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Abstract

Hydrothermal @culation in locations close tooceamc spreadingridges gives dissolved
mineralsfrom the crustal rock a chance to reachdbafloor Temperature is increasing steadily
with depth heatirg waterwhich residesithin the permeable and faulted crusgtt sufficient
permeability thiscaussthe fluid to rise due to a lower density, allowing for dissolved minerals
from the surroundingockto be convectedipwards

Natural convection in porous media heated from below is a thoroughly studiedafidldve
have studied thifor faulted domains with parameters representative for the subse&fleor.
havenumerically solvedhe fully coupled conservation equations foidluolume and energy
with code based on tools from tpenrsource PythorirameworkPorePy.The 3D domain
wherethe equations have been solved are represented as adimesional domain, where
the porous rock, faults and fault intersections are tremgeddividual subdomains. The key
concept behind a mixedimensional domain is that the different subdomains have different
dimensions, meaning that within a 3D rock, the faults will be 2D, and fault intersections are
1D. Verificationof the code has beelmneby confirmingconsistency in solutions with different
initial conditions and by numerical benchmarkiagainstheoretical critical Rayleigh numbers
for three different 3D domains.

For fluid flow in faulted domainst is expected that the fluid madynflows through thdaults

as they are more permeable than the surroundingandkhiss confirmed bythesimulations

The resultsalso present clearly how convection patterns are greatly impacted by different
permeability ratios between the faults and the host rock, which may motivate further research
considering layered or anisotropic porous media. The presence of faults is stpwtant for
occurrence of hydrothermal convection in locations containing less permeabldeack, the

thesis illustratehow simulatios can aid in understanithg of governingprocessegor fluid

circulationandtransport of minerals the sulseafloor
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List ofSymbols

The symbolsused in this thesjgogether with their respective uniee shown in the table
below.Symbols written in bolérevectors andtensorsare denoted by bold capital letters

Other than this, subscripQandi will be used for variables conceng fluid and solid
respectivelySubscriptrtis used to specifg reference or starting value for a variaBlebscript
or superscriptQandawill denoteproperties or values connected wigspectivelyhigherand
lower dimensioral subdomainsand subscripfQwill be for variablesconcerning interfaces

betweerthese domains

Some of the simulations serves a purpose of comparing results for different parameter values.
These different parameter values willdenoted by a number subscript, in addition to the other

subscripts this parameter may have from earlier.

Symbol Physical parameter Unit
| Gravitational acceleration vector o)
L Permeability i

- Hydraulic conductivity e
o Darcyvelocity/Fluid flux o)

Advective heat flux 0

A Conductive heat flux O
N Total heat flux O
® Effective thermal conductivity *O 1+
| General flux field
. Outward normal vector
%0 Porosity
a Length i
a Height over datum i
0 Vertical height of domain i
Q Hydraulic head |
&) Aperture i
N Pressure 0 A
Y Temperature +
o) Time o




Yo Time-step o

"k Reference fluid density EC

§ Fluid density EC

§ Rock density EC

&) Rock specific heat “EC +
&) Fluid specific heat “EC +
Q Solid thermal conductivity O+
Q Fluid thermal conductivity O+
f Thermal expansion coefficient +

: Dynamic \iscosity 0
) Effectivevolumetricheat capacity o+
Yo Critical Rayleigh number

Y ® Rayleigh number

— General conserved quantity

i General source/sink term

Q Horizontal extension of domain i
Q Vertical extension of domain i
1 Temperature deviation ratio

3 Increment

n Gradient i
n { Divergence i
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Outline

Chapter Ipresers the context of the researdWe provide ashort introductiorto exploitation
of venting minerals on the seafloor, whictihe motivatiorbehind studying thenathematical
andnumerical modeln this thesis Afterwards, we discuss convection in porous media and

what determines the onset of convectibastly, contributiors of this thesisarementioned.

Chapter2 presents the main properties of both the porous media and the fluid flowing through
it. This allows the reader to better understangp@tbmetershat are going to be introduced
Chapter3, where the mathematical model used in this thesis is preséfiteghresent the
mathematical model biyrst defining a general conservation law for some quantigydomain.
Further on, the volume and energy conservagquoationsare presentedrom the general
conservatioaw by introducing the respective constitutive laws for the flux teffins.second

half of this chapter considers the model equations fofdahés and fault intersectionand how

the equations are coupled together by various coupling conditions

Chapte# gives a general description of finite volume methods, rpaiint flux approximation,
the upwind schemend the implicit Euler time discretization/e presena short summary of
what our code contributianvolves, and how tis work has its base ialready existing code in
PorePy Verification of the codeand all the simulation results afenpresented in Chaptér
We present two ways we have verified the cahelthen proceed to shosimulation results
consideing two- and threedimensional domains with and without faul#hroughoutthis
chapter wealsoprovide discussion of the results presentgdally, several discussion points

and concluding remarks are presente@laptero.



1 Introduction

This thesis presesti mathematical model for describitigermal singlephase flow irfaulted
porous media, humerical methods, aadultsfrom threedimensionalsimulatiors of natural
convectionin faulted domainsThe simulations considgrarameters representative for the
subseafloor which is important to get betterunderstanding of theatural buoyancydriven
convectiorprocesses going dhere In this chapter we wilpresenbur motivation for studying
this, startingwith abrief introduction to theéheory ofdeepseaore depositshat occur close to
oceanic spreading centetsateron, the basics regardingaturalconvection is presentednd

asa final note, the thesis contributions are outlined
DeepSea Ore Deposits

In our everyday lifemineral resources as metal® crucial to keep up with production of the
variousmodern technologgroductsneeded iourmodern societyGraedel et al., 2015; Rotzer
& Schmidt, 2018)Given the fact thaheamountof mineral resourcesn Earth are limited, the
constantly increasing demand of metals for praddncof for instanceelectric vehicles and cell

phones, to only mention sorr@anultimately lead toa metal defici{Graedel et al., 2015)

This concern o& posdile metal deficit leads us teave dook towardshe deep seandmore
specificallywhat is happenin@g andjust abovethe subseaflooThe ocean coverg over two
t hirds of t hleadsBEaocdaricocribeingthe imastb@untiful crustal ty on
Earth andthe continuous movemeat thetectonic plateshroughout the seaflo@an givelife
to hydrothermablepositsites(German et al., 2016; Rona, 1984, 2003; Tao et al., 2088%e
kinds of hydrothermal venting sitegre important in the sense thtae ventingfluids may
contain mineralsand mining these locations could be the next stegpliaducingmineral

resources$o cope witha possiblefuture metal deficit(Anderson, 2018; Rona, 2003)

As reported byRona (2003andFouquet (2011 )mineraltrich fluids are vented as followsold

and dense sea water flows through the cracks in the oceaniaadists idescend# will get

warmed up due to the temperatimerease asorgget s ¢l os er . .fThen befled Ear t h
ascend towardsthe surface again due to it®w much lower densityOn its way, the warm

fluid interacts with the rock in its pathdissolving and transportingaluable mineraland

metals As themineral richfluid reaches the seaflodhe metalsarefinally dischargedhrough

vents cal | edor8daflom massive sulfide dapasibhese vents leads tdouds

of metallic mineral particlegprecipitating on the seaflog€Coumou et al., 2008; Rona, 2003)
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and such hydrothermal activiig whatcauses the creation pbtential mining groursifor
metals like Cu, Zn, Pb, Ag and AAnderson, 2018)

Convedbn in Porous Media

The main principlebehind the creation of thespotential mining sitesis the convective
movement of fluidmentioned aboverhese areas of circulation will have locations where the
fluid flows upwards, and other regions where the fluid flows downwa&rds full cycle of fluid
ascending, descending and then ascending again is called a convecti@ndeathultiple
convection cells in a domaarealtering betweelbeing clockwise and antlockwise (Zhao et
al., 2008) A simplified illustration of the convection celis a 2D-system hated from below
is visualized inFigure1.1. The upflow zones are marked in red, and the delew zones in

blue.

Figure1.1: Convection cells in @D medium heated from below and cooled from abbke blueand red zones signifiegative
and positive temperatueviations respectivelyfroma pure conductive solutiaffinear increase of temperature with depth)
Arrows are added later for visualization purposes.

The clockwise/anttlockwiseway of thinking alsdholdsin three dimensiong-or each wflow
zone there anep tofour neighboring dowsilow zones as opposetb in two dimensions, where
thereis only a maximum otwo. This makesonvection currentsimilar to those irFigurel.1
appear in a staor crosslike formation Anillustration ofthe up and downflow zonesn three

dimensions is presentedkiigurel.2.



Figure 1.2: Up- and downrflow zones visualized in red and blue, respectively, for a {tlilmensional porous media heated
from below.

For convection to happen, either it is in tvay three dimensions certain criterion must be
fulfilled. From aproblem studiedy Horton and Rogers (194%nd Lapwood (1948)later
known asthe HortornRogersLapwood problem, a critical value ftiwe Rayleigh numbewras
presentedThe Rayléggh number is a convection parameter thath sensds a measure of the
competition between buoyant forces and viscous forces affecting a Higher Rayleigh
number means that the buoyant forces are the driving forces, and spontaneous convection of
the system may happ€buwiquet et al., 2019; Kihn & Gessner, 2009; Patterson & Driesner,
2020) The expression for the Rayleigh number in a porous medium is giveiorbgn and
Rogers (1945andLapwood (1948)

T AT B O N0) 9\

Y ® p
Ql

It must however be mentiondlat the Rayleigh number required for spontaneous convection,
also calledhe critical Rayleigh numbegivw , will vary depending on the problem formulation.
Coming back tathe HortonRogersLapwood problema homogeneous, infinite horizontal
layerheated from beloywvith all impermeable boundariegs studiedThecritical valuethey
foundfor thiskind of systemss Yoo — t1“ o @ YWe are, however, interested in studying
domains with a permeable top at constant pres$tiis is what resembles the conditions at the
oceanic crustéTewari & Torrance, 1981)and therefore more relevant thie reseaic in this
thesis Lapwood (1948)did a study on infinite rectangular domaingth such boundary
conditions and in this case the critical value'¥%o ¢ ®. This shows how th problem

formulation,in this casehe boundary conditions, can have a great impact on the critical value.

