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We present a modelling and simulation framework for the dynamics of ovarian follicles and key hor-
mones along the hypothalamic-pituitary–gonadal axis throughout consecutive human menstrual cycles.
All simulation results (hormone concentrations and ovarian follicle sizes) are in biological units and can
easily be compared to clinical data. The model takes into account variability in follicles’ response to stim-
ulating hormones, which introduces variability between cycles. The growth of ovarian follicles in waves is
an emergent property in our model simulations and further supports the hypothesis that follicular waves
are also present in humans. We use Approximate Bayesian Computation and cluster analysis to construct
a population of virtual subjects and to study parameter distributions and sensitivities. The model can be
used to compare and optimize treatment protocols for ovarian hyperstimulation, thus potentially form-
ing the integral part of a clinical decision support system in reproductive endocrinology.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The interplay between the hypothalamus, the pituitary gland
and the gonadal glands regulates and maintains the menstrual
cycle. Gonadotropin-releasing hormone (GnRH) is responsible for
the release of the two gonadotropins: follicle stimulating hormone
(FSH) and luteinizing hormone (LH) from the pituitary gland. Gon-
adotropins have feedback actions on folliculogenesis, meaning the
maturation of the ovarian follicle, and thereby the production of
ovarian hormones. In turn, ovarian hormones such as estradiol
(E2) and progesterone (P4) affect LH and FSH release both directly
and indirectly via GnRH signalling (Speroff and Fritz, 2005).

In this work, we present a nonlinear differential–algebraic sys-
tem of equations (DAEs) to model the time-evolution of these five
key hormones and the growth dynamics of ovarian follicles. The
mechanistic model adopts the interplay of these five hormones
from previously published models of the menstrual cycle (Clark
et al., 2003; Reinecke and Deuflhard, 2007; Röblitz et al., 2013).
As a novelty, our model connects the hormone dynamics to the
time evolution of the diameter of ovarian follicles. Since the unit
of the follicular diameter is given in units of millimeter, our simu-
lation results can be compared to ultrasound measurements. Every
emerging follicle is described by an ordinary differential equation
(ODE) with follicle specific parameters. The work of Lange et al.
(2019) inspired the mathematical formulation of the follicular
growth. The coupling of the follicle model to a hormone dynamics
model makes it possible to perform in silico studies of the interplay
between sex hormones and follicular growth behaviour during
normal menstrual cycles, as well as under ovarian hyper-
stimulation treatment conditions (Fischer et al., 2021).

In a series of articles Schlosser, Selgrade, and Harris-Clark intro-
duced a mathematical model of the hormone control system
(Selgrade, 2001; Clark et al., 2003). Their model combines pituitary
hormone dynamics of LH and FSH with the dynamics of the ovarian
hormones P4, E2, and inhibin. Reinecke and Deuflhard (2007)
expanded and modified the model from Clark et al. (2003). Major
changes were the incorporation of a GnRH pulse generator respon-
sible for the release of GnRH, equations for the GnRH concentra-
tion, receptor binding mechanisms and addition of further
feedback interactions to LH, FSH, and ovarian hormone dynamics.
Röblitz et al. (2013) added further mechanistic details and re-
parameterized the model from Reinecke and Deuflhard (2007) in
order to simulate treatments with GnRH analogues. Mathematical
models and numerical simulations have proven themselves useful
to get a better understanding of various aspects of the menstrual
cycle, for example to study the polycystic ovary syndrome (PCOS)
(Chavez-Ross et al., 1997), to create virtual patient cohorts for in
silico clinical trials (Sinisi et al., 2020; Sinisi et al., 2020), or to sim-
ulate ovarian stimulation protocols (Reinecke and Deuflhard, 2007;
Fischer et al., 2021).
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Fig. 1. Flowchart of key mechanisms of the menstrual cycle. Solid lines indicated
feedback interactions encoded in the model. Positive feedback is encoded by arrows
and negative feedback is presented by bars. Dotted lines represent the following
other types of interactions: FSH release from the pituitary to the blood, the LH
concentration dependent ovulation of dominant follicles, and the production of E2
and P4 by the corpus luteum. Reading the figure from top to bottom, the endocrine
signalling that runs the menstrual cycle can be summed up as follows. GnRH
stimulates LH. FSH is both stimulated and inhibited by GnRH. LH and FSH effect
follicular maturation. Growing follicles produce E2, which stimulates the release of
LH. A sufficiently high LH concentration triggers the ovulation of a follicle which
then transitions into the corpus luteum. The simultaneous release of E2 and P4 by
the corpus luteum inhibits the release of GnRH. Additionally, P4 has an inhibitory
effect on LH and FSH. E2 stimulates or inhibits GnRH concentration dependent on
the E2 concentration.
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Ovarian hormone dynamics and the growth behaviour of ovar-
ian follicles are closely associated. Their interactions are crucial to
enable female fertility. The literature contains different approaches
for modelling follicle growth. The work by Selgrade (2001) and
Clark et al. (2003) used the description of follicular masses in dis-
crete stages to simulate folliculogenesis. As a result, the discrete
number of active follicles is unknown in the model. Another
approach focused on the cellular activity of theca and granulosa
cells (Clément et al., 1997). Both cell types play an essential role
in ovarian hormone production. The authors in Reinecke and
Deuflhard (2007) proposed combining the first two approaches
by describing a granulosa- and a theca-cell mass instead of a folli-
cluar mass, thereby focusing on the location of ovarian hormone
production. An entirely different approach is modeling the dynam-
ics of single follicles instead of follicular or cellular masses (Lacker
and Akin, 1988; Chavez-Ross et al., 1997; Lange et al., 2019). The
simulation of individual follicles allows for the comparison to
ultrasound measurements (Lange et al., 2019) and for observing
pathological behaviour such as PCOS (Chavez-Ross et al., 1997).

