
Scand J Immunol. 2022;95:e13153.	 		 		 |	 1 of 5
https://doi.org/10.1111/sji.13153

wileyonlinelibrary.com/journal/sji

1 	 | 	 INTRODUCTION

Patients	 with	 haematologic	 malignancies	 have	 been	 se-
verely	 affected	 by	 the	 SARS-	CoV-	2	 infection,	 those	 with	
CLL	 in	 particular.1-	3	 In	 the	 Stockholm	 region,	 Sweden,	
during	the	first	wave	of	the	COVID-	19	pandemic,	32%	of	

consecutively	 identified,	 hospitalized	 patients	 with	 CLL	
succumbed	 to	 the	 infection,	 whereas	 during	 the	 second	
wave,	 as	 many	 as	 18%	 died,	 despite	 improved	 medical	
care.3	There	is	currently	no	clear	understanding	of	the	un-
derlying	mechanism	for	the	remarkably	poor	outcome	in	
this	patient	population.
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Abstract
Infections	with	SARS-	CoV-	2	have	been	unduly	severe	 in	patients	with	haema-
tological	malignancies,	in	particular	in	those	with	chronic	lymphocytic	leukae-
mia	 (CLL).	 Based	 on	 a	 series	 of	 observations,	 we	 propose	 that	 an	 underlying	
mechanism	for	 the	aggressive	clinical	course	of	COVID-	19	 in	CLL	is	a	paucity	
of	plasmacytoid	dendritic	cells	 (pDCs)	 in	 these	patients.	 Indeed,	pDCs	express	
Toll-	like	 receptor	7	 (TLR7),	which	 together	with	 interferon-	regulatory	 factor	7	
(IRF7),	enables	pDCs	 to	produce	 large	amounts	of	 type	 I	 interferons,	essential	
for	combating	COVID-	19.	Treatment	of	CLL	with	Bruton's	tyrosine	kinase	(BTK)	
inhibitors	increased	the	number	of	pDCs,	likely	secondarily	to	the	reduction	in	
the	tumour	burden.
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The	 risk	 of	 death	 from	 COVID-	19	 doubles	 every	 five	
years	 from	childhood	and	onwards,	and	elderly	men	are	
particularly	 susceptible.4	CLL	 is	also	a	disease	of	 the	el-
derly	with	a	male	preponderance,	but	age	and	sex	cannot	
fully	account	 for	 the	high	mortality	 rates	 in	CLL.	While	
immunosuppressive	 treatments	 potentially	 impair	 the	
patients’	ability	to	overcome	the	infection,	many	individ-
uals	with	early-	stage,	untreated	CLL	had	similar	poor	out-
come,	and	some	were	in	fact	first	diagnosed	with	CLL	at	
the	intensive	care	unit.1,3

2 	 | 	 RATIONALE FOR A pDC 
DEFECT AS A CAUSE OF SEVERE 
COVID - 19 IN CLL

Based	on	a	series	of	observations	explained	beneath,	we	
propose	that	an	underlying	mechanism	for	the	aggressive	
clinical	course	of	COVID-	19	in	CLL	is	a	paucity	of	pDCs	
(Figure 1).

First,	 an	 international	 consortium	 of	 researchers	
has	identified	an	essential	role	for	the	innate	interferon	
(IFN)	system	 in	 the	protection	 from	severe	COVID-	19.	
Autoantibodies	 against	 type	 I	 IFN	 or	 rare	 loss-	of-	
function	 variants	 in	 genes	 implicated	 in	 viral	 sensing,	
type	I	IFN	production,	and	signalling	could	explain	up	
to	 20%	 of	 severe	 COVID-	19	 cases.4	 Notably,	 damaging	
X-	linked	 TLR7	 variants	 were	 identified	 in	 young,	 pre-
viously	 healthy	 males	 with	 life-	threatening	 COVID-	19	
pneumonia.5,6	 Such	 rare	 TLR7	 inborn	 errors	 of	 immu-
nity	(IEI)	account	for	as	many	as	1.8%	of	life-	threatening	