As the particular problem we are considering in this thesis is finite, we cannot directly use
exactly'Yb ¢ g for the critical valuelmposingspatial restrictions to the domaine.,
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making it finite,can change the critic®ayleigh numbe(Beck, 1972; Tewari & Torrance,
1981) In the case of finitedlomains with all impermeable boundariBeck (1972)ound that

Yo is bounded below by“ . A studyperformedby Tewari and Torrance (1981pund a
similar resultfor the finite rectangular domain with a constant pressure permeabl¥ibofs
bounded below by theritical value fortheii c o r r e s p o n domairgBYy this wefknow i t e

that for the finite, constant pressure permeable topailts we considetYw is above or equal

tog ®.

Our focus when it comes to convection in this thesis is to study how convection is influenced
by afaultedporous mediaThis is done botlfior Rayleigh numbers close to asgnificantly

higher thariYw . The term fault will in this work be used about lalgeations within a domain
where the permeability isigher tharthe onan the surrounding rockaults can be defined as
largezonesin the Earth crust where surrounding rock is allowed to slidelative to each

other The faults arebecause of thigelatively open, and therefortney have a higher
permeability than the surrounding rock walls.

Focusing on fluid behavior ifaulted systemsan provide a deeper understanding of how real
life hydrothermal systems behavMlore specifically we can get a better insight into
hydrothermal systems who contribute creation of the mineral deposits mentioned above.
These particular hydrothermal sgsisare locatedtlose toseafloor spreading centengere
large faults are preserfRong 1984) and this isour main motivation for studyindiow

hydrothermal convectiois impacted by thpresence of faut

Contributions

The main contribution of this thesis is the developmentpgtlaon clas$or solving the coupled
volume and energy conservation equations to study convection in porous. fleeieodds

implementedwith PorePy (https://github.com/pmgbergen/porgpyan opersource Python

framework

The codecan be used toiraulatethermal singlephase flow inboth (vertically) faulted and
layeredtwo- and threedimensionalporous mediaThis makes it relevartb use forstudying
reaklife hydrothermal system3hreedimensions are necessarydioserveproperly how the
hydrothermal convectiomainly happens within théaults and in comparisn, only barely
influences the temperature distribution in llestrock. It is therefore justified to do simulations

in three dimensional domains.


https://github.com/pmgbergen/porepy

2 Porous Media and Flu@haracteristics

This chapter presents basic properties of both the porous mediaeathaid which will flow
through it.First some properties of the porous meatiapresented, and then we move on to
mentionthe fluid properties considered in this thesis. The last part of this subchaptér
explains other properties thainsiderboth the rock and the fluidthe theorypresented in this
chapter idased omNordbotten and Celia (201anhdHuinink (2016)

2.1 Properties ofPorousMedia

Sandstone, granitshaleand basalt arenly some examples pbrous rocksandwhat all these
rock typeshave in commoitis their basic composition: they consist of one solid part, which is
referred to as the matrix or the skeleton, and one part whedséntially jusa void spacealso
called thepore spaceThesemay work as a pathway for fluids to flow, atiee easef which

this happens depends the geometry of the pore spaead some fluid properties which will

bebrought up in detaiater.

Due to the matri@ highly complex naturesimplifying our domainis necessary to solve
problems within it.This is done by taking averages of the different variables throughout the
matrix over a fitting length soal and lhe length scale in question is callRépresentative
ElementaryWolume(REV). A REV should be largenough to contain a representataverage

of the domain, but also small enoughetasure it is possible to usentinuous functiosito
approximatgparameter variationisetweeradjacent REVs.

One of thevariables within the REV iporosity, and this isheratio ofthe void spacand the
total volumeof the REV/

% (VR 90X ] (I)tﬁ)"ﬂdi)éY'Oéb
V& O OGA®OwW

This leads us to anoth@nportant property of the porous medighich is the permeability.
Permeability describes how easy it is for a fluid to flow through the. rockediately one
might think tha&high porosity automatically means high permeability, but this is only the case
if the pore space is connectedfldid will not be able to pass through to an isolated pace

this is how the effective porosit¥p , is introducedThemost important paxf how permeable

a material isjs howthe porespace is connectedherefore will we from now on use the

following definition of porosity:



VEOOEA®Ow
For simplicity we willin the rest of this thesisefer to this aonly the porosity instead of
effective porosity, and therefore also only use the syr¥bioom now on.To provide some
examples of porosity valueaie will presenthe porosity ofa few common rock typeShale
and factured basalt haporosities somewhere betweem3t m 1@ 1tand T3tV T TU
respectively(Huinink, 2016) Another example is the porosity a faulted, granitdodyat the
SoultzsousForéts geothermal siteshich is reported to have a value betweBnuv 1@ uby

Géraud et al. (2010)

2.2 Properties of théduid

The void space will eithebe filled with one or more fluids. In this thesis, one fliudy
saturating the porous spaeél be consideredThe fluid forms asinglephase and its particles
move through the matrix, resulting in a singlease flowTwo or more fluids would be referred

to as twephase flow or multphase flowln addition, the fluid wavill examinedo nothave a
constant densityThe fluid density plays a significant role in this thesisce we are studying
density drivenconvection ofwater Generally the density depends on both pressure and
temperaturgbut we will in this thesisonly consider densityo be dependerdn temperature.
This justified due to thenfluence on density from pressure is a lot smaller than that of
temperaturgand the fluid density expression will be on the following form:

” ” "Y8

As the temperatureises,the fluid expands which resultsin a decrease idensity.This can
intuitively be understoodly looking at the unit for density, which i€ € . When the fluid
expands, the volume it occupies is larger. Sinedlthd volume appears in the denominator of
the density unjtanincreasd volume will lead to a decrease in fluid densitiie fluid density
expressiowe have usedill be presentedh the next chapter.

Other than thisyiscosity is also an important property of the flidiefly explained, iscosity
descri bes t he flol,whedd@dower dssosity signifisdaatthetflud flows
easier thai it hasa higher viscosityin the case of watewhich is thefluid considered in this
thesis the viscosity has a value of around p 1 0 Aatatemperature af 194. As the water
is warmed p deep down in the subsurfades viscosity will get loweand therefore iis less
resistant to flowFor the sake afimplicity, we maintainthe viscosity constarthroughout this

thesis



2.3 Porous Media and Fluid Properties

Other important properties regarding fluid and heat transfer in porous media, is frydrauli
conductivity, thermal conductivity specific heg and volumetric heat capacityHydraulic
conductivity isproportional to the rock permeabilignd is a way to measunew easy a fluid

may flow through a porous mediuifihe hydraulic conductivitalsodependn fluid density

and viscositywhichmeandhatit takes into consideratidnow A f | o wa b ITkedext h e
chapter will providemore details abouhe hydraulic conductivity

Thermalconductivityis a measure of how easily heat is transferred through a matgnee
a higher value means better heat transfer abilikes.the rock and fluid considered in this
thesis, the thermal conductivity has valuesog@f v*O | + andm® *O | +

respectivelyln other words, the rock hadbetter heat transfebility than the fluid.

The quantityspecific heat appesmn our model guations through theonservation law for the
energy which will presented in the next chapt&r mat er i al 6 sthesamauet off | ¢
heatrequired taraise onegram of the material by one degt€elvin. For thematerialsve have
considered, the specific heat of the fltsdver four times larger than that of the ratleaning

that it requires more heat to raise the fluid temperature than the rock temperature.

The volumetric heat capacitys a quantity closely related to the specific heat, since it is the
specific heat muiplied by the density of the materidolumetric heat capacity is a measure of
theheatneededo cause a temperature increase of one degree Kxélgime unit volume of the
body. The definitionsof specific heat and volumetric heat capaciym be found in a suitable

textbook, for instance one about thermodynamics, or in an online dictionary.

f
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3 Governingguations

This chapter presents tgeverning equation®r the mathematical model solvedtims thesis
First a general model for volume and heat transfer in porous media is presented, and then this
is expanded to also considaults within the porous mediahe theoryin the sections up until
thepartconcerning hdas based omMNordbotten and Celia (201Beferences for theroceeding

parts will be specified throughout the text.

