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Abstract

In this thesis we have studied various equations that are potential models of the undular bore,
which is a specific kind of water wave, usually caused by tidal forces, that can be observed
in various rivers around the world. We start by considering the well-known Korteweg-de
Vries equation, but with an additional double-derivative term that models dissipation. It
has been proven that this particular equation admits traveling-wave solutions in the shape
of undular bores. We solve the equation numerically by a spectral method, and numerical
approximations of these undular bores are obtained.

Next, we attempt to generalize this equation, inspired by how the Korteweg-de Vries equation
has been generalized into a nonlocal equation by Whitham [32]. Our numerical experiments
indicate that this generalized equation also admits undular-bore solutions.

Finally, we briefly consider an equation with a nonlocal term that models dissipation in a
small boundary layer near the bottom of the channel. This equation might be the most
realistic model of the undular bore considered here. However, since this equation did not
produce as interesting results as the previous equation, we have not given it too much focus.
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Chapter 1

Introduction

The central object of study in this thesis is the undular bore. This is a special case of a
tidal bore, which are waves caused by tidal forces that propagate upstream (in other words,
against the usual flow direction). Tidal bores occur regularly in various rivers around the
world, such as the Severn river in England, the Dordogne river in France and the Qiantang
river in China [1].

The experiments of Favre [10] showed that tidal bores come in two characteristic forms. If
the ratio a

h0
between the undisturbed water depth and the amplitude of the incoming wave

profile is greater than 0.28, then the bore develops a sharp, turbulent increase in elevation at
the bore front, which is called a hydraulic jump. However, if the ratio is less than 0.28, the
increase in elevation is more gradual, and oscillations behind the bore front start to develop.
This is what is called the undular bore.

Figure 1.1: Sketch of a right-moving undular bore. This plot was made using the numerical
scheme in section 6.2.
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It is generally accepted that for hydraulic jumps, energy is ”lost” due to the turbulence at
the bore front [13, 17]. The turbulence initiates processes that convert mechanical energy
into thermal energy. By the second law of thermodynamics, there is less capacity to do
mechanical work after this conversion, and hence we say that energy is lost, or dissipated.

Energy loss occurs at the front of an undular bore as well, and it is believed that most of this
energy is carried away by the wave train behind the front, rather than dissipated; this was
proposed by Lemoine [18]. However, Benjamin and Lighthill [2] argued that a small amount
of energy must still be dissipated in the undular bore. Moreover, they argued that the train
of waves behind the front are approximately cnoidal waves, i.e., approximate solutions to
the well-known Korteweg-de Vries (KdV) equation:

ηt + c0ηx +
3

2

c0
h0

ηηx +
1

6
c0h

2
0ηxxx = 0 (1.1)

Calculations by Sturtevant [29] further expands on the theory of the undular bore. Sturtevant
uses the results of Favre’s experiments, together with cnoidal wave theory, to show that the
dissipation in the undular bore is not due to turbulence, but rather due to frictional effects
in a thin boundary layer near the bottom of the channel.

Hence, one would expect that a realistic model of the undular bore would involve an equa-
tion similar to the Korteweg-de Vries equation, but with an additional term modelling the
dissipation in the boundary layer. Several authors have attempted to derive exactly this
type of equation, and they all arrived at very similar equations [6, 13, 14].

In this thesis we will investigate several KdV-type equations with an additional dissipative
term, and search for numerical solutions in the shape of undular bores. We will start quite
simple, and consider the KdV equation with an additional double-derivative term that models
energy loss. We will then attempt to generalize this equation in the same way the KdV
equation was generalized into a nonlocal equation by Whitham in [31]. This generalized
equation turned out to produce some mathematically interesting results, so we have chosen
to focus the most on this equation.

Finally, we will attempt to generalize the boundary-layer equation from [14], again by using
the theory of Whitham, and perform a numerical experiment on the generalized equation.

1.1 Outline of the Thesis

The structure of this thesis is as follows:

In chapter 2, some basic theory of fluid mechanics will be reviewed. This includes derivations
of the continuity equation, the Navier-Stokes equations and a Bernoulli equation.
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In chapter 3 we derive the water-wave problem for gravity waves, which are a set of equations
that describe the propagation of water waves under the influence of gravity. The solution
of the linearized problem will be derived, and we will arrive at the well-known dispersion
relation for water waves.

In chapter 4 we consider equations for water waves that incorporate nonlinear effects. This
includes the famous Korteweg-de Vries (KdV) equation, which can be derived from the
water-wave problem with some additional assumptions. We also present a nonlocal equation
called the Whitham equation, which can be seen as a generalization of the KdV equation.
Finally, we consider how dissipative effects can be incorporated into these equations.

In chapter 5, we present the Fourier collocation method for numerically solving partial dif-
ferential equations (which in this thesis will also be used to solve nonlocal integro-differential
equations).

In chapter 6, we present our numerical experiments. We begin by numerically solving the
KdV equation. Since this equation has known exact solutions, it can be used to verify
that our numerical method works as intended. We then proceed by numerically solving the
three dissipative equations that were mentioned in the introduction, and we do comparisons
between the numerical solutions obtained in the three cases.

Note that chapters 2 through 5 are generally reviews of background theory that is needed
for the experiments in chapter 6 (possibly with the exception of section 4.4, where a new
equation is presented).

1.2 Notation and Abbreviations

The following abbreviations will be used throughout this thesis:

ODE - Ordinary Differential Equation

PDE - Partial Differential Equation

KdV Equation - Korteweg-de Vries Equation

DFT - Discrete Fourier Transform

IDFT - Inverse Discrete Fourier Transform

DCT - Discrete Cosine Transform

IDCT - Inverse Discrete Cosine Transform

———————————————————————————————
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We denote by L1(a, b) the space of all functions that are absolutely integrable (in the
Lebesgue sense) over [a, b] ⊂ R, and by L2(a, b) the space of functions that are square-
integrable over [a, b]:

L1(a, b) =

{
u :

∫ b

a

|u(x)|dx < ∞
}

(1.2)

L2(a, b) =

{
u :

∫ b

a

|u(x)|2dx < ∞
}

(1.3)

In particular, L1(R) is the set of functions that are absolutely integrable over the whole real
line, and L2(R) the set of functions that are square-integrable over the whole real line.

We denote by L∞(R) the space of functions that are bounded almost everywhere:

L∞(a, b) = {u : |u(x)| ≤ M almost everywhere} (1.4)

However, most of the time when necessary, we will simply assume that a function is bounded
everywhere, i.e., that |u(x)| ≤ M for all x ∈ R.

The Fourier transform of a function f will be denoted by f̂ or F(f), and the inverse Fourier
transform will be denoted by F−1(f). Furthermore, the Fourier and inverse Fourier transform
are used with the following conventions:

F(f) = f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx (1.5)

F−1(f) =
1

2π

∫ ∞

−∞
f(k)eikxdk (1.6)

The partial derivative of a function f with respesct to some variable x is written as ∂f
∂x

or fx.
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Chapter 2

Basic Theory of Fluid Mechanics

In this chapter we will review some of the most general equations of fluid mechanics. We
start by considering an important quantity in fluid mechanics, called the material derivative.

2.1 Material Derivative

Fluid flows may be described in terms of a velocity field u = u(x, t), which gives the velocity
of the fluid at some point x in three-dimensional space, at time t. The time rate of change of
some quantity F , subject to this velocity field, is called the material derivative, and is given
by

DF

Dt
=

∂F

∂t
+ u · ∇F (2.1)

This formula shows that the time rate of change of F occurs in two different ways. The first
is the local rate of change of F at some point x, as given by the first term of (2.1). The
second way is the rate of change of F that happens due to a particle moving through the
velocity field, which is what the second term of (2.1) models.

The left-hand side of (2.1) can be interpreted as the derivative one would compute in a frame
of reference that is following a fluid particle.

2.2 The Governing Equations of Fluid Mechanics

In this section we will derive the continuity equation and the Navier-Stokes equations, which
are the equations that govern how a fluid moves. They are based on the familiar physical
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laws of conservation of mass and momentum. These derivations can be found, with more
details, in chapter 4 of [17].

2.2.1 Conservation of Mass

We define a material volume V (t) as a region that always contains the same fluid particles
(the region will move and deform in order to fulfill this). The total mass within this region
must be constant in time. In other words, the time derivative of the total mass must be zero:

d

dt

∫
V (t)

ρdV = 0 (2.2)

Where ρ is the density of the fluid (which at the moment may vary in space and time).
The left-hand side can be rewritten using the Reynolds transport theorem, which is a multi-
dimensional generalization of Leibniz’ rule for differentiating under the integral sign. It
states that:

d

dt

∫
V (t)

FdV =

∫
V (t)

∂F

∂t
dV +

∫
A(t)

F(b · n)dA (2.3)

Where A(t) is the surface of V (t), and b is the surface velocity. For a material volume, the
velocity of the surface is just the local flow velocity, that is, b = u. Applying the Reynolds
transport theorem on (2.2), we get

∫
V (t)

∂ρ

∂t
dV +

∫
A(t)

ρ(u · n)dA = 0 (2.4)

Physically, this states that density changes within V (t) are due to the movement of the
boundary of V (t). We can use the divergence theorem to convert the surface integral into a
volume integral, and we obtain

∫
V (t)

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0 (2.5)

Since this must hold for an arbitrary material volume, the only way for this to be satisfied is
if the integrand is zero at every point in space. Thus, we obtain what is called the continuity
equation:

∂ρ

∂t
+∇ · (ρu) = 0 (2.6)
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It can alternatively be written using the material derivative:

1

ρ

Dρ

Dt
+∇ · u = 0 (2.7)

Now, a fluid is said to be incompressible if the density does not change while following a
fluid particle, that is, Dρ

Dt
= 0. In this case, we see from (2.7) that the continuity equation

can be simplified to

∇ · u = 0 (2.8)

Note that a fluid whose density is constant everywhere is a special case of an incompressible
fluid.

2.2.2 Conservation of Momentum

Newton’s second law states that the sum of all forces acting on a body is equal to the time
rate of change of the momentum of the body. We would like to apply this law to a material
volume of a fluid. In that case, there are two relevant types of forces: body forces and surface
forces. Body forces are long-range forces, and we will consider gravity as the only body force.
Surface forces are intermolecular forces between the surface of the material volume and the
fluid outside the volume. Note that by Newton’s third law, all internal forces within the
material volume cancel out, and they are therefore not considered.

Newton’s second law applied on the material volume is then

d

dt

∫
V (t)

ρudV =

∫
V (t)

ρgdV +

∫
A(t)

fdA (2.9)

Where g is the body force per unit mass (which in this case is just gravity), and f is the
surface force per unit area. Note that this is a system of three equations, one for each spatial
coordinate.

Applying Reynolds transport theorem on the left-hand side, we obtain

∫
V (t)

∂

∂t
(ρu)dV +

∫
A(t)

ρu(u · n)dA =

∫
V (t)

ρgdV +

∫
A(t)

fdA (2.10)

We then use the divergence theorem to convert the surface integral on the left-hand side into
a volume integral:
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∫
V (t)

∂

∂t
(ρu) +∇ · (ρu⊗ u)dV =

∫
V (t)

ρgdV +

∫
A(t)

fdA (2.11)

Where ⊗ denotes the outer product of two vectors. Finally, we use the divergence theorem
again to convert the surface integral on the right-hand side into a volume integral:

∫
V (t)

[
∂

∂t
(ρu) +∇ · (ρu⊗ u)− ρg −∇ ·T

]
dV = 0 (2.12)

Where T is the second-order stress tensor (by definition, f = T · n). As before, these
equations are only true if the integrands vanish at every point in space, yielding the system
of differential equations:

∂

∂t
(ρu) +∇ · (ρu⊗ u) = ρg +∇ ·T (2.13)

The left-hand side of this can be rewritten by using the product rule on both terms:

∂

∂t
(ρu) +∇ · (ρu⊗ u) = ρ

∂u

∂t
+ u

(
∂ρ

∂t
+∇ · ρu

)
+ ρu · ∇u = ρ

∂u

∂t
+ ρu · ∇u (2.14)

Where the continuity equation (2.6) has been used for the final equality. Thus, equation
(2.13) can be rewritten as

ρ

(
∂u

∂t
+ u · ∇u

)
= ρg +∇ ·T (2.15)

At the moment, equation (2.15) together with (2.6) contain more unknowns than equations,
and we need to specify the form of the stress tensor in order to close the system. It can be
shown that for incompressible flow, the stress tensor takes the form (see chapter 4 of [17] for
a derivation):

T = −pI+ µ(∇u+ (∇u)T ) (2.16)

Where I is the identity matrix, p is the pressure and µ is the dynamic viscosity. The first
term of (2.16) are the normal stresses present in any fluid at rest. For moving fluids, the
action of viscosity produces additional stresses, which is what the second term of (2.16)
models.
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By substituting (2.16) into (2.15), and using the incompressible continuity equation (2.8),
together with the vector calculus identities

∇ · (∇u) = ∇2u (2.17)

∇ · (∇u)T = ∇(∇ · u) (2.18)

Equation (2.15) can be written as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ ρg (2.19)

These are commonly called the incompressible Navier-Stokes equations. Together with the
incompressible continuity equation (2.8), they constitute a set of four equations with five
unknowns (ρ,p and the three components of u). If, in addition, we assume either that ρ is
a known constant, or that ρ is a known function of p (called barotropic flow), we have a
complete system of equations.

If we in addition assume that the fluid is inviscid, i.e., that µ = 0, then the Navier-Stokes
equations simplify to the Euler equations :

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg (2.20)

2.3 Bernoulli Equations

There are several equations that can be derived from the Navier-Stokes equations with some
additional assumptions on the flow. All of them are closely related and are collectively called
Bernoulli equations. In this section, we will derive a form of the Bernoulli equation that will
be relevant in chapter 3, where gravity waves are studied. The derivation can be found in
chapter 4 of [17].

We consider inviscid flow, so the relevant equations are the Euler equations. It can be shown,
using vector calculus identities, that the Euler equations can be rewritten in the form

∂u

∂t
+∇

(
1

2
|u|2
)
+ ω × u = −1

ρ
∇p− gj (2.21)

Where ω = ∇×u is the vorticity, which can be interpreted as the tendency of fluid particles
in an infinitesimally small region around a point to start rotating. If we assume that the
fluid is barotropic, then the pressure gradient term can be rewritten as an integral:
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∇
(∫ p

p0

dp′

ρ(p′)

)
=

∂

∂p

(∫ p

p0

dp′

ρ(p′)

)
∇p =

1

ρ
∇p (2.22)

Here p0 is an arbitrary reference pressure. The first equality is due to the chain rule, as the
integral is a function of p, which is in turn a function of space. The second equality comes
from Leibniz’ rule for differentiation under the integral sign. Equation (2.21) can now be
rewritten as

∂u

∂t
+∇

(
1

2
|u|2 +

∫ p

p0

dp′

ρ(p′)
+ gz

)
= u× ω (2.23)

Next, we assume that the fluid is irrotational1, meaning that ω = ∇×u = 0. Irrotationality
implies that there exists a function ϕ, called the velocity potential, such that

u = ∇ϕ (2.24)

With the assumption of irrotationality, equation (2.23) becomes

∇
(
∂ϕ

∂t
+

1

2
|∇ϕ|2 +

∫ p

p0

dp′

ρ(p′)
+ gz

)
= 0 (2.25)

Integrating in space, we obtain

∂ϕ

∂t
+

1

2
|∇ϕ|2 +

∫ p

p0

dp′

ρ(p′)
+ gz = B(t) (2.26)

Where B(t) is a function of integration. This function can be removed by redfining ϕ, for
instance ϕ → ϕ+

∫ t

t0
B(t′)dt′. Note that this new potential does not affect the velocity field,

as ∇ϕ stays the same. Finally, we get

∂ϕ

∂t
+

1

2
|∇ϕ|2 +

∫ p

p0

dp′

ρ(p′)
+ gz = 0 (2.27)

This is the form of the Bernoulli equation that will be used in the study of gravity waves.

1This claim of irrotationality will be justified in chapter 3.
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Chapter 3

Gravity Waves

In this chapter we derive equations for gravity waves, that is, waves where the restoring force
is gravity. These derivations can be found in chapter 8 of [17], as well as chapter 13 of [31].

3.1 The Water-Wave Problem

We consider the familiar case of surface gravity waves on an air-water interface, or just simply
water waves. We restrict ourselves to two spatial dimensions, and we use an x-y coordinate
system. Let y = 0 be the location of the undisturbed surface, and let η(x, t) denote the
disturbance of the surface at position x and time t. Finally, let a denote the amplitude
of the wave and h0 the distance from the channel bottom to the undisturbed surface (we
assume this distance to be constant). The density ρ is assumed to be constant, which is
a good approximation as long as there are not any dramatic changes in temperature and
pressure. The setup is sketched below.
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Since we assume constant density, the fluid is incompressible. We will also assume irrota-
tionality, and justify this claim in section 3.1.1. This allows us to combine equations (2.8)
and (2.24), and as a result the governing equation is the Laplace equation:

ϕxx + ϕyy = 0 (3.1)

Next, we formulate the boundary conditions for this problem. The first condition is that no
fluid can flow through the bottom floor. In other words, the velocity in the y-direction must
be zero there. Thus, by equation (2.24), we have:

ϕy = 0 on y = −h0 (3.2)

At the surface we have a kinematic boundary condition. The surface is defined by the fact
that fluid particles do not cross it. Therefore, we must require that the fluid particles always
follow the surface. Mathematically, this is equivalent to requiring the material derivative of
the surface to be zero. By writing the equation for the surface as f(x, y, t) = y− η(x, t) = 0,
and using equation (2.24), we get:

Df

Dt
= −ηxϕx + ϕy − ηt = 0 (3.3)

From which we obtain the condition:
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ϕy = ηt + ηxϕx on y = η (3.4)

The final boundary condition is a dynamic surface condition. We require the pressure of the
air just above the surface to be equal to the pressure of the water just below the surface.
The Bernoulli equation (2.27) can be used here. Taking p0 to be the constant value of the
undisturbed air, and requiring that p = p0, the integral in (2.27) becomes zero and we get:

ϕt +
1

2
(ϕ2

x + ϕ2
y) + gη = 0 on y = η (3.5)

The full problem with all boundary conditions is then:

ϕxx + ϕyy = 0 (3.6a)

ϕy = 0 on y = −h0 (3.6b)

ϕy = ηt + ηxϕx on y = η (3.6c)

ϕt +
1

2
(ϕ2

x + ϕ2
y) + gη = 0 on y = η (3.6d)

Equations (3.6a)-(3.6d) are often collectively called the water-wave problem.

