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Preface

This is the second Ph.D. thesis that I write. The reader might wonder: what brings

somebody to study for two separate Ph.D.’s? I must say that I, myself, find it hard to

answer this question. Perhaps the answer does not lay on why, but rather on why not.

During the years, I have accumulated what I would like to think is a sizeable amount

of knowledge in the field, and I have published the knowledge that I have generated in

scientific papers. There was a point in which the amount of work reached a size that

justified the compilation that I present here. I hope that in the future, when Scanning

Helium Microscopes are a widespread tool, the findings outlined here are still useful, and

that somewhere a physics student finds this thesis and uses it as a reference for his or

her own work. . . .
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Abstract

Scanning Helium Microscopes (SHeMs) are novel microscopy tools using neutral helium

atoms as the imaging probe. Helium atoms have several advantages compared to other

probes such as electrons or helium ions. Helium atoms are neutral and inert and when

compared to electrons their higher mass leads to a smaller de-Broglie wavelength for

a given energy. Furthermore, helium atoms are strictly surface sensitive, scattering

off the electron density distribution off the surface. These combined properties allow

for non-destructive mapping of the surface of virtually any vacuum-compatible solid

sample. Helium ions have a similar mass but they interact more strongly with the sample

because they are not inert and require much higher energies to achieve electrostatic

focusing. Charge neutrality makes helium a great imaging corpuscle, but also means that

designing SHeMs is very difficult. Neutral helium atoms are very hard to manipulate,

as electromagnetic fields cannot be used to focus and redirect the beam - instead, one

needs to use diffraction optics and apertures. They are also hard to detect because

helium has the highest ionisation potential of all atoms - hindering the task of ionisation

based detectors. Therefore, to have a functioning microscope, one needs to form a highly

intense atom beam. This thesis presents the work done over the last years to optimise

the intensity of SHeMs, and more generally their atom-optics configuration. Amongst

the papers included here are the first ones to show that SHeM optics have well-defined

intensity maxima that give optimal designs. These papers show that existing designs

were suboptimal and that the intensity could be increased several orders of magnitude.

This thesis also features the first paper to present a design for a 3D imaging SHeM. A true

nano-scale stereo microscope based on Heliometric stereo, a technique adapted from light.

Besides these theoretical papers, two papers are included that focus on understanding

the helium beam using experimental data. These papers are important as they provide

the experimental foundations for the theoretical models used. Amongst other findings,

the papers explore the importance of the Knudsen number at the skimmer, the validity

of different intensity models, and the top-hat profile of the beam. The research presented

here happened in parallel to a two order of magnitude improvement in detector efficiency.

I believe that now we are in the position to build high-resolution SHeMs that have the

potential to become an important tool for science and industry.. . .
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Chapter 1

Introduction

1.1 Thesis structure

This thesis is divided into four chapters. The first chapter, this introduction, provides

the motivation and background for the thesis and the research questions. The second

chapter (chapter 2) provides an in-depth review of existing literature by following the

trajectory of a helium atom within a scanning helium microscope. It also places the

papers included in this thesis in a broader research context. The third chapter presents

the thesis conclusions. Finally, chapter 4 reprints all the papers included in the thesis.

1.2 Motivation and background

Skala Avdiron is today a minor sea resort in the Aegean sea where some Greeks like

to spend the summer and drink away their sorrows. Once in a while, the owners of

“Hotel Theoklitos” - the local tavern - receive some visitors that look different from

the normal crowd: archaeologists, history geeks, and sometimes even physicists come

there to see the ruins of ancient Abdera. They come to Abdera for one reason: two

thousand five hundred years ago one of the most important philosophers in history was

born here: Democritus. Democritus is the man that developed1 the theory of atomism,

and introduced the concept of atoms to mankind [15].

Today, atoms (in their modern understanding) are not only used to explain how matter

is formed but as a tool to achieve other purposes. From the unbelievable destructive

power of nuclear bombs [93], to the precise measure of time given by atom clocks [21],

1Together with his master, Leucippus.
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atoms, as individual entities are the cornerstone of a variety of high-stakes applications.

This thesis is about one of these applications, perhaps lesser-known: the possibility of

using atoms to image microscopic samples.

The idea of using massive corpuscles as an imaging probe started with the electron mi-

croscope. This possibility was introduced by the realisation by De Broglie that every

particle of matter propagates like a wave - with a wavelength proportional to the in-

verse of its momentum. Until then, only massless photons had been used - in optical

microscopes. As it is well known, classical optical microscopes have a limited resolution

given by the Abbe diffraction limit [101] 2. For a given wavelength, massive particles

carry significantly less energy than photons (see section 2.4), which opened the door for

achieving much higher resolutions than with optical microscopes. By using a wavelength

much smaller than the actual imaging resolution electrons also brought the possibility

of imaging with a much higher depth of field than what can be achieved with optical

microscopy [96].

Due to these advantages, and the possibility of manipulating electrons through electro-

magnetic fields, electron microscopes became a household tool in a vast range of scientific

disciplines and industrial applications [40]. Amongst the uncountable achievements, it

can be mentioned as a particularly timely result that Scanning Electron Microscopes

have been able to provide detailed images of cells to the point where individual viruses

attacking the cells could be appreciated [34]. For larger viruses, like the ebola virus [24],

the entire virus structure could be imaged, something unthinkable in classical optical

microscopes.

Scanning Electron Microscopes (SEM), however, have some drawbacks: electrons are

charged. This means that biological samples, which are not conducting, cannot be easily

imaged directly: they typically need to be coated by a conducting layer to avoid charging

effects [108]. Similarly, electrons permeate into the samples, generating backscattered

electrons in the process. This is generally a useful by-product but adds to the destruc-

tive power of this imaging technique and means that it is not strictly surface-sensitive

[108]. Recently, helium ion microscopes have been added to the toolbox. They have the

advantage of a lower penetration depth, but due to the high energy required for focusing,

they still penetrate the sample and can lead to sample destruction [97].

This thesis presents a collection of theoretical and experimental studies of a technique

specifically designed to address these drawbacks: imaging with neutral helium atoms.

Neutral helium atoms are non-charged, exceptionally inert, and due to the much higher

2Since then this limit has been overcome in Scanning Near Field and Stimulated Emission Depletion
microscopes [1, 55].
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mass than electrons they carry a much smaller wavelength for a given energy [16]. This

means that they bounce from the surface of the sample without penetrating it. The very

low energy also means that delicate samples can be imaged without destruction.

The principle of imaging samples using helium atoms has been proven by several research

groups. The first images were published by Holst et al. in 2008 [70]. The images were

taken using MAGIE, which is one of the two helium microscopes developed by the Bergen

group. This instrument uses a Fresnel zone plate to focus the beam and has been used

to achieve a resolution of less than 1µm [35]. Alternative microscope designs, based

on using a pinhole to collimate the beam soon emerged [42, 110]. These microscopes,

albeit simpler and less powerful in principle, have provided the highest resolution images

obtained with a helium microscope so far - 0.35µm [111].

One of the main learnings obtained from these initial designs is that neutrality and

low-reactivity may be the main advantage but also the main drawback of using helium

atoms as an imaging probe. The impossibility of focusing neutral particles using elec-

tromagnetic lenses leaves diffraction techniques, mirrors, and simple apertures as the

only focusing device. On top of this, helium has the highest ionisation potential of all

atoms, which makes helium detection a very difficult task [11]. Therefore, the design

of neutral helium microscopes needs to be carefully optimised to obtain the maximum

signal-to-noise ratio.

In recent years, the extreme sensitivity of helium atoms on the sample’s surface has

prompted the design of 3D imaging helium microscopes. These microscopes would be

able to resolve the surface in 3D by using a variety of techniques in order to achieve

nano-scale stereo imaging. This has recently been demonstrated on the micron scale

through stereophotogrammetry [81], laying the experimental foundations to study the

design of a true stereo neutral helium microscope.

Optimising the signal of helium microscopes and understanding how to build a stereo

microscope capable of resolving the sample surface in 3D were two of the main problems

in the field at the onset of this thesis work. This led to the two research questions

formulated below.
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1.3 Research questions

The research questions addressed in this thesis are:

1. What is the optimum configuration for helium microscopes that gives the highest

signal-to-noise ratio possible for a given resolution?

2. Can helium microscopes be used as stereo-nanomicroscopes?



Chapter 2

Scanning Helium Microscopy: A

historical review and state of the art

Neutral helium microscopy, also referred to as scanning helium atom microscopy and

commonly abbreviated SHeM, is a novel imaging technique that uses a beam of neutral

helium atoms as an imaging probe. The technique offers a number of advantages such

as the very low energy of the incident probing atoms (less than 0.1 eV), unsurpassed

surface sensitivity (no penetration into the sample bulk), a charge-neutral, inert probe

and a high depth of field. This means that fragile and/or non-conducting samples can be

imaged as well as samples with a high aspect ratio, with the possibility to obtain true-to-

scale height information of 3D surface topography with nanometer resolution. However,

for a full exploitation of this technique, a range of experimental and theoretical issues

still needs to be resolved.

In this introduction, the main concepts needed to introduce the reader to the field are

summarised, making an effort to set the articles that form the main contribution to

this thesis work within a broader context. This is done by following the trajectory of

the helium atoms step by step, from the initial acceleration in the supersonic expansion

used to generate the beam over the interaction of the helium atoms with the sample to

the final detection and post-processing. Note that the issues of contrast properties and

detection/post-processing are addressed only very briefly. The contrast in a helium atom

microscope is determined by the interaction of the helium beam with the samples to be

investigated. The helium detection is determined by the detector properties. These are

very complex topics in their own right and have not been the focus of this thesis work.
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2.1 Introduction: Scanning Helium Microscopes

Neutral Helium Microscopes are surface characterisation tools that apply beams of neu-

tral helium atoms as an imaging probe. The instruments use the supersonic expansion of

helium gas into vacuum to generate a high-intensity beam with a narrow velocity distri-

bution which is then collimated or focussed onto a sample. The scattered intensity signal

is recorded “point by point” and used to create an image of the sample, in a manner sim-

ilar to other beam probe microscopy techniques, such as scanning electron microscopy

or helium ion microscopy, namely through Helmholtz reciprocity [49]. Neutral Helium

Microscopes have, however, a crucial difference with respect to charged particle beams:

due to the very low energy and strict surface sensitivity of the neutral helium beam, the

image can only be formed by the backscattered neutral helium atoms. No photons or

secondary electrons are generated during the scattering process.

Several abbreviations have been used for neutral helium microscopy over the years, i.e.

NEMI for NEutral MIcroscope, HeM for Helium Microscope, and NAM for Neutral Atom

Microscopy, however over the last few years the community seems to have converged to

SHeM for Scanning Helium Microscope.

The research behind neutral helium microscopes includes four main areas, which can be

mapped to the different stages of the imaging probe trajectory. Firstly fluid dynamics,

which is used to model the supersonic expansion of helium gas into a vacuum and needed

to establish the intensity and matter-wave properties of the helium beam. Secondly, de-

Broglie matter-wave optics, which describes the interaction of the neutral helium atoms

with the optical elements, such as zone plates, pinholes and mirrors, critical for the

microscope resolution. Thirdly, helium atom surface scattering [16, 45, 57], modelling

the interaction between the neutral helium atoms and the sample, thus determining the

contrast properties and finally the helium atom detection, targeting the difficult problem

of detecting hard-to-ionise neutral helium atoms. In addition to these three areas comes

research specifically dedicated to the application of scanning helium microscopes. This

includes problems such as optimisation of the overall configuration of the tool, advanced

imaging techniques and signal processing, and practical applications.

2.2 A brief history of SHeM

In 1930, one year before the electron microscope was invented, Estermann and Stern

scattered an effusive beam of neutral helium atoms off LiF(100) and saw diffraction

peaks [41]. Their groundbreaking work had been made possible thanks to previous work
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by Dunnoyer who established the first directed atom beam in 1911 [87].

The Estermann and Stern experiment did not instigate a new research field straight

away, due to limitations in pumping technology which enabled only the production of

effusive beams, which have low intensity and a broad velocity distribution (and therefore

a broad de Broglie wavelength distribution). It took another twenty years for Kantrowitz

and Grey to devise a helium source with a narrower velocity distribution [66]. This was

achieved thanks to a supersonic expansion of helium gas into a lower-pressure chamber

(see section 2.3.1). Notwithstanding the clear improvement that this brought, much

narrower velocity distributions and higher intensities were imperative for the success of

neutral helium atoms as a scattering probe.

Such beam properties were achieved in the early 1970s thanks to the improvement of

vacuum techniques and the introduction of small nozzles, which allowed for supersonic

expansion into ultra-high vacuum. The central part of the beam was selected using a con-

ically shaped aperture, a so-called skimmer - until that point, slits had been preferred.

By the 1980s, nozzle technology had advanced so much that the velocity distribution

of the helium beams had become narrow enough that the small energy changes1 result-

ing from the creation or annihilation of surface phonons could be measured [25]. This

propelled helium atom scattering as a method suitable to study surface dynamics.

Eventually, physicists began to speculate on how the surface sensitivity of helium could

also be used to construct an imaging instrument. It soon became clear that focusing

optics was a particular challenge. Neutral, ground-state helium has the smallest polaris-

ability of all atoms and molecules. Hence manipulation via electrostatic or electromag-

netic field is essentially not possible. Furthermore, helium atoms at thermal energies do

not penetrate solid materials. In practice, the only possible way to manipulate them is

via their de-Broglie matter-wave properties. This leaves only three possibilities: simple

collimation, focusing via mirror reflection or focusing via diffraction from free-standing

structures. For example, Fresnel zone plates.

To the best of my knowledge, the first mentioning in the literature of the idea of a helium

microscope was in the 1991 paper by Carnal et al [27]. This paper also presents the first

experiment on focusing of neutral helium beams: The focusing of a beam of metastable

helium atoms using a zone plate.

Other experiments quickly followed: The first focusing of a ground-state helium beam,

and also the first focusing using a mirror was achieved in 1992, when Doak et al. obtained

focusing in 1D by reflecting a helium beam off a mechanically bent, gold-coated piece

1meV range.
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of mica. In 1997 Holst and Allison achieved astigmatic focusing in 2D by scattering

a helium beam off a Si(111)-H(1x1) surface electrostatically bent to a parabolic shape

[58]. The silicon wafer used had a thickness of 50 µm. The area of least confusion had

a spot diameter of 210 µm. In [31] Grisenti et al obtained the first focusing of neutral,

ground-state helium with a zone plate. They used a micro skimmer as a source.

In 1999 it was proposed that by changing the boundary conditions from round to an

ellipsoidal mirror could be obtained by electrostatic bending [109], see also [76]. In [46]

Fladisher et al achieved near stigmatic focusing of helium atoms using this method. One

problem with the Si(111)-H(1x1) mirror is a considerable loss in intensity in the specular

beam due to diffraction from the corrugated electron density distribution at the surface.

In [9] Farias et al discovered that the reflectivity of an atom mirror could be dramatically

improved by coating the silicon wafer surface with a 1-2 nm layer of lead. This so-called

quantum stabilised mirror demonstrated a specular helium reflectivity of 67%. In a later

work Anemone et al. explored the use of flexible thin metal crystals as focusing mirrors

[4], following an early attempt from 1999 [59].

Despite these promising achievements in mirror focusing, it appears that to achieve focal

spots at the nanometer range, near uniformly flat crystals without warp and bent are

necessary. This technological requirement seems to have put an end to research on atom

focusing mirrors, at least for the time being.

The first image obtained with neutral helium atom microscopy was made by Koch et al in

2008 [70] using a Fresnel zone plate, see Fig. 2.1. Koch et al obtained a 2D shadow image

of a free-standing grating structure with a resolution of around 2 micron using a micro

skimmer and a Fresnel zone plate to focus the helium beam onto the grating structure

and scan the focussed beam across the structure - the helium zone plate microscope (see

Fig. 2.8). The best resolution obtained with a zone plate up till now is slightly less than

1 micron [35]. This is very far from the theoretical resolution limits which are discussed

in section 2.4. It should be mentioned that the zone plate has also been used to focus

a beam of deuterium atoms, demonstrating the potential of making microscopes with

other atomic and molecular beams [92].

Following Koch’s work, other research groups focused on a simpler configuration: the

pinhole microscope. This configuration uses a simple pinhole to collimate the beam

instead of focusing optics. In this way, Philip Witham and Erik Sanchez managed to

obtain the first scanning helium microscopy images in reflection mode [110], see Fig.

2.6. The initial resolution was 1.5 µm and later 0.35 µm [111], which remains the

highest resolution obtained so far with a neutral helium atom microscope. Witham and

Sanchez also demonstrated microscopy with an 84Kr-beam [112]. Around the same time
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Figure 2.1: First image taken with a neutral helium microscope. The sample is a hexag-
onal copper grating with a period of 36 µm and a rod thickness of 8 µm. Image from
[70].

as Witham and Sanchez, another group had worked on a pinhole microscope with a

slightly different source design and using a skimmer [42] (see Fig. 2.7). The first images

from this instrument were published in 2015 [42] (see Fig. 2.2 ). To this day the pinhole

setup remains the most widespread neutral helium microscopy design, despite the fact

that higher resolution can theoretically be achieved with the zone plate configuration as

will be discussed in section 2.6.

As previously discussed the neutral helium probe is unique because it does not penetrate

into the sample - thus providing the possibility of true-to-height 3D imaging of the

surface. This was demonstrated experimentally on the microscale for the first time in

[43]. The technique was then used for taxonomy in [81] see Fig. 2.3. See section 2.7 for

further discussion, and the fifth paper in this thesis for a theoretical discussion.

Finally, diffraction imaging was demonstrated for the first time in [13]. Diffraction

imaging enables the detection of nano-crystalline patches on the sample surface.
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Figure 2.2: First image taken with a pinhole neutral helium microscope. The sample is
an uncoated polen grain. Image from [110].

2.3 The atoms start moving - the Helium Source

In a Scanning Helium Microscope, atoms start their journey in the source. A typical

SHeM source follows the design established for helium scattering [6, 7, 39]: helium is

accelerated in a supersonic expansion from a high-pressure reservoir through a de Laval

nozzle2, into a vacuum chamber, known as the expansion chamber [10]. There, the

central part of the beam is selected by a conically shaped aperture, called the skimmer
3.

2Often the nozzle is cut in the sonic plane, and is referred to as a sonic nozzle [10].
3As mentioned in the introduction, some designs skip the skimmer altogether and use a single colli-

mated aperture far downstream [110].
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Figure 2.3: One of the first 3D images (wireframe model) taken with a neutral helium
microscope. The image corresponds to a trichome on a plant leave (Arabidopsis thaliana)
and demostrates the utility of the technique for non-destructive taxonomy. Image from
[81].

When designing a Helium Source, one can essentially choose five parameters: temper-

ature, pressure, nozzle radius4, skimmer diameter and distance between skimmer and

nozzle. In general, small nozzles and high pressures produce brighter5 sources and there-

fore are more efficient in reducing undesired effects such as back-scattering interference

(as the beam is more focused, if the same flow is assumed, fewer particles are emitted at

undesired angles) [30, 54]. Similarly, cold sources are more intense than warm sources

and produce higher parallel speed ratios (see section 2.3.2) [39, 86], which allows them to

reach higher centre-line intensities. The absolute differences between a cold and a warm

source at the same pressure can easily be on the order of 1 · 1013 counts/s ·m2 [86].

Once the nozzle size and temperature have been chosen, obtaining the beam properties

corresponds to (i) solving the supersonic expansion of the Helium gas into a vacuum, and

(2) calculating the beam intensity after the initial expansion. This section is structured

with these two steps in mind: first, we describe the work done regarding the understand-

ing of the beam’s supersonic expansion, and then we revise the different models that

give the beam intensity downstream.

4The issue of nozzle design is left as outside of the scope of this introduction. For a discussion of
this topic see, for example, [10, 23].

5Count rate per steradian and unit area of the source.
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2.3.1 The supersonic or free-jet expansion

The first component of a helium source is the nozzle, where atoms are accelerated to

supersonic speeds in a physical phenomenon known as a supersonic expansion.

The theory describing supersonic expansions was developed in the 1970s and 1980s,

and is based on splitting the expansion into two regimes: the first regime, within the

nozzle, follows a Navier-Stokes flow and is solved through the isentropic nozzle model

[87, 99]. The second regime, from close to the nozzle exit onward, is modelled through the

Boltzmann equation. The flow is obtained either by solving the corresponding integrals

under simplifying assumptions [22, 100] or using DSMC Montecarlo simulations [17, 18,

20].

The isentropic nozzle model

Within the nozzle, the helium atom is part of a gas: here, the density is high and Navier

Stokes equations determine its dynamics. The isentropic nozzle model gives the total

flux per unit time (from now on, centre line intensity) stemming from a de Laval nozzle

(assuming that the nozzle is cut-off in the sonic plane). This derivation considers an ideal

gas in which the flow can be assumed to be a reversible and adiabatic process. Therefore

the gas can be considered isentropic - which means that the following analytical equation

of the intensity can be obtained [87]:

I0 =
P0

kBT0

√
2kBT0

m

(π
4
d2

N

)√ γ

γ + 1

(
2

γ + 1

)1/(γ−1)

. (2.1)

One can also obtain the terminal velocity (which can be used to provide an approximation

to the beam’s de-Broglie wavelength) [87]:

v =

√
5kBT0

m
. (2.2)

This model is used in the field to calculate the total flow stemming from the nozzle - as

it is well known that helium is the closest we get to an ideal gas [107]. Some groups also

choose to add a correction given by the thickness of the boundary layer in a real gas,

for which Beijerink and Verster provide a correction factor for a monoatomic gas [10].

T0, P0 are the temperature and the pressure in the source. dN is the diameter of the

nozzle and m is the mass of a helium atom. γ is the heat capacity ratio (γ = 5/3 for

helium), and kB is the Boltzmann constant. To our knowledge, all helium microscopy
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papers modelling the intensity of the helium beam use an initial intensity derived from

the isentropic nozzle model (see section 2.3.2 for a breakdown).

Post-nozzle flow

Once the helium atom has left the nozzle, its flow is governed by the Boltzmann equa-

tion - as the Navier Stokes equations cease to apply. There are two main methods to

solve the flow: either by numerically solving the Boltzmann equation under stringent

assumptions that allow us to skip Montecarlo methods [5, 52, 87] or by simulating the

particle flow using the Direct Simulation Monte Carlo method. The latter method is

more computationally intensive, but also more accurate than the former as it relies on

fewer assumptions.

In the first method, one typically assumes that the nozzle is a point source [100]. This

assumption is grounded on work from Sherman and Ashkenas, which showed that a

few nozzle diameters downstream, free jet streamlines become straight and could be

extrapolated to a single point of origin close to the nozzle [5, 52]. The flow then can

be solved using the collision integral for particles following Bose-Einstein statistics. The

isentropic nozzle model at a short distance from the nozzle is used to obtain the initial

conditions to start the integration6. To solve this equation, a velocity distribution, and

an interaction potential have to be assumed. The equations needed to solve the expansion

are included in [86, 87].

The velocity distribution of the atoms is taken to be an ellipsoidal Maxwellian:

fell (~v) = n

(
m

2πkBT||

) 1
2
(

m

2πkBT⊥

)
· exp

(
− m

2kBT||
(v|| − v̄)2 − m

2kBT⊥
v2
⊥

)
. (2.3)

The choice of an ellipsoidal Maxwellian velocity distribution forms the basis to solve

the spherically symmetrical Boltzmann equation [50]. In these models, the expansion’s

macroscopic properties are expressed in a spherical coordinate system. The temperature

is split into two terms, modelling the velocity distributions of the radial and angular

component of the velocity in spherical coordinates v‖ and v⊥: T|| and T⊥. n is the

number density.

On top of the assumption regarding the velocity distribution of the atoms, an interaction

potential must be assumed. There are several options for this potential: the Lennard-

Jones potential [62], the Tang, Toennies and Yu (TTY), and the Hurly Moldover (HM)

6This is a rather arbitrary distance that must be large enough to guarantee spherical symmetry and
small enough to satisfy equilibrium conditions, typically a few nozzle diameters.
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potentials [60, 103] being amongst the best known. Results of previous calculations

show that the Lennard-Jones potential is accurate for source temperatures as low as 80

K [88, 89]. Therefore, this is often the preferred choice by practitioners in the field as the

Helium source is rarely cooled below this temperature [88, 89, 91]. A detailed description

of the Lennard-Jones potential and its implementation in the Boltzmann equation can

be found in [90].

The numerical solution of the Boltzmann equation in its spherical approximation provides

the evolution of the average gas velocity, and the temperatures T|| and T⊥ with respect to

the distance from the nozzle. This solution can then be used to determine the intensity

of the beam at the sample plane by means of the so-called quitting surface model - see

section 2.3.2. This solution can also be used to obtain the velocity distribution and speed

ratio of the beam, these are shown to be in good agreement with experimental data

in the paper number 3 in this thesis [39].

An alternative way of solving the Boltzmann equation, requiring fewer assumptions, is

to directly simulate particle-to-particle interactions using a method known as Direct

Simulation Montecarlo [17, 20]. This method addresses the numerical infeasibility of

simulating the flow particle by particle by grouping those particles onto pseudo-molecules

that are taken to represent a larger group of real molecules. DSMC requires assumptions

on the interaction of the pseudo-molecules with the surface and with each other. These

are normally phenomenological models such as the hard-sphere model [20], the variable

hard sphere model [83] and others [19]. DSMC is truer to nature than solving the

Boltzmann equation under stringent assumptions but is also much more computationally

expensive. Several papers have used this method to understand the behaviour of the

helium expansion [18, 75, 77].

2.3.2 Intensity after the initial expansion

As the helium atom travels further away from the nozzle, it interacts less and less with

neighbouring atoms. This means that modelling the supersonic expansion across the

skimmer all the way until the sample plane is numerically inefficient.

Therefore, physicists often chose to use the fact that the Knudsen number of the flow

increases with distance to the source, and that quasi-molecular flow is often reached

before the first optical element -normally, the skimmer- to build simplified models of

the intensity. Quasi-molecular flow allows for the recovery of analytical expressions of

the centre-line intensity, as particles can be assumed to travel in a straight line without

further interactions.
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Over the years, several intensity models have been proposed for helium microscopes (and

generally for helium sources). A combination of arbitrary variable labelling, numerical

simplifications and empirical formulae has left researchers with no unified intensity mod-

els. The landscape is confusing, and in this introduction I attempt to unify and simplify

the different intensity models and explain how they compare with each other.

To bring some clarity to this discussion, I propose the following geometrical conventions:

consider always an expansion stemming from a nozzle, followed by a skimmer. The

skimmer is placed at a distance xS from the source of the supersonic expansion with

no other apertures in between. Take a as the distance between the skimmer and the

axial point in which the intensity is measured. The distance between the nozzle and the

measuring point is then (xS + a) - see Fig. 2.4. All the rest of the physical variables

correspond to those presented in section 2.3.2.

Source

Supersonic
Expansion

Nozzle Skimmer

Detector

Figure 2.4: Main geometrical variables present in the quitting surface model.

I propose that the intensity should always be given as particles per second per unit

area7. On top of this, the intensity can be assumed to be slowly-varying enough that

to obtain a total intensity hitting a detector it is enough by multiplying the center-line

intensity by the detector’s area. The medley of analytical formulas found in literature

can be confusing, but following this convention, one sees that they all have a common

factor: the thermal-geometrical term, from now on referred to as ITG. Overall, there are

three families of intensity models: those that treat the nozzle as a source of a spherically

symmetric flux, and account for any excess intensity by using an empirical factor [10],

those that on top of this consider the thermal properties of the supersonic expansion

through a dependency on the beam’s speed ratio, and those that explicitly integrate the

quitting surface8 under some assumptions (as shown in the previous section). All three

families of intensity models are faulty as they rely on overly simplistic assumptions, but

they are also useful in that they provide an analytical expression for the intensity.

7I chose unit area over steradians to signify the departure from spherical symmetry typical of super-
sonic beams.

8Or an equivalent concept - known as the virtual source [30].
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The quitting surface model

One of the most popular intensity models relies on the quitting surface model [86, 95,

100]. A quitting surface9 is a useful theoretical construct that assumes that at a given

point in the beam’s supersonic expansion, particles start travelling in straight lines.

This point is defined through asymptotical conditions on the properties of the expansion;

either as the point in which the Mach number10 of the expansion approaches its predicted

terminal Mach number [3, 110] or as the point in which the parallel and perpendicular

temperature of the Maxwellian distribution used to model the expansion decouple [104].

Regardless of the method used to define the quitting surface, the main utility of this

model is that the intensity and velocity distribution of the beam can be obtained by

integrating this spherical particle-emitting surface. The difficulties associated with this

method are the relative arbitrarity of the definition of the quitting surface that depending

on the condition chosen can be placed before or after the skimmer aperture.

As mentioned above, the quitting surface can be integrated to obtain a useful analytical

model for the beam intensity: the Sikora approximation [100]. This expression was

initially calculated for a quitting surface placed exactly at the skimmer aperture and was

later generalised by Bossel to incorporate a quitting surface placed before the skimmer

[22]. This is the formula that is now commonly used [86].

IS = ITG

{
1− exp

[
−S2

i

(
rS(RF + a)

RF(RF − xS + a)

)2
]}

, (2.4)

where xS is the distance between the nozzle and the skimmer and a is the distance

between the skimmer and the point where the intensity is measured. RF is the radius

of the quitting surface. The first term of the Sikora approximation ITG is the intensity

corresponding to a naive spherically-symmetric model of the supersonic expansion, taken

as if the atoms would travel in straight lines from the nozzle with equal probability at

any angle and no thermal effects11. The total flow stemming from this ideal point source

corresponds to the intensity resulting from the isentropic source model I0. We name

this factor the thermal-geometrical component, ITG. The thermal-geometrical intensity

measured at a detector of radius rD is then:

ITG = πI0
r2
D

(xS + a)2
. (2.5)

9Also referred to as “last collision surface” [10, 51].
10Ratio of flow velocity past to the local speed of sound, see [52] for a discussion in the context of

atom beams.
11The density at the skimmer can also be used, if the point source assumption is dropped [86].
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This component suffices to understand a basic design principle of neutral helium mi-

croscopy: reducing the axial length of the microscope is often beneficial, as the intensity

will decrease with distance.

The second term of the Sikora equation, the exponential term is more interesting as

it models the thermality of the beam. The Si there indicates that depending on the

microscope design both the perpendicular (⊥) and parallel (||) speed ratios are good

choices for that parameter:

Si =

√
mv̄2

2kTi
, i = ||,⊥. (2.6)

In general, for small skimmers close to the quitting surface, the parallel speed ratio is the

right choice (as the perpendicular spread is not a big contributor given that very little

of the quitting surface is seen at the detector). However, for larger skimmers seeing a

thermalised portion of the expansion (for example, when the expansion is not assumed

to end until significantly after the skimmer) the perpendicular speed ratio is a better

choice [86].

Further approximations

Parting from the quitting surface model, or similar approximations such as the virtual

source model one can obtain further approximations by taking the limit at very small

skimmers or considering a simpler flow pattern (such as an isotropic spherically sym-

metric expansion). Researchers often use these simplified expressions to determine the

beam’s intensity. Over the years, amongst several existing models, often the simpler ones

have been favoured, (see, for example, [12, 65]) despite them not being backed by strong

empirical measurements nor by strong theoretical support. In the following paragraphs,

we review a few popular intensity models from the different families described in section

2.3.2 and show how they compare to the thermal geometrical term.

First, let’s take a look at the expression used by Witham and Sanchez [110] to estimate

the signal in their microscope. They use Miller derivation [99] for the isentropic intensity
12. From the three families mentioned above, this corresponds to the first family of models

that correct for the excess intensity from the supersonic expansion by using a peaking

12The intensity they use differs by one half to the derivation published by Pauly [87], we think this is
due to a typo - but we keep their formulation.
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factor κ.

I = κ
P0πr

2
nz(

γ−1
2

+ 1)γ/(γ−1)
√

γkBT0
m

kT0

π
r2
D

(xS + a)2

≈ 0.4871 ∗ 2κ
√
γ/2

I0

f(γ)

r2
D

(xS + a)2
≈ 1.1026ITG (2.7)

Where f(γ) =
√

γ
γ+1

(
2

γ+1

)1/(γ−1)

≈ 0.5135. Here κ is the peaking factor, a value that

is obtained numerically by calculating the flow after the aperture and comparing it with

the equation above. This has been empirically measured to be approximately 2 for

monoatonic gases. γ = cp/cv is the heat capacity ratio, which is 5/3 for monoatomic

gases.

Compare this model with another popular intensity model used by several researchers

in the Bergen group, among others in their theoretical papers on helium microscope

optimisation - to model the flow stemming from the nozzle [85, 86, 95]. This model

stems directly from Pauly’s ideal intensity equation [87] and barred some numerical

accuracy lost in the author’s approximations - and on the empirical measurement of the

peaking factor - corresponds to eq. (2.7) divided by the peaking factor.

I = 0.155
P0

kBT0

(
2rnz
xS + a

)2πr2
D

√
5kBT0

m
= 0.62

√
5/2

I0

f(γ)

r2
D

(xS + a)2
= 0.6077ITG (2.8)

Where rD is the radius of the detector downstream. Third, the intensity used by Bergin

in his helium microscope optimisation paper, published after the Bergen optimisation

papers. This intensity uses DePonte et al’s center-line beam intensity (with a correction)

[12, 30]. This is a model of the second type, in which an empirical formula for the

dependency between the virtual source radius and the speed ratio of the beam is used

(and therefore an inverse dependency on the speed ratio is introduced). In Bergin’s

derivation, the radius of the nozzle is not used, but instead the radius of the skimmer

placed in front of the virtual source. Thus, he arrives at a similar quadratic dependency

with the skimmer radius as Sikora does in the limit of small skimmers13:

I =
0.18π2P0r

2
S√

mkBT0

r2
D

S||(xS + a)2
=

1

S||

0.18π√
2f(γ)

I0

r2
nz

r2
sr

2
D

(xS + a)2
≈ 0.247866

S||

(
rs
rnz

)2

ITG (2.9)

Note how all three empirical models have the same geometrical dependencies stemming

from a spherically symmetrical expansion: the ITG term. The intensity is then corrected

13In fact, both models are equivalent - barring the inverse the speed radius multiplying the formula
[12].
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upwards or downwards depending on further assumptions on the isentropic expansion

and on the model used to explain the non-ideal behaviour of the beam.

The thermal-geometrical term ITG gives a false image of reality as supersonically ex-

panded atom beams decrease in intensity at a slower rate than a spherically symmetrical

expansion. This is why corrections such as the full Sikora equation used by the Bergen

group give a truer sense of the phenomena at play, let’s revisit this equation at the limit

of small skimmers (and generally of small exponents). This is a model of the third type,

as Sikora’s expression comes directly from integrating the beam’s quitting surface. The

model reads:

IS = ITG

{
S2
i

(
rS(RF + a)

RF(RF − xS + a)

)2
}
. (2.10)

For a quitting surface at the skimmer RF = xS we get:

IS = ITG

{
S2
i

(
rS(xS + a)

axS

)2
}

= ITG

{
S2
i

(
rS

a
+
rS

xS

)2
}

(2.11)

This equation adds three important (and physical) corrections: (i) the beam will be

more intense the wider the skimmer is - which accounts for thermal components of the

quitting surface. (ii) Higher speed ratios mean more intense beams - which is a measure

of the quality of the supersonic expansion and its departure from a spherically symmetric

expansion. (iii) Still, the closer you are to the beam source, the more intense the beam

will be. Note that (i) is still an approximation and only holds for small skimmers - if

the skimmer size is on the order of the size of the quitting surface increasing it further

does not result in important intensity changes. Corrections such as the ones given by

eq. (2.11) also have design implications: the beam intensity decreases slower than in the

spherical case, which allows for larger technologically feasible microscopes. Optimising

microscope designs disregarding this would correspond to ditching some of the benefits

of a supersonic source in exchange for analytical simplicity. Therefore, it is important

to be aware of these assumptions when facing microscope design (see section 2.6).

Skimmer effect

The intensity models discussed in the last section disregard any effect produced by the

skimmer besides acting as an aperture. However, the reality is that skimmer interference

is often a significant contributor to the beam’s centre-line intensity - see publication

number 4 in this thesis [86]. In its journey, a helium atom can see its trajectory

perturbed by atoms backscattered from the skimmer, or more generally a perturbation

of the flow caused by it.
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Modelling the effect of the skimmer is a well-known challenge in helium beam experi-

ments [23, 54, 107]. One of the most successful approximations to the problem is the

one provided by Bird in the 1970s [18]. In this paper, Bird proposed the modified Knud-

sen number, and showed it to be a better predictor for skimmer interference than the

Knudsen number. When designing a microscope, one should always aim for a modified

Knudsen number larger than 1, as skimmer effects can decrease intensity by a factor of

as much as 10 times [86]. The modified Knudsen number for a Lennard-Jones potential

reads:

Kn∗ = Kn

(
2

5
S2
||

)−1/6

=
1

rSσ
√

2n

(
2

5
S2
||

)−1/6

. (2.12)

In here, the speed ratio term does not have any other effect than reducing the effective

Knudsen number with respect to the normal Knudsen number. For a skimmer placed at

a given distance xS from the expansion, the true dominant factor is the skimmer radius

rS - smaller skimmers give larger Knudsen numbers. The Knudsen number can be easily

approximated by the expression above and one can obtain the conditions in which the

skimmer is well conditioned. In general, if one wants to control the optical properties of

the beam, one must place the skimmer as close to the quitting surface as possible whilst

having a radius that leads to a large enough modified Knudsen number. See [86] for a

full data set and discussion on centre-line intensities.

Other effects

In addition to skimmer interference, helium atoms can interact with atoms scattered

from any other element of the expansion chamber (also known as the background gas).