3.1 Howand Heat Transfer iAorous Media

A very fundamental principlef conservation of guantityis considered when modelling flow
in porous media. Conservation equations caprbsented in thillowing way:the change of
a quantity within a domairs equal to the sum of what flows through the domain boundaries,
and the internal sources or sinkghin the domainThis principle can be shown through the
following mathematical formula, which &general form ofuch aconservatiorequation

'|' -

T—é)Q(Jo Pi- 6 1 o

(3.1)

Here, heleft-hand sidas the change of the conserved quantitywithin the domainm The
first termon the righthand sideepresents what flows into the domain through its boundaries
wherel}is the flux field, anck is the outer unit normal vector of tkemain Contributiors

from internal sources or sinkis, within the domairarerepresentedly the last term
Equation(3.1) can be rewritten bypplying the divergence theorem to the surface integral

Ji- 2o rniffad (3.2)

which leads to th&llowing expression for our conservation equation:

TT—;Qw niffae 108

(3.3)

This holds for any arbitrary, closed volunmg, After applying the localization theoremthe
integralconservation equatiols converted to @artial differential equationfor the conserved
quantity,— (Gurtin, 1981)

(3.4)

Equation(3.4) is what will form the baseline for defining the conservation equations in this
chapter. In this thesikhe conservatiorequations aref volumeand energy, andach of them



will be presented bglefining the constitutive laws for the respectggiationsAlso, no internal
source or sink terms considered for the equations in this thesis, and therefore we will define
them to be zero.

3.1.1 5 ND& Q aVolurheGonsexidiion
When dealingvith mass conservation of a flowing fluid, the conserved quantjtihe flux

field, [} and the source/sink, arein the case of this thesifined as:

"% | "on i m8 (3.5)

Whichleads to the following expression for the mass conservation equation:

T” %0 rl.t ” <> T[8 (3'6)
T o

Here%ois the porosity of the mediuand?¢ is the fluid flux Furtherdownin this section we

will elaborate upothe fluid density anthtroduce a constitutive law fane fluid fluxin (3.6).

To present this we will start by introducing how the engineer Henry Darcy ind8&&med
an experimentwhere theresults led to whas knowna s D a r dogay Jhe kexpesiment
was alout investigating the amount of water flowing through a column of,samdthe result
of this experiment gives us tea&pressioror thefluid flux in Equation(3.6). Figure3.1 shows

an illustration of the experiment

A

/ Manometer

hl

Datum,z =0

Figure 3.1: Schematic of Dar@s experiment. Figure is adapted frdwordbotten and Celia (2012, p. 18)
Theexperiment presented f@rarcy threeobservationgsegarding the flow of water through a
sand filter.Two of which is thatvolumetic flow rate 1j , is proportional to both the cross
sectional area, and the difference€’Q "Q . His third observation wathe volumetric flow

10



r a tirevérsely poportionalrelation to thdength betweethe twomeasuring poirst & These

three observations lead Emuation(3.7):

00 M (3.7)

Here fi is a positive proportionality @fficient, which will later be referred to as hydraulic
conductivity Dividing Equation(3.7) by the crosssectional area, gives @ expression for the

volumetric flow rate per areag., theflux, 0.

. 0 0
ok L 2 g (3:8)
0 a
Taking the limit fora® mof Equation(3.8) leads us to theidf f er ent i al fiorm of
VR ¢ (3.9

Dar cy & kerelexpressed as a function of hydraulic h€pahichis a measure dhe fluid
pressureat the measuring poinThe hydraulic head idependent on fluighressurey), fluid

density,” , gravitational acceleratiof) and the elevation above thatdm,q, and takes the

following form:

0 N (3.10)

The hydraulic conductivity’ , in Equation(3.9), is animportantproperty offlow in porous
media.Hydraulic conductivitydescribes how easy a fluid can flow throagimateriain certain

directions and locations amsldefinedas shown behwv:

L” "Q
. 2 (3.12)

Here L is the material permeability, is the fluid densityand is the fluidviscosity. The
permeability and therefore also thgydraulic conductivitycan beeitherscalarsor tensorsFor
an anisotropic and/or heterogeneous porous mediawilidye tensorsThis is due to the ease
fluid flow being dependent on thiew direction and/or positiorf the media is homogeneous
and isotropicfluid flows as easy in ondirection and location as any other, ahey will

thereforeonly be scalar quantities.

11



Using the defined expressions for the hydraulic head and the hydraulic condyctixatgan
rewr i te Datgpeegsoresforinudation t o

L
o — gy I 8 (3.12

This isthe expression we have used for the flilick, andit is theflux expressiorthat will

appear in the conservation equation for the fluid flow.

Moving on to the final adjustments of the masmservatiorequation we need tdurther
specify how thefluid densityis varying Densityis in our caseonly assumediependent on
temperatue and is assumed to follothe expression belaw his holds due to the assumption

that the flowconsidered is only slightly expandable.

Yy " A@B Y Y 8 (313

Which can be linearized to:

Y " ap 1Y Y 8 (3.14)

Here”  is the reference fluid densigndf is the thermal expansion coefficient of the fluid

where the latteis defined by the following expression

pT
T ” T . Y
Linearizing the densitylike this and then dividing the entire expressionfor the mass
conservation equatidoy ” j, the equationnsteadbemmes a volume conservation equation

We thenarrive at the followingonservation equatidior the volume

%b T—‘le't'<> mh (319
T o

where ¢ is determined by Equatiqi3.12).

Note that me assumption regarding teecondterm in Equation(3.15) has been ede.This
term originally considers the divergence of both fluid density and Darcy velocity. Using the

product rule on this term, we notice the te¥rin” appears. This is assumed to be so small

that it can be neglectétlordbotten & Celia, 2012, p. 34)

12



3.1.2 Heat Flux an&nergyConservatiorEquation

In the same manner as with the volume conservation equateopyesenthe conservation
equation for the energy in our systéerhis is done byollowing the presentation bgtefansson,
Berre, et al. (2021)with theexception that we take the source term to be. Zdrerefore we

impose the followng toEquation(3.4):

- "o | AR iom (3.16)

which immediately gives the following expression for the energy conservation equation:

T oY Lin e (3.17)

The flux is nowA , being the total heat flux.HE conserved quantitf our systenhas become
the product of the temperaturél and the effectivasolumetric heat capacity of the porous

medium, ” . Due toanassumption of local thermal equilibrium, only a single temperature
will be unknown and hereforethe dfective coefficiens come into the modelAll these
coefficients are denoted Isyu b s &, which is ddmputed biEquation(3.18) following the

presentation bptefansson et a12021)

t %o t P % t 8 (3.18

The constitutive law for the flux in the energy conservation equattbe istal heatflux, which

is the sum of the advective and the diffusive fllike expression for the total heat flux is:

N YR n"\8 (3.19)

Here is the specific heaif the fluidand @ is the effectivehermalconductivity, In order to
find the expression we want for the energy conservation equat®nse the chain rule of
differentiation on the first term of Equati¢®17), and then we impose thiaearization for the
fluid density as we presentediiguation(3.14):

TRy T VARSI S I {

—_— R W —, w—

1o R I 1o

This gives us the following expression for the energy conservation equaporous media

. TY o LTY (3.20)
n (y — ” — n /1
W bo TY o (JOT 3 t 8
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The Equations(3.15) and (3.20), together with their respective constitutive laws, some
appropriate boundary conditions and initial conditions will form a model for thermal single
phase flow in porous medi&Ve will come bak to general expressions for this in the next

subchapter which will preseatuations for thermal singfghase flow in&ulted porous media.

3.2 Flowand Heat Transfen Faulted Porous Media

The principles fothe equationsggoverning flow infaulted porous mediare pretty much the

same as the ones presented above, but with some modifications to consider the different
geometry of thedults compared to that of the porous mate will not go through the entire
derivation ofthese equationgind ve refer toMartin et al. (2005andBerre et al. (2021fpr a

more detaigd presentatianThis subchapter will first preseriteé geometric representation of

the faulted porous media, then some projection notatigathered fromKeilegavlen et al.

(2021)will be explained After this the equations themselves will be presented.

3.2.1 Geometric Representation calted Porous Media

The faulted porous matrix is modelled by a mixeltmensional discrete fracture matrix (DFM)
model implemented in the opsource Python softwafRorePy(Keilegavlen et al., 2021 his

is a way to model daulted domain where the matrixadlts, and fault intersections are
represented explicitly asdividual subdomains of different dimensions. In a thaeeensional
domain, for instance, thaudilts are represented by objects of dimension. fR@ducing the
dimensiondike this is justified due to the faults being so thin compared to the resteof
extensios (Berre et al., 2021)Iintersections between gefaults are onedimensional lines,
and further intersectits between these are zalimensional pointgKeilegavlen et al., 2021)
An example oftwo-dimensional, intersecting faults within a thidienensional rock is shown

in Figure3.2. This isone ofthedomairs we will present simulation results from in Chagaer

Figure 3.2: Example otwo lower dimensionaintersectingfaults within a higher dimensional rock

14



All equations variablesand parametengresent in the mathematical model is definedefich
subdomain in the mixedimensional domairFurther onthese areoupled together by treating
the interface betweetopt hem paefoapablesthétveconstit o f
subdomains The flow and transportequations inthe lower dimensionalsultdomainsare
obtained by integrating thmatrix equation# the normal direction of thelt Faultsarevery

thin, and hereforeit is justified to reduce the dimensions of the matrix equagimnequations

of the fults by integrating them like thisThis is called reduction of dimensionaliigerre et

al., 2021)

In Figure3.3 there is a simple illustratioof one higher and one lower dimensiosabdomain,

m andm, that coincides geometrically, together witte intersection between thes,

Figure 3.3: Simple illustration of a higher and lower dimensional domainand respectivelywith their intersection line,
. Projection operators for mapping quantities to subdomains, subdomain boundary and the intersection are also present.
Figure is adapted froreilegavlen et al. (2021, p. 248)

The trace operato) j shown inFigure 3.3 maps the variable from the higher dimensional
domain to its boundary, m 8The other operators shown in this figure can be split into two
parts: those who project variablesm an interfae, fj, and those projecting an interfacey .

