure 
D.D.M., and still obtain valid results? When looking at the P.B.M. part of the 
H.P.D.R.M., as eq. (28) shows, initial velocities cannot be excluded from this sub-
model. The next part to consider in the H.P.D.R.M. is then the D.D.M., though 
before looking at this sub-model, an interesting observation must be considered:  

 
Change in the symplectic flow: A key property mentioned throughout chapter 

2 and 3 is the symplectic nature of both the Hamiltonian system for planetary 
motion and the numerical integrator considered. As presented in the mentioned 
chapters, the flow of the solution for the system is symplectic, and therefore a 
symplectic numerical integrator is used to mimic the symplectic flow. This 
symplectic flow results in the area outlined from the velocity/momentum and 
position component of the solution in phase-space being conserved. An interesting 
idea is what happens to the flow as a correction is made to only the position 
component in the approximated solution from the P.B.M. In the following result, a 
simple plot shows what happens when this type of correction in the position 
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component is made to the innermost planet. Eq. (62) is used to find the residuals 
for a single step with the P.B.M. from datapoints in the NASA dataset. The P.B.M. 
is again run for a single initial condition from the NASA dataset, and the new 
residual dataset is used as the correction term in the position for the innermost 
planet after every consecutive iteration.  

 
As figure 24 shows, the approximated solution from the P.B.M. with the position 
correction drifts from the exact solution within the first orbital period, and the drift 
becomes larger after every iteration. This is likely due to the fact that there is no 
corresponding correction in the velocity component of the approximated solution, 
and the resulting flow of the solution is no longer symplectic. The orbits will most 
likely continue to enlarge and at some point, the planets will diverge.  

 
As figure 25 shows, if a corresponding correction is made to the velocity, as well as 
to the position, the approximated solution becomes the exact, and the flow keeps 
its symplectic nature. 

 
It is now clear that the P.B.M. not only needs a correction in positions, but also 

a corresponding correction in velocities. This results in the D.D.M. needing to 
predict residuals for both positions and velocities, or the D.D.M. needing to predict 
a correction term for only the position that compensates for the lack of correction 

Figure 25: 2d plot of PBM results + position and velocity residual vs. NASA data. 

Figure 22: 2d plot of PBM results + position residual vs. NASA data. 
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in velocity. The latter is quite interesting, as it has been conceptualized that 
D.D.Ms. can arrive at predictions not bounded by known mathematics and physics, 
as stated throughout this thesis. It is thereby not outside the scope of reason to try 
to construct such a D.D.M. For this simplified model, eq. (61) becomes: 
 
 𝑃𝐵𝑀(𝒔ք) + 𝐷𝐷𝑀ॐ𝒙ք, 𝑃𝐵𝑀(𝒙ք)॑ = 𝒔ք̂+φ + (𝒓𝒆𝒔ք+φ

֋֍րտ, 0) = 𝒔ք+φ
֋֍րտ (66) 

 
where 𝒓𝒆𝒔 merely addresses corrections in the positions, as there is not correction 
in the velocity component. The associated loss function from eq. (63) is now given 
as:  

 𝑓և֊֎֎ = 1
𝑁 ௽ੱ(𝒙̂օӴք+φ + 𝒓𝒆𝒔օӴք+φ

֋֍րտ ) − 𝒙օӴք+φ
֎֊և ੱϵ

կ

օ=φ
→ 𝑚𝑖𝑛  

 

 ⟺ 𝑓և֊֎֎ = 1
𝑁 ௽ੱ𝒓𝒆𝒔օӴք+φ

֋֍րտ − 𝒓𝒆𝒔օӴք+φ
֎֊և ੱϵ

կ

օ=φ
→ 𝑚𝑖𝑛 (67) 

 
Results by single-step training phase: The following results show the predictions 

from the simplified H.P.D.R.M. described above, using the single-step training 
method presented in the beginning of section 5.2. The predictions are plotted 
against the exact solution from the NASA data. For visualization purposes, plots 
for the outer four planets are omitted.  