COVID-	19	 cases	 among	 men	 under	 60  years	 of	 age.6	
TLR7	is	a	receptor	for	single-	stranded	RNA	and	is	pre-
dominately	 expressed	 by	 pDCs,7	 sensing	 infection	 by	
viruses	 such	 as	 SARS-	CoV-	2.	 Furthermore,	 autoso-
mal	 recessive	 variants	 in	 IRF7	 have	 been	 described	 in	
several	 previously	 healthy	 adults	 with	 life-	threatening	
COVID-	19	 pneumonia.8	 Interferon-	regulatory	 factor	 7	
(IRF7)	is	a	transcription	factor	constitutively	expressed	
in	pDCs,	serving	as	a	master	regulator	of	type	I	IFN	gene	
transcription.9	 It	 has	 also	 been	 shown	 that	 pDCs	 pro-
duce	more	Type	I	interferon	than	any	other	cell	type	in	
blood.10,11	Thus,	together,	the	demonstration	that	TLR7	
and	IRF7	deficiency	causes	severe	COVID-	19	provides	a	
compelling	link	to	pDCs	as	a	critical	source	of	type	I	IFN	
in	protection	from	SARS-	CoV-	2.

Secondly,	 there	 is	 clear	 evidence	 that	 the	 number	 of	
circulating	pDCs	is	lowered	in	CLL,	as	reported	by	us	and	
others.12-	14	In	addition,	pDC	precursors	were	found	to	be	
functionally	 impaired.15	 Moreover,	 the	 best	 experimen-
tal	model	available	for	CLL,	namely	the	TCL1-	transgenic	
mouse,	is	also	characterized	by	low	numbers/frequencies	
of	pDCs	in	the	spleen,	posited	to	explain	an	overall	high	in-
fectious	susceptibility	in	CLL.12	What	is	the	reason	for	the	
paucity	of	pDC	in	CLL?	To	answer	this	question,	we	de-
scribe	several	key	observations	that	have	been	made.	First,	
circulating	pDCs	decline	with	age.16	Furthermore,	differ-
ences	in	TLR7	expression	may	explain	some	of	the	male	
bias	generally	observed	with	respect	to	severe	COVID-	19	
susceptibility.17	 Pioneering	 studies	 of	 mouse	 models	
linked	gene	dosage	effects	at	the	Tlr7	locus	to	autoreactive	
B	cell	responses	and	autoimmunity.18	TLR7	belongs	to	the	

F I G U R E  1  Plasmacytoid	dendritic	cell	(pDC)	and	susceptibility	to	severe	COVID-	19.	Several	lines	of	evidence	have	highlighted	the	
importance	of	pDC-	derived	type	I	IFN	production	for	protection	from	severe	COVID-	19.	pDC	functional	impairment	of	TLR7-	mediated	
viral	sensing	in	endosomes,	or	of	IRF7-	driven	transcription,	blocks	subsequent	IFN-	α	production	and	occurs	by	genetic	variants	causing	
TLR7	and	IRF7	loss-	of-	function	(left).	Alternatively,	as	we	propose,	in	the	case	of	CLL,	severe	COVID-	19	is	caused	by	a	reduced number	of	
circulating	pDC	(right),	secondary	to	the	tumour	burden	(CLL	cells	are	depicted	as	lymphocytes	with	antibodies	on	their	surface)
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selected	group	of	genes	that	do	not	undergo	lyonization,19	
with	higher	levels	of	TLR7	being	expressed	in	females	as	
compared	 to	 males.20	 Moreover,	 women	 seem	 to	 have	 a	
higher	frequency	of	pDCs,	and	oestrogen	was	reported	to	
increase	 TLR7	 activity.21	 However,	 among	 patients	 with	
CLL,	 there	 is	 no	 overt	 sex-	dependent	 difference	 in	 sur-
vival	 among	 SARS-	CoV-	2	 infected	 individuals.2,3	 Thus,	
the	preferential	depletion	of	pDCs	in	CLL	remains	enig-
matic.	We	speculate	that	the	tumour	burden	in	CLL,	and	
not	the	treatment,	is	what	may	cause	the	striking	reduc-
tion	in	pDCs	and	susceptibility	to	severe	COVID-	19.	Even	
if	other	haematopoietic	cell	 lineages	are	also	 lowered	 in	
CLL,	as	mentioned,	multiple	lines	of	evidence	suggest	that	
pDCs	 are	 essential	 for	 the	 early,	 innate	 defence	 against	
SARS-	CoV-	2.5-	15