In this paper, we combine the approaches from Röblitz et al.
(2013) and Lange et al. (2019) into a model that couples hormone
dynamics with the growth dynamics of individual follicles. Com-
pared to already existing approaches, our model is the first model
that can be used to simulate both hormone concentrations and fol-
licle sizes throughout consecutive menstrual cycles, with or with-
out ovarian stimulation treatment. The two key questions we want
to answer with our model are the following. Does follicular compe-
tition combined with hormone dynamics result in follicular
waves? Are there single parameters that are particularly sensitive
for cycle length, follicular count, or abnormal hormone profiles? In
this paper, we address these two questions by running simulations
and by combining a search in parameter space with model-
checking techniques for parameter space exploration. The model
is evaluated quantitatively by using hormone profile data. Its pre-
dictive power has been tested previously in Fischer et al. (2021),
where we showcased the use of the coupled model to perform a
simulation based study of ovarian hyper-stimulation protocols. In
the following, we introduce this modelling and simulation frame-
work for the menstrual cycle in more detail.
2. Model construction and biological background

The flowchart in Fig. 1 gives an abstract representation of the
interaction network governing the menstrual cycle. The hypothala-
mus releases GnRH in a pulse fashion. GnRH stimulates the synthe-
sis and release of pituitary hormones LH and FSH (Marshall and
Griffin, 1993). In the ovaries, LH and FSH regulate folliculogenesis.
Each growing follicle faces one of two fates: either apoptosis or
becoming the dominant follicle, which releases its egg cell during
ovulation. The remaining parts of the dominant follicle transform
into the corpus luteum. Follicles are recruited in cohorts and the
majority of recruited follicles undergo apoptosis (Fortune, 1994).
Growing follicles are the main source of E2, while the corpus
luteum produces both E2 and P4. Through the blood stream, E2
and P4 arrive at the hypothalamus and the pituitary gland, where
their feedback interactions modulate the GnRH, LH and FSH
dynamics. This process results in quasi-periodic hormone profiles
with a cycle length of 25 to 35 days (Bakos et al., 1994; Harlow,
2000; Bull et al., 2019). However, the average cycle length shows
a high variability between women and is age-dependent. One cycle
consists of two characteristic phases: the follicular phase and the
luteal phase. The ovulation of one follicle, in rare events also mul-
tiple follicles, separates the two phases. The timing of ovulation
mainly determines the cycle length. Therefore, the observed fluctu-
2

ations in the length of the follicular phase are larger than those in
the luteal phase (Bull et al., 2019).

Our model is formulated as a semi-explicit differential–alge-
braic system of the form:

dx
dt ¼ f t; x t; hð Þ; y t; hð Þð Þ
0 ¼ g t; x t; hð Þ; y t; hð Þð Þ; ð1Þ

with a pair of state variables x t; hð Þ; y t; hð Þð Þ depending on the time t
and parameters h. The dynamics of x t; hð Þ are described by ODEs,
whereas the dynamics of y t; hð Þ are described by algebraic
equations.

Since feedback interactions are often unknown or too complex
to be modeled in detail, Hill functions are a common tool to
describe feedback interactions in a qualitative manner. Stimulatory
functions (Hþ) and inhibitory functions (H�) are given by the fol-
lowing equations:

Hþ Si; T
j
i;n

j
i

� �
¼ Si=T

j
ið Þn

j
i

1þ Si=T
j
ið Þn

j
i

H� Si; T
j
i;n

j
i

� �
¼ 1

1þ Si=T
j
ið Þn

j
i

:

ð2Þ

When the regulator species Si approaches a threshold Tj
i > 0, it reg-

ulates species Sj. The Hill exponent nj
i > 0 influences the rapidity of

the regulatory process. A menstrual cycle includes both fast and
slow processes. This is reflected by different exponents in the Hill
functions, that is by a different steepness of the sigmoidal response
curves. If the Hill exponent is high enough, the qualitative response
changes rapidly within a small range of values in the independent
variable, whereas for low Hill exponents (n < 2) the Hill function
effectively behaves closer to a Michaelis–Menten type response.

Parameters and their units are given in the list of parameters in
Appendix A.1. Hill thresholds and other parameters were explored



Table 1
Summary of all GnRH receptor binding mechanisms that are included in the model
equations.

Process Rate

Binding of GnRH to active GnRH receptors kGon � G tð Þ � RG;a tð Þ
Dissociation of active receptor complex kGoff � GRa tð Þ
Recycling of inactive to active receptors kRG;i

recy � RG;i tð Þ
Deactivation of active to inactive receptors kRG;a

inter � RG;a tð Þ
Synthesis of inactive receptors kRG;i

syn

Degradation of inactive receptors kRG;i

degr � RG;i tð Þ
Inactivation of active receptor complex kGRa

inact � GRa tð Þ
Activation of inactive receptor complex kGRi

act � GRi tð Þ
Degradation of inactive GnRH receptor complexes kGRi

degr � GRi tð Þ
Dissociation of inactive receptor complex kGRi

diss � GRi tð Þ
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with the ABC method (Section 3), whereas the Hill exponents were
adopted from previous models. Units for hormone concentrations
are adopted from clinical data to enable the comparison between
experimental data and simulation results. The time scale of reac-
tion rates is ’per day’. Characteristics of the simulation results such
as cycle length are on a time scale of four weeks. The model is ini-
tiated in the early follicular phase of the menstrual cycle. This
phase is characterized by low concentrations of all four hormones.
The initial conditions are chosen accordingly (available from the
code in the GitHub repository).