Such interactions depend on the vacuum quality (pump capacity and in the case of a

pulsed beam, size of the vacuum chamber) and can be modelled either through DSMC

or through free molecular scattering. The latter is often preferred as it corresponds to a

simple exponential law [54, 86, 107]:

I

IS
= exp

(
−σ2nBE

xS − σ2nBC
a
)
. (2.13)

Where σ is the scattering cross-section of the atoms and nBE
and nBC

are the background

number densities in the expansion chamber and subsequent chamber. These background

densities should be measured by a pressure gauge far away from the beam centre line.

This contribution is often overlooked in microscope design as its both unavoidable and

inconsequential.
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2.4 Helium optics / Resolution limits

Once the supersonic expansion has been selected by a skimmer, the accelerated atoms

continue to travel in straight lines through vacuum until they interact with the micro-

scope optical elements.

In this regime, the behaviour of helium atoms can be modelled by atom optics through

the wave-particle duality. This means that when compared to light or less massive

corpuscles such as electrons, the theoretical resolution limit of helium atoms at the same

energy is much higher [63]. This follows directly from the de Broglie wavelength equation:

λB = h
p

= h√
2Em

. The mass of helium is about four orders of magnitude higher than the

electron mass. Thus, at the same energy, the de-Broglie wavelength of neutral helium

atoms will be two orders of magnitude smaller that of electrons. According to eq. (2.2)

a room temperature helium beam has a wavelength of around 0.05 nm and an energy of

50 meV [16]. A beam cooled to 120 K (liquid nitrogen temperature) has a wavelength

of around 0.1 nm and an energy of around 20 meV. However, the practical resolution

limit of a helium microscope configuration is not given by the theoretical wavelength

limit, but by aberration and diffraction (airy disk) broadening by the optical elements.

As discussed in the introduction, two types of optical elements have been used, so far

to successfully produce SHeM images: Fresnel zone plates and pinholes. Fresnel zone

plates are a type of diffraction lens that focuses an incoming atomic or light beam into

a small focal spot [27]. Pinholes are circular openings that restrict the size of the atom

beam [110].

When referring to resolution, it is important to distinguish between the lateral resolution,

determined by the size of the helium beam, and the “angular resolution”, given by the

solid angle covered by the detector opening. The lateral resolution is what impacts

the minimum feature size that can be observed and therefore is referred in the field as

“resolution”. Diffraction with detecting apertures does not degrade the lateral resolution

as in light optics, because helium microscopes image by measuring the flux through

the aperture and not by projecting the image onto a sensor plane. Angular resolution

determines the intensity of scattered helium in a particular direction. This is mainly

of relevance for contrast, in particular for 3D imaging as multiple scattering makes it

difficult to image high aspect ratio structures [8, 73].

The Newcastle group introduced the concepts supra- and sub-resolution to helium mi-

croscopy [44]. Supra resolution is the same as the lateral resolution, determined by the

size of the helium beam. Sub-resolution refers to the fact that the wavelength of the

helium atoms may introduce a contrast effect.
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The difference between the resolutions of Fresnel zone plates and pinhole microscopes is

given by the contributions of diffraction (airy disk) and aberration terms [80]. The square

of the Full Width at Half Maximum14 for the zone plate and the pinhole microscope can

be written as:

Φ2
PH = O2

S + σ2
A (2.14)

Φ2
ZP = O2

S + σ2
A + σ2

cm. (2.15)

Where O2
S indicates the geometric optics contribution to the full width half maximum.

That is to say, O2
S is the image of the source at the sample. For the zone plate microscope

it is the demagnified image of the skimmer or a collimation aperture placed in front of

the skimmer [48]. σA is the Airy disk contribution from edge diffraction from the zone

plate or pinhole and σcm is a chromatic aberration term that appears for the case of the

zone plate. The first equation holds under the assumption the Fresnel number is smaller

than 1, which is the case for the limit of small pinholes. For Fresnel larger than 1 only

the geometric optics term plays a role [85].

Besides the de-Broglie wavelength, there is no theoretical limit as to how small OS can

get. However, for the case of a pinhole, σA grows inversely with the pinhole radius:

1/rph ∝ 1/OS [85], thus the Airy term grows higher when one tries to decrease OS.

For the case of a zone plate, the resolution limit can be decreased by decreasing the

zone plate radius rZP and the zone plate smallest zone width ∆r. This is because the

chromatic aberrations in a zone plate are proportional to its radius, while its Airy term

depends linearly with ∆r: σA ∝ ∆r ∝ OS. [95]. In other words, for a fixed zone plate

radius, both the beam width and the Airy contribution decrease linearly with the same

factor. This allows zone plates to reach significantly higher resolution (smaller spot size)

than pinholes [12, 95].

The resolution limits for both instruments can be, in fact, explicitly obtained (see [12,

85, 95]). For a pinhole microscope:

Φmin
PH = K

√
0.42λWD

√
3. (2.16)

Where K = 2
√

2 ln 2/3 and WD is the working distance. The 0.42 factor comes from

the Airy disk standard deviation [78]. In a zone plate microscope the highest possible

resolution is given by the width of the smallest zone (as the optical and Airy terms both

14The full width at half maximum of the beam’s intensity profile [85].
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linearly depend on ∆r).

Φmin
ZP = KσA ≈ ∆r. (2.17)

This is a well-known result obtained first for light optics [80]. In practice, this means

that the resolution is limited by nanofabrication. It is difficult to make very small free-

standing zones. For this reason, experiments have been done on a so-called Atom Sieve

zone plate configuration. The atom sieve is a zone plate superimposed with a hole

pattern. The fabrication limit is now determined by how small free-standing holes can

be made, rather than how small free-standing zones. In fact, the resolution limit will

be slightly smaller than the smallest free-standing hole, because the design can be made

so that a hole covers two zones and the limiting factor remains the width of a zone

∆r. The idea is adapted from photonics [68]. See paper number 6 in this thesis

for an implementation of this idea in neutral helium microscopy [37]. The

first focusing of helium atoms using an atom sieve was done in 2015 [36]. See also

[47], paper number 7 in this thesis, where the challenges associated with the

construction of an atom sieve for SHeM are discussed.

2.5 Detection technology

Detection remains the single biggest challenge in neutral helium microscopy. The big

advantage of the technique - the inertness, low energy and surface sensitivity of the he-

lium probe is its biggest disadvantage when it comes to detection. Up till now four types

of neutral helium detectors have been reported in the literature: electron bombardment

detectors [53], bolometers [106], Pitot tubes [38] and field ionisation detectors [84, 94] -

including those that use resonance to improve the signal [28, 61]. So far, only electron

bombardment detectors have been used in microscope design. This appears to be more a

coincidence based on historical circumstances than anything else. Bolometers have tra-

ditionally been favoured in America since bolometers have been reported to be of equal

efficiency when it comes to helium detection.

A key component of electron bombardment and field ionisation detectors is the ioniser.

A substantial amount of work in this area has been performed by researchers in the

University of Cambridge and elsewhere [2, 26, 29, 33, 53, 64, 67, 69]. Over time, successive

iterations on the ioniser design have enabled ioniser efficiencies to routinely surpass 1·10−3

- three orders of magnitude higher of what had been initially achieved [11]. We refer to

Alderwick and Bergin’s Ph.D. theses for a more detailed discussion of different ioniser

designs [2, 11].

Once the helium atoms have been ionised, they need to be detected. To do so, they go
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through an initial filtering step known as mass separation: designed to select only those

ions that interest us (helium ions coming from the beam). In helium microscopy this is

done through magnetic sectors [56] rather than quadruple mass filters [32], because they

yield higher recorded intensities. Typically, helium atoms are directed from the ioniser

to the mass separation stage and from the mass separation stage to the signal multiplier

using ion optics [11, 102].

The signal multipliers used in SHeM are electron multipliers, typically tube-based mul-

tipliers known as channeltrons [98, 105]. In helium microscopy, electron multipliers must

be used after the positively-charged helium ions have been “converted” to an equiva-

lent amount of electrons. This is done through a conversion dynode, a mechanism that

upon the impact of a charged ion emits secondary electrons [79]. For a comment on the

dynode-multiplier design and set up the reader can check [11].

A lot of time and energy is being spent in order to increase the efficiency of neutral helium

detectors. Especially promising are detector systems based on solenoidal ionisers, with

recent work reaching a detector efficiency of as much as 0.5% - the highest obtained to

date [14]. Another promising development is a recent framework aimed at optimising

the balance between signal and temporal response in neutral helium detectors, with a

reported signal improvement of 27% [82].

High-efficiency helium detectors may open the door for SHeM to resolve the scattering

properties of the sample, akin to Helium Atom Scattering experiments. This would mean

having an instrument able to resolve both the surface profile and its local structure from

diffraction [8].

2.6 Optimal microscope configurations

The difficulties associated with detecting neutral helium atoms have prompted several

researchers to try to optimise the design of helium microscopes. Most of these configura-

tions aim to obtain a maximum beam intensity within a given resolution while satisfying

reasonable technological constraints.

To date, there are four papers that aim to optimise the microscope design using a the-

oretical framework for the intensity. The first paper, written by Thomas Kaltenbacher

[65] proposes a multi-objective optimisation approach to optimise a microscope com-

posed of a pinhole and two zone plates. Unfortunately, Kaltenbacher does not consider

the dependency of the intensity with the skimmer radius which is known to be crucial

in the case of zone plate microscopes, rendering his approach unphysical in terms of the
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intensity. The next two papers [85, 86], corresponding to papers 1 and 2 in this

thesis, present analytical approximations to the optical configurations of a helium mi-

croscope, and the last paper by Bergin et al reiterate equivalent derivations with some

small differences [12].

In Bergin’s paper, a different equation for the chromatic aberration is used by fitting two

parameters that produces smaller aberrations. Additionally, Sikora’s intensity model for

small skimmers is assumed throughout. The differences between Bergin’s solution and

ours stem from a small difference in the intensity model used, and in the way that the

resolution of the microscope is modelled. Concretely, Bergin assumes that the skimmer

is modelled by a Gaussian distribution placed after the collimator while we assume that

the support of this distribution is limited by the skimmer as in geometric optics. This

means that our approach produces a top-hat beam profile at high Fresnel numbers (no

diffraction) while Bergin’s produces a Gaussian profile. Experimental measurements of

the profile of the beam in the pinhole set up by the Bergen group indicate that the beam

is indeed more similar to a top hat than to a Gaussian (see Fig. 2.5). However, both

approaches are similar and lead to the same qualitative conclusions on beam design.

Note also that our work produces solutions valid for any value of WD, while Bergin

implicitly assumes WD � a.
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Figure 2.5: Measurements on the beam profile, here done for a cold source at 60 bar and
a 390 µm diameter skimmer for three values of xS. The complete intensity plot of the
beam is shown in the upper left corner. Note how the flat top of the beam contrasts with
the profile that one would expect from a Gaussian distribution. This image is obtained
by moving the nozzle relative to the skimmer in 50 nanometer steps for three values of
xS. This image is reproduced from [86].
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Figure 2.7: Simplified sketch of the microscope set up in Dastoor’s group [42] .

We reproduce here our analytical solutions to this problem, as they are more general,

and refer to chapter 4 for a complete analysis. For a pinhole configuration and rS � 1,

the radius of the pinhole and the skimmer at the intensity maximum are:

rmax
ph =

Φa

2K(a+WD)
≈ Φ

2K
, a� WD. (2.18)

rmax
S =

Φa

2WDK
. (2.19)

Where Φ is the FWHM of the beam and K = 2
√

2 ln 2/3.

For a zone plate configuration analytical solutions are harder to obtain. So far, only one

has been published: the optimal distance between the skimmer and the zone plate a,

which corresponds to the solution of the following cubic equation:

a3 + 2a2
(
RF −

√
3Γrzp

)
+ aRF(RF − 4rzp

√
3Γ)

= rzp

√
3ΓR2

F

[
2S2Φ′2 + r2

zp(Γ− 1)

S2Φ′2 − 0.5r2
zp

]
. (2.20)

Where Γ ≡ 1
3

(
2∆r
λ

)2
is a constant of the problem which gives the relative size of the
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Figure 2.8: Simplified sketch of the zone plate set up showing how a Fresnel zone plate
can be used to focus a helium beam .

smallest aperture of the zone plate compared with the average wavelength of the beam,

usually Γ� 1. This approximation has been obtained under several assumptions listed

in [95].

The work done in recent years on the issue of finding optimal configurations for helium

microscopes has had two major impacts. First, it has shown that the designs used to

that point were sub-optimal. In the case of the zone plate microscope the intensity

could be increased by a factor of 7 compared to previous designs [95], and in the case

of the pinhole microscope by 75% [85]. It has also led to a trend of designs using

bigger skimmers and smaller pinhole-skimmer distances. The first was motivated by the

realisation that increasing the skimmer distance had a significant effect on the centre

line intensity, and the second was by the fact that in general smaller microscopes are

more performant.

2.6.1 Microscopes with micro-skimmers

Initial designs of helium microscopes focused on using skimmers as small as technically

feasible (below 1 µm) [38]. This was motivated by several reasons: first, research groups

tried to obtain focal spots as small as possible, and micro-skimmers seemed the best way

to go in the zone plate set up (see, for example, [35]). Second, central beam intensity

models were misunderstood as independent on the skimmer radius (see, for example,

[65]).

Partly due to these design mistakes, it became clear that centre-line intensities were a

limiting factor. This triggered the work on microscope set up optimisation mentioned

above. This work noted the important dependency of the centre-line intensity with the

skimmer radius [12, 95], and cleared any confusion with regards to this issue.
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Since then, new microscope designs use skimmers as big as possible within the desired

resolution and taking into account skimmer interference at large Knudsen numbers as

mentioned in section 2.3.2. This has the additional benefit that micro-skimmers are hard

to produce, while larger micro-skimmers (with a diameter larger than 100 µm) can be

easily machined [86].

2.7 Outlook: 3D imaging and beyond

Perhaps the most interesting perspective for helium microscopy is the potential to become

a true nano-stereo microscope The success demonstrated by neutral helium microscopes

in taking 2D images of microscopic samples has helped to increase the interest for imaging

in three dimensions. In its simplest form, this can be done by measuring the displacement

of particular points of an image when the sample is rotated by a given known angle.

This technique has been demonstrated by Myles et al and has produced some basic

three-dimensional reconstructions from neutral helium microscopy images [81].

To avoid the cumbersome point-by-point selection of this basic technique, Lambrick and

Salvador developed Heliometric Stereo, an extension of Photometric stereo to helium

microscopy [73] (paper 5 in this thesis). Due to helium microscopy images taken

in an orthographic projection and constructed by imaging the sample point by point,

photometric stereo can be easily translated to helium and it has an even easier practical

implementation as the image acquisition conditions are highly controlled.

Heliometric stereo is based on the fact that the intensity signal measured in detectors

placed in different angles will be different and depend on the tilting angle of the imaged

surface. This dependency with the scattering distribution is both a curse and a bless-

ing: on the one hand, for heliometric stereo to be implemented straightforwardly one

must know the distribution. On the other hand, heliometric stereo sets the perfect con-

ditions for estimating this distribution when it is unknown as it samples it for a variety

of scattering angles. On top of this, there is increasing evidence that the scattering dis-

tribution of helium atoms from a broad arrange of samples is cosine, which makes the

method straightforward to implement [43, 71, 72, 74].

This insight, added to the increased efficiency of neutral helium detectors, will allow

scientists to design a highly multimodal SHeM. That is, a microscope that is able to

resolve the 3D surface of any vacuum-compatible sample, and the scattering distribution

of the beam.



Chapter 3

Conclusion

The work presented in this thesis focuses on addressing two research questions: what

is the optimal configuration for a Scanning Helium Microscope, and whether a stereo-

nanomicroscope can be designed using neutral helium atoms as the probing sample.

These questions are then placed in the context of the broader research field, that spans

several disciplines: from detector optimisation to beam measurement experiments.

Besides these two main research questions, some additional topics are addressed within

their corresponding research papers. For example, the issue of building the focusing

elements of the microscope, concretely an atom sieve, and whether theoretical models

based on approximated solutions of the Boltzmann equation reproduce experimental

findings.

When it comes to the two main research questions, both are addressed from a theoretical

standing. The first two papers included in this thesis were the first to provide analytical

solutions to the optimal optical configurations of SHeMs, and pave the way for smaller,

more intense microscopes. Together with coetaneous improvements in detector efficiency

(of more than two orders of magnitude), this will be used by the SHeM community to

design the third generation of SHeMs.

The fifth paper included in this thesis demonstrates the possibility of designing a stereo

helium microscope by adapting the technique of photometric stereo to helium. Besides

its theoretical interest, the paper also includes design recommendations for a stereo-

SHeM. In short: the introduction of at least four co-planar detectors - or, if that is not

possible, the ability to rotate the sample about the beam axis. These findings will likely

also enter the design consideration for next-generation SHeMs, and bring us closer to

the realisation of a true non-destructive nano-stereomicroscope.
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The remaining papers establish support for the theoretical models used for the beam’s

intensity and speed ratio (papers 3 and 4), and study several aspects of the zone plate

microscope set up (papers 6 and 7). Accurately predicting the speed ratio is especially

important for this set-up as this parameter determines the chromatic aberration of the

beam. Similarly, the papers related to the construction of an atom sieve and the use of

a zero-order filter propose significant improvements to helium zone plate microscopes.

Atom sieves can be built with a smaller limit resolution than Fresnel zone plates because

they are fully formed by pinholes. Similarly, the zero-order filtering approach provides a

much narrower beam intensity profile at the sample plane, potentially improving imaging

quality and resolution.

3.1 Future work

The success of Scanning Helium Microscopes as standard experimental and industrial

tools largely depends on whether the theoretical findings presented in this thesis are

successfully applied in microscope design. This work significantly impacts all three main

microscope configurations - namely the pinhole, zone plate and stereo set ups. The

pinhole set up is the less impacted, as current designs would just have to be slightly

corrected by shortening the microscope length and adapting the pinhole size.

Besides correcting the pinhole design, future work will largely consist of implementing the

proposed modifications in zone plate and stereo microscopes. For the zone plate set up, a

design based on an atom sieve and a zero-order filter blocker with the parameters carefully

adjusted as predicted theoretically would produce the highest resolution microscope to

date. For the stereo microscope, an initial corroboration could be done by obtaining a 3D

profile using a one-detector pinhole microscope and sample rotation. Once the principle

is demonstrated, the proposed set up with multiple detectors should be built using recent

advancements in detector technology to enhance its reconstruction accuracy.
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In recent years, the development of neutral helium microscopes has gained increasing interest.
The low energy, charge neutrality and inertness of the helium atoms makes helium microscopy an
attractive candidate for the imaging of a range of samples. The simplest neutral helium microscope
is the so called pinhole microscope. It consists of a supersonic expansion helium beam collimated by
two consecutive apertures (skimmer and pinhole), which together determine the beam spot size and
hence the resolution at a given working distance to the sample. Due to the high ionization potential
of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial
to optimize the microscope design to maximize the intensity for a given resolution and working
distance. So far this has not been addressed in the literature. Here we present an optimisation
model for the helium pinhole microscope system. We show that for a given resolution and working
distance there is a single intensity maximum. Further we show that with present day state of the art
detector technology (ionisation efficiency 1 · 10−3), a resolution of the order of 600 nm at a working
distance of 3 mm is possible. In order to make this quantification we have assumed a Lambertian
reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle
of 0.02π sr, following an existing design. Reducing the working distance to the micron range leads
to an improved resolution of around 40 nm.

I. INTRODUCTION

Neutral helium microscopy, short Nemi or SHem (scan-
ning helium microscopy), refers to the use of a beam of
neutral helium atoms as an imaging probe. The neu-
tral helium beam is created by a supersonic expansion
and has a very low energy (typically less than 0.1 eV),
which means that the atoms map the outermost electron
density distribution of the sample and do not penetrate
into solid material [1, 2]. This makes neutral helium mi-
croscopy particularly suited for the investigation of frag-
ile and/or insulating materials, nano-coatings and sur-
faces with high aspect ratios. By using two detectors it
should even be possible to create a stereo microscope on
the nano scale. Alternatively a small working distance
helium microscope can be used to investigate all samples
presently examined with scanning probe techniques.

The first neutral helium microscope images were pub-
lished in 2008 [3]. They were transmission, shadow im-
ages of a porous structure. The images were obtained by
using a Fresnel zone plate to focus a beam down to 3 µm
and later to less than 1 µm, scan the beam across the
sample and record the transmitted intensity [4]. Early
focussing experiments using neutral helium atoms were
carried out by O.Carnal et al, Holst and Allison and Doak
et al. in the 1990’s [5–7]. Since then two other research
groups have managed to obtain helium microscope im-
ages in reflection with micron range resolution using pin-
hole microscopes [8–11]. The first reflection images were
published in 2011 by Withman and Sanchez using a setup
with just a pinhole and no skimmer [8]. This setup still

∗ Corresponding author, Bodil.Holst@uib.no

claims the best resolution achieved so far with a helium
microscope: 350 nm [12]. Mathematically the Witham-
Sanchez setup can be seen as a special case of the two
aperture microscope model we present in this paper, with
the skimmer being very big. We therefore do not discuss
it further.

A diagram of a helium pinhole microscope can be found
in Fig. 1. The basic idea is simple: the supersonic ex-
pansion beam is collimated by two consecutive apertures,
which we refer to as skimmer and pinhole. The pinhole is
placed after the skimmer and is kept at a certain work-
ing distance from the sample plane. The resolution of
the microscope is then determined by the spot size of the
beam on the sample plane. In this work we define the
resolution as the full width at half maximum intensity
of the beam spot. The beam scattered off the sample is
then collected at a given solid angle using a detector, and
the variation in this signal, while the sample is scanned,
is used to create an image.

The aim of this paper is to determine the geometry
of the pinhole system which gives the maximum signal
intensity in the beam spot on the sample for a given
resolution. Our basic assumption is that the beam is
created in a supersonic expansion. In such an expansion,
the helium gas expands into vacuum through a nozzle
that must have a diameter much bigger than the mean
free path of the gas particles. The atoms then collide with
each other until eventually collisions cease and the atoms
are travelling in free molecular flow without interacting.
The central part of the beam is selected by a collimating
aperture (skimmer), which is conically-shaped to reduce
backscattering of atoms into the beam. The supersonic
expansion is chosen over for example an effusive source
because it gives the highest centre line intensity [13].

A common way to describe a supersonic expansion the-
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oretically is the quitting surface model. Here, the spheri-
cal quitting surface represents the distance from the noz-
zle where the atoms have reached molecular flow and are
no longer interacting [14]. The velocity distribution of
the atoms along the surface can be described by the most
probable velocity v̄ along the parallel direction (mean-
ing the radial direction from the centre of propagation).
This velocity is given together with either a single par-
allel temperature or, in a more detailed description, by
a pair of temperatures T||, T⊥ associated to the orthogo-
nal components of the velocity in spherical coordinates.
At the quitting surface, the perpendicular temperature,
T⊥ must be much smaller than the parallel temperature
T||. In this paper, the conditions at the quitting sur-
face are calculated solving Boltzmann equation [15–17].
Negligible collisional coupling is assumed at a distance
where the temperatures of the beam fulfil T⊥/T|| ≤ 0.01.
Stopping the integration at T⊥/T|| = 0.005 was shown to
affect the flow parameters by less than 0.1% with respect
to the proposed setting T⊥/T|| ≤ 0.01 [18].

For a single temperature and constant density along
the quitting surface, an analytical approximation for the
intensity exists, obtained by Sikora in 1973 [14]. For a
pair of temperatures, a numerical integral must be imple-
mented [19]. From now on, we will name the single tem-
perature solution Sikora’s approximation and, following
the convention in literature, the dual temperature model
ellipsoidal quitting surface model. Both models are ex-
plained in detail in Section II.

In practise, one will often measure a reduction in the
signal intensity compared to the theoretical model due to
backscattering of atoms into the beam. For the most ef-
ficient microscope, an optimization of the expansion pa-
rameters (distance between nozzle and skimmer, beam
pressure and temperature etc.) is therefore important.
This has been studied for example in [20–22], and is not
a topic of this paper. Hence, in this work all the param-
eters relative to the expansion enter as constants in the
equations: most probable velocity and perpendicular and
parallel temperatures of the beam, distance between the
skimmer and the nozzle and the position of the quitting
surface relative to the skimmer.

To simplify the calculations we consider not only the
resolution but also the working distance as a constant
of the optimization; The behaviour of the system with
respect to the working distance is monotone and easy
to calculate if need be. From an experimental point of
view the working distance is an important parameter.
The larger the working distance the more flexible the
microscope will be with respect to what kind of samples
can be investigated.

This leaves us with three variable parameters as can
be seen from Fig. 1: The aperture openings, rS and
rph, and the distance between them, a. Once the desired
resolution and working distance have been chosen, the
system is reduced to a two variable optimization prob-
lem using the optical equations of the system, which we
describe in the next section. The intensity can then be

calculated over a wide span of combinations and plot-
ted in a single graph. A single clear maximum is found
that gives the best theoretical design of a pinhole helium
microscope. In praxis it may be necessary to configure
the microscope away from the maximum due to techni-
cal constraints. The calculations clearly show how much
signal is lost compared to the maximum and provide the
best choice from the subset of realisable microscopes.

Skimmer

RF

Sx

a

Sr

PHr

Sample plane

WD

Pinhole

Supersonic

Expansion

Axis of 

cilindrical

symmetry
Nozzle

Quitting surface

δ

WD

Φ/2

RF

FIG. 1. Simplified illustration of a pinhole microscope setup.
The constants of the problem are marked in grey boxes. WD

is the working distance, δ is the geometrical spread of the
beam, Φ is the focal spot size. Due to diffraction effects 2δ
is not always equal to Φ. rS and rph are the radius of the
skimmer and the radius of the pinhole respectively and a is
the distance between the skimmer and the pinhole. Note that
the system is cylindrically symmetric about the main axis.

II. THEORETICAL FOUNDATION

A. The optical system

The expression for the spread of the beam depends
on the optical regime of the system, determined by the
Fresnel number, F [23]:

F =
r2
ph

WDλ
. (1)

Where rph is the radius of the pinhole and WD is the
working distance (see Fig. 1). λ is the average de Broglie
wavelength of the beam, given by λ = h/mv̄. m is the
mass of a helium atom and v̄ is the most probable velocity
of helium atoms along the radial direction.

An analytical expression can be easily found that in-
corporates the two extreme optical cases: Geometrical
optics (F»1) and Fraunhofer diffraction (F«1). We will
see that for most real designs this expression suffices to
determine the dynamics of the system. Using simple ray-
optics, the geometrical image of the aperture projected
onto the sample plane can be found to be:

δ = rph

(
1 +

WD

a

)
+
WDrS

a
, (2)

where a is the distance between the skimmer and the
pinhole and rS is the radius of the skimmer. To obtain
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the standard deviation, σ, of the beam intensity profile
we must convolute the geometrical image of the aper-
ture with the Point Spread Function (PSF) of the diffrac-
tion trough the aperture. We know that the PSF of the
Fraunhofer diffraction across a circular aperture can be
approximated by a Gaussian with the following standard
deviation [24]:

σA =
0.42λWD

2rph
. (3)

This convolution has a well-known result (from any
treaty on Gaussian error propagation combining Gaus-
sians with top-hat uncertainty distributions):

σ2 =
1

3

(
δ2 + 3σ2

A(1− θ(F))
)
. (4)

θ(F) is the Heaviside step function, which ensures that
the diffraction effect only appears for F < 1.

Additionally, there will be an effect on the standard
deviation stemming from the inhomogeneity of the in-
tensity profile along the perpendicular direction. The
intensity value, at big enough distances from the axis of
symmetry, decreases significantly. However, if the nozzle-
pinhole distance is much bigger than the pinhole radius,
the intensity profile at the pinhole is approximately con-
stant. This is often used in literature, where a center line
intensity is calculated and then multiplied by the surface
of the detector [14]. For the case of helium microscopes,
where the nozzle-pinhole distance is typically of the order
of several centimetres and the pinhole radius is of the or-
der of a few micrometres, this approximation can always
be used and eq. (4) suffices.

We define the focal spot size of the beam as the full
width at half maximum associated to the standard devi-
ation of the beam’s intensity profile:

Φ = 2
√

2 ln 2/3
√
δ2 + 3σ2

A(1− θ(F))

≡ K
√
δ2 + 3σ2

A(1− θ(F)). (5)

For micrometer resolutions, we will see that due to the
small wavelength of a helium beam, the Fresnel number is
typically bigger than one (see Appendix A for a detailed
description of the focal spot formula choice). This allows
a purely geometrical optics treatment of the focal spot
size. However, we choose to develop a formula that covers
both extreme cases because sometimes the optimization
procedure involves a wide span of Fresnel numbers.

From eq. (5) one can find three relations between
rS, a and rph (see Appendix B for the derivation). We
consider two of these expressions, rph → rph(a, rS) and
a→ a(rph, rS):

K2(1+γ)2r4
ph +2K2rSγ(1+γ)r3

ph +(K2γ2r2
S−Φ2)r2

ph

+K2(1− θ(F))ε = 0. (6)

Where γ = WD

a and ε = 3W 2
D(0.42λ/2)2. And:

a2

(
Φ2

K2
− r2

ph − 3σ2
A(1− θ(F))

)
−a·2rphWD(rph+rS)

−W 2
D(rph + rS)2 = 0. (7)

The equation (6) for the pinhole radius is a quartic
equation in the Fraunhofer regime because the same focal
spot size can be obtained when the diffraction term dom-
inates over the geometrical term and vice-versa. In prac-
tice, the equation gives two real, positive solutions for
which the one with maximum pinhole radius and there-
fore maximum intensity is chosen.

For the case of a (eq. (7)), the solution is uni-evaluated
because there exist only one positive root:

a =

rphWD

A

(
rph + rS ±

√
(rph + rS)2 +A(1 + 2

rS

rph
+

r2
S

r2
ph

)

)
.

(8)

Where A = Φ2

K2 − r2
ph − 3σ2

A(1 − θ(F)), if A is negative,
a is also negative or non-real (except the case when the
square root is 0) and if A is positive, we must take the
positive root to ensure a positive value of a.

Using eq. (6) or (7), the system can be reduced to a
two-variable optimization system.

B. The intensity models

As discussed in the introduction, the most general
model of the intensity field of a supersonic helium beam
is the ellipsoidal quitting surface model, with an elliptical
velocity distribution:

fell (~v) = n

(
m

2πkBT||

) 1
2
(

m

2πkBT⊥

)
·

exp

(
− m

2kBT||
(v|| − v̄)2 − m

2kBT⊥
v2
⊥

)
. (9)

Wherem is the mass of a helium atom, kB is Boltzmann’s
constant and T|| and T⊥ are the parallel and perpendic-
ular temperatures. v̄ is the most probable velocity of the
beam along the radial direction and v|| and v⊥ are the
parallel and perpendicular components of the velocity,
corresponding to the radial and angular components in
spherical coordinates.

Integrating eq. (9) over the quitting surface, across
the skimmer and over the pinhole surface, one obtains
the following intensity equation:

ID =
τI0

2πa2R2
FL

∫ rph

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ε3

e−S2(1−ε2 cos2 θ)D(b)dρdrdα. (10)



4

Where RF is the radius of the quitting surface and S =
v̄/
√

2kBT||/m is the parallel speed ratio. I0 is the total
intensity stemming from a nozzle of diameter dn [13]:

I0 = κ
P0

kBT0

√
2kBT0

m

(π
4
d2

n

)√ γ

γ + 1

(
2

γ + 1

)1/(γ−1)

.

(11)
Where P0 and T0 are the thermodynamic pressure and
temperature of the helium gas before it undergoes the
expansion. γ = CP/CV = 5/3 for helium. κ = 2 is
a peak factor as defined in [13]. All other parameters
are defined in detail in Appendix C. Unfortunately, the
ellipsoidal quitting surface model has no simple analytical
solutions and is often slow to compute over a wide space
of solutions.

Using the quitting surface model with a single ra-
dial velocity distribution it can be shown that for S ≥
5, rS � RF−xS, the intensity arriving at a small pinhole
reads [14]:

IS =
I0πr

2
ph

(RF + a)2

(
1− exp

[
−S2

(
rS(RF + a)

RF(RF − xS + a)

)2
])

.

(12)
Where RF−xS is the axial distance between the quitting
surface and the tip of the skimmer. This equation was
obtained independently by Sikora and Andersen [14] and
thus we refer to it as Sikora’s approximation as mentioned
in the introduction.

We can use this equation together with eq. (6) for F»1
to obtain a simple analytical equation for the position of
the intensity maximum, given either a or rS is taken to
be constant.

∇IS(rS, a) = (0, 0), ∂2
aI < 0, ∂2

rSI < 0. (13)

Which corresponds to a subset of the solutions of the
following equation:

∇
r2
ph

(RF + a)2

(
1− exp

[
−S2

(
rS(RF + a)

RF(RF − xS + a)

)2
])

= 0. (14)

Where the radius of the pinhole, for F � 1 can be ob-
tained from eq. (6), which reduces to a quadratic equa-
tion with a single physical solution:

rph =
Φa
K −WDrS

a+WD
. (15)

From eq. (14), it can be shown that the maximum of
intensity is at (see Appendix D):

rmax
S =

Φa

2WDK
, (16)

as long as the following condition holds:
(
S

RF + a

RF(RF − xS + a)

)2

(
Φa

WDK
rS − r2

S)� 1. (17)

The radius of the pinhole at the intensity maximum is
then:

rmax
ph =

Φa

2K(a+WD)
≈ Φ

2K
, a�WD. (18)

Comparing with eq. (15) one sees the importance of con-
dition (17), because if WDrS � Φa

K and a � WD is im-
posed, from eq. (15) one obtains:

rph ≈
Φ

K
. (19)

Which corresponds to the case where the beam does not
widen after the pinhole.

Unfortunately, no analytical solution has been found
for amax, neither in this limit nor in the general case.
However, the value can be easily obtained numerically
(see Section III). The triplet (amax, rmax

ph , rmax
S ) is the

optimal solution for the design of a helium microscope of
a given resolution Φ, given working distance, WD, and
given conditions at the supersonic expansion P0, T0.

III. RESULTS AND DISCUSSION

A. An example: Φ = 5µm, WD = 3 mm.

To illustrate the optimization method we consider the
pinhole helium microscope presented by Barr et al [22].
This microscope has been successfully built and has pro-
duced some of the best helium microscopy images at a
resolution of 5µm. We evaluate how the microscope could
be optimized using the same resolution and working dis-
tance as in the original setup.

By means of eq. (6), the problem is restricted to two
variables: the skimmer-pinhole distance a and the skim-
mer aperture rS. The intensity is then calculated by
means of the ellipsoidal quitting surface model, eq. (10).
A clear maximum of intensity can be observed which
smoothly decreases along the line described by eq. (16)
(see Fig. 2), giving the subset of maximums of intensity
for each fixed a value. The Fresnel number is plotted
at Fig. 3 . We see that in this case, the maximum is
situated at F=19.42 , reasonably within the geometrical
approximation.

It is also interesting to compare the intensity given
by the ellipsoidal quitting surface model to the intensity
given by Sikora’s approximation. Both models peak at
slightly different intensities, therefore it is useful to plot
the fraction of the normalized intensities.

ζ =
IS ·max(ID)

ID ·max(IS)
. (20)

From Fig. 4 we see that Sikora’s approximation fits
well the behaviour of the quitting surface model near
the intensity peak. Sikora’s approximation diverges from
the ellipsoidal quitting surface model at larger skimmers
as expected theoretically, as it is in this regime that the
component of the perpendicular temperature starts being
important.
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FIG. 2. Intensity (part/s) crossing a focal spot (Φ = 5µm) of a pinhole helium microscope for a span of values of rS and a. The
dashed line shows the subset of maximal solutions given by eq. (16). The intensity was calculated using the ellipsoidal quitting
surface model with the following parameters: T|| = 0.00802 K, T⊥ = 0.00209 K, RF = 0.0112 m, xS = 0.0113 m, T0 = 309 K,
P0 = 161 Bar. The working distance of the microscope is set at 0.003 m, and the nozzle diameter dn at 10µm. The maximum
lies at (amax, rmax

ph , rmax
S ) = (0.035m, 1.7886 ·10−6m, 2.0250 ·10−5m) . The black cross indicates the configuration corresponding

to the microscope designed by Barr et al [22]. The optimized design would increase the intensity by 75%. However, a distance
of only 35 mm between the two pinholes would not be so easy to realize experimentally with a good pumping speed.

B. Parametric dependences

The optimisation presented in Fig. 2 was performed
for a room temperature supersonic expansion beam, as
in the original experiment. We compare now with a cold
beam, which can be obtained by cooling the nozzle. Cool-
ing the beam increases the flow and changes the velocity
distribution. For the cold beam calculation we choose
the temperature 150 K because this is a temperature
which can easily be kept stable using for example liquid
nitrogen cooling. The position of the maximum changes
significantly. The optimized amax value decreases from
0.035 m to 0.026 m, and the optimized skimmer radius
decreases from 20.2 µm to 14.7 µm. The pinhole radius
at the maximum remains nearly constant (see Fig. 5).

The pinhole microscope system shows a clear max-
imum for a particularly defined supersonic expansion.
However, the position of the intensity maximum varies
with the expansion parameters. Such dependences can
be easily evaluated using Sikora’s approximation.

The dependence of the intensity maxima with the
speed ratio follows the expected trend. Higher speed ra-
tios favour smaller microscopes and skimmer openings

(see Fig. 6) due to the weaker divergence of the beam.
This also yields higher maximum intensity values. One
sees that the pinhole size depends very weakly of the
speed ratio as predicted by eq. (18). The radius of the
skimmer depends on the speed ratio through the value of
a (see eq. (16)).