It	is	unclear	to	what	extent	the	tumour	burden	in	CLL	
inhibits	 pDC	 development.	 In	 both	 CLL	 patients	 and	 in	
the	 TCL1	 mouse	 model,	 pDC	 precursors	 were	 found	 in	
normal	 amounts	 in	 the	 bone	 marrow.	 In	 the	 periphery,	
pDC	numbers	were	reduced	only	in	patients	with	progres-
sive	disease	and	linked	to	decreased	FMS-	like	tyrosine	ki-
nase	3	receptor	(FLT3)	expression.12	Furthermore,	 levels	
of	 TLR9,	 another	 Toll-	like	 receptor	 highly	 expressed	 in	
pDCs,	 were	 reduced	 in	 mature	 pDCs	 obtained	 from	 the	
TCL1	mouse	and	from	patients	with	advanced	CLL,	lead-
ing	to	a	reduced	IFN-	α	response	to	TLR9	agonists.	In	the	
mouse	model,	inhibition	of	TNF	or	TGF-	β	could	increase	
FLT3	 expression	 and	 restore	 pDC	 numbers.12	 Other	 ex-
perimental	 models	 have	 demonstrated	 that	 both	 IFN-	α	
and	 IFN-	γ	 can	 promote	 pDC	 development	 and	 differen-
tiation	synergistically	with	FLT3.22-	24	The	mentioned	 in-
sights	into	these	cytokine	networks	also	provide	clues	to	
how	pDC	numbers	might	be	enhanced	in	CLL	patients	to	
strengthen	viral	immunity.

Prior	 to	 the	COVID-	19	outbreak,	we	and,	during	the	
pandemic,	 others	 reported	 that	 pDCs	 increase	 in	 num-
ber	in	CLL	patients	under	treatment	with	BTK	inhibitors	
(BTKi),	 as	 a	 likely	 consequence	 of	 the	 drug-	mediated	
reduction	 in	 the	 tumour	 burden.13,14	 Conversely,	 we	
observed	 no	 changes	 in	 plasma	 IFN-	γ,25	 one	 of	 the	 cy-
tokines	 influencing	 the	 generation	 of	 pDCs.	 BTKi	 act	
by	 inhibiting	 the	 intracellular	 signalling	 molecule	 BTK	
through	the	binding	to	its	catalytic	domain.26	BTKi	have	
during	recent	years	revolutionized	the	treatment	of	CLL	
and	 other	 haematopoietic	 malignancies	 and,	 to	 a	 great	
extent,	 replaced	 chemotherapy	 and	 monoclonals.27-	29	 A	
majority	 of	 all	 clinical	 trials	 has	 been	 performed	 using	
the	 first	 approved	 BTKi,	 ibrutinib	 (Imbruvica);	 both	 ef-
fects	 and	 adverse	 effects	 may	 differ	 depending	 on	 the	
compound,	 as	 reviewed.30	 Presumably,	 all	 BTKi	 which	
reduce	the	tumour	burden	could	promote	the	generation	
of	pDCs.	However,	in	order	to	achieve	a	profound	reduc-
tion	 in	 the	 tumour	 mass,	 combinatorial	 treatment	 with	

other	targeted	therapies	such	as	BCL-	2	inhibitors	may	be	
necessary.