The subscript of these projection operators denotes the interface they concern, while the
superscript represents the subdomain. For example, a projection from the lower dimensional
subdomairto the interfacevould have the operator notation. It is through these projections

the couplingvariablesbetween the different subdomai® connected.

3.2.2 ConservatiorEquations foFlow ina FaultedDomain

Recall the fluid and total heat flbeng denoted by and/l , andrecallthe mixeddimensional
couplingnotationpresented in the previoggction In this section we will present the lower
dimensional volumeand energy balance equations, which is gaepresenteby Berre et al.
(2021) Stefansson, Berre, et al. (202ahd Stefansson, Keilegavlen, et al. (202Fpr
distinguishing between thelivergencéradient operator in the differently dimensioned

15



subdomains, subsctip$ and¢$ will be used for dimensiop and ¢, respectively.These
gradients and divergences will be parallel to the domain they axoiaubscript on the del

operatorindicates that it belongs in three dimensions.

After performinga dimension reduction on the conservation equations for volume and energy,
Equation(3.15) and Equation(3.20), respectivelywe arrive at the following expressions for

the conservation equations in the faults:

G — o to f o R (321)
T o N
Y .1 °Y ..
T TT—b & “’TT_ o tn po s G

Doing another dimension reduction, the expression focdingevation equations in theablt

intersectiorfollow the expressions below:

o1 L on i , (3.23)
1o

. 1Y, : . . . 324
T—‘ ® ooT—‘ wn th o h O n 8 (324
T o )

Theaperturedy accounts for the reduction of dimensipasd™Yis the set of interfacdsetween

(I) ” F](I)"Y

the lower- and higherdimensional subdomasno , } andv are respectivelyfluid flux,
conductiveheat flux andadvectiveheat fluxfor theinterfaces The expressiosfor these will

be presented in the next sectgnce they are coupling conditions for our model equations

3.2.3 Coupling Conditions
To complete the model, we needstaecify the coupling conditions between the conservation
equations for higherand lower dimensional subdomains. Thesegwen as presented by

Stefansson, Berre, et al. (202t)dStefansson, Keilegavlen, et al. (2021)

The three interface fluxesentionedin the previous section amne part of the coupling
conditions between the equations concernimlifferent subdomainsinternal boundary
conditions are the other part that serves a coupling between the different domains, and will be
presented shortly after the expressions for the axterfluxes shown belaw

0 R
— =1 t 0@ h

LY L OO h (3.29)
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0 andQ arethe normal permeability and heat conductivity respectiviligte that the
gravitational term in the fluid interface fluxiismoved. This holds due to the faults considered

in this thesis is only going to be vertical.

Also, these interfacd fu x es must be us eirdthewwonsehatisneqoations c a ut i
The expressions for interface fluxes betweatrix-faults and faultgault intersections are the

same up to oné&actor, being the aperturdhis weighting is taken care of in the respective
conservation equations, and therefore the interface flux expressiofistatee s @otle 6 f or
differentinterface typesUsing these it is important to beware of subscii@isd Qwill denote

different suldomains for the two different intersection types

Subscript a Q
1D interface Fault intersection Fault
2D interface Fault Matrix

The internal boundary conditions for the higher dimensional subdonwglhsomplete the

coupling, and epressions for thesen the boundarigs m , are the following:

~ .- ~

O t= hhoh o t= h Oh At h na

3.3 Model Equations

This sulsecton summaizesof all the equationsve have presenteduch that all of them are
collectedand easily foundn the same place. These equations, together with the governing
eqguation for the fluid density, and some initial and boundary condifams themathematical

model considereth thisthesis

Volume caservatiorfor the porous matrifaults, and fault intersections, respectively

%T—"Yn't'o mh
(o TO
Y .. N
o TT—b Wt to N h 6 h
(I)TT"Y(I)Q t0 & hH o 8
T O
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Darcy velocity

Note that thegradient is taken in the relevant domain. For instance, in two dimensional faults

the gradient wiliconsider only the directions parallel to the faults

Energy conservatiofor the porous matrpfaults and fault intersectionsespectively

BRI — v e nEn T

AR I 1o
D" HOY T—Yoo” wT— ot h O A h

T o ) )
”v~YTY"”~T"Y"nt/1 1 8
wthow wa wa]ur]

Total heat flux
N7 YR e n"8

Also here the gradient is corresponding to the dimension of the subdomain in question.

Interfacefluid flux, conductiveheat flux ancadvectiveheat flux, respectively

, I . g
— = @] h
6 — LR L 0a
~ G A .
A Q=1 Y t OO h
)

) "rol YO h EE T

0 - 8

Linearized fuid density:
” "Y ” Fl p T "Y "Y 8
Internal boundary conditiorfer a higher dimensional subdomain

0 t= HOh o t= HOHh Aaf= /A8
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External boundary conditions for the pressure and temperataithe following
ns nh Otss 6 h
"% “Yh N iss v 8
Where subscripiO and 0 denotes Dirichlet and Neumann conditipnsspectively. Only
constant values for the boundary conditions are used ipribjisct
Lastly, wepresentnitial conditions for the pressure and temperature:
Neld m 1) eh “Yeld m “Yeh

wheree is thespatial position within the domain.
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4 Numerical methods

To solve the partial differential equations presented in this thesibave useélinite volume
multi-point flux approximation (FMMPFA), the upwind schemeand implicit Euler for
discretization The first subchapter will presetite F\MMPFA method,andis gatheredrom
Nordbotten and Keilegavlen (2024nd the documertian of PorePyKeilegavlen et al2021)
Theproceedingsection presents the upwind scheme used for approximating the advective heat
flux, andin the next subchapter we presém time discretizationFinally, we give a brief
presentation of the work with our code for solving the gowey equations in this thesis

Thenumerical methods usédr the codeéhave been used as they anplemented in PorePRy
Implementation of the numerical methods has therefore not been a focus during the work of

this project, and only a brief explanatioitioe methods will be presented here.

4.1 FiniteVolumeMethodsand Flux Approximation
Now we will presentthe basics ofinite volume methods, and hothhey areapplied to a
conservation law For presenting the finite volume metlspdwe are onsidering the

conservation equation presented in Qtka3:

Tr—(_)Qoo Ji-Qo Qb (41)
where] is one of severahonoverlappingsubdomais of m( O ), also referred to as
control volumesor cells In this subdomain we arén generalconsidering the conserved
guantity,—, and how this is affected kl = andi which aretheflux field, the outward normal
vector off and any internal sources or sink terms within the doymaspectively However,
we arefor now only interested in the spatial discretization, so tém@poral term will be
temporarily dscardedand then revisited iBubchapted.2

The general idea d finite volume methods to compute the fluef a substancehroughthe
surface hergl 7 , of the control volumeWe definefaces within the domain astersections
between two neighboring contnablumes andthe collection oll faces of a cell is denoted

_ . This leads tdhe following rewriting ofthe nontemporal termef Equatio (4.1):

gi- ;oY iqa (4.2)
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Recognizing the lefhand side athe sum of fluxes over the cell facegor a celll , leads to

the following expressigrwhich is the form of which any finite volume method may be written:

qs  1Qd (4.3)

wheren j is theintegrated fluxeover cell face, of] . This holds for allcells] in the

partition of m The method has local flux balance if the followinglds for any, 17
T

N f nr8
4.1.1 Multi-Point Flux Approximation
Flux canbe approximated in several different ways, and one of which is the-pouiti flux
approximation(MPFA). MPFA is basedon the simple two-point flux approximationwhich
determines the flux over a face by considering the potentials in the twaeggjldoring the
face This methodf approximating flux is however too simple, athé MPFAmethods were
developed The numerical flux field,rjy , we presentedn the previous section is to be

determined with the use MPFA, and moe specificallyit is theO-method that is implemented

in PorePy and therefoused in thisvork. A brief introduction to this method is provided below
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Figure 4.1: Primal and dual grid refinement for the MPFA method
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To performa flux approximationywe start off with thesolid, black line partition of our domain
shown in theFigure4.1 where the control volumes are dengtedrhis partitionwill be called

the primalgrid, and an example of a control volume of this grid is highlighted in a light shade
of grey in the figureThis domainwill howeverbefimodifiedd by adding a extra grid structure
such that the MPFA method canudmeed. This gridvill be called the duajrid and isshown in
dashed lingsandi is the center of aell in this grid The construction of the dual grid is based
on lines betweerhe cell centersp, of the control volumes, and the centews, of the faces

corresponding to the controbime.

The intersections between the primal aodl grid gives us the more refined syid, whose
cells will be denoted and called suleells. These are quadrilaterals with two dashed and two
solid black faces, and one example of such acglids hghlightedin a darker shade ajrey.
Further on, the faces of the soéll, the sukfaces,will be called , , and thefacecenters are

calledw .