3.1.1 Justification of Irrotational Flow

Here we will show how the claim of irrotationality in the previous section can be justified.
A corollary to Kelvin’s theorem [17, ch.5] is that there are three ways to create or destroy
vorticity in a flow: Nonconservative body forces, nonbarotropic flow, and viscous forces.
Now, we have assumed constant density, which is a special case of barotropic flow, and we
consider gravity as the only body force, which is a conservative force.

The assumption of inviscid flow can be justified by considering the Reynolds number, which
is a dimensionless number relating the intertial and viscous forces in a fluid flow. It is defined
as

Re =
UL

ν
(3.7)

Where ν = µ
ρ
is the kinematic viscosity, U is a typical velocity scale of the problem, and L

is a typical length scale of the problem (for instance the wavelength of the gravity waves).
Now, if the Reynolds number is sufficiently large (typically Re ≈ 103 or higher), then viscous
effects are only significant in thin layers around solid objects in the flow (called boundary
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layers). For water at atmospheric pressure, the kinematic viscosity is very low, around 10−6

[17]. Therefore, as long as the speed and wavelength of the water waves are not extremely
small, the Reynolds number should be sufficiently large for inviscid flow to be a very good
approximation everywhere, except in a thin layer near the channel bottom1.

Hence, there are no ways to create or destroy vorticity, according to the corollary to Kelvin’s
theorem, so if the fluid is initially irrotational, it will remain so for all time. It is natural
here to assume the initial state to be the undisturbed water at rest, which is irrotational.
The assumption of irrotationality has thus been justified.

3.2 Linearized problem

The problem (3.6a)-(3.6d) is very difficult to solve, due to the nonlinear terms in the bound-
ary conditions. We will therefore linearize the equations - that is, we will neglect the non-
linear terms. This can be done if we assume η, ϕ and their derivatives to be much smaller
than unity, which makes the nonlinear terms in (3.6a)-(3.6d) negligibly small compared to
the linear terms.

We can simplify even further by evaluating the boundary conditions at y = 0 instead of
y = η. This can be justified by Taylor expanding the left-hand sides of (3.6c) and (3.6d)
around y = η. For instance, ϕy has the Taylor expansion:

(ϕy)y=η = (ϕy)y=0 + η(ϕyy)y=0 + ... (3.8)

Due to our assumptions on η and ϕ, the first term of this expansion is much larger than the
remaining terms, and hence we keep only the first term on the right-hand side. The same
reasoning applies to ϕt.

The full linearized problem is then

ϕxx + ϕyy = 0 (3.9a)

ϕy = 0 on y = −h0 (3.9b)

ϕy = ηt on y = 0 (3.9c)

ϕt + gη = 0 on y = 0 (3.9d)

This problem can only be solved if the form of the surface η is known. Consequently, we
assume the surface to be a simple sinusoidal wave

1As mentioned in the introduction, equations which take into account the viscous effects in the boundary
layer have been derived, and we will present one of them in section 4.4.
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η(x, t) = a cos(kx− ωt) (3.10)

Where k = 2π
λ
is the spatial frequency, or wavenumber, and ω = 2πν is the angular frequency

(ν = 1/T is the ordinary temporal frequency). If we can construct a solution using a
sinusoidal wave, we can also construct arbitrary waveforms by Fourier superposition of the
sinusoidal solutions, since the problem is linear. With the sinusoidal surface assumption, the
boundary conditions (3.9c) and (3.9d) imply that ϕ must be a sine function of (kx − ωt),
and we make the ansatz:

ϕ(x, y, t) = f(y) sin(kx− ωt) (3.11)

Substituting this into the Laplace equation (3.9a), we get f ′′−k2f = 0, which has the general
solution f(y) = Aeky +Be−ky. The velocity potential then has the form

ϕ(x, y, t) = (Aeky +Be−ky) sin(kx− ωt) (3.12)

The constants A and B can be determined using the boundary conditions. Substituting
(3.12) into (3.9b) gives k(Ae−kh0 −Bekh0)sin(kx− ωt) = 0, implying:

B = Ae−2kh0 (3.13)

Substituting (3.10) and (3.11) into the boundary condition (3.9c), we obtain k(A−B) sin(kx−
ωt) = aω sin(kx− ωt), implying:

k(A−B) = aω (3.14)

Solving (3.13) and (3.14) for A and B, we get:

A =
aω

k(1− e−2kh0)
, B =

aωe−2kh0

k(1− e−2kh0)

The velocity potential (3.12) then becomes:

ϕ(x, y, t) =
aω

k

cosh(k(y + h0))

sinh(kh0)
sin(kx− ωt) (3.15)

The velocity components can easily be derived from this. Finally, we can use the dynamic
boundary condition (3.9d) to derive a relationship between ω and k. Substituting the velocity
potential (3.15), as well as the sinusoidal waveform (3.10) into (3.9d), we obtain:
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ω2 = gk tanh(kh0) (3.16)

This kind of relationship between ω and k is known as a dispersion relation, and contains
valuable information about the behavior of the waves under study. For instance, the phase
speed of the waves, c = ω/k, is easily derived from the dispersion relation. Keeping in mind
that we have two solutions for ω (plus or minus the square root), the phase speed is

c = ±
√

g

k
tanh(kh0) (3.17)

The plus and minus sign correspond to right-traveling and left-traveling waves, respectively.
This result shows that the phase speed of a linear water wave depends on its wavenumber,
and hence on its wavelength. Thus, for a wave that is initially a superposition of different
sinusoidal waves, the different wavelengths will travel at different speeds, and the intial wave
will disperse, hence the name dispersion relation.

Remark. It can be argued that there are two kinds of dispersion contained in the full,
nonlinear water-wave problem. The first kind is the property that waves of different wave-
lengths travel at different speeds, which may be called frequency dispersion. Another kind
is amplitude dispersion, in which points at different heights on the wave travel at different
speeds, which may cause the wave to steepen and eventually break. This is an inherently
nonlinear phenomenon, and is hence not contained in the linear dispersion relation (3.16).
In this thesis, the term dispersion will always refer to frequency dispersion.
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Chapter 4

Nonlinear Theory

We have seen in the previous section that one way to circumvent the difficulty of the full
water-wave problem (3.6a)-(3.6d) is to linearize the problem. Nonlinear effects are important
in many cases, however, and the solution is then to search for a simpler, nonlinear equation
that can hopefully still capture some of the properties of the full water-wave problem.

4.1 The Shallow Water Equations

We start by considering the well-known Shallow Water Equations. These are a set of non-
linear equations that are valid for either relatively shallow water or relatively long waves,
and they can be derived from the full Euler equations (see chapter 13 of [31]). For waves
propagating purely in the horizontal direction, the equations are:

ηt + (uh)x = 0

ut + uux + gηx = 0
(4.1)

Were u is the horizontal flow velocity, and h = h0 + η is the distance from the channel
bottom to the surface (again it is assumed that h0 is constant). As before, we can gain
information about these equations by finding the dispersion relation of the linearized form
of the equations. If we neglect all the nonlinear terms in (4.1), we get

ηt + h0ux = 0

ut + gηx = 0
(4.2)

Differentiating the first equation with respect to t, and the second one with respect to x, the
two equations can be combined into

22



ηtt − c20ηxx = 0 (4.3)

Where c0 =
√
gh0. This is the wave equation. Its dispersion relation can be found in the

same way as in the previous section, namely by substituting η = a cos(kx − ωt) into the
equation, and solving for ω. By doing this, we obtain:

ω = c0k (4.4)

From this we get phase speed c0 =
√
gh0. This is in fact the phase speed of the linearized

water-wave problem (3.17) in the limit kh0 → 0, and thus it can be interpreted as the
limiting phase speed for linear water waves as the water becomes shallower. Notice that the
phase speed is independent of k, which means that the Shallow Water Equations model non-
dispersive waves. Since in addition viscosity is neglected, there is no mechanism to balance
out the nonlinear steepening, and as a result, the Shallow Water Equations predict that all
waves carrying an increase of elevation will break. This is a shortcoming of these equations,
as it is not a very realistic property. [31]

4.2 The Korteweg-deVries Equation

In view of the discussion above, we would like to find a nonlinear equation that models
dispersive waves. This leads us to the Korteweg-deVries equation. It is well known that
this equation admits traveling-wave solutions, which is possible due to the nonlinear and
dispersive effects cancelling each other out. It is especially remarkable that these solutions
can be written down exactly.

The Korteweg-deVries (KdV) equation can be derived from the full water-wave problem by
setting up an asymptotic expansion, and keeping the terms that give the desired balance
between nonlinear and dispersive effects. Mathematically, this is done by considering the

parameters α = a
h0

and β =
h2
0

l2
, where a is a typical amplitude, and l a typical wavelength.

We require these parameters to be small and approximately of the same order [5].

The full derivation of the KdV equation will be given here. This derivation is based on [31].
We use an x-Y coordinate system, with the x-axis aligned with the flat bottom. Starting
from the water-wave problem, we would like to solve the Laplace equation

ϕxx + ϕY Y = 0 (4.5)

With the following boundary conditions
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ϕY = 0 on Y = 0 (4.6)

ηt + ϕxηx − ϕY = 0 on Y = h0 + η (4.7)

ϕt +
1

2
(ϕ2

x + ϕ2
Y ) + gη = 0 on Y = h0 + η (4.8)

The derivation is best carried out using non-dimensionalized variables. Denoting the original
variables by a prime, we introduce the following scalings:

x′ = lx, Y ′ = h0Y, t′ =
lt

c0
, η′ = aη, ϕ′ =

glaϕ

c0
(4.9)

The new variables will all be of order one, and the relative sizes of the terms can be directly
compared. By substituting these new variables into equations (4.5)-(4.8), and using the
chain rule for derivatives, we obtain the normalized equations:

βϕxx + ϕY Y = 0, 0 < Y < 1 + αη (4.10)

ϕY = 0 on Y = 0 (4.11)

ηt + αϕxηx −
1

β
ϕY = 0 on Y = 1 + αη (4.12)

η + ϕt +
1

2
αϕ2

x +
1

2

α

β
ϕ2
Y = 0 on Y = 1 + αη (4.13)

Here we have used the previously defined parameters α and β. We now make the ansatz
that ϕ can be expanded as the asymptotic series

ϕ =
∞∑
n=0

Y nfn(x, t) (4.14)

Inserting this into (4.10) and using (4.11), we get, after some algebra:

ϕ =
∞∑

m=0

(−1)m
Y 2m

(2m)!

∂2mf

∂x2m
βm (4.15)

Here we have defined f ≡ f0. Substituting this into the surface conditions (4.12), (4.13), we
get
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ηt + [(1 + αη)fx]x −
[
1

6
(1 + αη)3fxxxx +

1

2
α(1 + αη)3ηxfxxx

]
β +O(β2) = 0

η + ft +
1

2
αf 2

x − 1

2
(1 + αη)2(fxxt + αfxfxxx − αf 2

xx)β +O(β2) = 0

(4.16)

If we now drop all O(β) terms, and differentiate the second equation with respect to x, we
obtain the shallow water equations (define w = fx):

ηt + [(1 + αη)w]x = 0

wt + αwwx + ηx = 0

However, as mentioned earlier, we would like α and β to be approximately of the same order.
Thus, we keep the O(β) terms, but drop the O(αβ) and higher order terms. By doing this,
and again differentiating the second equation of (4.16) with respect to x, we get

ηt + [(1 + αη)w]x −
1

6
βwxxx +O(αβ, β2) = 0

wt + αwwx + ηx −
1

2
βwxxt +O(αβ, β2) = 0

(4.17)

Here we have also defined w = fx. The Korteweg-deVries equation can be derived from
(4.17) by looking for solutions that are right-moving waves. If all O(α) and O(β) terms are
dropped from (4.17), we get:

ηt + wx = 0

wt + ηx = 0

One solution to these equations can be found by setting w = η, in which case the equations
reduce to ηt + ηx = 0. This is the transport equation, which is well known for having a
right-moving wave as the solution. This suggests making the ansatz that w can be expanded
in an asymptotic series, having η and the leading order term, with corrections of order α
and β:

w = η + αA+ βB +O(α2 + β2)

Where A and B are functions of η and its spatial derivatives. Substituting this into (4.17),
we get:
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ηt + ηx + α(Ax + 2ηηx) + β(Bx −
1

6
ηxxx) +O(α2 + β2) = 0

ηt + ηx + α(At + ηηx) + β(Bt −
1

2
ηxxt) +O(α2 + β2) = 0

(4.18)

Since we seek a solution satisfying the transport equation to first order, we have ηt =
−ηx + O(α, β). Thus, we can replace every t-derivative in the O(α, β) terms by minus the
x-derivative, without changing the equations. It is then easily shown that the two equations
are equal, up to O(α2 + β2), if we define:

A = −1

4
η2 , B =

1

3
ηxx

Thus, if we neglect the O(α2 + β2) terms, the two equations (4.18) become

ηt + ηx +
3

2
αηηx +

1

6
βηxxx = 0 (4.19)

This is the Korteweg-deVries equation in nondimensional form. By reverting to the dimen-
sional variables, using the relationships of (4.9), we obtain the Kortweg-deVries equation in
dimensional form:

ηt + c0ηx +
3

2

c0
h0

ηηx +
1

6
c0h

2
0ηxxx = 0 (4.20)

The dispersion relation of the linearized form of (4.20) is again found by assuming η to be a
sinusoidal wave, and the result is

ω = c0k − 1

6
c0h

2
0k

3 (4.21)

From this we get the phase speed c(k) = c0− 1
6
c0h

2
0k

2. We notice this as being the dispersion
relation of the linearized Shallow Water Equations, but with an additional dispersive term.

As mentioned, the Korteweg-de Vries equation is known for having solutions that can be
written down exactly. These solutions can be found by searching for solutions in the form
of traveling waves, which are solutions of the form

η(x, t) = ϕ(x− ct) (4.22)
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This describes a solution moving with speed c to the left or right (depending on the sign
of c), without changing its shape1. Substituting (4.22) into the KdV equation turns it into
an ODE, and two specific solutions of this ODE can be found (see [31, ch. 13] for details).
The first type of solution is a solitary wave, which consists of just a single wave crest. The
second type of solution is the cnoidal wave, which is a periodic wave that can be written in
terms of the Jacobi elliptic function cn. The solitary wave will be considered in more detail
in chapter 6, where we solve the KdV equation numerically.

4.3 The Whitham Equation

In this section we consider the Whitham equation, which was first proposed by Whitham in
[32] as an attempt to address some of the shortcomings of the KdV equation. The equation
can also be found in chapter 13 of [31].

The main problem with the KdV equation is that it is a poor approximation for water waves
of short wavelengths. This can be seen by noting that its linear phase speed is a second
order Taylor series expansion of the exact linear phase speed (3.17) for right-moving waves,
about k = 0:

√
g

k
tanh(kh0) = c0 −

1

6
c0h

2
0k

2 + ... (4.23)

Thus, for large k (or equivalently, short wavelengths), the second order approximation of the
linear phase speed becomes inaccurate, as shown in the plot below.

1Of course, since the KdV equation only models right-moving waves, c must be positive in this case.
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Figure 4.1: Comparison of the exact linear phase speed and the linear phase speed of the
KdV equation.

One possible remedy for this would be to find an equation whose linearized version gives
the phase speed of the full water-wave problem (3.17). This can be achieved by noting
that arbitrary relations for the phase speed can be constructed from the following integro-
differential equation [31, ch. 11]:

∂η

∂t
(x, t) +

∫ ∞

−∞
Kh0(x− ξ)

∂η

∂ξ
(ξ, t)dξ = 0 (4.24)

For some specified kernel Kh0
2. This equation can more conveniently be written using

convolution products:

ηt +Kh0 ∗ ηx = 0 (4.25)

The dispersion relation is found as before; we assume a sinusoidal waveform. In this case,
it is more convenient to work with complex exponentials, so we assume η = Aei(kx−ωt).
Substituting this into (4.24), we get that any non-trivial solution must satisfy

−iωeikx + ik

∫ ∞

−∞
Kh0(x− ξ)eikξdξ = 0 (4.26)

2We use the subscript h0 on the kernel because, as we will see, it will depend on h0, and later we will
denote a nondimensional version of this kernel by simply K.
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Making the change of variable ζ = x− ξ, we obtain

ω

k
=

∫ ∞

−∞
Kh0(ζ)e

−ikζdζ (4.27)

We notice the right-hand side as being the Fourier transform of the kernel Kh0 . Denote the
Fourier transform by K̂h0(k). Then (4.27) can be written very elegantly as

c(k) = K̂h0(k) (4.28)

It is now clear how equation (4.24) can produce an arbitrary phase speed relation; simply
choose Kh0 such that its Fourier transform is the desired phase speed.

