
University of Bergen
Department of Informatics

Machine Teaching for Explainable

AI: Proof of Concept

Author: Brigt Arve Toppe H̊avardstun

Supervisor: Jan Arne Telle

June, 2022

Abstract

In today’s society, AI and machine learning are becoming more and more relevant. Fol-

lowing this, the field of Explainable AI is becoming of more relevance. The research

project ”Machine Teaching for Explainable AI” aims to explain black-box AIs to humans

using suitable examples. In this thesis, we present a proof of concept of the basic system

in the project proposal. We aim to explain a Convolutional Neural Network trained on

a boolean relation of bitmaps containing letters. The thesis introduces a simple repre-

sentational language to bridge the gap between the Convolutional Neural Network and a

human. We look at how to measure the perceived complexity of humans and mimic their

reasoning given this task.

Acknowledgements

After completing this thesis, I would like to thank myself for the work I put into this

thesis. Non the less, I would not have been able to complete this thesis without the

support, encouragement and guidance of many people around me. First and foremost,

I would like to thank my supervisor Jan Arne Telle for his support and motivation in

dire times and for always being available for enlightening discussions. As my thesis is

heavily connected to the research project ”Machine Teaching for Explainable AI” I have

had the pleasure of discussing my thesis with a talented group. I would especially like to

thank César Ferri, Jose Hernández-Orallo and Pekka Parviainen for their input in forming

my thesis. Furthermore, I would also like to thank my fellow students for the positive

social and academic environment and feedback on my never-ending enquiries. I would

also like to thank the administration at the Department of Informatics for providing an

outstanding learning environment these last five years. Last but not least, I would like

to thank my dear family and friends for their support and for believing in me, without

them I would not have been able to do this.

Brigt Arve Toppe Håvardtu

Tuesday 21st June, 2022

Contents

1 Introduction 1

1.1 Background . 1

1.2 Our area of interest . 1

1.2.1 Machine Teaching introduction 2

1.2.2 Formal definition . 3

1.2.3 It takes two to teach . 4

1.3 Problem statement for the thesis . 6

1.3.1 Teaching Set S . 7

1.3.2 γ - Scoring function . 7

1.4 Visual overview of system . 7

1.5 Overview of chapters . 8

2 The AI we want to explain - θAI 9

2.1 Definition of θAIs task . 10

2.1.1 The ground truth Boolean function ϕ 10

2.2 Defining the data set . 11

2.2.1 Description of an instance . 11

2.2.2 Variance when generating instances 12

2.2.3 Labels . 14

2.3 Implementation of θAI . 14

2.4 Training results of θAI . 16

2.4.1 Least complex data set . 17

2.4.2 Introducing rotation . 17

2.4.3 Rotation and scaling . 18

2.4.4 Adding free placement of letters 19

2.4.5 Reducing alphabet . 19

2.4.6 Conclusion . 20

i

3 Model of the human 21

3.1 What humans see - Representational language 22

3.2 Weaknesses of RL . 24

3.3 Search space - Motivation for RL . 24

3.3.1 Changing Σ alphabet size . 26

3.3.2 Conveying the Teaching Set to LH 28

3.4 Boolean expressions – modelling human reasoning 29

3.4.1 Implementing argminθM :θM |=S − Karnaugh map 31

3.4.2 β - Simplicity of Boolean Expressions 35

3.5 Occam’s Razor . 37

3.6 Output θM . 37

3.7 A seemingly anomalous result . 37

4 Comparing θAI and θM - λ 40

4.1 Comparing θAI and θM . 40

4.1.1 λ score RL-consistent-AI . 42

4.2 Speed up implementations . 44

5 Complexity of Teaching Set - δ(S) 45

5.1 Why penalise complex Teaching Sets? . 46

5.2 Different δ implementations . 47

6 Subset selector σ - argminS:θAI |=S 50

6.1 Different subset selectors σ . 51

7 Results 55

7.1 Comparing suggested δ . 55

7.2 Comparing the different subset selectors σ 57

7.3 Better accuracy gives better teaching set score 62

8 Conclusion and future work 66

8.1 Further comparing best Teaching Sets . 66

8.2 Performing trials on humans . 67

8.3 On the topic of LM . 68

8.3.1 New representational language . 68

8.3.2 Quine–McCluskey speedup . 69

8.4 On the topic of δ . 69

8.5 On the topic of subset selector σ . 70

ii

Bibliography 71

A Overview of system 75

iii

List of Figures

1.1 Overview of connection of subsystems. A detailed overview can be found

in Appendix A.1. 8

2.1 Overview of the input to our system. 9

2.2 Bitmap AD . 11

2.3 Bitmap BCD . 11

2.4 Illustration of FixedSquares . 13

2.5 Bitmap w/rotation ABC . 13

2.6 Bitmap ACD, too big. Overlapping, and out of image. 14

2.7 Bitmap AB, too small. A is broken up, B looks like R. 14

2.8 Bitmap with rotation and scaling. 14

2.9 Illustration of CNN implementation. Conv = Convolutional layer. Dens

= Fully dense layer . 15

2.10 Confusion matrix and accuracy history low variance data set 17

2.11 Confusion matrix and accuracy history w/rotation data set 18

2.12 Confusion matrix and accuracy history data set with rotation and scaling 18

2.13 Bitmap ABCD with free placement, rotation and scale. 19

2.14 Confusion matrix and accuracy history data set with rotation, scaling and

free placement . 19

2.15 Confusion matrix and accuracy history data set with rotation, scaling and

free placement . 20

3.1 Diagram of LM . 22

3.2 Example of similar bitmaps ”AB” and ”BA” 25

3.3 A visual representation of Teaching Set SL
r in RL 29

3.4 K-Map for SL
r . 32

3.5 Example of not maximal rectangles. 33

3.6 K-Map rectangle giving the clause (¬A ∧ C). 33

3.7 K-Map giving ϕ = (¬A ∧ C) ∨ (¬C ∧ ¬D) 34

3.8 K-Map giving ϕ = (C ∧D) ∨ (B ∧ ¬D) 34

iv

3.9 K-Map giving ϕ = (A ∧B) ∨ (C ∧ ¬A) 34

3.10 K-Map for counter example . 38

3.11 K-Map for counter example first Teaching Set 38

3.12 K-Map for the expended Teaching Set. 39

4.1 Diagram of δ. 41

4.2 θAI break down in percentages. 42

4.3 Truth table for Boolean expression ϕ = (A ∧B) ∨ (C ∧ ¬A). 42

4.4 Mean Squared Error table, Col.2: θAI break down - Col.3: ϕ truth table -

Col.4: Squared Error between θAI and ϕ. 43

4.5 Breakdown of RL-consistent-AI θAI in RL 43

5.1 Overview of δ . 46

6.1 Overview of the central teaching system. The input is AI to be taught and

a data set. First TA use σ to select a Teaching Set – the green box ”Select

Subset”. Secondly TA is the control unite in the program. It make calls

to LM , λ and δ, combines the results of each sub system into a score for

each Teaching Set. 51

7.1 Graphing average complexity . 58

7.2 Graphing average compatibility . 58

7.3 Graphing average score . 59

7.4 Graphing average complexity . 61

7.5 Graphing average compatibility . 61

7.6 Graphing average score . 61

7.7 Graph of the Teaching Set scores of the AIs. 63

7.8 Graph of the validation accuracies of AIs. 63

7.9 Graph of the λ scores of the Teaching Sets for the AIs. 63

7.10 Graph of the δ-scores of the Teaching Sets for the AIs. 63

7.11 Accuracy and score of optimal Teaching Set for different AIs sorted by

accuracy. 64

A.1 Large detailed overview of system. All sub parts are presented in enlarged

versions throught the thesis. 76

v

List of Tables

3.1 An overview of total number of Teaching Sets at some chosen Teaching

Set sizes. 27

3.2 Overview of total number of Teaching Sets. Given RL-consistent-AI AI. 28

3.3 Truth table for SL
r . x being arbitrary value. 30

3.4 Table showing similarity of concepts: consecutive letters cΣ and Boolean

expression cb = (A ∧B) ∨ (C ∧ ¬A) . 31

5.1 Overview of considered δ functions . 47

6.1 Table of all subset selector implemented in this thesis 52

7.1 The number of equally scored minimum Teaching Sets for different δ-

functions, ran on different θAI , here defined by their ϕ-function. 56

7.2 The minimum Teaching Sets for ϕ = ¬(C ∧ D). All minimum Teaching

Sets found, and which δ-functions whom found each S to be a minimum

Teaching Set. 57

7.3 ϕ = (A and B and not C) or D. All minimum Teaching Sets found, and

which δ-functions whom found each S to be a minimum Teaching Set. . . 57

7.4 Table showing time used in seconds for different σ. 62

7.5 Accuracy of different AIs. 63

7.6 Delta, Lambda and Gamma-score of best Teaching Set for different AIs. . 64

7.7 Breakdown of AI100 and AI500 in RL. 65

vi

Listings

2.1 Code for the structure of CNN model . 16

vii

Chapter 1

Introduction

1.1 Background

In our society, we interact with machine learning daily. To strengthen trust in these

systems, the field of Explainable AI (XAI) is becoming ever more critical. XAI aims to

help us understand these machine learning systems. In the field of XAI, there are multiple

directions to achieve this understanding. One of them is example-based XAI. With

example-based XAI one aims to find examples showing how the machine learning system

acts in different situations. The hope is that humans can extrapolate these examples

into a general behaviour and understand how the machine learning system acts. Another

field working with extracting examples is Machine Teaching. In this thesis, we develop a

simple proof of concept for using Machine Teaching techniques as a tool for XAI.

1.2 Our area of interest

Machine Teaching is the research area of actively selecting data sets used in teaching.

In Machine Teaching, we have different learning situations; these can be human-human,

human-machine, machine-machine or machine-human learning/teaching situations. The

goal is to achieve effective communication of concepts.

1

1.2.1 Machine Teaching introduction

Machine Teaching is a field of research focusing on actively selecting information sets

such that the information conveyed from a teacher T to a learner L is as large as possible

while simultaneously keeping the information set simple, as described by Zhu et al. [26].

In machine teaching, as in general, the teacher and students need to agree upon the

domain in which the teaching will take place. This domain could, for instance, be the

natural numbers. Within machine teaching, a domain X is the set the teacher will select

examples (numbers) from to teach any concept from a concept class C. These concepts

will in the simplest case be some subsets of X. The concept class C could for instance be

all sets of multiples of all values i, C = ∀i∈N+ [n|n ∈ N+, n mod i == 0]. T conveys the

concept class C to L, and this will be the framework for the learning. T then selects a

concept c to be taught, for instance all multiples of 3; c3 = [n|n ∈ N+, n mod 3 == 0].

To teach c3, T would select some affirming numbers from c3 and some negations from

X/c3, such that L understands c3. In this example, T could, for instance, select the

affirmative elements {3, 6, 9} and negative examples {1, 2, 5}.

Another example of this given by Zhu et al. ”An overview of Machine Teaching” [26]

follows. Imagine we want to teach an AI θAI with input space [0, 1], and output space

{True,False}. Let‘s say θAI returns True for all x ≥ α, and False for x < α.

fα(x) =

{
True, x ≥ α

False, x < α

}
This gives us the concept class to be taught:

C = [fi|i ∈ (0..1)]

The teacher conveys this concept class C to the student as the framework of teaching.

Let us say the teacher now select the concept c = θAID = fα=0.5(x). To describe θAID

to a learner we could show the learner some examples of what θAID would output given

different inputs. We could select {(0.9,True), (0.1,False)} as our Teaching Set, and show

the learner this. The Teaching Set chosen is valid in the sense that θAID(0.9) = True

and θAID(0.1) = False. Based on the information in C, the learner should be able to

conclude that

θAID(x) = True, x ∈ [0.9..1]

2

and

θAID(y) = False, y ∈ [0..0.1]

However, this does not give the learner information in the (0.1, 0.9) range.

A Teaching Set conveying more information would be (0.51,True), (0.49, False).

From this information, the learner — assuming the learner to be a rational actor —

would extract more information about θAID based on the knowledge of C.

With this technique, we can create arbitrarily good Teaching Sets of size two for any

θAI . Given a maximum allowed error e, we create the Teaching Set (α + e
2
, T rue), (α− e

2
, False),

and then the only area without perfect knowledge would be of size e.

Another learning format is passive learning [26]. The teacher shows the learner n

random data points, and the learner concludes from this. To achieve the same confidence

e with passive learning, one would need n = O(1
e
) examples. One average each point is

then 1
n
distances apart, and hence θAID is expected to be between two data points being

1
n
= 1

1
e

= e distance apart.

Selecting a Teaching Set of size two could be considered a clever selection of a Teaching

Set. With this clever selection, we can better communicate what we want our third part

to learn. The clever selection of Teaching Sets and clear communication is the essence of

machine teaching. Instead of giving massive amounts of random data instances, we aim

to provide the same information with fewer data instances.

1.2.2 Formal definition

In ”An overview of Machine Teaching” [26], Zhu et al. gives a generalized formal definition

of Machine Teaching:

min
D,θ̂

TeachingRisk(θ̂) + ηTeachingCost(D) (1.1)

s.t θ̂ = MachineLearning(D)

In Equation 1.1 the aim is to find a Teaching Set - D, s.t. when D is shown to a learner,

the learner produces a guessed model θ̂. TeachingRisk is a function describing how

closely the learners learned concept θ̂ matches the concept θ∗ the teacher want to teach.

3

The greater the difference the greater the value of TeachingRisk. To achieve the minimal

TeachingRisk one would therefore give the learner as much information as possible, such

that the learner learns the entirety of θ∗. This solution would not be interesting, nor

feasible. There is too much unique input data, hence no learner can be shown it all.

In contrast, TeachingCost is a function punishing the use of too much information

in conveying θ∗. The simple solution of using all possible data is not good, as this

would create a huge punishment of TeachingCost. In principal we have to find a balance

between total information - low TeachingRisk and high TeachingCost - and a simplified

explanation - high TeachingRisk and low TeachingCost. Tipping this balance in either

direction is controlled by the variable η. A high value of η yields a simple explanation,

while a low value yields a θ̂ closely matching θ∗.

1.2.3 It takes two to teach

Teaching always involves two entities, one teacher T and one learner L. The teacher

aims to teach the learner a given concept θ∗. The words learner and teacher generally

bring associations to a human teacher working in a school, and learners are the pupils of

this teacher. However, this is not the only situation with a teacher and learner relation.

As discussed by Zhu et al. [26] we can have human-human, human-machine, machine-

machine or machine-human teaching situations - (first being teacher, second being

learner). Each of them comes with different difficulties and possibilities. Let us look

briefly into what each of these entails.

Human-human teaching

Human-human teaching is the format of teaching that springs to mind for most people if

they hear the word learning and teaching. It is the example given from the schoolroom

and how we collaborate with our peers. As humans, we have gained experience in how to

teach other humans new concepts and can draw from our own experiences. For instance,

in human-human teaching, we often communicate with more than just our words. Body

language is an essential part of effective communication [7].

Coming into the field of Machine Teaching, it is vital to remember the biases we have

learned about good teaching techniques in human-human teaching situations, as these

might not be the best techniques for other learning situations.

4

Human-machine teaching

In machine learning, humans are teaching machines the concepts of driving cars [3] or the

concepts of humans, chairs and dogs in images [2]. A wildly popular strategy is supervised

learning [6]. In supervised learning, humans generate large amounts of labelled examples

and hope the machine can generalize the concept. This is possible as long as the problem

is PAC-learnable [23]. PAC-learnable says something about what level of model error

we can expect given a set of random instances from the training data drawn from a

probability distribution.