The fluxIs in this scheme not approximated over the cell facelsut rather over each of the
sub-faces,, . To do this the potentiafield needs to beliscretizel, and his is donesuch that
the potential is described byliaear function on each ohé subcells A continuity of the
potential is enforced at the cell centd@riseflux field is soderived from the potential field, and
when the potential is linear on each s, the fluxfield will be constantWhen it comes to
continuityin the flux local flux balancés enforced over the stflaces, and the following holds

for the integrated fluxes
Bi- s Qv Bi- s Qxns
In the end, the face flux) , is constructecdby summing up all the sdface fluxes,n

corresponding to eell face

4.1.2 UpwindSheme for theAdvectionTerm

For the advectivpart of thetotal heat flux A , in the heat equatiofshown in Equatioi3.19)),
we have used an upwind schefoediscretizing Recalling the heat flugxpressiorappearing
in the heat balancand identifying the advective flux as the fitetm of this, leads us to the

following equation for the advectivlx:

" Y QY08

22



The upwind scheme takes into account where the fluid is comingifr@mmwe are considering
flow throughas u b d o ma i n 0 sThebaulvected guanties this caseare the fluid
density, fluid specific heat capacity and the temperatrerderto know for what value®f r)
and"Mthese are going to be evaluated, we measure the sign of the, flasgugh thesubdomain
boundaries Finding out in whichdirection the fluid is flowingfor each facegives us

informationregardingwhich values to use.
Thisis expressed the following wagrffluid flowing from a cell'Qo a neighboring celR

" YQYORh E&E T (4.4)

YRV - L
h TYOYORh EARR T

The above expression follows the presentatio®t@fansson, Berre, et al. (202iLt we refer
to Courant et al. (1953pr details about this scheme.

4.2 Discretization in Time
Discretizing equations in time can be done in several waty$the main thing to choose is
whether the discretization is to be explicit or impliciio present the main idea behind

discretization in time, we are just going to corsithe following simple differential equation:

Q- g (4.5)
—, 'O-h
Qo
where — is the unknown gquantity, and it is to be determined in term®©adfo solve this
numerically, we need to approximate the derivative on théhseft side. Doing this using a

simple finite difference scheme gives

o_ — -,

Qo Yo
This new expression is now using two different values of the quantity make a
approximation for the derivativerom here there are two waysagproximaé to the next value
of —. We could eithefind —  evaluating'Oat the current timgor weevaluate it at the next

time step The first one is calledxplicit Euler time-stepping andconverts our simple

differential equation into this
-~ -  Y0O- 8

For this to work, our time step would need to be sufficiently srRally explicit schemes have

a timestep constraint which is quadratic in the length scale of the spatial discretafatinen

23



problem(Nordbotten, 2015)which makes thaully explicit schemes are rather pickyterms
of the stp-size

We have employed thienplicit Euler timestepping methodh this thesis. It differs from the

explicit time-stepping only irthe factthat"Ois evaliatedat—
—~ - Y00O- 8

The timestep can either be fixed, or it can vary throughout the solution process of the problem.

In thesimulationswe have pedrmed this value is kept fixed.

4.3 About the Code Implementation

Prior to the start of this work, a model class for solving incompressible flow in porous media
was already present in PorePy, and during the work done in this thesis a mosdkjjtity
compressible flow was included as an extension of the incompressible flow model. Our code
contribution was to further extendetklightly compressible flow model by adding the model
equations also considering the temperature, i.e., the enarggreation equatiopresented in
Section3.1.2

The codecontribution from thisvork is more specificallyan implementation od semiimplicit

and fully coupled mdel for numericallysolving thermal singiphase flow in porous media

with the presence ofatilts The codeis implementedas a Class objedh Python with tle
simulation toolPorePy andit is developed by use of inheritanceté slightly compressible

and incompressible flow modélhe concept of inheritancebsised orusingalready existing

code, instead of writing all the code from scrafth give a specific exampleghe extension

from incompressible flow to slightly compressible flawas doneby adding support for the
time-derivative term in theonservation law presented $ubchapteB.1 Theincompressible

flow model alreadymade sure the other two terms were represented in the aodethis
relatively small extension was therefore enough to have a model class for solving slightly

compressible flow.
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5 SimulationsResults ad Discussion

This chapter present®de verification andesults of thesimulations executed in the work of
this thesisSubchapteb.1 presentghe two ways we have verified the code implementation
Subchapteb.2 and5.3 presentsimulationresultsin two and three dimensiongespectively
both with and without fault§ he simulations show hotlie temperaturdeviationfrom alinear
temperature profil@aries greatly depending on how high the Rayleigh numb@&his linear
profile extends from the bottom to the top of the domainvaiticoe referred to as the motionless

solution.

For all the visualizations shown we have usedvikealization tool ParaVieWAhrens et al.,
2005) and within ParaViewve have used fiter called CellDatatoPointData According to
ParaViewp documentationvtkCellDataToPointDatas a filter that transforms cell dafae.,

data specified per cell) into point data (i.e., data specified at cell points). The method of
transformation is based on averaging the data values of all cells using eachipactualset

of cells attached to the point is used for the ayieaprocessAfter the data is transformed to

the points, the values in the cell are interpolated linearly. This filter iveagssaryfor
computing all theontous presented in this thesiandFigure5.1 shows the effect of the filter

on a threadimensional domainFigure5.1 a) shows the finite volume solutiomndthe mek
represented in a blue wireframehile Figure5.1 b) shows howthe solutionlooks when the

filter is applied Comparing the two figures, one can see that the overall features of the solution

remain thesame.

a)

Figure5.1: a) Domain withouthe filter CellDatatoPoiriData applied. Cell edges are kept to clearly show the mesh..b) Domain
after the filterCellDatatoPointData has been applied.

All the simulationsn this chaptehave beemperformedwith cartesian grids because ordylts
parallel to the axes are considerdte will also mention thadll the simulationsn this chapter

areperformedo find thesteady stateolution We have checked thaeady state issachedy
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computing tie relative percentifference between the solutions at the two last timesteps-in

norm. For all the simulations this percentage is lesstiBaq b

5.1 CodeVerification

5.1.1 Invariance of the Motionless Solution

One of the ways wkaveverified the code is by checking the consistency of solstiontwo
different initial conditions. Whethesimulatiors arerun untilsteady state, the expected results
are that the initial conditiordo notalter the steady staselution Thecases we have considered
are witha Rayleigh number lower than the critical value, which in turn gives the expectation
that any disturbances imposed by an initial conditWdhdiminish This means thaiteady state

of the simulations themotionless solution.

Prior to presenting the verification stdts, we will present the parameters and boundary
conditions for the system. &havefor all the simulationsised parametergpresentative for
conditions in the subseafloor. The paramedeesgathered frordhao et al. (2008ndSchoofs
and Hansen (2000and all of themexcept the rock permeability, are presentedable5.1.

The rock permeability will be specified for each simulation due to this beingatiaenetewe

change to vary the Rayleigh number

Table5.1: Parameter values for the simulations

Symbol Physical parameter Value Unit

" + | Fluid reference density P TTT EC

" Solid density COTT EC

&) Fluid specificheat TpyYu BEC o+
® Solid specific heat Ypu *EC o+
Q Fluid thermal conductivity & L O
Q Solid thermal conductivity o® v O+
I Fluid thermal expansion coefficient 8t xp m +

: Fluid viscosity p8ttp T 0
%0 Porosity L)

| Gravitational acceleration o) p i ©

L Permeability i

The domairwe considetis in two dimensiongt measuesc 1t i Tby p 1t i 17 and has its top

at a depth op® E [ below sea levelThis means thathe topis permeable antlasa constant
pressureThe top i s also isothermal, the domainods
andthe bottom is isothermal and impermeable. Details regarding the boundary conditions are

shownin Figure5.2.
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Tl;—1000m = 273.15K
p|z=1000 m — 15.0 MPa
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z L
X le:[)m =473.15K

u- nlz:Om =0

Figure 5.2: Schematic of the boundary conditions

The initial conditions we are going to use for solution compaservery different from each
other. One of them igmposinga symmetrical and small disturbanoehile the other one
introduces alarger, asymmetrical disturbance to the systéfhe symmeical, small
disturbance will be referred to as Initial Condition 1 and al8bbe used as initial conditions
for the results irBubchapteb.2 The othewoneis inspired byyang et al. (1998)and itwill be
referred to as Initial Condition. Zhis initial conditionis only for comparison purposesnd

will not be used in any further resulldeir respective expressions are shd&low

Initial Condition 1:

O\ NP s
» Al & Ef—=
oy p TLTT T b’nnq pmmm
Y oo S c CXPp 8
Initial Condition 2:
o e P TITUTY p Q
Y aha 0 ™
¢cp QO
PMTITM QpTTTY p Q
5 T C X@pa
o T TOT cp QO

Both the initid conditions and the steady state of the sysgesimown inFigure5.3 andFigure
5.4. As expected due to the Rayleigh number being lwthan the critical valyethe

temperature contours even out and result in a linear temperature profile in the end.
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Figure 5.3: a) Initial Condition 1 b) Motionlesssolution
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Figure 5.4: a) Initial Condition 2 b) Motionlesssolution.

Thisis alsochecked tdholdin three dimensions, but since the results are the,saeneave

for the sake of brevity left out of thetext

5.1.2 Verification with CriticdRayleigh Number
In this section a simple methodology to approximate the critical Rayleigh numbtérder
dimensionakasess presentedAll the domais have the horizontal extensio® Q 'Q,

andthevertical extensiotis held constant & 'Q p 1 i 1 The three different domains

we have considered in this sectiwoid the following valuefor the aspect ratie—  -fpht .

Regardless the initial condition, we look for stationary solutions by enforcing large final
simulation time and timestep size. Variations in temperature are sjovtenear the critical
Raylegh number, so our choice of large time steps does not induce large errors for finding the

motionlesssolution in a transient manner.

The different horizontal domain extensiotise time parameterand the nodinear tolerance

for the tests in this section is shownTiable5.2.



