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1   |   INTRODUCTION

Patients with haematologic malignancies have been se-
verely affected by the SARS-CoV-2 infection, those with 
CLL in particular.1-3 In the Stockholm region, Sweden, 
during the first wave of the COVID-19 pandemic, 32% of 

consecutively identified, hospitalized patients with CLL 
succumbed to the infection, whereas during the second 
wave, as many as 18% died, despite improved medical 
care.3 There is currently no clear understanding of the un-
derlying mechanism for the remarkably poor outcome in 
this patient population.
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Abstract
Infections with SARS-CoV-2 have been unduly severe in patients with haema-
tological malignancies, in particular in those with chronic lymphocytic leukae-
mia (CLL). Based on a series of observations, we propose that an underlying 
mechanism for the aggressive clinical course of COVID-19 in CLL is a paucity 
of plasmacytoid dendritic cells (pDCs) in these patients. Indeed, pDCs express 
Toll-like receptor 7 (TLR7), which together with interferon-regulatory factor 7 
(IRF7), enables pDCs to produce large amounts of type I interferons, essential 
for combating COVID-19. Treatment of CLL with Bruton's tyrosine kinase (BTK) 
inhibitors increased the number of pDCs, likely secondarily to the reduction in 
the tumour burden.
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The risk of death from COVID-19 doubles every five 
years from childhood and onwards, and elderly men are 
particularly susceptible.4 CLL is also a disease of the el-
derly with a male preponderance, but age and sex cannot 
fully account for the high mortality rates in CLL. While 
immunosuppressive treatments potentially impair the 
patients’ ability to overcome the infection, many individ-
uals with early-stage, untreated CLL had similar poor out-
come, and some were in fact first diagnosed with CLL at 
the intensive care unit.1,3

2   |   RATIONALE FOR A pDC 
DEFECT AS A CAUSE OF SEVERE 
COVID -19 IN CLL

Based on a series of observations explained beneath, we 
propose that an underlying mechanism for the aggressive 
clinical course of COVID-19 in CLL is a paucity of pDCs 
(Figure 1).

First, an international consortium of researchers 
has identified an essential role for the innate interferon 
(IFN) system in the protection from severe COVID-19. 
Autoantibodies against type I IFN or rare loss-of-
function variants in genes implicated in viral sensing, 
type I IFN production, and signalling could explain up 
to 20% of severe COVID-19 cases.4 Notably, damaging 
X-linked TLR7 variants were identified in young, pre-
viously healthy males with life-threatening COVID-19 
pneumonia.5,6 Such rare TLR7 inborn errors of immu-
nity (IEI) account for as many as 1.8% of life-threatening 

COVID-19 cases among men under 60  years of age.6 
TLR7 is a receptor for single-stranded RNA and is pre-
dominately expressed by pDCs,7 sensing infection by 
viruses such as SARS-CoV-2. Furthermore, autoso-
mal recessive variants in IRF7 have been described in 
several previously healthy adults with life-threatening 
COVID-19 pneumonia.8 Interferon-regulatory factor 7 
(IRF7) is a transcription factor constitutively expressed 
in pDCs, serving as a master regulator of type I IFN gene 
transcription.9 It has also been shown that pDCs pro-
duce more Type I interferon than any other cell type in 
blood.10,11 Thus, together, the demonstration that TLR7 
and IRF7 deficiency causes severe COVID-19 provides a 
compelling link to pDCs as a critical source of type I IFN 
in protection from SARS-CoV-2.

Secondly, there is clear evidence that the number of 
circulating pDCs is lowered in CLL, as reported by us and 
others.12-14 In addition, pDC precursors were found to be 
functionally impaired.15 Moreover, the best experimen-
tal model available for CLL, namely the TCL1-transgenic 
mouse, is also characterized by low numbers/frequencies 
of pDCs in the spleen, posited to explain an overall high in-
fectious susceptibility in CLL.12 What is the reason for the 
paucity of pDC in CLL? To answer this question, we de-
scribe several key observations that have been made. First, 
circulating pDCs decline with age.16 Furthermore, differ-
ences in TLR7 expression may explain some of the male 
bias generally observed with respect to severe COVID-19 
susceptibility.17 Pioneering studies of mouse models 
linked gene dosage effects at the Tlr7 locus to autoreactive 
B cell responses and autoimmunity.18 TLR7 belongs to the 

F I G U R E  1   Plasmacytoid dendritic cell (pDC) and susceptibility to severe COVID-19. Several lines of evidence have highlighted the 
importance of pDC-derived type I IFN production for protection from severe COVID-19. pDC functional impairment of TLR7-mediated 
viral sensing in endosomes, or of IRF7-driven transcription, blocks subsequent IFN-α production and occurs by genetic variants causing 
TLR7 and IRF7 loss-of-function (left). Alternatively, as we propose, in the case of CLL, severe COVID-19 is caused by a reduced number of 
circulating pDC (right), secondary to the tumour burden (CLL cells are depicted as lymphocytes with antibodies on their surface)
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selected group of genes that do not undergo lyonization,19 
with higher levels of TLR7 being expressed in females as 
compared to males.20 Moreover, women seem to have a 
higher frequency of pDCs, and oestrogen was reported to 
increase TLR7 activity.21 However, among patients with 
CLL, there is no overt sex-dependent difference in sur-
vival among SARS-CoV-2 infected individuals.2,3 Thus, 
the preferential depletion of pDCs in CLL remains enig-
matic. We speculate that the tumour burden in CLL, and 
not the treatment, is what may cause the striking reduc-
tion in pDCs and susceptibility to severe COVID-19. Even 
if other haematopoietic cell lineages are also lowered in 
CLL, as mentioned, multiple lines of evidence suggest that 
pDCs are essential for the early, innate defence against 
SARS-CoV-2.5-15