The intensity decreases and the skimmer-pinhole dis-
tance increases strongly with the working distance, WD.
In other words, the working distance should always be
chosen as small as possible (see Fig. 7). The optimum
pinhole radius decreases with the working distance, be-
cause it is the main contributor to the widening of the
beam. The skimmer radius shows a more complicated
dependence, reaching a minimum at low working dis-
tances and then increasing smoothly. This must be un-
derstood in combination with the skimmer-pinhole dis-
tance a, which at small working distances is very small
and favours a small skimmer radius to lower the diver-
gence of the beam (see Fig. 7).

Regarding the dependences with the focal spot size Φ,
the intensity shows the expected quadratic dependence,
similar to the area of a disk. This quadratic relation
makes it hard to design high resolution microscopes with
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FIG. 3. Fresnel number for a span of values of rS and a. The
Fresnel number was calculated assuming an average wave-
length of λ̄ = 8.2535 ·10−11 m. Note that the line of maximal
intensity given by eq. (16) spans a region where F & 10. The
working distance of the microscope is set to 3 mm, and the
resolution to 5 µm.
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FIG. 4. Sikora’s approximation intensity divided by the el-
lipsoidal model, ζ for a span of values of rS and a (eq. (20)).
Note how both models diverge at high apertures due to the
omission of the perpendicular temperature effect in Sikora’s
approximation. At the intensity maximum both models be-
have similarly with ζ = 0.9722.

enough intensity (see Fig. 8). Both aperture radii in-
crease with the focal spot, the pinhole does it quasi lin-
early following eq. (16) while the skimmer shows a more
complicated dependence. The skimmer-pinhole distance
a peaks at small focal spot sizes and then decreases mono-
tonically as the influence of the airy diffraction disap-
pears (see Fig. 8).
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FIG. 5. Intensity (part/s) crossing the focal spot of a pin-
hole helium microscope for a span of values of rS and a.
The dashed line shows the subset of maximal solutions given
by eq. (16). The intensity was calculated using the el-
lipsoidal quitting surface model with the following param-
eters: T|| = 0.0054 K, T⊥ = 0.0039 K, RF = 0.0112 m,
xs = 0.0113 m, T0 = 131.3 K, P0 = 161 Bar. The work-
ing distance of the microscope is set to 3 mm, and the res-
olution to 5 µm. The maximum lies at (amax, rmax

ph , rmax
S ) =

(0.0260, 1.7714 · 10−6, 1.4750 · 10−5) m. The black cross indi-
cates the configuration corresponding to the microscope de-
signed by Barr et al [22].

C. Realistic resolution limits

Using Sikora’s approximation, one can easily obtain
the resolution limit of a realisable pinhole helium micro-
scope. A minimal count rate of 100 counts per second
is chosen and compared with the expected signal for the
optimal microscope at each resolution. Lambertian re-
flection [25] at π/4 radians relative to the sample normal
is assumed with the detector opening area perpendicular
to the reflected direction. The intensity seen at a given
solid angle is given by Lambert cosine law:

IΩ = Iinc cos(π/4)ΩD = Iinc cos2(π/4)
πR2

d2
. (21)

Where Iinc is the incident intensity per solid angle, which
corresponds to Is/π. ΩD is the solid angle seen by a de-
tector with a circular opening of radius R at a distance
d, oriented as described above. By considering the effi-
ciency of the detector, the formula giving the expected
count-rate reads:

N =
Ioptims R2

d2
η cos(

π

4
)2 ≈ 1.4 · 10−7Ioptims . (22)

Where R is the detector radius, chosen to be 0.5 mm. d is
the distance between the sample surface and the detector,
set at 3 mm. This corresponds to the solid angle of 0.02
π sr mentioned in the abstract. Ioptims is the optimized



7

0 50 100 150 200

S

0

0.2

0.4

0.6

0.8

1

C
h

a
n

g
e

 i
n

 r
e

le
v
a

n
t 

v
a

ri
a

b
le

r
ph

r
S

a

I

F

FIG. 6. Normalised optimized parameters of a pinhole helium
microscope for a span of values of the speed ratio S. The
intensity was calculated using Sikora’s approximation with
the following parameters: T0 = 131.3 K, P0 = 161 Bar. The
working distance of the microscope is set at 0.003 m.
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FIG. 7. Normalised optimized parameters of a pinhole he-
lium microscope for a span of values of the working distance
WD. The intensity was calculated using Sikora’s approxima-
tion with the following parameters: T0 = 131.3 K, P0 = 161
Bar. The working distance of the microscope is set at 0.003
m.

intensity using Sikora’s approximation. η is the efficiency
of the detector, chosen to be between 10−3 [26–29] and
10−5 (an upper limit estimate for a typical, commercial
mass spectrometer). Note that all parameters are set
as in the paper by Barr et al. [22]. As we can see in
Fig. 9, sub-micrometer resolutions are achievable with a
reasonable count rate.
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FIG. 8. Normalised optimized parameters of a pinhole helium
microscope for a span of values of the focal spot Φ. The
intensity was calculated using Sikora’s approximation with
the following parameters: T0 = 131.3 K, P0 = 161 Bar. The
working distance of the microscope is set at 0.003 m.
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FIG. 9. Optimized count rate for different focal spot sizes.
The intensity was calculated using Sikora’s approximation
with the following parameters: T0 = 131.3 K, P0 = 161 Bar.
The working distance of the microscope is set at 0.003 m. The
efficiency of the detector, placed at π/4 radians is η = 1 ·10−5

(lower line) or η = 1 · 10−3 (upper line).

D. The small working distance limit

A small WD helium microscope would be suitable for
the investigation of all samples currently investigated
with scanning probe techniques as discussed in the intro-
duction. In the limit WDrS/a � rph, for η = 0.001, the
maximum of intensity is always higher than 100 counts
per second for a collection solid angle of 0.02π sr. There-
fore, the minimal achievable resolution is determined by
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the theoretical trade-off between Airy diffraction and
beam widening in eq. (5). The smallest achievable Φ is
given by the point where decreasing further the pinhole
radius does not improve the resolution any more, because
the diffraction term dominates. For a working distance
of 10 µm, this point corresponds to (see Appendix E):

Φ = K

√
0.42λWD

√
3 ≈ 33 nm. (23)

With λ = 8.25 · 10−11 m, corresponding to T0 =
131.3 K. This equation is derived under the assumption
WDrS/a � rph, which for the case of WD = 10 µm only
holds weakly, the real resolution is a bit higher, 40 nm.
This has been calculated setting a lower bound for a of 5
cm, chosen as a technical constraint for the placement of
a pump in the skimmer-pinhole chamber. A helium pin-
hole microscope with a working distance of 10 µm has
already been demonstrated by Witham and Sanchez in
their 350 nm resolution configuration [12].

IV. CONCLUSION

We present a theoretical model of a neutral helium pin-
hole microscope using the quitting surface approach to
model the source intensity. We show that for a given
microscope resolution, working distance, and constant
source characteristics, there is a unique optimized solu-
tion. This optimized solution gives the sizes of the two
apertures of the system and their separation. Our pinhole
microscope model can easily be adapted to other source
models considering attenuation of the beam or describing
the flow of other atoms or molecules. The adaptation is
done simply by changing the intensity equation whilst us-
ing the same optical expressions. We show that with the
quitting surface intensity source model, high intensity,
helium pinhole microscopes with a resolution down to
around 40 nm are realisable. Further we suggest that an
intensity improvement of up to 75% for existing helium
pinhole microscopes is theoretically possible (although a
practical realisation can be challenging).

APPENDIX A: THE FOCAL SPOT SIZE AT
HIGH FRESNEL NUMBERS

If the Fresnel number is sufficiently high, a ray-optics
treatment is sufficient to describe the focal spot size. In
such a treatment, no convolution with a diffraction func-
tion is needed and the beam has the form of a top-hat
function. Therefore, in such cases the resolution of the
microscope is best understood by redefining the constant
K in a way that the FWHM of the beam is simply the
width of the top-hat function. This corresponds to K ≡ 2
so that eq. (5) reduces to:

Φ = 2δ. (A1)

APPENDIX B: DERIVATION OF EQ. (6) AND (7)

Deriving eq. (6) and (7) is a simple algebra prob-
lem consisting of extracting a → a(rph, rS) and rph →
rph(a, rS) from eq. (5). We shall begin by obtaining
rph → rph(a, rS). Squaring eq. (5) one obtains:

Φ2

K2
= δ2 + 3σ2

A(1− θ(F ))

= r2
ph

(
1 +

WD

a

)2

+ 2rph

(
1 +

WD

a

)
WDrS

a

+

(
WDrS

a

)2

+ 3

(
0.42λ

2

)2
W 2

D

r2
ph

(1− θ(F )). (B1)

Defining γ = WD

a and ε = 3W 2
D(0.42λ/2)2, multiplying

by r2
ph and grouping by powers of rph, one obtains eq.

(6). To obtain eq. (7) we can use eq. (B1), and multiply
by a2:

Φ2

K2
a2

= a2r2
ph

(
1 +

WD

a

)2

+ 2a2rph

(
1 +

WD

a

)
WDrS

a

+ a2

(
WDrS

a

)2

+ 3a2

(
0.42λ

2

)2
W 2

D

r2
ph

(1− θ(F )). (B2)

Expanding the quadratic sums and grouping by powers
of a, eq. (7) is recovered.

APPENDIX C: THE ELLIPSOIDAL QUITTING
SURFACE MODEL

The ellipsoidal quitting surface model used in this pa-
per is an extension of Sikora’s ellipsoidal quitting surface
model with the difference that the skimmer is allowed to
be in a different position than the quitting surface. Such
a model was published by U. Bossel in 1974 [19]. Unfor-
tunately the original paper has a couple of typos so we
describe here the corrected equations in detail. The main
intensity equation arriving at the pinhole is eq. (10):

ID =
τI0

2πa2R2
FL

∫ rph

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ε3

e−S2(1−ε2 cos2 θ)D(b)dρdrdα. (C1)

Where RF is the radius of the quitting surface and
S = v̄/

√
2kBT||/m is the parallel speed ratio. ε ≡

(
(τ sin2 θ + cos2 θ

)−1/2, τ ≡ T‖
T⊥

are auxiliary functions.
The function D(b) is defined as follows:

D(b) ≡ 2√
π
be−b2 +

(
2b2 + 1

)
[1 + erf(b)] , b ≡ Sε cos θ.

(C2)
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Where I0 is defined in eq. (11). g(δ) is obtained from the
angular term in eq. (12) of Beijerinck and Verster paper
[13] (in Bossel’s work a cos2 function is chosen instead
[19]):

g(δ) = cos3

(
πθ

2θ0

)
, θ0 =

π

2

√
γ + 1

γ − 1
− 1 =

π

2
.

(C3)
Where γ = CP/CV = 5/3 for helium has been used.
L corresponds to the integration of g(δ) along the half
sphere (all the intensity emitted by the source is set to
be contained in g(δ)).

L ≡
∫ π

2

0

g(δ) sin δdδ =
1

4
. (C4)

ρ is the radial coordinate at the pinhole plane and r is the
radial coordinate at the skimmer plane. The angles β, α
and θ are shown in Fig. 10. The analytical expressions
that relate them to the radial coordinates of the system
follow:

cosβ =
a√

a2 + (r sinα)2 + (ρ− r cosα)2
, a = xD−xS.

(C5)

cos θ =
xR(xD − xR)− y2

R + zR(ρ− zR)

RF

√
(xD − xR)2 + y2

R + (ρ− zR)2
. (C6)

Where:

xR = xD − ξ(xD − xS), yR = r sinα

(
xD − xR

xD − xS

)
,

zR = r cosα

(
xD − xR

xD − xS

)
− ρ

(
xD − xR

xD − xS

)
+ ρ, (C7)

are the Cartesian coordinates of a point P on the quitting
surface (see Fig. 10).

ξ =
B −

√
B2 −AC
A

. (C8)

A ≡ (xD − xS)2 + (r sinα)2 + (ρ− r cosα)2, (C9)

B = xD(xD − xS) + ρ(ρ− r cosα), (C10)

C = x2
D + ρ2 −R2

F. (C11)

y

x

z

(x  , y  , z  )R RR

ρ

(x   ,0, z  )
D D

xS

xD

R F

δ

P’

P

r S
β

θP

P’

PINHOLESKIMMER

α r

a

FIG. 10. Illustration of all variables used in the ellipsoidal
quitting surface model. P is a point on the quitting sur-
face from which a particle leaves in a straight trajectory until
P’, a point placed on the pinhole plane. The point on the
quitting surface is given by the set of Cartesian coordinates
(xR, yR, zR), which can be related to the polar coordinates
r, α, ρ for further integration. xS is the distance from the noz-
zle to the skimmer and xD is the distance from the nozzle to
the pinhole. Therefore a = xD − xS. The angles β and θ can
also be expressed in terms of r, α and ρ.

APPENDIX D: DERIVATION OF EQ. (16)

To obtain eq. (16) we must differentiate IS with re-
spect to the skimmer radius and set it equal to 0 (eq.
(12)). To do so we will first need to introduce eq. (15)
in eq. (12) in order to obtain IS → IS(a, rS). Once this

is done, defining D2 ≡
(

S(RF+a)
RF(RF−xS+a)

)2

and taking the
derivative, we obtain:

2D2rSe
−D2r2S(

Φa

K
−WDrS)2−

2WD(1− e−D2r2S)(
Φa

K
−WDrS) = 0, (D1)

which reduces to:

e−D2r2S

(
2D2rS(

Φa

K
−WDrS) + 2WD

)
= 2WD. (D2)

Taking the natural logarithm we get:

D2r2
S = ln

(
1 +D2

[
Φa

WDK
rS − r2

S

])
. (D3)

Now, if D2
[

Φa
WDK rS − r2

S

]
� 1, we can expand the log-

arithm at first order using Taylor series. Thanks to eq.
(15) we know that this condition corresponds to the case
of small pinholes (or of small D2).

r2
S ≈

Φa

WDK
rS − r2

S → rS ≈
Φa

2WDK
. (D4)

To proof that this corresponds to a maximum of the in-
tensity function, we must show that the second derivative
of eq. (12) respect the skimmer radius is negative. The
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second derivative evaluated at eq. (D4) reads (out of a
positive constant C2):

C2 d
2

dr2
S

IS =

−
(

ΦaD

2K

)2

e−D2r2S

[
D2Φ2a2

W 2
DK

2
+ 6

]
+2W 2

D

(
1− e−D2r2S

)

(D5)

Where we have not evaluated rS in the exponentials in
purpose, because we want to use D2

[
Φa

WDK rS − r2
S

]
≈

D2r2
s � 1. By combining this condition with eq. (D5),

one obtains:

C2 d
2

dr2
S

IS ≈ −
(

ΦaD

2K

)2 [
D2Φ2a2

W 2
DK

2
+ 6

]
< 0. (D6)

V. APPENDIX E: DERIVATION OF EQ. (23)

One can derive the low limit working distance resolu-
tion limit directly from eq. (5):

Φ = K
√
δ2 + 3σ2

A(1− θ(F)). (E1)

At the low resolution limit (very small pinholes), F is
smaller than 1 and diffraction terms are present. The
working distance is assumed to be very small, i.e.:

WDrS

a
� rph,

WD

a
� 1. (E2)

Eq. (E1) is then reduced to:

Φ = K
√
r2
ph + 3σ2

A =

√
r2
ph + 3

(
0.42λWD

2rph

)2

. (E3)

One can find that ∂
∂rph

Φ2 = 0, ∂2

∂2rph
Φ2 > 0 if:

rph =

√√
3

0.42λWD

2
. (E4)

Which gives, the minimum resolution limit:

Φ = K

√
0.42λWD

√
3. (E5)
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Neutral helium microscopy is a new technique currently under development. Its advantages are
the low energy, charge neutrality and inertness of the helium atoms, a potential large depth of field
and the fact that the helium atoms do not penetrate into any solid material. This opens, among
others, for the creation of an instrument that can measure surface topology on the nano scale even
on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is
the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an
aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by
the focal spot size, Φ, which depends on the size of the skimmer, the optics of the system and on
the velocity spread of the beam through the chromatic aberrations of the zone plate. An important
factor for the optics of the zone plate is the width of the outermost zone, ∆r, which is fabrication
limited to around 10 nm with present day state of the art technology. Due to the high ionization
potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore it is
crucial to optimize the microscope design to maximize the intensity for a given resolution and width
of the outermost zone. So far this has not been addressed in the literature. Here we present an
optimization model for the helium zone plate microscope. Assuming constant ∆r and Φ, we are
able to reduce the problem to a two variable problem (zone plate radius and object distance) and we
show that for a given beam temperature and pressure there is always a single intensity maximum.
We compare our model with the highest resolution zone plate focussing images published and show
that the intensity can be increased 7 times. Changing ∆r to 10 nm leads to a further increase in
intensity of more than 8000 times. Finally we show that with present day state of the art detector
technology (ionisation efficiency 1×10−3), a resolution of the order of 10 nm is possible. In order to
make this quantification we have assumed a Lambertian reflecting surface and calculated the beam
spot size that gives a signal 100 cts/s within a solid angle of 0.02 sr, following an existing helium
microscope design.

I. INTRODUCTION

In a neutral helium microscope, short Nemi or SHeM
(scanning helium microscope) a beam of neutral helium
atoms is created by a supersonic expansion. An image is
obtained by measuring either a reflected or transmitted
signal as the helium beam is scanned across the sample.
The energy of the beam is very low (less than 0.1 eV for a
wavelength of 0.1 nm), which means that the atoms map
the outermost electron density distribution of the sam-
ple and do not penetrate into solid material [1]. These
properties make neutral helium microscopy suited for the
investigation of nano-coatings, fragile and/or insulating
surfaces and surface structures with high aspect ratios.
By using for example a two detector setup it should even
be possible to create a nano stereo microscope which
can measure surface topography on the nano scale. If a
small working distance is applied, the helium microscope
can be used to investigate samples presently examined
with scanning probe techniques, with the advantage that
the helium beam offers completely standardised imaging
properties.

The first neutral helium microscope images were pub-
lished in 2008 [2]. They were transmission, shadow im-
ages of porous structures, obtained by scanning a beam
focussed down to 2 µm using a Fresnel zone plate. Since
then, two other research groups have managed to obtain
helium microscope images in reflection with micron range

resolution using pinhole microscopes [3–6]. The first re-
flection images were published in 2011 by Withman and
Sanchez using a setup with just a pinhole and no skimmer
[3]. This setup still claims the best resolution achieved so
far with a helium microscope: 350 nm [7]. The theoret-
ical resolution limit of a pinhole microscope is discussed
in detail in [8].

The first helium atom focussing with a Fresnel zone
plate was carried out by Carnal et al. using a beam of
metastable helium [9]. Because the helium atoms do not
penetrate into any solids, any transmission optical ele-
ment used must be of the binary type with either com-
pletely transparent or completely opaque areas. The first
focussing of a neutral, ground state helium beam with a
zone plate was carried out by Doak et al. [10]. Both of
these experiments used the classical Fresnel-Soret zone
plate with alternating transparent and opaque zones.
The Beynon-Gabor zone plate, which is also binary, has
been suggested as an alternative attractive candidate for
focusing of helium atoms [11]. The main advantage of the
Beynon-Gabor zone plate is that it has no higher order
foci. Unfortunately it is very challenging to fabricate. In
2015 a new optical diffraction element "the atom sieve"
was introduced and focussing down to 3.6 µm diameter
was demonstrated. The atom sieve was inspired by the
photon sieve, which was invented in 2001 and originally
intended for applications with soft X-rays [12]. It is a
structure consisting of pinholes of varying size arranged
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across the Fresnel zones in such a manner that it is pos-
sible to focus to a spot with a diameter smaller than
the smallest pinhole. In addition, higher order diffrac-
tion and secondary maxima can be suppressed by several
orders of magnitude. The original photon sieve as well
as the first atom sieve are based on Fresnel-Soret zone
plates. Other configurations have been suggested, for ex-
ample, a Beynon-Gabor zone plate based photon sieve
[13]. The great advantage of the atom sieve is that it
is much easier to fabricate free standing holes than free
standing rods, such as they are needed in a standard bi-
nary Fresnel zone plate. This is particularly important
because the width of the outermost zone is a critical fac-
tor for the achievable resolution as will be discussed in
the next section. It is reasonable to assume that fabrica-
tion of holes down to 10 nm should be possible [14].

A drawback of all zone plates is that only a fraction of
the incident beam intensity goes into the first order focus.
For the Fresnel-Soret zone plate as well as for the Beynon-
Gabor zone plate the fraction is around 10% (zone plate
efficiency). This is discussed in detail in [11]. The trans-
mission window for the atom sieve can be adjusted to
yield an intensity which is at least half the intensity of a
standard Fresnel-Soret zone plate [12]. Alternative zone
plate designs, where the first zones are blocked to facil-
itate zone plate stability and filtering of the zero order
diffraction term, typically have a transmitted intensity
higher than the atom sieve but lower than the Fresnel-
Soret zone plate [15]. A further drawback is the presence
of chromatic aberrations. This is particularly an issue
for helium microscopy because the beam has a pressure
dependent velocity spread. This is discussed in detail in
the paper.

It should be mentioned that there is an alternative
class of focussing element for neutral helium optics,
namely mirrors [16–18]. The advantage of mirrors is that
they have no chromatic aberrations so that the velocity
spread of the beam does not play a role, though there
will be a certain signal loss through diffraction and scat-
tering from steps and point defects as well as inelastic
scattering. The fabrication limit induced by the width of
the outermost zone is also not an issue, so that the mir-
rors can in principle be made much larger. The use of
graphene as a mirror coating gives an inert and very sta-
ble surface [19]. Quantum reflection for focusing has also
been demonstrated [20]. Unfortunately, until now, it has
not been possible to control the curvature of mirrors with
high enough precision, so that Fresnel zone plate based
optical elements remain the most promising approach for
the focusing of neutral atom and molecular beams.

A diagram of a helium zone plate microscope can be
found in Fig. 1. The basic idea is simple: the super-
sonic expansion helium beam is collimated by a conically
shaped aperture, which we refer to as skimmer. An im-
age of the skimmer opening is focussed onto a sample
plane by a Fresnel zone plate. The resolution of the mi-
croscope is then determined by the focal spot size of the
beam on the sample plane. In this work we define the

resolution as the full width at half maximum intensity
of the beam spot. The beam scattered off the sample is
then collected at a given solid angle using a detector, and
the variation in this signal, while the sample is scanned,
is used to create an image. Alternatively the transmitted
beam is detected by a detector placed behind a porous
sample.

The aim of this paper is to determine the geometry of
the zone plate system which gives the maximum signal
intensity in the beam spot on the sample for a given reso-
lution and given width of the outermost zone of the zone
plate. Our basic assumption is that the beam is created
in a supersonic expansion. For completeness we cite here
the detailed description of how we model the source. The
description is taken from [8]. In a supersonic expansion,
the helium gas expands into vacuum through a nozzle
that must have a diameter much bigger than the mean
free path of the gas particles. The atoms then collide
with each other until eventually collisions cease and the
atoms are travelling in free molecular flow without in-
teracting. The supersonic expansion is chosen over for
example an effusive source because it gives the highest
centre line intensity [21].

A common way to describe a supersonic expansion the-
oretically is the quitting surface model. Here, the spheri-
cal quitting surface represents the distance from the noz-
zle where the atoms have reached molecular flow and are
no longer interacting [22]. The velocity distribution of
the atoms along the surface can be described by the most
probable velocity v̄ along the parallel direction (mean-
ing the radial direction from the centre of propagation).
This velocity is given together with either a single paral-
lel temperature or, in a more detailed description, by a
pair of temperatures T||, T⊥ associated to the orthogonal
components of the velocity in spherical coordinates. At
the quitting surface, the perpendicular temperature, T⊥
must be much smaller than the parallel temperature T||.
In this paper, the conditions at the quitting surface are
calculated solving Boltzmann equation [23–25]. Negligi-
ble collisional coupling is assumed at a distance where the
temperatures of the beam fulfill T⊥/T|| ≤ 0.01. Stopping
the integration at T⊥/T|| = 0.005 has shown to affect the
flow parameters by less than 0.1% [26]. For a single tem-
perature and constant density along the quitting surface,
an analytical approximation for the intensity exists, ob-
tained by Sikora in 1973 [22]. For a pair of temperatures,
a numerical integral must be implemented [27]. From
now on, we will name the single temperature solution
Sikora’s approximation and, following the convention in
literature, the dual temperature model ellipsoidal quit-
ting surface model. Both models are explained in detail
in Section II.

Apart from the intensity contributions from the quit-
ting surface model, one often measures an intensity re-
duction due to backscattering of atoms into the beam
line. For a complete analysis, an optimization of the
expansion parameters (nozzle-skimmer distance, beam
pressure and temperature etc.) is therefore important.
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This is not a topic of this paper and has been studied
for example in [28–30]. Therefore, all the parameters
relative to the expansion are considered constant in the
equations. These correspond to the most probable veloc-
ity, the perpendicular and parallel temperatures of the
beam, the skimmer-nozzle distance and the position of
the quitting surface relative to the skimmer.

We choose two further parameters to be constant: the
resolution and the width of the outermost zone. The
behaviour of the system with respect to the width of the
outermost zone is monotone and easy to calculate if need
be. This leaves us with four variables as can be seen from
Fig. 1: The skimmer opening, rS, the zone plate radius
rzp the object distance, a, and the image distance, b.
We show that this reduces to a two variable optimization
problem using the optical equations of the system, which
we describe in the next section. The intensity can then be
calculated over a wide span of combinations and plotted
in a single graph.

Skimmer

RF

Sx

a

Sr

zpr

Sample plane

b

Zone plate

Supersonic

Expansion

Axis of 

cilindrical

symmetry
Nozzle

Quitting surface

Φ/2

RF

Φ/2

FIG. 1. Diagram of a zone plate microscope setup. The con-
stants of the problem are marked in grey boxes. b is the
working distance, Φ is the focal spot size. rS and rzp are the
radius of the skimmer and the radius of the zone plate re-
spectively and a is the distance between the skimmer and the
zone plate. Note that the system is cylindrically symmetric
about the main axis.

II. THEORETICAL FOUNDATION

A. The optical system

The size of the focal spot generated by a Fresnel zone
plate by imaging an aperture of radius rS is given by
a convolution of the chromatic aberration term of the
zone plate, σcm, the aperture (here, the skimmer), and
the Airy diffraction term σA [15]. Both σcm and σA can
be assumed to be Gaussian contributions, because the
nature of the velocity spread from where the aberrations
stem is Gaussian (eq. (13)) and the first ring of the Airy
term approximates well to a Gaussian [31]. The skimmer
is assumed to approximate to a step function and thus
carries a 1/

√
3 term in the convolution [8, 15].

The assumption that the skimmer approximates to a
step function gives a maximum bound to the focal spot
size. In reality, the intensity distribution decreases sig-
nificantly along the skimmer radius for large skimmers

placed close to the quitting surface. This has been ex-
perimentally investigated in [24, 26]. In this paper, we
assume that the quitting surface is close enough to the
skimmer so that the skimmer directly determines the ob-
ject of the optical system. In general, for resolutions on
the order of less than 1 µm, the skimmers needed for
optimal design are sufficiently small compared to the ra-
dius of the quitting surface to justify such an assumption,
regardless of how close the quitting surface is to the skim-
mer. It must be noted that the step function assumption
is only used when determining the optic equations of the
system. For the intensity model used in Sec. III to cal-
culate the intensity of the focal spot, the real intensity
profile and angular spread of the beam is considered with
no further assumptions.

The standard deviation resulting from the convolution
is multiplied by 2

√
2 ln(2) to obtain its Full Width at

Half Maximum (FWHM):

Φ = 2
√

2 ln(2)

√
σ2

cm + σ2
A +

(
MrS√

3

)2

≡ K
√
σ2

cm + σ2
A +

(
MrS√

3

)2

. (1)

Where σcm is the chromatic aberration, and σA is the
Airy diffraction term limiting the resolution of the mi-
croscope. The magnification factor, M , of the optical
system greatly influences the focal spot size. It is given
by the following equation [15]:

M =
b

a
=

f

a− f . (2)

Where f is the focal length of the Fresnel zone plate
which depends on its radius and ∆r as follows [15]

f =
2rzp∆r

λ
. (3)

Where λ is the average de Broglie wavelength of the beam
given by λ = h/mv̄, m is the mass of a helium atom, h is
the Planck constant and v̄ is the most probable velocity
of helium atoms along the radial direction. b corresponds
to the distance of the focused image from the zone plate
(Fig. 1). This is also the working distance of the micro-
scope. From combining eq. (2) and (3) while assuming
constant ∆r and λ, one obtains b → b(a, rzp), reducing
the system from four to three variables. The chromatic
aberration term stems from the dependence of the focal
length on the wavelength. It can be proven to be [15, 32]:

σcm =
rzp

S
√

2
. (4)

Where S = v̄/
√

2kBT||/m is the parallel speed ratio,
which is used as a measure of the velocity spread of the
beam. The Airy term stems from the diffraction of he-
lium atoms with the Fresnel zone plate. It can be ex-
pressed in terms of the width of the smallest zone ∆r
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[15]:

σA =
0.42∆ra

a− f . (5)

Where a is the distance between the aperture and the
zone plate. If a� f the equation reduces to:

σA = 0.42∆r. (6)

For the strong demagnification (M � 1) desired in a
zone plate microscope, this is the case (see eq. 2), and
therefore eq. (6) will be used throughout the paper. This
diffraction term will have a constant influence on the focal
spot size. Therefore, it is convenient to define a constant
corrected focal spot size Φ′, obtained by squaring eq. (1),
subtracting σ2

A and redefining the left hand side of the
equation:

Φ′ =

√
Φ2

K2
− σ2

A. (7)

Eq. (1) now simplifies to:

Φ′2 = σ2
cm +

(
MrS√

3

)2

. (8)

The optical system has three variables, the distance
between the skimmer and the zone plate a, the radius of
the skimmer rS and the radius of the zone plate, rzp. For
a given focal spot size Φ, the variables are interrelated
through eq. (1). In this paper we will mostly use the
expression rS → rS(a, rZP):

r2
S =

3λ2

4∆r2

(
a− 2rzp∆r

λ

)2 [
Φ′2

r2
zp

− 1

2S2

]
. (9)

It is also interesting to obtain a→ a(rS, rzp).

a = f


rS

√√√√ 1

3
(

Φ′2 − (
rzp
S
√

2
)2
) + 1


 . (10)

This equation gives the expected limitations for a zone
plate microscope. If the chromatic aberration and the
Airy diffraction term add up to more than the desired
focal spot, the solution is non-real and therefore the setup
is non physical. Therefore eq. (10) sets a limit to the
maximum physical zone plate radius for a given focal
spot size. By imposing a real square root one obtains:

rzp ≤
√

2SΦ′. (11)

Eq. (11) also gives the theoretical minimum resolution
of a zone plate microscope. By imposing that Φ′ is real
one obtains [15]:

Φ2

K2
≥ σ2

A, Φ & KσA ≈ ∆r. (12)

Which means that the minimum resolution of a zone
plate microscope is given by the smallest achievable pat-
tern on a zone plate.

B. The intensity models

As discussed in the introduction, the most general
model of the intensity field of a supersonic helium beam is
the ellipsoidal quitting surface model. Quoting from [8],
a description of the model follows. The velocity distribu-
tion over the quitting surface is assumed to be elliptical
Maxwell-Boltzmann:

fell (~v) = n

(
m

2πkBT||

) 1
2
(

m

2πkBT⊥

)
·

exp

(
− m

2kBT||
(v|| − v̄)2 − m

2kBT⊥
v2
⊥

)
. (13)

Wherem is the mass of a helium atom, kB is Boltzmann’s
constant and T|| and T⊥ are the parallel and perpendic-
ular temperatures. v̄ is the most probable velocity of the
beam along the radial direction and v|| and v⊥ are the
parallel and perpendicular components of the velocity,
corresponding to the radial and angular components in
spherical coordinates.

Integrating eq. (13) over the quitting surface, across
the skimmer and over the zone plate surface, one obtains
the following intensity equation:

IE =
τηI0

2πa2R2
FL

∫ rzp

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ε3

e−S
2(1−ε2 cos2 θ)D(b)dρdrdα. (14)

Where RF is the radius of the quitting surface. η =
1/π2 is the geometrical efficiency of the zone plate for the
first diffraction order, corresponding to about 10% of the
incoming signal [15]. I0 is the total intensity stemming
from a nozzle of diameter dN [21]:

I0 = κ
P0

kBT0

√
2kBT0

m

(π
4
d2

N

)√ γ

γ + 1

(
2

γ + 1

)1/(γ−1)

.

(15)
Where P0 and T0 are the thermodynamic pressure and
temperature of the helium gas before it undergoes the
expansion. γ = CP/CV = 5/3 for helium. κ = 2 is
a peak factor as defined in [21]. All other parameters
are defined in detail in Appendix B. Unfortunately, the
ellipsoidal quitting surface model has no simple analytical
solutions and is often slow to compute over a wide space
of solutions.

Using the quitting surface model with a single ra-
dial velocity distribution it can be shown that for S ≥
5, rS � RF − xS, the intensity arriving at a zone plate
small enough to justify a constant radial intensity distri-
bution reads [22]:

IS =

I0ηπr
2
zp

(RF + a)2

{
1− exp

[
−S2

(
rS(RF + a)

RF(RF − xS + a)

)2
]}

.

(16)
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Where RF−xS is the axial distance between the quitting
surface and the tip of the skimmer. This equation was
obtained independently by Sikora and Andersen [22] and
thus we refer to it as Sikora’s approximation as mentioned
in the introduction. The radius of the skimmer, can be
obtained from eq. (9), reducing the intensity equation to
two independent variables:

IS (rzp, a) =
I0ηπr

2
zp

(RF + a)2
−

I0ηπr
2
zp

(RF + a)2
exp

{
− 3λ2

4∆r2

(
a− 2rzp∆r

λ

)2 [
Φ′2S2

r2
zp

− 1

2

]

(
(RF + a)

RF(RF − xS + a)

)2
}
. (17)

Assuming that a is generally much bigger than the focal
length as previously discussed, f =

2rzp∆r
λ , the maximum

intensity of a helium beam monotonically increases with
1/∆r. Therefore, to obtain the maximum intensity, ∆r is
chosen to be constant and equal to the smallest realisable
value.

We can use this equation together with eq. (9) to ob-
tain an analytical equation for the position of the inten-
sity maxima given either a or rzp is taken to be constant.

∇IS(rzp, a) = (0, 0), ∂2
aI < 0, ∂2

rzpI < 0. (18)

Which corresponds to a subset of the solutions of the
following equation:

∇ r2
zp

(RF + a)2

{
1− exp

[
−S2

(
rS(RF + a)

RF(RF − xS + a)

)2
]}

= 0. (19)

The derivatives with respect to the zone plate radius and
the skimmer-zone plate distance a can both be solved an-
alytically. The derivative of eq. (17) with respect to the
skimmer-zone plate distance, a, is a simple cubic equa-
tion giving the a corresponding to the maximum intensity
at a given zone plate radius.

a3 + 2a2
(
RF −

√
3Γrzp

)
+ aRF(RF − 4rzp

√
3Γ)

= rzp

√
3ΓR2

F

[
2S2Φ′2 + r2

zp(Γ− 1)

S2Φ′2 − 0.5r2
zp

]
. (20)

Where Γ ≡ 1
3

(
2∆r
λ

)2 is a constant of the problem
which gives the relative size of the smallest aperture of
the zone plate compared with the average wavelength of
the beam, usually Γ � 1. amax is obtained by solving
the cubic equality for a, which gives a single real positive
solution.

This approximation has been obtained under the fol-

lowing assumptions, all of them justified in Appendix A.

(RF + a)2(a−
√

3Γrzp)
[
S2Φ′2

r2zp
− 1

2

] (
a+ RF

a

√
3Γrzp

)

ΓR2
Fa

2

� 1, (21)

a2 +RFrzp

√
3Γ ≈ a2, (22)

(a−
√

3Γrzp)2 ≈ a(a− 2
√

3Γrzp), (23)

RF − xS � a. (24)

III. RESULTS AND DISCUSSION

A. An example: Φ = 0.9 µm, ∆r = 323 nm

To illustrate the presented model we consider some of
the best results published so far of focussing helium with
a zone plate [33]. In the published 0.9 µm experiment,
a was set to 1.528 m and ∆r to approximately 323 nm
(from the two zone plates that were used, we choose to
study the one referred as "the MIT zone plate"). We
compare it to the best setup achievable for the same focal
spot size and ∆r. Additionally, we find the best setup
and best achievable intensity with the smallest realistic
value of ∆r (10 nm). The intensity is computed using the
ellipsoidal quitting surface model (eq. (14)) and plotted
with respect to two variables: rzp and a. The skimmer
radius rS is a hidden variable related to rzp and a by
eq. (9). A clear intensity peak can be observed which
for small zone plate radii follows well the approximation
given by eq. (20) (see Fig. 2). In Fig. 2 and 3 the
approximation is shown together with the real line of
zero gradient of the ellipsoidal quitting surface model.

If ∆r is set at a minimal construction limit of 10 nm,
the intensity increases significantly: 8000 times with re-
spect to the original setup (see Fig. 3). In this case,
eq. (20) gives a value very close to the position of the
intensity peak calculated numerically.

The literature has so far featured relatively large zone
plates (rzp > 90 µm), a regime where Sikora’s approxi-
mation can perform badly [8]. Therefore it is important
to compare Sikora’s approximation with the ellipsoidal
quitting surface model. To do so, it is useful to plot the
fraction of the normalised intensities:

ζ =
IS ·max(IE)

IE ·max(IS)
. (25)

It can be seen that for zone plate microscopes, Sikora’s
approximation can be implemented broadly (Fig. 4). In-
terestingly, for the studied case ζ is significantly bigger
than 1 only for very small zone plates. This is the op-
posite behaviour than one would expect, but it can be
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understood when the skimmer radius is plotted. From
the values of the skimmer radius one sees that the Sikora
approximation fails for large radii, showing that the size
of the aperture closer to the quitting surface (skimmer)
is more important than the aperture further away (zone
plate) (Fig. 5). This is due to the off-axis intensity de-
creasing faster the closer the quitting surface is to the
plane of interest.