Our model of the menstrual cycle can be divided into two parts.
The first part describes the hormone dynamics in the hypothala-
mus and the pituitary. These equations are mainly based on the
work of Röblitz et al. (2013) and partially overlap with other pre-
viously published models (Clark et al., 2003; Reinecke and
Deuflhard, 2007; Lange et al., 2019). The second part covers follic-
ular growth (Lange et al., 2019) and ovarian hormone dynamics.
Both parts are connected through feedback interactions, which
closes the loop.

2.1. Hypothalamus and pituitary model

GnRH is released from the hypothalamus in a pulse pattern
(Carmel et al., 1976; Knobil et al., 1980; Martin et al., 1998). To
account for pulsatile release, a release frequency, freq tð Þ, and
amount of released GnRH, mass tð Þ, are included in the equation
for the GnRH concentration, G tð Þ:

freq tð Þ ¼ f 0 � H� P4 tð Þ; Tfreq
P4 ;nfreq

P4

� �
� 1þ Hþ E2 tð Þ; Tfreq

E2 ;nfreq
E2

� �� �
ð3Þ

mass tð Þ ¼ m0

� Hþ E2 tð Þ; Tmass;1
E2 ;nmass;1

E2

� �
þ H� E2 tð Þ; Tmass;2

E2 ;nmass;2
E2

� �� �
ð4Þ

d
dt

G tð Þ ¼ mass tð Þ � freq tð Þ � kGon � G tð Þ � RG;a tð Þ þ kGoff � GRa tð Þ

� kGdegr � G tð Þ: ð5Þ
Hereby, f 0 is the basal frequency and m0 the basal mass. Both are
modulated by Hill functions due to the feedback actions of steroids.
While P4 only has an inhibitory effect on GnRH dynamics, E2 can
exhibit both positive and negative feedback actions (Nakai et al.,
1978). During the luteal phase, E2 and P4 cooperatively inhibit
the GnRH frequency (Goodman et al., 1981). During the period lead-
ing up to the preovulatory LH surge, E2 suppresses GnRH pulse size
and thereby reduces the amount of released GnRH (Evans et al.,
1994). Estradiol’s feedback action on the GnRH release switches
prior to ovulation from negative to positive, and thereby induces
a GnRH surge in the late follicular phase (Christian and Moenter,
2010).

GnRH signalling in the pituitary is receptor mediated. The GnRH
receptor belongs to the class of G-protein coupled receptors (GPCR).
It is important to include the receptor binding mechanism in the
model to enable simulation of drug administration. The works by
Shankaran et al. (2007) and Riccobene et al. (1999) provide the
basis for the receptor binding model used here. Four different
receptor states are considered: (i) active GnRH receptors, RG;a, with
the ability for GnRH binding, (ii) inactive GnRH receptors, RG;i,
which are not able to bind GnRH, (iii) active GnRH-receptor com-
plexes, GRa, which mediate downstream feedback actions, and (iv)
inactive GnRH-receptor complexes, GRi. Table 1 lists all processes.
The corresponding set of ODEs reads:
3

d
dt

RG;a tð Þ ¼ kGoff � GRa tð Þ � kGon � G tð Þ � RG;a tð Þ � kRG;ainter � RG;a tð Þ

þ kRG;irecyRG;i ð6Þ

d
dt

RG;i tð Þ ¼ kGRidiss � GRi tð Þ þ kRG;ainter � RG;a tð Þ � kRG;irecy � RG;i tð Þ þ kRG;isyn

� k
RG;i
degr � RG;i tð Þ ð7Þ

d
dt

GRa tð Þ ¼ kGon � G tð Þ � RG;a tð Þ � kGoff � GRa tð Þ � kGRainact � GRa tð Þ

þ kGRiact � GRi tð Þ ð8Þ

d
dt

GRi tð Þ ¼ kGRainact � GRa tð Þ � kGRiact � GRi tð Þ � kGRidegr � GRi tð Þ � kGRidiss

� GRi tð Þ ð9Þ
As suggested by Schlosser and Selgrade (2000), equations for LH and
FSH are based on synthesis–release–clearance relationships. The

basal LH-synthesis rate, bLH
syn, is stimulated by E2 and the active

GnRH-receptor complex and inhibited by P4. Eqs. (12) and (13)
account for the release of LH from the pituitary into the blood
stream and the related volume change. LH is cleared from the blood

with a clearance rate constant kLHcl . LH dynamics are formulated as
follows:

SynLH tð Þ ¼
bLH
syn þ kLHE2 � Hþ E2 tð Þ; TLH

E2 ;n
LH
E2

� �
1þ kLHP4 � P4 tð Þ

TLHP4

� �nLH
P4

� 1þ H� freq tð Þ; TLH
freq;n

LH
freq

� �� �
ð10Þ

RelLH tð Þ ¼ bLH
rel þ kLHGRa � Hþ GRa tð Þ; TLH

GRa ;n
LH
GRa

� �� �
� LHPit tð Þ ð11Þ

d
dt

LHPit tð Þ ¼ SynLH tð Þ � RelLH tð Þ ð12Þ

d
dt

LHBlood tð Þ ¼ 1
VBlood

� RelLH tð Þ � kLHcl � LHBlood tð Þ: ð13Þ

FSH in the pituitary, FSHPit , has a synthesis rate constant bFSH
syn , which

is inhibited by P4 and high GnRH frequencies (Marshall and Griffin,
1993). The release of FSH from the pituitary, RelFSH tð Þ, is stimulated
by the active GnRH receptor complex, GRa tð Þ and inhibited by the
amount of E2 (Shaw et al., 2010). The transition between compart-
ments with different sizes (pituitary to blood, blood to ovaries) is
related to a change in concentration, which is included in the equa-
tions through different compartment volumes. In the ovaries, FSH
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binds its receptor located at the follicles’ surfaces with the binding

rate kFSHon � RFSH tð Þ � FSHOv tð Þ. FSH is cleared from the blood with clear-

ance rate constant kFSHclBlood
and the ovaries with clearance rate con-

stant kFSHclOv
. The ODEs describing the FSH concentrations in the

system read:

SynFSH tð Þ ¼ bFSH
syn

1þ P4 tð Þ
TFSHP4

� �nFSH
P4

� H� freq; TFSH
freq;n

FSH
freq

� �
ð14Þ

RelFSH tð Þ¼ bFSH
rel þkFSHGRa �Hþ GRa tð Þ;TFSH

GRa ;n
FSH
GRa

� �
�H� E2 tð Þ;TFSH

E2 ;nFSH
E2

� �� �
�FSHPit tð Þ

ð15Þ

d
dt

FSHPit tð Þ ¼ SynFSH tð Þ � RelFSH tð Þ ð16Þ

d
dt

FSHBlood tð Þ ¼ 1
VBlood

� RelFSH tð Þ � kFSHBlood þ kFSHclBlood

� �
� FSHBlood tð Þ ð17Þ

d
dt

FSHOv tð Þ ¼ VBlood

VOv
� kFSHBlood � FSHBlood tð Þ

� kFSHon � RFSH tð Þ � kFSHov
clOv

� �
� FSHOv tð Þ ð18Þ

The dynamics of the FSH receptor on the surface of follicles is mod-
eled as follows: FSH binds to free receptors, RFSH , with a binding rate

constant kFSHon , forming a FSH-receptor complex FSHR that dissociates

with rate constant kFSHdis . The inactive receptors RFSH;dis get reactivated

with rate constant kFSHrecy.

d
dt

RFSH tð Þ ¼ kFSHrecy � RFSH;dis tð Þ � kFSHon � FSHfoll tð Þ � RFSH tð Þ ð19Þ

d
dt

FSHR tð Þ ¼ kFSHon � FSHfoll tð Þ � RFSH tð Þ � kFSHdis � FSHR tð Þ ð20Þ

d
dt

RFSH;dis tð Þ ¼ kFSHdis � FSHR tð Þ � kFSHrecy � RFSH;dis tð Þ: ð21Þ
2.2. Ovarian model

The authors in Lange et al. (2019) propose an ODE that
describes the growth behaviour of a single follicle. We adjusted
the equation and integrated hormone dependencies. Here, the size
of each follicle xi which is recruited during the simulation time, is
described as follows:

d
dt

xi ¼ Hþ FSHR; TFSHR ið Þ;nFSHRð Þ

� n� xið Þxi c� j
X
j

xmj � lxmi
 ! !

: ð22Þ

This equation includes follicle specific parameters as well as param-
eters which are shared among all follicles. The following five param-
eters are common for all follicles: (i) maximum size of each follicle,
n, (ii) growth rate c, (iii) strength of competition, j, (iv) fractal
dimension m, and (v) proportion of self-harm l. l relates to the role
of androgen in follicular maturation and atresia during the late fol-
licular phase. The source of androgen are the follicles themselves,
and the inhibitory effect of androgen on follicular maturation
appears to be important to ensure mono-ovulation (Hillier and
Tetsuka, 1997; Franks and Hardy, 2018). The parameter m has been
fixed to m ¼ 2 in all simulations, meaning that the strength of com-
4

petition is proportional to the follicular surface area. The positive
Hill term in front of the equation contains a follicle specific thresh-
old, TFSHR ið Þ, which we refer to as FSH sensitivity threshold value.
This follicle-specific threshold causes individual growth behaviour.
Follicular growth is stimulated if the FSH-receptor complex concen-
tration approaches and exceeds this threshold. This formulation is
related to the biological finding that follicle growth does not occur
below a certain level of FSH and that follicles respond differently to
FSH (Brown, 1978). In our simulation, the threshold values are sam-
pled from a normal distribution. Overall, whether a follicle starts
growing depends on various factors, such as the current hormone
levels, its FSH sensitivity threshold value, and the number and size
of competing follicles.

We model the time points at which follicles are recruited as a
Poisson point process with parameter k being equal to the
expected number of follicles that start growing within a time inter-
val of certain length. The Poisson parameter k is modulated by the
FSH concentration because the number of recruited follicles is
affected by the FSH level:

k ¼ k0 � 1þ sPoisFSH � Hþ FSH Tð Þ; TPois
FSH ;n

Pois
FSH

� �� �
The FSH window concept stresses the importance of elevated FSH
levels for the selection of a dominant follicle (Baerwald et al.,
2011; Fauser et al., 1997; Adams et al., 1993). The time period dur-
ing which FSH is above a certain threshold effects the number of fol-
licles reaching the dominant follicle’s size (Schipper et al., 1998;
Baird, 1990). This concept is incorporated in our model. Coupling
j, which is the parameter addressing the competition for domi-
nance between follicles, to a negative Hill term causes an FSH-
dependant decrease in follicular competition.

j ¼ j0 � H� FSH; TjFSH;n
j
FSH

� �
: ð23Þ

Follicle growth is stimulated by FSH and inhibted by P4 (Baird et al.,
1984). Therefore, two Hill functions modulate the growth rate c:

c ¼ c0 � H� P4; TcP4;n
c
P4

� � � Hþ FSHR; TcFSHR;n
c
FSHR

� �
: ð24Þ

A major source of E2 are growing follicles and the dominant follicle
produces the most E2 (Baird and Fraser, 1975; McNatty et al., 1976;
Hiller et al., 1981), considered by the model with a size-dependant
E2 production. We assume the E2 production by growing follicles to
be proportional to the follicular surface term FS,

FS ¼ p �
X

Hþ xi; TFS;nFSð Þ � xið Þ2: ð25Þ
The positive Hill function with TFS ¼ 15 accounts for the fact that
larger follicles have a higher contribution to the E2 production.