However, humans can also create more ”handcrafted” training data for the machine.

As discussed by Zhu et al. [26] a human with the knowledge of the learning gradient of

a machine would be able to predict the guessed model θ̂ by the machine after viewing a

new instance. The human could therefore create a new instance with their knowledge of

the gradient to nudge the θ̂ closer to the model θ∗ the human wants .

Machine-machine teaching

Looking at machine-machine teaching, we could envision a teacher machine with knowl-

edge of the gradient of a student machine selecting training data to make a Teaching Set.

Having a machine with access to another machine’s gradient is similar to the ideas talked

about in Human-machine teaching. Having a machine select Teaching Set to nudge the

gradient of another machine seems reasonable at first glance. Instead of having a human

perform the laborious selection of the Teaching Set, a machine could do this. Although

this sounds nice, one arrives at the problem that the teacher needs to have the model θ∗

it wants to teach already understood. It can be hard to imagine a situation where we

have a machine understanding θ∗ and still want to teach another machine to understand

the same concept θ∗.

Presented by Zhu et al. [26] we see one malicious use case, namely poising attack

[10]. In a poising attack, the aim is to make minimal changes in the training data - e.g.

adding/changing/deleting examples in the training data - s.t., a post condition of the

trained model is satisfied.

min
D

||D0 −D||p (1.2)

s.t. Φ(A(D))

5

The notation used in Equation 1.2 matches the notations established at this chap-

ter’s beginning for machine teaching. The measure of the post condition being satisfied,

Φ(A(D)), can be viewed as TeachingRisk. At the same time, minimizing editing on the

original training set D0 into the new training set D matches the TeachingCost.

Machine-human teaching

Machine teaching in a machine-human teaching environment will be the focus of this

thesis. As presented by Zhu et al. [26] the most common and exciting use of machine-

human teaching is to have a machine teach a human. The machine needs to have a model

of the human to figure out how the humans will respond to different data instances. These

models can be Generalized Context Models [15], Occam’s Razor [4] or other systems used

to approximate the human mind. A robust machine-human teaching system would open

up many possibilities in the real world. One could, for instance, have a machine teach

a human some black-box AI, ensuring the human that the AI’s actions are aligned with

the human’s beliefs of the AI. Another example could be in the education system. Today

one human teacher is teaching upwards of 15-20 pupils alone [1], and in introductory

courses at the university, this can reach upwards of a few hundred students [8]. Using

machine-human teaching, one could target students with individual examples best suited

for them.

1.3 Problem statement for the thesis

This thesis will build on work presented in the research proposal ”Machine Teaching

for Explainable AI”[21]. The project aims to further develop Machine Teaching as a

tool for Explainable AI, specifically example-based teaching. In the research proposal,

Equation 1.3 was put forwards as a framework for the research project.

T (θAI) = argmin
S:θAI |=S

{δ(S) + λ(θAI , θM) : LM(S) = θM} (1.3)

LM(S) = argmin
θM :θM |=S

{β(θM)} (1.4)

In these equations T is a teacher, aiming to teach a concept θAI to a human learner

LH . T aims to find a Teaching Set S such that LH(S) = θAI . To achieve automation

6

and increase iteration speed a model LM of LH is used. T will therefore aim for T (θAI) =

S s.t. LM(S) = θAI .

δ is a complexity measure of a potential Teaching Set S, punishing complex examples.

λ is a compatibility score, measuring the similarity of θAI and LM(S). λ measures

how closely the guessed concept θM matches the concept one wants to teach θAI . In

this thesis, we discuss different implementations of Equation 1.3 and aim to provide a

Proof of Concept (PoC), showing the viability of this framework. In particular we discuss

definitions and implementation of θAI , LM , β, argminθM :θM |=S, λ, δ, and argminS:S|=θAI
.

1.3.1 Teaching Set S

In the thesis, we will be discussing different Teaching Sets S to teach the concept θAI .

We therefore define a Teaching Set S to consist of multiple (labelled) examples S =

{e1, e2, .., em}. One example ei contains a data instance Bj, as well as θAIs predictions of

that data instance θAI(Bj). We therefore write ei = (Bj, θAI(Bj)) to describe an example.

1.3.2 γ - Scoring function

In the Equation 1.3 we seek the minimum of δ(S)+λ(θAI , θM). We need to carefully bal-

ance δ(S) and λ(θAI , θM). If δ returns many order of magnitude larger values than λ, we

would always get the empty Teaching Set. If λ returned values orders of magnitude larger

than δ, one would get massive Teaching Sets containing all possible data instances. To

balance δ(S) and λ(θAI , θM) one could adjust the functions δ and λ themselves to achieve

a good balance. However we will be defining γ(S, θAI , θM , µ) = δ(S) + µ ∗ λ(θAI , θM).

This allows us to use a single value µ to express which of δ(S) and λ(θAI , θM) are to be

weighted more. The use of µ in this manner can be observed in ”An Overview of Machine

Teaching” [26].

1.4 Visual overview of system

We present a diagram of the system we made in the thesis. Hopefully, the reader finds

this diagram helps to understand the proof of concept presented.

7

Figure 1.1: Overview of connection of subsystems. A detailed overview can be found in
Appendix A.1.

In the Figure 1.1 we show how the information flows from one part of the system

to another. It starts within the control system TA. TA selects a Teaching Set S to

be evaluated. δ evaluates S and reports a score. Meanwhile, LM also receives S and

produces a guessed concept θM . θM is passed onward to λ where a compatibility score

is calculated. We get a score for each Teaching Set and iterate on these to finally return

the best scored Teaching Set.

1.5 Overview of chapters

We now give an overview of the work we will present in this thesis. This first chapter

discussed the general aspects of Machine Teaching, and we introduced the work on which

we will make a proof of concept in Equation 1.3. As we aim to work with Machine

Teaching for Explainable AI, we introduce a task and an AI to solve this task in Chapter

2. This AI will be the AI we aim to explain in our PoC. In the following Chapters 3,

4 , 5 and 6, we define the system we built. In Chapter 3, we define the model of our

human LM as presented in Equation 1.4. After defining LM , we define how we measure

the compatibility of LMs guessed model θM with θAI in Chapter 4 by defining λ. We then

define the δ-complexity of a Teaching Set in Chapter 5. With δ and λ defined we can

compare the score of different Teaching Sets. To conclude the implementation overview,

we discuss how to traverse the search space of Teaching Sets to find the optimal S by

defining argminS:S|=θAI
in Chapter 6. We then discuss different implementation versions,

and general results of running the system in Chapter 7. To conclude the thesis, we

summarise the work and potential directions for future work in Chapter 8.

8

Chapter 2

The AI we want to explain - θAI

As a reminder, we repeat the main formula:

T (θAI) = argmin
S:θAI |=S

{δ(S) + λ(θAI , θM) : LM(S) = θM}

LM(S) = argmin
ΘM :ΘM |=S

{β(ΘM)}

We need concrete implementations of all these concepts. As we are to explain some

AI model θAI , we first define θAI . In this Chapter, we define a practical problem and

discuss implementations of the AI leading to a concrete θAI . An diagram overview of this

is shown in Figure 2.1.

Figure 2.1: Overview of the input to our system.

9

2.1 Definition of θAIs task

We had a few attributes in mind when selecting the task our AI model would solve. We

did not want something too complex; it had to be simple to implement and change, as

we were to make a Proof Of Concept. At the same time, the problem should not be

too simple, we want to check if our method will convey the AI model’s errors concerning

the ground truth. We also wanted to be able to test our system with different AIs. To

achieve this, we wanted the ground truth to be easily changeable. An easily changeable

ground truth ensures we can compare AIs trained on different ground truths.

Ultimately, we chose that θAI ’s task should be to learn a Boolean function on four

variables: ϕ(A,B,C,D). This ϕ is changeable in the system; however, we will be using

the Boolean function ϕ = (A ∧B) ∨ (C ∧D) in most examples.

The input to θAI will be a bitmap containing a subset of letters. The bitmaps repre-

sentation of literals gives us the possibility of extensive training data to train our AI. In

Figure 2.2 we show such a bitmap. We bring attention to the fact that the bitmap shown

in Figure 2.2 contains the letters A and D. All input bitmaps will contain a subset of the

letters in our alphabet Σ = {A,B,C,D}.

The output space of θAI is {0, 1}. We label an example 1 if ϕ = (A ∧ B) ∨ (C ∧D)

evaluates to True, and 0 if ϕ evaluates to False. To check ϕ given a bitmap, we find the

present letters and evaluate ϕ with present letters equal to True and the rest set to False.

For the bitmap shown in Figure 2.2 we would have ϕ(A = 1, B = 0, C = 0, D = 1) =

(A∧B)∨ (C ∧D) = (1∧ 0)∨ (0∧ 1) = 0, and hence a label of 0. On the other hand the

bitmap shown in in Figure 2.3 would be evaluated as ϕ(A = 0, B = 1, C = 1, D = 1) =

(0 ∧ 1) ∨ (1 ∧ 1) = 1, and a label of 1. The goal is for θAI to learn this boolean relation

from bitmaps to truth evaluation.

This problem fits our demands as we can easily create a new ground truth by swapping

the ϕ function.

2.1.1 The ground truth Boolean function ϕ

The ground truth function used to train θAI is a Boolean function ϕ. ϕ could be any

Boolean function on the literals in our alphabet Σ = {A,B,C,D}. All Boolean functions

10

Figure 2.2: Bitmap AD Figure 2.3: Bitmap BCD

are expressible by a truth table of size 2|Σ|, in our case 24 = 16. As the rows in the truth

table can hold either 0 or 1 as their evaluation value, the total number of possible truth

tables is 216 = 65536. 65536 unique ϕ functions gives us 65536 unique θAI ground truth

functions. This vast range of ground truth functions allows us to compare our system on

different θAI .

Each bitmap can contain a subset a of the alphabet Σ. We will be using this subset

notation quite often so we define the subsets of Σ to be ΣC :

ΣC = {#, A,B,C,D,AB,AC,AD,BC,BD,CD,ABC,ABD,ACD,BCD,ABCD}

By ϕ(a), for some string a ∈ ΣC , we mean ϕ evaluated with only letters present in a set

to True. For example, given a = ACD, we can write this as ϕ(a) = ϕ(A = 1, B = 0, C =

1, D = 1).

2.2 Defining the data set

Having defined the problem at large, we next define the input data. We discuss design

choices in defining the data set and different parameters accessible when producing it.

2.2.1 Description of an instance

In more detail, the input to our AI will be a 64x64 bitmap. The cells in the bitmap will

either have the value 0 or 1. The cells having the value 1 will together make up one

11

or more letters from our alphabet Σ = {A,B,C,D}. The Figures 2.2, 2.3 depicts two

examples of the bitmaps we will be giving as input to θAI .

We want to have some specific properties for each data instance. These are mostly

sanity checks to ensure our AI will receive decent data. Although intuitive, it is essential

to make sure our data is sane. Poor data in means poor predictions are coming out.

Our rules for the data go as follows:

• For each letter, the entirety of the letter is to be contained within the picture.

• No letter is to overlap with another letter.

• The size of the letter should not be too small. The letter shall contain enough

pixels such that the characteristics of the letter are maintained, i.e. recognizable

for a human.

Given our alphabet Σ = {A,B,C,D} we uniformly select each image to contain one

of the 16 possible combinations in ΣC .

Because we uniformly select from ΣC , it means 1
16

of our data set will be blank images

which all are identical. Having this many duplicates might not be ideal. However, this

gives θAI an evenly distributed data set among all data instances. We believe these

negative effects will be minor and will therefore not look more into it.

2.2.2 Variance when generating instances

When generating data, we have made some parameters to control the level of variance

in the data set. These parameters control the complexity of our data. By adjusting

these parameters, we can achieve a smooth increase in difficulty for our AI. Smoothly

controlling the data sets’ difficulty allows us to find a suitable data set for our AI model,

where it performs reasonably well.

FixedSquares – placement of letter

For the parameter FixedSquares, we divide the image into four squares –top left, top

right, bottom left, and bottom right, illustrated in Figure 2.4. Each of these squares

might then contain a letter. Crucially no letter is overlapping these squares. Turning

this parameter on will make the data set less complex, as its counterpart is just freely

placed letters randomly in the image. Without FixedSquares, the algorithm might

find all letters at the top or bottom of the image, increasing the data set’s variance.

FixedSquares corresponds to a less complex data set, more prone to be easily overfitted.

12

Figure 2.4: Illustration of FixedSquares

Rotation – orientation of the letter

With the parameter Rotation, we allow the letters to have different orientations. We have

selected a subset of orientations O = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}. Letting

each letter take on one of these orientations increases variance and complexity in our data

set. The bitmap in Figure 2.5 is an example of an image from a data set with Rotation

allowed.

Figure 2.5: Bitmap w/rotation ABC

Scale - size of the letter

With Scale, we allow letters to have different sizes. A broader range of sizes on the

images will increase the variance and complexity of our data set. Following the rules we

set for the sanity of the data set, we note that no letter can be made too big, Figure 2.6,

as it has to fit inside the image. Nor can it be made too small, Figure 2.7, as it needs

to be recognizable. An example of bitmap with both rotation and scale is given in the

Figure 2.8.

13

Figure 2.6: Bitmap
ACD, too big. Overlap-
ping, and out of image.

Figure 2.7: Bitmap AB,
too small. A is broken
up, B looks like R.

Figure 2.8: Bitmap with
rotation and scaling.

2.2.3 Labels

After describing our data instance, we now describe the corresponding labels in the data

set. Our labels will hold either the value 0 or 1. We use the function ϕ when generating

a label. When evaluating ϕ, we set the present letters in the bitmap to True and letters

not present to False. For instance given ϕ = (A ∧ B) ∨ (C ∧D) 2.2 would be False, and

hence get label 0, while 2.3 would be True and have label 1.

2.3 Implementation of θAI

After defining the data we will be using, we needed to implement an AI system to train

on this data set. As this was going to be the black-box system we hoped to explain, we

aimed to select an AI system not easily interpreted by itself. In recent times systems using

deep Convolutional Neural Network (CNN) [12, 13] have seen huge success [13, 17, 25].

However, as these networks have grown in depth to achieve better results [18], they

continue to become more obscure and less interpretable. CNNs are often used in image

recognition or classification because they are spatially sensitive to neighbouring values

– whereas, e.g. Fully Connected Neural Networks are not. The fact that CNNs are

successful at their task, while at the same time not interpretable by themselves, makes

CNN a good choice for our θAI .

We implemented a CNN in python using Keras and TensorFlow. The Figure 2.9

illustrates the layers of the CNN implemented. The diagram displays each layer’s size

and the number of channels. The first couple of layers is a series of convolutions and

max-pooling, with the size decreasing while the number of channels increases. In the

14

Figure 2.9: Illustration of CNN implementation. Conv = Convolutional layer. Dens =
Fully dense layer

end, we flatten the layers into a 1-dimensional vector. We then have two dense layers

before ending with a softmax on 0 or 1.

Although not depicted in the illustration, we use an activation function followed by a

dropout layer after each convolution. The activation function used is LeakyReLU with

α = 0.1. The dropout layer has dropout rates of [0.25, 0.25, 0.4].

In Listing 2.1 we see the exact code used to generate the CNNmodel. For convolutions,

we are using kernels of size (3,3), stride (1,1) and padding ”same”. When MaxPooling,

we are using filter size (2,2), stride (2,2) and padding ”same”.