It is unclear to what extent the tumour burden in CLL 
inhibits pDC development. In both CLL patients and in 
the TCL1 mouse model, pDC precursors were found in 
normal amounts in the bone marrow. In the periphery, 
pDC numbers were reduced only in patients with progres-
sive disease and linked to decreased FMS-like tyrosine ki-
nase 3 receptor (FLT3) expression.12 Furthermore, levels 
of TLR9, another Toll-like receptor highly expressed in 
pDCs, were reduced in mature pDCs obtained from the 
TCL1 mouse and from patients with advanced CLL, lead-
ing to a reduced IFN-α response to TLR9 agonists. In the 
mouse model, inhibition of TNF or TGF-β could increase 
FLT3 expression and restore pDC numbers.12 Other ex-
perimental models have demonstrated that both IFN-α 
and IFN-γ can promote pDC development and differen-
tiation synergistically with FLT3.22-24 The mentioned in-
sights into these cytokine networks also provide clues to 
how pDC numbers might be enhanced in CLL patients to 
strengthen viral immunity.

Prior to the COVID-19 outbreak, we and, during the 
pandemic, others reported that pDCs increase in num-
ber in CLL patients under treatment with BTK inhibitors 
(BTKi), as a likely consequence of the drug-mediated 
reduction in the tumour burden.13,14 Conversely, we 
observed no changes in plasma IFN-γ,25 one of the cy-
tokines influencing the generation of pDCs. BTKi act 
by inhibiting the intracellular signalling molecule BTK 
through the binding to its catalytic domain.26 BTKi have 
during recent years revolutionized the treatment of CLL 
and other haematopoietic malignancies and, to a great 
extent, replaced chemotherapy and monoclonals.27-29 A 
majority of all clinical trials has been performed using 
the first approved BTKi, ibrutinib (Imbruvica); both ef-
fects and adverse effects may differ depending on the 
compound, as reviewed.30 Presumably, all BTKi which 
reduce the tumour burden could promote the generation 
of pDCs. However, in order to achieve a profound reduc-
tion in the tumour mass, combinatorial treatment with 

other targeted therapies such as BCL-2 inhibitors may be 
necessary.

3   |   BTK INHIBITOR TREATMENT 
IN CLL AND COVID -19 
SUSCEPTIBILITY

Apart from the effect on pDCs, treatment with BTKi 
strongly impairs the antibody response to SARS-CoV-2 
vaccine.31,32 This is presumably due to the drug affecting 
not only the tumour population, but also non-malignant, 
naïve B lymphocytes. From this, it could be deduced that 
the primary humoral immune response is affected by 
BTKi not only during vaccination, but likely also in the 
course of COVID-19.

The overall importance of humoral immunity in 
COVID-19 is, however, unclear. Treatment of CLL with 
B cell depleting anti-CD20 monoclonals may aggravate 
the viral infection, but conclusive evidence is lacking.2 
However, such treatment increases the risk of severe 
COVID-19 and death in patients with rheumatoid dis-
ease.33 Similar to the effect of anti-CD20 therapy, patients 
with another IEI, X-linked agammaglobulinemia, XLA, 
an inherited defect in the BTK gene,34 have essentially no 
B lymphocytes and cannot mount humoral immune re-
sponses.29,34 The outcome of COVID-19 in patients with 
XLA has varied from uneventful to more severe.35,36

Based on all these findings, the increased numbers 
of pDC during BTKi treatment12,13 would improve the 
prognosis and BTKi could potentially also act as general 
suppressant of the COVID-19 hyperinflammation it-
self. To this end, BTKi have been investigated in several 
clinical trials outside of CLL to elucidate their potential 
ameliorating effect on severe COVID-19 pneumonia, but 
without consensus on the outcome.37,38 Nevertheless, the 
time course may be crucial, and there could be a major 
difference between being on BTKi therapy prior to being 
infected with SARS-CoV-2 vs being treated after the onset 
of viral disease. Regarding patients with CLL, it was re-
cently found that continued BTKi treatment may have had 
a potential, although not statistically significant, clinical 
benefit upon contracting COVID-19, as compared to those 
who stopped the drug.2

4   |   CONCLUDING REMARKS AND 
A HYPOTHESIS

In conclusion, based on the existing evidence, we propose 
that an underlying mechanism for the severe course of 
COVID-19 reported in CLL is the reduced number of pDCs. 
Indeed, since these cells are key producers of type I IFN 
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and, hence, essential for combating COVID-19 at an early 
stage, any impairment, whether functional or numeric, will 
negatively affect the individual‘s capacity to clear an infec-
tion with SARS-CoV-2. It could be hypothesized that lack 
of pDCs also may contribute to the severe COVID-19 ob-
served in other hematological conditions than CLL, as well 
as following conditioning regimens prior to hematopoi-
etic stem cell or Chimeric Antigen Receptor (CAR) T-cell 
therapy. Furthermore, it could be envisaged the transfer of 
pDCs during the early phase of the viral infection may ame-
liorate COVID-19 in both patients with CLL and those with 
an impaired pDC function.
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