 
Figure 26: 3d plot of H.P.D.R.M. results with position residual and single-step training vs. NASA data. 
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As figure 26 and 27 shows, the innermost planet diverges relatively quickly; after 

one-fourth orbital period the planet has already left its initial orbit, and after 
approximately another period, it diverges rapidly, exiting the Solar System. The 
reason behind these poor results may be the exclusion of the velocity residual. 
Another reason may be that the error stems from the D.D.M. sub-models’ unstable 
predictions. As the D.D.M. is trained only using residuals from a single step by the 
P.B.M., if the D.D.M. makes a bad prediction which offsets the planets orbit to 
such a degree that the D.D.M. is not generalized to predict a new corresponding 
residual, the D.D.M. may continue to predict poor residuals. In other words, the 
D.D.M. may not be stable for accumulative errors made by both the P.B.M. and 
the D.D.M. itself. A possible solution to this instability is to introduce the multi-
step training method presented at the start of section 5.2. 

 
Results by multi-step training method: The next results show how the simplified 
H.D.P.R.M. performs by using the multi-step training method, with steps 𝑛 = 4.  

Figure 27: 2d plot of H.P.D.R.M. results with position residual and single-step training vs. NASA data. 

Figure 28: 2d plot of H.P.D.R.M. results with position residual and single-step training vs. NASA data. 
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As figure 28 and 29 reveals, the position of the innermost planet still diverges, and 
there has not been any notable changes from the previous results. As both single-
step and multi-step training yields similar results, this disproves the hypothesis of 
excluding velocity residuals in the H.P.D.R.M.  
 

5.2.2 Position and velocity-based Hybrid-Physics-Data-
Residual model  

As section 5.2.1 showed, the omission of velocity residuals in the H.P.D.R.M. 
results in diverging state-vectors. Therefore, the simplified H.P.D.R.M. in eq. (66) 
is discarded, and the full H.P.D.R.M. from eq. (61), with loss function eq. (63), is 
reinstated. An important feature in this model is the use of a pooling layer in the 
N.N. architecture, as presented in section 4.3.2. In this model however, the smaller 
local N.Ns. and the pooling layer are used to separate the position 𝒙 and velocity 
𝒚 component in the state vector 𝒔 = (𝒙, 𝒚). This is motivated by the difference in 
magnitude and units of the two variables. As previously, only residuals for one 
planet are predicted and added to the P.B.M. approximation. Also, only the four 
innermost planets are plotted, as the results from the outermost planets do not 
offer any vital information. It should be noted that all the planets are still included 
in the calculations by the model. 

Figure 29: 3d plot of H.P.D.R.M. results with position residual and multi-step training vs. NASA data. 
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Results by single-step training method: As there was no significant differences in 
the results from the two training methods presented in section 5.2.1, the single-step 
training method is again used. This is, as mentioned, a simpler modeling approach 
and follows the same approach as all the previous D.D.Ms. throughout this thesis. 
If the D.D.M. is trained accurately, it is well with reason to expect the D.D.M. to 
make valid prediction for the residuals.  

Figure 30: 3d plot of H.P.D.R.M. results with position and velocity residual and single-step training vs. NASA data. 

Figure 31: 2d plot of H.P.D.R.M. results with position and velocity residual and single-step training vs. NASA data. 
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As figure 30 and 31 shows, the H.P.D.R.M. now manages to predict what looks to 
be a stable orbit of the innermost planet, though these orbits have an increasing 
drift towards the left.  

 
Results by multi-step training method: Even though the multi-step training 

method showed no substantial improvement from the single-step training method 
in section 5.2.1, it is still believed that the former can improve stability for the 
D.D.M. sub-model of the H.P.D.R.M. Thus, a final hybrid model is tested; 
H.P.D.R.M. with state vector residuals and multi-step training, with steps of 𝑛 =
4.    

 
 
 
 

Figure 32: 2d plot of H.P.D.R.M. results with position and velocity residual and multi-step training vs. NASA data. 
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As figure 32 and 33 shows, the H.P.D.R.M. now manages to predict stable orbits 

for the innermost planet. Though there seems to be a small drift in the orbit toward 
the right, this is significantly small in comparison to the previous single-step 
training method, and the orbit may seem stationary at first glance. The effect of 
increasing 𝑛 has not yet been tested, though it is hypothesized that training and 
optimizing for increased number of steps will result in less drift in the orbit, and 
thus more accurate results. As 𝑛 is increased, it would be interesting to investigate 
the effect of adaptive optimization techniques. As the multi-step approach predicts 
values based on previous prediction before optimizing, the first sequences of 
predictions will have large deviations from the solution. The first optimization 
sequences in the training process can therefore be demanding for the optimization 
algorithm and make it hard for the N.N. to learn. As 𝑛 increases, these deviations 
becomes even larger. To counter this, an adaptive optimization technique could 
include an increasing number for timesteps in the optimization as the networks 
learn more from the data. This could result in the model being stable over larger 
time-intervals and being able to learn the path of the planets, in contrast to only 
learning the direction for a single timestep. 
 