15

1 def _set_layers(self):
2 """
3 We have a set of (3,3) kernels having ’same’ padding. The

↪→ number of kernels keeps increasing.
4 In the end , we have two dense layers , which then is fully

↪→ connected.
5 Activation function: LeakyReLU
6 Pooling: MaxPool (2,2)
7 """
8 input_width = IMAGE_WIDTH
9 input_height = IMAGE_HIGHT
10 channels = 1
11
12 num_classes = 2
13 model = self.model
14 model.add(Conv2D (32, kernel_size =(3, 3), activation=’linear ’,
15 padding=’same’, input_shape =(input_width ,

↪→ input_height , channels)))
16 model.add(LeakyReLU(alpha =0.1))
17 model.add(MaxPooling2D ((2, 2), padding=’same’))
18 model.add(Dropout (0.25))
19 model.add(Conv2D (64, (3, 3), activation=’linear ’,

↪→ padding=’same’))
20 model.add(LeakyReLU(alpha =0.1))
21 model.add(MaxPooling2D(pool_size =(2, 2), padding=’same’))
22 model.add(Dropout (0.25))
23 model.add(Conv2D (128, (3, 3), activation=’linear ’,

↪→ padding=’same’))
24 model.add(LeakyReLU(alpha =0.1))
25 model.add(MaxPooling2D(pool_size =(2, 2), padding=’same’))
26 model.add(Dropout (0.4))
27 model.add(Flatten ())
28 model.add(Dense (128, activation=’linear ’))
29 model.add(LeakyReLU(alpha =0.1))
30 model.add(Dropout (0.3))
31 model.add(Dense (128, activation=’linear ’))
32 model.add(LeakyReLU(alpha =0.1))
33 model.add(Dense(num_classes , activation=’softmax ’))

Listing 2.1: Code for the structure of CNN model

2.4 Training results of θAI

In this section, we look into θAIs performance given different data sets. We begin with

the least complex data set, and move on to more complex data sets. As there is little to

no interest in teaching θAI if it is acting somewhat randomly, we aim for a 95% accuracy

for us to consider it teaching-worthy. The accuracy of our CNN is the percentage of data

instances predicated correctly:

accuracy =
correctly predicted data instances

total # data instances

We will change the size of the data set to give θAI enough data to learn more com-

plex data sets. We emphasize that we continue to use the Boolean function ϕ =

(A and B) or (C and D) as our ground truth for all data sets.

16

2.4.1 Least complex data set

We generate a data set containing 2000 images. We did not allow any rotation or

scaling of the images. We bounded each letter to be placed in one of four corners

with FixedSquares. The resulting images look like Figure 2.3.

Figure 2.10: Confusion matrix and accuracy history low variance data set

As expected, we observe from the Figure 2.10 that our system can learn this data set

relatively quickly as the data is of low variance and complexity.

2.4.2 Introducing rotation

After the least complex data set, we introduce more complexity. We do this by allowing

rotation in the data set and hence allow rotation of each letter. The resulting images

looks like Figure 2.5. The data set with the least amount of complexity performed well

when trained on a data set containing 2000 data instances. However, this was not the

case after introducing rotation. We therefore increased the data set size to 5000.

We observe that θAI performs well on a data set of size 5000. From the confusion

matrix, we observe that the accuracy is well above 95% as shown in Figure 2.11. From

the same figure we also observe that θAI makes 41 mistakes when the actual label is 1

and zero mistakes when the actual label is 0. We suspect this might happen because the

data set contains an overweight of data instances with 0 as the label. Therefore, the data

set incentivises θAI predicting more data to be labelled 0. Non the less, we conclude that

θAI learned ϕ = (A ∧B) ∨ (C ∧D) quite well.

17

Figure 2.11: Confusion matrix and accuracy history w/rotation data set

2.4.3 Rotation and scaling

To further increase the complexity, we allow each letter to differ in size by allowing Scale.

The bitmaps in the data set now looks like the Figure 2.8. The most enlarged letters

will be 4 times the size of the smallest letters in area. Having both Scale and Rotation

should further increase the variance of the data set and hence might be more challenging

for θAI to learn. We again changed our data set size, now up to 10000, such that our

model got a 95%+ validation accuracy score.

Figure 2.12: Confusion matrix and accuracy history data set with rotation and scaling

With both rotation and scaling the model θAI performs reasonably well when trained

on a data set of size 10000, as seen in Figure 2.12. Generating this data and training θAI

takes a couple of minutes.

18

Figure 2.13: Bitmap ABCD with free placement, rotation and scale.

2.4.4 Adding free placement of letters

For the test of our most complex data set we allow rotation, scaling and freeP lacment

of letters. The bitmaps in this data set looks like the Figure 2.13. As this is the most

complex data set, we suspect θAI will need significantly large amounts of data to converge.

We therefore trained it using a data set with 40000 data instances.

Figure 2.14: Confusion matrix and accuracy history data set with rotation, scaling and
free placement

From the Figure 2.14 we observe θAI is performing reasonably well given 40000 data

instances. However, to achieve this, we spent 1-2 hours generating data and then θAI

spent 10-20 minutes training. Using this much time on generating data brings the

iteration speed of updating to a too high level; hence we will not use this.

2.4.5 Reducing alphabet

To get θAI to perform well while increasing variance in our data set, we have had to

increase our data set size from 2000 images to 40000 images. Later in the thesis, we will

19

see that reducing the alphabet from Σ = {A,B,C,D} to Σ = {A,B,C} can bring a

huge speedup. We therefore evaluate how well θAI does with rotation and scaling with

Σ = {A,B,C}. We change ϕ to ϕ = (A and B) or C, and a data set containing 4000

instances.

Figure 2.15: Confusion matrix and accuracy history data set with rotation, scaling and
free placement

Given that our alphabet Σ has become smaller we can use a smaller data set. When

we had |Σ| = 4 and a data set with rotation and scale we needed 10000 data instance

to get a 95%+ accuracy. With |Σ| = 3, and 4000 data instances we get a θAI predicting

perfectly in the confusion matrix as seen in Figure 2.15.

2.4.6 Conclusion

We observe that θAI performs well on data sets with rotation and scaling, and these

data sets have fewer duplicates compared to not using rotation and scaling. The size of

the data set needed to train θAI is also such that it takes a reasonable amount of time

(minutes) to train a new model.

Although intuitive we also show how θAI needs a smaller data set if we decrease the

alphabet Σ to Σ = {A,B,C}. Hence we will be using a data set with rotation and

scaling in the rest of the work of this thesis. The alphabet will be specified to either

{A,B,C,D} or {A,B,C} throughout.

20

Chapter 3

Model of the human

In the previous chapter, we defined the AI we will be teaching to a human LH . As we are

going to be using example-based teaching, the goal of our system is to find a Teaching

Set S we can show to a human, such that the human infers the correct concept, i.e. LH

s.t. LH(S) = θH = θAI . One way to do this is to generate a range of different Teaching

Sets S and show each of them to LH and compare LHs guessed model θH to θAI . The

Teaching Set would then be S s.t. θH is most similar to θAI and yet S is not too complex.

However, as discussed in the introduction, humans are incredibly slow compared to

machines, and we can evaluate orders of magnitude more S if we use a model of human

LM instead of an actual human LH . We can see how this model human fits into our

formula in Equation 3.1 and is further defined in Equation 3.2. We also give a diagram

over LM in Figure 3.1.

T (θAI) = argmin
S:θAI |=S

{δ(S) + λ(θAI , θM) : LM(S) = θM} (3.1)

LM(S) = argmin
θM :θM |=S

{β(θM)} (3.2)

This chapter discusses the implementation of this human model LM . 1

1As an aside, let us note that given more time for this thesis, and implementation using LM to find
good teaching sets, we would test these out on humans LH . Best on these results, we would possibly
redefine LM for a better fit of LH , and iterate.

21

Figure 3.1: Diagram of LM .

3.1 What humans see - Representational language

As we want to model the human, we must reflect on how a human would react to the

bitmaps we present in a Teaching Set. We argue that most humans would extract the

meta-information:

• There is/is not an A in this picture.

• There is/is not a B in this picture.

• There is/is not a C in this picture.

• There is/is not a D in this picture.

Moreover, we hypothesise that most people will pay the most attention to the letters

present and more or less disregard other information such as rotation, size and position.

For simplicity, our LM will not be given bitmaps as examples. Instead, it takes as

input the letters present in each image. To further define the notation of present letters,

we define two different representational languages.

22

The representational language of bitmaps RB are examples as described thus far,

bitmaps paired with θAIs predictions. We denote Teaching Set SB and examples eB

when in RB:

SB = {eB1 , eB2 }

eB = (Bk, θAI(Bk)), for a bitmap Bk

On the other hand, we have the representational language of present letters RL,

encapsulating the idea of humans recognising letters. We denote Teaching Sets SL and

examples eL when in RL:

SL = {eL1 , eL2 , ...}

eL = (a, x), s.t a ∈ ΣC and x ∈ {0, 1}

We remind the reader that ΣC is all subsets over the alphabet Σ = {A,B,C,D}.

ΣC = {#, A,B,C,D,AB,AC,AD,BC,BD,CD,ABC,ABD,ACD,BCD,ABCD}

For example, given the bitmap Bj shown in Figure 2.2, people would recognize that

there is an A and D in the bitmap. The corresponding a in the representational language

of present letters would be a = AD. We could show this as eB = (Bj, x) converted to

eL = (AD, x).

The transformation from a Teaching Set SB to a Teaching Set SL is given by2:

SL = L(SB)

In which we transform each example.

L(SB) = {L(eB1), L(eB2), L(eB3), ...} = {eL1 , eL2 , eL3 , ...} = SL

The transformation from RB (bitmaps) to RL (present letters) is given by:

L(eB) = (L(Bk), θAI(Bk)) = (letters present in Bk, θAI(Bk)) = eL

2We note that the inverse function L−1 can’t exist as multiple SB can map to the same SL.

23

To perform the conversion from Bj to ”present letters in Bj”, we store metadata on

the bitmaps when creating them. When we make a call to L(Bj), the metadata of Bj is

retrieved and we use this metadata to return the ”present letters in Bj”. Without this

metadata, we would have to make another system mimicking human’s ability to spot

present letters, e.g. CNNs trained to detect letters.

3.2 Weaknesses of RL

The representational language of present letters RL cannot fully describe bitmap examples

eB. eB loses some information when converted to the representational language of present

letters to eL. We list some potential features of θAI we cannot convey using RL below.

• Orientation of letters: If θAI is significantly sensitive to the spatial orientation, e.g.

upside-down compared to right-side-up, RL does not have the expressiveness to

capture this.

• Relative distance: If θAI is sensitive to the relative placement of letters, e.g. A and

B being close or further apart, RL does not have the expressiveness to capture this.

• Spacial placement preferences: If θAI is significantly sensitive to the spatial location,

e.g. top-left A compared to bottom-right A, RL does not have the expressiveness

to capture this.

We also note that humans tend to ”read” letters. It is, therefore, reasonable to

hypothesise that humans could classify a bitmap with ”AB” differently than ”BA”, as seen

in Figure 3.2. Even though θAI might consider these features when making a prediction,

we hope these features will at least not dominate. We will later experiment with how

well RL is capable of describing θAI .

3.3 Search space - Motivation for RL

Although RL mimics a human, one could ask whether or not it is necessary to use RL

instead of RB? Is there another benefit of using RL except that it mimics a human?

When selecting Teaching Sets, it might be the case that one wants to show upwards

of 3-4 negative examples and 3-4 positive examples. If we were to do this in RB, with a

data set of 4000 instances, the number of possible Teaching Sets would be huge.

24

Figure 3.2: Example of similar bitmaps ”AB” and ”BA”

To calculate how many Teaching Sets there are, we observe that it is fair to assume

that approximately all data instances are unique3. Combining eight examples into a

Teaching Set would give approximately
(
4000
8

)
= 1.6 ∗ 1024 possible Teaching Sets. With

1.6∗1024 Teaching Sets, it is not possible to evaluate a sizable fraction in reasonable time.

If one instead uses RL, there is only |ΣC | = 16 unique examples. 16 unique examples

lead to a much lower search space of
(
16
8

)
= 12870.

From the comparison, we can see that RL drastically lowers the search space. How-

ever, in the above calculations, we have assumed θAI to be a RL-consistent-AI. By

RL-consistent-AI we mean that θAI always predicts the same classification for bitmaps

containing the same letters. We formalize RL-consistent-AI as:

∀(Bj ,Bk) [L(Bj) == L(Bk) =⇒ θAI(Bj) == θAI(Bk)]

If θAI is not a RL-consistent-AI the number of possible Teaching Sets increases from(
16
8

)
= 12870 to

(
32
8

)
= 10518300 ≊ 1.05 ∗ 107. This increase is due to a doubling of the

number of examples, as LM is given examples as labelled by θAI . For all ak ∈ ΣC we

could then have both eLi = (ak, 0) and eLj = (ak, 1) as possible examples.

With this we allow Teaching Sets SL such that (ai, 0) = eLj ∈ SL and (aj, 1) = eLk ∈
SL, s.t. ai == aj. Having two examples with the same letters and different predicted

classification is confusing and not informative. We therefore limit our Teaching Sets to

be RL-consistent-S. With an RL-consistent-S Teaching Set we only allow each letter

3There will be approximately 4000 ∗ 1
16 empty data instance. However, the point being made still

stands.

25

combination to appear at most once, i.e. SL = {(”AB”, 1), (”AB”, 0)} would not be

allowed. We formalise SL to be RL-consistent-S as:

∀{[eLj = (a, x), eLk = (b, y)] ∈ SL} [a == b =⇒ j == k]

Using Teaching Sets SL that are RL-consistent-S, we get
(
16
8

)
∗28 = 3294720 ≊

3.3∗106 potential Teaching Sets. We have the same
(
16
8

)
combinations of different strings

a ∈ ΣC , however each of them can now either be predicted as either 0 or 1. This means

that for each combination of eight different a ∈ ΣC we have 28 possibilities for their

predicted value.

The most realistic situation would be to work with RL-consistent-S Teaching Sets,

and a θAI which is not RL-consistent-AI - a general θAI is unlikely perfectly aligned to a

simple representational language. As the concept we are teaching θAI is rather simple, we

can make θAI RL-consistent-AI by increasing the training set. A RL-consistent-AI θAI

comes at the cost of longer training sessions for θAI , and hence a slow down in how often

we can perform new experiments. However, as discussed, the search space is drastically

lowered if θAI additionally is RL-consistent-AI. We, therefore, sometimes train θAI

to be RL-consistent-AI when we find this suitable.4 We will always be working with

RL-consistent-S Teaching Sets.

3.3.1 Changing Σ alphabet size

Up to this point, we have been working with an alphabet Σ = {A,B,C,D}. We will now

examine how the size of Σ affects the number of possible Teaching Sets.

We will here give an analysis of the expressiveness of the language we have chosen. We

will look at the alphabets of Σ3 = {A,B,C},Σ4 = {A,B,C,D},Σ5 = {A,B,C,D,E}.

In the Table 3.1 we list the number of possible Teaching Sets per cardinality of the

Teaching Set. From the table, we can see our language is quite expressive at four letters

in the alphabet and that going to five would increase our search space many orders of

magnitude. In this thesis, we will only look at the case of three-letter alphabets and four-

letter alphabets, as more optimisation work on the code is needed to reach the speeds

needed for five-letter alphabets.

4We also then lose the ability to measure how well we are able to convey the AIs when it is not aligned
with the ground truth.

26

Teaching Set size
Teach Sets
5 letter alphabet

Teach Sets
4 letter alphabet

Teach Sets
3 letter alphabet

1 64 32 16
2 1984 480 112
5 6.4E6 139776 1792
8 2.7E9 3.3E6 256
11 2.6E11 8.9E6 N/A
16 3.9E13 65536 N/A
21 2.7E14 N/A N/A
32 4.3E9 N/A N/A

Table 3.1: An overview of total number of Teaching Sets at some chosen Teaching Set
sizes.