The overall E2 production is the sum of basal production, bE2
syn, the

E2 production by follicles (first addend in Eq. 26), and the E2 pro-
duction of the corpus luteum after the ovulation of a dominant fol-
licle (second addend in Eq. 26):

E2 tð Þ ¼ bE2
syn þ sFS � FSþ hE2 � exp �wE2 t � TOvu þ sð Þð Þ2

� �
ð26Þ

Similarly, P4 is produced by the corpus luteum:

P4 tð Þ ¼ bP4
syn þ hP4 � exp �wP4 t � TOvu þ sð Þð Þ2

� �
ð27Þ

The parameters for steroid production during the luteal phase, i.e.,
peak heights hE2; hP4, and inverse peak width wP4, were estimated
by fitting Gaussian curves to the data from 12 healthy patients
(Fischer et al., 2021; Röblitz et al., 2013). The peaks’ center position
TOvu þ sð Þ is set with respect to the last time point of ovulation, Tovu.

Overall, we were able to decrease the number of parameters
from 119 (114 parameters in Röblitz et al. (2013) and 5 parameters
in Lange et al. (2019)) to 82, mainly by replacing the heuristic
description of the follicular growth dynamics used in Röblitz
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et al. (2013) by the equation from Lange et al. (2019). A detailed
parameter list can be found in Appendix A.1.

2.3. Model simulation

In the presented model, 13 ODEs and 2 algebraic equations
describe the hormone dynamics. The number of ODEs describing
follicular growth increases with simulation time because a new
ODE is created for each follicle that is initialized at a given time
point. Moreover, the model exhibits a stochastic behaviour because
the initial times of follicles and the FSH sensitivity of follicles fol-
low random processes. This causes variability within a simulation
and between simulations.

Prior to the simulation, parameter values and initial conditions
are loaded from files and the simulation time interval [tb; te] is set
(Algorithm1). In addition, the entries of an array with follicle-
specific FSH sensitivity threshold values, TFSHR ið Þ, are sampled from
a normal distribution.

During the simulation, the global simulation time [tb; te] is
divided into sequential time intervals t; tn½ �, whereby tn are either
the time points at which new follicles emerge or the time points
of ovulation. In any case, the simulation has to stop at these inter-
mediate time points. This results in a more complex code structure,
which is represented in Algorithm1.

Algorithm1: Model simulation

Input: begin time tb, end time te, initial system state
x tbð Þ; y tbð Þ

Output: system state x teð Þ; y teð Þ
Initialize
t ¼ tb; x tð Þ ¼ x tbð Þ; y tð Þ ¼ y tbð Þ; startNewFollicle ¼ 1;
whilet 6 tedo
ifstartNewFollicle ¼¼ 1 then
sample time s at which the next follicle emerges;
tnextStart ¼ t þ s;

end if
if tnextStart < te then
tn ¼ tnextStart;

else if
tn ¼ te;

end if
tspan ¼ t; tn½ �;
x tf
� �

; y tf
� �� �

; t 6 tf 6 tn  DAE solver with event
detection
iftf < tn then
startNewFollicle ¼ 0; .ovulation occurd in tspan
else iftf ¼¼ tn then
startNewFollicle ¼ 1;
ifthe right hand side of the ODE for a new follicle is

positive then
initiate a new follicle;

end if
end if
update the destinies of all follicles;

t ¼ tf ;
end while
The starting time of a new follicle, tnextStart , is determined from
an exponential distribution with parameter 1=k, the inverse Pois-
son parameter. At each time point tnextStart , a new follicle is initial-
5

ized with size yfoll0 and specific FSH sensitivity value TFSHR ið Þ. Then
the right hand side of the ODE, which can be interpreted as a
growth rate corresponding to this new follicle, is evaluated. A neg-
ative right hand side means a decrease in size, i.e., the new follicle
cannot start growing under the conditions at this specific time
point and is hence rejected. In case of a positive growth rate, the
new follicle is added to the list of active follicles and the ODE sys-
tem is extended by one equation.

The time integration is evaluated by an event function that
checks at every time step if an ovulation occurred. An ovulation
is detected if the following two criteria are met:

- the largest follicle is at least 18 mm in size
- the value of LH is greater than the threshold parameter
TLH ¼ 25mIU

mL

Whenever the integration stops, either because ovulation occurred
or because a new follicle is initiated, the destinies of all follicles are
updated. For this purpose, the state of maturation for each follicle
is evaluated based on the right hand side of the ODE system. Four
possible follicular destinies are defined: (i) ovulation, (ii) growth,
(iii) decreasing, and (iv) large but no ovulation because of too
low LH concentrations.

The simulation output covers time courses of hormone concen-
trations and follicles’ diameters. In addition to that, there is a read-
out of the number and time points of ovulation and cycle lengths.
The model and the simulation algorithm have been implemented
in MATLAB and are accessible on GitHub (https://github.com/SoFi
work/GynCycle_newVersion). Numerical simulations have been
performed using the ODE solver ode15s.
3. Methods

We used Approximate Bayesian Computation (ABC) with sum-
mary statistics to investigate the parameter space. The goal is to
find parameters that have narrow value ranges and that can there-
fore be interpreted as sensitive, and to find parameter clusters.
3.1. Population of models, model checking, and sensitivity analysis

Sensitivity analysis methods help to understand how uncer-
tainty and noise in the model input effect the model output and
its ambiguity. Classical sensitivity analysis algorithms evaluate
model outputs at specific time points. However, these methods
are not applicable to the presented model because of variation in
simulation results, such as cycle length and composition of follicu-
lar cohorts, prevent the specification of a set of evaluation time
points. Alternatively, ABC can be used to study parameter spaces
and sensitivities and to estimate parameters. The overall idea of
all ABC-based approaches is to bypass the evaluation of a likeli-
hood function by performing high numbers of simulations which
are compared to observed data (Toni et al., 2009). Our ABC algo-
rithm is based on the ABC rejection sampler introduced by
Pritchard et al. (1999) and consists of the following four steps:

1. A parameter vector ĥ is sampled from a prior distribution p hð Þ.
2. Using ĥ as model parameters, a data set bD is generated by

simulation.