The idea is then to combine the nonlinear term of the KdV equation with (4.25), yielding:

ηt +
3

2

c0
h0

ηηx +Kh0 ∗ ηx = 0 (4.29)

The KdV equation can be retrieved from (4.29) by choosing Kh0 such that:

K̂h0 = c0 −
1

6
c0h

2
0k

2 (4.30)

If we now consider equation (4.29) with

K̂h0 =

√
g

k
tanh(kh0) (4.31)

We get what is called the Whitham equation. By the Fourier inversion theorem 3, we can
equivalently write (4.31) as

Kh0 = F−1

(√
g

k
tanh(kh0)

)
(4.32)

Henceforth, the kernel Kh0 will always be given by (4.32). Note that the dispersion relation
of the Whitham equation is equal to

3We interpret the Fourier and inverse Fourier transforms in terms of distributions here. Since K̂h0
∈

L∞(R), it is a tempered distribution, and for any tempered distribution T we have that F−1FT = FF−1T =
T . [12, ch. 31]
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ω(k) = kK̂h0 = k

√
g

k
tanh(kh0) (4.33)

which is equivalent to the dispersion relation of the full water-wave problem (3.16) if k > 0.
For k < 0, (3.16) and (4.33) are equal in absolute value but have opposite signs. This is of
no great concern, however, since the dispersion relation (3.16) is in theory only defined for
k > 0, as these are the wavenumbers that make sense from a physical standpoint.

Since the phase speed of the Whitham equation agrees with that of the full water-wave
problem (at least for k > 0), one might expect that this equation will give a more faithful
description of waves with shorter wavelengths. Indeed, it was shown in [23] that the Whitham
equation gives closer approximations to the full water-wave problem (equations 3.6a-3.6d)
than the KdV equation, except for certain kinds of long waves.

In addition, the existence of periodic, traveling-wave solutions to the Whitham equation was
proven in [8, 9], and a proof of wave breaking for the Whitham equation was given in [24].

Another prominent feature of the Whitham equation is that it has weaker dispersion than
the KdV-equation, which is apparent from a comparison of the slopes of the two functions
in figure 4.1 (larger slope means larger variations in phase speeds, i.e., stronger dispersion).

Note that the Whitham kernel (4.32) blows up at the origin, but it is still in L1(R) [9].
Note also that the function

√
g
k
tanh(kh0) has a singularity at the origin, although it is a

removable singularity. Since Kh0 ∈ L1(R), K̂h0 must be continuous on R [12, ch. 17], and it
follows that K̂h0(0) = limk→0 K̂h0(k) =

√
gh0.

Remark. Equations such as the Whitham equation are often called non-local, because the
convolution product at a point depends on the values of η at all other points in R. By
contrast, a purely differential equation is a local equation, since the derivative of η at a point
only depends on the values of η in a local neighborhood around that point.

4.4 Dissipative Equations

As mentioned in the introduction, a central feature of the undular bore is a loss of energy, and
this should accordingly be a feature of any equation attempting to describe this phenomenon.
It is very likely that the undular bore can be described by the Navier-Stokes equations (2.19),
as they are supposed to model all kinds of incompressible fluids, and energy loss is accounted
for in the viscous term of these equations.

However, as the Navier-Stokes equations are way too difficult to solve numerically, a simpler
equation that includes energy loss must be sought. Mathematically, an equation which
models energy loss is often called a disspative equation, and a central feature of dissipative
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equations is that if one considers the linearized form of the equation, then sinusoidal solutions
should decay with time [13].

Recall that the wavetrain in an undular bore can be considered cnoidal to a good approxima-
tion, and hence the equation we seek should be similar to the KdV equation. One might ask
whether the equation we seek is just simply the KdV or Whitham equation. These equations
are not dissipative, however, and this is because their dispersion relations are real-valued. If
a complex-exponential solution η = Aei(kx−ωt) to an equation should decay with time, for an
arbitrary wavenumber k, then the dispersion relation of the equation must be complex, and
of the form:

ω(k) = a(k)− ib(k) (4.34)

Where a(k) and b(k) are real-valued, and b(k) > 0 for all values of k considered (we might
consider all values of k, or perhaps just positive values). This is easily shown by substituting
(4.34) back into the complex exponential:

η = Aei(kx−ωt) = Aei(kx−a(k)t+ib(k)t) = Aei(kx−a(k)t)e−b(k)t (4.35)

From this we see that the real part of the dispersion relation determines the phase speed,
while the imaginary part determines the damping rate.

Perhaps the simplest KdV-type equation which is also dissipative is the Korteweg-de Vries-
Burgers (KdV-Burgers) equation. This equation can be formed by subtracting a double-
derivative term from the left-hand side of the dimensional KdV equation (4.20):

ηt + c0ηx +
3

2

c0
h0

ηηx +
1

6
c0h

2
0ηxxx − αηxx = 0 (4.36)

Where α > 0 is a constant that determines the strength of the dissipation. If we assume η =
Aei(kx−ωt), and substitute this into the linearized version of (4.36), we obtain the dispersion
relation

ω = c0k − 1

6
c0h

2
0k

3 − iαk2 (4.37)

which is of the form (4.34). The KdV-Burgers equation was proposed in [31, ch. 13.15] as
a potential model for the undular bore. It has in fact been proven by Bona and Schonbek
[3] that the KdV-Burgers equation features solutions in the shape of undular bores. We will
attempt to find these solutions numerically in chapter 6.

Now, in section 4.3 we explained how the Whitham equation can be seen as a more accurate
version of the KdV equation. One might wonder whether the same procedure can make the
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KdV-Burgers equation more accurate4, i.e., replacing the dispersive term of (4.36) with the
convlution product from the Whitham equation

ηt +
3

2

c0
h0

ηηx +Kh0 ∗ ηx − αηxx = 0 (4.38)

whereKh0 = F−1
(√

g
k
tanh(kh0)

)
is the previously definedWhitham kernel. Equation (4.38)

will be investigated in detail in chapter 6. We will call it the Whitham-Burgers equation, as
it is a combination of the Whitham equation and the viscous Burgers equation.

It might be the case, however, that neither the KdV-Burgers equation nor the Whitham-
Burgers equation are very realistic models of undular bores. The reason is that the dissipative
term ηxx is difficult to justify from a physical perspective5. As shown in [6, 13, 14], the as-
sumption that viscous dissipation happens in a boundary layer near the bottom, as indicated
by Sturtevant’s calculations [29], results in a non-local integral term, rather than the double-
derivative term. The equations obtained in these articles are all very similar, as previously
mentioned. We choose to focus on the equations obtained in the article by Kakutani and
Matsuuchi [14].

In this article, Kakutani and Matsuuchi consider the Navier-Stokes equations in nondimen-
sional form, and impose similar boundary conditions to those used in the water-wave problem
in chapter 3. By expanding the unknown variables in asymptotic series, and matching an
outer solution with an inner solution in the boundary layer, they are able to derive a dis-
sipative equation for η. It is derived under the assumption of weak nonlinearity and long
wavelengths. They arrive at the equation

ηt +
3

2
ηηx +

1

6
ηxxx =

1

4
√
πR∗

(L ∗ ηx) (4.39)

Where R∗ is a scaled Reynolds number, and the right-hand side is a convolution product
with

L =
1− sgnx√

|x|
(4.40)

Equation (4.39) can be interpreted as a nondimensional KdV-equation with a dissipative
boundary-layer term. In chapter 6, we will attempt to form a new equation by replacing the
dispersive term of (4.39) with the convolution term of the Whitham equation, just as we did

4By more accurate we mean that its solutions are closer to the solutions (presumably) described by the
Navier-Stokes equations.

5In [13], Johnson is able to derive the KdV-Burgers equation from the Navier-Stokes equations, but under
the assumption that the undisturbed flow is already moving due to an inclined bottom. We are, however,
assuming a flat bottom throughout the whole thesis.
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with the KdV-Burgers equation in order to obtain the Whitham-Burgers equation. We will
then solve this new equation numerically, and compare the solutions to the Whitham-Burgers
equation.
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Chapter 5

Numerical Methods

Most partial differential equations do not possess an analytical solution that can be written
in terms of elementary functions, and usually we have to resort to solving the equations nu-
merically on a computer. As computers can only work with finite arithmetic, the continuous
problem of solving a PDE must be turned into a discrete problem, or discretized. Assuming
the solution is a function of space and time, one must find a way to approximate the solution
at discrete points in space (discretizing in space) and at discrete points in time (discretizing
in time).

There exist many different algorithms for discretizing in space and time. We will see that for
the equations considered in this thesis, it is natural to use a spectral method for discretizing
in space. Unless otherwise specified, the theory presented in this chapter is based on [7],
with some additional insights from [4] regarding the discrete and inverse discrete Fourier
transforms.

5.1 Spectral Methods

Spectral methods are a class of different numerical methods for solving PDE’s. Let us
illustrate their design principles by considering an arbitrary differential equation of the form

∂u

∂t
= F (u) (5.1)

To be solved for some function u(x, t). Here F (u) is an operator containing the spatial
derivatives of u. Spectral methods involve representing the function u as a series expansion:
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u(x, t) =
∞∑

k=−∞

ûk(t)ϕk(x) (5.2)

However, to be able to implement this on a computer, the series must be truncated:

uN(x, t) =

N/2∑
k=−N/2

ûk(t)ϕk(x) (5.3)

This will clearly make uN only an approximate solution of the PDE, and so we need a way
to minimize the residual (in some norm)

∂uN

∂t
− F (uN) (5.4)

There are several ways to do this, giving rise to different types of spectral methods. For our
computations, we will use the collocation method. Suppose we have a discrete spatial grid
{xj}. The collocation method then requires the differential equation to be satisfied exactly
at the grid points:

∂uN

∂t
− F (uN)

∣∣∣∣
x=xj

= 0 (5.5)

Different types of spectral methods are also obtained by choosing different kinds of basis func-
tions {ϕk} in the series expansion (5.2). Commonly used basis functions are trigonometric
polynomials, Chebyshev polynomials and Legendre polynomials. We will use trigonomet-
ric polynomials for our computations, which in combination with (5.5) yields the Fourier
collocation method.

5.2 The Fourier Collocation Method

The Fourier Collocation Method is obtained by choosing the trigonometric basis functions
ϕk(x) = eikx in the series expansion (5.2), resulting in a Fourier series, which is formally
defined as follows

Definition 5.2.1. If a function u(x, t) is 2π-periodic and integrable on x ∈ [0, 2π], then the
Fourier series of u is defined to be

∞∑
k=−∞

ûk(t)e
ikx (5.6)
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Where the Fourier coefficients ûk are defined as

ûk(t) =
1

2π

∫ 2π

0

u(x, t)e−ikxdx (5.7)

Remark 1. The Fourier series can be defined for a periodic function of any period P , but the
resulting formulas become simpler if we specifically assume 2π-periodicity. We will however
see that any P -periodic function can be made 2π-periodic through a scaling of variables.

Remark 2. Note that we treat the variable t as a constant in this definition, so formula
(5.6) is in fact the Fourier series of a function u(x) of one variable.

We truncate the Fourier series as follows

PNu(x, t) =

N/2−1∑
k=−N/2

ûk(t)e
ikx (5.8)

Note that this particular truncation requires N to be even, which we will assume is the case
throughout the whole thesis.

In definition 5.2.1, we have not set u to be equal to its Fourier series. This is because it is
not automatically given that a function converges to its Fourier series. There are various
results about this, regarding different kinds of convergence. One well-known result is that of
functions in L2(0, 2π). For these functions, we have the following theorem about convergence
of their Fourier series [7, 11]:

Theorem 5.2.1. If u is 2π-periodic, and u ∈ L2(0, 2π), then

u =
∞∑

k=−∞

ûke
ikx (5.9)

Where the series converges in norm, i.e.∫ 2π

0

|u(x)− PNu(x)|2dx → 0 as N → ∞ (5.10)

Henceforth, we will assume all of the functions considered to be in L2(0, 2π). This will
certainly be the case for all the numerical solutions found in chapter 6.

Note that any function u ∈ L2(0, 2π) can be written as a Fourier series on [0, 2π), not just
functions that are 2π-periodic on the whole line. We can define a periodic extension of u
(call it uper) to the whole line by the formula:

uper(x+ 2nπ) = u(x) for all x ∈ [0, 2π) for all n ∈ Z (5.11)
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Since u = uper on [0, 2π), the Fourier series of uper also converges to u on this interval.
Fourier collocation can accordingly be used to approximate any L2-function on [0, 2π); it is
implied by the method that the function is periodically extended outside this interval.

5.2.1 The Discrete Fourier Transform

We cannot implement the truncated Fourier series (5.8) directly on a computer, as in general
the Fourier coefficients cannot be computed exactly and must be approximated. This can for
instance be done by the trapezoidal rule, which leads us to the discrete Fourier transform.
We discretize the interval [0, 2π] by using the following grid points, for some even integer
N > 0:

xj =
2πj

N
, j = 0, ..., N (5.12)

Applying the trapezoidal rule to the continuous Fourier coefficients (5.7), using the grid
points above, we get

ûk ≈
1

2π

2π

N

(
1

2
u(x0) +

N−1∑
j=1

u(xj)e
−ikxj +

1

2
u(xN)

)
(5.13)

Where we have used that e−i2πk = 1 for any integer k. Since we assume that u is 2π-periodic,
we can set u(x0) = u(xn), and (5.13) becomes (we define uj ≡ u(xj)):

ûk ≈
1

N

N−1∑
j=0

uje
−ikxj (5.14)

Note that the final grid point from (5.12) has been removed, due to the periodicity. This
formula computes what are called the discrete Fourier coefficients of the function u, and we
denote them by ũk, to distinguish them from the exact Fourier coefficients. In view of (5.8),
we would like to compute the coefficients for −N/2 ≤ k ≤ N/2− 1:

ũk =
1

N

N−1∑
j=0

uje
−ikxj , −N/2 ≤ k ≤ N/2− 1 (5.15)

The function values uj can be retrieved from the discrete Fourier coefficients by the inversion
formula (see [4, p. 29-30] for a proof):
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uj =

N/2−1∑
k=−N/2

ũke
ikxj , j = 0, ..., N − 1 (5.16)

The mapping from the sequence {uj} to the sequence {ũk} is called the discrete Fourier
transform (DFT), and denoted by the symbol D. The inverse discrete Fourier transform
(IDFT), denoted by D−1, is the mapping from {ũk} to {uj}:

D{uj} = {ũk} , D−1{ũk} = {uj} (5.17)

As indicated by their names, and from the formulas (5.15) and (5.16), the DFT and IDFT
are inverses of each other, i.e., D−1(D{uj}) = {uj}. Below are a couple of other important
properties of the DFT/IDFT that will be of use.

Theorem 5.2.2.
a) If {uj} = {vj}, then D{uj} = D{vj}
b) D{αuj + βvj} = αD{uj}+ βD{vj} (Linearity)
c) The discrete and inverse discrete Fourier coefficients are both N-periodic, i.e., uj+N = uj

and ũk+N = ũk for all integers j and k.

Properties a) and b) follow easily from the definition of the DFT. Property c) follows from
the fact that e−i(k+N)xj = e−2πi(k+N)j/N = e−2πikj/N = e−ikxj , and eikxj+N = e2πi(j+N)k/N =
e2πijk/N = eikxj .

Finally, we define the interpolation operator

INu(x) =

N/2−1∑
k=−N/2

ũke
ikx (5.18)

Which has the property that INuj = uj. This operator forms the basis of the Fourier
collocation method, as it is an approximation of u that can be directly implemented on a
computer.

5.2.2 Implementing the DFT in MATLAB

In this section we make some remarks about how to implement the DFT in MATLAB. The
DFT-IDFT pair comes in many different forms, corresponding to various conventions, and
so it is important to know which convention is used by a specific software.

In MATLAB, the DFT and IDFT are computed by calling the functions fft and ifft, respec-
tively. These are based on a famous algorithm called the Fast Fourier Transform (FFT),
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which computes the discrete Fourier coefficients very quickly. The formulas used by MAT-
LAB to compute the fft and ifft are as follows [21]:

Y (k) = fft(X) =
N∑
j=1

X(j)e−2πi(j−1)(k−1)/N (5.19)

X(j) = ifft(Y ) =
1

N

N∑
k=1

Y (k)e2πi(j−1)(k−1)/N (5.20)

These formulas differ from (5.15) and (5.16) in two ways. First, the factor 1/N is placed on
the IDFT instead of the DFT. This is of no concern, as the combined effect of taking the
DFT and IDFT will be the same, no matter where the constant is placed.

Another more significant difference is that the discrete Fourier coefficients are computed for
k = 0, ..., N−1 instead of k = −N/2, ..., N/2−1. However, these two sets of wavenumbers will
produce the exact same discrete Fourier coefficients, but in different orders. This is due to the
discrete Fourier coefficients Y (k) being N -periodic. Consequently, MATLAB’s fft computes
the discrete Fourier coefficients in the equivalent order k = 0, ...N/2 − 1,−N/2,−N/2 +
1, ...,−1. This order is very important to keep in mind, as pointwise multiplication by k will
be done when using spectral methods. Note also that using a different set of wavenumbers
does not affect the ifft at all, as the sums in (5.16) and (5.20) will be the exact same; the
only difference is that the terms are summed in a different order.