The values in the table was generated using the formula in Equation 3.3.

g(Σ, Ssize) =
2Ssize ∗ (2|Σ|!)

Ssize!(2|Σ| − Ssize)!
(3.3)

And we would get the expressiveness of an alphabet by Equation 3.4.

size(Σ) =

|Σ|2∑
i=1

g(Σ, i) (3.4)

The function in Equation 3.3 is at the core the n choose k formula with no repetition.

Ssize(k) is the number of examples for a given Teaching Set size. n is the number of

subsets of the alphabet, totaling n = 2|Σ| = |ΣC |. There is no information to be gained by

having duplication of examples, and as all they do is increase the cognitive load of LH , we

avoid them. In the formula, we see the avoiding of duplicates as the ”no repetition” part

of the n choose k formula. The last part missing to be explained in Equation 3.3 is 2Ssize

in the numerator. This accounts for the fact that in each Teaching Set, all examples can

either have the value True or False.

This term 2Ssize can be avoided if we require θAI to be a RL-consistent-AI. We

would then get the search spaces shown in Equation 3.5 and examples shown in Table

3.2.

sizeRL
(Σ) =

|Σ|2∑
i=1

g(Σ, i)

2Ssize
(3.5)

These tables show how the number of possible Teaching Sets rapidly increases with

the Teaching Set’s cardinality. If one limited the cardinality of the potential Teaching

Sets, one would be able to increase the size of the alphabet without increasing the search

space too much.

27

Teaching Set size
Teach Sets
5 letter alphabet

Teach Sets
4 letter alphabet

1 32 16
2 496 120
5 201376 4368
8 1.1E7 12870
11 1.3E8 4368
16 6.0E8 1
21 1.3E8 N/A
32 1 N/A

Table 3.2: Overview of total number of Teaching Sets. Given RL-consistent-AI AI.

We end with the observation that when θAI is RL-consistent-AI, the number of

Teaching Sets equals the number of subsets of ΣC . As the size of ΣC is given by 2|Σ|, and

the number of subsets of ΣC is given by 2|ΣC |, we get that the total number of Teaching

Sets is 22
|Σ|
. We sanity check the observations:

• sizeRL({A,B,C,D,E}) = 4294967295 = 22
5 − 1.

• sizeRL({A,B,C,D}) = 65535 = 22
4 − 1.

• sizeRL({A,B,C}) = 235 = 22
3 − 1

The −1 corresponds to the empty subset, which is not a valid Teaching Set5.

3.3.2 Conveying the Teaching Set to LH

In the end, we would want to show Teaching Sets containing bitmaps over RB to humans.

However, as our system will work in RL and find an optimal SL, converting an optimal

SL to SB is not trivial. The reason for this is that for each eLj = (ak, x) there are multiple

valid Bj s.t. L(Bj) = ak and θAI(Bj) = x. One has to select which one, out of all these

Bj, should be shown to the human LH .

Solving this problem is outside the scope of this thesis, and here we restrict to output

Teaching Sets in RL.

5A Teaching Set must be of cardinality one or greater

28

Figure 3.3: A visual representation of Teaching Set SL
r in RL

3.4 Boolean expressions – modelling human reason-

ing

We remind the reader that our goal in this chapter is to make a model LM of a human

LH , as described in Equation 3.2. After establishing the language RL, we now turn our

attention to making a model of how a human would reason when tasked with finding a

relation between bitmaps containing letters labelled 0 or 1. As we already discussed, we

argue it is a reasonable assumption that most humans would mostly only pay attention to

the present letters in the bitmaps. We, therefore simplify the problem to find a relation

between groups of letters and either 0 or 16. For example, we could task a human LH

with finding a classification rule given SL
r shown in Figure 3.3.

The Teaching Set visualised in Figure 3.3 can be written as:

SL
r = {(AC, 0), (AD, 0), (BD, 0), (AB, 1), (BC, 1), (CD, 1)}

If the Teaching Set SL
r was shown to different humans LH they would probably give

different reasons / models θH to explain the classifications. For instance, some may

notice that in the given SL
r the examples labelled 1 contains consecutive letters in the

alphabet, and examples labelled 0 contains letters not consecutive in the alphabet.

It is fair to assume some humans could pick up on this attribute of consecutive letters.

The same people might use this as their model of the classification. This guessed model

based on consecutive letter we call cΣ. cΣ would be part of a concept class of relations due

to orders of letters in the alphabet CΣ. The use of concept classes is crucial in Machine

Teaching, as described in the introduction.

6But let us note that there could be many such relations that humans find meaningful. In the following
we illustrate this.

29

A B C D ϕ
0 0 0 0 x
0 0 0 1 x
0 0 1 0 x
0 0 1 1 1
0 1 0 0 x
0 1 0 1 0
0 1 1 0 1
0 1 1 1 x
1 0 0 0 x
1 0 0 1 0
1 0 1 0 0
1 0 1 1 x
1 1 0 0 1
1 1 0 1 x
1 1 1 0 x
1 1 1 1 x

Table 3.3: Truth table for SL
r . x being arbitrary value.

Given a different AI θAI and Teaching Set SL, it is unlikely that a clear relation

between examples based on the order of the alphabet exists. Therefore, one could argue

it to be a poor strategy to be looking for a relation based on the order of the alphabet

CΣ. Given another Teaching Set, there might not be a relation based on the order of the

alphabet at all - no valid cΣ ∈ CΣ for the Teaching Set. We say a concept c is valid for

SL when c(a) = x holds for all examples (a, x) ∈ SL.

What we want is for the human to use the class Cb of Boolean functions. These

Boolean functions are of the same format as ϕ, our ground truth label function. Given

a Teaching Set SL, LM will find a valid Boolean function ϕ = cb ∈ Cb such that the

Boolean function cb is valid for SL. But there are several valid ϕ, which one to pick?

Given Teaching Set SL
r , one could for instance select the Boolean function ϕ = (A ∧

B) ∨ (C ∧ ¬A) to be the guessed concept cb. This is a valid guessed concept as for all

examples (a, x) = eL ∈ SL
r , c

b(a) = x. Contrary to the concept class of alphabet-order

CΣ, there is always a Boolean function describing SL, as SL is RL-consistent-S. We can

find such a Boolean function cb by constructing a truth table based on SL.

We construct such a truth table by having each row defined by a matching example7

in SL. The rows with no matching example arbitrarily have the values 0 or 1 (marked

x). We show such a truth table in Table 3.3 for SL
r .

For each row in Table 3.3 with a non arbitrary value, that is ϕ ̸= x, we defined the

row by its matching example. For instance, given e = (AD, x) we look at the row with

7Because SL is RL-consistent-S, there will at most be one example matching each row in the truth
table.

30

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
cΣ 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1
cb 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1

Table 3.4: Table showing similarity of concepts: consecutive letters cΣ and Boolean
expression cb = (A ∧B) ∨ (C ∧ ¬A)

corresponding variables set to True, [A = 1, B = 0, C = 0, D = 1], and set ϕ of that row

equal to x. We do this for all rows with a matching example.

As we can define a truth table, we have by extension shown that there always exists

a Boolean function ϕ = cb ∈ Cb valid for any Teaching Set SL. However, it is still the

cases that a human LH might find a concept cΣ based on consecutiveness in the alphabet.

One might suspect it to be a problem if the human LH aims to find a concept based on

the order of the alphabet cΣ when we provide a Teaching Set aimed to explain a Boolean

function cb. However, this is not necessarily the case. Even though cb and cΣ are not in

the same concept class, they might evaluate most examples equally. Let us look at how

the two models compare given all potential inputs a ∈ ΣC .

From Table 3.4 we see that there are only four examples: {#, A,B,D}, where cb and
cΣ differs. The fact that cb and cΣ differs in only a few examples gives us hope that even

if the human LH is not even using our concept class of Boolean functions, their model

cΣ can still be quite well aligned with with the concept cb we aim to teach. For the same

reason, we hope that even if we find a Teaching Set SL to teach some Boolean function

cb, and the human LH finds some concept c from another concept class C, there is still

reason to hope c and cb is aligned.

We conclude the discussion above by stating that the task of LM will be to find a

Boolean function ϕ matching the input SL, and hence LM(S) = θM will be a Boolean

function.

3.4.1 Implementing argminθM :θM |=S − Karnaugh map

Finding a partial Boolean function given a Teaching Set is rather straightforwards, and

a process for this has been discussed in the beginning of this chapter. We will now

look at how to select the simplest completion of this partial Boolean function, such that

LM(S) = θM s.t. β(θM) is minimum.

31

Figure 3.4: K-Map for SL
r

Karnaugh Maps, by Karnaugh et al. [11], is a good match for us to use in this situa-

tion. Given a truth table (potentially incomplete), the Karnaugh Map finds a simplified

/ ”minimal” Boolean expression matching the truth table. Importantly we will use Kar-

naugh Maps to find a Boolean expression in disjunctive normal form (DNF) with the

minimum number of clauses. Given a Teaching Set S LM will use a Karnaugh Map to

find a minimal Boolean Expression.

Next, we discuss how Karnaugh Maps work and show examples of when multiple

minimum Boolean expressions can arise.

Karnaugh map

To use Karnaugh Maps (K-Map), one needs to have a Boolean function or truth

table defined. Given the Teaching Set we have been looking at previously SL
r =

{(AC, 0), (AD, 0), (BD, 0), (AB, 1), (BC, 1), (CD, 1)}, we can construct a truth table as

given in Table 3.3 with some undecided values ”x”8.

To find a simplified Boolean expression from this, we construct the Karnaugh Map

displayed in Figure 3.4. The Karnaugh Map has two axis. The columns denote the values

of A and B, e.g. ”01” indicates A =False and B = True. The rows correspond to the

different assignments of variables C and D, e.g. ”10” indicates C = True and D = False.

One fills in the cells with ”0”, ”1”, or ”x” depending on if one knows the cell to be False,

True or does not care. To find a minimal Boolean Expression in a Karnaugh Map, we

draw rectangles of size 2n aiming to capture all ”1”s in the rectangles without enclosing

any ”0”.

These rectangles follow some rules. First, to find the minimal Boolean expression,

one must use as few rectangles as possible. A minimum number of rectangles ensures

8When working with Karnaugh Maps these are called ”Don’t care” terms.

32

Figure 3.5: Example of not maximal rectangles.

Figure 3.6: K-Map rectangle giving the clause (¬A ∧ C).

the minimum number of clauses in the Boolean expression. Secondly, the rectangles

have to be of maximum size. If a rectangle is of size 2a, and you can make it 2a+1, it is

required to make it 2a+1. Maximum rectangles ensure that each clause contains the fewest

number of variables. If we don’t follow these rules we get complex Boolean expressions

like ϕ = (¬A∧¬B ∧C ∧D)∨ (¬A∧B ∧C ∧¬D)∨ (A∧B ∧¬C ∧¬D) as seen in Figure

3.5. Given SL
r it would be unreasonable to decide that such a complicated function was

the concept someone wanted to teach.

After constructing the K-Map, we can look at each rectangle, locate the variables

with the same value for all cells inside the rectangle, and use them to construct a clause

in the Boolean expression. We show this in Figure 3.6. To further understand how LM

works with K-Maps we present three of the Boolean Expression LM could produce given

the K-Map displayed in Figure 3.4. The three selected solutions are a subset of all the

potential solutions giving different Boolean expressions with the same number of clauses.

The first is ϕ = (¬A ∧ C) ∨ (¬C ∧ ¬D). We get this from the Figure 3.7. Here the

top rectangle gives (¬C ∧¬D), and the bottom left square gives (C ∧¬A). Secondly we

show an example where rectangles bend around the edges in Figure 3.8. This solution

would give (B ∧¬D)∨ (C ∧¬A). From the third option we get ϕ = (¬A∧C)∨ (A∧B).

We show the rectangles giving this solution in Figure 3.9. This last possibility is the

suggested Boolean function we used earlier in this chapter, e.g. in the Table 3.4.

33

34

Figure 3.7: K-Map giving ϕ = (¬A ∧ C) ∨ (¬C ∧ ¬D)

Figure 3.8: K-Map giving ϕ = (C ∧D) ∨ (B ∧ ¬D)

Figure 3.9: K-Map giving ϕ = (A ∧B) ∨ (C ∧ ¬A)

3.4.2 β - Simplicity of Boolean Expressions

With the Karnaugh Map we are capable of finding a complete Boolean function θM , how-

ever, Karnaugh Maps can return one of potentially many minimal Boolean Expressions

with equally many clauses. Therefore, we are using a modified Karnaugh Map returning

all Boolean expressions with equally many clauses. Given this list of Boolean expressions,

we apply the β function to select the minimum. By doing this, we ensure LM returns the

same Boolean expression for each input S.

We therefore have Karnaugh Map performing the argmin in Equation 3.6 and we now

define β to select the minimum:

LM(S) = argmin
θM :θM |=S

{β(θM)} (3.6)

θM will be one of the potential Boolean expressions found by the Karnaugh Map.

For consistency, we note our K-Map will only look at Boolean expressions in disjunctive

normal form (DNF). DNF format is OR of ANDs, e.g. ϕ = (A ∧ B) ∨ (C ∧ D). We

define a Boolean expression BE = Cl1∨Cl2∨ ...∨Clm, to contain multiple AND-clauses

Clk ∈ BE. A benefit of using DNF format is that it mimics human reasoning. To verify

a positive instance one only need to confirm one positive clause, whereas one need to

check all clauses to confirm a negative instance. The resource-heavy task of confirming a

negative compared to a positive is somewhat similar to how humans are poor at negations

[9]. This further strengthens LMs ability to mimic LH .

For instance, given two Boolean expressions, we argue that BE1 is simpler than BE2:

BE1 = A

BE2 = (B ∧ C ∧ ¬D) ∨ (¬A ∧ C)

Although it might be simple to say that BE1 is simpler than BE2, we need to find

some general attributes of Boolean expressions to be able to compare Boolean expression

using β. We list them here:

• The number of clauses: Fewer is better.

35

• The number of negations: Fewer is better.

• Simplicity of minimum clause.

We then select these attributes of each clause:

• The number of letters in a clause: Fewer is better.

• The number of negations in a clause: Fewer is better.

We formalise these attributes below. When evaluating which Boolean expression is

simpler we use the first rule that applies:

1) β(BEi) < β(BEj), if # clauses in BEi < # clauses in BEj. (3.7)

2) β(BEi) < β(BEj), if # negations in BEi < # negations in BEj.

3) β(BEi) < β(BEj), ifβ(Cli1) < β(Clj1)

4) β(BEi) < β(BEj), ifβ(Cli2) < β(Clj2)

5) Continue for all clauses...

In rule 3) and onward we want to find which expression has the simplest clause. If

the two simplest clauses are equal, we move on to the next clause and check them, and

so on. We define that all clauses in a Boolean expressions BE are sorted by β, i.e.

β(Cli) ≤ β(Clj) ⇐⇒ i ≤ j. To achieve this ordering and comparison we define β for

individual clauses Cli as follows:

1) β(Cli) < β(Clj), if # letters in Cli < # letters in Clj.

2) β(Cli) < β(Clj), if # negations in Cli < # negations in Clj.

3) β(Cli) < β(Clj), if letters in Cli is lexicographically before letters in Clj.

We want to achieve a total ordering of the Boolean expressions such that LM(S)

returns the same Boolean expression for the same S each time. We therefore include

the last equation step 3), discriminating letters based on lexicographical order. In this

lexicographical order, negated letters are sorted after non negated letters.