Table5.2: Horizontal domain extensions, time parameters, andlim@ar tolerance for critical Rayleigh number
verification

Symbol Physical parameter Value Unit
Qf Horizontal domain extension VU TTTT i
Qp Horizontal domain extension pTITTT i
Qf Horizontal domain extension TN i
o Time U TICTTTCTT 7T $AUO
Yo Time-step U TITCTT TT $AUO
0€¢ Nortlinear tolerance p T

All the tests in this sectioemploythe boundary conditions presentedFigure 5.2. Initial
pressure i hydrostatic pressuregiile, andfor theinitial temperaturave haveusedinitial
Condition 3:

e 0 e 0 2Rt
y Al © I & E :
. T 1T TO A Q r
"y ol DU : prim pb’;ﬂ'[ nnncxwa

Moving on to thanethodology of this verification, weill recall from Sectiorb.1.1that kelow
the critical Rayleigh number, the steady state is the linear, motionless séNitiahdtx . The
numerical schemased in the codepproximates exactly thisolution If we measure the
temperature deviation 3°Y “Yafutdhd Y ofuhy  for parameters corresponding to
Rayleigh numbers larger than the critical one, we will observe that the solMidriGD
deviates from’’Y cfufix . This means tha¥"Y T, which indicatesthat the convection has

been triggered.

To measrethe magnitude of"Yrelative to the motionless solutiome introducethe deviation

A £

ratioj = EwhereAét'/Eis thed -norm over the domaim Due to the numerical scheme

in the implementation being able to exactly approximate the motionless solution, the value of
1 will be numerically zero when the Rayleigh number is below the critical value. Therefore,
we will examine the value tfoththe deviation ratio and the temperature deviation to determine

whether convection is occurring.

With what we now know about andz"Y we will present how this part of the verification is
performed numericallyFigure5.5 a), Figure5.6 a) andFigure5.7 a) present several dots, and
each of these individual dots are simulations foredéht Rayleigh numbers. The spacing of
the dots corresponds to a permeabilitgrementof gptp 11 [ , which in turn causes the

Rayleigh number to increasthevaluet@ip 1t | is chosen arbitrarily and has therefore

no theoretical justification.
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Figure 5.5: Verification case 1 with aspect rati0.5. a) Deviation ratio plotted againdRayleigh numbewhere each dot
represents aincrementn permeabilityof )  T@tp ™ @ . Red dots signjfthe interval T @&t @& of whichthe critical
Rayleigh numbelies. b) o “Yesultfrom Rayleigh numbegorresponding toY & T @&.
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Figure 5.6: Verification case 2 with aspect ratio &) Deviation ratio plotted against Rayleigh numbeghere each dot
representsn incrementn permeability ofo)  T@®tp m & . Red dots signify thaterval ¢ &lw & of which the critical
Rayleigh number lied) o “Yesult from Rayleigh number correspondingtt@d o @.
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Figure 5.7: Verification case 3 with aspect ratlh A) Deviation ratio plotted against Rayleigh numbenhere each dot
represents @ncremenin permeability otod) 1@®tp m & . Red dots signify thaterval ¢ @ig @& of which the critical
Rayleigh number lied) o “Yesult from Rayleigh number correspondingftad ¢ @&.
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For each of the simulationge computed and visualized the temperature deviation for larger
and larger Rayleigh numbers to look for when the sglile@econvection patterns appear. The
first occurrences of convection are showrFigure 5.5 b), Figure 5.6 b) andFigure5.7 b),

where these results correspond to the Rayleigh number of the right redFdgtiie5.5 a),

Figure 5.6 a) andFigure 5.7 a), respectively. In other words, no convection osctor
simulations corresponding to the left red dot, and convection does occur for simulations
corresponding to the right red dot. Therefore, we know that the critical Rayleigh number for the
implementation ivetween the interval created by tis® red dotsn Figure5.5 b), Figure5.6

b) andFigure5.7 b).

The verification will becompletedby comparinghe intervals of whichwe knowthe critical
Rayleigh number ofhe implementation lieswith theoretical values presentedfigure 2 of
Tewari and Torrance (1981This reference presents a figure showing theoretical critical
Rayleigh numbers forariousaspect ratios, where a ratio equal to 4 gives a critical Rayleigh
number of¢ . Looking toFigure5.7 a), thecritical Rayleigh number is represented by a
vertical grid line located a¥ &0 ¢ . We can see that this lingoes througlthe interval we

found for the critical Rayleigh number of the implementation.

For the aspect ratios of® andp, Tewari and Torrance (198dlp not provide an explicit value
of the critical Rayleigh number. Insteade read from the figuréhat the critical Rayleigh
numberfor agect ratios between T@oand T is somewhere in the intervath ¢ fL T
Similarly, aspect ratios betweenp@& and T1@ohold critical Rayleigh numbeis the interval
Yo ¢ ® to 1 Here the lower Rayleigh number corresponds to the higher ratio. As the
intervals for these theoretical Rayleigh numbers are quite large, we have approximated the
critical Rayleigh number corresponding to the ratios we are interested in. This is done by
assuming a linear relationshiggtweerthe theoreticatritical Rayleigh numberandtheaspect
ratios, andthenmakingan estimate of what the value will be for the rati@® andp. Doing
this approximation provides us with thpproximatedheoretical critical Rayleigh numbers of

T Woand ¢ & for aspect ratios@® andp, respectively. As in the case of an aspect ratio
equal tot in Figure5.7 a), we havealsovisualizedthe critical Rayleigh numberd ratiosTi®
andp with vertical gridlinesin Figure5.5 a) andrigure5.6 a), respectivelyln these twdigures
we can see that theertical gid line, i.e., thecritical Rayleigh numbers a member of the

Rayleigh number interval created by the two red dots.
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By the study we have performed of the critical Rayleigh numbers for the implementation, we
will state that the code is consistent with the general claifreofri and Torrance (198fhat

lower aspect ratios have higher critical Rayleigh numbers. The code is also consisterg with th
theoretical critical Rayleigh numbermreported for aspectratio 1, and the approximated
theoretical critical Rayleigh numbers for aspect rati®sandp. Thiscan ke seenn Figure5.5

a), Figure5.6 a) andFigureb5.7 a) by noticing thatfor each of the ratioshetheoretical critical

Rayleigh numbeis a member atheintervalrepresented by the two red dots

By this comparison between the theoretical critical Rayleigh numioens Tewari and
Torrance (1981)and the intervals represented by the red dots, weewdl this verification

chapter.

5.2 Convectionn Two-DimensionaPorousMedia

In this subchapter we present tfme-dimensional simulation results, both with and without
faults.For al the simulations in this subchapter, the system hasitial hydrostatic pressure,
and Initial Condition 1 which was introduced in Sectibril.1 The slightdisturbanceof the
linear temperature profile this initial condition introducedl for the simulations regarding
higher Rayleigh numbers give us the convection xyeet. The parameter value®r the rock
and fluid used inthe simulationsare presented iffable5.1. The only exception ishe rock
permeability which will be spedied for each simulation due toishbeing the parameter we
are altering to get results for various Rayleigh numlé@verall CPU-time, simulatiortime and

time-step will be specifieth tablesfor eachsimulation.

The grid refinement andontlinear tolerance is held constant for every simulatéord br the
2D cases, these parameters hold the values fouhabie5.3.

Table5.3: Grid refinement and nafinear tolerance for all twedimensional simulations.

Symbol | Physical parameter \ Value \ Unit
g Number of cells ir>direction P Tt #A1 10O
¢ Number of cells ird-direction T T #A1 10O
0 £ a| Nonlinear tolerance pTI

5.2.1 Without Faults

Recalling the Rayleigh number and significancefor whether convection occyraze will in

this chaptempresent results from two different simulations considering two greatly different
Rayleigh numbersAs already presented Chapterl, the critical Rayleigh number fahis

32



problem formulations bounded below by¥® ¢ . Therefore the simulations we run that
have no convection is going to be for Rayleigh numbers lowerghgn This way we are

certain thesteady state solution is the motionless solution

Convection isessentiallya | | about getting another value f
so one can think of theolution withconvection as a sum between e s t matianléss

solution andsometemperaturaeleviations A procedure for studyingonvection is to consider
thesetemperatureleviationsfrom themotionless pure conductivesolution(McKibbin, 1986;

McKibbin & O'Sullivan, 1980) ard we will in the following present how thgeviationsdiffer

for different Rayleigh number3his will be done by subtracting the motionless solution from

the solution with convection.