3. bD is evaluated with respect to a set of defined criteria and will
either be accepted or rejected.

4. Return to step 1.
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We defined two sets of prior distributions: (i) p hð ÞHormones for
parameters associated with hormone dynamics, and (ii)
p hð ÞFollicles for parameters used in the follicular growth equation.
Parameters that were used to create the two model populations
are marked (⁄) in the parameter list given in Appendix A.1. In
all cases, model parameters were sampled from uni-variate log
normal prior distributions with mean l ¼ h0, where h0 denotes
the original parameter value (Appendix A.1), and standard devia-
tion r ¼ 0:15.

The comparison between simulations is challenging because of
the stochastic elements included in the model. The composition of
follicle cohorts varies between simulations because the time points
of follicle initialization and the follicle-specific sensitivities to FSH
are sampled prior to each simulation run. Differences in the follic-
ular cohort composition influence the hormone dynamics and the
selection of the dominant follicle. To study the effects of variation
in the model parameters on the simulation results, we needed to
ensure that the effects we observe are not caused by differences
in follicular cohort composition. Therefore, the initialization time
points and FSH sensitivity values of the follicles were fixed for all
simulations performed for the ABC analysis. However, we still
observe variations in cycle length and offset between simulations
with different parametrizations. Therefore, a distance function to

evaluate the difference between bD and D is not applicable. Instead,
the following three characteristics (Fig. 2) were assessed as sum-
mary statistics for each simulation run and were used for the
comparison.

- At least 75% of the FSH profiles of consecutive cycles have to fol-
low a characteristic profile as it is illustrated in Fig. 2.

- The mean cycle length has to be between 21 and 40 days
(Rosenfield, 2013 and National Health Service, 2021 state that
most cycles are within this range.)

- The variability in cycle length needs to be smaller than 4 days.

The simulation time was set to 300 days, which ensures that about
13 consecutive menstrual cycles can be evaluated (Fig. 2a). The FSH
profile of each simulated cycle was evaluated automatically by
checking three properties which give the profile its characteristic
shape (Fig. 2b):

- decrease of the FSH concentration between 5 and 3 days before
ovulation

- increase of the FSH concentration right before ovulation
- decrease of the FSH concentration after ovulation

Each cycle within a simulation run was marked by the ovulation of
the dominant follicle. This characteristic time point was used as a
Fig. 2. Sketch of simulation results to illustrate the assessment of summary statistics. G
(ovul) of a dominant follicle are marked by terminating growth trajectories. a) Within eac
from one ovulation of a follicle to the next one. b) The shape of each FSH profile is evaluat
(five to two days prior to ovulation), (ii) an increase during the two days before ovulati
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reference time point to calculate the average rate of change of the
FSH profile within a defined time interval. The cycle length of all
menstrual cycles within one simulation was also evaluated auto-
matically by measuring the time difference from one ovulation to
the next one (Fig. 2a).

We observed that in simulations with a regular FSH profile, also
the remaining hormone profiles are physiologically reasonable.We
therefore only analysed FSH profiles for the summary statistics.
This observation can certainly be attributed to the fact that the
model represents a fully closed feedback loop.

Based on the summary statistics, simulation runs were classi-
fied as successful or unsuccessful, whereby successful simulations
constitute a virtual patient population. A simulation was classified
as successful if all of the above criteria were satisfied. For each
parameter we thus obtained one distribution from successful sim-
ulations and one distribution from unsuccessful ones. The similar-
ity between these two discrete distributions was evaluated using
the Jensen–Shannon divergence, which is a symmetric and
smoothed formulation of the Kullback–Leibler divergence (Lin,
1991).

3.2. Parameter clustering

For each of the two model populations, created by variation in
either the follicle or the hormone parameters, the parameter
spaces of the two subgroups (accepted and rejected simulations)
were analysed with the aim to find parameter dependencies and
clusters. By comparing the individual parameter distributions of
successful and unsuccessful simulations, we explore differences
in the parameter ranges between these two groups.

For this purpose, we applied a spectral clustering method, the
robust Perron cluster analysis (PCCA+) (Röblitz and Weber,
2013), to a pairwise similarity matrix. The similarity between
two parameter vectors i and j; sij, was derived from the pairwise
distance dij as sij ¼ 1� dij, whereby pairwise distances were nor-
malized such that maxi;jdi;j ¼ 1. For the distance measure dij, we
used a path-based distance measure based on connectedness
rather than compactness (Fischer et al., 2001). This criterion cap-
tures data sources that are spread out on a low-dimensional man-
ifold which is embedded in a high dimensional data space. The
connectedness criterion considers two objects as similar if there
exists a mediating path without an edge with large cost, whereby
we used the Euclidian distance as cost function. This distance can
be computed by solving the minimax path problem (also called
bottleneck shortest path problem) on the complete undirected
graph, which asks for the path between two points that minimizes
the maximum edge capacity. We used the minimax variant of the
Floyd-Warshall algorithm to solve this problem.
rey lines are individual ovarian follicles. The FSH profile is given in red. Ovulations
h simulation multiple consecutive menstrual cycles are observed. A cycle is defined
ed based on three characteristic slopes: i) a decrease during the late follicular phase
on, and (iii) a decrease during the luteal phase (during seven days after ovulation).