Having defined β we can look back to all the different Boolean Expression our K-Map

potentially could find given SL
r . Among ϕ1 = (¬A ∧ C) ∨ (¬C ∧ ¬D), ϕ2 = (B ∧ ¬D) ∨

(C ∧ ¬A) and ϕ3 = (¬A ∧ C) ∨ (A ∧ B) we can apply β to find the minimum to be

returned by LM . For the Teaching Set SL
r it turns out ϕ3 = (¬A ∧ C) ∨ (A ∧ B) is the

minimum Boolean expression valid using our defined β.

36

3.5 Occam’s Razor

We argue that our β function and our search for a minimum / simplistic Boolean expres-

sion is a reasonable estimation of how a human would reason based on Occam’s Razor

[4]. Occam’s Razor states that when faced with two possible explanation for a phenom-

ena, the simpler one is more likely to be correct. If you saw a tree fallen over on the road,

you would assume it had fallen over by old age and wind. You would not assume someone

made a fake tree, and moved it out to the road to be displayed as art. Both explanations

are valid as they describe the observation, however one is vastly simpler then the other.

In our case this translates to the fact that if shown the Teaching Set SL
r =

{(AC, 0), (AD, 0), (BD, 0), (AB, 1), (BC, 1), (CD, 1)} it is more probable that the Boolean

expression used to generate SL
r was ϕ = (¬A ∧ C) ∨ (A ∧ B), compared to ϕ =

(¬A∧¬B∧C ∧D)∨ (¬A∧B∧C ∧¬D)∨ (A∧B∧¬C ∧¬D). Both Boolean expressions

are valid, however the first one is simpler and we therefore argue it is more likely by

Occam’s Razor to be the concept taught.

3.6 Output θM

The output of LM is θM , which will be a Boolean function. More precisely, it is one of

the minimal Boolean expressions found by our Karnaugh Map. We apply the rules in β

to find the unique minimum among the minimal.

3.7 A seemingly anomalous result

This section discusses what happens if we give LM a Teaching Set of maximal cardinality,

e.g. |SL| = |ΣC |. Such a Teaching Set needs to contain one example for all a ∈ ΣC and

associated prediction.

As SL has one predicted value for each possible input, LM can construct a complete

truth table. With a complete truth table there are no arbitrary values, and hence we

do not need to find a minimal Boolean expression to select the Boolean function θM .

Therefore, a SL of max cardinality corresponds to a single Boolean function θM .

37

Figure 3.10: K-Map for counter example

Figure 3.11: K-Map for counter example first Teaching Set

For simplicity sake we will assume θAI to be RL − consistent-AI. If not the Boolean

function found might not be the best possible match for θAI . However, given RL −
consistent-AI, a Teaching Set of size |ΣC | will perfectly describe θAI .

From this, one could assume that adding examples to a Teaching Set will continuously

improve the model θM produced by LM . Although we stipulate that, on average, Teaching

Sets with more examples will provide better matching of θM and θAI , it is not always the

case. A contradicting example will follow.

Let us say we have a complete Boolean function ϕC giving the K-Map shown in Table

3.10. From ϕC we can construct the Teaching Set SL
c :

SL
c = {(ABCD, 1), (AD, 0), (BD, 0), (BC, 0)}

Let us say we give this Teaching Set SL
c to LM . From this SL

c , LM constructs the

K-map shown in Table 3.11. Our LM would, given this, find the Boolean expression

ϕ = A ∧ B. This ϕ correctly matches ϕC for all values except one. One could argue SL
c

to be a great Teaching Set, almost perfectly teaching the concept θAI.

As SL
c only miss evaluated the cell ACD, it might be possible to extend the Teaching

Set with eL = (ACD, 1) to get a better Teaching Set:

SL
c = {(ABCD, 1), (ACD, 1), (AD, 0), (BD, 0), (BC, 0)}

38

Figure 3.12: K-Map for the expended Teaching Set.

From this new Teaching Set we generate a new K-Map, shown in Figure 3.12. In

this Teaching Set, LM selects ϕ = C ∧D as its guessed Boolean function. This Boolean

function predicts correctly the value of 11
16

cases. This is clearly now worse compared to

the first Teaching Set. We have shown that a Teaching Set of size four can give better

concept alignment than a Teaching Set of size five in our system, which seems anomalous

at first sight.

39

Chapter 4

Comparing θAI and θM - λ

T (θAI) = argmin
S:θAI |=S

{δ(S) + λ(θAI , θM) : LM(S) = θM} (4.1)

LM(S) = argmin
θM :θM |=S

{β(θM)} (4.2)

We have now defined θM and LM as described in Equations 4.1 and 4.2. Next, we describe

the usage of θM in our system. θM is one of two arguments given to λ. With λ, we aim

to compare how equal θAI and θM is. To do this λ will punish a Teaching Set S if

LM(S) = θM is dissimilar to θAI . One could call this the TeachingRisk [26], as discussed

on the topic of Machine Teaching.

A diagram of the implementation of λ is given in Figure 4.1.

4.1 Comparing θAI and θM

When we want to compare θAI and θM , we immediately run into the problem that θAI

and θM do not have matching input domains. We have one model, θAI , taking in bitmaps,

i.e. in the representational language of bitmaps RB. The other model θM takes as input

present letters, i.e. in the representational language of present letters RL. Because the

conversion from RB to RL is a loss-full transformation, we will only compare some aspects

of θAI with θM
1. To convert θAI from RB to RL we make a representation of θAI in RL.

1As stated earlier; we conjecture that the aspect of present letters is dominant in θAI .

40

Figure 4.1: Diagram of δ.

To make this representation of θAI in RL, we look at how θAI evaluates bitmaps

grouped by present letters. For each combination of present letters, a ∈ ΣC , we find all

bitmaps Bj s.t. L(Bj) = a in the data set and calculate the percentage of bitmaps θAI

predicts True2. Doing this for all a ∈ ΣC , we get a table like the one shown in Table 4.2.

From the table, we observe that θAI unfailingly predicts some letter groups the same and

is more undecided on other letter combinations. We conclude that RL expresses θAI well

for some letter groups and less for others.

To evaluate how well θM matches θAI , we create a similar table for θM . Since θM is

a Boolean function on present letters, we construct the corresponding truth table from

this function. Given the Boolean expression ϕ = (A ∧ B) ∨ (C ∧ ¬A) we get the truth

table shown in Table 4.3.

We can now compare the two tables using Mean Square Error (MSE) as our error

measure. We look at the difference between θAI and θM for each row and aggregate the

square difference. The MSE is visualized in Table 4.4. When adding it all up, we see that

for this θAI and θM , we get an error score of 0.2222. To get MSE, we divide by the 16

2For each individual row we need 385 data instances to ensure a confidence level of 95% that the
displayed value is within ±5% of the real distribution for that row.

41

Symbol θAI ’s prediction
0,00
A 0,00
B 0,00
C 0,95
D 0,00
AB 0,99
AC 0,02
AD 0,00
BC 0,63
BD 0,02
CD 0,91
ABC 1,00
ABD 1,00
ACD 0,04
BCD 0,74
ABCD 1,00

Figure 4.2: θAI break down in percent-
ages.

Symbol ϕ’s evaluation
0
A 0
B 0
C 1
D 0
AB 1
AC 0
AD 0
BC 1
BD 0
CD 1
ABC 1
ABD 1
ACD 0
BCD 1
ABCD 1

Figure 4.3: Truth table for Boolean ex-
pression ϕ = (A ∧B) ∨ (C ∧ ¬A).

groups giving us a score of 0.2222
16

≈ 0.0139. The MSE score is the value λ returns. We

note that this lambda score might seem small. However, any scaling of this value will not

affect our system. Each lambda score should only be compared to another lambda score.

The comparison and alignment with δ are controlled by µ in our score function.

4.1.1 λ score RL-consistent-AI

We have previously introduced the concept ofRL-consistent-AI. If θAI isRL-consistent-AI

it has the interesting property that there will always exist some θM , for which λ(θAI , θM) =

0.

To refresh the definition ofRL-consistent-AI, we show it here again. ARL-consistent-AI

θAI is one that, for two bitmaps with the same letters in it, produces the same prediction

for both.

∀(Bj ,Bk) [L(Bj) == L(Bk) =⇒ θAI(Bj) == θAI(Bk)]

To show why RL-consistent-AI leads to a λ-score of zero for some θM , we create a

breakdown of RL-consistent-AI θAI , as shown in Table 4.5.

42

Letters θAI ϕ SE
0,00 0 0
A 0,00 0 0
B 0,00 0 0
C 0,95 1 0,0025
D 0,00 0 0
AB 0,99 1 0,0001
AC 0,02 0 0,0004
AD 0,00 0 0
BC 0,63 1 0,1369
BD 0,02 0 0,0004
CD 0,91 1 0,0081
ABC 1,00 1 0
ABD 1,00 1 0
ACD 0,03 0 0,0009
BCD 0,73 1 0,0729
ABCD 1,00 1 0
Mean Squared Error 0,0139

Figure 4.4: Mean Squared Error table,
Col.2: θAI break down - Col.3: ϕ truth
table - Col.4: Squared Error between
θAI and ϕ.

Symbol θAI ’s prediction
0,00
A 0,00
B 0,00
C 1,00
D 0,00
AB 1,00
AC 0,00
AD 0,00
BC 1,00
BD 0,00
CD 1,00
ABC 1,00
ABD 1,00
ACD 0,00
BCD 1,00
ABCD 1,00

Figure 4.5: Breakdown of
RL-consistent-AI θAI in RL

If θAI is RL-consistent-AI all bitmaps with the same letters present will be evaluated

equally by θAI . We will see this in the breakdown of θAI as only 0% or 100% in the

rows of Table 4.5. Any other value than 0% or 100% would break the definition that all

bitmaps containing the same letters are evaluated equally. As the break down of θAI is

of the same format as a truth table, a Boolean function ϕ could match this breakdown

of θAI and give a λ-score of zero. One could incorporate this ϕ in a Teaching Set with 16

examples, using one example to describe each row.

Given this Teaching Set, LM will create a truth table corresponding to the Teaching

Set in the same fashion discussed earlier. This new truth table will be identical to θAI

breakdown. As none of the rows in the new truth table contains arbitrary values ’x’, LM

will find a Boolean function matching the same truth table. As this Boolean function

matches the truth table exactly, and the truth table is equal to the breakdown of θAI , we

have a Boolean function perfectly matching the breakdown of θAI .

For the θAI given in Table 4.5 we can for instance create the Teaching Set shown in

Equation 4.3, ensuring LM(S) = θM s.t. λ(θAI , θM) = 0:

SL = {(#, 0), (A, 0), (B, 0), (C, 1), (D, 0), (AB, 1), (AC, 0), (AD, 0), (BC, 1),

(BD, 0), (CD, 1), (ABC, 1), (ABD, 1), (ACD, 0), (BCD, 1), (ABCD, 1)}
(4.3)

We have shown that if θAI is RL-consistent-AI there always exists a θM perfectly

43

describing it, i.e. with a λ-score of zero. Furthermore, we can construct a Teaching Set

of size ΣC such that LM(S) is equal to this θM .

4.2 Speed up implementations

We wanted to run our system on as large data sets and alphabets as possible. To ensure

we could run our system on large data sets, we spent time finding bottlenecks in our

system and improving them. One of the significant bottlenecks at the start was due to

us recalculating the representation table of θAI in RL for each λ(θAI , θM) call. This table

can be precomputed once at the start and then reused throughout.

44

Chapter 5

Complexity of Teaching Set - δ(S)

In the previous two chapters, we discussed how well a Teaching Set S taught θAI to LM .

In this chapter, we will give a measure δ(S) of how difficult LH finds it to understand S.

When showing a Teaching Set S to LH , we will be displaying S in the representation

language of present letters and not bitmaps. Hence we will measure the complexity δ(S)

in RL, and therefore δ will be given Teaching Set SL containing present letters and not

bitmaps. In this chapter, we will discuss which Teaching Sets humans find difficult to

understand, show four suggested δ-function implementations. Then in Chapter 7 we will

compare these suggested implementations.

As in previous chapters, we repeat the main formula, in Equation 5.1, of this thesis

such that the reader more easily can see the role of δ. We also give a diagram for δ in

Figure 5.1.

T (θAI) = argmin
S:θAI |=S

{δ(S) + λ(θAI , θM) : LM(S) = θM} (5.1)

LM(S) = argmin
θM :θM |=S

{β(θM)}

45

Figure 5.1: Overview of δ

5.1 Why penalise complex Teaching Sets?

One question one could ask is why even penalise Teaching Sets based on their complexity?

Should we not use the Teaching Set S such that LM(S) = θM is as close as possible to

θAI?

To answer this, we argue there is one simplification made in LM not discussed thus far.

Machines are excellent at storing and remembering information. The larger a Teaching

Set we give to LM , the closer we expect θM to match θAI
1. For Σ = {A,B,C,D} a

Teaching Set of size 16 would fully describe any θAI , assuming θAI to be RL-consistent-AI.

For any new example shown to θAI one could predict the output of θAI by finding the

example in SL containing the same letters as the new example, as θAI would predict the

same as this one.

Even if θAI is not RL-consistent-AI a Teaching Set of size 16 will give θM as closely

matching θAI as possible. That is if the classification x in each example eL = (a, x) are

θAIs most common classification of the letter combination a. In either case, LH will then

not be able to perfectly predict the output of θAI . However, LH should be able to predict

θAI ’s output on the majority2 of new examples.

1As shown, there seems to be some anomalous Teaching Set regarding this.
2Assuming the new examples are drawn from a similar distribution as the input data set.

46

Name Description

Cardinality
{ABC,ABD} == {#,A}
Baseline. Cardinality of Teaching Set.

Chunking
{A,B,C,D} > {AB,CD}
Mimic human cognitive chunking.

SquaredSum
{ABC,A}>{AB,AC}
Squared sum of example sizes.

SumOfExamples
{ABC, A} == {AB,AC}
Sum of example sizes.

Table 5.1: Overview of considered δ functions

A computer would have no problem working with 16 or even hundreds of examples

in a Teaching Set. However, a human might struggle to find the pattern among the

examples for even a small Teaching Set.

In psychology, the concept of cognitive load [19] measures how hard a problem is

for a given human. A Teaching Set containing many examples could be an example of a

high cognitive load. This high cognitive load makes the human incapable of using their

cognitive resources to find logical patterns. Instead, most of their mental capacity is

spent on storing the images in working memory [19], e.g. actively remembering them.

A high cognitive load is associated with poor learning of new concepts, which would

mean that even if a large Teaching Set rationally contains the information to teach θAI , a

human might misunderstand the information. We model this human behaviour/limited

capability with δ(S).

It has often been the norm in Machine Teaching to use cardinality of the Teaching

Set, i.e. number of examples, as the measure of complexity [26]. In this thesis, we will

briefly look at some other techniques to measure complexity. We present these new ideas

to better align our δ with the Teaching Sets humans find complicated.

5.2 Different δ implementations

We here present four different δ implementations. An overview of the different delta

functions is given in the Table 5.1.

47

Cardinality

1 def get_complexity_of_subset(self , teaching_set):
2 """ Compute the complexity of the examples given """
3 return len(teaching_set)

Cardinality measure is the standard δ used in Machine Teaching [26]. The goal of using

cardinality is to find the smallest-sized Teaching Set. We have implemented Cardinality

as a baseline and will use it primarily to compare it with other delta functions.