As the figures above show the results of the overall model, it is interesting to 
look at the performance of each sub-model. The first sub-model to look at is the 
D.D.M. Figure 34 and 35 show the residual predictions of the D.D.M. against the 
exact residual. At the start, the D.D.M. seems to make excellent predictions, though 

Figure 33: 3d plot of H.P.D.R.M. results with position and velocity residual and multi-step training vs. NASA data. 
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over time the residuals moves slower than the real solution. This fits well with the 
apparent drift in the planet’s orbit. There are also small details in the solution 
graph (i.e., small spikes) that the D.D.M. did not manage to capture. Overall, the 
D.D.M. managed to learn and predict the periodic shape of the solution well for the 
given time-interval.  

Figure 34: Position residuals predictions by HPDRM vs solution residual 

Figure 35: Velocity residuals predictions by HPDRM vs. solution residual 
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Though residuals are only added to the innermost planet, the average errors of 
the results from all the planets are included in table 11, which are calculated in the 
same manner as the other errors presented in this thesis, by eq. (34) and eq. (35). 
This is interesting to look at, as there may be changes in the results from the P.B.M. 
sub-model for the other planets. This is since each planet influences the evolution 
of the others, thus, a change in one planet’s state vector corresponds to a change 
in the other planets, even ever so slightly. Table 11 shows the same trend as the 
results from the P.B.M. in chapter 3; the errors decrease with the size of the orbital 
period. The errors are also overall small. The results from the H.P.D.R.M. are 
presented here, though a full comparison between these results from each of the 
final models throughout this thesis will be carried out in the upcoming chapter 6. 
 
 

Table 11: Average absolute and relative error of position and velocity by HPDRM for each planet 

 
 
 
 
 
 
 
 
 
 
 

Celestial 
object  

Avg. absolute 
error (position) 

Avg. absolute 
error (velocity) 

Avg. relative 
error (position) 

Avg. relative 
error (velocity) 

Mercury 7.0150 ⋅ 10−Θ 5.3559 ⋅ 10−ϩ 5.9476 ⋅ 10−ϩ 6.5482 ⋅ 10−ϩ 

Venus 2.6617 ⋅ 10−Θ 3.9140 ⋅ 10−Ϩ 1.2445 ⋅ 10−ϩ 6.5465 ⋅ 10−Ϩ 

Earth 3.0670 ⋅ 10−Θ 3.3358 ⋅ 10−Ϩ 1.0379 ⋅ 10−ϩ 6.5553 ⋅ 10−Ϩ 

Mars 2.7683 ⋅ 10−Θ 1.7181 ⋅ 10−Ϩ 6.1360 ⋅ 10−Ϩ 4.1526 ⋅ 10−Ϩ 

Jupiter 2.9042 ⋅ 10−ϩ 5.1467 ⋅ 10−ν 1.9485 ⋅ 10−΅  2.2365 ⋅ 10−΅ 

Saturn 2.3897 ⋅ 10−ϩ 5.1727 ⋅ 10−ν 8.9512 ⋅ 10−ν 2.9770 ⋅ 10−΅ 

Uranus 2.3003 ⋅ 10−ϩ 5.8345 ⋅ 10−ν 4.2512 ⋅ 10−ν 4.8038 ⋅ 10−΅ 

Neptune 2.1591 ⋅ 10−ϩ 5.7770 ⋅ 10−ν 2.4087 ⋅ 10−ν 6.2842 ⋅ 10−΅ 
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6 Comparison of the Hybrid-Physics-Data-Residual 
model, Physics-based model, and Data-driven model 

In this following chapter, the errors of the results from the final H.P.D.R.M., 
P.B.M., and D.D.M. will be compared. Firstly, the average errors as presented 
throughout this thesis will be collected in a joint table and evaluated with respect 
to each other model. Secondly, errors of the H.P.D.R.M. and P.B.M. will be 
compared for the same time-interval as the H.P.D.R.M. was tested for; to recall the 
latter has been trained for a significantly shorter time interval. The reason for 
evaluating the methods on this restricted interval will be clarified in section 6.2. 