By the same argument as above, we can justify using Fourier collocation on a function
sampled at the grid points 2πj

N
for any N consecutive integers j. Since X(j) is N -periodic,

Y (k) will always be the same, just summed in different orders, depending on the values of
j. Similarly, taking the ifft produces the same set of inverse discrete Fourier coefficients,
just ordered differently depending on the values of j. This fact will be used in some of our
numerical experiments, where the indices j = −N/2, ..., N/2− 1 will be used, corresponding
to the interval [−π, π].

5.3 Sources of Error

One type of error that is clearly introduced by the Fourier collocation method is a truncation
error, i.e., the error introduced by truncating the Fourier series. The significance of this error
depends on how quickly the Fourier coefficients decay for large values of k. A result along
these lines, proven in [7], is the following:

Theorem 5.3.1. If u is m-times continuously differentiable in [0, 2π], and the j-th derivative
u(j) is periodic for all j ≤ m− 2, then

ûk = O(k−m) (5.21)
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This shows that the more derivatives the function has, the more quickly its Fourier coefficients
decay. In particular, the Fourier coefficients of an infinitely differentiable function decay
faster than any negative power of k. This is called spectral accuracy, and is one of the
reasons why spectral methods are so effective.

An additional source of error is introduced by working with the interpolation operator (5.18)
instead of the truncated Fourier series. It can be shown, by inserting the Fourier series into
the discrete Fourier coefficients (5.15), that the following formula holds (see [4, p. 181-182]
for details):

ũk = ûk +
∞∑

m=−∞
m̸=0

ûk+Nm (5.22)

This formula tells us that the k-th discrete Fourier coefficient is equal to the exact Fourier
coefficient plus the sum of all Fourier coefficients that are ”indistinguishable” from ûk on
the grid. For each j, we have that eikxj = ei(k+Nm)xj , and hence these frequencies are
indistinguishable on the grid (this phenomenon is known as aliasing).

It follows immediately from (5.22) that

INu = PNu+RNu (5.23)

Where

RNu =

N/2−1∑
k=−N/2

 ∞∑
m=−∞
m ̸=0

ûk+Nm

 eikx (5.24)

Hence, RNu is the error introduced due to aliasing, and it is consequently called the aliasing
error. One might expect that the interpolation error, ||u−INu||, will be much worse than the
truncation error, ||u − PNu||, since the interpolation involves both truncation and alisaing
effects. However, it is proven in chapter 9 of [7] that the two errors are asymptotically of
the same order. As a result, the interpolation operator preserves the spectral accuracy.

5.4 Differentiation

Fourier collocation enables us to approximate derivatives in a simple and accurate way. It
can be shown that if

∑∞
k=−∞ ûke

ikx is the Fourier series of u, and the derivative u′ satisfies
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sufficient conditions for convergence of its Fourier series (for instance if u′ ∈ L2(0, 2π), which
we will assume is the case), then u′ is equal to its Fourier series given by [7, 11]

u′ =
∞∑

k=−∞

ikûke
ikx (5.25)

Hence, we can truncate this Fourier series as before to obtain an approximation of the
derivative:

u′ ≈ PNu
′ =

N/2−1∑
k=−N/2

ikûke
ikx (5.26)

Note that this is equivalent to differentiating the truncated series (5.8), i.e., (PNu)
′ = PNu

′.
By theorem 5.3.1, this approximation is spectrally accurate. However, as before, we can not
implement (5.26) directly on a computer, due to the continuous Fourier coefficients. The
appropriate way to approximate the derivatives at the grid points is to instead differentiate
the interpolation operator (5.18):

u′(xj) ≈ (INu)
′(xj) =

N/2−1∑
k=−N/2

ikũke
ikxj (5.27)

In contrast to the truncated Fourier series, (INu)
′ ̸= IN(u

′) (unless u = INu), and as a
result the approximation (5.27) is not exact at the grid points. However, it is once again
proven in chapter 9 of [7] that the error ||u′− (INu)

′|| is asymptotically of the same order as
||u′−PNu

′||, and it follows that approximating the derivative by (5.27) is spectrally accurate.

Clearly the approximation (5.27) can be generalized to any n-th derivative by just repeatedly
multiplying by ik:

u(n)(xj) ≈ (INu)
(n)(xj) =

N/2−1∑
k=−N/2

(ik)nũke
ikxj (5.28)

We can compute (5.28) by taking the DFT, multiplying pointwise by (ik)n, and then taking
the IDFT. Here special attention needs to be paid to the ordering of the wavenumbers, as
explained in section 5.2.2.
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5.5 The Discrete Cosine Transform

There is another discrete transform, with a corresponding inverse transform, that is closely
related to the DFT. It is called the Discrete Cosine Transform (DCT), and as indicated by
the name, it represents a set of data points as a sum of pure cosines, rather than complex
exponentials as with the DFT.

The DCT can be derived in several ways and in different forms. Here we will show a derivation
that, like our derivation for the DFT, seeks to approximate the continuous Fourier coefficients
by the trapezoidal rule. This time we make the extra assumption that our function ϕ 1, in
addition to being 2π-periodic, is even about π. In other words, ϕ(x) = ϕ(2π− x). It can be
shown that in this case, the Fourier series of the function becomes a pure cosine series:

ϕ(x) =
∞∑
k=0

ak cos(kx) (5.29)

Where the cosine coefficients ak are related to the regular Fourier coefficients ϕ̂k (5.7) by the
formulas a0 = ϕ̂0 and ak = ϕ̂k + ϕ̂−k (see [11, ch. 2] for more details). We may then define
the cosine collocation method as a special case of the Fourier collocation method, where we
seek to approximate ϕ by a truncated form of its cosine series (5.29). This leads us to the
DCT and IDCT.

We will sample the function at the points

xn =
(2n− 1)π

2N
, n = 1, ..., 2N + 1 (5.30)

Next, we use the following result about integrating periodic functions (for the proof, see [11,
p. 21]):

Lemma. If F is periodic with period P , then
∫ a+P

a
F (x)dx is independent of a.

Hence we can choose to integrate the Fourier coefficients (5.7) from π
2N

to 2π + π
2N

, in
accordance with (5.30), and the result should be the same. Approximating the Fourier
coefficients by the trapezoid rule then yields

ϕ̂k ≈
1

2π

π

N

(
1

2
ϕ(x1)e

−ikx1 +
2N∑
n=2

ϕ(xn)e
−ikxn +

1

2
ϕ(x2N+1)e

−ikx2N+1

)
(5.31)

1We will denote the function by ϕ instead of u in the derivation of the DCT, in order to distinguish it
from the DFT. This is also the letter we will denote the function by when using the DCT in chapter 6.
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Using the fact that ϕ(x1)e
−ikx1 = ϕ(x2N+1)e

−ikx2N+1 , this can be simplified to

ϕ̂k ≈
1

2N

(
2N∑
n=1

ϕ(xn)e
−ikxn

)
(5.32)

Since ϕ is even about π, we have that ϕ(xn) = ϕ(x2N−n+1), since x2N−n+1 = 2π − xn. This,
together with the identities eik(2π−x) = e−ikx and eikx + e−ikx = 2 cos(x) allows us to rewrite
(5.32) to

ϕ̂k ≈
1

N

N∑
n=1

ϕ(xn) cos(kxn) (5.33)

This is one version of the discrete cosine transform. In view of (5.29), we would like to
compute the coefficients for k = 0, ..., N − 1:

ϕ̃k =
1

N

N∑
n=1

ϕ(xn) cos(kxn) , k = 0, ..., N − 1 (5.34)

The function values can be retrieved from (5.34) by the Inverse Discrete Cosine Transform
(IDCT), which is given by

ϕ(xn) =
N−1∑
k=0

w(k)ϕ̃k cos(kxn) , n = 1, ..., N (5.35)

Where

w(k) =

{
1 , k = 0

2 , k ≥ 1
(5.36)

We omit the derivation of (5.35), but note that it can be derived from the IDFT2. We remark
that half of the collocation points (5.30) have been removed in (5.34), and hence the actual
grid used in the DCT is

xn =
(2n− 1)π

2N
, n = 1, ..., N (5.37)

2The DCT can also be derived directly from the DFT; it is given as an exercise in [4, p. 141-142]
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This new grid lies in the interval [0, π]. The DCT and IDCT can accordingly be used on any
function sampled at (5.37), even if the function is neither even about π nor periodic. An
even periodic extension about π is automatically implied when using the DCT and IDCT.

5.5.1 Implementing the DCT in MATLAB

Just like the DFT, the DCT and IDCT come in many different forms, and it is important
to know which conventions a specific software uses. In MATLAB, the DCT and IDCT are
computed by calling the functions dct and idct, respectively. Note that MATLAB can
actually compute four different variants of the DCT/IDCT, but unless otherwise specified,
the default variants computed are the ones given below [20, 22].

dct(x) = y(k) =
N∑

n=1

v(k)x(n) cos(kxn) (5.38)

idct(y) = x(n) =
N−1∑
k=0

v(k)y(k) cos(kxn) (5.39)

Where

v(k) =

{√
1/N , k = 0√
2/N , k ≥ 1

(5.40)

We see that the only differences between MATLAB’s conventions and our formulas (5.34)
and (5.35) are the different sets of constants v(k) and w(k). It is easy to see, however, that
the combined effect of taking the DCT and IDCT will be the same, regardless of which sets
of constants are being used. We will, however, stick to the forms (5.38) and (5.39) in all
of our numerical experiments, as we will at one point use MATLAB’s dct, and afterwards
compute the IDCT ”manually”.

Finally, we can define an interpolation operator in terms of the discrete cosine coefficients
(using MATLAB’s conventions), which we will denote by IDCT

N ϕ:

IDCT
N ϕ(x) =

N−1∑
k=0

v(k)ϕ̃k cos(kx) (5.41)

It has the property that IDCT
N ϕ(xn) = ϕ(xn). This operator forms the basis of cosine col-

location, as it is an approximation of the cosine series of ϕ that can be implemented on a
computer.
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Chapter 6

Numerical Experiments

We will now use the theory of chapter 5 to numerically solve the dissipative equations
mentioned in section 4.4. We are especially interested in finding solutions that are traveling
waves. Recall from earlier that these are solutions moving unchanged in shape with speed
c, and they can be written in the form

η(x, t) = ϕ(x− ct) (6.1)

Before considering the dissipative equations, however, we will first solve the KdV equation.
This is a good equation to test that our numerical method works as intended, since it has
known exact solutions that we can directly compare our numerical solutions with.

6.1 The KdV Equation

Recall that the KdV equation is given in dimensional form as:

ηt + c0ηx +
3

2

c0
h0

ηηx +
1

6
c0h

2
0ηxxx = 0 (6.2)

When designing a numerical scheme for a PDE, it is often convenient to consider the equation
in the simplest form possible. This can be achieved by a scaling of the independent variables
x and t, and of the function η. This procedure will be shown below.

We introduce the following scalings, which makes the quantities nondimensional1:

1Henceforth, we will denote the original and scaled variables by the same letter. For instance, the scaling
x 7→ h0x means that the original variable x′ and the scaled variable x are related by the formula x′ = h0x.
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x 7→ h0x , t 7→ h0

c0
t , η 7→ h0η (6.3)

By using the chain rule for derivatives, we find that the scaled version of (6.2) becomes

ηt + ηx +
3

2
ηηx +

1

6
ηxxx = 0 (6.4)

Furthermore, we can get rid of the ηx term by the transformation η(x, t) 7→ η(x− t, t). The
physical interpretation of this transformation is that we regard the function in a reference
frame moving to the right at a normalized speed of one. Finally, we can scale the factors
3/2 and 1/6 to unity by the transformations:

x 7→ 1√
6
x , t 7→ 1√

6
t , η 7→ 2

3
η (6.5)

Thus we obtain the KdV equation in the very simple form:

ηt + ηηx + ηxxx = 0 (6.6)

One form of the exact solution to (6.6) is given by [28]:

η(x, t) = 12c2 sech2 (c(x− 4c2t− α)) (6.7)

Which can easily be verified by substituting this function into (6.6). This is a solitary-wave
solution, where c is proportional to the speed of the wave, and α gives the phase.

We would like to solve the equation on the interval [0, 2π], since this is the natural setting
for the Fourier collocation method, as described in section 5.2. However, we see from (6.7)
that the phase speed c needs to be quite large in order for the solitary wave to be contained
in a small interval such as [0, 2π]. This is turn makes the amplitude of the wave very large,
which makes the scheme unstable.

Therefore, we must solve the equation on a larger interval, and we choose L = 40, as done
in [19]. However, we can employ yet another scaling in order to get the equation redefined
on [0, 2π]. We define the original problem as

ηt + ηηx + ηxxx = 0 , 0 ≤ x ≤ L (6.8)

and we introduce the same scalings as in [19]:

46



x 7→ ax , t 7→ t , η 7→ aη (6.9)

Where a = L
2π
. By the chain rule, the terms transform as ηt 7→ aηt, ηηx 7→ aηηx and

ηxxx 7→ 1
a2
ηxxx. The rescaled problem then becomes

ηt + ηηx +
1

a3
ηxxx = 0 , 0 ≤ x ≤ 2π (6.10)

The re-scaled exact solution is

η(x, t) =
12

a
c2 sech2 (c(ax− 4c2t− α)) (6.11)

Note that the scalings lower the amplitude of the wave, which helps with the stability of
the scheme. Next, we discretize equation (6.10) in space by the Fourier collocation method.
First, we rewrite the nonlinear term in the equation to a more convenient form:

ηt +
1

2
(η2)x +

1

a3
ηxxx = 0 , 0 ≤ x ≤ 2π (6.12)

The collocation points are, as defined in section 5.2:

xj =
2πj

N
, j = 0, ..., N − 1

As described in the same section, the Fourier collocation method consists of approximating
η by its trigonometric interpolant (5.18):

ηN ≡ INη(x) =

N/2−1∑
k=−N/2

η̃k(t)e
ikx (6.13)

and enforcing equation (6.12) at the collocation points:

∂ηN
∂t

+
1

2

∂(ηN)
2

∂x
+

1

a3
∂3ηN
∂x3

∣∣∣∣
x=xj

= 0 , j = 0, 1, ..., N − 1 (6.14)

Equation (6.14) can equivalently be stated in Fourier space, which makes it easier to work
with. Notice that (6.14) states that two vectors with N − 1 components should be equal.
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Therefore, by Theorem 5.2.2 (a), we can take the DFT of both sides of (6.14). The right-
hand side stays the same, as D{0} = 0. By Theorem 5.2.2 (b), the DFT on the left-hand
side is the DFT of each individual term. Thus, we can take the appropriate derivatives of
each term of (6.14), and then take the DFT of each term to obtain the equivalent equations:

η̃t +
1

2
ik(̃η2)− ik3a−3η̃ = 0 (6.15)

Where k = (−N/2, ..., N/2−1)T and η̃ = (η̃−N/2, ..., η̃N/2−1)
T are to be interpreted as vectors,

and all the vectors in the equation are multiplied pointwise.

Remark. The nonlinear term is evaluated in a pseudospectral way, which means that we
take the IDFT of η̃ to obtain η, perform the multiplication η2 in physical space, and then

take the DFT. This is reflected in the notation (̃η2). Note that evaluating the nonlinear term
in this way introduces an aliasing error (see [7, ch. 3] for details). There are techniques that
can be used to remove this aliasing error, although we will not use these techniques in our
codes. The error analysis done below for the KdV equation indicate that the scheme is still
sufficiently accurate with this aliasing error present, at least for large enough N .

For the discretization in time, we will use the Implicit Trapezoid method. If we have an
ODE (or system of ODE’s) of the form

y′(t) = f(t, y) (6.16)

Then the Implicit Trapezoid Method is given by

yn+1 = yn +
∆t

2
(fn+1 + fn) (6.17)

Where ∆t = tn+1 − tn is the time step and yn = y(tn) is the approximate value of y at the
n-th step. Applying the Implicit Trapezoid Method to the semi-discrete equation (6.15), we
obtain

η̃n+1 = η̃n +
∆t

2

[
ik3a−3(η̃n+1 + η̃n)−

ik

2
˜(η2n)−

ik

2
(̃η2n+1)

]
(6.18)

Which, after some algebra, becomes

η̃n+1 =
1 + ∆t

2
ik3a−3

1− ∆t
2
ik3a−3

η̃n −
∆t
4
ik

1− ∆t
2
ik3a−3

[
˜(η2n) + (̃η2n+1)

]
(6.19)
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If we can solve this equation for η̃n+1, we can take the IDFT and obtain the approximate
value of η at the next time step. However, this equation cannot be solved exactly for η̃n+1,
so we use fixed-point iteration to solve it numerically, as done in [8, 19]. The iteration works
as follows:

1. Use ηn as the initial guess for ηn+1 on the right-hand side of (6.19). Take the DFT of
both ηn and η2n, and compute the right-hand side. The IDFT of the computed right-hand
side is the new guess for ηn+1.

2. Use the new guess from step 1 to compute (̃η2n+1) on the right-hand side again. The IDFT
of the entire right-hand side is once again the new guess for ηn+1,

3. Repeat step 2 until convergence is achieved.

We choose to let the iteration run until the difference in norm between two iterations is
< 10−12. The iteration will converge quite quickly if the time step is sufficiently small. This
is due to the fact that for small time steps, ηn will already be very close to ηn+1.