B. Parametric dependences

In this paper, we reduce a multi-variable multi-
parametric system to a two variable equation, giving a
single optimal configuration for a zone plate microscope.
In this section, we discuss the dependence of the system
on some of the parameters considered constant. Partic-
ularly, we plot the dependence of the optimized system
geometry ((amax, rmax

zp , rmax
S )) and intensity I, as function

of the focal spot size Φ, the speed ratio S and the width
of the outermost zone ∆r.

To do so, we use Sikora’s approximation (eq. (17)),
which approximates well the intensity maxima and re-
quires much lower computation times than the ellipsoidal
quitting surface model.

From Fig. 6 we see that, as expected, a higher speed
ratio yields a smaller optimal skimmer radius. This is
because with higher speed ratios the beam is more colli-
mated and thus increasing the skimmer radius affects the
intensity less. Additionally, we see an expected increase
of the intensity of the beam and an increase of both the
zone plate radius and the distance a (also a result of a
more collimated beam). We interpret the increase of the
optimal zone plate radius as a consequence of smaller
chromatic aberrations: bigger zone plates are expected
to capture more particles but also to cause higher aber-
rations, the increase in the speed ratio compensates the
increase of the aberration term (see eq. (4)).

The dependence of the studied variables on the focal
spot size, Φ, is monotonous and increasing in all cases. A
microscope with a larger resolution involves an optimal
setup with larger components: both aperture sizes and
the distance a increase with the resolution. Additionally,
as expected, when the focal spot increases, the maximum
intensity increases as well (see Fig. 7).

As explained in Sec. IIIA, the maximum intensity in-
creases dramatically with a small ∆r. This increase of
intensity stems from a combination of a smaller micro-
scope length with a larger zone plate radius. Therefore,
the theoretical best helium microscope design is a com-
pact microscope with a relatively large zone plate, com-
bining the closeness to the atom source with a large angle
of collection (see Fig. 8).

C. Realistic resolution limits

We calculate the resolution limits of a zone plate mi-
croscope by setting feasible constraints to all present vari-
ables and assuming Lambertian reflection with the sam-
ple surface, similar to what has been done in [8].

Concretely, the constraints we choose are a minimal
working distance b of 10 µm (value that has been claimed
in literature [7]), and a minimal skimmer radius of 100
nm. ∆r is set at 10 nm and the radius of the zone plate
is limited to a minimum of 10∆r. a is set to a minimum
of 1 mm.

A minimal count rate of 100 counts per second is cho-
sen, considered to set the limit for a good signal to noise
ratio. This is then compared with the beam intensity
calculated using Sikora’s approximation and deflected by
a Lambertian surface [8]:

N =
Ioptims R2

d2
ηD cos(

π

4
)2 ≈ 1.4 · 10−7Ioptims . (26)

Where d = 3 mm is the distance between the sample sur-
face and the detector, R = 0.5 mm is the detector radius.
This corresponds to the solid angle of 0.02 π sr mentioned
in the abstract. Ioptims is the optimized intensity using
Sikora’s approximation. ηD is the efficiency of the de-
tector, chosen to be between 10−3 [34–37] and 10−5 (an
upper limit estimate for a commercial mass spectrome-
ter). All parameters are set as in the pinhole microscope
setup by Barr et al. [8, 30].

As we can see by comparing Fig. 7 and Fig. 9, reso-
lutions close to the diffraction limit (10 nm) are possible
for a very small working distance and the most efficient
detector. Such a configuration usually requires a small
number of zones. Even for a small number of zones (more
than five) the resolution has been shown to approximate
well to the optic lens limit and thus the result should
be correct to within few nanometers [38]. For a detector
of ηD = 10−5, a microscope with a resolution of 30 nm
is possible. In this case, the number of zones used in
practical setups is already large enough to be in the lens
approximation regime.

The considered construction limits can be argued to
be not stringent enough. Although a separation of 1
mm between the skimmer and the zone plate is possible,
placing a vacuum pump within that distance is difficult.
Similarly, a working distance of only 10 µm, although
demonstrated, is technically challenging to implement in
the reflection mode, and limits the samples that can be
imaged. Therefore, we have also calculated the resolu-
tion limit with a minimum a = 5 mm and a minimum
working distance, b, of 3 mm to set a limit which is not
only realistic but also reasonably simple to implement.
With both values of ηD, such a microscope has the same
resolution limit of 100 nm, this limit is set by eq. (10)
and not by the 100 counts/s limitation. For λ=0.088 nm,
the associated skimmer radius is 0.33 µm, which is close
to the fabrication limit [39]. The zone plate radius is 16
µm, a is 2 cm and b is 3 mm, ∆r is 10 nm.
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FIG. 2. Intensity [atoms/s] in the focal spot of a zone plate helium microscope for a span of values of rzp and a. The solid
line shows the subset of maximum solutions given by eq. (20), and the dashed line shows the numerical solution using the
ellipsoidal quitting surface model. The intensity was calculated using the ellipsoidal quitting surface model with the following
parameters: T|| = 0.0052 K, T⊥ = 0.0035 K, RF = 0.01129 m, xS = 0.0113 m, T0 = 115 K, P0 = 101 Bar, λ = 0.089 nm. The
nozzle diameter dn is set at 10 µm. The maximum lies at (amax, rmax

zp , rmax
S ) = (0.555 m, 3.763 · 10−6 m, 1.195 · 10−5 m). The

yellow cross indicates the configuration corresponding to the original setup used in [33]. The optimized design would increase
the intensity by 7 times. An intensity increase of as much as 8000 times can be achieved by reducing ∆r to 10 nm (see Fig. 3).

IV. CONCLUSION

In this paper, we present a theoretical model of the
neutral helium zone plate microscope. Using the opti-
cal equations of the system and the quitting surface ap-
proach, we are able to obtain a two variable intensity
function for a given microscope resolution and width of
the outermost zone of the zone plate. This function shows
a clear intensity peak from which the best zone plate mi-
croscope design can be recovered. By imposing realistic
design constraints, we find that zone plate microscopes
with a resolution as low as 10 nm are realisable. The
implementation of the proposed model is shown to in-
crease the intensity of a published setup by as much as
8000 times. The approach followed in this paper can eas-
ily be implemented for different intensity models, such as
models describing other types of molecular beams and/or
considering backscattering from the skimmer, by simply
adapting the intensity equation.
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APPENDIX A: DERIVATION OF EQ. (20)

To obtain eq. (20), one must derive eq. (17) with
respect to the skimmer-zone plate distance a and set it
equal to 0. One then obtains (assuming RF − xS � a):

1 = exp(−F ) ·
(

1+

(S
2Φ′2

r2zp
− 1

2 )(RF + a)2(a−
√

3Γrz)
[
a2 +RFrzp

√
3Γ
]

ΓR2
Fa

3

)

(A1)
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FIG. 3. Intensity [atoms/s] in a 0.9 µm focal spot of a zone
plate helium microscope for a span of values of rzp and a. The
red line shows the subset of maximum solutions given by eq.
(20) and the dashed line shows the real line of zero derivative
in the ellipsoidal quitting surface model. The intensity was
calculated using the ellipsoidal quitting surface model with
the following parameters: T|| = 0.0052 K, T⊥ = 0.0035 K,
RF = 0.01129 m, xS = 0.0113 m, T0 = 115 K, P0 = 101
Bar, λ = 0.089 nm. The nozzle diameter dn is set at 10 µm.
The maximum lies at (amax, rmax

zp , rmax
S ) = (0.06 m, 12.22 ·

10−6 m, 1.173 · 10−5 m). Note how the intensity peak is at
3.5 · 1011 [atoms/s], corresponding to an intensity of about
8000 times the configuration used in [33]

With

F ≡
(S

2Φ′2

r2zp
− 1

2 )(RF + a)2(a−
√

3Γrzp)2

ΓR2
Fa

2
. (A2)

Eq. (A1) can be written as follows:

exp(−F ) =
1

1 +A
= 1 +$, $ ≡ −A

1 +A
. (A3)

with

A =

(S
2Φ′2

r2zp
− 1

2 )(RF + a)2(a−
√

3Γrzp)
[
a2 +RFrzp

√
3Γ
]

ΓR2
Fa

3
.

(A4)

By plotting A along a wide range of parameters one can
see that for the conditions of interest along the intensity
maxima A � 1. By taking the logarithm in eq. (A3)
and expanding using Taylor series log(1−A) ≈ −A, one
obtains:

F ≈ A

1 +A
. (A5)

Which reduces to:

(a−
√

3Γrzp)(1 + A) =
a2 +RFrzp

√
3Γ

a
. (A6)
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FIG. 4. Normalised fraction of Sikora’s model divided by the
ellipsoidal quitting surface model, ζ, for a span of values of
rzp and a. The solution was calculated for a zone plate helium
microscope with a resolution of 0.9 µm and a ∆r of 323 nm.
The red line shows the subset of maximum solutions given
by eq. (20). Both models were computed using the following
parameters: T|| = 0.0052 K, T⊥ = 0.0035 K, RF = 0.01129
m, xS = 0.0113 m, T0 = 115 K, P0 = 101 Bar, λ = 0.089 nm.
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FIG. 5. Skimmer radius rS [m], for a zone plate helium micro-
scope with a resolution of 0.9 µm and a ∆r of 323 nm. The
radius is plotted with a logarithm scale due to the high varia-
tions in its magnitude. Note how in the areas where Sikora’s
approximation fails (see Fig. 4), the skimmer radius is largest.
The red line indicates the subset of maximum solutions given
by eq. (20). The radius was calculated using the following
parameters: S = 241.68, λ = 8.9 · 10−11 m.

In general, the radius of the quitting surface, RF, is of the
order of millimetres (for the example shown in Sec. III C
it corresponds to around 10 mm). For microscopes with
low resolution and realistic speed ratios of the order of
100, the radius of the zone plate is as much as hundreds
of times the focal spot size (see eq. (11)). Conservatively,
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S. The intensity was calculated using Sikora’s approxima-
tion with the following parameters: T0 = 115 K, P0 = 101
Bar at a fix resolution, Φ = 0.9 µm. The maximum values of
the parameters, used for normalization are: rzp = 10.2 µm,
rS = 458.6 µm, a = 0.05 m, I = 2.65 · 1011 atoms/s. The
small fluctuation of the data are due to numerical effects.
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FIG. 7. Normalised optimized parameters of a zone plate
helium microscope for a span of values of the focal spot size
Φ. The intensity was calculated using Sikora’s approximation
with the following parameters: T0 = 115 K, P0 = 101 Bar,
which corresponds to S = 241.7. The maximum values of
the parameters, used for normalization are: rzp = 29.7 µm,
rS = 17.4 µm, a = 0.09 m, I = 1.68 · 1012 atoms/s, b = 0.007
m. The small fluctuation of the data are due to numerical
effects.

this means O(rzp) ≈ 1 · 10−4. The product of the zone
plate radius and the radius of the quitting surface is then
of the order of RFrzp < 1 · 10−6.

√
Γ scales as ∆r/λ,

which for high ∆r is on the order of a few thousand.
When compared with the order of a2, O(a2) ≈ 1 · 10−2,
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FIG. 8. Normalised optimized parameters of a zone plate he-
lium microscope for a span of values of the width of the out-
ermost zone ∆r. The intensity was calculated using Sikora’s
approximation with the following parameters: T0 = 115 K,
P0 = 101 Bar at a fix resolution Φ = 0.9 µm. This corre-
sponds to a speed ratio of S = 241.7. In this case, b has
also been included to emphasize the reduction of the micro-
scope length at high intensity setups. The maximum values
of the parameters, used for normalization are: rzp = 12.5 µm,
rS = 13.9 µm, a = 0.7515 m, I = 3.81 · 1011 atoms/s,
b = 0.0316 m. The small fluctuation of the data are due
to numerical effects.

the product RFrzp

√
3Γ is at least one order of magnitude

smaller (in practise in the studied cases, it was at least
two orders of magnitude smaller). Therefore we can make
the following approximation:

a2 +RFrzp

√
3Γ ≈ a2. (A7)

When developing eq. (A5), we will encounter (a −√
3Γrzp) at first and second exponent. It will be help-

ful to find some approximation to it.
√

3Γrzp is smaller
than a such that the following approximation holds:

(a−
√

3Γrzp)2 = a2 − 2
√

3Γrzpa+ 3Γr2
zp ≈

a2 − 2
√

3Γrzpa = a(a− 2
√

3Γrzp). (A8)

Implementing these approximations in eq. (A5) one ob-
tains:

(S
2Φ′2

r2zp
− 1

2 )(RF + a)2(a− 2
√

3Γrzp)

ΓR2
F

=
√

3Γrzp. (A9)

By multiplying by r3
zp and grouping for powers of a, one

recovers eq. (20):

a3 + 2a2
(
RF −

√
3Γrzp

)
+ aRF(RF − 4rzp

√
3Γ)

= rzp

√
3ΓR2

F

[
2S2Φ′2 + r2

zp(Γ− 1)

S2Φ′2 − 0.5r2
zp

]
. (A10)
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FIG. 9. Optimized count rate for different focal spot sizes.
The intensity was calculated using Sikora’s approximation
with the following parameters: T0 = 115 K, P0 = 161
Bar. The efficiency of the detector, placed at π/4 radians
is η = 1 ·10−5 (green line) or η = 1 ·10−3 (blue line). The red
line indicates the 100 atoms/s intensity limit. The constraints
on the calculation are a minimum working distance of 10 µm,
a minimum skimmer radius of 100 nm and a minimum a of 1
mm. ∆r is set at 10 nm.

Both, the explicit solutions of these equations and the
second derivative of eq. (17) with respect to a are too
lengthy to justify an analytical proof of the negative value
of the second derivative at the intensity maximum. In-
stead, we follow a more practical numerical approach,
which confirmed that the only real positive solution of
eq. (A10) evaluates to a negative second derivative of eq.
(17).

APPENDIX B: THE ELLIPSOIDAL QUITTING
SURFACE MODEL

The ellipsoidal quitting surface model used in this pa-
per is an extension of Sikora’s ellipsoidal quitting surface
model with the difference that the skimmer is allowed to
be in a different position than the quitting surface. Such
a model was published by U. Bossel in 1974 [27]. Unfor-
tunately the original paper has a couple of typos so we
describe here the corrected equations in detail. The main
intensity equation arriving at the zone plate is eq. (14):

IE =
τI0

2πa2R2
FL

∫ rzp

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ε3

e−S
2(1−ε2 cos2 θ)D(b)dρdrdα. (B1)

Where RF is the radius of the quitting surface and
S = v̄/

√
2kBT||/m is the parallel speed ratio. ε ≡

(
(τ sin2 θ + cos2 θ

)−1/2, τ ≡ T‖
T⊥

are auxiliary functions.

The function D(b) is defined as follows:

D(b) ≡ 2√
π
be−b

2

+
(
2b2 + 1

)
[1 + erf(b)] , b ≡ Sε cos θ.

(B2)
Where I0 is defined in eq. (15). g(δ) is obtained from the
angular term in eq. (12) of Beijerinck and Verster paper
[21] (in Bossel’s work a cos2 function is chosen instead
[27]):

g(δ) = cos3

(
πθ

2θ0

)
, θ0 =

π

2

√
γ + 1

γ − 1
− 1 =

π

2
. (B3)

Where γ = CP/CV = 5/3 for helium has been used.
L corresponds to the integration of g(δ) along the half
sphere (all the intensity emitted by the source is set to
be contained in g(δ)).

L ≡
∫ π

2

0

g(δ) sin δdδ =
1

4
. (B4)

ρ is the radial coordinate at the zone plate plane and
r is the radial coordinate at the skimmer plane. The
angles β, α and θ are shown in Fig. 10. The analytical
expressions that relate them to the radial coordinates of
the system follow:

cosβ =
a√

a2 + (r sinα)2 + (ρ− r cosα)2
, a = xD−xS.

(B5)

cos θ =
xR(xD − xR)− y2

R + zR(ρ− zR)

RF

√
(xD − xR)2 + y2

R + (ρ− zR)2
. (B6)

Where:

xR = xD − ξ(xD − xS), yR = r sinα

(
xD − xR

xD − xS

)
,

zR = r cosα

(
xD − xR

xD − xS

)
− ρ

(
xD − xR

xD − xS

)
+ ρ, (B7)

are the Cartesian coordinates of a point P on the quitting
surface (see Fig. 10).

ξ =
B −

√
B2 −AC
A

. (B8)

A ≡ (xD − xS)2 + (r sinα)2 + (ρ− r cosα)2, (B9)

B = xD(xD − xS) + ρ(ρ− r cosα), (B10)

C = x2
D + ρ2 −R2

F. (B11)
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FIG. 10. Illustration of all variables used in the ellipsoidal
quitting surface model. P is a point on the quitting surface
from which a particle leaves in a straight trajectory until P’,
a point placed on the zone plate plane. The point on the
quitting surface is given by the set of Cartesian coordinates
(xR, yR, zR), which can be related to the polar coordinates
r, α, ρ for further integration. xS is the distance from the
nozzle to the skimmer and xD is the distance from the nozzle
to the zone plate. Therefore a = xD − xS. The angles β and
θ can also be expressed in terms of r, α and ρ.
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Supersonic molecular beams are used in many applications ranging from spectroscopy and matter wave
optics to surface science. The experimental setup typically includes a conically shaped, collimating
aperture, the skimmer. It has been reported that microskimmers with diameters below 10 µm produce
beams with significantly broader velocity distributions (smaller speed ratios) than larger skimmers.
Various explanations for this phenomenon have been proposed, but up till now, only a limited amount of
data has been available. Here we present a systematic study of the velocity distribution in microskimmer
supersonic expansion helium beams. We compare a 4 µm diameter skimmer with a 390 µm diameter
skimmer for room temperature and cooled beams in the pressure range 11-181 bars. Our measurements
show that for properly aligned skimmers, the only difference is that the most probable velocity for
a given pressure and temperature is slightly lower for a microskimmed beam. We ascribed this to
the comparatively narrow and long geometry of the microskimmers which can lead to local pressure
variations along the skimmer channel. We compare our measurements to a model for the supersonic
expansion and obtain good agreement between the experiments and simulations. Published by AIP
Publishing. https://doi.org/10.1063/1.5044203

I. INTRODUCTION

Supersonic molecular beams are used in a range of scien-
tific disciplines. Helium beams, in particular, are an established
tool in surface science used in diffraction experiments and
dynamics studies (diffusion and surface vibrations) and for
monitoring thin film growth and thermal evaporation.1,2 Work
is ongoing to extend the use of helium beams toward direct
imaging in neutral helium microscopes.3–7 Molecular beams
can also be employed as a carrier gas for deposition of other
molecules.8

A supersonic molecular beam is created by a supersonic
(free jet) expansion: atoms or molecules from a high pressure
reservoir (typically up to 200 bars or more) expand into vac-
uum through a nozzle with a diameter larger than the mean
free path of the gas particles in the reservoir. The expansion
is adiabatic. As the atoms or molecules expand into vacuum,
they collide until free molecular flow is reached. The advan-
tage of the supersonic expansion compared to an effusive beam
is the high beam density and narrow velocity distribution that
can be achieved.9 The central part of the beam is selected by
a conically shaped, circular aperture, popularly referred to as
the skimmer.

For most experiments, the skimmer has a diameter
between 200 µm and a few mm. The first experiments using a
microskimmer were presented by Braun et al.10 This paper
introduces the method of glass pulling for the creation of

a)S. D. Eder, A. Salvador Palau, and T. Kaltenbacher contributed equally to
this work.

b)Author to whom correspondence should be addressed: sabrina.eder@uib.no

microskimmers which is used to this day. Measurements were
obtained using a source pressure of 120 bars and a 10 µm
diameter nozzle. In the paper, it is reported that speed ratios for
3 µm and 5 µm skimmers are considerably lower than those for
a standard 1.6 mm diameter skimmer: 65 and 24, respectively,
compared to 78 for the standard skimmer. The speed ratio is a
standard way to express the quality of a molecular beam and is
defined as 2

√
ln 2 u/∆u where u is the most probable (mean)

velocity and ∆u is the full width at half maximum (FWHM)
of the velocity distribution.11,12

Braun et al. proposed geometrical imperfections and/or
imperfections of the lip edge of the skimmer as well as diffi-
culties in aligning the skimmer and nozzle as possible explana-
tions for the reduced speed ratios. In their paper, they suggested
that microskimmers can be used for atom optics experiments
and indeed up till now, this has been the main application.
The first experiment using a microskimmer to focus a neutral
helium beam was carried out by Doak et al.13 Focusing mea-
surements were carried out using skimmers between 1 µm and
14 µm in diameter with a source pressure up to 150 bars and
a 5 µm diameter nozzle. The expected focused spot diame-
ter was not achieved. The relative deviation between expected
and measured focus increases from 1.1 for a 14 µm skimmer
(5.6 µm expected, 6.2 µm measured) to 5 (0.4 µm expected,
2 µm measured) for the 1 µm skimmer. It is suggested in the
paper that this is due to the supersonic expansion continuing
after the beam has passed through the skimmer aperture. It is
stated that measurements were carried out for velocity distri-
butions ∆u/u between ∼1% FWHM and up to ∼10% FWHM
(corresponding to speed ratios between around 140 and 14).
These speed ratios are not compared explicitly to standard
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skimmer measurements. The first neutral helium microscopy
images were obtained a few years later. The resolution was
around 2 µm, using a 1.2 µm diameter skimmer.3 Experiments
were also carried out with a 2.4 µm diameter skimmer. The
paper states that speed ratios between 16 ± 1 and 140 ± 3
were obtained with source pressures between 11 bars and 191
bars using a 10 µm diameter nozzle. The paper also states that
chromatic aberrations caused by the velocity distribution of
the beam are the resolution limiting factor and that no signs of
further expansion after the beam has passed through the skim-
mer could be observed. The first sub-micrometer focusing was
obtained by Eder et al.4 A microskimmer 1.1 µm in diame-
ter was used. The measurements were performed at a source
pressure of 81 bars and 110 bars using a 10 µm nozzle. How-
ever, the velocity distributions were not measured explicitly;
instead, theoretical values were used to calculate the expected
focus size. The agreement between the theoretically expected
(calculated) and measured focus spot diameters was good, but
the measurements had large error bars (up to ±34% of the
measured focus spot diameter).

The importance of the speed ratio for the microscope
resolution is discussed in Ref. 14. As described in detail in
Ref. 14, the diffractive beam focusing elements used in some
helium microscopes have chromatic aberrations. In order to
achieve high resolution (small focus diameters) with such
microscopes, the source, i.e., the skimmer diameter, needs
to be as small as possible and at the same time the beam as
monochromatic as possible. A lower speed ratio will lead to
a lower resolution. This together with the discussion above
illustrates how important it is to determine the true, best
obtainable velocity distribution from microskimmers. In this
paper, we present such a detailed study. Of particular impor-
tance is the use of our molecular beam source which allows
the skimmer to be positioned with sub-micrometer preci-
sion relative to the nozzle.15 Microskimmer measurements
are compared with measurements using a standard skim-
mer. To ensure accurate measurements of high speed ratios,
we employ our improved time-of-flight (TOF) method pre-
sented in Ref. 16. Further we use our theoretical model
for the supersonic expansion described in Refs. 17 and 18
to model the experimental data. The model is described
in Sec. III.

II. EXPERIMENTAL SETUP

The experiments presented here were carried out in the
molecular beam apparatus at the University of Bergen, popu-
larly referred to as MAGIE.19 A drawing of the experimental
setup can be seen in Fig. 1.

The neutral helium beam was created by a free jet expan-
sion from a source reservoir through a 10 ± 1 µm diameter
nozzle (Plano GmbH, A0300P). The central part of the beam
was selected by either a standard skimmer (Beam Dynamics,
Inc.) with a diameter of 390 µm or with a self-made glass
microskimmer with a diameter of 4 µm. The microskimmer
was made using a commercial micropipette puller (Narishige,
PP-830) and lead glass tubes (Corning 8161) with an outer
diameter of 1.5 mm and an inner diameter of 1.1 mm. The

FIG. 1. Schematic representation of the TOF measurement setup. Inset:
Detailed drawing of the chopper disk with its two trapezoidal shaped slits
placed 180◦ apart. The trigger slits are used to tag each beam packet. Further
details are given in the text.

key challenge when pulling microskimmers is to achieve the
right skimmer opening angle even for small apertures. Bird
described the expected quality differences between the flow
in slender or wide angle skimmers.20 Slender skimmers with
opening angles below ∼35◦ are predicted to give better skim-
ming performance than wide angle skimmers. But as the skim-
mer becomes more slender, beam attenuation will occur due to
collisions with molecules reflected from the skimmers’ inter-
nal wall. Eventually this will lead to a break down of the beam.
A break down of the beam is a rapid transition from supersonic
to subsonic beam flow which is often described as a sudden
blocking of the skimmer. Due to the somewhat manual nature
of the skimmer pulling procedure, it is difficult to reproduce
exactly the same openings and angles for individual skim-
mers. Generally the best skimmers were obtained by using a
relatively high heating setting (70), high pulling force (about
100 g), and several heating steps (6). Decreasing the tempera-
ture or decreasing the number of heating steps made the taper
of the skimmer longer and hence the opening angle smaller.
Figure 2 shows a stereo microscope image (a) and a scan-
ning electron microscope (SEM) image (b) of our self-made
skimmer. The outer skimmer opening angle was determined
from the stereo microscope image in Fig. 2(a) and found to
be ∼32.5◦ for the first ca. 200 µm followed by a more narrow
section of ∼12.5◦ opening angle. The microskimmer open-
ing is circular [see Fig. 2(b)] with the opening lips having an
estimated thickness of less than ∼200 nm. After pulling, the
glass tube was glued onto a copper holder using a two com-
ponent glue (UHU PLUS ENDFEST 300). The length of the
skimmer’s glass tip protruding out of the copper holder was
approximately 2.5 mm. After the glue had hardened, the glass
tube was cut as short as possible to the inner rim of the copper
holder using a diamond knife to just leave the top part. The
mounting was performed using a stereo microscope. Care was
taken to ensure that the skimmer opening was parallel to the
mounting base so that the beam and skimmer opening were
perpendicular to each other.

For all experiments, the skimmer was placed 11.5 ±
0.5 mm in front of the nozzle (Ln,sk). The distance from
skimmer to chopper was 525 ± 1 mm (Lsk,ch), and the dis-
tance from chopper to detector was 1905 ± 5 mm (Lch,det).
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FIG. 2. (a) Stereo microscope image of the ∅ 4 µm
microskimmer (glass). (b) SEM image of the ∅ 4 µm
microskimmer (glass).

The beam source in MAGIE has been specifically designed for
microskimmer experiments and is to our knowledge the only
molecular beam source which allows positioning of the skim-
mer relative to the nozzle with sub-micrometer precision.15

The source was operated at pressures in the range 11-181 bars
at two different source temperatures, nominally 300 K and
125 K, obtained by cooling the nozzle with liquid nitrogen.
For the alignment of the nozzle relative to the microskimmer,
the nozzle is moved in the x and y directions across the skim-
mer opening (see Fig. 1). The optimum nozzle to skimmer

position is found when the detected beam signal reaches a
maximum. The detailed alignment procedure can be found in
Ref. 15. It should be noted that the effective ionization area of
the MAGIE detector is large: 4.6× 6.6 mm. Thus, even though
a skimmer exchange might slightly vary the detector entrance
position of the investigated He beam, the described alignment
procedure in combination with the relatively big size of the
detector entrance ensures a sampling of the beams’ centerline.
The fixed skimmer to detector position for each investigated
skimmer also ensures that the angle of the beam within the

FIG. 3. 2D intensity maps recorded by scanning the 10 µm nozzle over the 4 µm glass skimmer (RT beam). Since the glass skimmer diameter is small compared
to the spatial extension of the supersonic expansion, this 2D intensity maps can be seen as an approximate image of the expansion itself.
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skimmer is constant for all different skimmers since the nozzle
position is optimized for each measurement set. Possible small
variations of the detector efficiency depending on where the
beam enters the detector are not an issue for the presented mea-
surements since the detector efficiency only affects the count
rate not the TOF distribution. Figure 3 shows a recorded 2D
x/y scan intensity map for the alignment of the nozzle with the
4 µm diameter microskimmer for 4 different source pressure
values at 300 K. As can be seen in Fig. 3, the spatial extension
of the 2D source profile increases with increasing source pres-
sure values. This corresponds well to the theoretically expected
and experimentally verified behavior of a spatial increase in
the free jet expansion with pressure.17,18,21,22 A higher source
pressure leads to an increase in the detected source intensity
likewise agreeing well with theoretical considerations.

The most probable beam velocity and the beam veloc-
ity distribution were obtained by time of flight measurements
(TOF). The beam was chopped by a mechanical chopper oper-
ated at frequencies of 230 Hz, 310 Hz, and 320 Hz. The chopper
is linked to a light emitting diode (LED)-photodetector sys-
tem which sends a trigger signal to the detector electronics
so that the arrival time for the atoms in each beam pulse is
recorded. The TOF signal is determined by the actual veloc-
ity distribution of the beam convoluted with the chopper
slit and the detector function. When the velocity distribution
is narrow (speed ratio high), it cannot be determined accu-
rately using the standard deconvolution procedure described
in Ref. 12. We therefore used a new method recently devel-
oped in our group which allows the velocity distribution to
be extracted with high accuracy.16 The improved method
is based on a systematic variation of the chopper convo-
lution parameters providing a set of independent measure-
ments that can be fitted to obtain the helium beams speed
ratio.

III. THEORETICAL MODEL

Our theoretical model for the supersonic helium expan-
sion is based on a theory proposed by Toennies and
Winkelmann23 in which the solution of the Boltzmann equa-
tion is obtained by means of the method of moments and
assuming a Lennard-Jones (LJ) potential for the He-He inter-
action. The model was extended by Pedemonte et al.24 to
include other analytical He-He potentials, in particular the
Hurly Moldover (HM) potential.25 As in a previous study,18

the calculations presented were performed treating helium as
a real gas and employing the equation of state obtained by
McCarty.26

The first assumption is to treat the expansion as spher-
ically symmetric. Then an ellipsoidal velocity distribution
(f ell), which consists of two Maxwell distributions parameter-
ized by two different temperatures (denoted by T || and T⊥ for
the parallel and the perpendicular velocity components with
respect to streamlines) is introduced,

fell(~v)= n
( m
2πkbT | |

) 1
2
( m
2πkbT⊥

)

× exp
(
− m

2kbT | |
(v | | − u)2 − m

2kbT⊥
v2
⊥
)
,

where m is the mass, n is the number density, v|| and v⊥ are the
radial and perpendicular components of the velocity, and u is
the most probable velocity of the expanding gas. The evolution
of the parameters n, u, T ||, and T⊥ with the distance from the
source (z) is obtained by solving numerically the equations
which contain the collision integral (2, 1),

Ω(2,1)(Teff )=
( kbTeff

πm
) (1/2)

∫ ∞
0

Q(2)(E)γ5 exp (−γ2)dγ,

γ =

√
E

kbTeff
, (1)

where T eff is an effective average temperature varying between
T⊥ and T ||, Q(2) is the viscosity cross section, and E is the
collision energy of two atoms in the center-of-mass system.
For collisions between Bose-Einstein particles, the viscosity
cross section is defined as

Q(2)(E)=
8π~2

mE

∑

l=0,2,4,...

(l + 1)(l + 2)
(2l + 3)

sin2 (ηl+2 − ηl),

where ηl is the phase shift of the partial wave with orbital
angular momentum l. For the present article, calculations were
performed for LJ and HM potentials. Moreover, we have also
considered the Pirani et al. (PI) potential27,28 which modi-
fies and improves the LJ potential (V (r)) retaining a simple
expression

V (r)= ε
( µ

n(r) − µ
( rm

r
)n(r) − n(r)

n(r) − µ
( rm

r
)µ) ,

where for He, µ = 6, r is the distance, and n(r) is given by

n(r)= β + 4
( r
rm

)2,

with parameters rm = 2.974 Å, β = 8, and ε = 2.974 meV.29

IV. RESULTS AND ANALYSIS

Figures 4(a) and 4(b) show measurements of the most
probable velocity (maximum velocity of the distribution) for
different pressures for a cold and a room temperature beam.
As can be seen, the theory reproduces the general trend of the
experiments although there is a systematic deviation at lower
pressures (the nozzle size dn was kept constant throughout the
experiment). It is not quite clear what causes this deviation.
From an instrument design point of view, the high pressure
range, which gives the highest speed ratio, is the most impor-
tant. We also note that the velocities for the microskimmed
beams are slightly lower (up to around 1%) for a given pres-
sure for both temperatures. The reason for this is not quite
clear. However, even though a smaller skimmer has a higher
Knudsen number Kn and thus is assumed to show less skimmer
interferences (see Ref. 20), the comparatively long and narrow
geometries of microskimmers can possibly cause local pres-
sure variations along the skimmer channel and this may slow
the beam down, i.e., through a funnelling effect. It is surpris-
ing though that the effect does not increase with the source
pressure.

Figures 5(a) and 5(b) show the corresponding speed ratio
plots for the two temperatures. The first thing to note is the
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FIG. 4. Experimental results and simu-
lations for the most probable velocity for
cold beams (a) and for room temperature
beams (b) as a function of p0dn, where
p0 is the source reservoir pressure and dn
is the nozzle diameter. Note the slightly
lower velocity for the microskimmer
beam. This is discussed in the main text.

near to perfect overlap between the microskimmer and stan-
dard skimmer measurements. These results agree well with
the prediction of Bird et al. stating that as long as the inter-
nal skimmer angle is greater than the effective angle of the
thermal spreading of the beam, no significant collisions of
molecules with the internal skimmer surface occur. Thus as

long as the speed ratio is sufficiently high to attain this con-
dition, no major internal skimmer interferences are expected.
Furthermore, there is a reasonable agreement between the-
ory and experiments although it is interesting to see that for
higher pressures, the simulations seem to predict too high
speed ratios for the cold beam and too low speed ratios for

FIG. 5. Experimental results and
simulations for the speed ratio of
cold temperature beams (a) and room
temperature beams (b) plotted together
with simulations. For comparison, the
speed ratio data from Braun et al.10

and Koch et al.3 are added to the room
temperature plot in (b). Note the very
similar behavior of microskimmer
and standard skimmer as well as the
very little variations in the results for
the different simulations at different
temperatures.
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the warm beam. Comparing the three different potentials used
for the simulation (LJ, HM, and PI), the LJ potential gives the
best agreement for the present experimental conditions [most
prominent for the room temperature beam, see Fig. 5(b)]. This
better agreement of LJ potential was also observed in Ref. 25
for temperatures above 50 K or in Refs. 17 and 18. Finally, the
strong disagreement between the presented 4 µm microskim-
mer measurements and the 3 µm microskimmer results from
Braun et al. should be noted. Braun et al. proposed geometri-
cal imperfections and/or imperfections of the lip edge of the
skimmer as well as difficulties in aligning the skimmer and
nozzle as possible explanations for the reduced speed ratios.
A comparison between the skimmer images in Ref. 10 and
Fig. 2 suggests that the skimmer geometries of both skimmers
are similar. This leads us to the conclusion that most likely the
mentioned misalignment is the reason for the reduced speed
ratio experienced by Braun et al.

V. CONCLUSION

In this paper, we have presented a systematic study
of velocity distributions of helium beams collimated by a
microskimmer for a room temperature beam and a cooled
beam. The measurements were carried out in the pressure
range 11 bars–181 bars. Our results show that when the
microskimmer is properly aligned with the nozzle, the speed
ratio for the microskimmer does not differ from that of a stan-
dard skimmer. The most probable velocities for microskim-
mers appear to be slightly smaller than for standard skim-
mers. We measured a difference of up to around 1%. We
attribute this to variations in the local pressure caused by
the internal microskimmer geometry, i.e., a funnelling effect
and/or scattering from the entrance interior lip, although the
effect is not fully understood. Furthermore, we show that the
experimental data fit well to the theoretical model we have
developed.
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Supersonic helium beams are used in a wide range of applications, for example surface scattering
experiments and, most recently, microscopy. The high ionization potential of neutral helium atoms
makes it difficult to build efficient detectors. Therefore, it is important to develop beam sources
with a high centre line intensity. Several approaches for predicting the centre line intensity exist,
with the so-called quitting surface model incorporating the largest amount of physical dependencies
in a single analytical equation. However, until now only a limited amount of experimental data
has been available. Here we present a comprehensive study where we compare the quitting surface
model with an extensive set of experimental data. In the quitting surface model the source is
described as a spherical surface from where the particles leave in a molecular flow determined by
Maxwell-Boltzmann statistics. We use numerical solutions of the Boltzmann equation to determine
the properties of the expansion. The centre line intensity is then calculated using an analytical
integral. This integral can be reduced to two cases, one which assumes a continuously expanding
beam until the skimmer aperture, and another which assumes a quitting surface placed before the
aperture. We compare the two cases to experimental data with a nozzle diameter of 10 µm, skimmer
diameters ranging from 4 µm to 390 µm, a source pressure range from 2 to 190 bar, and nozzle-
skimmer distances between 17.3 mm and 5.3 mm. To further support the two analytical approaches,
we have also performed equivalent ray tracing simulations. We conclude that the quitting surface
model predicts the centre line intensity of helium beams well for skimmers with a diameter larger
than 120 µm when using a continuously expanding beam until the skimmer aperture. For the case of
smaller skimmers the trend is correct, but the absolute agreement not as good. We propose several
explanations for this, and test the ones that can be implemented analytically.