 

6.1 Results of average errors  
Throughout this thesis, average absolute and relative errors for the results by a 

single timestep have been calculated using eq. (34) and eq. (35). The errors are, as 
mentioned in section 3.3, calculated accordingly to make it possible to compare 
methods using different step-sizes and time-intervals. Only errors in positions are 
compared in this section, as the D.D.M. does not directly predict velocities. For the 
P.B.M., the entire time-interval for the dataset from NASA was considered when 
approximating solutions to the system. As for the D.D.M., only half of the dataset 
was considered when predicting the planetary motions. This was a consequence of 
the need for training data and O.O.D. when testing, as a substantial part of the 
dataset was needed for training. The D.D.M. errors presented below come from the 
final D.D.M. with pooling from section 4.3.2. The H.P.D.R.M. was trained and 
tested only for a small subset of the NASA dataset. This was due to time constraints, 
and the assumption that the size of the subset was sufficient for training and testing 
the H.P.D.R.M.   

 
Table 12 shows the average errors mentioned above for each planets by the 

different models. The main differences between the models are as follows: 

 For the four innermost planets, the P.B.M. and D.D.M. outperform the 
H.P.D.R.M., with the P.B.M. performing somewhat better than the D.D.M. 

 For the outermost planets, the P.B.M. and H.P.D.R.M. outperform the 
D.D.M., with the P.B.M. performing the best of the former.    
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Table 12: Average absolute and relative errors of HPDRM vs. PBM vs. DDM for each planet. 

 
 

Table 13 shows the average errors in the Hamiltonian for the H.P.D.R.M. and 
P.B.M. by eq. (38) and eq. (39). The D.D.M. is not included here as it does not 
predict velocities, and the Hamiltonian thus cannot be directly calculated without 
approximating velocities from changes in position. As the table shows, the P.B.M. 
has the lowest error in the Hamiltonian.  

 
 
Table 13: Average absolute and relative error in Hamiltonian for HPDRM vs. PBM. 

 
 
 
 
 

 H.P.D.R.M P.B.M. D.D.M. 

Celestial 
object  

Avg. absolute 
error  
(position) 

Avg. relative 
error 
(position) 

Avg. absolute 
error  
(position) 

Avg. relative 
error 
(position) 

Avg. absolute 
error 
(position) 

Avg. relative 
error 
(position)  

Mercury 7.0150 ⋅ 10−Θ 5.9476 ⋅ 10−ϩ 6.8067 ⋅ 10−ϩ 5.9479 ⋅ 10−΅ 1.0290 ⋅ 10−ϩ 1.0048 ⋅ 10−Ϩ 

Venus 2.6617 ⋅ 10−Θ 1.2445 ⋅ 10−ϩ 6.9013 ⋅ 10−ϩ 3.3281 ⋅ 10−΅ 2.8340 ⋅ 10−Ϩ 1.5273 ⋅ 10−΅ 

Earth 3.0670 ⋅ 10−Θ 1.0379 ⋅ 10−ϩ 5.1918 ⋅ 10−ϩ 1.8107 ⋅ 10−΅ 2.7049 ⋅ 10−ϩ 1.0543 ⋅ 10−Ϩ 

Mars 2.7683 ⋅ 10−Θ 6.1360 ⋅ 10−Ϩ 7.1478 ⋅ 10−ϩ 1.6256 ⋅ 10−΅ 8.4157 ⋅ 10−Ϩ 2.1392 ⋅ 10−΅ 

Jupiter 2.9042 ⋅ 10−ϩ 1.9485 ⋅ 10−΅ 1.0662 ⋅ 10−Θ 7.1360 ⋅ 10−ν 6.5533 ⋅ 10−ϩ 4.8936 ⋅ 10−΅ 

Saturn 2.3897 ⋅ 10−ϩ 8.9512 ⋅ 10−ν 1.1771 ⋅ 10−Θ 4.2948 ⋅ 10−ν 1.2111 ⋅ 10−Θ 4.9452 ⋅ 10−΅ 