The deviationfrom themotionlesssolutionwill be referred to as the temperataeviationin
text and Delta_T in thefigures. We will also show emperature profiles for theverall

temperature of the systemnd these will bdenoted byYin thefigures

The first set of figures to be shown, are the results for a Rayleigh number very close to the

critical one Parameters for this simulation is Trable5.4.

a) b)
1000 1000
600 © 600
Z [m] Z [m]
400 ; 400
0 0 =
0 500 1000 1500 2000 0 500 1000 1500 2000
X [m]) X [m]
T [K] Delta T [K]

4.7e+02 400 350 2.8e+02 5.4e-02 0.02 0 -0.02 -5.4e-02
m | | R

Figure 5.8: Simulationresultsof convectiorbarely occurring duethe Rayleigh number being just alkabhe citical Rayleigh
number a) Shows the temperature profile of the systenT.emperature deviation from the motionless solution

In the temperature profile Figure5.8 a) one caronly barely see thslight dip in some of the
temperature contouriie to the Rayleigh number being only just akibweecritical valuelf we
however look aFigure5.8 b), there is alearly visible deviation in the temperature from the
motionless solutiorEven though it might look likeargetemperature deviatiora first glance,

we mustrefer to the legend to emphasize that the values are in fact quite small
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Table5.4: Permeability and Rayleigh numbfar low-Rayleigh number simulation in two dimensions without faults

Symbol| Physical parameter | Value | Unit
L Permeability vdptp T i
Y & | Rayleigh number CP w

Considering ahigher Rayleigh numbefor the simulationgives the expectation of more
disturbance in the system, and in turn more visible temperdewi@tionsin thes y st e ms 0
temperatureThe simulation results presented kigure 5.9 will show that a higher Rayleigh
number, in this case a valueughly twice of that bthe critical value causesnoredistorted

shape®f thetemperatureleviation Parameters fahis simulation is presented ifable5.5.

a) b)
1000 1000
800 800
600 600
Z [m] Z [m]
4 400
200 200
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
X [m] X [m]
T [K] Delta T [K]
4.7e+02 400 350 2.7e+02 7.9¢+01 50 0 -50 -8.9e+01

| | T 2

Figure 5.9: lllustrations from a simulation witta high Rayleigh number, and therefore also noticeable convedjon.
Temperature contour®) Temperaturaleviationfrom the motionless solution

Thetemperatureontourspresented ifrigure5.9 a) areclearly deviatingfrom the motionless
solution, as oppose thosein Figure5.8 a) where onlya very slight dip is to be seehhis
can beexplained by the drastic increase in the Rayleigh number, wiageshe system more

unstableand th@ theconvection is more vigous.

In Figure5.9 b) one can firshoticethat theshape of théemperatureleviationsarea lot more
irregular compared tahe patterns showfor the lower Rayleigh numben Figure 5.8 b).
Having a look at the legend for this figure as wlls us that the temperatudeviationsare
now a lot larger than beforélhis signifies that ahigher Rayleigh numbercauses the
temperaturedeviationsto be larger than for a lower Rayleigh numb@ansidering thata
doublingin the Rayleiglmumbercausesithousand times larger temperature deviafiom the

motionless solutiorshowsthe importance of the Rayleigh number tioe convection
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Table5.5: Permeability and Rayleigh number foigh-Rayleigh number simulatisrin twedimensions without faults

Symbol| Physicalparameter | Value | Unit
L Permeability p8ttp T i
Y& | Rayleigh number L& X

All the simulations in this section have tharameters for timerid refinement and nonlinear

toleranceshown inTable5.6.

Table5.6: Grid refinement andime-parameters for the twdimensional simulation

Symbol Physical parameter Value Unit
¢ Number of cells ir>direction P Tt #A11 0O
3 Number of cells irg-direction T T #A1 10
0 ¢ a| Nortlinear tolerance p T
o | Time PTT T TT 7T $AUO
Yo | Timestep T T T $AUO
0 OverallCPU-time p - ET O0OAC

5.2.2 With Faults

Faults present in a rock will make the overall permeability of the system change. In the
following simulation cases we have included vertical faults that are more permealtleethan
host rock both in the tangential and normal direction of &loét. fThe parameters concerning

the host rock is chosen in such a way that the Rayleigh number for the rock is just below the
critical value, and therefore no convection is expected indtke This section will therefore

showwhatimpact the faults have for convection in the system.

Also in this section we compute the result faiyding the temperature deviatidnom the
motionless solutionWe solve the system fdhe situatiorwhen convection isccuring, and

then we subtract the motionless solution from this to check the magnitude of the temperature
deviation.This has been done for three different permeability ratios between host rock and the

fault, and thepermeabilityvaluesare presentefbr each of the cases Trable5.8.

In the faulted cases we have run a simulation for a fault beingp@tymes more permeable
than the host rock. This is what will be considered the motionless solution in this section, and
theparameterareshown inTable5.7.
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Table5.7: Parameters fomotionlesssolution of faulted domain in twdimensions

Symbol Physical parameter Value Unit

L Permeability T@ip i

L Fault permeabilitftangential) pd f Lk i

L Fault permeability (normal) pd it L |

® | Aperture p Br [

Y & | Rayleigh number (host) C@o
o | Time TTUTITM T $AUO

Yo | Timestep CTITT $AUO

0 OverallCPU-time P - ET O0OAC

When we include faultmore permeable than the host roitihas the expected influence that
convectioroccurseven though the host roplermeability igitoo lowd  f o. Bodvatsgorsand
Lowell (1972)mentionsthatfaults within the rock will cause the fluid to mainly flow through
these.Therefore it is also expected that convection will mairdgcurin the fault In two
dimensions, howevethis is impossible to see since no convection can occur witbimea
dimensional faultBecauseof this, the faults will be visualized bya solidwhite color in the
figures presentingesults in this section The expectation regarding convection mainly
occurring within the faults will be revisited in Sectidr8.2 which considers convection in

faulted, hreedimensional domains.

Moving on to the results for this sectiome presenfFigure5.10, Figure5.11 andFigure5.12
which considers three different fahlbst rockpermeability ratiosThe first figurepresents the
lowest ratio and the last one presents the highest

a) b)
1000 1000
600 600
Z [m] Z [m]
400 4
0 0 ==
0 500 1000 1500 2000 0 500 1000 1500 2000
X [m] X [m]
T [K] Delta T [K]
4.7e+02 400 350 2.8e+02 3.1e-02 0.01 0 -0.01-0.02-0.03 -4.6e-02

| 4 .

Figure5.10: Simulation 1/3 with aultedtwo-dimensional domain. Corresponding parameter values are denoted by subscript
1 in the parameter table of this sectia).Regular temperature profile. Bepmperature deviation from motionless solution.
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Figure5.11: Simulation 2/3 with adulted twedimensional domain. Corresponding parameter values are denoted by subscript
2 in the parameter table of this secti@).Regular temperature profil®) Temperature deviation fromotionless solution.
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Figure5.12: Simulation 3/3 with adulted twedimensional domain. Corresponding parameter values are denoted by subscript
3 in the parameter table of this siect. a) Regular temperature profilé) Temperature deviation from motionless solution.

Figure5.10a), Figure5.11 a) andFigure5.12 a) showthat the more permeable the fault is, the
larger dipthere arein the temperaturecontours In Figure 5.10 a) thecontoursseem quite
parallel to thewraxis, but as we move téigure5.11 a) andFigure5.12 a) it ismore and more
visible that thencreasedault permeabilityhas an impactt is thereforeclear thahigherratios
between the faulbermeability and the permeability of the host reekise the temperature of

the system to deviatmorefrom the motionless solution.

Forthe contours of the temperatuteviationshown inFigure5.10b), Figure5.11b) andFigure

5.12 b), we get thesame results as we presented in the previous section: iMheystem is
undergoing more convectipme. the Rayleigh number is highehen the profiles of the
temperaturaleviationsget more distortedFor instanceFigure5.10 b) shows rather regular,

squarelike shapes for the contours, whitggure5.11b) is a lot more distorted.
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We will againemphasize that the magnitude of the temperatevétionis varying greatly in

the three simulations as shown i n t he si.fFuthemsipermeallle r e s p e
fault, the system is experiencing a temperatie@ationof orders one thousand times larger

than for the least permealibult. This coincides with the results presentedCwiquet et al.

(2019) where theystudiedtemperature anomalies frormaotionlesssolution to a theoretical

fault system withonefault for different inclination anglesrhey investigated tlsedeviations

for variouspermeability ratiogor a vertical ultand concluded thahe deviationswere larger

for a higher fault/host rock permeability ratio

To sum up this section we will state thatlts clearlyhave an impact on convection of a fluid
within a porous rock. These simulations consider rocks where the Rayleigh number is too low
to expect any convectignwhich means that a similar domain without a fau#t hasthe
motionless solutiorHowever, @ding a fault to this system, even if the fault is only one order

more permeables shown tanfluence the temperature of the entire system.

Table5.8: Fault permeabilities and overall CRtime for the faulted, twdimensional simulationsSimulation time and
time-step is the same as for thetionlesssolution.

Symbol Physical parameter Value Unit

L . | Fault permeabilitftangential pgtip ml i
L - | Fault permeabilityrformal) pgtip ml i

o) OverallCPU-time P - ET O0OAC
L . | Fault permeabilitftangential) & dp ml I
L - | Fault permeability (normal) ™ dp ml I

o) Overall CPU-time 0 -ET OOAC
L. Fault permeabilityftangential) m dp mlk I
L - | Fault permeability (normal) m dp mlk I

o) OverallCPU-time ot - ET O0OAC

5.3 Convection in ThreBimensional Porous Media

This subchapter will present convection in a tkdaeensional porous media, botith and
without faults. The domainconsidered in this subchapter is measugng Tl T&@¢ 1 i G

p 1t mi 7 and aschematic ofhis can be seen iRigure5.13.
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Figure 5.13 Schematic of thredimensional domain
Boundary conditions for this case is kept the same as the ones presented fodih@singional
cases. Thenly difference is that we nowave four lateral sides insteadjo$t two, but all of
themfollow what applied for the lateral sides in tdonensionsFor detailsabout the boundary
conditions we thereforereferto Figure 5.2, which is shows the boundary conditions for the

two-dimensional case.

The initial conditiorfor the pressure is still considered as a hydrostatic pressure profilleebut
initial temperaturdnasundergone some changkeem the twedimensional simulationgnitial

temperature is nogoverned bynitial Condition 3 presented iBection5.1.2

All the simulation parameters of the fluid and rock are held constant for the simsilattbis
subchapter as welhnd theyhold the valuepresented iTable5.1. The only exception iggain
the permeabilityyhich will be changed to get results for different RayleigmbersThe grid
refinement and nctinear tolerancareheld constant foall the simulations, and their values

are shown imablebs.9.