I. INTRODUCTION

The supersonic expansion of a gas into vacuum can be
used to obtain a molecular beam with high centre line
intensities with narrow speed distributions [1–6]. Such
beams are used in different applications, for example sur-
face scattering experiments and atom beam microscopy
[7–10]. Noble gas atoms are very hard to detect due to
their high ionization potential [2]. Therefore, precise pre-
diction of the beam centre line intensity plays an impor-
tant role in designing instruments and experiments with
a sufficient signal to noise ratio.

In a standard supersonic expansion source used in scat-
tering experiments, a pressurised gas expands from a
small aperture called a nozzle into a vacuum. The ex-
pansion is then collimated using an aperture placed at
the end of a conical structure that points towards the
nozzle, forming a beam. This conical structure is com-
monly known as a skimmer (see Fig. 1). The problem of
precisely determining particle intensities after the skim-
mer attains different levels of complexity depending on
the modified Knudsen number, Kn∗ at the skimmer posi-
tion, which determines the flow regime close to the skim-
mer [11]. The modified Knudsen number was introduced
by Bird [11] to describe the changes in the flow due to

backscattering of atoms from the skimmer.

Kn∗ = Kn

(
2

5
S2
‖

)−2/(ηp−1)

. (1)

Where S‖ is the parallel speed ratio, a measure of the
velocity spread of the beam defined in Sec. II B. ηp is
the term leading the inverse power law of the repulsive
collision model. For a hard sphere gas ηp → ∞, and
for the Lennard-Jones potential ηp = 13 [12]. Kn is the
Knudsen number:

Kn =
λ0

rS
=

1

rSσ
√

2n
, (2)

where λ0 is the mean free path of the gas particles and
rS is the radius of the skimmer. n is the number den-
sity at the skimmer and σ is the temperature dependent
collision cross section of the gas atoms. In this case,
σ can be calculated either according to the stagnation
temperature, or according to the maximum between the
stagnation temperature and the skimmer temperature.
For the case of a cold source the collision velocity will
be dominated by the warmer skimmer. The need for the
modified Knudsen number is justified by the change in
the mean free path due to backscattering of atoms from
the skimmer; In eq. (2) λ0 is the mean free path for
particles unaffected by the skimmer presence.

The Knudsen number is used to estimate the validity of
different flow regimes. Navier-Stokes flow can be assumed
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for Kn < 0.2, and free molecular flow for Kn > 1 [11]. As
the gas moves away from the nozzle, the mean free path
of the particles increases and therefore the nature of the
flow dynamics of the problem changes [11]. As explained
before, we use here the modified Knudsen number, but
the discussion of different flow regimes remains the same.
The Knudsen number can only be assumed to be smaller
than 0.2 in the space very close to the expansion origin
(the nozzle), and hence the Navier-Stokes equations can’t
be generally used to model the flow of the beam close to,
and after, the skimmer. Here, Direct Simulation Monte
Carlo methods (DSMC), or direct numerical integration
of the differential equation (under simplifying assump-
tions of the physics of the system), can be used to solve
the Boltzmann equation [12, 13].

At Kn∗ . 1, the centre line intensity of the beam
is known to be strongly affected by interaction between
the beam and particles reflected from the skimmer [11].
Considering the reflection of particles from the skim-
mer wall makes solving the Boltzmann equation diffi-
cult, as DSMC methods are often computationally heavy.
Some work has been done regarding the effect of skim-
mer geometries [11, 14–16]. However, much of this work
lacks extensive validation due to the lack of experimental
data. This, together with the complexity of some of the
proposed approaches, has caused some authors to avoid
skimmer attenuation by designing experiments where it
is not present.

Another relevant contribution to the beam centre line
intensity is the exponential decrease of intensity due to
free molecular scattering of the beam’s atoms with a
background gas in the vacuum chambers [14, 16]. The
importance of this contribution will depend on the qual-
ity of the pumping system in the experimental set-up and
the flux from the nozzle into the expansion chamber.

Intensity calculations disregarding both the interac-
tion between the beam and particles reflected from the
skimmer, and collisions with background gas were pre-
sented in a range of analytical models published in the
1970’s and 1980’s, based on a Maxwellian velocity dis-
tribution of the supersonic expansion [17–20]. These
models coexist with simpler treatments, disregarding the
Maxwellian nature of the beam’s velocity distribution
(usually compensated by including a peak factor), for ex-
ample [5, 13, 14, 21]. Others use Beijerinck and Verster
1981 model that incorporates cluster formation and uses
the concept of a virtual source [8, 18, 22]. Analytical
models have the advantage of requiring only relatively
simple numerical solutions of the Boltzmann equation
and of directly showing the dependencies with the dif-
ferent variables in the system. Among the most prolific
analytical models are various adaptations of the quitting
surface model [20].

In the quitting surface model, the spherical quitting
surface is assumed to be located at the distance from the
nozzle at which the atoms reach molecular flow [20]. The
atoms then leave the quitting surface following straight
trajectories determined by Maxwell-Bolzmann statistics.

The ellipsoidal Maxwellian velocity distribution over the
surface is given by three parameters: the most proba-
ble velocity v̄ along the parallel direction (corresponding
to the radial direction from the centre of propagation),
and the parallel and perpendicular temperatures, respec-
tively T|| and T⊥. These two temperatures are associated
with the velocity spread of the beam in spherical coordi-
nates [23], and in some models are reduced to a simpler
description with only a radial temperature T|| [20].

There are two popular ways to estimate the position
of the quitting surface: i) calculating the terminal Mach
number using the continuum assumption and taking the
position of the quitting surface to be the distance from
the nozzle where the terminal Mach number is close to be-
ing reached (see for example [21, 24]), or ii) directly com-
puting the expansion’s temperatures and observing the
point where these temperatures de-couple. De-coupling
is defined as the point where the perpendicular tempera-
ture is much smaller than the parallel temperature. De-
coupling is typically assumed at a distance where the
temperatures of the expansion fulfil T⊥/T|| ≤ 0.01, thus
determining the position of the quitting surface. Alter-
native cutoff values have also been proposed [13], pro-
viding a certain degree of freedom to the choice of the
quitting surface position. Typically, such temperatures
are calculated through a numerical solution of the Boltz-
mann equation. Previous studies already used such an
approach to predict the velocity distribution and inten-
sity in the beam expansion [13, 25–27]. Given that (ii) is
more general than (i), we use (ii) in this paper.

The quitting surface position can either be placed be-
fore the skimmer, at the skimmer or after the skimmer.
If the quitting surface is taken to be before the skimmer,
the parallel temperature T‖ dominates. This means that
the condition T⊥/T|| ≤ 0.01 is reached close to the ex-
pansion source, and that the perpendicular temperature
of the beam quickly approaches 0. If the quitting sur-
face is calculated to be at or after the skimmer it means
that T⊥ tends to 0 slowly. In this case, the perpendicular
temperature T⊥ is mostly used in the calculations, and
the expansion is assumed to stop at the skimmer, even in
the case that its calculation gives a position further away
than the skimmer [20]. Regardless of where the expan-
sion is assumed to stop, the centre line intensity is then
calculated by integrating over the section of the quitting
surface seen by the detector through the skimmer.

In this paper, we present a dataset of centre line inten-
sity measurements for a helium atom beam, using several
different skimmer apertures and designs, source temper-
atures, and skimmer to nozzle distances. We benchmark
these intensity measurements with the quitting surface
model, and discuss its shortcomings. Additionally, we
present a ray tracing simulation of the quitting surface
model. This is done using a modification of the ray trac-
ing software known as McStas described in detail in [28].
This paper contains a large number of variables, many
of which are used in several formulas. All formulas are
introduced with definitions as they appear in the text. In
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addition, to make it a bit easier for the reader to keep an
overview, we have included an Appendix E with a table
listing all the variables with definitions.

II. THEORETICAL FOUNDATION

A. The supersonic expansion

The expansion of gas through a small nozzle undergoes
two different physical regimes: an initial continuum flow,
governed by the Navier Stokes equations, followed by a
molecular flow regime. In a sonic nozzle (a Laval tube
cut-off in the sonic plane), the total flux per unit time
(from now on, centre line intensity) stemming from the
nozzle is typically calculated using the isentropic nozzle
model [18]. The sonic plane corresponds to the plane
where the Mach number M = v/c = 1 where v is the
average velocity of the gas and c the local speed of sound
[29]. The equation for the total intensity stemming from
a nozzle then reads [18]:

I0 =
P0

kBT0

√
2kBT0

m

(π
4
d2

N

)√ γ

γ + 1

(
2

γ + 1

)1/(γ−1)

,

(3)
where γ is the ratio of heat capacities (5/3 for Helium),
and dN is the diameter of the nozzle. In theory, this di-
ameter must be corrected with the size of the boundary
layer at the nozzle throat. However, this correction can
typically be neglected. kB is the Boltzmann constant, T0

and P0 are the flow stagnation temperature and pressure
inside the nozzle, m is the mass of a gas particle. In
the second flow regime, the expansion of the gas is calcu-
lated using the Boltzmann equation, assuming the nozzle
is a point source, and using the following collision inte-
gral Ω(Teff) (corresponding to the RHS of the Boltzmann
equation, that gives the rate of change of molecules in a
phase-space element caused by particles that have suf-
fered a collision) [13, 25].

Ω(Teff) =

(
kBTeff

πm

) 1
2
∫ ∞

0

Q(2) (E) ζ5exp
(
−ζ2

)
dζ. (4)

ζ =

√
E

kBTeff
. (5)

Where Teff is an effective average temperature intermedi-
ate to the values of the parallel and perpendicular tem-
peratures, Q(2) is the viscosity cross section and E is
the collision energy of two atoms in the centre-of-mass
system. For collisions between particles following Bose-
Einstein statistics, the viscosity cross section can be writ-
ten as follows [13, 30]:

Q(2)(E) =
8π~2

mE

∑

l=0,2,4...

(l + 1)(l + 2)

2l + 3
sin2(ηl+2 − ηl),

(6)

where ηl are the phase shifts for orbital angular momen-
tum l, obtained solving the scattering of He atoms in the
chosen two body potential.

An ellipsoidal Maxwellian velocity distribution is as-
sumed along the whole expansion [13]. The velocity dis-
tribution of the atoms in the expansion, fell, is defined in
spherical coordinates by the two independent tempera-
tures, T|| and T⊥, and their two corresponding velocities
v‖ and v⊥ as described in the introduction,

fell (~v) = n

(
m

2πkBT||

) 1
2
(

m

2πkBT⊥

)
·

exp

(
− m

2kBT||
(v|| − v̄)2 − m

2kBT⊥
v2
⊥

)
. (7)

The numerical solution of the Boltzmann equation has
been implemented for the Lennard-Jones potential (LJ)
[31], defined as follows:

VLJ(rLJ) = 4ε

[(
rm

rLJ

)12

−
(
rm

rLJ

)6
]
, (8)

where rLJ is the distance between any two interacting
particles. rm is the distance at which the potential
reaches its minimum, for the case of He corresponding
to rm = 2.974 Å, ε = 2.974 meV [32]. A detailed de-
scription of the potential and its implementation in the
Boltzmann equation can be found in [13]. The simple LJ
potential can be replaced by more sophisticated poten-
tials, such as the Tang, Toennies and Yu (TTY) or Hurly
Moldover (HM) potentials [33, 34]. However, results of
previous calculations showed that this is only necessary
for source temperatures below 80 K [13, 26, 35]. In the
present study, the source temperature is higher than 80
K and the LJ potential is adequate.

The numerical solution of the Boltzmann equation in
spherical approximation presented here provides the evo-
lution of the gas velocity, and the temperatures T|| and
T⊥ with respect to the distance from the nozzle.

B. The quitting surface model

As mentioned in the introduction, the quitting surface
model assumes that the particles leave in molecular flow
from a spherical surface of radius RF centred at the sonic
point. The centre line intensity of the beam is calculated
by integrating over all the particles leaving from the quit-
ting surface and arriving at the detector. In 1973, Sikora
separated the quitting surface model in two approaches:
one corresponding to what he called the quitting surface
model, and one which he called the ellipsoidal distribu-
tion model. The first approach assumes a quitting sur-
face placed before the skimmer and a Maxwellian velocity
distribution featuring only the radial component of the
velocity: v‖. The second approach, the ellipsoidal distri-
bution model, assumes an ellipsoidal Maxwellian velocity
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distribution featuring both v‖ and v⊥, together with a
quitting surface placed exactly at the skimmer. For the
rest of the paper we will refer to the two approaches as
Sikora’s quitting surface approach and Sikora’s ellipsoidal
distribution approach.

Sikora’s ellipsoidal distribution approach was later
adapted by Bossel to be used for expansions stopping
before the skimmer. In other words, Sikora’s quitting
surface approach (assuming a quitting surface placed be-
fore the skimmer) was adapted to incorporate ellipsoidal
distributions [19]. To avoid confusion, it is enough to
consider the position of the quitting surface itself: in the
case of Sikora’s ellipsoidal distribution approach, the ex-
pansion is considered to stop at the skimmer. In the
case of Bossel’s approach, the expansion can be chosen
to stop at the skimmer or before it. Expansions stopping
after the skimmer have thus far not been treated using
the quitting surface model. An attempt of doing so is
presented in this paper (see Appendix A).

Bossel’s approach is the most general approach de-
scribed so far, as under the right assumptions it reduces
to both approaches proposed by Sikora. Bossel’s ap-
proach corresponds to integrating eq. (7) over the quit-
ting surface area seen by the detector through the skim-
mer:

ID =
τI0

2πa2R2
FL

∫ rD

0

∫ rS

0

∫ π

0

g(δ)rρ cos3 βε3

e−S
2(1−ε2 cos2 θ)D(b)dρdrdα, (9)

where rD is the radius of the detector opening, rS is the
radius of the skimmer (see Fig. 1), and a is the distance
between the skimmer and the detector. r, β, θ, δ, α and
ρ are geometrical parameters defined in Fig. 1. τ =

T||
T⊥

is the fraction between parallel and perpendicular tem-
peratures, which is used to simplify the integral through
ε =

(
(τ sin2 θ + cos2 θ

)−1/2. g(δ) is the angular depen-
dency of the supersonic expansion density at the quitting
surface, and L =

∫ π
2

0
g(δ) sin δdδ corresponds to its inte-

gral along the quitting surface. S =
√

mv̄2

2kT‖
is the parallel

speed ratio at the quitting surface.
Unfortunately, Bossel’s approach has no simple ana-

lytical solutions and is often slow to compute over a wide
variable space. For Si > 5 Sikora showed that both his
ellipsoidal distribution approach and quitting surface ap-
proach can be approximated as [20]:

I = I1

∫ 2π

0

dΦ

2π
[e−S

2
i sin2 θ1 ]

θ1min(Φ)

θ1max(Φ)
. (10)

Here, Φ is the angle of rotation about the beam axis,
and θ1 is the angle between the vector normal to the
quitting surface and the vector connecting a given point
on the quitting surface with a point in the detector plane.
θ1min(Φ) and θ1max(Φ) are the minimum and maximum
angles that fulfil the condition that the line connecting a
point in the quitting surface and a point in the detector

plane must cross the skimmer aperture. In the case of
Sikora’s quitting surface approach, θ1 is defined from a
spherical surface of radius RF, and Si = S‖ =

√
mv̄2

2kT‖∞
is

the parallel speed ratio at the end of the expansion. In
the case of Sikora’s ellipsoidal distribution approach, θ1

is defined from the skimmer aperture (the radius of the
quitting surface is then the distance between the nozzle
and the skimmer xS, RF = xS), and Si = S⊥ =

√
mv̄2

2kT⊥

is the perpendicular speed ratio at the skimmer (see Fig.
1 for a sketch featuring these geometrical terms).
I1 is defined as the intensity arriving at the detector,

assuming that there is no skimmer. This can be obtained
in two ways:

I1 =




I0πr

2
DηD

1
(xS+a)2 . Using eq. (3) for I0

ηDπr
2
Dnv∞

(
xS

xS+a

)2

. Using density at skimmer.

Here, ηD is the efficiency of the detector in
counts/partice. Sometimes, one might be interested to
obtain the intensity per area. In order to do so, it suf-
fices to divide I1 by πr2

D.
From eq. (10) it can be shown that for rS � xS, rS �

a, a
rS
>> Si, and rD << a, the intensity arriving at the

detector reads [20]:

IS = I1

{
1−exp

[
−S2

i

(
rS(RF + a)

RF(RF − xS + a)

)2
]}

, (11)

xS is the distance between the nozzle and the skimmer.
This equation, with the assumption of Si = S‖, and the
expansion stopping before the skimmer is usually pre-
ferred to using the perpendicular speed ratio, as measur-
ing the parallel speed ratio of atoms is a well established
technique [36]. The simplicity of the model has moti-
vated its usage for example to optimize the intensity of
helium microscopes [10, 37].

C. Scattering contributions

The atoms leaving the quitting surface do not travel in
a perfect vacuum. Rather, they interact with the back-
ground gas and the particles scattered from the chamber
and skimmer walls. Such interactions can become signif-
icant at high nozzle pressures. There have been various
approaches for accounting for this, from DSMC simula-
tions, to simpler numerical models based on assumptions
on the scattering properties of the skimmer walls [14, 38].
Analytical models for the skimmer contributions are so
far non-existent due to the difficulty of solving the Boltz-
mann equation analytically in a typical nozzle-skimmer
geometry. The method that has provided a better under-
standing is the DSMC method (see, for example [11]).
This method is not employed in this paper due to its
complexity, but it can be assumed to be the preferable
method when precise, localized predictions are desired.
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Here, we choose to only model the interaction with the
background gas via free molecular scattering, as it can
be modelled by a simple exponential law [14, 16]:

I

IS
= exp

(
−σ2nBExS − σ2nBCa

)
. (12)

σ = rm
21/2 is the scattering cross section of the atoms

in the Lennard-Jones potential. nBE
and nBC

are the
background number densities in the expansion chamber
and the subsequent chambers respectively, measured by
a pressure gauge placed far away from the beam centre
line.

D. Overall trends

In this section we qualitatively describe important
trends in the expected behaviour of the centre line in-
tensities according to the theory presented above.

1. For skimmers large enough, the exponential term
in the equation for centre line intensity becomes
negligible, (eq. (11)). Thus, increasing the radius
of the skimmer further will not lead to an increase
in the centre line intensity.

2. Larger skimmers display a decrease in centre line
intensity at high pressure. This is due to the
fact that a larger skimmer gives a smaller modified
Knudsen number (eq. (1)) for a given pressure. It
is known that for smaller modified Knudsen num-
bers in the so called transition regime, wide angled
shock waves can form, which compromise the flow
of the beam [11]. Note that the shock wave be-
haviour is not modelled by the theory presented
above.

3. The closer the skimmer is to the quitting surface
((RF−xS)→ 0); the higher the centre line intensity
will be, as the denominator in the exponential in
eq. (11) reaches its minimum. This effect is due
to the fact that a larger portion of the quitting
surface is captured and this gives a larger centre
line intensity.

4. Colder sources produce more intense beams be-
cause the gas passing through the nozzle has a
higher density, which ends up influencing the centre
line intensity equation (see eq. (3)).

5. Numerical solutions of the Boltzmann equation as
described in Sec. II A predict an intensity dip at
low source pressures for small skimmers. This dip
cannot be extracted from the equations in a simple
manner and will be discussed further in the main
text.

E. The ray tracing simulation

As an independent test of eqs. (9) and (10), a ray trac-
ing simulation of the quitting surface expansion was im-
plemented. The simulation was performed using a mod-
ification of the ray-trace software package known as Mc-
Stas described in [28, 39, 40].

In order to replicate the dynamics assumed during the
derivation of eq. (9), a spherical source with ellipsoidal
Maxwellian velocity distributions and an anisotropic
number density was programmed. The McStas software
works with sources featuring uniform spatial ray proba-
bility distributions that are later corrected for their real
probability weights determined by the physics of the sys-
tem (in this case, the Maxwellian velocity distribution
of the source, and the anisotropic number density). This
poses a problem when simulating the quitting surface be-
cause most of the rays yield probabilities that are too
low, bringing insufficient sampling at the detector. To
avoid this effect, we only computed the particles stem-
ming from the surface of the quitting surface seen by the
detector through the skimmer (see Fig. 2). This reduces
the computation power needed for each experiment and
therefore allows for better statistics in the detector.

y

x

z

(x  , y  , z  )R RR

ρ

(x   ,0, z  )
D D

xS

xD

R F

δ

P’

P

r S
β

θP

P’

DETECTORSKIMMER

α

a

r
}

FIG. 1. Illustration of all variables used in the ellipsoidal
quitting surface model. P is a point on the quitting surface
from which a particle leaves in a straight trajectory until P’, a
point placed on the detector plane. The point on the quitting
surface is given by the set of Cartesian coordinates (x, y, z),
which can be related to the polar coordinates r, α, ρ for in-
tegration. xS is the distance from the nozzle to the skimmer
and xD is the distance from the nozzle to the detector. There-
fore a = xD − xS. The angles β and θ can also be expressed
in terms of r, α and ρ.

The simulation is performed as follows: first, a circu-
lar target or focus of interest is set, which determines the
area of the detector, where the rays will hit. Then, the
point P’ is generated randomly over the area of the de-
tector. Subsequently, a point P over the quitting surface
is randomly generated and its connecting vector ~r is com-
puted. Only the points visible by the detector through
the skimmer are allowed (see Fig. 2). Therefore a maxi-
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xS

xD

RF

δ
rS

SKIMMER

a

m
y

d

rD

DETECTOR

NOZZLE

x

P’

P

FIG. 2. Diagram of the section of the quitting surface con-
sidered in the ray tracing simulation, only the angle δm seen
by the detector through the skimmer contributes to the inten-
sity at the detector. RF is the radius of the quitting surface,
y is the distance between the axis of symmetry and the pro-
jection of the maximum-angle ray on the quitting surface,
rS is the skimmer radius and rD is the radius of the detec-
tor. a is the distance between the skimmer and the detector,
d is the distance from the skimmer to the point where the
maximum-angle ray crosses the symmetry axis. xD is the
distance between the nozzle and the detector and xS is the
distance between the nozzle and the skimmer. x is the dis-
tance from the point of emission of the maximum angle ray
to the nozzle plane.

mal angle δm is set (see the derivation in Appendix C).

δm = arcsin
y

RF

= arcsin




d
rS

(d+ xS)−
√

d2

r2
S
R2

F +R2
F − (d+ xS)2

RF( drS )2 +RF




(13)

With d corresponding to the distance from the skimmer
to the point where the maximum-angle ray crosses the
symmetry axis (see Fig. 2):

d =
arS

rD + rS
. (14)

Which means that the point P must be contained within
the following angles:

δ = (0, δm), φ = (0, 2π). (15)

In Cartesian coordinates, P is:

P = RF (sin δ cosφ, sin δ sinφ, cos δ) . (16)

Following, a scalar velocity v is randomly generated be-
tween two limiting values along the direction of the vector
~r. From its Cartesian components, the perpendicular and
parallel velocities are obtained:

v|| = ~v · ~ur = vx sin δ cosφ+ vy sin δ sinφ+ vz cos δ,

v⊥ = ~v · ~uδ = vx cos δ cosφ+ vy cos δ sinφ− vz sin δ,

v⊥′ = ~v · ~uφ = −vx sinφ+ vy cosφ. (17)

A probability weight factor given by the Maxwellian ve-
locity distribution of the beam is set for the ray travelling
from P to P’ (see Figs. 2 and 1). The intensity recorded
at the detector will be the sum of all probability weight
factors. Therefore, we can recover eq. (23) (Appendix
B) in angular coordinates to infer the intensity contribu-
tions:

dI =
I0AD

ASL
fell(~v)g(δ)v2dΩdv. (18)

AD = πr2
D is the area of the detector. For the exper-

iments presented here, this corresponds to the area of
the pinhole placed in front of the detector (see Fig. 3),
AS ≈ πy2 is the area of the section of the sphere from
which particles are simulated assuming rS � RF (the
computed section of the quitting surface is small enough
relative to RF that its area approximates to the area of
a circle). L is defined as in eq. (29) (Appendix B) but
taking care to integrate only between 0 and δm. dΩ is the
solid angle seen through the skimmer from the centre of
the detector, this is approximately the same as the solid
angle seen from P’ through the skimmer. This approxi-
mation is true for detectors placed sufficiently far away
from the skimmer.

III. EXPERIMENTAL SETUP FOR INTENSITY
MEASUREMENTS

The setup used to obtain the experimental measure-
ments presented in this paper is shown in Fig. 3. All
the measurements have been obtained using the molecu-
lar beam instrument at the University of Bergen, known
as MAGIE. This instrument is equipped with a home-
built source which enables the skimmer and nozzle to
be positioned relative to each other with 50 nm preci-
sion [5]. This is particularly important to ensure proper
alignment in centre line intensity experiments using small
skimmers. A detailed description of the system can be
found in [41]. In contrast to most other helium atom scat-
tering instruments with time-of-flight detection, MAGIE
has a movable detector arm, which allows us to mea-
sure the straight through intensity of the beam with-
out any sample. A centre line intensity measurement
is performed by setting the initial pressure in the inlet
channel and measuring the inlet channel temperature.
For the experiments presented here, the beam source is
either "warm" (at ambient temperature) or "cold" (at
roughly 125 K). The helium gas expands through a pin-
hole aperture nozzle, 10 µm in diameter to a lower pres-
sure chamber where it undergoes a supersonic expansion.
We use a Pt-Ir electron microscope aperture as nozzle
(purchased from Plano GmbH, A0301P) [5]. The expan-
sion is then collimated by a skimmer placed 5.3±0.1 mm,
or 11.3±0.1 mm, or 17.3±0.1 mm away from the nozzle.
Figure 4 shows an example of the alignment procedure.
The nozzle is moved across the skimmer opening in 50 nm
steps in a 2D array and eventually moved to the position
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of maximum intensity which is clearly visible. Note that a
displacement of just 0.2 mm leads to a noticeable change
in intensity.

Further downstream, at 973 mm from the nozzle, a
400 µm aperture is placed to further reduce the back-
ground pressure and thus minimize the beam attenua-
tion. Finally, at 2441 mm from the nozzle an ioniza-
tion detector is set. The detector has an efficiency of
ηD = 2.1 · 10−6 (provided by the manufacturer). Just
in front of the detector another aperture is placed. Two
different apertures with diameters 200 µm and 50 µm
respectively, were used in the experiments. This allows
us to measure the centre line intensity. A table with the
diameter of the aperture for each intensity experiment is
given in Appendix D.

Five skimmers were used to collimate the beam, two
made of nickel, two made of glass and an additional
metallic skimmer known as the Kurt skimmer. The nickel
skimmers have apertures 120 and 390 µm in diameter.
They are produced by Beam Dynamics (model 2) and
have a streamlined profile [42] (see dimensions in Fig.
5). The glass skimmers are home made using a Nar-
ishige PP-830 glass pulling machine, using Corning 8161
Thin Wall capillaries with an outer diameter of 1.5 mm
and an inner diameter of 1.1 mm. The glass skimmers
are mounted on a Cu holder (see dimensions in Fig. 5).
Their apertures are 18 and 4 µm respectively, measured
using an electron beam microscope. Stereo microscope
measurements on the glass skimmers showed an outer
opening angle of ≈ 32.5◦ for the first 200µm, followed
by a more narrow section of ≈ 12.5◦. The inner open-
ing angle could not be determined, but due to the thin
opening lip (≈ 200nm), it is expected to be similar to the
outer opening angle. This corresponds to what is known
as a slender skimmer. Slender skimmers are known to
produce better performance than wide angle skimmers,
as long as the modified Knudsen number at the skimmer
is kept large enough [11]. This condition is fulfilled in the
experiments presented here due to the large values of S||
and the small skimmer openings.

The Kurt skimmer is also home made. It is designed
to be used with interchangeable apertures on 2 mm di-
ameter discs. Two apertures are used in this study: 5
and 100 µm in diameter. The dimensions of the Kurt
skimmer can be found in Fig. 5 (note the inverted cone
shape before the aperture). The Kurt skimmer is made
of stainless steel type 1.4301.

IV. RESULTS

Throughout Figs. 7-12 we use open circles for the
nozzle-skimmer distance xS= 5.3 mm, triangles for xS=
11.3 mm, and asterisks for xS= 17.3 mm. The labels are
included in Fig. 7 only. Error bars are not included in
the plots because they are too small to show.

A. Ray tracing benchmarking of the centre line
intensity integral

A spherical quitting surface is simulated using the el-
lipsoidal quitting surface velocity distribution defined in
eq. (7). The centre line intensity obtained through the
ray tracing simulation is then compared with eqs. (9) and
(11) for different spans of the different variables present
in the equation. In all cases the result from the analyt-
ical models lies within the statistical margin of error of
the simulation (see Fig. 6). In the further sections of
this paper we will just show the results from eqs. (9) and
(11).

B. 120 µm and 390 µm skimmers

In this section, the measured intensities for the large
skimmers from Beam Dynamics (see Fig. 5) (120 and 390
µm diameters), are compared with the predictions from
eq. (12) for the two variations of the model described in
Sec. II A.

1. Warm source, T0 ≈ 300K

The results for a warm source are shown in Figs. 7 and
8. Fig. 7 shows the experimental results and eq. (12)
with the expansion assumed to stop at the skimmer, and
Si = S⊥. The experimental results are reproduced fairly
well over the whole range, but with a trend towards too
high theoretical values for higher pressures. To obtain
nBE

→ nBE
(P0) for eq. (12), we use a set of measured

background pressures in the expansion chamber. From
observation this dependency is linear, and the equation
obtained is:

nBE
=

1

kBT0
(mE · P0 + nE) . (19)

mE and nE are the linear fit coefficients from fitting
the measured background pressures PB with respect to
P0. Concretely, for this set of measurements mE =
3.9·10−4 Pa

bar , nE = −5.8·10−4Pa if P0 is given in bar and
nBE in SI units (positive values of nBE are guaranteed by
the experimental pressure range, P0 ≥ 2 bar). The num-
ber density after the skimmer, nBC , was experimentally
measured to be approximately 1/20 of nBE , eq. (19) was
used with the corresponding factor.

Fig. 8 shows the values of eq. (12) for the 120 µm
and 390 µm skimmers, where the expansion is assumed
to stop before the skimmer (in this case for T⊥/T‖ ≤
0.1), and Si = S‖. At small source pressures there is
good agreement between experiments and simulations,
but the dependency on the nozzle-skimmer distance is
lost. At high pressures the model becomes non-physical
because the point at which T⊥/T‖ ≤ 0.1 is calculated to
be positioned after the skimmer. One must note that
the decrease in centre line intensity at high pressures is
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Expansion
chamber

P= e-8 -e-9 bar

Nozzle
chamber

P= 1-201 bar

Nozzle  
Ø10 µm

Free molecular regime

P < e-10 bar

Pinhole aperture
Ø=50 or 200 µm

Skimmer
aperture

x   =11.3±6 mms

RF

Ionization detector

x     =  2441 mmd

Background
noise reducing
aperture
Ø=400 µm

x   = 973 mm
A

rS

rD

FIG. 3. Sketch of the experimental setup used for the centre line intensity measurements. A skimmer is used to select the
supersonic beam, followed by two apertures. Vacuum pumps are placed in each chamber to reduce interactions of reflected
particles with the beam. RF is the radius of the quitting surface, from where the gas particles are assumed to leave following
a mollecular flow.

not given by the model (eq. (11)) being un-physical, but
instead by S2

‖r
2
S/R

2
F → 0 as P0 increases. If the expansion

is assumed to always stop at the skimmer (RF = xS)
as in the case of Fig. 7, this condition does not hold
any more and the predicted centre line intensity increases
monotonically with P0. In this case, eq. (12) is also used.
The discrepancy at low pressures is discussed in Sec. V.

2. Cold source T0 ≈ 125K

We present the measured intensities for a beam with a
source temperature of 125 ± 2 K and we compare them
with the predictions from eq. (12). We obtain nBE

→
nBE

(P0) as in eq. (19): mE = 5 · 10−4 Pa
bar , nE = 48 ·

10−4Pa. In the case of cold sources, if one chooses to
determine the quitting surface position by the ratio of
temperatures T⊥/T‖ ≤ 0.1, the quitting surface is placed
after the skimmer already at quite low pressures. Thus,
computing the eq. (12) for the case of Si = S‖ and the
expansion stopping before the skimmer is only valid for
a few measurement points. Therefore, we only present
the results for the case of the expansion stopping at the
skimmer and Si = S⊥. In general, the prediction power
of the model decreases for a cold source (see Fig. 9).

C. Micro skimmers

The centre line intensity plots for micro skimmers show
marked dips in the intensity, especially for the cold source
cases. Centre line intensity dips are also observed at
higher pressures for a warm source (see Figs. 10 and
11). The model predicts the dips for a cold source, but
in both cases fails to fit the experimental data well. The
centre line intensity measured for both skimmers is in
the same range, while the model predicts a more pro-
nounced difference between the 18 µm skimmer and the
4 µm skimmer.

D. The Kurt skimmer

To experimentally determine the importance of Kn∗-
driven skimmer effects we use a skimmer designed in such
a way that such effects are expected to clearly domi-
nate over the centre line intensity trends. This is the
case of the Kurt skimmer (see Sec. III), which due to
its inverted-cone walls concentrates the reflecting parti-
cles along the beam center line, leading to a low Kn∗

(see eq. (1)). Comparing the Kurt skimmer intensities
with the Beam dynamics skimmers, one sees that skim-
mer effects are not clearly observed until about 40 bar,
for nozzle-skimmer distances corresponding to xS > 11.3
mm (see Fig 12). This means that the discrepancies at
lower pressures between eq. (12) and the micro-skimmer
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FIG. 4. Example of the alignment procedure, here done for
a cold source at 60 bar and a 390 µm diameter skimmer.
The nozzle is moved relative to the skimmer in 50 nanometer
steps for three values of xS . The optimum alignment position
of the nozzle relative to the skimmer is obtained by finding
the centre point of the maximum of intensity. The complete
intensity plot of the beam is shown in the upper left corner.

measurements cannot be explained by skimmer interac-
tions only. In fact, the modified Knudsen number in the
case of micro-skimmers at 40 bar is expected to be larger
than in the case of the Kurt skimmer due to the 1/rS

dependency (see eq. (1)).
Note how skimmer interference in the case of the Kurt

skimmer is not significant until the nozzle-skimmer dis-
tance is set at 5.3 mm, (see Fig 12). A similar effect is
seen, for a cold source, in the case of the 390 µm Beam
Dynamics skimmer, where for xS = 5.3 mm, skimmer
interference becomes evident (see Fig. 9). The same ef-
fect is not clearly observed for the smaller, 120 µm Beam
Dynamics skimmer. This can be seen as an experimental
confirmation of the importance of the modified Knud-
sen number, which predicts stronger skimmer effects for
larger skimmers.

E. Complete experimental data

In this section, we plot the complete dataset of mea-
surements carried out during this study, with the excep-
tion of measurements corresponding to the Kurt skim-
mer, that are plotted separately. In order to preserve the
relevant intensity magnitude, and thus make comparisons
easier the intensities plotted have been normalized to the
radius of the aperture in front of the detector used to
perform each measurement. Therefore, in this section,
the intensities are given in counts/s ·m2. The centre line
intensity data for a warm source T0 ≈ 300 K is shown in

Fig. 13, and for a cold source T0 ≈ 125 K in Fig. 14.
Additionally, we plot the difference in centre line inten-
sity per square meter between cold and warm sources for
each experiment (Figs. 15 and 16).

From Fig. 15, one can observe that for large skimmers
cold sources produce a higher centre line intensity than
warm sources, especially for high source pressures. This
is given by eq. (3) and by the larger speed ratios obtained
in cold beams. For the case of the 120µm skimmer, this
difference reduces the further away the skimmer is placed
from the nozzle due to the evolution of T⊥ along the beam
axis.

For the case of micro skimmers, cold sources are gener-
ally less intense than warm sources, except for very large
pressures. This is due to an intensity dip occurring for
cold sources at low and medium pressures driven by the
evolution of the beam’s perpendicular speed (see Discus-
sion). The smaller the collimating skimmer is the larger
the influence of this dip on the measured centre line in-
tensity. This is because larger skimmers collect particles
with a larger perpendicular temperature range.

V. DISCUSSION

The analytical model based on Sikora’s ellipsoidal dis-
tribution approach (Si = S⊥, expansion stopped at the
skimmer) predicts the centre line intensity of a helium
beam generated by a source at ambient temperature with
reasonable accuracy. However, the model has several lim-
itations, each of which will be discussed in detail in this
section.

1. Poor fit at high pressures : for most skimmers, the
model overshoots the measured intensities at high
pressures (P0 & 50 bar). This phenomenon is likely
due to a combination of two effects: skimmer inter-
ference, and a continuing expansion of the beam
after the skimmer. By observing the data, we can
see that in the case of a warm source this over-
shoot does not significantly vary when two skim-
mers with the same design but different diameter
are used (in this case, the Beam Dynamics skim-
mers). This points towards the idea that skimmer
interference can’t be the main cause of the over-
shoot, as the influence of the particles reflected
from the skimmer is expected to strongly depend
on the skimmer radius. However, in the case of a
cold source, the overshoot is more significant for the
120 µm Beam Dynamics skimmer than its 390 µm
equivalent. What is likely happening is that the
helium beam continues to expand significantly af-
ter the skimmer following different dynamics than
before it, due to the removal of particles by the
skimmer edges. According to the simulations of the
expansion performed in this study, this is particu-
larly relevant for the case of a cold source, where
the quitting surface is often predicted to be sev-
eral centimetres after the skimmer. This renders
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Base: 28 mm

Height: 
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Ø  4, 18 µm Ø  5, 100 µm

FIG. 5. Drawings of the skimmers used for the centre line intensity measurements. (A) corresponds to the Beam Dynamics
skimmers, with diameters of 120 and 390 µm, (B) to glass micro-skimmers mounted on copper, with diameters of 4 and 18 µm
and (C) corresponds to the Kurt skimmer, with inserted appertures of 5 and 100 µm .