Uranus 2.3003 ⋅ 10−ϩ 4.2512 ⋅ 10−ν 1.1812 ⋅ 10−Θ 2.1405 ⋅ 10−ν 5.5237 ⋅ 10−Κ 1.1097 ⋅ 10−ϩ 

Neptune 2.1591 ⋅ 10−ϩ 2.4087 ⋅ 10−ν 1.4212 ⋅ 10−ϩ 1.6469 ⋅ 10−φЈ 4.1414 ⋅ 10−Κ 5.3506 ⋅ 10−Ϩ 

 H.P.D.R.M. P.B.M. 

 
Hamiltonian  
 

Avg. absolute 
error 

Avg. relative 
error 

Avg. absolute 
error 

Avg. relative 
error 

1.1290 ⋅ 10−φϵ 8.1015 ⋅ 10−ν 2.4024 ⋅ 10−φϯ 1.8411 ⋅ 10−φЈ 
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6.1 Hybrid-Physics-Data-Residual model vs. Physics-based 
model on equal time-interval 

In the section above, average errors for single time-steps was considered. An 
interesting observation is that these averages do not justify the H.P.D.R.M.’s 
performances. If one investigates the general absolute and relative error by eq. (32) 
and eq. (33), the comparison between the models yields a different outcome. For 
this, the H.P.D.R.M. and the P.B.M., which both use a step-size ∆𝑡 = 1 day, is 
compared for the same time interval of 900 days. As the D.D.M. uses both different 
step-size, time-interval, and do not predict velocities, the D.D.M. is excluded from 
this comparison.  
 
 

Table 14: Absolute and relative errors in position by HPDRM vs. PBM for each planet. 

 
 

As table 14 and 15 show, the error in both position and velocity for the innermost 
planet is lower for the H.P.D.R.M. than for the P.B.M. As there is no correction 
for the other planets, one would initially expect the errors by the H.P.D.R.M. and 
P.B.M. to be identical for these planets. There are though some insignificant 
differences between the errors for the other planets, ranging from differences in the 
6th to 10th significant figure. These small differences are expected as each planet 
influences the evolution of the others, though it is not directly clear if the correction 
for the innermost planet will result in an improvement for the other planets. The 
important observation is that the trajectories of the other planets remain stable. 

 H.P.D.R.M P.B.M.  

Celestial 
object  

Absolute error  
(position) 

Relative error 
(position) 

Absolute error  
(position) 

Relative error 
(position) 

Mercury 1.8126 1.5368 ⋅ 10−φ 4.2746 3.6241 ⋅ 10−φ 

Venus 6.8773 ⋅ 10−φ 3.2155 ⋅ 10−ϵ 6.8773 ⋅ 10−φ 3.2155 ⋅ 10−ϵ 

Earth 7.9247 ⋅ 10−φ 2.6817 ⋅ 10−ϵ 7.9247 ⋅ 10−φ 2.6817 ⋅ 10−ϵ 

Mars 7.1529 ⋅ 10−φ 1.5854 ⋅ 10−ϵ 7.1529 ⋅ 10−φ 1.5854 ⋅ 10−ϵ 

Jupiter 7.5039 ⋅ 10−ϵ 5.0345 ⋅ 10−Κ 7.5039 ⋅ 10−ϵ 5.0345 ⋅ 10−Κ 

Saturn 6.1747 ⋅ 10−ϵ 2.3129 ⋅ 10−Κ 6.1747 ⋅ 10−ϵ 2.3129 ⋅ 10−Κ 

Uranus 5.9437 ⋅ 10−ϵ 1.0984 ⋅ 10−Κ 5.9437 ⋅ 10−ϵ 1.0984 ⋅ 10−Κ 

Neptune 5.5788 ⋅ 10−ϵ 6.2238 ⋅ 10−Θ 5.5788 ⋅ 10−ϵ 6.2238 ⋅ 10−Θ 
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Table 15: Absolute and relative errors in velocity by HPDRM vs. PBM for each planet. 

  
 
To evaluate any change in the total system, the Hamiltonian can be analyzed, as 
it is a metric for the behavior of the overall system. Figure 36 and table 16 display 
both the evolution and the error made in the Hamiltonian. Based on these, it is 
concluded that the error in the overall system is lower for the H.P.D.R.M. in 
comparison to the P.B.M. 
 