Chunking

1 def get_complexity_of_subset(self , teaching_set):
2 """ Compute the complexity of the examples given """
3 complexity = 0
4 for example in teaching_set:
5 if len(example) == 0:
6 complexity += 0.1
7 elif 1 <= len(example) <= 3:
8 complexity += len(example)*0.2 + 1
9 else:
10 complexity += len(example)*1.3 + 2
11 return complexity

With Chunking, we intend to mimic aspects of cognitive load [20] from human psychology

theory. Specifically, we want to mimic cognitive chunking [22]. Cognitive chunking is why

humans find it simpler to remember grouped elements instead of singletons. An example

discussed by Thalmann in ”How does chunking help working memory?” [22] is something

to the essence of how a human might find it hard to remember F-B-I-D-Q-B and more

straightforward to remember FBI-DQB. However, this grouping technique has limitations,

as humans do not find it easier to group everything, e.g. FBIDQB. In a sense, one would

then end up with just singletons once again.

Chunking aims to mimic these aspects of the human mind by not heavily punishing

an example containing three or fewer letters. The number three is chosen as humans have

been shown to handle groups of 4 and less well before [5]. We decided to have a cut-off

at three letters present to ensure that not all Teaching Sets were evaluated equally.

With this definition, we hypothesise that Chunking will tend to prioritise small car-

dinality in S while at the same time punishing having too many letters present in one

example – i.e. 4 in our case.

We note that the characteristics of chunking would be more visible given a larger

alphabet and a larger cut-of. We would then expect a distinct difference between chunking

and SquaredSum. As mentioned earlier, the current system cannot work with |Σ| > 4,

so we cannot experiment with this.

48

SquaredSum

1 def get_complexity_of_subset(self , teaching_set):
2 """ Compute the complexity of the examples given """
3 score = sum([(len(example))**2 for example in teaching_set])
4 score += sum ([0.1 for example in teaching_set if len(example)

↪→ == 0])
5 return score

The SquaredSum aims to keep the total information – letters present – low while

simultaneously putting a high cost on S with individually complex examples. Even if the

total information is low, it might not help if one example is too big, and therefore LH

cannot comprehend it.

Later in this chapter we will put forward results where we discovered that we did

not punish empty examples. Adding a line punishing empty examples was there-

fore added. This line ensures we do not evaluate SL = {(A, 1), (B, 0)} and SL =

{(#, 0), (A, 1), (B, 0)} as equally complex Teaching Sets.

SumOfExamples

1 def get_complexity_of_subset(self , teaching_set):
2 """ Compute the complexity of the examples given """
3 score = sum([len(example) for example in teaching_set])
4 score += sum ([0.1 for example in teaching_set if len(example)

↪→ == 0])
5 return score

We present SumOfExamples as a reasonably straightforward δ-function that cap-

tures the idea of complete information well. With SumOfExamples, we do not care how

the present letters in S are distributed in examples. We only care about how many total

present letters there are in S. The same code line for punishing empty examples as seen

in SquaredSum is also present in in SumOfExample, the reasoning is the same.

As stated in the beginning of this chapter we will compare these suggested δ in our

result chapter, Chapter 7.

49

Chapter 6

Subset selector σ - argminS:θAI |=S

After defining all of δ,λ and LM , we can now evaluate how good a given Teaching Set is.

As our goal is to find a Teaching Set explaining some θAI , being able to score Teaching

Sets is a good step in the right direction. Now we only have to iterate over potential

Teaching Sets and select the best one.

This iteration process of selecting a Teaching Set will be denoted σ and will be de-

scribed in this chapter. Once more, we bring the readers’ attention back to the formula

at the centre of attention in this thesis. In Equation 6.1 we observe that the selection

of subsets to be evaluated is defined by argminS:θAI |=S. In this chapter we present three

different implementation of this argmin and discuss their benefits and disadvantages. We

call these implementations subset selectors, and denote them σ. We leave the comparison

of the suggested subset selectors σ to Chapter 7.

An overview illustrating how the subset selectors fits in to the rest of the system is

given in the Figure 6.1.

T (θAI) = argmin
S:θAI |=S

{δ(S) + λ(θAI , θM) : LM(S) = θM} (6.1)

LM(S) = argmin
θM :θM |=S

{β(θM)}

50

Figure 6.1: Overview of the central teaching system. The input is AI to be taught and
a data set. First TA use σ to select a Teaching Set – the green box ”Select Subset”.
Secondly TA is the control unite in the program. It make calls to LM , λ and δ, combines
the results of each sub system into a score for each Teaching Set.

6.1 Different subset selectors σ

We now introduce three different techniques to perform the selection of Teaching Set to

be evaluated. Up to this point, we have used the representational language of present

letters RL quite a lot. The input of LM is SL, the evaluation in λ is done using present

letters as RL, and the input to δ is SL. As all functions take as input SL, two example

bitmaps containing the same letters will be evaluated identically1. Therefore, all three

subset selectors use RL in their selection of a Teaching Set to avoid having ”duplicate”

bitmaps – same present letters – in a Teaching Set. This ensures the RL-consistent-S we

have been reasoning with throughout, ensuring Teaching Sets like SL = {(A, 1), (A, 0)}
is not allowed. An overview of the three suggested subset selectors σ is given in Table

6.1.

1Assuming θAI predictions are the same

51

Subset selector Description
RandomSelect Baseline. Select random examples to be in Teaching Set.
RandomWHash Random select w/ hashing to avoid repeated selecting of equal sets.
ExhaustiveSearch Enumeration of all possible Teaching Sets, and iteratively try all.

Table 6.1: Table of all subset selector implemented in this thesis

RandomSelect

1 def get_next_subset(self , previous_score , previous_subset):
2 picks = []
3 possiblilities = get_all_letter_combinations ()
4 while(len(picks) < get_sample_size ()):
5 letters = choice(possiblilities)
6 possiblilities.remove(label)
7 to_add = choice(self.letters_to_data[letters])
8 picks.append(to_add)
9 picks.sort(key=lambda x: x[2])
10 return picks

RandomSelect aims to be a simple baseline for comparison. We randomly select examples

to make up the Teaching Set. To ensure RL-consistent-S, we randomly select unique

combinations of letters for each example and then create examples from this. Other than

this, RandomSelect is a rather plain and straightforward subset selector.

RandomWHash

1 def get_next_subset(self , previous_score , previous_subset):
2 while True:
3 pick = self.randomSelector.get_next_subset(
4 previous_score , previous_subset)
5
6 chosen_labels = sorted ([str(pL+str(pY)) for pX, pY, pL in

↪→ pick])
7
8 if chosen_labels in self.tried:
9 # To avoid infinite spin
10 if random.randint(0, 10000) < self.wait_factor:
11 self.wait_factor *= 2
12 pick.sort(key=lambda x: x[2])
13 return pick
14 continue
15 self.wait_factor = max(self.wait_factor //3, 2) # never go

↪→ below 2.
16 self.tried.append(chosen_labels)
17 pick.sort(key=lambda x: x[2])
18 return pick

RandomWithHash aims to be a simple upgrade on Random select. One flaw of

RandomSelect is that it might select the same Teaching Set multiple times. Moreover,

it often can select identical Teaching Sets in RL. To avoid evaluating identical Teaching

Sets multiple times, we introduce hashing of the examples in RL with RandomWHash.

52

RandomWHash retrieves a random example from RandomSelect and checks if it

has seen equivalent Teaching Set before, i.e. containing the same letters with the same

predictions. If RandomWHash finds it has seen this Teaching Set before, it asks for

a new one. It repeatedly selects a new one until it gets one it has not seen before.

We have implemented a stopping mechanism to avoid RandomWHash spinning forever.

The stopping mechanism is a decreasing counter for the number of search attempts it

will perform before returning any Teaching Set2.

We expect RandomWHash to perform better than RandomSelect, especially when

allowed to search for a while, and the hash functions start to reject already attempted

Teaching Sets.

ExhaustiveSearch

1 def initialization:
2 """
3 Full code at
4 https :// github.com/BrigtHaavardstun/ExplainableAI/
5 """
6
7 #Pre computation
8 #[... ,[A,AB ,C], [A,AB,D], [A,AB,AC] ,...]
9 letter_combination = generate_all_combinations_of_letters ()
10 to_try =[]
11 for label_combination in letter_combination:
12 new_teaching_sets_to_try = []
13 for all examples in label_combination:
14 add combination with example = True
15 add combination with example = False
16
17 to_try.extend(new_teaching_sets_to_try)
18 # ToTry holds all possible Teaching Sets

1 def get_next_subset(self , previous_score , previous_subset):
2 return to_try.pop()

With ExhaustiveSearch, we have implemented an iterative search through the logical

search space of present letters RL. This method is the most sophisticated search algorithm

presented in the thesis. It brings the possibility of exhausting the search space. By

allowing ExhaustiveSearch to exhaust the search space, we guarantee finding the optimal

S.

We have therefore used ExhaustiveSearch when evaluating δ-functions, as we mostly

find it interesting which S each δ-function evaluates to be the minimum and not some

2As returning a Teaching Set already evaluated does not bring any new information one could also
simply stop the search at this point.

53

local minima. Regardless of the comparison between the subset selectors, we find that

having a subset selector capable of exhausting the search space and conclusively finding

the best Teaching Set is worth any other potential downside in many use cases.

One of these downsides could, for instance, be increased memory use and pre-

computation time. ExhaustiveSearch generates a rather huge list on the order of O(22
Σ
)3

- as discussed in Section 3.3. It is completely infeasible to store this list all at once.

ExhaustiveSearch, therefore, puts quite a strict limitation on the size of the alphabet.

One solution to this problem would be to make a new version of ExhaustiveSearch,

which can generate all these subsets one after the other. One would then be able to run

ExhaustiveSearch with a larger alphabet Σ without crashing the system. However, the

exhaustive search part would not terminate in any reasonable time for a moderately sized

alphabet Σ.

3If θAI is not RL-consistent-AI we get O(22
|Σ| ∗ 22|Σ|

) = O(22
|Σ|+1

)

54

Chapter 7

Results

In this chapter, we will be comparing the different parts of our system. We will look

at which of the suggested δ performs the best. Then we continue on and look at which

subset selector σ is the best. Finally, we present results on how well we are able to

describe different θAI .

7.1 Comparing suggested δ

In what follows, we compare the different Teaching Sets selected using different deltas.

We remark that we have weighted compatibility λ much higher than complexity δ for

this experiment. That is, in our score function for a Teaching Set we set our multiplier

µ high, such that γ(µ = 100) = δ(S) + µ ∗ λ(θAI , θM). Even for a small decrease in λ the

overall score would still be better for a modest increase in δ(S). We would therefore often

find a Teaching Set S, s.t. λ(θAI , θM) is the minimum, where LM(S) = θM . For these

experiments, we allowed the system to perform an exhaustive search, trying all logically

possible combinations of examples as Teaching Sets and finding the optimal one.

Although all δ produce a score of complexity, the value they return is not comparable

across different δ-functions. If SquaredSum evaluates one Teaching Set to have a com-

plexity of 6.4 and Chunking evaluates another Teaching Set to have a complexity of 3.2,

we have no information on which Teaching Set is more complex.

Therefore, we are only interested in comparing the minimum Teaching Sets each δ-

function finds. First, we will look at how many equally optimal Teaching Sets each δ

finds. If one δ-function finds too many equally optimal Teaching Sets, this might indicate

that the δ-function is a poor discriminator. A poor discriminating δ is not ideal, as the

final Teaching Set becomes random among all equal Teaching Sets.

55

#Minimum
Teaching Set:
(A and !B and D)
or
(B and C and !D)
or
(B and !C and D)

#Minimum
Teaching Set:
(A and B)
or
(C and D)

#Minimum
Teaching Set:
not
(C and D)

Cardinality 5 6 4
Chunking 1 4 2
SquaredSum 1 2 2
SumOfExamples 2 14 2

Table 7.1: The number of equally scored minimum Teaching Sets for different δ-functions,
ran on different θAI , here defined by their ϕ-function.

Setting for these experiments

We performed an exhaustive search of all possible Teaching Sets using subset selector

ExhaustiveSearch. The alphabet used was Σ = {A,B,C,D}. We test with different ϕ

and corresponding θAI . θAI was always trained on a data set of size 10000 and achieved

95+% validation accuracy for all instances. T (θAI) was modified to store all Teaching

Sets with the minimum score instead of just one, so we could see all potential outputs of

our system.

Number of equally optimal Teaching Set

When performing these experiments, all our δ-functions did not punish empty examples.

One of the discoveries in this experiment is that this leads to ”duplicate” minimum

Teaching Sets padded with empty examples. As this was not intended, we changed this

in all δ-functions as presented earlier.

Moving on to the analysis of the data. In the Table 7.1 we present how many equally

good Teaching Sets S there is for different δ. Most of the time, our suggested δ-functions

found between 1 and 4 different minimum Teaching Sets. Another observation we can

make from the Table 7.1 is that the δ-functions rarely only find one minimum Teaching

Set. At the time of the experiment, many of these functions did not punish having an

extra empty example. Therefore, we hypothesised that these deltas found two Teaching

Sets with only an empty example in difference. As a control, we looked at some of the

Teaching Sets produced.

From Table 7.2 we found our hypothesises holds in this one case for all δ-functions

expect Cardinality. As having an extra example increases the cognitive load, even if it is

56

Minimum Teaching Set The delta(s) which produced the Teaching Set
{(ABC,1),(ABCD,0),(ABD,1)} Cardinality
{(AC,1),(ACD,0),(AD,1)} Cardinality
{(C,1),(CD,0),(D,1)} Cardinality, Chunking, SumOfExamples, SquaredSum
{(#,1),(C,1),(CD,0),(D,1)} Chunking, SumOfExamples, SquaredSum
{(BC,1),(BCD,0),(BD,1)} Cardinality

Table 7.2: The minimum Teaching Sets for ϕ = ¬(C ∧D). All minimum Teaching Sets
found, and which δ-functions whom found each S to be a minimum Teaching Set.

Minimum Teaching Set The delta(s) which guessed it

{(A,0),(AB,1),(ABC,0),(B,0),(D,1)} Cardinality, Chunking,
SumOfExamples, SquaredSum

{(A,0),(AB,1),(ABC,0),(ABCD,1),(B,0)} Cardinality
{(A,0),(AB,1),(ABC,0),(B,0),(BCD,1)} Cardinality
{(A,0),(AB,1),(ABC,0),(AD,1),(B,0)} Cardinality
{(A,0),(AB,1),(ABC,0),(ACD,1),(B,0)} Cardinality
{(A,0),(AB,1),(ABC,0),(ABC,0),(B,0),(CD,1)} Cardinality

Table 7.3: ϕ = (A and B and not C) or D. All minimum Teaching Sets found, and which
δ-functions whom found each S to be a minimum Teaching Set.

empty, we introduced a small punishment for having an empty example in our δ-functions.

This punishment brought our δ-functions up to the format we presented earlier in Chapter

5. To check if this had the desired effect, we rerun our experiment for a different ϕ, now

with the punishment of empty examples.

This run further strengthens our hypothesis that when punishing empty examples,

most of our λ-functions effectively finds a small group (or even just one) minimum Teach-

ing Set S. From Table 7.3 we can see that all λ-functions only has found one minimum

Teaching Set S – with exception of our baseline function Cardinality.

From these observations, we conclude that all our delta functions are better discrimi-

nators than cardinality. Since all of the δ performed well in the experiment, we arbitrarily

select SquaredSum as the δ we will use for later experiments.

7.2 Comparing the different subset selectors σ

This section presents data from runs of the proof of concept system with different subset

selectors σ. We will run the system 50 times for each subset selector for a given setup.

We then calculate how good the average Teaching Set is for each σ. We then slightly

change the setup and do 50 more runs per σ.