Fig. 3. Example simulation of three consecutive cycles. Panels a-d) show the time-evolution of the four hormones P4, LH, E2, and FSH. Panel e) illustrates the growth
trajectories of follicles within this time frame. Panel f) is a zoom into the second cycle represented on the left.

S. Fischer-Holzhausen and S. Röblitz Journal of Theoretical Biology 547 (2022) 111150
4. Results

4.1. Model simulation

The model enables simulations of consecutive cycles as repre-
sented in Fig. 3, which displays simulated follicular growth trajec-
tories (Fig. 3e) and hormone profiles (Fig. 3a-d) of three menstrual
cycles originating from the same simulation. The zoom in panel
(3f) showcases the interplay between follicular growth and hor-
mone dynamics. Fundamental features of the interaction are
apparent. Follicles grow under elevated FSH levels and the peak
in LH concentration triggers the ovulation of the largest active fol-
licle. Increased P4 concentrations during the luteal phase prevent
the growth of any large follicles.

Furthermore, follicles grow in cohorts/waves consisting of
about five follicles. The property that follicles grow in distinct
7

cohorts (one cohort during the follicular phase and one during
the luteal phase) is not implemented in the model itself. This emer-
gent behaviour is rather a result of the interplay between hor-
mones and follicles covered by the model. The elevated P4 levels
during the luteal phase prevent ovulation. Hence, there is no dom-
inant follicle when the P4 level is high. The ovulation of the dom-
inant follicle, which is visible as a terminated growth trajectory
around day 15, is aligned with the LH peak.

Fig. 4 shows the hormone profiles (LH, FSH, E2, and P4) of three
consecutive cycles and pooled hormone data for one menstrual
cycle from 12 healthy women (data set from Röblitz et al., 2013).
The three consecutive cycles originating from one simulation and
were overlaid by shifting them along the time axis. All curves are
aligned on the day of ovulation. Simulated peak concentrations
and concentration ranges agree with the data set. The overall shape
of simulated hormone profiles are also comparable to the data. The



Fig. 4. Comparison of simulated hormone profiles for LH, FSH, P4 and E2 and pooled hormone data from 12 healthy women. Simulated hormone profiles and measurement
data are aligned with the ovulation at day 13. Grey dots represent the pooled data set. For each hormone, three consecutive cycles are overlaid.
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simulated cycle lengths range from 22.7 to 27.8 days. A detailed
overview of the cycle length distribution is presented in Appendix
A.2.

However, there are notable discrepancies between the data and
the simulation results. The measured FSH profiles show a longer
rise of FSH during the follicular phase from day 1 to day 10
(Fig. 4b). The simulated LH peak is shifted to the left compared
to the peak in the data (Fig. 4 a). There is also a mismatch between
the data and the simulated hormone profile for E2 during the early
follicular phase up to day 5 (Fig. 4a).

4.2. Model Analysis

To investigate the parameter space, we created two populations
of models, one focusing on hormone dynamics and one focusing on
follicular growth behaviour. Each population is composed of 1000
parameter realizations. Follicles were initialized with the same
follicle-specific properties (FSH sensitivity and start times) to
ensure that variability is not caused by changes in the initial com-
position of the cohort of follicles. Each simulation was checked
automatically according to the shape of the FSH profile, the cycle
length and its variability (Fig. 2). A simulation that meets all three
criteria was categorized as successful. Since the duration of a cycle
is measured from one ovulation to the next one, ovulations of two
follicles shorty after each other cause an incorrect cycle length.
Hence, successful simulations contain only mono-ovulatory cycles.
This bias is negligible, because we rarely observed the ovulation of
multiple follicles around mid-cycle in our simulation results.

Figs. 5a) and b) show the numbers of successful and unsuccess-
ful simulations in the two populations of models. For both popula-
tions about 1=3 of the parameter realizations give successful
simulations. The event plots in Figs. 5c) and d) illustrate the criteria
on which 100 randomly selected unsuccessful simulations failed.
In all of these 100 simulations, it is the FSH profile that does not
satisfy the criteria, whereas in both model populations abnormal
8

cycle length or cycle length variability are less often the reason
for failure.

Fig. 5e) shows the distribution for the model parameter l,
which is one of the parameters varied to create the follicle specific
model population. The distribution of l differs between successful
simulations (green histogram) and unsuccessful simulations (red
histogram), with a Jensen-Shannon divergence of 0.13. For all other
parameters striking differences are not present (Figs. A.7 and A.8).
Using Pearson correlation, we investigated the relationship
between l and the average cycle length as well as between l
and the variance of the cycle length. A negative linear correlation
was found between l and the average cycle length (Pearson corre-
lation coefficient = �0.71, see Fig. 5f). The analysis was repeated for
an alternative follicle initialization, which gave comparable results
(A.4).

By applying a clustering method on the multivariate parameter
distributions, we aimed at finding parameter clusters to classify
simulations. Our hypothesis was that parameters that lead to suc-
cessful and unsuccessful simulations, respectively, will fall into dif-
ferent clusters. We applied PCCA+, which did not indicate any
clusters in the parameter space.

5. Discussion

This work presents and explores a novel mathematical model of
the menstrual cycle, which combines hormone dynamics and fol-
licular growth in a mechanistic manner. None of the previously
published models allowed for simultaneously simulating hormone
dynamics and follicular maturation throughout consecutive men-
strual cycles. The applicability of our model in a medical setting
is demonstrated in Fischer et al. (2021), which can be considered
as a validation for the presented model.