 
 

 H.P.D.R.M P.B.M. 

Celestial 
object  

Absolute error  
(velocity) 

Relative error 
(velocity) 

Absolute error  
(velocity) 

Relative error 
(velocity) 

Mercury 1.3839 ⋅ 10−φ 1.6919 ⋅ 10−φ 3.0144 ⋅ 10−φ 3.6854 ⋅ 10−φ 

Venus 1.0113 ⋅ 10−ϵ 1.6915 ⋅ 10−ϵ 1.0113 ⋅ 10−ϵ 1.6915 ⋅ 10−ϵ 

Earth 8.6193 ⋅ 10−ϯ 1.6938 ⋅ 10−ϵ 8.6193 ⋅ 10−ϯ 1.6938 ⋅ 10−ϵ 

Mars 4.4393 ⋅ 10−ϯ 1.0730 ⋅ 10−ϵ 4.4393 ⋅ 10−ϯ 1.0730 ⋅ 10−ϵ 

Jupiter 1.3298 ⋅ 10−Κ 5.7787 ⋅ 10−Κ 1.3298 ⋅ 10−Κ 5.7787 ⋅ 10−ϵ 

Saturn 1.3365 ⋅ 10−Κ 7.6922 ⋅ 10−Κ 1.3365 ⋅ 10−Κ 7.6922 ⋅ 10−Κ 

Uranus 1.5075 ⋅ 10−Κ 1.2412 ⋅ 10−ϯ 1.5075 ⋅ 10−Κ 1.2412 ⋅ 10−ϯ 

Neptune 1.4927 ⋅ 10−Κ 1.6237 ⋅ 10−ϯ 1.4927 ⋅ 10−Κ 1.6237 ⋅ 10−ϯ 

Figure 36: Hamiltonian by HPDRM vs. PBM vs. solution by NASA data. 
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Table 16: Absolute and relative error in Hamiltonian by HPDRM vs. PBM. 

 
Figure 37 shows the residuals predicted by the H.P.D.R.M. against the residuals 

of the P.B.M. from chapter 4. The position-components and velocities are not 
included, as these show similar results as figure 37. As the figure shows, the residual 
of the H.P.D.R.M. is significantly smaller than that of the P.B.M., further 
supporting that the H.P.D.R.M. preforms better than the P.B.M. on an equal time-
interval.   

 
So, are the results from the average errors in section 6.1 and the errors presented 

in this section contradicting? Even though table 12 and 13 nicely summarize the 
results throughout this thesis, due to the results from this section, it is identified 
that the comparisons in table 12 and 13 as are inconclusive. More representative, 
the H.P.D.R.M. performs better than the P.B.M. on an equal time-interval. It 
would though be interesting to investigate how the H.P.D.R.M. would perform on 
the full time-interval of 225 years – possibly after training with a larger dataset, 
and also employing larger number of steps in the multi-step training approach. 
These questions remain for future research. 

 H.P.D.R.M. P.B.M. 

 
Hamiltonian  
 

Absolute error  Relative error Absolute error  Relative error 

2.4292 ⋅ 10−΅ 1.7430 ⋅ 10−Κ 2.9680 ⋅ 10−΅ 2.1310 ⋅ 10−Κ 

Figure 37: Position residual in x-direction by HPDRM vs. PBM vs. solution residual. 
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7 Conclusion  
Through a series of important observations of results and model improvements, 

this thesis has shown that hybrid modeling of the n-body problem can be achieved, 
and that the resulting model can improve the results of the standardized physics-
based models. Numerical tests have also demonstrated that a pure data-driven 
model can predict the orbital motion of planets. The following key observations 
and modeling approaches, discovered through the work on this thesis, have played 
a significant role in achieving the results:  

 
Choice and handling of data: When creating a data-driven and hybrid model, 

the choice of data defines what problem the model will be able to solve. The dataset 
needs to be sufficiently large for the model to be able to generalize, but also needs 
to match the specific problem one tries to model. The data also needs to be sorted 
and scaled in such a way that the model prioritizes prominent data equally, as 
shown in section 4.3.2 with the guiding example. Another important aspect of data 
pre-processing is to make the data available for interpretation by the model. Even 
though patterns in the data clearly exist, the patterns may have to fine details for 
the model to capture. The data needs to be pre-processed in such a way that the 
data becomes coarser, e.g., a sparse discretization for time-sequences. However, the 
amount of data should not be decreased. This is where downsampling came in hand, 
as demonstrated in section 4.3.1, as it do not remove points in-between the coarse 
points in the dataset; it constructs different input-output pairs with the same data, 
only making it coarser in appearance to the N.N., thus maintaining the density and 
quality data. 