The scheme is run with initial data equal to

η(x, 0) =
12

a
sech2 (ax− 20) (6.20)

Which is the exact solution (6.11) with c = 1 , α = 20 = L/2. This choice of α ensures that
the wave crest is located in the middle of the computational domain, which in turn makes
the initial data periodic at the boundaries. When using the Fourier collocation method,
it is important that the initial data is either periodic, or very close to being so, on the
computational domain. If the initial data is non-periodic, the implied periodic extension will
create jump discontinuities at the boundaries. We know from section 5.3 that this will make
its Fourier series converge far more slowly, such that a truncated Fourier series would need
far more terms in order to maintain sufficient accuracy. In addition, the truncated Fourier
series of a discontinuous function will oscillate rapidly near the discontinuities, which is called
the Gibbs phenomenon [7]. These oscillations will make the scheme highly inaccurate and
unstable.

The scheme is run until T = 0.1, and compared with the exact solution at this time. The
comparison is done by computing the discrete L2-error of the approximate solution at time
T , which is defined as

||e||2 =

(
h

N∑
i=1

(ηexacti − ηapproxi )2

)1/2

(6.21)

Note that the L2-error is computed for the solution found on [0, 2π] (we do not scale it back
to [0, L] when computing the error). The convergence rate in space can be found by choosing
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a small time step, say ∆t = 10−5, and computing the error at T for a progressively larger
number of grid points N . The results are shown in the table below. The third column shows
the ratio of the previous and current error.

N ||e||2 Ratio
16 0.4074
32 0.2528 1.6119
64 0.0131 19.2376
128 3.5715e-06 3.6791e+03
256 1.3997e-10 2.5516e+04
512 1.3991e-10 1.0004

We see that the errors drop at an exponential rate until N = 512, where presumably round-
ing errors become significant. This exponential convergence rate is precisely the spectral
accuracy that was mentioned in section 5.3.

Next, we compute the convergence rate in time. This is done by choosing a fixed number
of grid points, say N = 256, and computing the errors at T for progressively smaller time
steps. The results are shown in the table below.

∆t ||e||2 Ratio
0.005 3.4966e-05
0.005/2 8.7420e-06 3.9999
0.005/4 2.1855e-06 4.0000
0.005/8 5.4638e-07 4.0000
0.005/16 1.3660e-07 4.0000
0.005/32 3.4149e-08 4.0000
0.005/64 8.5372e-09 4.0000
0.005/128 2.1344e-09 3.9999

We see that the ratio between consecutive errors is approximately 4, which is to be expected,
as the Implicit Trapezoid Method is a second-order method [27]. The fact that the computed
convergence rates match the theoretical ones is a very good indication that the numerical
scheme works as intended. A plot of the exact and numerical solution at time t = 0.1, with
time step ∆t = 0.05/4, is included below (here we have scaled the solution back to [0, L]).
We see that the difference between the exact and numerical solutions is barely noticeable.
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Figure 6.1: Comparison of exact and numerical solitary-wave solutions of the KdV equation.
Here t = 0.1 and the time step is ∆t = 0.05/4.

Remark. In the code, we set the Fourier mode k = −N/2 to zero. The reason is that for
spectral differentiation of odd order, this mode will make the solution complex-valued, which
is not desirable [30]. This can be illustrated by using formula (5.28) for the spectral n-th
derivative, and insert the formula for the DFT:

η(n)(xm, t) ≈
N/2−1∑
k=−N/2

(ik)nη̃ke
ikxm =

N/2−1∑
k=−N/2

(ik)n

(
1

N

N−1∑
j=0

η(xj, t)e
−ikxj

)
eikxm (6.22)

Rearranging the sums, we obtain

η(n)(xm, t) ≈
1

N

N−1∑
j=0

η(xj, t)

N/2−1∑
k=−N/2

(ik)neik(xm−xj) (6.23)

Now, for odd n we have that (−ik)n = −(ik)n, and we can use the well-known identity
eix − e−ix = 2i sin(x) to rewrite the inner sum as
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±(−iN/2)n +

N/2−1∑
k=1

2in+1kn sin(k(xm − xj)) (6.24)

Where it has been used that e−iN/2(xm−xj) = e−iπ(m−j) = ±1. Since n is odd, in+1 is real-
valued, and we see that the −N/2 mode is the only mode contributing an imaginary part to
(6.23). Hence, by truncating this Fourier mode the solution stays real, at the cost of some
accuracy (which should be negligible for sufficiently smooth functions, due to the spectral
accuracy). We will however still take the real part of the IDFT in the code, in case there
are small rounding errors.

Note that if n is even, then (−ik)n = (ik)n, and we can instead use the identity eix + e−ix =
2 cos(x) to rewrite the inner sum of (6.23) as

±(−iN/2)n +

N/2−1∑
k=1

2(ik)n cos(k(xm − xj)) (6.25)

which is entirely real-valued. Hence, the −N/2 mode only contributes imaginary parts to
derivatives of odd order.

6.2 The KdV-Burgers Equation

We now move on to the main object under investigation in this thesis: The undular bore2.
As mentioned in section 4.4, an equation modeling the undular bore should be a KdV-type
equation with a dissipative term, and the KdV-Burgers equation is probably the simplest
equation of this form. Hence we will start by investigating this equation. In [3], Bona and
Schonbek established the existence of traveling-wave solutions to the KdV-Burgers equation
in the form

ηt + ηηx + δηxxx − εηxx = 0 (6.26)

We will briefly summarize some of their results. Traveling-wave solutions for the KdV-
Burgers equation are investigated by making the ansatz η(x, t) = ϕ(x− ct), and substituting
this form into (6.26), which turns it into the ODE

−cϕ′ + ϕϕ′ + δϕ′′′ − εϕ′′ = 0 (6.27)

2The term undular bore will specifically refer to the kind of wave shown in figure 1.1 in the introduction,
where oscillations develop behind the bore front.
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Where the derivatives are with respect to the variable ξ = x− ct. It is proven in the article
that for fixed positive values of δ and ϵ, there exists a unique (up to translation in ξ), bounded
solution to (6.27), such that the following limits exist:

ϕL = lim
ξ→−∞

ϕ(ξ) , ϕR = lim
ξ→∞

ϕ(ξ) (6.28)

Furthermore, the solution satisfies the conditions

lim
|ξ|→∞

ϕ(j)(ξ) = 0 , j = 1, 2, 3, ... (6.29)

Where ϕ(j)(ξ) denotes the j-th derivative of ϕ. Additionally, the conditions c > ϕR and
ϕL +ϕR = 2c are satisfied. Moreover, the shape of the solution depends on the relative sizes
of δ and ε. It is shown that if

ε2 ≥ 4(c− ϕR)δ (6.30)

then the solution resembles a regular tanh-wave. On the other hand, ε2 < 4(c − ϕR)δ,
then oscillations will develop behind the leading wave, and the amplitude of the oscillations
decrease with decreasing ξ. This is exactly the shape of an undular bore.

Finally, in the limit ε → 0 the solution converges to the solitary wave solution

η(x, t) = ϕR + 3(c− ϕR) sech
2

[(
c− ϕR

4δ

)1/2

(x− x0 − ct)

]
(6.31)

of the KdV-equation (equation (6.26) with ε = 0), while in the limit δ → 0 it converges to
the tanh-wave solution

η(x, t) = ϕR + (c− ϕR)

(
1− tanh

[
c− ϕR

2ε
(x− x0 − ct)

])
(6.32)

of the Burgers equation (equation (6.26) with δ = 0). Note that Bona and Schonbek initially
made a typo in [3] when writing out the solution (6.32), but corrected it in section 5.
These traveling-wave solutions to (6.26) will be sought by using the same procedure as [8],
where approximate traveling-wave solutions to the Whitham equation are found by a cosine
collocation method.

We will, however, consider the KdV-Burgers equation in a slightly different form than (6.26).
Namely, we will start with the dimensional KdV-Burgers equation (4.36) and use the scalings
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x 7→ h0x , t 7→ h0

c0
t , η 7→ 2

3
h0η (6.33)

which turns it into

ηt + ηx + ηηx +
1

6
ηxxx − εηxx = 0 (6.34)

where we have defined ε ≡ α
h0
. The reason we will use this form of the equation is because

the exact same scalings will be used on the dimensional Whitham-Burgers equation (4.38)
in section 6.3, which make the two equations directly comparable. Note that by substituting
the traveling-wave ansatz into (6.34), we obtain

(−c+ 1)ϕ′ + ϕϕ′ +
1

6
ϕ′′′ − εϕ′′ = 0 (6.35)

This is just a special case of equation (6.27), and hence the results of [3] still apply to the
equation in this form.

We can, without loss of generality, assume that ϕR = 0. This is because we can employ the
transformations

ϕ 7→ ϕ+ ϕR , c 7→ c+ ϕR (6.36)

and the transformed function will still satisfy (6.35), in addition to satisfying ϕR = 0. Using
this assumption in combination with the conditions (6.29) ,we can integrate (6.35) from an
arbitrary point x to ∞ to obtain

(−c+ 1)ϕ+
1

2
ϕ2 +

1

6
ϕ′′ − εϕ′ = 0 (6.37)

Hence we will now regard ϕ as a function of x. Assuming (6.37) is to be solved on the interval
[0, L], we should employ a scaling in order to redefine the equation on [0, π], where it is most
natural to use cosine collocation. We can use the scaling

ϕ(x) 7→ ϕ(ax) with a =
L

π
(6.38)

Which yields the scaled equation

(−c+ 1)ϕ+
1

2
ϕ2 +

1

6
a−2ϕ′′ − εa−1ϕ′ = 0 , 0 ≤ x ≤ π (6.39)
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We proceed by approximating (6.39) by the cosine collocation method. As described in
section 5.5, this consists of approximating ϕ by its cosine interpolant (5.41), which we denote
by ϕN :

ϕN ≡ IDCT
N ϕ(x) =

N−1∑
k=0

v(k)ϕ̃k cos(kx) (6.40)

Recall that this operator interpolates ϕ at the collocation points

xn =
(2n− 1)π

2N
, n = 1, ..., N (6.41)

and hence these will be our grid points. By approximating ϕ by ϕN and enforcing (6.39) at
the collocation points (6.41), we obtain the system of equations:

(−c+ 1)ϕN +
1

2
ϕ2
N +

1

6
a−2ϕ′′

N − εa−1ϕ′
N = 0 (6.42)

Where ϕN ≡ (ϕN(x1), ..., ϕN(xN))
T is to be interpreted as a vector. Note that ϕ2

N de-
notes component-wise multiplication, and the derivatives are also done component-wise.
The derivative vectors ϕ′

N and ϕ′′
N can be written as matrix-vector products. By (6.40), we

have

ϕ′
N(xm) = −

N−1∑
k=0

kv(k)ϕ̃k sin(kxm)

= −
N−1∑
k=0

kv(k)

(
v(k)

N∑
n=1

ϕN(xn) cos(kxn)

)
sin(kxm)

= −
N∑

n=1

D1(m,n)ϕN(xn)

(6.43)

Where the matrix D1(m,n) is given by

D1(m,n) =
N−1∑
k=0

kv2(k) cos(kxn) sin(kxm) (6.44)

Similarly, the second derivative may be written as
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ϕ′′
N(xm) = −

N−1∑
k=0

k2v(k)

(
v(k)

N∑
n=1

ϕN(xn) cos(kxn)

)
cos(kxm)

= −
N∑

n=1

D2(m,n)ϕN(xn)

(6.45)

Where

D2(m,n) =
N−1∑
k=0

k2v2(k) cos(kxn) cos(kxm) (6.46)

Hence the system (6.42) can equivalently be written as

(−c+ 1)ϕN +
1

2
ϕ2
N +

1

6
a−2D2ϕN − εa−1D1ϕN = 0 (6.47)

Where D1ϕN and D2ϕN are matrix-vector products. This is a coupled, nonlinear system of
N equations. Following [8], we solve the system by the multivariate Newton’s method. If
the system of equations to be solved is F(x) = 0, for a function F : RN → RN , then the
multivariate Newton’s method is defined as the iteration:


x0 = Initial guess

Solve DF (xk)s = −F(xk) for s

xk+1 = xk + s

(6.48)

Where DF (xk) is the Jacobian matrix of F evaluated at xk. If the left-hand side of (6.47)
is defined as the mapping F : ϕN 7→ (−c+ 1)ϕN + 1

2
ϕ2
N + 1

6
a−2D2ϕN − εa−1D1ϕN , then the

Jacobian is

DF (ϕN) = (−c+ 1)I+ diag(ϕN) +
1

6
a−2D2 − εa−1D1 (6.49)

Where I is the identity matrix and diag(ϕN) is the N ×N diagonal matrix whose diagonal
elements are the components of ϕN . For initial guesses sufficiently close to a solution of
(6.47), the scheme (6.48) should converge towards this solution. We will set the criterion
for convergence to be when the change in ϕN between two iterations is less than 10−12 in
the discrete L∞-norm (the maximum component, in absolute value, of a vector). Note,
however, that for certain combinations of c and ε, this tolerance must be raised in order to
get convergence (the highest tolerance we had to use was < 10−6).
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A good way to test that the scheme works is to first seek the exact traveling-wave solutions
to the Burgers and KdV equations. We will seek the traveling-wave solution to Burgers
equation by solving (6.47) with the double-derivative term set to zero (which is equivalent
to setting δ = 0 in (6.26)) and setting ε = 1 and c = 2. Recall also that we have assumed
ϕR = 0. By (6.32), the exact solution is then 3:

ϕ(x) = 1− tanh

(
1

2
(x− x0)

)
(6.50)

We let L = 5π and choose N = 256 grid points. Experimenting with various tanh-waves as
initial guesses, it is found that if the guess is sufficiently close, then the scheme always seems
to converge towards (6.50) with x0 = L/2 (even if the initial guess uses another value of x0).
A plot of this is shown below.

Figure 6.2: Comparison between the solution to Burgers equation found by the numerical
scheme and the exact solution (6.50) with x0 = L/2.

Computing the discrete L2-error (6.21) between the numerical solution and the exact solution
(6.50) with x0 = L/2, we get a value of 1.0984e − 06, providing strong evidence that the
scheme indeed converges towards (6.50).

We will also seek the exact solution (6.31) of the KdV equation. To this end, we solve
(6.47) with ε = 0 (corresponding to δ = 1

6
in the exact solution), and we choose c = 1.5

(corresponding to c = 0.5 in the exact solution). Various sech2-waves were tried as initial

3Recall that x denotes the traveling-wave variable x− ct, and note that c = 2 corresponds to c = 1 in the
exact solution, due to us using the KdV-Burgers equation in a different form.
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conditions, and the results were quite interesting. If the crest of the initial wave is sufficiently
close to zero, then the scheme converges towards figure 6.3a below, with the crest located
at zero. For most other locations of the initial crest, however, the scheme tends to converge
towards figure 6.3b, where the crest is located in the middle.

(a) (b)

Figure 6.3: Comparison between the numerical and exact solution (6.31) to the KdV equation
with x0 = 0 (left figure) and with x0 = L/2 (right figure)

Taking the discrete L2-error in both of these cases, we get a value of 2.2007e−12 for the wave
with the crest at zero, which is extremely accurate. The wave with the crest in the middle
is not as accurate, however, with an error of 1.770e− 05. The explanation for this probably
lies in the even extension implied by the cosine collocation method. The even extension
will in general not be differentiable at the boundaries, except if the derivative approaches
zero at the boundaries. If the function is not differentiable at the boundaries, then we know
that its Fourier series converges more slowly, and in addition, the Gibbs phenomenon will
be experienced by the derivative near the boundaries. Since the solution with the crest at
zero in fact has a zero derivative at the origin (and a derivative very close to zero at L), it
makes sense that it should be a significantly more accurate approximation than the solution
with the crest in the middle.

Next, we will solve the full KdV-Burgers equation, i.e., (6.47) with nonzero ε. We let c = 2,
and experiment with various values of ε, and we choose various tanh-waves as initial data.
It is found that the scheme converges towards either the shape of an undular bore, or to
a function resembling a tanh-wave, depending on the size of ε. This is in accordance with
what was proven in [3]. Below is a plot showing two of the obtained solutions.

58



(a) (b)

Figure 6.4: Two approximate traveling-wave solutions to the KdV-Burgers equation. In the
left figure, ε2 < 4cδ, and we get oscillations behind the bore front, while in the right figure,
ε2 ≥ 4cδ, and there are no oscillations.

It is generally easier to obtain convergence towards a solution with oscillations (the tolerance
for convergence had to be raised to 10−9 in order to obtain figure 6.4b). This is probably
because in this case, the left boundary can coincide with one of the maxima or minima
behind the bore front. This makes the derivative equal to zero on the left boundary, which
as previously mentioned should make the solution more accurate. It seems to always be the
case that the left boundary coincides with a minima or maxima, as shown in the plot below.

Figure 6.5: The same solution as in figure 6.4a, but calculated on a smaller interval. It
seems like the code will always translate the solution such that one of its minima or maxima
coincides with the left boundary.

We will also check how well the numerical solutions satisfy the condition (6.30) that governs
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the existence of oscillations. Notice that due to our form of the traveling-wave equation
(6.37), c should be replaced by c − 1 in (6.30), and δ = 1

6
, such that the criterion for no

oscillations becomes

ε ≥
√

2

3
(c− 1) (6.51)

where we have also used our assumption that ϕR = 0. We test this condition by choosing
some fixed values of c and solving the system (6.47) for increasing values of ε. At some point
the oscillations behind the bore front should disappear. We can use MATLAB’s built-in
function findpeaks to check for oscillations. This is a function that locates all of the local
maxima of an input sequence, where the criterion for a local maxima is that the point is
larger than its two neighboring points (endpoints are not included). If this function does
not find any peaks, we will consider the solution to be without oscillations (although we will
sometimes disregard some very small peaks; see the discussion below).