Sikora’s treatment of a beam that expands due to
its non vanishing T⊥ at the skimmer un-physical as
it assumes no further collisions after the skimmer.
During the preparation of this paper, efforts were
undertaken to adapt Sikora’s model to a beam ex-
panding after the skimmer using simple geometri-
cal rules. This was motivated by the observations
made by Doak et al, whom used micro-skimmers to
perform focusing experiments and observed a devi-
ation between expected and measure focal spot size.
They suggested that this may have been due to the
supersonic expansion continuing after the beam has
passed through the skimmer aperture [43]. This
adaptation can be found in Appendix A (Fig. 19)
but did not produce very promising results. A
treatment using a DSMC simulation of the whole
system is most likely a more accurate approach in
order to predict intensities at large pressure values.
This approach is also much more complex than the
analytical models presented here.
Another possible explanation of these discrepancies
would be the non-physical nature of a “hard" quit-
ting surface. Replacing it with a “soft" treatment
may yield interesting results. The centre line inten-
sity would be calculated then by integrating over a
series of infinitesimally spaced successive quitting
surfaces.
The higher overshoot at P0 & 50 bar for the smaller
Beam Dynamics skimmer in the case of a cold
source occurs in all cases except one: xS = 5.3
mm (see Fig. 9). In order to understand this pe-
culiarity, one must re-visit the modified Knudsen
number. The case of xS = 5.3 mm for a cold source
and rS = 390 µm, is the case expected to have
the lowest modified Knudsen number (largest rS

and number density at the skimmer, see eq. (1)).
Therefore, it is likely that this particular case is the
only one showing skimmer interference governed by
the interaction with reflected particles.

2. Low predictability of micro-skimmer intensities : on
the one hand, skimmer interference and skimmer
clogging are known to be determined by the mod-
ified Knudsen number Kn∗, which strongly de-
pends on the skimmer diameter (eq. (1)). Micro-
skimmers, are thus expected to show less inter-
ference than their larger counter-parts under the
same conditions. This effect is clearly seen in Fig.
9, where skimmer effects are present only for the
larger 390 µm skimmer.

On the other hand, smaller skimmers sometimes
have very thin and long geometries, causing a pos-
sible increase of pressure along the skimmer chan-
nel. This effect is likely what causes the bad fit
between the model predictions and the observed
micro-skimmer centre line intensities.

Notwithstanding, it is important to note that
Sikora’s ellipsoidal quitting surface model is able to
predict the general trends of micro skimmer inten-
sities. This includes the centre line intensity dip at
low pressure for small skimmers. This dip is driven
by the behaviour of the perpendicular speed ratio
at low pressures, that is predicted by the simula-
tion of the supersonic expansion to decrease first
and increase later (see Fig. 17).

However, the experimental observability of this dip
is actually determined by the radius of the skim-
mer and the distance between the nozzle and the
skimmer. If rSxS

S⊥ is small enough (. 0.8), then the

term
[
−S2
⊥

(
rS(RF+a)

RF(RF−xS+a)

)2
]
in eq. (11) is small

too. This makes the exponential term in eq. (11)
dominate, and the effect of the dip in S⊥ can be
clearly observed in the beam centre line intensity.
This explains why this dip is only experimentally
observed for the case of micro-skimmers.

This good trend replication is particularly relevant
for purposes of optimization, where the value of
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FIG. 6. Plot of the ray tracing simulation (dashed lines) com-
pared with eq. (9) and (11) (respectively, circles, crosses for
Si = S‖ and triangles for Si = S⊥, superposed). The green
line show the effect on the centre line intensity of varying the
distance between the skimmer and the detector, a. The blue
and red lines show the intensity change when varying the ra-
dius of the pinhole in front of the detector, rD, and the radius
of the skimmer, rS. The centre line intensity and the variable
values have been normalized to 1 in order to show all depen-
dences in a single plot. The calculations are done at a fixed
skimmer position xS = 11.3 mm (the centre position). a is
varied between 0.5 m and 2 m, rD is varied between 10 µm
and 100 µm, and the radius of the skimmer, rS is varied be-
tween 1 µm and 10 µm. While a variable is varied, the others
are kept fix at the maximum value of their span (a = 2 m,
rD = 100 µm, rS = 10 µm. The source temperature is 115 K
and the source pressure is 161 bar. Both the ray tracing sim-
ulation and the centre line intensity model assume a quitting
surface placed just before the skimmer position (RF = 11.2
mm).

interest is not so much the centre line intensity but
the combination of parameters maximizing it.

3. Weak dependence on the nozzle-skimmer distance
of the Si = S‖ variant : only when the expansion is
allowed to stop at the skimmer and the perpendic-
ular speed ratio is used, does the predicted centre
line intensity significantly depend on the nozzle-
skimmer distance, xS. This is expected, as in this
case the thermal spread of the beam is caused by
the value of the perpendicular temperature at the
skimmer T⊥, and this value varies strongly with
xS. Despite S‖ << S⊥ causing a stronger expo-
nential contribution in eq. (11), the variation on
S⊥ with the skimmer radius is much stronger than
the fraction term in the exponential, making the
Si = S‖ variant actually less dependent on xS (as
S‖ remains constant).
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FIG. 7. Plot of measured and predicted intensities for a warm
source (300 K), 120µm (pink) and 390µm (red) skimmers,
and for three values of xS: 5.3 mm (circles), 11.3 mm (up-
wards arrows) and 17.3 mm (asterisks). The intensities are
computed assuming that the expansion stops at the skimmer
with Si = S⊥ . Note that, for the larger skimmer, the centre
line intensity becomes independent of the distance between
the skimmer and the nozzle, so that all the curves collapse
in one simulated curve (in good agreement with what is ob-
served experimentally). The difference in intensities between
the two skimmers is due to the fact that they were obtained
using different pinholes in front of the detector (see Appendix
D and Fig. 3)

VI. CONCLUSION

We present a dataset of centre line intensity measure-
ments for a supersonic helium beam and compare it
to various intensity models. We show that these mod-
els replicate the experimental data well for skimmers
with diameters 120 and 390 µm. Particularly, we show
that Sikora’s ellipsoidal distribution approach, assuming
a quitting surface placed at the skimmer position, with
the expansion dominated by the supersonic expansion
perpendicular temperature T⊥ fits the experimental data
best.

We present a ray tracing simulation approach, used to
numerically replicate the introduced centre line intensity
models. We show that the ray tracing approach and ana-
lytical models (Sikora’s and Bossel’s) follow very similar
dependencies with the different geometrical variables of
the experiment.

In the presented dataset, we observe Knudsen number
dependent skimmer interference for a 390 µm skimmer,
and a specially designed 100 µm skimmer placed 5.3 mm
away from a cold source. We postulate that the rest of
the discrepancies between the experimental data and the
model may be due to either backscattering interferences
at quasi-molecular flow regimes, or a continuation of the
supersonic expansion after the beam has passed through
the skimmer. Another explanation may be that the as-
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FIG. 8. Plot of measured intensities for a warm source (300
K), and 120µm (pink) and 390µm Beam Dynamics skimmers
(red). The measured intensities are compared to eq. (12),
with the expansion stopped before the skimmer and Si =
S‖. Note how after the quitting surface has surpassed the
skimmer, the model loses its predictability (light grey for xS =
17.3 mm, dark grey indicates the whole span for the different
values of xS ). The difference in intensities between the two
skimmers is due to the fact that they were obtained using
different pinholes in front of the detector (see Appendix D).

sumption of the quitting surface stopping abruptly at a
given distance is is too simple to adequately describe the
physics in this regime.
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APPENDIX A: ADAPTATION TO AN
EXPANSION AFTER THE SKIMMER

An untreated case in literature is when collisional ex-
pansion continues after the skimmer. A way to approach
this problem is to assume that the expansion is unaf-
fected by this interaction and simply project the quitting
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FIG. 9. Plot of measured and predicted intensities for a cold
source (125 K) and the Beam Dynamics skimmers: 120 µm
(pink) and 390 µm (red). The intensities are computed us-
ing eq. (12) and assuming that the expansion stops at the
skimmer with Si = S⊥. The intensities are plotted for three
values of xS: 5.3 mm (circles), 11.3 mm (upwards arrows) and
17.3 mm (asterisks). Note how for P0 > 40 bar and 390 µm
skimmer (red), in the case of xS = 5.3 mm, skimmer effects
are clearly present and the centre line intensity is significantly
lower than for the other two xS positions. All measurements
were taken with rD = 25µm (see Appendix D and Fig. 3)
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FIG. 10. Plot of measured and predicted intensities for a
warm source and the glass skimmers: 18µm (black) and 4µm
(green). The intensities are computed using eq. (12) and
assuming that the expansion stops at the skimmer with Si =
S⊥.

surface further ahead until its predicted radius RF (see
Fig. 18).

The centre line intensity must be calculated using eq.
(12), with a→ a′, rS → r′S, xS → x′S:

a′ = a−
(
RF cos(arctan

rS

xS
)− xS

)
(20)
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FIG. 11. Plot of measured and predicted intensities for a
cold source and the glass skimmers: 18µm (black) and 4µm
(green). The intensities are computed assuming that the ex-
pansion stops at the skimmer with Si = S⊥.
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FIG. 12. Plot of measured and computed intensities for the
100 µm Kurt skimmer (black) and a 120 µm (pink) Beam
dynamics skimmer for a warm source. The intensities are
computed assuming that the expansion stops at the skimmer
with Si = S⊥. Note how strong discrepancies are not ob-
served except for the case of the 100 µm Kurt skimmer. Two
discrepancy modes can be observed, a very significant one for
xS= 5.3 mm and a less significant one for the rest of nozzle-
skimmer distances.

r′S = RF sin

(
arctan

rS

xS

)
(21)

x′S = RF cos

(
arctan

rS

xS

)
(22)
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FIG. 13. Measured centre line intensities per area in counts/s·
m2 for a warm source, and for the following skimmer aper-
tures: 120 µm Beam Dynamics (blue), 390 µm Beam Dy-
namics (red), 18 µm glass skimmer (black), and 4 µm glass
skimmer (green). The circle, triangle, and asterisk markers
correspond to the nozzle-skimmer distances, xS, of 5.3 mm,
11.3 mm, and 17.3 mm respectively.
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FIG. 14. Measured centre line intensities per area in counts/s·
m2 for a cold source, and for the following skimmer aper-
tures: 120 µm Beam Dynamics (blue), 390 µm Beam Dy-
namics (red), 18 µm glass skimmer (black), and 4µm glass
skimmer (green). The round, triangle, and asterisk markers
correspond to the nozzle-skimmer distances, xS, of 5.3 mm,
11.3 mm, and 17.3 mm respectively.

APPENDIX B: DERIVATION OF THE QS
MODEL

The contribution to the number density by a differen-
tial of the quitting surface dS placed at a point P to the
point P ′ is [19]:

dN(xD, 0, zD) = n(RF, δ, η)fell(v, θ)d
3v. (23)
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FIG. 15. Measured differences between cold source and warm
source beam intensities per area in counts/s ·m2 for the fol-
lowing skimmer apertures: 120 µm Beam Dynamics (blue),
390 µm Beam Dynamics (red).The circle, triangle, and aster-
isk markers correspond to the nozzle-skimmer distances, xS,
of 5.3 mm, 11.3 mm, and 17.3 mm respectively. The continu-
ous line indicates that where experimental data was missing,
data was extrapolated from the closest experimental points.
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FIG. 16. Measured differences between cold source and warm
source beam intensities per area in counts/s ·m2 for the fol-
lowing skimmer apertures: 18 µm glass skimmer (black), and
4µm glass skimmer (green). The round, triangle, and asterisk
markers correspond to the nozzle-skimmer distances, xS, of
5.3 mm, 11.3 mm, and 17.3 mm respectively. The continuous
line indicates that where experimental data was missing, data
was extrapolated from the closest experimental points.

In this equation, n(RF, δ, η) ≡ n(RF)g(δ) is the number
density at the quitting surface, that is allowed to depend
on the angle δ to account for the fact that the nozzle is not
actually point-like. fell(v, θ) is the ellipsoidal Maxwellian
distribution defined in eq. (7). v is the modulus of the
speed vector and θ is the angle between the segment PP’
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FIG. 17. Predicted value of S⊥ for a cold source (125 K) ac-
cording to the numerical calculation of the supersonic expan-
sion presented in Sec. IIA. The round, triangle, and asterisk
markers correspond to the nozzle-skimmer distances, xS, of
5.3 mm, 11.3 mm, and 17.3 mm respectively.
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FIG. 18. Diagram of the supersonic expansion for the case of
a radius of the quitting surface radius higher that the distance
between the nozzle and the skimmer. The quitting surface is
assumed to expand unaffected by the skimmer aperture, ex-
cept by collimation. RF is the radius of the quitting surface,
y is the distance between the axis of symmetry and the pro-
jection of the maximum-angle ray on the quitting surface,
rS is the skimmer radius and rD is the radius of the detec-
tor. a is the distance between the skimmer and the detector,
d is the distance from the skimmer to the point where the
maximum-angle ray crosses the symmetry axis. xD is the
distance between the nozzle and the detector and xS is the
distance between the nozzle and the skimmer.

and P (see Fig. 1). Following the derivation from [19],
one obtains:

N(P′) =

τn(RF)

2πa2

∫ rS

0

∫ π

0

g(δ)r cos3 β·ε3e−S2
‖(1−ε2 cos2 θ)D(b)drdα,

(24)

where S‖ = U/c‖ is the parallel speed ratio, ε =
(
(τ sin2 θ + cos2 θ

)−1/2, τ =
T‖
T⊥

. The function D(b) is



15

0 50 100 150

P
0
 [bar]

10
3

10
4

10
5

I 
[c

o
u
n
ts

/s
]

FIG. 19. Plot of measured intensities for a warm source and
the Beam Dynamics skimmers: (300 K), and 120µm (pink)
and 390µm Beam Dynamics skimmers (red). The measured
intensities are compared to eq. (12), with the expansion
stopped after the skimmer and Si = S‖.

defined as follows:

D(b) ≡ 2√
π
be−b

2

+
(
2b2 + 1

)
[1 + erf(b)] , b ≡ S‖ε cos θ

(25)
The angle β is shown in Fig. 1. N(P ′) corresponds to
the number density at a radial position from the axis
of symmetry, to obtain the number density at a circular
detector we must integrate over the arriving differential
volume:

Ntotal = ∆x

∫

S

N(P′)dS = 2π∆x

∫ rD

0

N(xD, ρ)ρdρ.

(26)
Imposing that the proportion of intensities must corre-
spond to the proportion of number densities, we can ob-
tain the expression for the centre line intensity arriving
at a circular detector:

ID
I0

=
Ntotal

2π
∫ RF

RF−∆x

∫ π
2

0
n(r)r2g(δ) sin δdδdr

. (27)

We obtain:

ID =
τI0

2πa2R2
FL

∫ rD

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ε3

e−S
2
‖(1−ε2 cos2 θ)D(b)dρdrdα. (28)

Where I0 is defined in eq. (3). L corresponds to the
integration of g(δ) along the half sphere (all the intensity
emitted by the source is set to be contained in g(δ)).

L ≡
∫ π

2

0

g(δ) sin δdδ. (29)

.

APPENDIX C: EQUATIONS FOR THE RAY
TRACING CODE

Using trigonometry, it is possible to determine ex-
actly the maximum possible δm within a source-skimmer-
detector geometry (see Fig. 2).

δm = arcsin
y

RF
. (30)

Now, we use the Pythagorean theorem to obtain y, the
height of the triangle containing the angle δm, x is the
basis of the triangle as shown in Fig. 2.

y

d+ (xS − x)
=
rS

d
, x =

√
R2

F − y2. (31)

Expanding eqs. (31) we obtain the following quadratic
equation:

(
yd

rS
− d− xS

)2

= R2
F − y2, (32)

expanding in powers of y:

y2

(
(
d

rS
)2 + 1

)
+y

(
−2

d

rS
(d+ xS)

)
+(d+ xS)

2−R2
F = 0

(33)
Which can be solved using the quadratic formula:

y =
2d(d+xS)

rS
±
√

4d
2

r2
S
R2

F − 4(d+ xS)2 + 4R2
F

2( drS )2 + 2
=

d
rS

(d+ xS)±
√

d2

r2
S
R2

F +R2
F − (d+ xS)2

( drS )2 + 1
. (34)

The distance d is also obtained using trigonometry (see
Fig. 2).

rS

d
=

rD

a− d → d =
arS

rD + rS
. (35)

To determine whether to take the positive or negative
square root in eq. 34, we can take the case x = RF (which
corresponds to the case RF → ∞). In this case, from
trigonometry it is easy to see that y = rS

d (d+ xs − RF).
Thus, the geometrically-sound case corresponds to the
negative square root.

VII. APPENDIX D: rD-rS TABLE

TABLE I. Table showing the values for the skimmer radius rS,
and the radius of the pinhole placed in front of the detector
rD, for the experiments presented in this paper.

Skimmer diameter rS rD (warm) rD (cold)
4 µm 2 µm 100 µm 100 µm

18 µm 9 µm 100 µm 100 µm

100 µm 50 µm 25 µm not shown
120 µm 60 µm 25 µm 25 µm

390 µm 195 µm 100 µm 25 µm
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VIII. APPENDIX E: GLOSSARY OF SYMBOLS

Symbol Description

Kn∗ Modified Knudsen number
Kn Knudsen number
S‖ Parallel speed ratio
ηP Power law parameter on the collision model
λ0 Mean free path of gas particles
rS Skimmer radius
n Number density of the gas at the skimmer
σ Cross section of gas particles

v̄
Most probable velocity along
the radial direction

T‖ Parallel temperature of the expansion
T⊥ Perpendicular temperature of the expansion
v‖ Parallel component of the velocity
v⊥ Perpendicular component of the velocity
M Mach number
v Average velocity of the gas
c Local speed of sound
I0 Total intensity stemming from the nozzle
T0 Stagnation temperature inside the nozzle
P0 Stagnation pressure inside the nozzle
kB Boltzmann constant
γ Ratio of heat capacities
dN Diameter of the nozzle
m Mass of a gas particle
Ω(Teff ) Collision integral in the Boltzmann equation
Teff Effective average temperature of the gas
Q2 Viscosity cross-section
E Collision energy in the centre of mass system
~ Reduced Planck constant
ηl Phase shifts for orbital momentum l
fell Velocity distribution in the expansion
VLJ Lennard-Jones potential
rLJ Distance between two interacting particles
rm Distance where VLJ is minimum
ε Depth of the potential well in VLJ

RF Radius of the quitting surface
ID Centre-line intensity (ellipsoidal model)
τ T‖/T⊥

a Distance between the skimmer
and the detector

rD Radius of detector opening
P Point on the quitting surface
P’ Point on the detector
~r Vector connecting P and P’

r Distance from beam axis to where the
skimmer plane intersects ~r

x,y,z Cartesian coordinates
β Angle between ~r and the xz plane
θ Angle between P and ~r

α
Angle between r (note, not \vec{r}) and
the xz plane

ρ Distance between P’ and the detector centre

g(δ)
Angular dependency of the gas density
on the quitting surface

L Integral of g(δ) over the quitting surface
Si Speed ratio term in Sikora’s model

I
Sikora’s centre line intensity before
approximation

Φ Angle of rotation about the beam axis
T‖∞ Asymptotic value of the parallel temperature
ηD Efficiency of the detector in counts/part

I1
Intensity arriving at the detector assuming
no skimmer presence

xS Distance between nozzle and skimmer

IS
Sikora’s centre line intensity assuming
rS � xS, rS � a,a/rS >> Si, rD << a

nBE
Background number density in the
expansion chamber

nBC
Background number density in
subsequent chambers

δm Maximal angle on the quitting surface

d Distance from the skimmer to the point where
the maximum-angle ray crosses the beam axis

φ Azimuthal angle in spherical coordinates

δ
Polar angle in spherical coordinates
(δ = 0 lays over x)

AD Area of the detector
AS Area of the skimmer

xA
Distance between the nozzle and the
noise-reducing aperture
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Three-dimensional mapping of microscopic surface structures is important in many applications
of technology and research, including areas as diverse as microfluidics, MEMS and geoscience. How-
ever on the nanoscale, using established techniques for such imaging can be extremely challenging.
Scanning helium microscopy (SHeM) is a new technique that uses neutral helium atoms as a probe,
enabling completely non-destructive imaging. The technique is broadly applicable and ideal for many
otherwise difficult to image materials such as insulators, ultra-thin nano-coatings and biological sam-
ples. Here we present a method for implementation and operation of a stereo helium microscope,
by applying the photometric stereo method of surface reconstruction to helium microscopy. Four
detectors around the sample are typically required, but we show how sample rotation can be used
to perform stereo reconstruction with a single detector instrument, or to improve the quality of
the reconstructed surface by increasing the number of independent measurements. We examine
the quality of the reconstructed surface and show that for low aspect ratio good absolute height is
recovered. For features with height/width ∼ 1 the shape of the surface is still recovered well (8%
error) despite multiple scattering and masking of the helium beam by surface topography. Therefore
it is possible to perform accurate reconstruction of the shape of nanoscale structures with a height
to width ratio of at least unity.

I. INTRODUCTION

Accurate measurements of surface topography are es-
sential to many fields of modern research. However, ap-
plying established techniques on the micro- and nano-
scale is often difficult; for example, electron microscopy
is complicated by the local secondary electron emission
properties of surfaces [1] and scanning probe methods are
limited by the tip profile [2]. The emerging technique of
scanning helium microscopy (SHeM) [3–5], which uses a
beam of neutral atoms, provides a promising new oppor-
tunity. Thermal energy helium atoms have several advan-
tages as imaging probes; they are inert and their energies
are very low compared to other particle probes used for
imaging, such as electrons or helium ions. Specifically,
the energy of the atoms in a supersonic helium beam
is approximately 50meV, corresponding to a de Broglie
wavelength of around 0.05 nm [6]. These energies are be-
tween three and six orders of magnitude lower than the
energies typically used in electron and helium ion imag-
ing [7]. Furthermore, thermal helium atoms scatter from
the outermost electron density distribution of the surface
without any penetration into the material [6] and prop-
agate in straight-line trajectories that are unaffected by
electromagnetic fields. Thus helium atoms are capable of
providing information about the true geometrical struc-
ture of a surface [6, 8]. Together, these properties mean

∗ Corresponding author, sml59@cam.ac.uk
† The two first authors contributed equally to this work

SHeM is ideal for probing the topography of samples that
are difficult to measure otherwise, either because conven-
tional probe-surface interactions limit the measurements,
or because the sample can react or deteriorate during the
process of imaging. In particular, helium is well suited
to imaging insulators and biological samples, as well as
ultra-thin coatings and other nano-materials that have a
significant three dimensional structure.

3D structure determination has recently been reported
using helium atoms [9] using the stereophotogrammetry
technique, which was applied to taxonomic studies of the
trichomes on a mouse eared cress leaf, and dorsal skin of a
Port Jackson shark. The method works by triangulation;
the sample was tilted by known angles and corresponding
points on the surface were used to obtain a small number
of 3D coordinates with a single-detector. The method is
thus similar to observation using an optical stereomicro-
scope with a single source of illumination. The points
used for triangulation were mapped manually between
subsequent images; the difficulty being that each point in
the image has to be carefully mapped to the correspond-
ing point in each rotated image, and more importantly
that several rotations about different axes are required
to obtain a good three-dimensional reconstruction [10].

An alternative approach to 3d imaging with atoms has
been made possible by the recent discovery that unlike
highly prepared ‘pristine’ atomic surfaces, which scat-
ter with an angular distribution containing strong specu-
lar and diffracted components [6, 8], many ‘unprepared’
technological surfaces scatter diffusely with an approxi-
mate cosine like distribution [11–14]. The cosine-like dis-
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tribution appears and is centred on the surface normal,
even when the sample is illuminated on a microscopic
level. On a macroscopic scale, when averaging over a sig-
nificant fraction of surface, such behaviour has long been
known as Knudsen’s cosine law [15–18]. However, identi-
fying similar behaviour on a microscopic scale means that
by sampling the scattered distribution in several different
directions, the local surface orientation can in-principle
be determined, and hence by integration the 3D surface
profile. An exact cosine distribution does not even need
to be assumed, providing sufficient independent angu-
lar measurements are obtained. In order to make use of
this principle, the second generation of SHeM instrument
that has been developed in Cambridge includes the capa-
bility to simultaneously acquire images from 4 detectors
arranged around the incoming helium micro-probe.

In this article, we present a three-dimensional surface
profile reconstruction technique which we refer to as ‘he-
liometric stereo’, an adaptation of the photometric stereo
method to helium microscopy. Photometric stereo uses
photographs of an object illuminated from different an-
gles to reconstruct a 3D image of the object, by using
differences in the light intensities due to the different an-
gles of illumination [19]. Heliometric stereo works analo-
gously, but, taking into account the differences of image
formation, instead of changing the illumination angles,
the observation angles are changed.

In photography or traditional light microscopy an ob-
ject is illuminated with a number of light sources. An im-
age of the object is produced by the light rays scattered
from the object going through a series of lenses, and then
being projected onto a light-sensitive detector/film with
spatial resolution. In helium microscopy, and other scan-
ning imaging techniques such as SEM, images are formed
by illuminating the sample point by point with a focused
or collimated beam and measuring the intensity collected
by one or several detectors. By rastering the sample un-
der the beam (equivalent to rastering the beam over the
sample), an image viewed from the incident beam is gen-
erated through Helmholtz reciprocity; the same process
that is used in scanning electron microscopes and in dual
photography [20]. Fig. 1 shows the method of image pro-
duction via scanning in comparison to image formation
with broad illumination. In principle, helium microscopy
could also use the same imaging principle as photogra-
phy. However, it is not possible with present technology
to build a helium detector with spatial resolution, though
suggestions have been made that it could be done with
field ionisation detection [21, 22].

The lateral resolution of SHeM images is determined
by the size of the helium micro-probe incident on the
sample, which in turn determines the minimum extent of
each pixel in the image. The image contrast is governed
by the angular size and position of the helium detectors,
which sample the distribution of atoms scattered from
the illuminated point on the surface. Practically, SHeM
images are always limited by shot-noise, due to the finite
flux of atoms. When using pinhole collimation to form

(a)

(b)

Broad illumination

Image planeLensObject

Object

Detector

Focusing element
produces narrow beam

Beam
position 2

Beam
position 1

Movement of the sample
results in the beam hitting
a different part of the sample

FIG. 1. (a) The process of image formation using a lens and
broad illumination and (b) the alternative method of produc-
ing images by scanning a focused probe follows from invert-
ing the direction of the light rays to give an image appearing
as if it were formed behind the focusing element, in (b) the
two beam positions would not happen simultaneously. Un-
derstanding the projection allows the right coordinate system
to be used for heliometric stereo.

the microprobe the flux drops strongly with increasing
resolution [23, 24]; consequently the smallest helium mi-
croprobe reported to date is 350 nm [4, 25, 26]. Fortu-
nately, higher intensities can be achieved by focussing the
beam with a Fresnel zone-plate; theoretical calculations
[24, 27] have estimated that the helium microprobe can
be reduced to a diameter of order 10nm.

In the design of a neutral helium microscope, it is
important to distinguish between the lateral resolution,
which is determined by the size of the helium beam and
gives the ability to distinguish between features spatially
separated on the sample, and the ‘angular resolution’
which is given by the solid angle covered by the detec-
tor opening. The smaller the solid angle, the more well
defined the angle of detection is. Hence the ‘angular res-
olution’ determines the possibility of accurately knowing
the intensity of scattered helium in a particular direction
but does not have an impact on the minimum feature size
observable. In order to achieve good angular resolution,
detectors are designed to cover as small a solid angle as
permitted by the signal to noise ratio of the instrument
[28].

In the current work we show that photometric stereo
applied to helium (heliometric stereo) is an ideal tech-
nique for 3D image reconstruction in helium microscopes,
because the point-by-point illumination of the sample al-
lows for a straightforward implementation of the recon-
struction process. Only a few images are required for
surface reconstruction, which is important as it typically
takes much longer to acquire images in a SHeM instru-
ment, compared to electron or He ion microscopy. Helio-
metric stereo requires detection at multiple angles, which
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can be simultaneously achieved in a microscope with mul-
tiple helium detectors, but we also show how sample ro-
tation can be used to obtain multiple independent inten-
sity measurements in a single detector instrument. We
discuss both normal and non-normal incidence helium
beams; the latter which when combined with rotation al-
lows reconstruction of otherwise inaccessible parts of the
sample surface. Finally, we show how the quality of the
reconstruction is affected by the presence of significant
multiple scattering or regions of the surface which do not
have direct line of sight to the helium source or detector.

The remainder of the paper is organised as follows.
Section II begins with an overview of the photometric
stereo method, which is then developed to establish helio-
metric stereo, and ends with an example 3D reconstruc-
tion. Then follows a discussion of possible extensions
and additional considerations (section III). Results are
presented on image reconstruction on two technological
relevant shapes: a sample with modest topology, which
is simulated with a microscope set up corresponding to
existing SHeM instrumentation, and a sample with high
aspect ratio. The former is used to examine the effects
of SNR and the number of detectors while the latter is
used to examine the role of multiple scattering and the
limits of the technique (section IV). The paper finishes
with a discussion of factors to consider when designing
a helium microscope for use with heliometric stereo and
an outlook for the technique (section V).

II. GENERAL METHOD: HELIOMETRIC
STEREO

A. The photometric stereo technique

The established technique of photometric stereo relies
on the assumption that a point on the surface of the im-
age will scatter light with a given angular distribution,
known as a bidirectional reflection distribution function
(BRDF), which gives the scattered intensity as a func-
tion of the incoming and outgoing angles [29]. If the
camera position is fixed, the intensities recorded in the
camera will depend only on the local surface orientation
and the scattering distribution; and for the same mate-
rial and surface condition, all points on the sample can
be assumed to have the same scattering distribution.

If the bidirectional scattering distribution function is
known, a series of images obtained by illuminating the
sample from a different directions can be used as inten-
sity maps to infer the local surface orientation, and thus
the local surface gradient. These gradients may then be
integrated over the surface to give a 3D height map of
the sample.

1. Obtaining the surface normals

Photometric stereo techniques generally assume Lam-
bertian scattering, a type of scattering that corresponds
to a surface which is a perfect diffuse light scatterer [19].
Lambertian scattering is also referred to as cosine scatter-
ing, as the light intensity values recorded at pixel (x′, y′)
in the camera image is

I(x′,y′) = ρ cos θ = ρ n̂ · d̂, (1)

as illustrated in in Fig. 2 (a) for scattering from position
(x, y) on the surface. In the current work we use (x, y)
to refer to a spatial position in a coordinate system we
are interested (could be arbitrary but usually that of the
sample with the z axis parallel to the overall sample nor-
mal) while (x′, y′) refers to a position in the image. Here,
θ is the angle between the surface normal and the inci-
dent light source, n̂ is the unit normal to the surface,
d̂ is a unit vector from the surface to the light source,
and ρ is the albedo or reflectance factor for that point
on the surface. For light the outgoing angle, χ, does not
appear in the intensity equation as the cosχ dependence
in the scattering is exactly compensated by the (cosχ)−1

dependence from the projection of the surface area into
the camera. Instead, the cosine term arises from the
projection of the light source onto a surface at angle θ;
the area of surface that the light hits is proportional to
(1/ cos θ)−1.

Where there are multiple light sources we can write

~I(x′,y′) = ρDn̂, (2)

in which ~I is a m-dimensional vector of pixel intensities
corresponding to m images taken from those different
light sources. D is a m×3 matrix containing the normal-
ized vectors connecting the light sources and the point
(x′, y′) for each image. As there are three degrees of free-
dom in the system there have to be at least three non
co-planar vectors in D for a unique solution to exist, cor-
responding to three distinct light sources. The surface
normals, n̂, and reflectances, ρ, can be obtained from
eq. (2) by solving the system of linear equations for each
pixel in the image,

ρ(x′,y′) = |D−1~I(x′,y′)|, (3)

n̂(x′,y′) =
1

ρ
D−1~I(x′,y′). (4)

If the height of the surface can be described by a function
of the lateral position, i.e. z = f(x, y), then

n̂(x, y) = ∇F (x, y, z) = ∇[z − f(x, y)]. (5)

Thus once the surface normals are found, the gradient
field given by eq. (5) may be integrated to obtain an
equation of the surface, i.e. a topographic map of the
sample.
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FIG. 2. Correspondence between photometric stereo, (a), and
heliometric stereo, (b). n̂ is the local unit normal to the
surface, d̂i are the directions to the light sources or detectors.
In the case of photography multiple light sources are used to
generate images with different d̂ vectors, in the case of helium
microscopy multiple detectors are used with a single focused
illumination to give different d̂ by the reciprocity of focused
beam imaging.

2. Surface reconstruction from normals

The gradient field in eq. (5), can be integrated us-
ing established methods from the field of surface recon-
struction. Here, we use Harker and O’Leary’s MATLAB
toolbox [30]. For a more detailed explanation and math-
ematical proofs their work should be referred to [31, 32]
as only a brief outline is given below.

A least squares approach is used to find the matrix of
heights Z that upon derivation with respect to x and y
gives the least distance from the measured gradient field,
given by the normals n̂. The discrete derivatives of Z can
be written as LxZ and ZLTy . The matrices Ẑx and Ẑy rep-
resent the measured gradient field given by Ẑx = nx/nz,
Ẑy = ny/nz. Thus, the least squares minimization corre-
sponds to minimizing ε:

ε =
∥∥∥Ẑx − ZLTx

∥∥∥
2

F
+
∥∥∥Ẑy − LyZ

∥∥∥
2

F
, (6)

where ‖...‖F represents the appropriate norm. Expand-
ing and differentiating to minimize ε yields an equation
with a unique solution [31].

3. Image projection

A complication of the photometric stereo technique is
the way a physical object is projected onto an imaging
plane so that pixel indices can be related to physical co-
ordinates. In a camera (without the use of a telecentric
lens) a perspective projection is formed, meaning that
displacements on the image do not correspond directly
to physical distances: the physical distance between two
pixels changes across the image depending on the dis-
tance to the object and the focal length of the lens used.
Helium microscopes, however, are pixel-by-pixel imaging
instruments that necessarily produce images in an ortho-
graphic projection: the image is formed through the two-
dimensional rastering of the sample by fixed distances
between pixels. Thus there is a fixed correspondence be-
tween pixel locations in an image and physical locations
on the sample.

In either photography or helium microscopy the sample
is mapped onto a plane with a projection. In a photo-
graph the object is projected through the lens onto the
camera sensor, the axis of projection is then normal to
the camera. The projection axis corresponds to the z
axis in eqs. (1-5). Translating to helium microscopy the
z axis in the heliometric stereo method is parallel to the
beam and the points x′, y′ used in the method are defined
by the direction of the beam, and not necessarily in the
plane of the motion of the microscope’s nanopositioning
stages. The implications of the projection have to be
considered carefully when sample rotations are used to
acquire extra 3D information on the sample (see Section
III).

4. Applying photometric stereo to helium microscopy

We are in the fortunate situation that cosine dis-
tributed scattering can also be used to model the scatter-
ing of neutral helium atoms from many surfaces, where it
is known as Knudsen’s cosine law [18]. Although helium
scattering from highly prepared ‘pristine’ atomic surfaces
shows complex scattering distributions [6, 8], many ‘nor-
mal’, ‘unprepared’ or ‘technological’ surfaces studied to
date are consistent with an approximate cosine distri-
bution [15–18] and recent SHeM image modelling shows
excellent agreement with simulations that use a cosine
model of scattering [12–14]. Under Knudsen’s scattering
law, the photometric stereo method may therefore be ap-
plied to helium microscopy and in fact requires very little
modification. The scattering geometry is illustrated in
Fig. 2(b), where each point on the sample is assumed to
scatter with a cosine distribution about the local surface
normal n̂(x, y). (Deviations from a perfectly cosine dis-
tribution are mitigated by over-constraining the system,
as discussed below.)

Assuming cosine scattering of helium atoms from the
sample surface, the scattered intensity into an element of
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solid angle dΩ is

dI(x′,y′) ∝ cos θ dΩ, (7)

where θ is the angle between the detector and the sur-
face normal at the point (x, y). The intensity reaching a
particular detector is then

I(x′,y′) ∝
∫

ΩD

cos θ dΩ, (8)

where ΩD is the solid angle of the detector entrance aper-
ture. In certain existing helium microscopes the detector
apertures occupy a significant fraction of solid angle, cov-
ering a wide range of detection angles [4] so the extent of
the solid angle needs to be considered. However, provid-
ing the aperture is not too large, as is usually the case [3],
since the cosine function varies slowly, the integral can be
approximated by ΩD cos θ. For an aperture occupying a
small circular region of the solid angle hemisphere (<∼ %
of the total hemisphere), with half-cone angle β and an-
gle from the surface to the center of the aperture of θ, it
can be shown that the signal becomes (see appendix A)

I(x′,y′) ∝
1

2
π cos θ (1− cos 2β), (9)

which also has a cosine dependency with θ. Thus, where
detector apertures are small or occupy circular regions of
equal solid angle then the intensity detected in a helium
microscope can be written as

I(x′,y′) ∝ cos θ = ρ n̂ · d̂ (10)

which is the equivalent to eq. (1). The application of the
basic photometric stereo method in helium microscopes
follows with d̂ defined as the unit vector from the point
(x, y) to the detector.

If, due to the practical considerations of design, the
solid angles of the detector apertures are not all equal,
or if the detectors do not have the same efficiency the
modification of eq. (2) is

~I(x′,y′) = ρΩ̂Dn̂, (11)

where Ω̂ is a constant diagonal matrix containing the
solid angles and detection probability of the various de-
tectors and D and ρ have the same meaning as in eq.
(2). In practice the values in Ω̂ can be attained via a
calibration of the detectors prior to the acquisition of the
data, or by numerically solving the equation provided
that there exist enough independent observations.