57

When setting the setup of our system we can decide the number of Teaching Sets

we are to evaluate before returning the minimum found. For each iteration of setting

a new setup, we change the number of Teaching Sets the σ is allowed to check. We

note that if we allow the subset selector to sample ”n times”, we let it select n potential

Teaching Sets S from each possible cardinality size1. For each n of sample attempts,

we calculate the average over the 50 individual runs to hopefully gather insight into the

average performance of the subset selectors when given n sample attempts.

Settings for experiment

θAI was always trained to 100% validation accuracy. To achieve a lower search space, we

lowered our alphabet to contain only three letters Σ = {A,B,C}. Doing this allows us

to observe (in a reasonable time) what happens when ExhaustiveSearch exhausts the

search space.

Data set ϕ = (A ∧B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (¬A ∧B ∧ C)

For the first data presented θAI was trained with ϕ = (A ∧ B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨
(¬A∧B ∧C). We picked ϕ to be complex in this case and therefore suspect that finding

an Teaching Set S having a low γ-score will require more sampling than a less complex

ϕ-function. We set µ = 100 in our score function γ(µ = 100) = (δ(S)+ 100 ∗λ(θAI , θM)),

indicating that we prefer compatibility − λ at the cost of complexity − δ .

Figure 7.1: Graphing average complexity Figure 7.2: Graphing average compatibility

The first observation we would like to draw attention to in Figures 7.1, 7.2 and 7.3

is that in Figure 7.2 the Compatibility-score is always 0, e.g. perfect, for all σ. We

1This is done because of practical reasons in implementation of the Proof of Concept.

58

Figure 7.3: Graphing average score

hypothesise that this is a effect of our γ-function having a high µ = 100. Having a high

µ leads our system to select the most λ-compatible Teaching Set S, and almost disregard

the complexity from δ.

In Subsection 4.1.1 we showed that if θAI is RL-consistent-AI there always exist a

θM for which λ(θAI , θM) = 0. We now argue why all our different σ finds this θM even

for a single search attempt.

As described earlier, one search attempt allows σ to test one Teaching Set of

each cardinality. Hence, even at one sample attempt, σ selects one Teaching Set of

cardinality eight. A Teaching Set of size eight has to contain on example for all

of ΣC = {#, A,B,C,AB,AC,BC,ABC} to be RL-consistent-S. Given θAI to be

RL-consistent-AI, all the examples can only be associated with one predicted value.

When all examples are defined by ΣC , and their predicted values constant, there can

only be one Teaching Set of size 8. With only one Teaching Set SL of size eight, we

conclude that all our subset selectors σ find this one.

This Teaching Set is constructed similarly to the process described in Chapter 4.

Therefore, we argue that this Teaching Set will have a λ-score of zero, given θAI to be

RL-consistent-AI. We therefore, conclude that all σ will always find a Teaching Set with

λ-score zero, even for one sample attempt.

The next observation we will discuss is the steep fall in Figures 7.1 and 7.3 followed

by a rather flat line after 10 search attempts. For one search attempt, we observe that

the average Teaching Sets have a score of 24.08. Looking into our data, we observe that

this is due to our system finding two different minimum Teaching Sets. One of them is

the elementary Teaching Set of cardinality eight:

SL = [(#, 0), (A, 0), (B, 0), (C, 0), (AB, 1), (AC, 1), (BC, 1), (ABC, 0)]

59

This Teaching Set will get a λ-score of 0, and a complexity score2 of 0.1 + 12 + 12 + 12 +

22 + 22 + 22 + 32 = 24.1.

On the other hand, we have the Teaching Set of cardinality seven:

SL = {(A, 0), (B, 0), (C, 0), (AB, 1), (AC, 1), (BC, 1), (ABC, 0)}

This Teaching Set will get a λ-score of 0, and a complexity score3 of 12+12+12+22+

22+22+32 = 24. To find this Teaching Set, one needs to select these seven examples and

drop the empty example. There are
(
8
7

)
= 8 unique Teaching Set of cardinality seven.

To select the minimum Teaching Set of cardinality seven is, therefore, a 1
8
chance. In

the beginning, some of the 50 runs are lucky and find the cardinality seven Teaching

Set. As σ gets more search attempts, we observe that at eight search attempts, both

ExhaustiveSearch and RandomWHash converge and consistently find the Teaching

Set of cardinality seven as the minimum. This is due to them not repeating Teaching

Sets. Given eight search attempts, both σ will try all Teaching Sets of size seven and will

therefore consistently find the best.

For the given ϕ = (A ∧ B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (¬A ∧ B ∧ C) it turns out that

the Teaching Set of cardinality seven is the optimal Teaching Set for this experiment.

Therefore we do not see any more change in our graph.

It turns out that our hypothesis was somewhat wrong for this experiment. A complex

ϕ did not mean we had to use more search attempts to find the optimal Teaching Set.

We found the optimal Teaching Set consistently after eight search attempts. From this,

we conjecture that it might be simpler to find the optimal Teaching Set if it has a high

γ-score.

Data set ϕ = (A ∧B) ∨ C

In parallel with the first data set we made another data set. For the second data set we

chose to train θAI on a less complex ϕ-function. We hypothesized this data set would

lead to a more rapid convergence of Teaching Set S, concerning both compatibility and

complexity, and hence converge faster to the optimal. The same score function was used

in the second data set analysis, γ(µ = 100) = (complexity + 100 ∗ compatibility).

2Using SquaredSum as function
3Using SquaredSum as function

60

Figure 7.4: Graphing average complexity Figure 7.5: Graphing average compatibility

Figure 7.6: Graphing average score

We observe that these graphs have some similarities and some differences compared to

Figures 7.1, 7.2 and 7.3. The first observation we make is that once again the compatibility

score is perfect regardless of sample attempts, as shown with Figure 7.5. The reason for

this is the same as discussed earlier – high µ value in γ and θAI is RL-consistent-AI.

The next observation we would like to bring attention to is the fact that not all

σ converges in Figures 7.4, compared to 7.1 where all converged. Looking at Figure

7.4 we observe that ExhaustiveSearch seems to be consistently finding the optimal

Teaching Set given 50-60 search attempts4. We observe some noise in RandomSelect

and RandomWHash regarding finding the optimal Teaching Set even at 100 sample

attempts. This is in stark contrast to our initialize hypothesis that a simpler ϕ would

lead to finding optimal Teaching Set faster.

Once again our hypothesis that a less complex ϕ would lead to faster converges to an

optimal Teaching Set is flawed. This further strengthen our conjecture that it is simpler

to find a optimal Teaching Set if the best Teaching Set is poor, i.e. has a high γ-score.

4Looking into the data we observe that ExhaustiveSearch exhausts the search space after 70 at-
tempts.

61

Search Attempts RandomSelect RandomWHash ExhaustiveSearch
5 0,24 0,21 0,29
50 0,48 0,63 0,54
100 0,76 0,99 0,83
200 1,46 2,01 1,36
500 3,23 9,45 3,03
1000 5,96 15,95 5,82
2000 12,44 24,32 10,37

Table 7.4: Table showing time used in seconds for different σ.

We conclude the discussion on subset selectors σ by stating that ExhaustiveSearch,

as expected, seems to be the best σ. However, we have thus far not presented

any time analysis comparing the different σ. In the Table 7.4 we see the aver-

age time each σ use given different search attempts. Surprisingly ExhaustiveSearch

comes out on top for large search attempts. The reason for this is that while

RandomSelect and RandomWHash spend much time generating duplicates of Teaching

Sets, ExhaustiveSearch terminates early if it has found all Teaching Sets of a given

cardinality. For instance, whereas RandomSelect and RandomWHash generate 2000

Teaching Sets of cardinality eight, ExhaustiveSearch only generates 16 before stopping.

As expected, RandomWHash comes out last. It spends much time hoping to find a new

Teaching Set before selecting them, and we now see the cost for the gain we observed

in Figure 7.3. We conclude that ExhaustiveSearch is by far the better σ, as it is both

faster and finds better Teaching Sets.

7.3 Better accuracy gives better teaching set score

When aiming to explain an AI, we hypothesise it to be easier to explain an AI with

high validation accuracy. We suspect an θAI with higher accuracy will tend to be

better aligned with our representational language RL. The better alignment should

lead to a lower λ-score, and hence a lower total γ-score. To verify that our system

works as intended and test this hypothesis, we train nine different AIs with differently

sized data sets. We use differently sized training sets to achieve different level of ac-

curacies for the AIs. All AIs are trained with the ground truth ϕ = (A ∧ B) ∨ C

and the alphabet Σ = {A,B,C}. The data set sizes used in the experiment are:

{10, 50, 100, 500, 1000, 2000, 5000, 10000, 50000}, accordingly we denote the different AIs:

{AI10, AI50, AI100, AI500, AI1000, AI2000, AI5000, AI10000, AI50000}.

In Table 7.5 we display the different validation accuracies of the AIs. The most

surprising result is that AI10 achieves the best accuracy of 100%. Looking into the data

62

AIs AI50 AI100 AI500 AI2000 AI1000 AI5000 AI10000 AI50000 AI10
Accuracy 75 83 84 89 90 95 99 99 100

Table 7.5: Accuracy of different AIs.

Figure 7.7: Graph of the Teaching Set
scores of the AIs.

Figure 7.8: Graph of the validation accu-
racies of AIs.

set we used to train AI10 we find that all data instances in the small data set are labelled

1. Hence, AI10 always predicts True, regardless of the input. It was not our intention to

have AI10 always predict True, however it will be interesting to see if we can explain this

AI10.

To help gather insight into this data we also visualize all of the data in Figures 7.7,

7.8, 7.9, 7.10. One interesting observation we can make from this is that it seems the δ

scores and λ scores are inversely related. When δ is high, λ seems to be low, and low δ

seems to be correlated with a high λ. We will not look more into this as our goal is to

look at accuracy related to score.

Based on the hypothesis that it is easier to explain an AI with high validation accuracy,

we expect to find that the higher the accuracy of the AI, the lower the score of the

Figure 7.9: Graph of the λ scores of the
Teaching Sets for the AIs.

Figure 7.10: Graph of the δ-scores of the
Teaching Sets for the AIs.

63

AI50 AI100 AI500 AI2000 AI1000 AI5000 AI10000 AI50000 AI10
Delta 3,1 3,1 2,1 7 15 7 7 7 0,1
Lambda 0,5842 0,3362 0,6573 0,1985 0,1263 0,0518 0,0049 0,0009 0
Total gamma 61,52 36,72 67,83 26,85 27,63 12,18 7,49 7,09 0,1

Table 7.6: Delta, Lambda and Gamma-score of best Teaching Set for different AIs.

Figure 7.11: Accuracy and score of optimal Teaching Set for different AIs sorted by
accuracy.

best Teaching Sets. We therefore run our system with these AI. The subset selector

used is ExhaustiveSearch, and we allowed it to exhaust the search space in RL –

1500 − 2000 search attempts. The data set contained 5000 data instances, and we used

FreePlacement, Rotation and Scaling. The δ-function used is SquaredSum. We

continue to prioritise a Teaching Set such that the guessed concept θM and θAI are quite

similar. To do this, we set µ = 100 in our score function γ. We record the γ-score, λ-score

and δ-score of the best Teaching Set for all the different AIs as displayed in the Table

7.6.

Based on the information in Tables 7.5 and 7.6 we can make a graph looking at the

correlation between accuracy and the γ-score of the best Teaching Set for each AI. We

display this graph in Figure 7.11. From this graph, we observe that there seems to be a

correlation between validation accuracy and the score of the best Teaching Set. In the

graph we have moved AI10 to the end as the accuracy is perfect. Besides this, there is

a clear deviation from the norm in the graph for AI500. To better understand why this

happens, we will compare AI500 with the AI of similar accuracy AI100.

We begin the comparison by giving a breakdown of both AIs in RL in Table 7.7.

This table might give us insight into whether one of the AIs is more easily explained

64

AIs AI100 AI500
0,00 0,00
A 0,71 0,49
B 0,63 0,36
C 0,65 0,49
AB 0,98 0,94
AC 0,99 0,94
BC 0,99 0,95
ABC 1,00 0,99

Table 7.7: Breakdown of AI100 and AI500 in RL.

based on present letters than the other. In the breakdown, we show the percentage of

bitmap predicted True, grouped by present letters in the bitmap. This breakdown shows

that AI100 tends to predict bitmaps containing only A or B to be True more than AI500.

Since A and B alone are labelled 0, AI500 outperforms AI100 in this part of the data

set, and this explains the increase in accuracy5 seen with AI500. We can see that the

AI100 seems to mimic a concept closely matching ”If there is anything in the picture,

predict True”. The Boolean expression ϕ = A∨B ∨C quite easily explains this concept.

On the other hand, AI500 seems to move in the direction of trying to detect ”2 or more

letters”. The concept of ”2 or more letters” is a good estimation of the ground truth

ϕ = (A ∧ B) ∨ C as it only misclassifies C6. To teach this concept the best Teaching

Set is SL = {(A, 0), (AB, 1), (AC, 1), (B, 0), (BC, 1), (C, 0)}, however this teaching set

has the high δ-score of 15. Therefore our system instead chose to explain a concept

almost identically well aligned with AI500. This other concept is ϕ = (A ∧ B) ∨ C, the

ground truth concept. To convey this concept our system generated the Teaching Set

SL = {(A, 0), (AB, 1), (B, 0), (C, 1)}7. This Teaching Set only have a δ-score of 7 and is

therefore preferred.

Based on this discussion, we state that the essential feature to predict the best Teach-

ing Set score for an AI is how well the AI is aligned with our chosen representational

language. Because our ground truth function ϕ is defined in the representational language

of present letters, we expected to be able to use accuracy as a good indicator for the score

of the optimal Teaching Set. If an AI sufficiently matches our ground truth ϕ this rela-

tion is a given. However, this relation seems to hold even for AIs with a much poorer

accuracy, and where the concept best matching the AI in our representation language is

some other concept than the ground truth function.

5The AI AI100 outperforms AI500 in all other groups concerning the ground truth. However, the
margins are small.

6The system chose a Teaching Set aimed at teaching ϕ = (A ∧B) ∨ (A ∧ C) ∨ (B ∧ C) for AI1000.
7This is the Teaching Set given for all of AI2000,AI5000,AI10000 and AI50000 as well

65

Chapter 8

Conclusion and future work

T (θAI) = argmin
S:θAI |=S

{δ(S) + λ(θAI , θM) : LM(S) = θM} (8.1)

LM(S) = argmin
θM :θM |=S

{β(θM)}

In this thesis, we have presented a proof of concept using Machine Teaching for ex-

plainable AI by implementing the formula repeated in Equation 8.1. We have discussed

the different sub-goals of the formula and have given solutions and implementations for

all of them. In the end we compared some of the different implementation variations and

confirmed that our system acts as expected. We found evidence supporting that a higher

accuracy leads to a lower Teaching Set score. With the overview of the work done in this

thesis completed, we move on to look at some potential directions to continue this work.

8.1 Further comparing best Teaching Sets

In the thesis, we have compared the best Teaching Sets based on their accuracy. We

also gained some insight into how Teaching Sets converge in δ and λ in our discussion of

subset selectors σ. However, in this setting, we mostly aimed to compare how effective

the σ was in finding the optimal Teaching Set. Therefore we used a RL-consistent-AI,

and a small alphabet Σ = {A,B,C}.

Future work could look into how the Teaching Sets converge given a larger alphabet

and a θAI which is notRL-consistent-AI. A larger alphabet comes with a larger and a more

66

expressive representational language. From this, we might find a more gradual change in

the best fitting concepts or Teaching Sets. Given a θAI which is not RL-consistent-AI,

our conjecture that a complex teaching set is easier to find as stated in section 7.2 might

change. With a non RL-consistent-AI θAI we will not only have one Teaching Set for

max cardinality. Instead, we will have 2|ΣC | Teaching Sets of max cardinality.