 
Constructing the model: When constructing a data-driven model, there are 

countless way for tuning hyperparameters, implementing optimization techniques 
and designing Neural Network architecture. Even though there are some generalized 
ways for constructing such models, every model needs to be designed and finetuned 
to each specific problem. This became prominent in section 4.3.2 and 5.2.2, as a 
new architecture was needed in order to separate information from each planet and 
for the model to learn specific pattern for each planet. Here, the smaller local N.N. 
and the pooling layer helped separate planets, as well as split different types of 
variables. This need for specific model architecture was also true for section 5.2.2 
as one needed to implement the P.B.M. inside, the training process of the D.D.M. 
to construct a stable model.  

 
Model synergy: For the hybrid model, the last critical observation is that one 

cannot alter a crucial aspect of a sub-model and except its counterpart to 
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compensate for simplification without any further alterations. This became clear in 
section 5.2.1, where the exclusion of a correction in the velocity components 
disrupted one of the key properties of the P.B.M.; it changed the flow of the 
numerical integrator such that it was no longer symplectic. Thus, it is important 
to construct hybrid models in such a way that the main properties of the sub-
models are kept. 

 
From the observations made throughout this thesis, some interesting questions 

have come forth:  
 

 How sensitive is the P.B.M. and its symplectic flow to changes in the 
state-vectors? For how large of an alteration in the flow of 
position/velocity is the method still stable? 

 Can the D.D.M. be altered to consider positions only and predict a 
position residual that compensates for non-corrected velocity?  This can 
most likely be done by considering a different solution dataset and 
evaluate and minimize the loss function for different values than what was 
used in this thesis.  

 How does an increase in number of timesteps effect the results of the 
H.P.D.R.M. with multi-step training approach?  

 Can an adaptive optimization algorithm be implemented to improve 
training of the H.P.D.R.M. with multi-step training approach? 

These are questions left for future research. 
 

Due to time constraints, a larger hybrid model including corrections for multiple 
planets was not tested. Though, the results from section 5.2.2 indicate that such a 
model is possible and can improve the results of the P.B.M. even more. A more 
precise data-driven model is also not out of reach, and with more data, it can be 
expected that a stable D.D.M. for the entire Solar System can be trained and tested.  

 
For future research, a more in-depth analysis of the results would prove 

interesting. Also, by training and testing the models for equal and longer time-
intervals, results would more comparable, and would likely solidify the claim that 
the H.P.D.R.M. presented in this thesis can be more accurate than the P.B.M.
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Appendix A.   

A.1 NASA data 
The inital values and exact solutions to the n-body problem troughout this 

thesis is gathered from the Astroquery package in Python. An example on the 
format of the state vectors when retrived can be found in figure 24. The actual 
intital values used can be seen in table 17 below. 

  
The mass and orbital period parameter used for the n-body problem throughout 

this thesis is retrieved using the JPL Horizons online application, available at: 
https://ssd.jpl.nasa.gov/horizons/app.html#/ 
An example on how the values from the application looks can be found in figure 25. 
The values for the used parameters can be seen in table 17 below. 

Figure 24: Example on format of state vectors queried from NASA, for Mercury and Venus. 
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Figure 25: Example of parameters of Earth when retrived through the JPL Horizon app. 
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Table 17: Parameters and initial values of each celestial object. 