B. Simulated helium images

We use simulated helium micrographs to test the helio-
metric stereo method. These micrographs are generated
by ray-tracing, with each ray representing a helium atom

[13, 14, 33]. The method assumes straight line trajecto-
ries of atoms within a 3D space consisting of the sample
and local environment within the microscope. The rays
are traced, scattering off the surfaces, until they either
intersect a detector surface or leave the simulation region,
with both directly scattered rays and multiply scattered
rays included. All images used in the current work are
generated using a cosine model of the scattering events.

In the first set up, we use instrument dimensions which
have already been realised experimentally, to demon-
strate what can be achieved with present technology.
We use a simulated beam-source and detector geome-
try comparable to the one used in the existing SHeM in
Cambridge [3]. As shown in Fig. 3, our set up assumes
a helium beam diverging from a circular virtual source,
corresponding to a the skimmer in the supersonic nozzle
expansion. The helium microprobe is then formed by col-
limation using a pinhole of 2 µm diameter [34]. The ‘vir-
tual source’ is assumed to be a uniformly emitting disc of
radius 50 µm at a distance 50 cm behind the pinhole (i.e.
rays are emitted from all elements of the surface and at
all angles with the same probability). The large distance
between the virtual source and pinhole, compared to the
distance between pinhole and sample (1 mm), means that
the beam has only a small divergence. Thus the spot size
of the beam is approximately 2µm, with a depth of field
of several millimetres.

To obtain simulated images, four detectors were placed
at 90◦ from each other and at 35◦ from the sample nor-
mal, with a normal incidence beam (z = z′), as shown
in Fig. 3. Given these source and detection geometries,
only the number of rays to use and the sample itself need
to be provided to complete the simulation set up. The
number of simulated rays were chosen to provide a real-
istic level of signal to noise (SNR) to recent experiments.
The data from Fig. 1 in Lambrick et. al [12] was used as
a representative experimental SHeM image. The dark-
est pixel in the image was assumed to be representative
of the background signal and was subtracted, then the
standard deviation and mean intensity from pixels on a
flat region of the sample were taken to be the noise and
the signal level respectively, giving an SNR of ∼ 30. All
simulated images used below have equal or lower signal
to noise ratios than that experimentally measured value.

C. Heliometric reconstruction

In order to test the heliometric stereo technique, we
use a test sample containing a series of technologically in-
spired geometric structures: an octagonal pyramid with
a depressed top, a rectangular pyramid, a cap of a sphere,
a series of increasingly deep pyramidal depressions and
a three-dimensional triangle. The feature sizes are all
in the 5-100 micron range and have low aspect ratios
(∼ 0.1 − 0.4), with detailed dimensions given in Fig. 18
of the appendix. These geometries were chosen for dif-
ferent reasons: The increasingly deep pyramidal depres-
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FIG. 3. The simulation set up that was used to generate the
images of the test sample and the model of the source used.
Four detectors were placed on a plane equidistant around the
sample with an angle of 35◦ to the sample normal. The beam
rays are generated in the virtual pinhole with a divergent dis-
tribution assuming a circular uniform virtual source shown at
the top of the figure (skimmer), for the non-normal incidence
simulations the beam source was moved but the detectors
were kept the same locations.

sions tests of the quality of reconstruction with depth.
The octagonal pyramid with a depressed top tests how
the reconstruction handles complicated geometries with
a a further depression. The rectangular pyramid has dif-
ferent slopes and is aimed to test the reconstruction pre-
cision with angle. The spherical cap is intended to test
for the reconstruction of smooth geometries and contin-
uously changing surface gradients. Finally, the three-
dimensional triangle has vertical surfaces and tests re-
construction of geometries with abruptly varying heights.
Due to their regular forms, these samples resemble arti-
ficial structures and we note that the sharp edges would
make it very difficult to image them true to size using
secondary electron emission based techniques.

Fig. 4 illustrates the stages of producing synthetic he-
lium images from the known sample surface and using
them to reconstruct the surface. 1. The original sample
surface is input to the ray tracing simulations; 2. Four
images are generated from the four detectors: it can be
seen that the lightest areas in the images point towards
the respective detector while the dark areas point away.
3. The four images are then used to calculate the sur-
face normals, by solving equation 4, which represent the
gradient field of the surface. 4. Finally, the gradient
field is integrated to find a reconstructed surface. It can
be seen that there is a good qualitative match between
the original surface and the reconstructed surface in the

first and fourth panels. The quantitative accuracy of the
reconstruction is discussed in section IV.

1. Accuracy of reconstruction

Fig. 6 shows a normalised percentage error plot of the
basic reconstruction shown in Fig. 4, while figure 5 shows
selected line profiles of the original and reconstructed sur-
face. The error has been normalised by the height of the
tallest feature on the surface: the large pyramid struc-
ture on the bottom left. The overall RMS error was 2.4%,
however we note that there are sections of significantly
larger error within the plot. It should be noted that the
2.4% RMS error will be a combination of an intrinsic er-
ror to the method and errors resulting from the noisy
initial data (simulated images). Noise in the images will
result in noise in the gradient field, which will relate in
a non-trivial way to errors in the reconstruction. The
impact of SNR is discussed further in the next section.
Noticeable are the sharp edges on the central pyramid
and the deepest of the trenches on the top left side of
Fig. 4. Therefore we may say that reconstruction works
well with two identified caveats, the first being surfaces
that are parallel to the beam (vertical in the case of nor-
mal incidence) and hence do not get illuminated; and
second multiple scattering: the deepest trench causes a
significant amount of multiple scattering, which results
in a loss of the well defined relationship between signal
and surface orientation.

In the next section we consider how increasing the
number of detectors through the use of rotations, and
how varying the image SNR affects the accuracy of the
reconstruction.

III. EXTENSIONS AND FURTHER
CONSIDERATIONS

A. Non-cosine and multiple scattering

As discussed in Section IIA 4 cosine scattering is a
good first approximation for the scattering of helium
atoms from technological samples. However, this type
of scattering does not always fully explain experimen-
tal data. For example, the existence of non-topographic
forms of contrast where the scattering distribution is not
fixed across the sample breaking one of the assumptions
of heliometric stereo [28, 35] necessarily require devia-
tion from cosine scattering. Heliometric stereo can be
extended to more general forms of scattering by emu-
lating preexisting photometric stereo methodologies, for
example by using a parameterized scattering distribution
that is fitted to the data (see, for example, [36–38]). In
the current work, the albedo or reflectance factor is as-
sumed to be sufficient.

An additional contrast feature of helium atom mi-
croscopy is multiple scattering which is taken here to
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d1 d2

d4 d3

1. Original sample surface

2. Multiple images taken with 
different detector directions

3. The surface orientations are found by 
solving a linear equation

4. Integration of the surface orientations 
results in a reconstructed surface

FIG. 4. Overview of the basic heliometric stereo method. 1. The original sample. 2. The sample is imaged using multiple
detectors placed in different directions to yield a series of helium images, in the example shown here, the set up shown in Fig.
3 was used to generate the simulated helium images. 3. Those helium images are used as the terms ~I in equation 4 to acquire
the surface normals. 4. Finally, as the normals to a surface are the gradient of that surface they may be integrated to give a
reconstructed surface. The accuracy of the reconstruction presented here is discussed in section IIC.

mean the situation when the helium atoms are ‘bounc-
ing’ from one distinct area on the sample to another
[12, 13, 26]. This can cause regions in images to appear
brighter, in particular where there is significant topog-
raphy in the form of deep or tall features (high aspect
ratios). In the present work it is assumed that over-
constraining the problem combined with the albedo fac-
tor can largely negate the issue of multiple scattering
for samples with modest topography. The implications
of multiple scattering are considered further in section
IVD.

B. Masked regions

A significant contrast feature of helium microscopy is
the presence of masking [13, 14, 26], where the direct
line of sight between the beam-sample intersection and
the detector is blocked by another part of the sample.
Qualitatively, masks can be thought of as similar to con-
ventional shadows (they are notably different in mecha-
nism however, shadows are a lack of illumination rather
than a lack of detection). As the line of sight is blocked,
the detected signal has no bearing on the normal of the
surface.

While 3D information is coded in the size and shape
of the masks, directly including masked areas in the re-
construction of the normals leads to substantial error.
Where the images contain significant masking the sim-
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FIG. 5. Three lines profiles extracted from the reconstructions presented in figure 4. The location of the line profiles are shown
on the height map of the original surface on the far right. The high quality of the reconstruction in the case of the octagonal
and spherical cap features is evident, while the limitations near sharp edges can be seen in the case of the pyramidal feature.
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FIG. 6. The percentage error between the reconstructed sur-
face using the 4 detector geometry shown in Fig. 3 and the
original surface (surface plots of both are shown in Fig. 4).
The error has been normalised by the height of the tallest of
the large pyramid structure on the bottom left of the sample.
The RMS percentage error was 2.4% overall.

plest approach is to exclude the masked regions, however
care must be taken not to underconstrain parts of the
reconstruction. If only a small fraction of the image is
masked (∼ 1 − 5% of an image) it is possible that they
need not be excluded—the low intensity recorded in the
masks would render the normal to be perpendicular to
the detection direction, not a bad approximation where
the regions concerned are small.

In the current work, masking is addressed using an au-
tomatic threshold method: masked regions of images are
excluded from the reconstruction by choosing an inten-
sity level below which pixels are discarded. The upper
bound that the threshold can be is obtained by imposing
that for every point in the image the following system of
equations has at least three independent linear equations:

W~I(x′,y′) = WρΩ̂Dn. (12)

The masking threshold is chosen as a scalar smaller than
the threshold value that visually captures the masking
contributions, which can be seen in the intensity his-
togram of the images as peaks in small intensity values
(see Appendix D).

An alternative to the threshold approach, a weighting
strategy is possible in order to handle masked regions,
or regions with low signal to noise ratio. For example,
one can weight regions with lower intensities less so that
when a value of I(x′,y′) is fed into the linear least squares
minimisation algorithm used to solve eq. (11), that value
contributes less [39]. A straightforward way to achieve
a weighting would be to make the weighting of pixels
to monotonically increase with the intensity. Note that
in Poisson statistics the standard deviation of the count
rate is inversely proportional to its square root (higher
intensities mean that the quality of the signal is better
[40]).

C. Sample rotation

Helium microscopes generally have a poor signal to
noise ratio compared to modern photography which poses
a problem when reconstructing 3D surfaces, as the data
quality is lower than in the case of photography. For-
tunately, we can obtain more independent observations
of each point and improve the quality of the reconstruc-
tion by rotating the sample. The same ‘trick’ can also
be used to allow helium microscopes that do not possess
enough physical detectors to perform heliometric stereo.
If the rotation is performed about the beam axis, for ex-
ample azimuthal rotation of a sample with a normally
incident beam, there is a straight-forward mathematical
implementation of eq. (11) as the image plane, and hence
coordinate system are the same throughout all images. If
the sample is rotated about a different vector, the cor-
respondence between points on rotated images becomes
more complex, although there can be benefits of doing
so.
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FIG. 7. Rotation in heliometric stereo. After collecting the
first image (right) the sample is rotated by 90◦ and two fur-
ther images are obtained (middle and left), these images may
be rotated to lie ontop of the original image if the reverse ro-
tations are applied to the detector vectors d̂2 and d̂2 as shown
in the right panel.

1. Rotation about the beam axis

As helium microscopy produces images in an ortho-
graphic projection, rotating the sample about the beam
axis mathematically corresponds to an inverse rotation
of the detector position (see Fig. 7). By rotating the
new images I so that each (x′, y′) coordinate in the im-
age corresponds to the (x′, y′) coordinates of the rest of
the images, the new data can be incorporated as an addi-
tional detector. Additionally, the corresponding vector ~d
has to be rotated in the opposite direction to the sample
by the same angle (see the equivalent detectors in Fig.
7).

Aligning two images of the same sample at different
rotation angles can be done through image recognition
software, or through a rotation of the scanning pattern.
Image recognition software sometimes requires human in-
put, which can lead to error in the reconstruction. Al-
ternatively, rotating the scanning pattern with the sam-
ple so that each pixel of the image always corresponds to
the same position on the sample produces images aligned
down to the accuracy of the positioning stage. The lat-
ter method is chosen in this paper to remove human error
from the results.

Applying rotations about the beam axis allows for i)
the implementation of heliometric stereo with a single
detector, and ii) a convenient method to obtain more
data and reduce reconstruction error.

2. Rotation about other axes

For rotation about an axis other than the beam axis,
the beam hits different regions of the sample at different
angles, so that there is no complete bijective correspon-
dence (no one-to-one correspondence) between the points
of two images (see Fig. 8). On one hand, this makes it
difficult to use sample rotation to get more independent
data points for eq. (4). On the other hand, rotations
about axes other than the beam axis allows to image
parts of the sample that otherwise would never intersect
the incident beam as a result of shadowing.

Previously shadowed
region now illuminated

x′

z′
Direction of illumination

Shadowed region
of sample

Rotate sample
about z
axis

z

FIG. 8. Sketch of the lack of bijective correspondence be-
tween helium microscopy images in the case of rotation not
about the beam axis. Regions of the sample that are shad-
owed can be imaged if we rotate about an axis other than the
beam axis. The primed coordinates are the heliometric stereo
coordinates with the z′ axis parallel to the beam while the
unprimed coordinates are those of the sample with z parallel
to the overall sample normal.

The fact that shadowing prevents the beam from in-
tersecting all sample points in every rotated image is not
an impediment to recovering the 3D surface of a sample
from a set of images taken at different rotation angles.
To do so, several different sample surface reconstructions
can be combined into a single surface after the applica-
tion of heliometric stereo. Such an approach contrasts
with rotating the sample about the beam axis, in which
eq. (7) is over-determined.

IV. DETAILED RESULTS

A. Rotation to give more detectors

As discussed in section III C 1, rotations about the
beam axis can provide a greater number of effective de-
tectors beyond the number of physical detectors. A sim-
ulation was performed with the same detector set up as
described in Fig. 3, but with the sample rotated about
the beam axis in intervals of 72◦ to give a total of 5 sets
of 4 images. Reconstructions were then performed using
different levels of signal to noise and different numbers of
rotations (and hence effective detectors).

Fig. 9 gives the root mean square error for different
combinations of detectors and rotations for three differ-
ent levels of signal to noise. It is noted that a similar
improvement to the reconstruction is obtained both with
an improvement of a factor of 2 in SNR or with an in-
crease of the number of images by a factor 4. Since the
noise in neutral helium microscopy is dominated by shot
noise [41], both improvements require the same increase
in acquisition time. There also seems to be a minimum
level of error which is not improved by adding more in-
formation. That error is likely a result of failures of the
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FIG. 9. The root mean squared error (RMS) for the recon-
structed surfaces as a function of the number of effective de-
tectors for three different levels of signal to noise ratio (SNR)
in the simulated images. The error bars represent the stan-
dard deviation of the errors for the reconstructions: using
different combinations of the rotations. The RMS error tends
towards a lower limit of ∼ 2%. The limit on the overall RMS
error is due to elements of the sample that heliometric stereo
cannot recover well with the cosine model, i.e. the sharp walls
on the side of the central feature and the deepest trench on the
top left feature (in the error map in Fig. 4). It can be noted
that improvements in SNR ratio have a similar impact as in-
creasing the number of detectors by an equivalent amount:
SNR improvement by a factor of 2 (and thus measuring time
by ∼ 4) has a similar impact as increasing the number of
detectors by 4.

method near vertical surfaces (such as around the central
feature) or deep features that have a higher proportion of
multiple scattering (such as the top left feature on the er-
ror map in Fig. 4). Reducing the number of detectors to
3 can result in good reconstructions, but can also cause
the reconstruction to fail (if detectors 1, 2, & 3 are taken
from Fig. 4 for example), demonstrating the importance
of slightly overconstraining the problem to get reliable
results.

B. Using a single detector

As discussed above heliometric stereo can also be ap-
plied to a microscope with only a single detector provided
rotations about the beam axis can be performed. It must
be note the all areas of a surface need to be covered by
at least 3 and preferably 4 images and that due to the
use of matrix-based techniques to reconstruct the sur-
face from the gradient field rectangular images need to
be used. This can be addressed either by i) padding the
images with the downside of some parts of the sample
being unconstrained, or ii) using a special scanning pat-
tern rotated counter to the sample rotation. The latter
approach is taken here.

Single-detector heliometric stereo was successfully
tested using the images obtained by rotating the sample
but only using the first detector, effectively creating a
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FIG. 10. For non-normal incidence the initial reconstruc-
tion is tilted due to the sample being ‘viewed from an angle’
(top) but may be rotated (middle) and then compared to the
original surface. The root mean squared error (bottom) was
16.7%, the higher calculated error compared to the normal
incidence case is due to a slight overall tilt, ∼ 0.4◦ left on the
sample after rotation which can be seen in the error image on
the left. Correcting for the ∼ 0.4◦ overall tilt by rotating the
surface yeilds an overall RMS error of 3.4%, slightly greater
but comparable to the error found in the normal incidence
case.

reconstruction from 5 images with only a single detector.
The images used for the reconstruction and the recon-
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structed surface are shown in Fig. 20 in the appendix.
The method of rotating the scanning pattern along with
the sample can be seen in the simulated helium images
there. The possibility of implementing heliometric stereo
using a single detector is important because the current
generation of helium microscopes operate in this config-
uration.

C. Non-normal incidence

As described in Section II, it is possible to reconstruct
the height of a sample using a beam that is incident the
sample at an angle. In general, the incidence direction of
the beam defines the z axis of the reconstruction method,
and thus the scanning pattern used by the sample manip-
ulation in the microscope should take this into account.

Once the surface is reconstructed it will appear tilted,
as the helium images are taken ‘from an angle’. The
surface can then be rotated to match the original sample.
To demonstrate the process, heliometric stereo has been
applied to simulated images with an incidence angle of
30◦ and the results are shown in Fig. 10.

Non-normal incidence can be combined with sample
rotation as described in Section III C 2: multiple recon-
structions are combined rather than using the additional
images to over-constrain a single reconstruction. An ad-
vantage of using rotations in this manner is that parts of
the sample that are not illuminated in one sample ori-
entation are illuminated in another. Fig. 11 compares
the errors in the reconstructed surface for i) non-normal
incidence and rotations with ii) a single non-normal inci-
dence data-set and iii) a normal incidence data set. The
reconstruction from a set of 4 images with a single sam-
ple orientation manages to capture a vertical surface in
the central feature on the sample better than the normal
incidence reconstructions (due to the surface not being
parallel to the beam in the non-normal case).

However as can be seen in the averaged image simply
averaging the 5 sets of data does not produce a better re-
construction than the normal incidence case (effectively
adding more detectors), thus a more complex averag-
ing mechanism is needed. A form of weighted averag-
ing could be employed, however it will not be simple to
identify which reconstructions to give a high/low weight.

D. The impact of aspect ratio on reconstruction

The test sample considered in the previous section
demonstrates the ability of the method to reconstruct
surfaces with relatively low aspect ratios where there is
little masking or multiple scattering. In order to under-
stand how the method works with higher aspect ratios
and where masking and multiple scattering start to af-
fect the reconstruction accuracy, a simple sample was
designed with 4 rods whose height and slope were varied.
Fig. 12 shows an example with an aspect ratio of 0.6.
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FIG. 11. The errors in the reconstructed surface for: nor-
mal incidence and rotations (left), a non-normal incidence set
of images without rotations (middle), and non-normal inci-
dence with rotations (right). Note that the single orientation
non-normal incidence reconstruction captures well one verti-
cal surface and the other very poorly, the high error region
being 1-2 pixel rather than 3 pixels wide—the beam inter-
sected the right-hand side of the sample here. However, when
all the different orientations are averaged in a simple manner
the reconstruction loses the sharp verticals: non-normal in-
cidence rotations do give us more accurate information, but
simple averaging does not fully make use of them.

The aspect ratio was quantified as the height over half
the separation between the centres of two rods. For the
simulated images used in this section the same virtual
microscope set up was used as presented in Fig. 3.

Fig. 13 shows how the accuracy of the reconstructed
height of the rods, measured as the difference between
the height in the circular regions on the top and the four
corners of the reconstruction, varies with the aspect ra-
tio. To evaluate what proportion of the error was being
introduced as a result of multiple scattering, reconstruc-
tions were also performed with only the single scattering
contribution of the images as a comparison. Presented
are the height accuracy both with and without multiple
scattering and with and without applying thresholding.
We note that the error introduced by multiple scatter-
ing is present at all but the smallest aspect ratios, red
points, but remains less than 20% for aspect ratios less
than 0.5. Using only single scattering, blue points, the
reconstruction keeps a high accuracy until masking be-
comes a significant feature in the images. The application
of thresholding does not appear to increase the accuracy
of the reconstructed height, green points, though there is
an effect on the shape as discussed in the next paragraph;
however thresholding does improve the accuracy at high
aspect ratios for the reconstruction where multiple scat-
tering is excluded, purple points. It is notable that even
where the multiple scattering is significant and is causing
a quantitative error in the reconstructed the qualitative
shape of the reconstructed surface is still recovered well,
as can be seen in Fig. 12, which is for ‘rods’ of aspect
ratio 0.6.

Observing Fig. 12 we note that while under conditions
where the height is not reconstructed to a high accuracy,
it does appear that the shape of the surface is still recon-
structed well. In order to quantify the accuracy of the
shape reconstruction we allow the reconstructed surface
heights to vary: z2 = αz+β and perform a least squares
minimisation to find α, β that fit the original surface best.
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FIG. 12. The original surface with and aspect ratio of 0.6
and the reconstruction with the microscope set-up shown in
Fig. 3. It can be seen that there is a good qualitative recon-
struction despite the height only being reconstructed as 75%
of the original height. The other samples used in the aspect
ratio investigation have same footprint and cone top but with
varying slopes of the sides.
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FIG. 13. Accuracy of the reconstructed height with respect
to the aspect ratio of the sample. 100% represents the origi-
nal height. Reconstructions were performed with and without
multiple scattering (red and light blue), and with the thresh-
olding method for removing masking introduced in Sec. III B
(green for multiple scattering and the threshold method and
purple for single scattering). The error bars represent the
level of noise in the regions of reconstruction.
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FIG. 14. RMS error between the original surface and the
scaled reconstruction normalised relative to the height of the
original sample. To consider the accuracy of the method in
reconstructing the shape of the surface, the reconstructed sur-
face is allowed to scale linearly to best fit the original surface.
It can be seen that the errors remain below 10% for aspect
ratios below 1 and below 5% for aspect ratio < 0.7. It can also
be seen quantitatively that the application of thresholding to
remove masked regions of the sample improves the accuracy
of the shape reconstruction.

The RMS error is then calculated for the scaled surface
and normalised by the height of the cone structure. The
results are shown in Fig. 14, where we note that the
overall accuracy in the shape of the reconstruction re-
mains better than 10% for all the samples below aspect
ratio 1 and that for aspect ratios < 0.7 the RMS error is
less than 5%. Overall there is good reproduction of the
shape of the surface for low to modest aspect ratios in
the sample. It is also shown that the application of the
thresholding method discussed in section III B improves
the accuracy of the shape reconstruction where there is
masking present. An example showing where the thresh-
olding method improves the shape of the reconstructed
surface is in Fig. 15 with the aspect ratio 0.8 sample.
Here, without thresholding, masking distorts the foot-
print of the cone, but removing that masking from the
reconstruction restores the footprint accurately.

E. The near future: high resolution, high aspect
ratio features

The 3D imaging of samples with high aspect ratio fea-
tures on the nanoscale presents a significant challenge to
current technology. We note from the results in the pre-
vious section that good shape reproduction is found with
the aspect ratio 1 sample, to about 8% error. Its height
is reconstructed as 66% of the original height. Thus high
aspect ratio features are reconstructed well qualitatively
with the current formalism. However, multiple scatter-
ing limits the quantitative accuracy of the height, which
represents the main obstacle to the application of the
method to high aspect ratio features.
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FIG. 15. The reconstructed surfaces with and without thresh-
olding applied for the aspect ratio 0.8 sample. It can be seen
that the circular footprint of the cone is distorted where the
thresholding is not applied and thus masked regions are in-
cluded in the reconstruction. By removing the masked re-
gions, the circular footprint is restored (see black circle).

Due to the scale independent nature of the ray tracing
simulation we may consider the interesting possibility of
applying heliometric stereo to a helium microscope with
the estimated best possible resolution of 10 nm [27]. At
such resolutions reconstruction of samples with heights
of ∼ 100 nm should be possible. A simulation was per-
formed with the appropriate scale between beam width
and rod height, it was chosen to change from the sample
normal to the detectors from 35.3◦, as in Fig. 3, to an
angle of 19.5◦ in order to reduce any masking from the
simulated images. A shape error of 7% was found and a
height 60% of the original height was reconstructed. It is
noted that the change of detector positions to minimise
masking has slightly improved the shape reconstruction
but made the absolute height error worse due to an in-
creased detection of the multiple scattering signal.

V. DISCUSSION

A. Design recommendations

There are certain design principles that that should
be considered when designing a neutral helium micro-
scope that is intended to perform heliometric stereo re-
construction. These considerations are given below and
while some of them are necessary for the application of
heliometric stereo to be possible, it should be noted that
some may also be counter to other scientific or practical
considerations.

First, in order to perform heliometric stereo without
rotating the sample then at least 4 not co-planar detec-
tors are needed. If 4 physical detectors are not possible
then the ability to rotate the sample about the beam axis
is required, which is likely to be easier with a normal in-
cidence microscope, and in that case at least 2 detectors
are recommended so that only one rotation is needed per

reconstruction. More than 4 detectors may have benefits
for difficult samples by allowing more aggressive thresh-
olding and may allow the application of more advanced
adaptations to heliometric stereo, but they are not nec-
essary.

If at least 4 detectors are present then a non-normal
incidence microscope would be more flexible as it allows
the sample to be imaged from different directions, giv-
ing more 3D information. It would also allow detection
on the specular condition that may be desirable in other
helium scattering experiments. The detectors should, as
close as possible, occupy circular regions of solid angle to
maintain the cosine assumption, and the solid angle of the
detectors should be kept modest, as far as the signal level
allows, in order to reduce the possibility of ‘partial mask-
ing’ where only part of the detector is within line of sight
of the sample. In order to keep the amount of masking
modest we suggest that detectors should be placed not-
too-far from the incidence direction to keep the amount
of masking modest: we suggest no greater than 30− 40◦.
All the above requirements are already met by the 2nd
generation SHeM being developed in Cambridge.

An alternative, potentially ideal, design of a helium
microscope may involve detectors that can be rotated
around the sample instead of fixed detector positions.
Such a configuration would have a high degree of flexi-
bility for both heliometric stereo and other experiments.
However, such an instrument would be a major technical
challenge that so far has not been demonstrated experi-
mentally.

For a single detector microscope to perform reconstruc-
tions it is necessary to include the ability to rotate the
sample about the beam axis to obtain a vector of inten-
sities ~I (see Fig. 20), which must be the key consid-
eration if designing a microscope for heliometric stereo
without multiple detectors. In practice enabling such ro-
tations will likely mean designing a machine for normal
incidence or one that can be adapted to operate at nor-
mal incidence.

B. Constraints

There are two notable constraints on the application
of heliometric stereo. The most important, which ap-
plies to all scanning helium microscopes, is the difficulty
in obtaining an adequate SNR in the underlying mea-
surements, given the incident helium intensity and the
limited efficiency of neutral helium detectors. The finite
SNR, together with the effect of multiple scattering, de-
grades the quality of the images and therefore the quality
the subsequent 3D reconstruction. However, a high level
of robustness to noise has been demonstrated in section
IV B; specifically, reconstruction is successful with SNR
levels well below those in recently published SHeM im-
ages. In addition, by rotating the sample to acquire a
greater number of virtual detectors, the effective SNR
can be further improved, albeit at the expense of longer
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measurement durations.
A less fundamental limitation on the presented method

is the reliance on the diffuse scattering assumption. Al-
though diffuse scattering is the predominant mode for
neutral helium atoms scattering from technological sam-
ples, other scattering distributions are also to be ex-
pected, although such deviations are likely to be highly
sample specific, making general comments difficult. How-
ever, it is possible to distinguish between cases where the
scattering distribution remains constant across the sam-
ple, and where it varies with position. If the scattering
distribution is expected to be constant but not diffuse,
Eqs (1), (2) and their dependencies must be re-written
as it cannot be generally expressed as a matrix multi-
plication. Assuming a known distribution or distribu-
tion family, one can still numerically solve for n̂ and the
distribution parameters using well-established methods
[36–38]. If the distribution family (its parametric ex-
pression) is not known, a non-parametric solver can be
used, provided that there is enough experimental data
[42]. Note that here the problem is to first find the func-
tion f so that I = f(n̂, d̂) where d̂ is known point-by-
point and I is measured and then invert it. If the para-
metric distribution varies across the sample, the problem
is still solvable but doing so is significantly harder as the
regions must be established in which there is a distri-
bution shift. Fortunately, such problems have already
been addressed in light scattering using the technique of
orientation-consistency, which requires the measurement
of sections with known orientations and similar scatter-
ing distributions [36]. Similar techniques could be po-
tentially implemented for helium, especially in the case
of samples with known ordered regions or structures.

C. Outlook

We note that diffraction at the detector opening (i.e.
airy disk diffraction for a circular entrance aperture) will
not influence the lateral resolution of the microscope.
This is because the wavelength of the helium atoms
for all practical purposes will always be less than 0.1
nm (the wavelength of a liquid nitrogen cooled beam).
Thus, the beam spread introduced through diffraction
at the detector opening is negligible even for nm lateral
resolution[4, 25, 26]

Masking and multiple scattering were highlighted as is-
sues with heliometric stereo, however, it has been shown
that where they are only present in small parts of a set
of helium images the overall reconstruction is still good.
The thresholding method has been shown to improve the
reconstruction results by removing masked regions of the
sample from the reconstruction where there is sufficient
constraint of the linear problem. Cases of large amounts
of masking and significant regions of multiple scattering
will occur where higher aspect ratios are present in the
sample and new methods will need to be applied to ac-
quire accurate reconstructions. Given the ability of the

ray tracing framework to model multiple scattering an it-
erative approach may be suggested as a route of further
work where the initial reconstruction is simulated with
ray tracing and the multiple scattering signal then re-
moved from the original images. It may also be possible
to combine heliometric stereo with triangulation-based
photogrammetry where accurate heights of high aspect
ratio features are needed.

We note that adaptations of photometric stereo
could be also potentially be applied to stereo elec-
tron or stereo helium ion microscopes and that a con-
siderable amount of work has already been done on
stereo electron microscopy using techniques based around
photogrammetry[43]. However, the challenge for the ap-
plication of photometric stereo here is that for images
generated by secondary electron imaging, the signal is
strongly dependent on the geometry of the system - i.e.
the signal is much stronger at edges, etc, - and, in gen-
eral, there isn’t a well defined angular selection of the
detection. This makes true to size surface mapping dif-
ficult [1]. Some work has been done also on 3D helium
ion microscopy imaging [44]. The problem with the sec-
ondary electron signal is similar here. For both stereo
scanning electron microscopy and stereo helium ion mi-
croscopy the work done so far has relied on very many
images being available for reconstructing the sample. In
cases where beam damage is induced on the sample, the
method presented here may be of particular interest.

VI. CONCLUSION

We present an adaptation of photometric stereo to neu-
tral helium microscopy: heliometric stereo. The method
takes advantage of the dependency of the scattered inten-
sity of a helium beam on the local normals of the sample.
Through ray-tracing simulations of a comparable helium
microscope with a spot size of 2 micron, we show that
the heliometric stereo method is able to resolve the three-
dimensional surface of microscopic samples by using just
a few images. The reconstructed surface displayed a root
mean squared error of roughly 2% of the characteristic
length scale of the sample with a signal to noise ratio of
just 30 in the images used. We find good shape recon-
struction with samples with aspect ratio up to 0.6, with
the shape being recovered with less than 5% error. Up
to aspect ratio 1.2 with the error is less than 10%. The
success at recovering the shape of the sample, even at
high aspect ratios, raises the possibility of accurate high
resolution and high aspect ratio 3D reconstructions in
the near future.

The only condition for the implementation of heliomet-
ric stereo is that sufficient images of the sample are ob-
tained to resolve the equations of the normals. For simple
geometries this can be done with just three images, that
can be obtained in a single experiment in a multi-detector
helium microscope, or by rotating the sample three times.
The easiness of implementation means that existing he-
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lium microscope configurations can be adapted, for ex-
ample by rotating the sample holders so that the helium
beam is normally incident.

Heliometric stereo is a convenient method for three-
dimensional resolution of helium microscopy samples, as
the slow acquisition times of helium microscopes and the
difficulty of manual point selection and tracing make
other methods, like triangulation-based photogramme-
try, more cumbersome to implement.

SUPPORTING DATA

A supporting data pack is provided to accompany this
publication: doi:10.17863/CAM.65551.
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Appendix A: Integration of aperture

In the simple model of diffuse contrast the detected
signal, I, is a function of the angle between the surface
normal and the centre of the detector aperture, ψ, and
the half cone angle of the aperture, β. An integral is
performed over the aperture modified by a cosine term,
cosχ, where the angle χ is the angle between the sur-
face normal and a single point on the aperture. Fig. 16
demonstrates the geometry of the model and the signal
is thus

I ∝
∫

cosχ dΩ. (A1)

Defining θ to be the angle to the axis from the surface
point to the centre of the detector aperture and ϕ to
be the azimuthal angle around that axis the integral be-
comes

I(ψ, β) ∝ 2

∫ π

0

dϕ

∫ β

0

dθ sin θ cosχ. (A2)

The cosine term, cosχ, may be written as the dot prod-
uct between the unit normal to the surface and the nor-
malised vector from the surface to the infinitesimal point
on the aperture being summed. Defining ϕ to be relative
to the x axis the unit normal is

n̂ =




sinψ
0

cosψ


 (A3)

which is fixed as ψ is a constant. the normalised vector
from the surface to a point on the aperture, d̂ can be
found by considering a Cartesian coordinate system on
the model. The aperture lies on the unit sphere directly
above the surface along the z axis by a distance cosβ.
Referring to Fig. 17 points on the plane of the aper-
ture have positions given by the 2D polar coordinates of
(r = z tan θ, ϕ), thus the components of the vector are
x = z tan θ cosϕ, y = z tan θ sinϕ. Thus the normalised
vector to the infinitesimal point on the aperture is

d̂ =
cosβ

cosβ
√

(1 + tan2 θ cos2 φ+ tan2 θ sin2 ϕ)



tan θ cosϕ
tan θ sinϕ

cosβ


 (A4)

= cosθ




tan θ cosϕ
tan θ sinϕ

1


 . (A5)

and the dot product is then

cosχ = n̂ · d̂ = cos θ (sinψ tan θ cosϕ+ cosψ) (A6)

ψ

θ

ϕ

β

Aperture on the
unit sphere

Element of surface

Integration point

x

z

χ

FIG. 16. The geometric set up of the contrast model. A cir-
cular aperture is on a unit sphere with an element of surface
in the centre. The element of surface is at some angle ψ to the
centre of the aperture and the extent of the aperture is de-
fined by its half cone angle β. To calculate the signal intensity
for a particular (ψ, β) half of the aperture is integrated over
(by symmetry the intensity from the other half will be equal)
through the angles (θ, ϕ). The integration variables and ge-
ometry are shown in red, and the variables of signal are shown
in blue. The angle χ, in yellow, is between the normal to the
surface element and the line from the surface element to the
integration point, cosχ weights the integral according to the
cosine model of diffuse scattering.

which allows the signal, from eq. (A2), to be written as

I(ψ, β) ∝ 2

∫ π

0

dϕ

∫ β

0

dθ sin θ cos θ (sinψ tan θ cosϕ

+ cosψ). (A7)

1. Analytic form

The integral in eq. (A7) can be evaluated analytically
to give an explicit expression for the signal:

I ∝ 2 sinψ

∫ π

0

cosϕ dϕ

∫ β

0

sin θ cos θ tan θ dθ

+ 2π cosψ

∫ β

0

sin θ cos θ dθ (A8)

= 0 + 2π cosψ

∫ β

0

1

2
sin 2θ dθ (A9)

=
1

2
π cosψ (1− cos 2β) . (A10)

The above holds, however, only for a limited range of the
(ψ, β) space—as the aperture gets larger and the angle



17

θ

ϕ

1 z = cosβ

r = z tan θ

β

y = r sinϕ

x = r cosϕ

FIG. 17. The geometry deriving the vector to the infinitesi-
mal point on the aperture via a Cartesian system. The three
components of the vector from the surface element to an in-
tegration point on the detector aperture are shown in blue, x
and y in terms of the intermediate variable r. As in Fig. 16
the integration variables are shown in red. Due to the sym-
metry of the system in the y axis the values of −y and y are
equivalent.

of the surface gets larger part of the aperture is going to
fall ‘behind’ the surface, thus would contribution 0 to the
integral. Eq. (A10) may thus be applied when

ψ + β ≤ π

2
. (A11)

When eq. (A11) does not hold the cosine approximation
of macroscopic apertures does not hold. Where detector
apertures are small (small β this can largely be ignored.

Appendix B: Least squares reconstruction

The appropriate norm used in the least squares Recon-
struction is the Frobenius norm on a matrix, which may
be defined as

‖A‖F =
√

tr(AAT). (B1)

Appendix C: Sample dimensions

Fig. 18 details all the relevant sample dimensions. The
dimensions have been rounded to the third decimal. A
full reconstruction and source code with the complete
measures are included in the supplementary documenta-
tion.
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FIG. 18. Sample dimensions in µm. Note how the sphere
protruding from the sample is only one third of a sphere of
diameter 100 µm and therefore the measure shown is just
its projection over the sample plane. The heights of each
structure are: 16 µm for the sphere, 16 µm for the top right
structure, -5 µm ,-4 µm, -5 µm, -8 µm from left to right for the
four depressed structures at the bottom right of the sample,
15 µm for the pentagon at the bottom left and 10 µm for the
central structure. Complete dimensions and code to generate
the sample are included in the supplementary documentation.
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FIG. 19. Selection of uninformative masked regions by using
the histogram of helium microscopy images.