This thesis primarily looks at Teaching Sets S with a low λ score. In future, it could be

interesting to focus more on δ, and compare how this changes the Teaching Sets found.

For instance, one could gradually shift the balance of λ and δ for the same θAI , and

compare the different Teaching Sets one finds.

We only saw some tendencies in Section 7.3 that a Teaching Set with a low λ score

might come at the cost of high δ and high delta. It would be interesting to look into how

the Teaching Sets in our search gradually improves in this regard. We expect the λ score

to start high, and our system then slowly finds better δ. This would be followed by a

”discovery” of a better aligning concept, giving lower λ. However, the Teaching Set aimed

to teach this new concept might be overly complex with a large δ. The system would

then start to find a less and less complex Teaching Set for this new concept bringing δ

down. This cycle of new concepts, bringing λ lower and a spike of δ, followed by a steady

decline improvement of δ would be interesting to check if one would be able to detect.

8.2 Performing trials on humans

Although the system finds the minimum Teaching Set as we have defined it, one should

perform trials to explore whether or not this explanation works for humans. To do this

one should perform human trials. In the project proposal by Telle et al. [21] there are

plans to have such trials to measure the effectiveness of the work.

There would be two main goals for such a trial. One would be to measure how closely

LM agreed with real humans, and the second would be how well the δ-function predicts

which Teaching Sets humans find confusing or complicated.

When preforming such trials, a fundamental question would be whether Teaching

Sets found by our system preforms any better than randomly selected Teaching Sets.

It would be natural to draw experience from the work done by Yang et al. [24] where

they measured the effectiveness of examples-based explanations for AI using Bayesian

Teaching. Hopefully, we would be able to explain an AI if it were highly accurate and

67

thereby aligned with our representational language, i.e. hoping for high sensitivity as

described by Yang et al. [24]. It would also be of great interest to see if we were able

to explain an AI with more errors with respect to the ground truth, i.e. achieve high

specificity as described by Yang et al. [24] . One reason for why this might be the case is

that we have observed that our Teaching Sets are able to find other concepts that better

match the AI when the ground truth is a poor alignment.

8.3 On the topic of LM

8.3.1 New representational language

The inputs we feed to our Karnaugh Map are four variables defined for our represen-

tational language of present letters. We could imagine that these four variables could

represent something completely different in another representational language. For in-

stance, we could imagine an image always containing one A and one B. However, in each

image the location of the A and B changes from high to low. One could then create the

representational language of the high-low location of A and B. One would have the four

variables: AH representing A being in a high location, AL representing A being in a low

location, BH being that B is in a high location and BL for B in a low location.

Training an AI on a function ϕ = AH one would have a similar system as discussed in

this thesis. The main difference would be that one now could look into partial explana-

tions. Even if all data in the training data set contain both A and B, one might be able

to create Teaching Set S = {(AH , 1), (AL, 0)}. When presenting this S to a human, one

would show the human two images, one labelled positive with only a single A high in the

picture and the other with a single A low. These images does not exist in the training

data but are instead artificially created using parts of images in the training data.

This new problem would fit seamlessly into most of the work in this thesis. It would

look into whether it is beneficial to create new concentrated artificial data instances as

explanations.

68

8.3.2 Quine–McCluskey speedup

Suppose one were to increase the alphabet Σ. In that case, one should also change the

boolean minimisation from Karnaugh Map to the Quine–McCluskey algorithm as de-

scribed by Quine et al. [16] and McCluskey et al. [14]. The Quine–McCluskey algorithm

runs faster on larger alphabets.

8.4 On the topic of δ

In the thesis, we have shown some implementations of δ based on information in the

Teaching Sets. In the future, one might want to create better models of complexity

and cognitive load. Inspired by Sweller et al. [19] and their use of production systems

to measure cognitive load, one potential direction we suggest for future work is to take

information from LM into δ. To achieve this, we would have to redefine the formula for

teaching to be:

T (θAI) = argmin
S:S|=θAI

{δ(S, LM) + λ(θAI , θM) : LM(S) = θM} (8.2)

In Equation 8.2 we can measure attributes of LM when given S to see how complex

S is. When defining LM , we use a modified Karnaugh Map to find Boolean expressions

matching our Teaching Sets. If the Karnaugh Map finds only one Boolean Expression,

this might be a good indicator of a simple Teaching Set.

On the other hand, the Karnaugh Maps might find multiple Boolean Expressions, e.g.

ϕa = (A∧¬B)∨ (A∧¬C) and ϕb = (A∧B)∨ (A∧¬D). One would then have to apply

rules defined in β to find the minimum. As a reminder, we the rules defining β is given

in the Equation 3.7

We can see that the number of clauses in ϕa and ϕb is the same. Hence we can not

apply the first rule. Moving on to the next rule we attempt to compare the minimum

clauses. We observe that the minimum clause in both expressions is the clause (A ∧ B).

Two identical clauses have the same β evaluation, so we move on to the next clause. This

is Ca = (A ∧ ¬C) and Cb = (A ∧ ¬D). We see that the number of letters and negations

are the same. In the end, we can differentiate them based on their lexicographical order.

Using this many steps in β might indicate that the Teaching Set S is complex.

69

We conjecture that a LM and a humans conclusion will differ more the more steps LM

used in β. To support the conjecture, we observe that the human is not told the rules

in β. Therefore it is unlikely they will have the same rules in their mind. Even if they

did, it would be harder for a human to find the one correct concept if there are a lot of

similar concepts matching the Teaching Set.

8.5 On the topic of subset selector σ

On the selection of subset selector there is a huge potential for approximation and opti-

misation algorithms to be done. We have a clearly defined search space with adding/re-

moving single letters from the examples in Teaching Sets, and one should be able to use

this to define Local Search algorithms etc.

The benefit of continuing this work of improving subset selectors is increased speed.

This opens up the possibility of a larger alphabet. With a larger alphabet, one could

continue experimenting with how the different δ-functions compare and general aspects

of a larger / more realistic domain to explain. If one is to achieve the benefits of a larger

alphabet and search space, the improvement of subset selectors, σ is essential.

70

Bibliography

[1] Gi elevene nok lærere.

URL: https://www.utdanningsforbundet.no/var-politikk/utdanningsforbundet-mener/

artikler/gi-elevene-nok-larere/.

[2] Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Pa-

heding Sidike, Mst Shamima Nasrin, Brian C. Van Esesn, Abdul A. S. Awwal, and

Vijayan K. Asari. The history began from AlexNet: A comprehensive survey on

deep learning approaches.

URL: http://arxiv.org/abs/1803.01164.

[3] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo,

Vinicius B. Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M.

Paixão, Filipe Mutz, Lucas de Paula Veronese, Thiago Oliveira-Santos, and Al-

berto F. De Souza. Self-driving cars: A survey. 165:113816. ISSN 0957-4174. doi:

10.1016/j.eswa.2020.113816.

URL: https://www.sciencedirect.com/science/article/pii/S095741742030628X.

[4] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.

Occam’s razor. 24(6):377–380. ISSN 0020-0190. doi: 10.1016/0020-0190(87)90114-1.

URL: https://www.sciencedirect.com/science/article/pii/0020019087901141.

[5] Nelson Cowan. The magical number 4 in short-term memory: A reconsideration

of mental storage capacity. Behavioral and Brain Sciences, 24(1):87–114, February

2001. ISSN 1469-1825, 0140-525X. doi: 10.1017/S0140525X01003922.

URL: https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/

article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-

storage-capacity/44023F1147D4A1D44BDC0AD226838496. Publisher: Cambridge Univer-

sity Press.

[6] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning.

In Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques

71

https://www.utdanningsforbundet.no/var-politikk/utdanningsforbundet-mener/artikler/gi-elevene-nok-larere/
https://www.utdanningsforbundet.no/var-politikk/utdanningsforbundet-mener/artikler/gi-elevene-nok-larere/
http://arxiv.org/abs/1803.01164
https://www.sciencedirect.com/science/article/pii/S095741742030628X
https://www.sciencedirect.com/science/article/pii/0020019087901141
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496

for Multimedia: Case Studies on Organization and Retrieval, pages 21–49. Springer.

ISBN 978-3-540-75171-7. doi: 10.1007/978-3-540-75171-7 2.

URL: https://doi.org/10.1007/978-3-540-75171-7 2.

[7] Shoshana Dreyfus, Susan Hood, and Maree Stenglin. Semiotic Margins: Meaning in

Multimodalities. Bloomsbury Publishing. ISBN 978-1-4411-7016-3. Google-Books-

ID: Z3M8CwAAQBAJ.

[8] Randi Eilertsen. Programmeringsemne er størst p̊a MatNat.

URL: https://www.uib.no/en/node/129155.

[9] Rumjahn Hoosain. The processing of negation. Journal of Verbal Learning and

Verbal Behavior, 12(6):618–626, December 1973. ISSN 0022-5371. doi: 10.1016/

S0022-5371(73)80041-6.

URL: https://www.sciencedirect.com/science/article/pii/S0022537173800416.

[10] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,

and Bo Li. Manipulating machine learning: Poisoning attacks and countermeasures

for regression learning. In 2018 IEEE Symposium on Security and Privacy (SP),

pages 19–35. doi: 10.1109/SP.2018.00057. ISSN: 2375-1207.

[11] M. Karnaugh. The map method for synthesis of combinational logic circuits.

Transactions of the American Institute of Electrical Engineers, Part I: Commu-

nication and Electronics, 72(5):593–599, November 1953. ISSN 2379-674X. doi:

10.1109/TCE.1953.6371932. Conference Name: Transactions of the American Insti-

tute of Electrical Engineers, Part I: Communication and Electronics.

[12] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical

report, 2009.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification

with Deep Convolutional Neural Networks. In Advances in Neural Information

Processing Systems, volume 25. Curran Associates, Inc., 2012.

URL: https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-

Abstract.html.

[14] E. J. McCluskey. Minimization of Boolean functions. The Bell System Technical

Journal, 35(6):1417–1444, November 1956. ISSN 0005-8580. doi: 10.1002/j.1538-

7305.1956.tb03835.x. Conference Name: The Bell System Technical Journal.

72

https://doi.org/10.1007/978-3-540-75171-7_2
https://www.uib.no/en/node/129155
https://www.sciencedirect.com/science/article/pii/S0022537173800416
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[15] Emmanuel M. Pothos and Andy J. Wills. Formal Approaches in Categoriza-

tion. Cambridge University Press. ISBN 978-1-139-49397-0. Google-Books-ID:

Z0eL3Cg5t 4C.

[16] W. V. Quine. The Problem of Simplifying Truth Functions. The American Mathe-

matical Monthly, 59(8):521–531, 1952. ISSN 0002-9890. doi: 10.2307/2308219.

URL: https://www.jstor.org/stable/2308219. Publisher: Mathematical Association of

America.

[17] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and

Yann LeCun. OverFeat: Integrated Recognition, Localization and Detection using

Convolutional Networks. Technical Report arXiv:1312.6229, arXiv, February 2014.

URL: http://arxiv.org/abs/1312.6229. arXiv:1312.6229 [cs] type: article.

[18] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. Technical Report arXiv:1409.1556, arXiv, April

2015.

URL: http://arxiv.org/abs/1409.1556. arXiv:1409.1556 [cs] type: article.

[19] John Sweller. Cognitive load during problem solving: Effects on learning. Cog-

nitive Science, 12(2):257–285, April 1988. ISSN 0364-0213. doi: 10.1016/0364-

0213(88)90023-7.

URL: https://www.sciencedirect.com/science/article/pii/0364021388900237.

[20] John Sweller. CHAPTER TWO - Cognitive Load Theory. In Jose P. Mestre and

Brian H. Ross, editors, Psychology of Learning and Motivation, volume 55, pages

37–76. Academic Press, January 2011. doi: 10.1016/B978-0-12-387691-1.00002-8.

URL: https://www.sciencedirect.com/science/article/pii/B9780123876911000028.

[21] Jan Arne Telle, C´esar Ferri, Jose Hern´andez-Orallo, and Pekka Parviainen. Ma-

chine teaching for explainable ai, 2021.

[22] Mirko Thalmann, Alessandra S. Souza, and Klaus Oberauer. How does chunking

help working memory? Journal of Experimental Psychology. Learning, Memory, and

Cognition, 45(1):37–55, January 2019. ISSN 1939-1285. doi: 10.1037/xlm0000578.

[23] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):

1134–1142, November 1984. ISSN 0001-0782, 1557-7317. doi: 10.1145/1968.1972.

URL: https://dl.acm.org/doi/10.1145/1968.1972.

[24] Scott Cheng-Hsin Yang, Wai Keen Vong, Ravi B. Sojitra, Tomas Folke, and Patrick

Shafto. Mitigating belief projection in explainable artificial intelligence via Bayesian

73

https://www.jstor.org/stable/2308219
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1409.1556
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://www.sciencedirect.com/science/article/pii/B9780123876911000028
https://dl.acm.org/doi/10.1145/1968.1972

teaching. Scientific Reports, 11(1):9863, December 2021. ISSN 2045-2322. doi:

10.1038/s41598-021-89267-4.

URL: http://www.nature.com/articles/s41598-021-89267-4.

[25] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional

Networks. Technical Report arXiv:1311.2901, arXiv, November 2013.

URL: http://arxiv.org/abs/1311.2901. arXiv:1311.2901 [cs] type: article.

[26] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. An overview of

machine teaching. 2018.

URL: http://arxiv.org/abs/1801.05927.

74

http://www.nature.com/articles/s41598-021-89267-4
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1801.05927

Appendix A

Overview of system

This page is intentionally left blank to be able to scale up the figure to full size on the

next page.

75

76

Figure A.1: Large detailed overview of system. All sub parts are presented in enlarged
versions throught the thesis.

	Introduction
	Background
	Our area of interest
	Machine Teaching introduction
	Formal definition
	It takes two to teach

	Problem statement for the thesis
	Teaching Set S
	 - Scoring function

	Visual overview of system
	Overview of chapters

	The AI we want to explain - AI
	Definition of AIs task
	The ground truth Boolean function

	Defining the data set
	Description of an instance
	Variance when generating instances
	Labels

	Implementation of AI
	Training results of AI
	Least complex data set
	Introducing rotation
	Rotation and scaling
	Adding free placement of letters
	Reducing alphabet
	Conclusion

	Model of the human
	What humans see - Representational language
	Weaknesses of RL
	Search space - Motivation for RL
	Changing alphabet size
	Conveying the Teaching Set to LH

	Boolean expressions – modelling human reasoning
	Implementing `3́9`42`"̇613A``45`47`"603AargminM : M |-3muS - Karnaugh map
	 - Simplicity of Boolean Expressions

	Occam's Razor
	Output M
	A seemingly anomalous result

	Comparing AI and M -
	Comparing AI and M
	 score RL-consistent-AI

	Speed up implementations

	Complexity of Teaching Set - (S)
	Why penalise complex Teaching Sets?
	Different implementations

	Subset selector - `3́9`42`"̇613A``45`47`"603AargminS: AI |-3muS
	Different subset selectors

	Results
	Comparing suggested
	Comparing the different subset selectors
	Better accuracy gives better teaching set score

	Conclusion and future work
	Further comparing best Teaching Sets
	Performing trials on humans
	On the topic of LM
	New representational language
	Quine–McCluskey speedup

	On the topic of
	On the topic of subset selector

	Bibliography
	Overview of system