The results of the experiments are shown in the table below. We have denoted the critical
value of ε where the oscillations disappear by εcrit, and the numerical values of εcrit obtained
in the experiments are compared with the exact theoretical values.

c εcrit, numerical εcrit, exact

1.1 ≈ 0.255
√
15/15 ≈ 0.2582

1.2 ≈ 0.36
√
30/15 ≈ 0.3651

1.3 ≈ 0.435
√
5/5 ≈ 0.4472

1.4 ≈ 0.505 2
√
15/15 ≈ 0.5164

2 ≈ 0.805
√

2/3 ≈ 0.8165

These computed values of εcrit are admittedly quite rough estimates. As mentioned above,
it is more difficult to obtain convergence to a solution without oscillations, and the length
of the domain L and the tolerance for convergence of Newton’s method sometimes had to
be varied for different combinations of c and ε (L was anywhere between 10 and 90, and
the tolerance usually around 10−8). It was also sometimes the case that the solution had
one extremely small oscillation, with an amplitude on the order of ϕL + 10−14. Such a small
oscillation is not a very reliable result, and hence we disregard peaks found below a certain
tolerance. It seemed natural to set the tolerance to be ϕL plus the final change in ϕN between
iterations before the Newton scheme converged.

In any case, we see that the numerical values of εcrit are quite close to the theoretical values,
which is a good indication that the numerical solutions found are actually the solutions
proposed in [3]. The numerical critical value seems to always be lower than the theoretical,
which makes sense, since the oscillations should become infinitesimally small as ε approaches√

2
3
(c− 1), so at some point they should be small enough such that rounding errors dominate.
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6.3 The Whitham-Burgers Equation

Next, we will investigate the possibility of the Whitham-Burgers equation having the undular
bore as a traveling-wave solution. This equation was proposed in section 4.4 as a possible
improvement on the KdV-Burgers equation. Recall that it is given by

ηt +
3

2

c0
h0

ηηx +Kh0 ∗ ηx − αηxx = 0 (6.52)

Again we employ scalings in order to get the equation into a simpler form. We use the same
scalings as for the KdV-Burgers equation, namely:

x 7→ h0x , t 7→ h0

c0
t , η 7→ 2

3
h0η (6.53)

The calculation of how the convolution term scales is a bit involved; see Appendix A for
details. The result is

Kh0 ∗ ηx 7→ 2

3
c0(K ∗ ηx) (6.54)

Where K = F−1

(√
tanh(k)

k

)
is the scaled kernel. The scalings of the other terms in (6.52)

are easily calculated by the chain rule, and the result is the simpler equation:

ηt + ηηx +K ∗ ηx = εηxx (6.55)

Where ε ≡ α
h0
.

6.3.1 The Traveling-Wave Equation

We make the traveling-wave ansatz η(x, t) = ϕ(x−ct) as before, which turns equation (6.55)
into

−cϕ′ +
1

2
(ϕ2)′ +K ∗ ϕ′ − εϕ′′ = 0 (6.56)

Since we are still looking for a solution in the shape of an undular bore, we assume that
the conditions (6.28) and (6.29) about the behavior at infinity still hold. Furthermore, we
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will assume that ϕR = 0, which is a valid assumption, as explained in section 6.2. We then
integrate (6.56) from an arbitrary point x to ∞. In order to calculate the integral of the
convolution term, we use the identity K ∗ ϕ′ = (K ∗ ϕ)′ [11], which implies that

∫ ∞

x

K ∗ ϕ′ dξ = lim
ξ→∞

(K ∗ ϕ)(ξ)− (K ∗ ϕ)(x) (6.57)

It can be proven, with help of the Dominated Convergence Theorem, that

lim
ξ→∞

(K ∗ ϕ)(ξ) = ϕR (6.58)

and

lim
ξ→−∞

(K ∗ ϕ)(ξ) = ϕL (6.59)

given that ϕ is a bounded function on R (which is certainly true for an undular bore or
tanh-wave). The details of this proof are given in Appendix B. Since we assume ϕR = 0,
the first term on the right-hand side of (6.57) disappears, and the result of integrating (6.56)
from x to ∞ is the equation

−cϕ+
1

2
ϕ2 +K ∗ ϕ = εϕ′ (6.60)

As before, we would like to find an approximate solution to (6.60) on the interval [0, L],
and employ the scaling (6.38) to get the equation redefined on [0, π]. The computation of
the scaled convolution term follows the exact same procedure as for (6.54), so we omit the
details. The result is

−cϕ+
1

2
ϕ2 +

√
aK1/a ∗ ϕ = εa−1ϕ′ , 0 ≤ x ≤ π (6.61)

Where we have defined K1/a ≡ F−1

(√
tanh(k/a)

k

)
. Equation (6.61) will be discretized by

the cosine collocation method once again. In other words, we approximate ϕ by the cosine
interpolant (6.40), and enforce (6.61) at the collocation points (6.41).

Approximating the convolution product in the equation is quite a delicate matter. It will be
shown in section 6.3.2 that the convolution product of K1/a and ϕN can be written as
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K1/a ∗ ϕN =
N−1∑
k=0

v(k)K̂1/a(k)ϕ̃k cos(kx) (6.62)

There is however a problem with this approximation, which is that ϕN assumes an even
periodic extension of ϕ outside [0, π], even though ϕ itself may not be periodic. This is a
problem, since the convolution product computes an integral over the entire real line, and
hence we would expect K1/a ∗ ϕN to be a bad approximation of K1/a ∗ ϕ. However, we will
present a somewhat informal argument in section 6.3.2 that seems to indicate that (6.62)
should still be a rather good approximation, due to the decay of K away from zero.

Using (6.62), the convolution product can be written as a matrix-vector product in the
following way:

(K1/a ∗ ϕN)(xm) =
N−1∑
k=0

v(k)K̂1/a(k)ϕ̃k cos(kxm)

=
N−1∑
k=0

v(k)K̂1/a(k)

[
v(k)

N∑
n=1

ϕN(xn) cos(kxn)

]
cos(kxm)

=
N∑

n=1

KN
1/a(m,n)ϕN(xn)

(6.63)

Where the matrix KN
1/a(m,n) is given by

KN
1/a(m,n) = v2(0)

1√
a
+

N−1∑
k=1

v2(k)

√
tanh(k/a)

k
cos(kxn) cos(kxm) (6.64)

where it has been used that

K̂1/a =

√
tanh(k/a)

a
, k ̸= 0

K̂1/a(0) = lim
k→0

K̂1/a(k) = 1/
√
a

(6.65)

Hence, the system of equations to be solved is

−cϕN +
1

2
ϕ2
N +

√
aKN

1/aϕN − εa−1D1ϕN = 0 (6.66)
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where ϕN ≡ (ϕN(x1), ..., ϕN(xN))
T , and D1 is the matrix (6.44). We use Newton’s method

once again to solve (6.66). The Jacobian of the left-hand side is

DF (ϕN) = −cI+ diag(ϕN) +
√
aKN

1/a − εa−1D1 (6.67)

The system of equations (6.66) was solved for different values of ε, c and with various tanh-
waves as initial data. The solutions found were similar to those of the KdV-Burgers equation;
they have the shape of an undular bore, with oscillations behind the bore front, and the
oscillations disappear if ε is large enough. Hence, it seems like the Whitham-Burgers equation
admits traveling-wave solutions in the form of undular bores.

Below we have included plots of two of these approximate traveling-wave solutions to the
Whitham-Burgers equation (6.55) that was found by the numerical scheme. In both cases ε
is low enough such that oscillations are present. Since the exact same scalings used to obtain
(6.55) was also used to obtain the scaled KdV-Burgers equation (6.34), we can directly
compare solutions to these two equations. Hence for each traveling-wave solution to (6.55),
we do a side-by-side comparison with the traveling-wave solution to (6.34), using the same
values of ε and c.

(a) (b)

Figure 6.6: The figure on the left is an approximate traveling-wave solution to the scaled
Whitham-Burgers equation (6.55) with ε = 0.05 and c = 1.2. The figure on the right is the
approximate traveling-wave solution to the scaled KdV-Burgers equation (6.34) for the same
values of ε and c.
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(a) (b)

Figure 6.7: The figure on the left is an approximate traveling-wave solution to the scaled
Whitham-Burgers equation (6.55) with ε = 0.05 and c = 1.6. The figure on the right is the
approximate traveling-wave solution to the scaled KdV-Burgers equation (6.34) for the same
values of ε and c.

From these comparisons it is clear that the solutions to the KdV-Burgers equation are more
dispersive than the solutions to the Whitham-Burgers equation, in the sense that a larger
selection of wavelengths are present. This makes sense, since the dispersive term of the
KdV-Burgers equation is stronger.

The figures above also seem to suggest that for fixed values of c, the traveling-wave solutions
to the Whitham-Burgers and KdV-Burgers equations have the same limit at negative infinity,
ϕL (this was tested for many different values of c and seems to always be the case). Now,
recalling the relationship ϕL+ϕR = 2c that was derived in [3] for the KdV-Burgers equation,
it is easily seen that this formula adjusted to our version of the KdV-Burgers equation (6.37)
becomes

ϕL = 2(c− 1) (6.68)

There is in fact a way to derive the same relationship (6.68) for the Whitham-Burgers
equation. If we let x → −∞ in equation (6.61), we get, using (6.28) and (6.29):

−cϕL +
1

2
ϕ2
L +

√
a lim

x→−∞
(K1/a ∗ ϕ) = 0 (6.69)

It is easily shown that limx→−∞(K1/a ∗ ϕ) = 1√
a
ϕL; this would just be a copy of the proof of

(6.59), except for the fact that K̂1/a(0) =
1√
a
. Hence, (6.69) becomes
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−cϕL +
1

2
ϕ2
L + ϕL = 0 (6.70)

This has two solutions, ϕL = 0 and ϕL = 2(c − 1). It might be the case that the solution
ϕL = 0 corresponds to the trivial solution ϕ = 0, but we were not able to prove this
fact4. Nevertheless, it is a good sign that the relation (6.68) that is found empirically
can also be derived from the traveling-wave equation. This provides evidence that the
numerical solutions found are actually approximations of exact solutions to the Whitham-
Burgers equation.

Next, we investigate how much dissipation is needed for the oscillations to disappear. Inspired
by the criterion (6.30) of the KdV-Burgers equation, we will keep c constant and solve the
system of equations (6.66) for increasing values of ε, until the point εcrit is reached where the
oscillations in the numerical solutions disappear. We will once again consider the solution to
be without oscillations if MATLAB’s function findpeaks does not locate any maxima above
the given tolerance, which is set to be ϕL plus the change in ϕN during the last Newton
iteration. Once again, the computed values of εcrit are probably quite rough estimates, for
the same reasons as mentioned in section 6.2.

The results are shown in the table below. We have also included the values of εcrit computed
for the KdV-Burgers equation in section 6.2, for comparison.

c εcrit, Whitham-Burgers εcrit, KdV-Burgers
1.1 ≈ 0.265 ≈ 0.255
1.2 ≈ 0.395 ≈ 0.36
1.3 ≈ 0.5 ≈ 0.435
1.4 ≈ 0.6 ≈ 0.505
2 ≈ 1.15 ≈ 0.805

Table 6.1: Relationships between c and the critical value εcrit for which the oscillations to
numerical solutions disappear.

This comparison suggests that a slightly higher value of ε is needed for the oscillations to
disappear in the Whitham-Burgers solutions than in the KdV-Burgers solutions. See also the
figure below for a specific example of a combination of c and ε where Whitham-Burgers gives
oscillations but KdV-Burgers does not. This sounds a bit counter-intuitive at first, since the
dispersion of Whitham-Burgers should be weaker than that of KdV-Burgers. However, this
can possibly be explained by the fact that the traveling waves should be possible due to a
balancing of four properties: Dispersive spreading, dissipative decay, nonlinear steepening

4Note that the same procedure was done in [3] in order to prove the relation ϕL + ϕR = 2c for the
KdV-Burgers equation. They also arrived at two solutions, the other one being ϕL = ϕR, and they were
able to prove that this corresponded to a trivial, constant solution, by multiplying the equation by ϕ′ and
integrating. Attempting the same proof for the Whitham-Burgers equation would be very difficult, however,
due to the convolution term.
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and the ”input of energy” from the left. If the dispersive term becomes weaker, then more
dissipation is needed in order to balance out the nonlinear steepening and input of energy.
This might be the reason for the larger value of εcrit for the Whitham-Burgers equation.

(a) (b)

(c)

Figure 6.8: Figure (a) is a numerical solution to the Whitham-Burgers equation with c = 1.4
and ε = 0.51, and figure (b) is a numerical solution to the KdV-Burgers equation with the
same values of c and ε. The Whitham-Burgers solution has a small maxima just behind
the bore front (a closeup of this maxima is shown in figure (c)), while no maxima are found
for the KdV-Burgers solution. Note however, that according to (6.30), the KdV-Burgers
solution for this combination of c and ε should in theory have some very small oscillations.

6.3.2 Convolution With the Cosine Interpolation Operator

In this section we will prove formula (6.62) for the convolution of K with the cosine inter-
polant ϕN . The following proof can also be found in [26].

Proposition. K1/a ∗ ϕN =
∑N−1

k=0 v(k)K̂1/a(k)ϕ̃k cos(kx)
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Proof. First of all, recall from section 4.3 thatK1/a ∈ L1(R). Since in addition ϕN is bounded
on R, the convolution product will exist for all x. [11, ch. 7] Substituting the definition of
ϕN , we have

K1/a ∗ ϕN =

∫ ∞

−∞
K1/a(y)

[
N−1∑
k=0

v(k)ϕ̃k cos(k(x− y))

]
dy

=

∫ ∞

−∞
K1/a(y)

[
N−1∑
k=0

v(k)ϕ̃k
eik(x−y) + e−ik(x−y)

2

]
dy

We can split this into two integrals to obtain

K1/a ∗ ϕN =

∫ ∞

−∞
K1/a(y)

[
N−1∑
k=0

v(k)ϕ̃k
eik(x−y)

2

]
dy +

∫ ∞

−∞
K1/a(y)

[
N−1∑
k=0

v(k)ϕ̃k
e−ik(x−y)

2

]
dy

On the second of these integrals, we use the substitution y 7→ −y, and use the fact that K1/a

is even5, to rewrite the integral as

∫ ∞

−∞
K1/a(y)

[
N−1∑
k=0

v(k)ϕ̃k
e−ik(x+y)

2

]
dy

If we then put the two integrals back together, we get

K1/a ∗ ϕN =

∫ ∞

−∞
K1/a(y)

[
N−1∑
k=0

v(k)ϕ̃k
eik(x−y) + e−ik(x+y)

2

]
dy

=
N−1∑
k=0

v(k)ϕ̃k
eikx + e−ikx

2

∫ ∞

−∞
K1/a(y)e

−ikydy

=
N−1∑
k=0

v(k)K̂1/a(k)ϕ̃k cos(kx)

5Since K(x) = 1
2π

∫∞
−∞

√
tanh k

k eikxdk, it is easily shown that K(−x) = K(x) by making the substitution

k 7→ −k and using the fact that
√

tanh k
k is even.
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However, as mentioned in section 6.3.1, the problem with usingK1/a∗ϕN as an approximation
to K1/a∗ϕ is that ϕN assumes an even periodic extension outside [0, π]. Since the convolution
is taken over the entire real line, and ϕN is presumably very different from ϕ outside [0, π],
due to the periodic extension, it seems like K1/a ∗ ϕN should also be very different from
K1/a ∗ ϕ.

We will try, however, to use a somewhat informal argument to show that K1/a∗ϕN might still
be a quite accurate approximation. We will present the argument for the original, non-scaled
convolution product K ∗ ϕN defined on [0, L]; the scaling should not affect the accuracy of
the convolution product.

As noted in [9], the kernel K has rapid decay away from zero, since the function
√
tanh(k)/k

is analytic. Recall that K also has a singularity at the origin, and in [9] it is shown that the
growth of K as x → 0 is on the order of x−1/2. Thus, if one also remembers that K is even,
we can deduce that K should look similar to the sketch below.

Figure 6.9: Sketch of the kernel K.

Let us consider the numerical solution obtained in figure 6.6a. The implied even extension is
clearly seen if one plots this solution on a larger interval (it will be shown in the next section
how to acquire the plot below):
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Figure 6.10: The even periodic extension of the solution from figure (6.6a), which is equiva-
lent to ϕN .

The convolution product (K ∗ ϕN)(x) at the point x is then the integral of the function in
figure 6.9 multiplied with the function in figure 6.10, where K has been shifted such that
the singularity is at x. Now, assuming that the Whitham-Burgers equation indeed has an
exact undular-bore solution ϕ, then this solution should converge towards the limits ϕL and
ϕR at negative and positive infinity, with ϕL > ϕR. We say that the solution evolves into a
”plateau” for decreasing x and into a ”valley” for increasing x (see the sketch below).

Then, in the interval [0, L], K ∗ ϕN should be quite close to K ∗ ϕ, as long as L is not too
small, and a sufficient amount of the plateau and valley are contained in this interval. In
that case, K should be very close to zero at the point where ϕN and ϕ start to significantly
differ, and the contribution to the integral beyond this point should be negligibly small, both
for the convolution with ϕ and with ϕN . A sketch of this idea is shown in the figure below,
where we have chosen x = L.
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Figure 6.11: Sketch of the convolution product (K ∗ ϕN)(L). From top to bottom: The
(presumed) exact solution ϕ, the numerical solution ϕN with its implied even extension, and
the kernel K evaluated at L − x. We have denoted the point where ϕ and ϕN start to
significantly differ by x∗.