Table5.9: Grid refinement and nofinear tolerance for threglimensional simulation

Symbol Physical parameter Value Unit
g Number of cells ir>direction o #A1 10O
3 Number of cells iri>direction o #A1 10
¢ Number of cells ird-direction 0T #A1 10
0 ¢ a| Nonlinear tolerance p T

The way we have moved forward to get the results in this chapter follows the same principle as
in the twedimensionakimulationsWe compute theemperatureleviation from the motionless

solution and the we examine theemperature contours

5.3.1 Without Faults
This section preents the tempeae deviationin a threedimensional domain without faults.
Figure 5.14 and Figure 5.15 show the results for two simulations with different Rayheig
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numbers where me of then is close to the criticavalue and the otheis further aws.

Parameters for the two simulations in this section is presenieabia5.10.

a)

T Delta T [K]
4.7e+02 400 350 2.8e+02 6.5e-05 2e-5 0 -2e-5 -5.6e-05

E E = x

Figure 5.14: Simulation 1/2 in threelimensional domainThe Rayleigh numbes close to the critical value. Values for
permeability and Rayleigh number will have subsctiph the table at the end of this secti@). Temperature profileb)
Temperaturealeviation contoursfrom the motionless solution

Delta T [K]
4.7e+02 400 350 2.7e+02 5.7e+01 20 20 -40 -6.9e+01

[ . .

Figure 5.15: Simulation 2/2n threedimensional domainThe Rayleigh numbés a lot higher than the critical value.ales
for permeability and Rayleigh number will have subscript 2 in the table at the end of this s8cliemperature profileb)
Temperaturaleviationcontoursfrom the mabnless solution

Theresultsin Figure5.14 andFigure5.15 arearguablysimilar to the ones we presenfed the

two-dimensional cas@rigure 5.8 and Figure 5.9). In the same manner it is difficult, if not
impossible, to see angeviationsin the temperature profilefor the low Rayleigh number
shown inFigure5.14 a). However, br theresults corresponding toregher Rayleigh number

in Figure5.15a)it is clearly visible that something is going on with tamperature.

We seean Figure5.14 b) that for a Rayleigh numbeery close tdhe criticalvalue,thecontours
for thetemperatureleviationhave squarelike shapesWe also notice thahe magnitude of the
deviation is very smalFor the case dfigherRayleigh numbershown inFigure5.15b), the
contours have more irregulashapeandthe system hasrauchlargertemperatureeviation

In Figure5.15 b) wesee thathe shap®f the contourss a lot wider at the bottom than at the
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top. Hence, in the same way as in the results for thedwmnsional problenthe magnitude
of the temperaturdeviationis larger and theshape of the contouese more distortetbr a

higher Rayleigh number

Table5.10: Parameters for théhreedimensional simulationwithout faults

Symbol Physical parameter Value Unit

L Permeability vdip T i

L Permeability p8ttp 1 i
Yoo Rayleigh number CP w
Y& Rayleigh number L& X

o | Time PTT UL TT T $AUO

Yo | Timestep T T TT $AUO
0 OverallCPU-time po - ET O0OAC

5.3.2 With Faults

As opposed to the results fibve faulted domain in two dimensions, it is now possible for us to
study convection patterns in the faulifie simulationsrun here will concern twadentical,
intersecting faults, whose physical dimensionsaahneight ofp ttirt, and a length b ¢ mi 11
The faults are located exactly in the middle of the host rock, making roagntidn between
the fault andhe cbsest domain boundaryor visualizing théocation of the faultswe refer to
Figure5.16.

Figure5.16: Visualization of the fault location within the rock. The rock is here presented only by an outline and points, such
that the faults are easier to see.

In Figure5.17 andFigure 5.18 below we presentthe firstresultsin this section. The figures
showthe temperaturim a faulteddomainwith faultsvery permeable compared to the host rock
The permeability of the host rock chosen in such a way that the Rayleigh number is below

the critical valueand he parameter valueg®r the simlation are presented ihable5.11.
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Table5.11: Parameterdor the threedimensional simulation with intersecting faults

Symbol Physical parameter Value Unit
L Permeability (host rock) T@Qtp i
L Fault permeabilitftangential) mx dp bk i
L Fault permeability (normal) ™ dp ml i
Y & | Rayleigh number (host rock) C@® o
© | Aperture p Br i
o | Time TTUTIM T $AUO
Yo | Timestep CTITT $AUO
o) Overall CPUtime pu -ET OOA
a) b)
T [K]

4.7e+02 400 350 2.8e+02
| O

Figure 5.17: Temperature profiles in the rock is presented by fifteen temperature contours ranging frogg@s W to
T X & W. Host rock is clippeduchthat we can see how the contours are linearly spaced at the corners furthest away from
thefault intersetion. a) Faults visible. b) Faults hidden.
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T [K]
4.7e+02 400 350 2.8e+02

| R

Figure 5.18: Fifteen temperature contours ranging from¢ x@ w to 1 x& w for simulation of threelimensional
domain with two intersectingilts. The domain is clipped different locations to shothe change in tempeire contours
with increased distance from theutt intersection Clipped at:b) x =900m, ¢) x =800m, d) x = 700m, €) x = 600m.

Figure5.17 allows us to see the convection patterns within #uit§ and o further visualize
the effect faults hae on the temperature in the rqeke have include&igure5.18. Figure5.18
showshow thespatialnonlinearityof the temperature profiles are damped as one gets further

away fromthe fault intersection.

In Figure5.17 andFigure5.18 we can clearly see that the temperaturethasnost prominent
changes witim the faults Thisindicates as mentioned in Sectidn2.2 that convection occurs
mainly in the faults Due tothat Section5.2.2only consides onedimensional faults, there is
no convection within the faultsince they are only lineén three dimensionshowever, it is
clearly visiblethat theconvection patterns arprimarily found within the faults, and the
temperature of the host rock is influendetause othe fault convectionThe host rocktself
has parameteisorresponihg to a subcritical Rayleigh number, but theorepermeable faults
included to the systestill cause visible changes to the temperatreughoutthe rock It is

therefore likely that the changes in temperature in the rock is due to conductive heat transfer.

Moving on we will perform aset of similar simulations to ¢isewe did in two dimensions

where we studied different permeability ratios between the fault and hosSiotlary, we
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will look furtherinto the temperaturéeviation from the motionless solution of the systéhe
motionlesssolution we are usingontains fault®eingp® timesmore permeable than the rock

and nore details about thearameters for th solution are shown iffable5.12.

Figure5.19 andFigure5.20 showstemperaturgeviationdrom themotionlesssolutionfor two
different simulations The simulationsconsider domainsvith two intersecting faults, where
both faultshave the same permeabiliOne of the simulations considers faults bgngimes
more permeable than the host rock, and the other considers faults thabtarees more
permeablehan the host rockeExpected results are that the temperatie@ationis going to
have a more regular shaped smaller magnituder the lower permeability, similar to what
we saw in the twalimensional faulted casén Section5.2.2 Parameter values for tlieree

dimensional faultedimulations are presentedTiable5.13.

a) b)

Delta T [K] Delta T [K]
2.8e-02 0.01 0 -1.2e-02 4.7e+01 30 20 10 -9.5e+00

. E A 0w

Figure5.19: Contoursfor temperatureleviationin faulted threedimensional domaing’he domains are clipped in the middle,
and the faults arénidden.Figures in the same column correspond to the same €samnsl and 2 hae parameters
corresponding to subscript 1 andr2spectivelyin paraneter table foithis sectiona) and c)are for thefaultsp ttimes more
permeable than host rock) and d) are fothefaultsy uimes more permeable than host rock

44



Figure 5.20: Visualization of only thealults. Parameters for a) and b) correspond to those with subscript 1 and 2, respectively,
in parameter table for this sectiom) Temperature contours withifaults p Ttimes more permeable than host rot)
Temperature caonurs withinfaultsx uimes more permeable than host rock

Figure5.19 shows the temperature profiles for the entire rock, both clipped awctipped

where theclipping is doneat the middle of the rock parallel to one of the faltigure5.20
presents the temperature deviation only in the fauks.the results in two dimensionse see

that thefaults withpermeability closer to that of the host matjixe moreregularprofiles for

the temperatureeviation Also, the temperature deviation is a lot larger for the faults with
permeability firthest away from the rogermeability This coincides with the expectation that

a higher permeability, and therefore a higher Rayleigh number, causes a more vigorous

convection where the temperature deviatiare larger.

Comparing theesults inFigure5.19 andFigure5.20to thelow-Rayleigh numbercase without
faults (Figure5.14) really shows the influence the faults have on the temperdawiations
Where tle maximumtemperature deviation is of orderrt for the lowRayleigh number case
without faults it is of orderp 1 and p 1t for the lower and higher permeability kati
respectively for the faulted caséhis is clearly a huge difference, aitdshows how much

faults matter focconvection.

To further investigatethe effect of faults, we will compare the significance of a high
permeability(L  p8tip m [ ) for arock without faults, tthe rock with low permeability
containing fauk. For thehigh Rayleigh numbecase without faulighe temperaturdeviations
have a maximum positive value giist below@ 134 (Figure5.15). For the faulted case where
the host rock has a permeability corresponding to a subcriticatiBaylumber, but with faults
having a permeability olmosttwo orders largerthe maximum positive value of the
temperatureleviatiors is just belowu 13#. Sg, includingfaults that are more permealbtethe
system carnfluence the temperatudeviationsalmost as much asmaverallmorepermeable

rock.
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