The growth of ovarian follicles in cohorts of about five follicles
can be observed as an emerging property in our simulation results.
While the growth of ovarian follicles in cohorts is a well-described



Fig. 5. Summary of the model analysis. The left box sums up results for the population of models that resulted from variation of parameters important for hormone dynamics,
whereas the right box shows results for the model population based on variation of follicle parameters. Each population consists of 1000 randomly drawn parameter
realizations. Histograms in Figures a) and b) present the count of successful (green) and unsuccessful (red) simulations for each population of models. The event plots in
Figures c) and d) illustrate the cause of failure for 100 failed simulations from each population (top/blue: failure due to irregular FSH profile, middle/red: failure due to
abnormal cycle length, bottom/yellow: failure due to abnormal cycle length variability). Figure e) shows the distribution of parameter l, which is the proportion of self harm
included in the follicle growth equation. The solid black line shows the prior distribution of l used for sampling. The green and red distributions are the parameter
distributions for successful and unsuccessful simulations, respectively (Jensen-Shannon divergence = 0.13). Figure f) demonstrates the negative linear correlation between l
and the average cycle length (Pearson correlation coefficient = �0.71).
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phenomenon in some mono-ovulatory species such as cattle, it
counts as hypothesis in human. Our model can be considered as
further evidence that follicular waves also occur in human.

Differeences between patients’ data and simulation trajectories
are visible in Fig. 4. We argue that the difference in cycle length
contributes to the mismatches. The simulated average cycle length
ranges from 22.7 to 27.8 days (Fig. A.6), which is within the phys-
iological range (Bull et al., 2019). The cycle length is unfortunately
not specified in the data set, but we estimated it to be about
28 days. Therefore, simulated cycles can be about five days shorter
than in the data set. In line with the literature (Bull et al., 2019), we
implemented the model in a way that little variation occurs in the
length of the luteal phase. It is therefore the follicular phase that
causes variation in cycle length and that is responsible for shorter
simulated cycles (compared to the duration of the follicular phase
in the patients’ data). A shorter follicular phase in the simulations
compared to the data explains the shift of the LH peak as well as
the shorter period of the FSH rise.

It is also important to note that neither the parameters in the
follicle model nor in the equations for E2 and P4 were optimized
using these data, in contrast to the parameters in the hormone
model, which had previously been estimated from these data
(Röblitz et al., 2013). Therefore, a re-parameterization of the model
could improve the difference between data and simulation curves,
but parameter estimation for the given model is challenging. Most
of the parameters included in the current model version are non-
identifiable given the available data. One reason is that there is
simply not enough data available given the complexity of the
model.

The balance between available data and model parameters
could be improved with a systematic model reduction. However,
this would result in losing parts of the model for which no mea-
surement data are available at the moment, e.g., the GnRH receptor
binding model. By removing that part of the model, treatments
with GnRH analogues could not be simulated any more.

Moreover, the data we could access only covers hormone pro-
files for one cycle, and does not provide any information about
9

individuals’ cycle lengths or variability. Since our model simulates
consecutive cycles, data sets covering multiple menstrual cycles
would be preferable.

We used an ABC-based approach to investigate model parame-
ters in more depth. Our hypothesis was that parameters for suc-
cessful/unsuccessful simulations would form clusters. However,
PCCA + cluster analysis did not reveal clusters in the parameter
space. We conclude that there is no particular subset of parameters
that leads to non-biological simulation results. Instead, our analy-
sis indicates that the composition of the complete parameter set
determines the fate of a simulation.

By comparing the parameter distributions or each parameter
with respect to the simulation fate of successful and unsuccessful
simulations, we did not find parameters that are restricted to nar-
row ranges of values. This leads us to the conclusion that non of the
selected parameters is particularly sensitive. A clear limitation of
our approach is that the parameter distributions were not derived
from data.

Based on the Jensen–Shannon divergence, the distribution of l
differs between successful and unsuccessful simulations. The cor-
relation between l and the cycle length is in line with biological
knowledge. l encodes a process that results in follicle atresia.
Hence, if l is higher, more follicles undergo atresia, which reduces
competition and results in earlier emergence of a dominant follicle.

As demonstrated in Fischer et al. (2021), the model can be used
to simulate controlled ovarian stimulation protocols. However, the
model formulation does not allow for an application to all patho-
logical cases. The mathematical formulation of the follicular
growth adopted from Lange et al. (2019) does not allow for the
arrest of multiple premature follicles as it is described for the Poly-
cystic Ovary Syndrome (PCOS). Therefore, this model is not eligible
to describe PCOS or to simulate ovarian stimulation protocols in
PCOS patients. Cell-based models of follicular morphogenesis such
as the one proposed in Monniaux et al. (2016) could allow for a
simulation-based exploration of PCOS. Note that the model could
potentially also be used to further investigate the relationship
between follicles in mono-ovulatory species compared to poly-
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ovulatory species, since these mechanisms are still poorly under-
stood (Sirotkin et al., 2017).

To conclude, our presented modelling approach is the first one
that allows for simulation-based studies of the interplay between
hormones and ovarian follicles throughout consecutive menstrual
cycles. Therefore, it can be used to test new treatment strategies
for ovarian hyper stimulation in silico. Our simulation results dis-
play variability in the cycle dynamics as a result of stochasticity in
the recruitment process of follicles. To our knowledge, none of the
previously published models contains stochastic elements result-
ing in variability between cycles, which resembles intra-
individual variability. The growth of follicles in cohorts is an emer-
gent property of the implemented mechanistic interactions
between hormones and follicles, which supports the follicular
wave theory in humans. Re-parameterization of the model could
increase its predictive values, but this would require longitudinal
ultrasound measurements of follicles as well as hormone profiles
throughout consecutive cycles from several individuals.
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