This is of course quite an informal ”proof”, and it would be desirable to get an actual estimate
on the size of the error induced by computing K ∗ϕN instead of K ∗ϕ, although this is likely
very difficult.

6.3.3 Time-Dependent Numerical Scheme

We would like to test whether our computed solutions to (6.61) actually are approximate
traveling-wave solutions to the time-dependent (scaled) Whitham-Burgers equation (6.55).
Hence we will design a numerical scheme for (6.55) and use one of the computed solutions to
(6.61) as the initial data. If the computed solution is indeed a traveling wave, then it should
move to the right without changing its shape.

The natural choice for the spatial discretization is Fourier collocation, because as we have
seen, it allows the convolution product to be written as a finite sum (a similar formula to
(6.62) will be derived for regular Fourier collocation). However, there is one major problem
with using this method, which is that the computed traveling-wave solutions are not periodic
functions (they converge towards different limits ϕL and ϕR at negative and positive infinity).
The Fourier collocation method would of course still assume a periodic extension outside the
computational interval, but the discontinuities created at the boundaries would make the
scheme unstable.
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Ideally, we would like to design a numerical scheme for (6.55) that could handle non-periodic
boundary conditions, but this would be very difficult due to the convolution term. Therefore,
we will keep using Fourier collocation, and instead use a trick in order to force periodic
boundary conditions. Namely, we will take one of the traveling-wave solutions and reflect
it across the y-axis, which can conveniently be done by the cosine interpolation formula
(5.41). Recall that our numerical traveling-wave solutions ϕN are simply (5.41) sampled

at the collocation points xn = (2n−1)π
2N

, n = 1, ..., N . The numerical solution can then be
reconstructed on a new grid {xm} , m = 1, ..,M , by evaluating (5.41) at the new grid points:

ϕM(xm) =
N−1∑
k=0

v(k)ϕ̃N(k) cos(kxm) , m = 1, ...,M (6.71)

The algorithm for computing (6.71) is to first take the DCT of ϕN to obtain {ϕ̃N(k)}N−1
k=0 ,

and then evaluating the sum for each m. We now take advantage of the fact that the DCT
assumes an even extension of the sampled function. If we use (6.71) to reconstruct the
function on the interval [−π, π], it will reconstruct the even extension of the function, which
is equivalent to reflecting the function across the y-axis.

Our new grid will be the Fourier grid (5.12), but translated to the interval [−π, π]:

xm =
2πm

M
, m = −M/2, ...,M/2− 1 (6.72)

Recall from section 5.2.2 that using Fourier collocation with these grid points is completely
equivalent to Fourier collocation with the grid points xm = 2πm

M
, m = 0, ...,M − 1, which

are the grid points used in MATLAB’s fft and ifft. We choose M = 2N , which seems like a
natural choice since we double the spatial interval.

The result of reconstructing the solution in figure 6.6a on the new grid (6.72) is shown in
the plot below. We see that the function indeed gets reflected across the y-axis. This will be
our initial data when solving the time-dependent equation. Obviously, the left half of this
function is not part of the traveling-wave solution, which is a major drawback of using this
as the initial data. However, it can be argued that the right half should still, for some time,
evolve as if a boundary condition was imposed at zero, since the long ”plateau” essentially
acts as a boundary condition for the right half.
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Figure 6.12: The numerical solution from figure 6.6a, reconstructed on the grid (6.72) by
formula (6.71). Note that we have used L = 80 here, which ensures a sufficiently large
plateau.

Since we doubled the size of the interval in order to reflect the function, the interval on
which to solve (6.55) must also be doubled to [−L,L]. We then employ scalings to get (6.55)
defined on [−π, π]. We use essentially the same scalings as for the traveling-wave equation,
namely

x 7→ ax , t 7→ t , η 7→ η , a =
L

π
(6.73)

The scaling of the convolution term follows the same procedure as before. Equation (6.55)
rescaled to [−π, π] becomes

ηt + a−1ηηx + a−1/2K1/a ∗ ηx = εa−2ηxx (6.74)

WhereK1/a is the scaled kernel as previously defined. We approximate η by its trigonometric
interpolant

ηM ≡ IMη(x) =

M/2−1∑
k=−M/2

η̃k(t)e
ikx (6.75)

and we enforce (6.74) at the collocation points (6.72):
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∂ηM
∂t

+ a−11

2

∂(ηM)2

∂x
+ a−1/2K1/a ∗

∂ηM
∂x

− εa−2∂
2ηM
∂x2

∣∣∣∣
x=xm

= 0 , m = −M/2, ...,M/2− 1

(6.76)

It will be proven in the next section that the convolution of K1/a and ∂ηN
∂x

can be written as
follows:

(K1/a ∗
∂ηM
∂x

)(x) =

M/2−1∑
k=−M/2

ikη̃kK̂1/a(k)e
ikx (6.77)

Recall that K̂1/a is given by (6.65). The proof of (6.77) is very similar to that in section
6.3.2, but quite a bit easier. Once again we have the potential problem of (6.77) being an
inaccurate approximation, due to the exact convolution product being with a non-periodic
function. However, the arguments from section 6.3.2 should still apply here; as long as the
plateau and valley of the numerical solution are large enough, then K1/a should be very close
to zero at the point where ∂η/∂x and ∂ηM/∂x start to significantly differ. As a result, the
approximation (6.77) should be sufficiently accurate for the right half of the initial data to
approximately evolve like a traveling wave.

Just as with the scheme for the KdV equation, we will transform equation (6.76) into Fourier
space. By differentiating ηN and taking the DFT of both sides, we obtain the equivalent
system of equations

η̃t +
1

2
ika−1(̃η2) + a−1/2ikη̃K̂1/a + εa−2k2η̃ = 0 (6.78)

Where k = (−M/2, ...,M/2− 1)T , η̃ = (η̃−M/2, ..., η̃M/2−1)
T and

K̂1/a = (K̂1/a(−M/2), ..., K̂1/a(M/2−1))T , and all the vectors in the equation are multiplied
pointwise.

For the discretization in time, the Implicit Trapezoid Method will be used once again. Ap-
plying this method to the semi-discrete equation (6.78), we obtain

η̃n+1 = η̃n −m(η̃n+1 + η̃n)−
∆t

4
ika−1

[
(̃η2n) + (̃η2n+1)

]
(6.79)

Where m = ∆t
2

[
εa−2k2 + a−1/2ikK̂1/a

]
. This can be rearranged to

η̃n+1 =
1−m

1 +m
η̃n −

∆t
4
ika−1

1 +m

[
(̃η2n) + (̃η2n+1)

]
(6.80)
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This system of equations was solved by the same fixed-point iteration as for the KdV equa-
tion. The scheme was run until the time T = 100ah

c
≈ 13.0208, where h = 2π

M
is the space

step and c is the speed of the traveling-wave solution (the reason for this particular choice
of T will be explained below). In order for the scheme to stop exactly at T , we must choose
a time step ∆t such that T is divisible by ∆t. Hence, we choose ∆t = T/(2 · 104) ≈ 0.00065.
The numerical solution at T is plotted below, together with the initial data.

Figure 6.13: Numerical solution to the time-dependent Whitham-Burgers equation (6.55).

We see that the right half of the initial data indeed seems to evolve like a traveling wave. A
close-up of the right half of the above plot is also included below.

Figure 6.14: Close-up of the right half of figure 6.13.
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The two shapes in figure 6.14 seem almost identical, which is a good indication that our
numerical solutions are actually traveling waves. An explicit way to check the closeness of
the two shapes is to translate the solution at T back to the initial data. Since the solution is
supposed to travel at speed c, we can translate the function back by the amount Tc = 100ah,
and it should more or less coincide with the initial data. The simplest way to achieve this is
to define a new grid x∗

m by

x∗
m = axm − Tc , m = −M/2, ...,M/2− 1 (6.81)

where xm is the grid (6.72) (we scale it back to [0, L]), and plot the solution at T on this
new grid. The plot of this translated solution is shown below, together with the initial data.
Note that we do not plot the spatial domain past x∗

M/2−1 ≈ 64. We see that the difference
between the initial data and the translated solution is barely noticeable.

Figure 6.15: Comparison of the initial data and the solution at T translated to the left by
the amount T · c.

The closeness of the two shapes in the above plot can be quantified by taking the norm of
their difference. In this case, it is important for the grid points xm and x∗

m to match exactly
in the interval where we are comparing the two functions. This is achieved when Tc is a
multiple of ah, and this is the reason for our particular choice of T .

The initial data (call it η0) and solution at T (call it ηT ) are then compared at the grid
points (0 : h : x∗

M/2−1), which are the grid points in [0, L] that are common to both grids.

Taking the discrete L∞-error of ηT − η0 at these grid points, we get a value of 1.6932 · 10−7.
This is a very small error, especially considering the fact that the left half of the initial data
is not part of the traveling-wave solution.
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6.3.4 Convolution With the Complex-Exponential Interpolation
Operator

Here we will prove formula (6.77) for the convolution of K and the complex-exponential
interpolation operator ηM .

Proposition. K1/a ∗ ∂ηM
∂x

=
∑M/2−1

k=−M/2 ikη̃kK̂1/a(k)e
ikx

Proof. For simplicity, we will assume that ηM is only a function of x. This is justified by
the fact that this convolution product is computed for fixed values of t. We then denote the
derivative of ηM with respect to x by η′M .

(K1/a ∗ η′M)(x) =

∫ ∞

−∞
K1/a(y)η

′
M(x− y)dy

=

∫ ∞

−∞
K1/a(y)

 M/2−1∑
k=−M/2

ikη̃ke
ik(x−y)

 dy

=

M/2−1∑
k=−M/2

ikη̃ke
ikx

∫ ∞

−∞
K1/a(y)e

−ikydy

=

M/2−1∑
k=−M/2

ikη̃kK̂1/a(k)e
ikx

6.4 The Whitham Equation With Boundary-Layer

Dissipation

Our final numerical experiment of this thesis will be of the Whitham equation with an
additional term that models dissipation in a boundary layer near the channel bottom. We
have not focused too much on this equation, however, since the Whitham-Burgers equation
produced more interesting results. Recall from section 4.4 that Kakutani and Matsuuchi [14]
derived the following equation where boundary-layer dissipation is included:

ηt +
3

2
ηηx +

1

6
ηxxx =

1

4
√
πR∗

(L ∗ ηx) (6.82)
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Where R∗ was a scaled Reynolds number and L = 1−sgnx√
|x|

. Since (6.82) is just the KdV

equation with an additional term, we can attempt to replace its dispersive term with the
convolution term of the Whitham equation, just like we did to form the Whitham-Burgers
equation. Since (6.82) is already a nondimensional and scaled equation, we will use the

nondimensional form of the Whitham kernel, K = F−1

(√
tanh(k)

k

)
, that is arrived at in

appendix A. We then propose the equation:

ηt + ηηx +K ∗ ηx = ρ (L ∗ ηx) (6.83)

Where ρ > 0 is some nondimensional constant. We have set all other constants to unity,
which should be possible through some scaling. Equation (6.83) will be called the Whitham-
Kakutani-Matsuuchi equation.

The first question one might ask of the Whitham-Kakutani-Matsuuchi equation is whether
it admits traveling-wave solutions in the shape of undular bores, like the KdV-Burgers and
Whitham-Burgers equations. However, this seems to not be the case. In the article by
Kakutani and Matsuuchi, they conclude that equation (6.82) does not admit traveling-wave
solutions with different limits at negative and positive infinity (they are called shock-like
solutions in the article). They used a result by Pfirsch and Sudan [25], which states that
a necessary condition for a KdV equation with dissipation to admit shock-like solutions is
that

lim
k→0

γ(k)

|k|
→ 0 (6.84)

Where γ(k) is the linear damping rate. It can be shown that this criterion is not satisfied by
the Whitham-Kakutani-Matsuuchi equation. Recall from section 4.4 that the linear damping
rate is given by the imaginary part of the dispersion relation. In order to find the dispersion
relation for (6.83), note that by linearity of the convolution product, the linearized equation
can be written as

ηt + (K − ρL) ∗ ηx = 0 (6.85)

This is of the form (4.25), from which we know that the phase speed of (6.85) is given by

c(k) = K̂ − ρL̂ (6.86)

Computing the Fourier transform of the operator L is a difficult matter. We resorted to
finding L̂ by using Wolfram Alpha [33], being careful to use our convention of the Fourier
transform, and the result was
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L̂ =

√
2π(1 + i sgn k)√

|k|
(6.87)

We note that L̂ has a singularity at the origin, and it is a non-removable singularity, i.e., L̂(0)
can not be defined in terms of its limit, as this limit does not exist. However, the product kL̂
does have a removable singularity. We can replace k/

√
|k| by

√
|k| sgn k, as these functions

are identical on R\{0}, and they both have the same limit as k → 0. We can also replace
k sgn k√

|k|
by
√

|k| for the same reasons. Therefore, the product kL̂ can be redefined to

kL̂ ≡ |2πk|1/2(i+ sgn k) (6.88)

which is identical to kL̂ as defined by (6.87), except the singularity at the origin has been
removed. The dispersion relation of (6.85) is then

ω(k) = k · c(k) = k

√
tanh(k)

k
− ρ|2πk|1/2(i+ sgn k) (6.89)

We notice that the imaginary part is negative for all k, confirming that the term L∗ηx indeed
provides a loss of energy. Moreover, the linear damping rate is given by γ(k) = ρ|2πk|1/2,
which does not satisfy the criterion (6.84). It might be the case, however, that this criterion
would need to be altered for the Whitham-Kakutani-Matsuuchi equation, as the criterion is
derived specifically for the KdV equation with dissipation. This was not looked any further
into.

If one tries to insert the traveling-wave ansatz into (6.83) and integrate the resulting equation
once, as done in sections 6.2 and 6.3, then the convolution product on the right-hand side of
(6.83) becomes L ∗ ϕ, and now the singularity of L̂ at the origin becomes a problem. If one
attempts to solve the equation by cosine collocation, then the convolution product L ∗ ϕN

can not be computed by the proposition in section 6.3.2, because L̂(0) is not defined. It
might be the case that L decays too slowly away from zero for the convolution product L∗ϕ
to exist. It might be possible to construct a cosine collocation scheme for the non-integrated
traveling-wave equation, but this has not been attempted, due to time constraints.

It is possible, however, to solve the time-dependent Whitham-Kakutani-Matsuuchi equation
(6.83) by Fourier collocation, due to the singularity of L̂ being removable when multiplied
by k. We assume to the equation is to be solved on [−L,L], and employ the scaling (6.73)
to redefine it on [−π, π]. The scaling of the convolution term L ∗ ηx is once again computed
by the exact same procedure as shown in appendix A. The result is

ηt + a−1ηηx + a−1/2K1/a ∗ ηx − a−1/2ρL ∗ ηx = 0 (6.90)
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It can be shown, using the same procedure as in section 6.3.4, that the convolution of L with
the trigonometric interpolant ηN can be written as

L ∗ ∂ηN
∂x

= −
N/2−1∑
k=−N/2

|2πk|1/2(1− i sgn k)η̃ke
ikx (6.91)

Approximating η by ηN , we obtain the following system of equations in Fourier space (define
ε =

√
2πρ for simplicity):

η̃t +
1

2
ika−1(̃η2) + a−1/2ikη̃K̂1/a + a−1/2ε|k|1/2(1− i sgn k)η̃ = 0 (6.92)

Where k = (−N/2, ..., N/2− 1)T , η̃ = (η̃−N/2, ..., η̃N/2−1)
T and

K̂1/a = (K̂1/a(−N/2), ..., K̂1/a(N/2−1))T as before. Applying the Implicit Trapezoid Method
in time, we obtain the equations

η̃n+1 =
1−m

1 +m
η̃n −

∆t
4
ika−1

1 +m

[
(̃η2n) + (̃η2n+1)

]
(6.93)

Where m = a−1/2∆t
2

[
ikK̂1/a + ε|k|1/2(1− i sgn k)

]
. Equation (6.93) is solved by fixed-point

iteration as usual. Since we are interested in how the equation models the development of
an undular bore, we solve (6.93) with a tanh-wave as the initial data, which can be thought
of as the incoming tidal bore. We choose L = 100, use N = 2048 grid points and a time step
∆t = 0.0005.

Of course, the boundary conditions must still be approximately periodic, and hence we
have to use a ”reflected” tanh-wave as before. We use as initial data the following sum of
tanh-waves

η(x, 0) = 0.05 tanh

(
1

2
(x+ 50)

)
− 0.05 tanh

(
1

2
(x− 10)

)
(6.94)

which is essentially a tanh-wave reflected about x = −20. The scheme was run with various
values of ε, and compared with the solution obtained by the Whitham-Burgers scheme (6.80),
using the same initial data and the same value of ε 6. Below we have plotted the results
obtained with ε = 0.01 and with ε = 0.5.

6Note that in the Whitham-Burgers equation, ε is the coefficient in front of the double-derivative term,
while for Whitham-Kakutani-Matsuuchi, ε =

√
2πρ. We could also have compared ε in Whitham-Burgers

to ρ in Whitham-Kakutani-Matsuuchi; the conclusion below would have been the same.
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(a) (b)

Figure 6.16: Left figure: The result of running the scheme (6.93) for the Whitham-Kakutani-
Matsuuchi equation with ε = 0.005. Right figure: The result of running the scheme (6.80)
for the Whitham-Burgers equation for the same value of ε. In both cases the schemes are
run until T = 120.