3 	 | 	 BTK INHIBITOR TREATMENT 
IN CLL AND COVID - 19 
SUSCEPTIBILITY

Apart	 from	 the	 effect	 on	 pDCs,	 treatment	 with	 BTKi	
strongly	 impairs	 the	 antibody	 response	 to	 SARS-	CoV-	2	
vaccine.31,32	This	is	presumably	due	to	the	drug	affecting	
not	only	the	tumour	population,	but	also	non-	malignant,	
naïve	B	lymphocytes.	From	this,	it	could	be	deduced	that	
the	 primary	 humoral	 immune	 response	 is	 affected	 by	
BTKi	 not	 only	 during	 vaccination,	 but	 likely	 also	 in	 the	
course	of	COVID-	19.

The	 overall	 importance	 of	 humoral	 immunity	 in	
COVID-	19	 is,	 however,	 unclear.	 Treatment	 of	 CLL	 with	
B	 cell	 depleting	 anti-	CD20	 monoclonals	 may	 aggravate	
the	 viral	 infection,	 but	 conclusive	 evidence	 is	 lacking.2	
However,	 such	 treatment	 increases	 the	 risk	 of	 severe	
COVID-	19	 and	 death	 in	 patients	 with	 rheumatoid	 dis-
ease.33	Similar	to	the	effect	of	anti-	CD20	therapy,	patients	
with	 another	 IEI,	 X-	linked	 agammaglobulinemia,	 XLA,	
an	inherited	defect	in	the	BTK	gene,34	have	essentially	no	
B	 lymphocytes	 and	 cannot	 mount	 humoral	 immune	 re-
sponses.29,34	The	outcome	of	COVID-	19	 in	patients	with	
XLA	has	varied	from	uneventful	to	more	severe.35,36

Based	 on	 all	 these	 findings,	 the	 increased	 numbers	
of	 pDC	 during	 BTKi	 treatment12,13	 would	 improve	 the	
prognosis	and	BTKi	could	potentially	also	act	as	general	
suppressant	 of	 the	 COVID-	19	 hyperinflammation	 it-
self.	To	 this	end,	BTKi	have	been	 investigated	 in	 several	
clinical	 trials	outside	of	CLL	 to	elucidate	 their	potential	
ameliorating	effect	on	severe	COVID-	19	pneumonia,	but	
without	consensus	on	the	outcome.37,38	Nevertheless,	the	
time	 course	 may	 be	 crucial,	 and	 there	 could	 be	 a	 major	
difference	between	being	on	BTKi	therapy	prior	to	being	
infected	with	SARS-	CoV-	2	vs	being	treated	after	the	onset	
of	 viral	 disease.	Regarding	 patients	with	 CLL,	 it	 was	 re-
cently	found	that	continued	BTKi	treatment	may	have	had	
a	potential,	although	not	statistically	significant,	clinical	
benefit	upon	contracting	COVID-	19,	as	compared	to	those	
who	stopped	the	drug.2

4 	 | 	 CONCLUDING REMARKS AND 
A HYPOTHESIS

In	conclusion,	based	on	the	existing	evidence,	we	propose	
that	 an	 underlying	 mechanism	 for	 the	 severe	 course	 of	
COVID-	19	reported	in	CLL	is	the	reduced	number	of	pDCs.	
Indeed,	 since	 these	 cells	 are	 key	 producers	 of	 type	 I	 IFN	
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and,	hence,	essential	for	combating	COVID-	19	at	an	early	
stage,	any	impairment,	whether	functional	or	numeric,	will	
negatively	affect	the	individual‘s	capacity	to	clear	an	infec-
tion	with	SARS-	CoV-	2.	It	could	be	hypothesized	that	lack	
of	pDCs	also	may	contribute	to	 the	severe	COVID-	19	ob-
served	in	other	hematological	conditions	than	CLL,	as	well	
as	 following	 conditioning	 regimens	 prior	 to	 hematopoi-
etic	stem	cell	or	Chimeric	Antigen	Receptor	(CAR)	T-	cell	
therapy.	Furthermore,	it	could	be	envisaged	the	transfer	of	
pDCs	during	the	early	phase	of	the	viral	infection	may	ame-
liorate	COVID-	19	in	both	patients	with	CLL	and	those	with	
an	impaired	pDC	function.
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