Appendix D: Histogram-based threshold method

In order to select a masking threshold, a scalar is cho-
sen so that it visually captures all masking contributions,
while still ensuring that the reconstruction is fully deter-
mined at all points. These contributions can be seen in
the intensity histogram of the images as peaks in small
intensity values (see Fig. 19).
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FIG. 20. 5 images taken with a single detector while rotating
the sample—note the masks face in the same direction across
the images indicating the detector direction. The scanning
pattern was rotated along with the images to minimise under-
constrained parts of the sample (parts that have fewer than
3 data points), thus the same region of the sample is imaged
in each case.

Appendix E: One detector reconstruction

Figure 20 shows 5 images taken with a single fixed posi-
tion detector while rotating the sample and the scanning
pattern. Note the masks maintain their orientation while
the sample topography rotates. The scanning pattern is
modified such that the same area of sample is observed
in each image.
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The manipulation of neutral atoms and molecules via their de Broglie wave properties, also referred to as
de Broglie matter wave optics, is relevant for several fields ranging from fundamental quantum mechanics tests
and quantum metrology to measurements of interaction potentials and new imaging techniques. However, there
are several challenges. For example, for diffractive focusing elements, the zero-order beam provides a challenge
because it decreases the signal contrast. Here we present the experimental realization of a zero-order filter, also
referred to as an order-sorting aperture for de Broglie matter wave diffractive focusing elements. The zero-order
filter makes it possible to measure even at low beam intensities. We present measurements of zero-order filtered,
focused, neutral helium beams generated at source stagnation pressures between 11 and 81 bars. We show that for
certain conditions the atom focusing at lower source stagnation pressures (broader velocity distributions) is better
than what has previously been predicted.We present simulations with the software ray-tracing simulation package
MCSTAS using a realistic helium source configuration, which gives very good agreement with our measurements.

DOI: 10.1103/PhysRevA.95.023618

I. INTRODUCTION

de Broglie matter wave optics has attracted much interest
in recent years. For reviews related to quantum metrology and
fundamental quantum mechanics tests, see [1–3]. de Broglie
matter waves created by supersonic expansion, in particular
neutral helium beams, are established tools in surface science
[4,5]. Presently, helium beams are mainly used in studies of
surface diffraction and dynamics, but the research is ongoing
for applying them in microscopic imaging. The helium beam
has a low energy (typically less than 100 meV) and does
not penetrate solid material: The helium beam maps the
electron density distribution of the surface. This makes neutral
helium microscopy an attractive candidate for the imaging of
insulating and/or fragile surface structures and nanocoatings.
By using two detectors, recording the scattered beams at
different angles, it should even be possible, in principle, to
make a nanoscale stereo microscope. The first helium focusing
experiments of neutral heliumwere carried out by Carnal et al.
[6] using a metastable beam and later by Doak et al. [7] using a
ground-state heliumbeam.Thefirst neutral heliummicroscopy
images were obtained using a diffractive focusing element:
A Fresnel-Soret zone plate (zone plate with a square-wave
amplitude transmission function) was used to focus a helium
beam down to a few micrometers [8] and later even below
1μm [9]. An alternative pinhole helium microscopy setup
was subsequently introduced [10–13]. The first reflection
microscopy images were obtained with this method [10].
Diffractive focusing elements have also been used to focus
molecules [14] and to measure atom interaction potentials

*Present address: Institute of Nanotechnology, Karlsruhe Institute
of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-
Leopoldshafen, Germany.
†bodil.holst@uib.no

[15,16] and have been proposed as a method for investigation
of the Casimir-Polder force [17].

Because of the low energy of the atoms or molecules in the
beams used in de Broglie matter wave optics experiments, the
beams cannot penetrate solid material as mentioned above and
therefore the diffracting focusing elements have to work by
reflection or for transmission must be free-standing suspended
structures. This is a fabrication challenge and limits the number
of possible elements. Fresnel-Soret zone plate focusing has
been used on several occasions as described above (see also
[7,18]). Recently, another diffracting focusing element, the
atom sieve, was introduced [19]. The atom sieve is based on
the photon sieve invented earlier [20]. It consists of pinholes of
varying size arranged across the Fresnel zones in such amanner
that it is possible to focus on a spot with a diameter smaller
than the smallest pinhole. In addition, higher-order diffraction
and secondary maxima can be suppressed by several orders of
magnitude.

As an alternative to Fresnel zone plates, mirrors can be
used as focusing elements [21–23]. The use of graphene as a
mirror coating gives an inert and very stable surface [24]. In
addition, one-dimensional focusing with quantum reflection
from a curved substrate has been demonstrated [25].

Up until now it has not been possible to control the curvature
of mirrors with high precision, so Fresnel-zone-based optical
elements remain the most promising approach for the focusing
of neutral-atom and molecular beams, but the zero-order
contribution is a major issue. For a standard Fresnel-Soret
zone plate, 25% of the incident beam (half of the transmitted
intensity) goes into the zero-order focus and only about 10%
into the first-order focus [26]. The standard procedure, also
adopted in x-ray applications, is to block the central part of the
zone platewith an opaquemiddle stop, but this does not prevent
the zero-order beam from contributing through the open frac-
tion of the focusing element and the larger the middle stop, the
higher the intensity loss. Tofilter out the last fraction of the zero
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order a so-called order-sorting aperture needs to be applied, as
is done, for example, in nanoscale x-ray imaging [27].

In this paper we present the realization of an order-sorting
aperture (zero-order filter) for de Broglie matter waves. An
additional advantage apart from the zero-order filtering is that
it is possible to reduce the size of the middle stop so that
the intensity in the focus can be increased. This is particularly
important for de Brogliematter waves, because they often have
low intensity. The successful implementation of the zero-order
filter has enabled us to test systematically the focus size of
neutral helium beams at lower pressures and we present a
Monte Carlo simulation model of the focusing for all pressure
regimes based on the MCSTAS instrument simulation software
for neutron instrumentation [28,29].

II. EXPERIMENTAL SETUP

The experiments presented here were carried out in the neu-
tral helium microscope prototype instrument at the University
of Bergen. The microscope is popularly referred to as NEMI,
short for neutral microscope.Wewill adhere to this convention
for the rest of the paper. The neutral helium beam was created
by a free-jet expansion from a source reservoir through a (5 ±
1)-μm-diam nozzle. The central part of the beam was selected
by a skimmer placed 11.5 ± 0.5mm in front of the nozzle. Two
different skimmers were used: a (10 ± 1)-μm-diam skimmer
and a (50 ± 2)-μm-diam skimmer. The beam source in NEMI
has been specifically designed for microskimmer experiments,
allowing one to position the skimmer relative to the nozzlewith
submicrometer precision [30].

A drawing of NEMI can be seen in Fig. 1. The beam
transmitted through themicroskimmer is focused by a Fresnel-
Soret zone plate 192 μm in diameter with a 50-μm-diam
middle stop [31] onto a translation stage (PI miCos). For the
experiments presented here, a 10-μm-wide slit was mounted
on the translation stage and used to scan the beam. The beam
fraction transmitted through the slit was detected in a pitot
tube detector placed under the translation stage.

The Fresnel zone plate used for the experiments presented
here is designed to have a focal length of 168.14 mm for
a wavelength of λ = 0.055 nm, corresponding to a beam
temperature of about 320 K (there is a small wavelength
dependence also with the source reservoir pressure). The focal
length is chosen to fit the geometry of theNEMI systemwith an
object distance g (distance between the skimmer and Fresnel
zone plate) of 935 mm and an image distance b (distance
between Fresnel zone plate and slit plane) of 205 mm.

All experiments were carried out at source pressures
between 11 and 81 bars. The corresponding most probable
He beam wavelength varies slightly with pressure from λ ≈
0.0555 ± 0.0004 nm to λ ≈ 0.0564 ± 0.0004 nm. The width
of the velocity distribution, and thereby the width of the
wavelength distribution, varies much more. Traditionally, this
beam property is quantified using the parameter of speed ratio
S, where S is defined as S = 2

√
ln(2) v/�v [32], where �v

is the full width at half maximum (FWHM) of the velocity
distribution and v the most probable beam velocity. Since
NEMI does not have a time-of-flight system, theoretical values
for the speed ratios were obtained by numerically solving the

FIG. 1. Drawing of NEMI used to perform the measurements
presented here. The focused helium atom spot profile is observed by
moving a 10-μm slit aperture, mounted on a translation stage, across
the focused spot and measuring the pressure increase in the Pitot tube
detector. To the right the detector setup used for reflection imaging
can be seen. It is not used for the experiments presented here.

Boltzmann equation [15,33,34]. The speed ratio varied from
9.0 to 25.8.

III. THEORETICAL BACKGROUND

A. Analytical model

The size of the focused helium atom spot is determined
by the geometry of the system, the size of the source, and
the chromatic aberration caused by the velocity spread of the
beam. The chromatic aberration for a Fresnel zone plate can
be described by the transversal width of the chromatic point
spread function [35]. Using a simple geometrical argument
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FIG. 2. Diagram of the zero-order filter setup. After the free-jet
expansion through the nozzle, the central part of the helium beam is
selected by the microskimmer. The beam hits the Fresnel zone plate.
The central part of the zone plate has been blocked by a circular
middle stop, which filters part of the zero-order beam. The rest of
the zero-order beam (and most of the higher orders) is blocked by
the order-sorting aperture with a diameter slightly smaller than the
middle stop.

as described in [14], we get an expression for the transversal
width w,

w =
√
ln(2)

DZP

S
, (1)

where DZP is the diameter of the Fresnel zone plate and S

is the speed ratio of the beam. In the model it is assumed
that the point spread function does not change significantly
when slightly off axis and hence that each point on the source
will contribute with a point spread function of the same size.
The final focused spot size dfocus can thus be described as a
convolution of the transversal width w with the geometrical
image of the source. A simplified model for the final focused
spot size is given by approximating the source image and w

with Gaussian functions. The skimmer diameter dsk is taken
to be the FWHM of the object function [9]. We thus obtain for
the theoretical final spot size dfocus,

dfocus =
√

w2 + (M dsk)2, (2)

where M = b/g is the magnification factor given by the
geometry of the system (see Fig. 2).

B. MCSTAS simulations

MCSTAS [36] is a ray-tracing simulation software package
developed specifically with the purpose of simulating neutron
scattering instruments and experiments [28,29], distributed
using the GNU General Public License. The domain specific
language (DSL) is built on ANSI-C. There are three levels of
coding in MCSTAS. The bottom level is the MCSTAS kernel,
where all low-level particle transportation routines, geometry
engines, etc., are placed. It is written in ANSI-C and provides
the basis for the MCSTAS DSL and compiler used on the other
levels. The middle level is the component files. These files are
the building blocks of the MCSTAS simulated instruments and
here the Monte Carlo choices are taken. The top level is the
instrument file. It consists of a number of calls to different

components and a geometrical description of the instrument
setup.

The assumption used throughout the simulations is that
the helium atoms behave just like neutrons, only four times
heavier. As long as we are only interested in the diffrac-
tion properties and set the material parameters so that the
“neutrons” cannot penetrate any material, this is a valid
assumption. MCSTAS does not take into account interaction
between particles, which is appropriate for the description of
the supersonic expansion beam used here.

In order to simulate NEMI in MCSTAS, four instrument
components were implemented: (i) a beam source, (ii) a zone
plate, 192 μm in diameter with a 50-μm middle stop, (iii) the
corresponding zero-order filter with a 40-μmopening, and (iv)
a detection plane. The beam source has been implemented as
a ray-tracing version of the ellipsoidal quitting surface model
with a cos3 density distribution over the quitting surface as
described in [37]. The quitting surface represents the distance
from the nozzle in any direction, where the atoms have
reached molecular flow and are no longer interacting. The
velocity distribution over the quitting surface is obtained by
solving numerically the Boltzmann equation [15,33,34] (see
also Ref. [38]).

The simulations were carried out by tracing around 108

rays, originating from the source. The starting position and
velocity of each ray was selected at random, according to
the source intensity and velocity distribution described above.
MCSTAS in its present form does not include the phase in the
simulations. Each ray was traced to the plane of the zone plate.
Using the velocity (wavelength) associated with the ray, the
standard formula for the wavelength-dependent focal length
of a zone plate [35], the starting position of the ray at the
quitting surface, and the position of the ray at the zone plate,
the position of the ray in the image plane was determined.
This position was then traced back or forward to the detector
plane. To simulate the experiment, the rays were binned in
10-μm-wide slots at 0.3-μm distance, which corresponds to
the readout positions of the 10-μm-wide detector slit. A ray
would be binned into all the overlapping slots at its point of
arrival.

IV. RESULTS AND ANALYSIS

A drawing of our zero-order filter setup can be seen in
Fig. 2. The crucial idea is that the zero order can be filtered
out completely by combining a middle stop with a collimating
aperture (order-sorting aperture). We use a circular aperture,
40 μm in diameter, designed to be slightly smaller than the
50-μm-diam middle stop. This ensures that the zero-order
beam is completely blocked regardless of where the aperture is
placed in the beam line as long as the zone plate and aperture
are aligned. To ensure maximum focused intensity transfer,
the position of the aperture is adjusted so that the cone of the
beam coming into focus matches the diameter of the aperture.
Because the wavelength of the atoms is so small (less than
0.1 nm) compared to the diameter of the aperture (20–50 μm),
the optimum position can be found through simple geometrical
optics. For our system here, using a Fresnel zone plate with
a diameter of 192 μm and an image distance of 205 mm, the
optimum position of the 40-μm-diam aperture is 42.7 mm
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FIG. 3. Experimental focusing results showing two focused
beams with and without zero-order filtering together with MCSTAS

simulations. The two intensity curves have been normalized relative
to the maximum intensity measured with zero-order filtering and the
background has been subtracted for both curves. As can be seen,
the zero-order background is completely removed by our zero-order
filter. These experiments were carried out at a pressure of 76 bars,
using a 10-μm diameter skimmer.

from the image plane. For our measurements the distance was
about 43 mm.

Figure 3 shows experimental results and simulations of
focusing of a 76-bar helium beam down to about 3 μm. The
results were obtained using the 10-μm-diam skimmer. The two
graphs in the figure show focusing with and without the zero-
order filter. Zero-order filtering is successfully demonstrated.
There is good agreement between simulations and experimen-
tal data for both the filtered and unfiltered measurements.
The measured intensity in the focus for the unfiltered beam
is slightly lower than predicted by the simulations. Further,
the footprint to the right is slightly raised compared to the
simulations. Both of these effects can be explained as a slow
response of the pressure gauge to a sudden pressure change.
First, the gauge does not respond rapidly enough to the pressure
increase, which leads to a slightly too low maximum intensity
measurement. Then it does not respond rapidly enough to the
pressure drop, which leads to a raised footprint. The slit was
scanned from the left to the right quite fast. Each data point
corresponds to about a 5-s measurement time.

Figure 4 shows focusing results for varying pressures from
11 to 81 bars corresponding to speed ratios between 9.0
and 25.8. The results were obtained using the 50-μm-diam
skimmer. The predictions of the analytical models for speed
ratios of 9.0 and 25.8 are plotted convoluted with a 10-μm slit
function to match the experimental data. MCSTAS simulations
for speed ratios 9.0 and 25.8 are also plotted. There is no
change in focus size with speed ratio for the experimental
data. It can clearly be seen that for the 50-μm-diam skimmer
used here the analytical model overestimates the focus size
for low-speed ratios and does not reproduce the footprint. The
reason for this is that the analytical model corresponds to a
situation where each point source illuminates uniformly in
all directions. The model does not account for the change in

FIG. 4. Experimental focusing results for a 50-μm skimmer
with pressures ranging from 11 to 81 bars, plotted together with
simulations (sim.) and the analytical model (mod.); here S denotes
the speed ratio.

angular distribution of the beam incident on the zone plate for
off-axis points on the source. The larger the source (skimmer)
and the smaller the speed ratio, the larger this effect will be. It
has previously been shown that the analytical model provides
good agreement for small skimmers in the micrometer range
(see, for example, [9]). The MCSTAS simulations predict only a
very small change in focus size with speed ratio and fit the data
very well except for the footprint to the right, which is slightly
raised. The reason for this is presumably the slow response of
the pressure gauge to the pressure drop discussed already for
Fig. 3. Further simulations (not shown) show that for skimmer
sizes in the micrometer range, the two models converge.

V. CONCLUSION

In this paper we presented the experimental realization of
a zero-order filter (order-sorting aperture) for diffractive de
Brogliematterwave focusing elements.Weused the zero-order
filter to perform measurements of focusing of a neutral helium
beamwith source stagnation pressures between 11 and 81 bars.
We showed that an analytical model previously used in the
literature overestimates the focus size for low-speed ratios
for the 50-μm-diam skimmer used in our experiments. We
attributed this to the fact that the angular distribution of the
beam incident on the zone plate changes as the source points
move away from the axis. This effect was not accounted for
in the analytical model. Simulations of the focusing results
using the program package MCSTASwith an ellipsoidal quitting
surface source model yielded very good agreement with the
experimental results.
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Salvador Palau,5 Karl K. Berggren,2 and Bodil Holst1, b)

1)Department of Physics and Technology, University of Bergen, Allegaten 55,

5007 Bergen, Norway

2)Research Laboratory of Electronics, Massachusetts Institute of Technology,

MA 02139, USA

3)Institute for Experimental and Applied Physics, University of Kiel,

Leibnizstrasse 19, 24098 Kiel, Germany

4)Ruprecht Haensel Laboratory, University of Kiel and DESY, Kiel,

Germany

5)Department of Engineering, Institute for Manufacturing, University of Cambridge,

CB30FS, UK

1



Neutral helium microscopy is a new tool for imaging fragile and/or insulating struc-

tures as well as structures with large aspect ratios. In one configuration of the

microscope, the neutral helium atoms are focused as de Broglie matter waves using

a Fresnel zone plate. The ultimate resolution is determined by the width of the out-

ermost zone. Due to the low-energy beam (typically less than 0.1 eV), the neutral

helium atoms do not penetrate solid material and the Fresnel zone plate therefore

has to be a free-standing structure. This creates particular fabrication challenges.

The so-called Fresnel photon sieve structure is especially attractive in this context,

as it consists merely of holes. Holes are easier to fabricate than the free-standing

rings required in a standard Fresnel zone plate for helium microscopy, and the di-

ameter of the outermost holes can be larger than the width of the zone that they

cover. Recently, a photon sieve structure was used for the first time, as an atom

sieve, to focus a beam of helium atoms down to a few µm. The holes were randomly

distributed along the Fresnel zones to suppress higher order foci and side lobes. Here

we present a new atom sieve design with holes distributed along the Fresnel zones

with a fixed gap. This design gives higher transmission and higher intensity in the

first order focus. We present an alternative electron beam lithography fabrication

procedure that can be used for making such high transmission atom sieves with very

high resolution, potentially smaller than 10 nm. The atom sieves were patterned on

a 35 nm or a 50 nm thick silicon nitride membrane. The smallest hole is 35 nm, the

largest 376 nm. In a separate experiment, patterning µm-scale areas with hole sizes

down to 15 nm is demonstrated. The smallest gap between neighbouring holes in the

atom sieves is 40 nm. They have 47011 holes each and are 23.58 µm in diameter.

The opening ratio is 22.60 %, and the Fresnel zone coverage of the innermost zones is

as high as 0.68. This high-density pattern comes with certain fabrication challenges,

which we discuss.

a)Electronic mail: ranveig.flatabo@uib.no
b)Electronic mail: bodil.holst@uib.no
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I. INTRODUCTION

The first neutral helium microscopy images were published in 20081. Several groups have

worked on the technique2–6 . In a neutral helium microscope (NEMI), a beam of neutral

helium atoms with narrow velocity (wavelength) distribution is used to image a sample. An

image is obtained by measuring either the reflected or transmitted signal as the beam is

scanned across the sample. The energy of the beam is less than 0.1 eV for a wavelength of

0.1 nm, which means that the atoms probe the outermost electron density distribution of

the sample without penetrating into solid material7. These properties make neutral helium

microscopy particularly suited for the investigation of fragile and/or insulating surfaces as

well as high aspect ratio structures. Recently it was shown that helium microscopy can

distinguish between different metal films on an insulating substrate5. However, the big

challenge is to create a high-resolution microscope, partly because the focusing element

must be of the binary type with either completely transparent or completely opaque areas.

Helium-atom focusing with a binary Fresnel zone plate was first carried out by Carnal et

al. using a beam of metastable helium atoms8. The first focusing of a neutral, ground state

helium beam with a zone plate was carried out by Doak et al9,11. Currently, the best zone

plates made for helium microscopy have a nominal outermost zone width of 50 nm10.

The Beynon-Gabor zone plate, which is also binary, has been suggested as an alternative

candidate for focusing helium atoms12. The main advantage of the Beynon-Gabor zone plate

is that it has no higher-order foci. Unfortunately, it is very challenging to fabricate. In 2015

a new optical diffraction element, the atom sieve, was introduced and used to focus helium

atoms down to 3.6 µm13. The atom sieve is a direct analog to the photon sieve, which

was invented in 2001 for applications with soft X-rays14. It consists of holes of varying

diameter, arranged across the Fresnel zones in such a manner that it is possible to focus to

a spot with a diameter smaller than the smallest hole. In addition, higher-order diffraction

and secondary maxima can be suppressed. There are several advantages of the atom sieve.

Firstly, it is easier to fabricate free-standing holes than free-standing ring segments as no

support structure is needed. Moreover, the design can be tuned so that the diameter of the

outermost hole is larger than the width of the outermost zone that it covers. In contrast,
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the minimum structure size of a first order Fresnel zone plate is limited by the width of the

outermost zone27. A higher resolution can be obtained by using higher order foci, but this

comes with a significant reduction in intensity. For a standard Fresnel zone plate 10.1 %

of the incident beam goes into the first order focus and only 1.1 % into the third order17.

For an atom Fresnel zoneplate these numbers are further reduced due to the support rods

needed to keep the zone plate ring structure together. Intensity is a big issue in helium

microscopy15,16, so this is a major limitation.

Here we present a new high-transmission atom sieve design. The paper begins with an

experimental section, where we first present the design requirements followed by the fabri-

cation procedure. There then follows a result and discussion section showing SEM images

of the fabricated atom sieves and the first atom sieve transmission tests demonstrating that

the structure is transparent to atoms. The paper finishes with a summary and conclusion.

II. EXPERIMENTAL

A. Atom Sieve Design Considerations

In the original photon sieve work, suppression of higher order foci and side lobes were

particularly important, and a Weber transmission window was used, giving holes randomly

distributed along the zones14. This limits the number of holes and hence the open area ratio

(total transmissivity). The first atom sieve used the original photon sieve design and had an

opening ratio (total transmissivity) of 9.22 % only, giving a transmissivity of 1.86 % of the

incident beam into the first order focus13. For the neutral helium microscope it is crucial to

ensure maximum intensity in the first order focus, as discussed in the introduction. For this

reason we changed the design of the atom sieve, and used a transmission window similar to

a rectangular shaped window, but with increasing transmission towards the center, to fit as

many holes as possible in each zone based on a predefined minimum gap. The minimum

gap is discussed below. By doing so, the opening ratio of the sieve (total transmissivity)

increases to 22.60 % and the intensity in the first order focus is 4.57 %.

Another important decision was to determine hole sizes that could realistically be pat-

terned. This is important for the resolution, but also for the transmissivity, as it determines

how large a zone plate can be made for a given focal length. The focal length was chosen so

4



that it corresponds to a microscope that can be constructed and further so that the velocity

spread of the beam does not cause chromatic abberations (see Ref. 15). The hole size varies

from 376 nm to 35 nm. The smallest holes that have ever been made with direct-write

lithography are around 1 nm in size. They were made using helium ion beam lithography18.

Direct-write ion lithography is in principle an attractive technique for atom sieve patterns,

as one can pattern directly on the membrane i.e. no resist is needed. This enables a one-step

fabrication process where the result can be examined in-situ. Moreover, the backscattering

contribution to the lithographic point spread function of light ions, such as helium and neon,

is shown to be minimal, and hence dose modifications might not be needed19,20. However,

these are relatively new techniques with low throughput, limited stability and, in the case

of helium ions, low sputtering yields21. Electron beam lithography, followed by reactive ion

etching, was chosen as the method of fabrication, and an atom sieve pattern with a mini-

mum hole size of 35 nm was realized. To ensure maximum transmissivity the diameter of

the holes was chosen to be the same as the zone widths. As discussed in the introduction,

it is possible to design a transmission function enabling the hole diameter to be larger than

its zone, but this comes at the cost of intensity.

The aim is eventually to install the atom sieve in a new helium microscope, currently

being designed. This determined a focal length of approximately 10 mm for a helium atom

de Broglie wavelength of approximately 0.1 nm for the sieve. With minimum hole size and

focal length given, the sieve diameter could be calculated (the sieve diameter is 23.58 µm).

Finally, the gap between adjacent holes was selected. This is essential for the transmission

of the device, since large values reduce the number of holes. The gap between neighbouring

holes varies from 53 nm to 40 nm, depending on how many holes one can fit into one zone.

Hence, the zones in the atom sieve have a very high zone coverage (i.e. exposed area in one

Fresnel zone divided by the total area of the corresponding zone). The zone coverage of the

innermost zone is 0.68 (corresponding to a hole diameter of 376 nm and a gap of 53 nm) and

it slowly decreases to 0.39 for the outermost zone (for a 35 nm Fresnel zone overlaid with

holes of 35 nm and a gap of 40 nm). The minimum gap of 40 nm was chosen as a safe value,

making sure that it was possible to pattern separate holes with electron beam lithography

and transfer the pattern into the membrane.

The atom sieve design is shown in Fig. 1. Note that it is not rotationally symmetrical.

The stripe in the horizontal direction exists as the positioning of the holes start at the same
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angle on each zone. Each zone is filled with as many holes as possible (with the given

minimum hole distance).

2 μm

FIG. 1. Atom sieve design maximized for total transmissivity. The pattern is not symmetrical,

which is discussed in the text. The central opaque area corresponds to the first zone, which is kept

closed for stability reasons.

B. Fabrication Procedure

The fabrication process is illustrated in Fig. 2. It shares some steps with the fabrication

procedure used in22, but with some modifications. In this work we use 35 nm or 50 nm thick

SiNx membranes with low stress (low stress membrane was chosen to prevent the membrane

from cracking). The membrane thicknesses were chosen to keep the aspect ratio of the

etched holes adequate. However, it comes with the obvious trade-off of being more fragile

than thicker membranes, which we discuss in Sec. III.

First, photolithography was used to pattern membrane windows on the backside of the

SiNx/Si/SiNx wafer. To open the membrane windows, a dry etch step was performed using

15 SCCM (gas flow rate: standard cubic centimeters per minute) CF4, 150 W, 10 mTorr

for 2 minutes. Then, the underlying silicon was etched using KOH (30% KOH in de-ionized

water) at 80◦ C, creating SiNx membranes.
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SiNx ARC

PMMASiO2

Step 1:
Open membrane backside
using optical lithography

Step 2:
KOH etch to create
freestanding membrane

Step 3:
Apply etch mask: 
- Spin coat ARC
- e-beam evaporate SiOx
- Spin coat PMMA

 
Expose and develop PMMA

RIE step 1:
Transfer pattern into 
SiOx using CF4 dry etch

RIE step 2:
Transfer pattern into ARC
using O2/He dry etch

RIE step 3:
Transfer pattern into 
SiNx using CF4 dry etch 

Si

FIG. 2. (Color online)Step-by-step fabrication procedure for creating the free-standing membrane

structure.

As the resist, poly(methylmethacrylate) (PMMA) alone cannot withstand the reactive

ion etching that creates free-standing holes, the membrane was coated with an etch mask

consisting of 110 nm antireflective coating (ARC), 10 nm SiOx and 60 nm PMMA (2 % in

anisole, 950 K). Firstly, ARC was spin-coated onto the chip at 3000 RPM for 1 minute and

baked at 180◦ C for 3 minutes. 10 nm SiOx was then deposited by the means of electron

beam evaporation. Finally, PMMA was spin-coated onto the sample at 3000 RPM for 1

minute and baked at 180◦ C for 3 minutes.

The PMMA was exposed using 125 keV electrons (ELS-F125 Elionix), 1 nA current and

2.5 nm step size. As the beam enters the resist, the electrons interact with the resist and the

substrate and causes energy to be delivered to points different from the point of incidence,

commonly known as proximity effects. Due to the high zone coverage of the atom sieve

design (0.68 to 0.39) it is extremely sensitive to such unintended exposure, especially as the

final structure needs to be free-standing. To find the correct dose (i.e. areal dose density)
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multiple atom sieves were patterned with a single exposure dose, analogous to the standard

dose matrices. The innermost zones are receiving the largest dose per zone and get the

largest amount of unintended exposure. This causes over-exposure. Therefore, the dose was

linearly increased from 2.8 mC/cm2 to 3.8 mC/cm2 going from the innermost zone to the

outermost zone (again using a 125 keV electron beam, 1 nA current and 2.5 nm step size).

It should be noted that there are accurate and rigorous ways to calculate the correct dose

needed in a pattern of high surface coverage23,28,29. However, as a crucial part in this work

is to transfer the pattern into the membrane, which also causes a minor hole broadening

(discussed below), the correct doses was found by iteration.

The sample was developed in 1:3 MIBK:IPA (methyl isobutyl ketone:2-propanol)at 0◦ C

for 30 seconds, and dried using pressurized nitrogen. Cold development was chosen, as it

has been found to improve feature quality and resolution24,25.

The pattern was transferred to the SiOx-layer using 15 SCCM of CF4 at 150 W and 10

mTorr. Pattern transfer into the ARC was done using 20 SCCM He and 10 SCCM of O2

at 10 mTorr and 200 W. Finally, pattern transfer into the SiNx was done using 15 SCCM

of CF4 at 150 W and 10 mTorr. Reactive ion etching produces anisotropic etch profiles.

Nevertheless, a broadening of about 5 nm in the diameter is found when comparing circles

in an atom sieve that was not etched (i.e. atom sieve in PMMA) with holes in an atom

sieves.

III. RESULTS AND DISCUSSION

A. The Atom Sieve

Figure 3 shows an overview image of an atom sieve. The diameter of the sieve is 23.58 µm

± 0.01 µm and it contains 47011 holes. Close-up SEM images are given in Fig. 4. The holes

of the innermost zone have a diameter of 378 nm ± 4 nm, and the holes of the outermost

zone 38 nm ± 4 nm. Both slightly too large and slightly too small holes will lead to a

reduction in transmissivity into the first order focus, because a too large hole will open up

into the neighbouring zone and give destructive interference. The overall deviation, taken

for all holes is so small that the reduction is likely to be negligible30. It is very important

for the function of the atom sieve that the size of the holes and their position are correct
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to within a fraction of the Fresnel zone they cover, since otherwise a hole will contribute

with destructive interference30. In other words, the positioning of the small holes needs to

be more accurate than the positioning of the big holes. In Fig. 5 a SEM image of the

fabricated atom sieve (black holes) is superimposed with the design pattern (white ”holes”).

As can be seen, the positioning of even the smallest holes is accurate to within a fraction of

the hole diameter.

5 μm

FIG. 3. Overview SEM image of the fabricated free-standing atom sieve.

The membrane thickness of 35 nm was chosen to keep the aspect ratio of the etched

holes adequate. However, this comes with a trade-off of being more fragile than a thicker

membrane. The 35-nm thick membranes easily broke due to handling or transport. An

improvement in stability was seen when using a membrane thickness of 50 nm.

In a separate experiment it was desirable to investigate the smallest diameter hole-sizes.

A lower hole density, and a random hole distribution was selected for these test experiments,

as illustrated in Fig. 6. The diameter of the holes in the SEM image ranges from 25 nm to

15 nm.
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1 μm

500 nm

500 nm

FIG. 4. Close-up SEM images of a free-standing atom sieve. The holes of the innermost zone have

a diameter of 378 nm ± 4 nm, and the holes of the outermost zone are found to be 38 nm ± 4 nm.
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100 nm

FIG. 5. Overview SEM image of the free-standing atom sieve where the design pattern is super-

imposed onto the image. The design-holes are white, while the underlying SEM image consists of

black holes.

B. Atom Transmission Tests

Ultimately the atom sieve will be integrated in a new neutral helium atom microscope

instrument. However, prior to that we wanted to check if it is transmissive to atoms. This

is crucial, because in order to be a functional atom sieve, the holes must be free standing. It

can be difficult to evaluate just by optical inspection or inspection in a SEM if all material

has been removed. This is illustrated in Fig. 7, where a 20 µm circle on a SiNx membrane

appears to be fully etched, but in fact is not. For this reason we installed the atom sieve

as a sample in our existing helium microscope26 and measured the overall transmissivity by
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200 nm

FIG. 6. Free-standing holes with a diameter ranging from 25 nm to 15 nm.

sending a 20 µm helium beam onto the sample. Presently the minimum resolution in our

helium microscope is only around 5 µm, so it was not possible to do a detailed mapping.

Figure 8 presents a line scan of the sieve. The transmissivity is normalized to the intensity

measured when no sample is present (i.e. 100 % signal), and the background has been

subtracted. The transmissivity of the sieve is found to be 23.8% ± 3%, in good agreement

with the nominal transmissivity of 22.6 %.

20 μm (a) 5 μm (b)

FIG. 7. (a) Transmission optical microscopy image and (b) SEM image of a 20 µm circle in a 200

nm thick SiNx membrane that appears to be free-standing. However, transmission helium atom

microscopy measurements revealed that the structure was not etched through.
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FIG. 8. Overall transmissivity of the atom sieve measured in the neutral helium microscope.

The transmissivity of the sieve is found to be 23.8% ± 3%, in good agreement with the nominal

transmissivity of 22.6 %.

IV. SUMMARY AND CONCLUSION

We have fabricated atom sieves, with a smallest hole diameter of 35 nm. The atom

sieves were designed for maximum transmission so that the diameter of the smallest hole

corresponds to the width of the outermost zone. This means that we have made a zone

plate which can be used to do neutral helium microscopy with resolution in the range of 35

nm. In addition, we have demonstrated writing of µm-scale areas with holes down to 15

nm in diameter. By using a transmission window where the hole areas are reduced in the

outer parts e.g. a Weber window, it is possible to design an atom sieve with a resolution

larger than the hole diameter. In a recent paper Palau et al16 shows that with the velocity

spread and intensity of present day beam sources and present day detector technology,

the limiting factor for a realistic helium microscope design is the resolution of the optical

element, determined by the width of the outermost zone. Thus our work shows that helium

microscopy with a resolution better than 15 nm should be possible.
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Lett. 83, 4229, 1999

10T. Reisinger, S. Eder, M.M. Greve, H.I. Smith, B. Holst, Microelectron. Eng., 87, 1011,

2010

11R. Rehbein, J. Phys. IV France, 104, 207, 2003

12M.M. Greve, A. Vial, J. Stamnes, and B. Holst, Opt. Express 21, 28483, 2013

13S.D. Eder, X. Guo, T. Kaltenbacher, M.M. Greve, M. Kalläne, L. Kipp, and B. Holst,

Phys. Rev. A, 91, 043608, 2015

14L. Kipp, M. Skibowski, R.L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann,

Nature, 414, 184, 2002

15A.S. Palau, G. Bracco and B. Holst, Phys. Rev A, 95, 013611, 2017

16A.S. Palau, G. Bracco and B. Holst, Phys. Rev A, 94, 063624, 2016

17A.G. Michette, Optical Systems for Soft X Rays, (Plenum Press, New York), 1986

18D.A. Oulianov, R.A. Crowell, D.J. Gosztola, I.A. Shkrob, O.J. Korovyanko, and R.C.

Rey-de-Castro, J. Appl. Phys. 101, 053102, 2007

19D. Winston, B.M. Cord, B. Ming, D.C. Bell, W.F. DiNatale, L.A. Stern, A.E. Vladar,

M.T. Postek, M.K. Mondol, J.K.W. Yang, K.K. Berggren, J. Vac. Sci. Technol. B, 27,

2702, 2009

15



20D. Winston, V.R. Manfrinato, S.M. Nicaise, L.L Cheong, H. Duan, D. Ferranti, J. Marsh-

man, S. McVey, L.A. Stern, J. Notte, K.K. Berggren, Nano Lett., 11, 4343, 2011

21M.M. Marshall, J. Yang, A.R Hall, Scanning, 34, 101, 2012

22J.O. Grepstad, M.M. Greve, T. Reisinger and B. Holst, J. Vac. Sci. Technol. B, 31, 06F402,

2013

23G. Owen, J. Vac. Sci. Technol. B, 8, 1889, 1990

24W. Hu, K. Sarveswaran, M. Lieberman, G.H. Bernstein, J. Vac. Sci. Technol. B, 22, 1711,

2004

25B. Cord, J. Lutkenhaus and K.K. Berggren, J. Vac. Sci. Technol. B, 25, 2013, 2007

26S.D. Eder, A.K. Ravn, B. Samelin, G. Bracco, A.S. Palau, T. Reisinger, E.B. Knudsen, K.

Lefmann and B. Holst, Phys. Rev. A, 95, 023618, 2017

27G. Schmahl and D. Rudolph, Zone Plates for X-Ray Microscopy in X-Ray Microscopy.

(Springer Series in Optical Sciences), 43, 1984

28M. Peckerar, R. Bass, K.W. Rhee, J. Vac. Sci. Technol. B, 18, 3143, 2000

29M. Parikh, Journ. Appl. Phys., 50, 4371, 1979

30E. Hecht, Optics 4 Edition, (Addison-Wesley), 2001

16



132 Publications



Chapter 5

Bibliography



134 Bibliography



Bibliography
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