(a) (b)

Figure 6.17: The same scenario as figure 6.16, but here dissipation is much stronger, with
ε = 0.3.

From figure 6.16 we see that the initial wave evolves quite similarly for the two equations,
with the only significant difference being the dissipation, which seems to be a lot stronger
in the Whitham-Kakutani-Matsuuchi equation. This is even more apparent in 6.17, where
the dissipation is completely dominant in the Whitham-Kakutani-Matsuuchi equation. This
makes sense if one compares the imaginary part of the dispersion relations for the two
equations, which is what gives the damping rate. For the Whitham-Burgers equation, it is
proportional to k2, while for the Whitham-Kakutani-Matsuuchi equation, it is proportional
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to |k|1/2. Recall that k = 2π/λ. Since our spatial interval is quite large, it should stand
to reason that most of the wavelengths contained in the initial wave are larger than 2π, in
which case k < 1 and |k|1/2 > k2.

Finally, it should be noted that the coefficient of dissipation in a dimensional boundary-layer
equation is likely to be very small, since the boundary layer is usually very thin in the case
of water waves. For instance, the dimensional equation obtained by Byatt-Smith in [6] has
a boundary-layer term that is proportional to

√
ν/π, where ν is the kinematic viscosity. As

mentioned in chapter 3, ν is very low for water at atmospheric pressure, and so the whole
boundary-layer term should be very small in this equation. Hence, the solutions we found
for the Whitham-Kakutani-Matsuuchi equation, where the dissipation was very dominant,
are probably not very realistic.
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Chapter 7

Conclusions and Further Work

In this thesis we have investigated three different equations that are potential models of
the undular bore. We began by considering the KdV equation with an additional double-
derivative term, i.e., the KdV-Burgers equation. For this equation, it had already been
proven by Bona and Schonbek [3] that it admits traveling-wave solutions in the shape of
undular bores. Hence, this equation served as a way to test that our numerical scheme
worked, as we knew that theoretically, it should be possible to extract an undular bore from
this equation. By making the traveling-wave ansatz, and solving the resulting ODE by cosine
collocation, we found numerical solutions that indeed had the shape of undular bores.

Next, we generalized the KdV-Burgers equation by replacing its dispersive term with the
nonlocal convolution term of the Whitham equation, and we named this new equation the
Whitham-Burgers equation. We once again made the traveling-wave ansatz, and solved the
resulting equation by cosine collocation. The numerical scheme found undular-bore solutions
for this equation as well. These solutions were generally quite similar to the traveling-
wave solutions to the KdV-Burgers equation, but the oscillating part was less dispersive.
Somewhat surprisingly though, it seemed like a larger coefficient of dissipation was needed
for the Whitham-Burgers equation in order for the oscillations to disappear.

Finally, we considered the Whitham equation with an additional term modelling dissipation
in a boundary-layer near the bottom of the channel, which according to Sturtevant’s article
[29] should be a more realistic model of the undular bore. This equation was called the
Whitham-Kakutani-Matsuuchi equation. However, we were not able to find any traveling-
wave solutions to this equation, and a condition derived by Pfirsch and Sudan [25] might
indicate that undular bores do not exist as traveling-wave solutions. We were able, however,
to derive a numerical scheme for the time-dependent equation, and we ran tests compar-
ing how this equation and the Whitham-Burgers equation model how an initial tanh-wave
evolves. The effect of dissipation was much stronger in the Whitham-Kakutani-Matsuuchi
equation.

Regarding possible further work, it would be very interesting if one could prove the existence
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of traveling-wave solutions to the Whitham-Burgers equation, as the numerical experiments
in section 6.3 seem to indicate that they do indeed exist. It would also be desirable to
make the arguments in section 6.3.2 rigorous, i.e., to get an actual estimate of the error
induced by taking the convolution product with ϕN instead of ϕ. Deriving a condition for
the existence of oscillations in the Whitham-Burgers solutions, like the condition (6.30) for
the KdV-Burgers equation, would also be interesting.

Another point for further study could be to model the interaction of bores. In [16] it was
shown that the interaction of two solitary waves in the cubic Whitham equation1 leaves
behind a tail of oscillations after the interaction, while for the modified KdV equation2 the
interaction is completely clean. In light of these different interactions, it might be expected
that the interaction of bores should produce different results for the KdV-Burgers and the
Whitham-Burgers equations.

1The cubic Whitham equation is the Whitham equation with a slightly modified nonlinear term.
2The modified KdV equation is the KdV equation with the same change in the nonlinear term as in the

cubic Whitham equation.
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Appendix A

Scaling of the Convolution Terms

Here we provide explicit details of how the scaling of the convolution terms may be calculated.
We will only show the calculation for equation (6.54); the other scalings used in equations
(6.61), (6.74) and (6.90) can be proven by the exact same procedure.

Proposition. Kh0 ∗ ηx 7→ 2
3
c0(K ∗ ηx)

Proof. It will be useful to denote the old variables by a prime. The scalings (6.33) can then
be written

x′ = h0x , t′ =
h0

c0
t , η′(x′, t′) =

2

3
h0η(x, t) (A.1)

Note also that since the wavenumber k is inversely proportional to the spatial coordinate, it
scales as

k′ =
1

h0

k (A.2)

By the convolution theorem, we have:

Kh0 ∗ η′x′ = F−1(F(Kh0) · F(η′x′))

=
1

2π

∫ ∞

−∞

√
g tanh(k′h0)

k′ ik′η̂′(k′, t′)eik
′x′
dk′

=
c0
2π

∫ ∞

−∞

√
tanh(k)

k

1

h0

ikη̂′(k/h0, t
′)eikx

1

h0

dk

(A.3)
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Where the scalings for x and k have been used in the last equality. Note that the bounds
of integration do not change. Moreover, we can use the following property of the Fourier
transform:

F [η(ax)] =
1

a
η̂

(
k

a

)
(A.4)

To show the following:

F(ηx) = ikF(η) =
3

2h0

ikF(η′(h0x, t
′)) =

3

2h2
0

ikη̂′(k/h0, t
′) (A.5)

Substituting this into the final expression of (A.3), and using the convolution theorem again,
we get

Kh0 ∗ η′x′ =
c0
2π

2

3

∫ ∞

−∞

√
tanh(k)

k
F(ηx)e

ikxdk =
2

3
c0(K ∗ ηx) (A.6)
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Appendix B

The Limit of the Convolution

Here we will do a detailed proof of the following proposition:

Proposition. If ϕ is a bounded function on R, then

lim
ξ→∞

(K ∗ ϕ)(ξ) = ϕR (B.1)

and
lim

ξ→−∞
(K ∗ ϕ)(ξ) = ϕL (B.2)

Proof. We will need the Dominated Convergence Theorem in order to prove this proposition.
This theorem can be found in chapter 3 of [11], and is stated below (in the special case of
functions of one variable).

Theorem B.0.1. Let D be a region in R. Suppose fn (n = 1, 2, 3, ...), f and g are functions
on D, such that

(a) g(x) ≥ 0 and
∫
D
g(x)dx < ∞

(b) |fn(x)| ≤ g(x) for all n and all x ∈ D

(c) fn(x) → f(x) as n → ∞ for all x ∈ D

Then
∫
D
fn(x)dx →

∫
D
f(x)dx as n → ∞.

We will show the proof in detail for the right-hand limit (B.1). In this case, D = R, and the
sequence of functions to consider is fn(y) = K(y)ϕ(n− y). It is clear that

lim
n→∞

fn(y) = ϕRK(y) ∀ y ∈ R (B.3)
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A slight caveat is that we consider fn(y) to be a continuous sequence of functions (so the limit
as n → ∞ is a continuous limit), whereas the Dominated Convergence Theorem assumes a
discrete sequence of functions. However, we can just define some sequence {pn} such that
limn→∞ pn = ∞, and consider the discrete sequence of functions fpn(y) = K(y)ϕ(pn − y).
This sequence clearly still satisfies the limit condition (B.3).

We have that

|fpn(y)| = |K(y)||ϕ(pn − y)| ≤ C|K(y)| ∀ n ∀ y

Where C = supy∈R|ϕ(y)|. Hence condition (b) of the theorem is satisfied with g(y) =
C|K(y)|. Moreover, g(y) ≥ 0 and

∫ ∞

−∞
g(y)dy = C

∫ ∞

−∞
|K(y)|dy < ∞

since K ∈ L1(R). Thus all conditions of the theorem are satisfied, and we get that

lim
n→∞

∫ ∞

−∞
K(y)ϕ(pn − y)dy = ϕR

∫ ∞

−∞
K(y)dy = ϕR

Where it has been used that
∫∞
−∞K(y)dy = K̂(0) = limk→0

√
tanh(k)/k = 1. Since this

limit holds for any sequence {pn} going to infinity, it must also hold in the continuous limit
to infinity, and we get

lim
ξ→∞

(K ∗ ϕ)(ξ) = lim
ξ→∞

∫ ∞

−∞
K(y)ϕ(ξ − y)dy = ϕR

The proof that limξ→−∞(K∗ϕ)(ξ) = ϕL is identical, except you define fn(y) = K(y)ϕ(−n−y),
and use that limξ→−∞

∫∞
−∞ K(y)ϕ(ξ − y)dy = limξ→∞

∫∞
−∞K(y)ϕ(−ξ − y)dy.
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Appendix C

Source Code

Here we have included two of the scripts that were used in chapter 6 of this thesis. The first
script computes the approximate traveling-wave solutions that were found for the KdV-
Burgers and Whitham-Burgers equations. The second script solves the time-dependent
Whitham-Burgers equation numerically. The other scripts used in section 6.1 and 6.4 are
very similar to the second script, but with minor changes. These scripts were inspired by
existing codes made by Henrik Kalisch, and his codes have been further developed in [15].

1 % This program computes approximate traveling−wave solutions to the
2 % KdV−Burgers equation or the Whitham−Burgers equation by cosine ...

collocation.
3 %
4 % KdV−Burgers traveling−wave equation:
5 %(−c+1)*u + 1/2*uˆ2 + 1/6*aˆ(−2)*u'' − epsilon*aˆ(−1)*u' = 0 on [0,pi]
6 %
7 % Whitham−Burgers traveling−wave equation:
8 % −c*u + 1/2*uˆ2 + aˆ(1/2)(K 1/a * u) − epsilon*aˆ(−1)*u' = 0 on [0,pi]
9 %

10 % We solve the equations on [0,L], but use the scaling u(x) −> u(ax),
11 % a=L/pi to redefine the equations on [0,pi], the interval on which the
12 % solutions are actually computed by the code.
13

14 clear
15

16 %%
17 %%%Basic parameters
18

19 L=60; %Spatial interval on which to solve the equation
20 N=512; %Number of grid points
21 h0=L/N; %Space step
22 x0 = (h0/2:h0:L−h0/2)'; %Cosine grid
23

24 c=1.2; %Speed of the traveling wave
25 uinit=0.2*(1−tanh(x0−L/2)); %Initial guess for the traveling−wave solution
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26

27 %%
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 %%%Cosine collocation
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31

32 %First we scale the grid down to the interval [0,pi]
33

34 h=pi/N; %New space step on [0,pi]
35 a=L/pi; %Scaling parameter
36 x = (h/2:h:pi−h/2)'; %Spatial grid scaled down to [0,pi]
37

38 wav=(0:1:N−1)'; %Wavenumbers for cosine collocation
39

40 v = sqrt(2/N)*ones(N,1); %This is the weight used for the discrete ...
cosine coefficients

41 v(1) = sqrt(1/N);
42

43 %First−derivative matrix
44 D1=zeros(N);
45 for m=1:N;
46 for n=1:N;
47 D1(m,n) = 0;
48 for k=2:N;
49 D1(m,n) = D1(m,n) + ...

v(k)*v(k)*(wav(k))*cos(x(n)*wav(k))*sin(x(m)*wav(k));
50 end;
51 end;
52 end;
53 D1=−D1;
54

55 %Second−derivative matrix
56 D2=zeros(N);
57 for m=1:N;
58 for n=1:N;
59 D2(m,n) = 0;
60 for k=2:N;
61 D2(m,n) = D2(m,n) + ...

v(k)*v(k)*(wav(k))ˆ2*cos(x(n)*wav(k))*cos(x(m)*wav(k));
62 end;
63 end;
64 end;
65 D2=−D2;
66

67 %Convolution product matrix
68 K=zeros(N);
69 for m=1:N;
70 for n=1:N;
71 K(m,n) = sqrt(1/a)*v(1)*v(1)*cos(x(n)*wav(1))*cos(x(m)*wav(1));
72 for k=2:N;
73 K(m,n) = K(m,n) + sqrt((1/wav(k))*tanh((1/a)*wav(k)))*...
74 v(k)*v(k)*cos(x(n)*wav(k))*cos(x(m)*wav(k));
75 end;
76 end;
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77 end;
78

79 ∆=1/6; %Dispersion coefficient
80

81 epsilon=0.05; %Dissipation coefficient
82

83 %%
84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85 %%%Below are the system of equations to be solved by Newton's method
86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87

88 %Eqns= (−c+1)*eye(N)+∆*aˆ(−2)*D2−epsilon*aˆ(−1)*D1; %System of ...
equations for the KdV−Burgers equation

89

90 Eqns= −c*eye(N)+sqrt(a)*K−epsilon*aˆ(−1)*D1; %System of equations for ...
the Whitham−Burgers equation

91

92 %%
93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
94 %%%Newton loop
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 u=uinit;
97

98 tolerance=1e−12; %Tolerance for convergence of Newton's method
99

100 change = 1;
101 while change > tolerance
102 DFu = Eqns + diag(u); %Jacobian matrix
103 corr = − DFu\( Eqns*u + 1/2*u.ˆ2); %Corrective term
104 unew = u + corr; %New guess
105 change=norm(corr,inf); %Norm of difference between old and new guess
106 u = unew;
107 end
108

109 plot(x0,u,'b')

1 % This program solves the time−dependent Whitham−Burgers equation
2 % numerically by the Fourier Collocation Method in space, and the Implicit
3 % Trapezoid Method with fixed−point iteration in time.
4 %
5 % Time−dependent Whitham−Burgers equation:
6 % u t+aˆ(−1)uu x+aˆ(−1/2)(K 1/a * u x)−epsilon*aˆ(−2)*u xx=0 on [−pi,pi]
7 %
8 % We solve the equation on [−L,L], but use the scaling u(x) −> u(ax),
9 % a=L/pi to redefine the equation on [−pi,pi], the interval on which the

10 % solution is actually computed by the code.
11 %
12 % We set the initial data to be an approximate traveling wave for the
13 % Whitham−Burgers equation, found on [0,pi] by the script "travwave.m", and
14 % we reconstruct its even extension to [−pi,pi], which ensures periodic
15 % boundary conditions, at the cost of the left half of the initial data not
16 % being part of the traveling−wave solution.
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17

18 clear
19

20 travwave; %Find an approximate traveling−wave solution on [0,pi]
21

22 %%
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %%%Interpolation to [−pi,pi]
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26

27 M=2*N; %Double the number of grid points
28 h=2*pi/M; %New space step
29 x=(−pi:h:pi−h); %Fourier grid from −pi to pi
30

31 dctu=dct(u); %Take the discrete cosine transform of u
32

33 %Use the cosine interpolation formula to reconstruct the traveling−wave
34 %solution on [−pi,pi]
35 for m=1:M
36 u recon(m) =0;
37 for n=1:N
38 u recon(m) = u recon(m) + v(n)*dctu(n)*cos(x(m)*wav(n));
39 end
40 end
41

42 %%
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 %%%Time−dependent scheme
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46

47 dt=0.0016; %Time step
48 T=100*a*h/c; %Run scheme until this time
49

50 uinit=u recon; %Set initial data to be the traveling−wave reconstructed ...
on [−pi,pi]

51

52 k = [1:M/2 −M/2+1:−1]; %Wavenumbers used in Fourier collocation, the ...
k=0 mode will be filled in below

53

54 %%
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 %%%Fourier collocation scheme with Implicit Trapezoid in time
57 %%%The resulting system of equations is solved by fixed−point iteration
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59

60 m=0.5*dt*(aˆ(−1/2)*1i*k.*sqrt(tanh(k/a)./k)+epsilon*aˆ(−2)*k.ˆ2);
61 k=[0 k]; %Fill in k=0 after defining m to avoid dividing by zero
62 m=[0 m]; %Fill in the limit of m as k goes to zero
63 k(M/2+1)=0; %Avoid asymmetry in the wave numbers
64 m(M/2+1)=0;
65

66 c1=(1−m)./(1+m);
67 c2=aˆ(−1)*0.25*dt*1i*k./(1+m);
68
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69 t=0;
70 u=uinit;
71

72 for i=1:T/dt
73 fftu=fft(u); %Discrete fourier transform of u
74 fftuu=fft(u.ˆ2); %Discrete fourier transform of uˆ2 (nonlinear term)
75 w=real(ifft(c1.*fftu−2*c2.*fftuu)); %Initial guess for the ...

fixed−point iteration
76 tol=1;
77 while tol>1e−12 %Fixed−point iteration
78 w2=real(ifft(c1.*fftu−c2.*(fftuu+fft(w.ˆ2))));
79 tol=norm(w−w2);
80 w=w2;
81 end
82 u=w;
83 t=t+dt;
84 end
85

86 plot(a*x,uinit,a*x,u)
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