 
 
 
 
 
 

Celestial  
object  

Mass [kg] Initial position  [AU]  Initial velocity  [AU/day]  Orbital period  
[day] 

 
Sun 

 
1.9885 ⋅ 10ϯЈ া

0
0
0
ি 

 

া
0
0
0
ি 

 
0 

 
Mercury 

 
3.302 ⋅ 10ϵϯ া

−3.49235720 ⋅ 10−φ

−2.68106220 ⋅ 10−φ

1.04103085 ⋅ 10−ϵ
ি 

 

া
1.13823601 ⋅ 10−ϵ

−2.10284211 ⋅ 10−ϵ

2.76287013 ⋅ 10−ϯ
ি 

 
87.969 

 
Venus 

 
4.8685 ⋅ 10ϵΚ া

−1.59814174 ⋅ 10−φ   
7.00733609 ⋅ 10−φ

1.84274483 ⋅ 10−ϵ
ি 

 

া
−1.97900139 ⋅ 10−ϵ 
 −4.61041668 ⋅ 10−ϯ  

1.08514630 ⋅ 10−ϯ
ি 

 
224.70 

 
Earth 

 
5.97219 ⋅ 10ϵΚ া

−2.2980823 ⋅ 10−φ  
9.55937344 ⋅ 10−φ

4.40432615 ⋅ 10−Κ
ি 

  

া
−1.70054291 ⋅ 10−ϵ 
−4.08773955 ⋅ 10−ϯ

−2.63747882 ⋅ 10−ϩ 
ি  

 
365.26 

 
Mars 

 
6.4171 ⋅ 10ϵϯ া

1.39304142  
8.63328171 ⋅ 10−ϵ

 −3.30519817 ⋅ 10−ϵ
ি 

 

া
−3.09310857 ⋅ 10−Κ

1.51490614 ⋅ 10−ϵ

3.23956700 ⋅ 10−Κ
ি 

 

 
686.98 

 
Jupiter 

 
1.89818722 ⋅ 10ϵϨ া

1.58233559 
−4.92504002

−1.59322341 ⋅ 10−ϵ
ি া

7.10431397 ⋅ 10−ϯ  
2.66301781 ⋅ 10−ϯ

−1.70244208 ⋅ 10−Κ
ি 

 

 
4332.6 

 
Saturn 

 
5.6834 ⋅ 10ϵϩ া

4.44809246  
7.90792377

−3.16877892 ⋅ 10−φ 
ি া

−5.16852649 ⋅ 10−ϯ  
2.72425204 ⋅ 10−ϯ

1.55953611 ⋅ 10−Κ
ি 

 

 
10756 

 
Uranus 

 
8.6813 ⋅ 10ϵΘ া

−16.3825466 
8.19949045  

2.44591748 ⋅ 10−φ
ি া

−1.78764841 ⋅ 10−ϯ 
−3.69629464 ⋅ 10−ϯ 
9.36327710 ⋅ 10−ϩ  

ি 

 

 
30685 

 
Neptune 

 
1.02409 ⋅ 10ϵϩ া

−24.1419975 
 −18.3204345 

9.33013111 ⋅ 10−φ  
ি  

 

া
1.88354153 ⋅ 10−ϯ

 −2.47939313 ⋅ 10−ϯ

7.74786039 ⋅ 10−ϩ
ি 

 

 
60189 
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A.2 Coding 
The codes for this thesis is available at: 

https://github.com/AsmSyn/Master_Thesis 
 
The dataset used is not added here, as GitHub repositories do not allow for single 
datafiles of such size. The dataset can however be queried from NASA using one of 
the given codes.  
 

All code is written in Phyton 3.9 and MATLAB R2020b. In Python, the following 
packages was prominently used: Astroquery 0.4.6, Numpy 1.22.2, Matplotlib 3.5.2, 
Tensorboard 2.9.0, Pytorch 1.11.0.  
Note: Tensorboard must be initiated in a terminal and set to read files in same 
directory as the given code is storing the Tensorboard data.   
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A.3 Table of abbreviations  
 
 

Abbreviation Definition 
A.I.             Artificial Intelligence 
A.N.N. Artificial Neural Network 
D.D.M.        Data-driven model 
D.L.            Deep Learning 
F.D.N.N. Feedforward Deep Neural Network 
H.P.D.M Hybrid-Physics-Data model 
H.P.D.R.M.  Hybrid-Physics-Data-Residual model 
M.L.           Machine Learning 
N.N. Neural Network 
O.D.E.      Ordinary differential equation 
O.O.D.  Out-of-distribution 
P.B.M.        Physics-based model 
R.M.           Residual model 
 

 
 

 


