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A B S T R A C T   

Axial radiation from leaky Lamb waves propagating in a 6.05 mm water-immersed steel plate being excited by a 
sound beam normally incident to the plate, is investigated as a function of axial distance, z, and frequency, f, over 
the 350–1000 kHz frequency band of the S2, A2, and A3 Lamb modes in the plate. For certain leaky Lamb modes, 
prior literature has revealed complex characteristics in the transmitted pressure field close to the plate, caused by 
diffraction due to the finite angular spectrum of the incident beam. The present work extends earlier work by 
bringing insight into the changes of these field characteristics in the near- and far-field of the transmitted beam, 
over the frequency band of leaky Lamb modes, for normal beam incidence to the plate. A baffled piston source in 
a full-wave angular spectrum propagation model is used to analyze the phenomena involved. Maxima and 
minima that can not be described with plane wave theory are observed in the frequency spectrum of the axial 
pressure transfer function through the plate. At very long ranges the normalized transmitted sound beam tends to 
attain characteristics of the plate’s plane-wave transmission coefficient, for two of the leaky Lamb modes. Near- 
field interference phenomena not described in prior literature are identified. For the leaky Lamb mode associated 
with a backward-wave branch close to the fundamental thickness-extensional resonance in the plate, TE1, the 
axial near-field is shown to extend to very far ranges. Supplementary measurements add confidence to the 
simulation results and findings. Besides of their fundamental significance in the study and understanding of 
sound beams transmitted through a fluid-immersed solid plate, the results are of importance e.g. in immersion 
applications where material characterization is made using fluid-coupled ultrasonic transducers in a through- 
thickness resonant transmission setup, such as plate thickness or material properties measurements.   

1. Introduction 

Sound beams reflected from and transmitted through a homoge-
neous, isotropic, elastic, and fluid-embedded plate have been exten-
sively studied [1–33]. The interaction of the incident sound with the 
plate excites propagating leaky Lamb waves in the plate that radiate 
sound into the embedding fluid. 

For beams normally incident to the plate, anomalous phenomena 
have been reported for the transmitted sound pressure field in the fre-
quency band of the fundamental plane-wave thickness-extensional 
resonance of the plate, TE1. This includes (i) down-shifted frequency of 
the maximum in the pressure frequency spectrum associated with TE1, 
as compared to the TE1 resonance frequency [15,18,27,28]; (ii) 
increased transmitted axial sound pressure level (SPL) at this maximum, 
as compared to the incident axial free-field SPL at the upper surface of 

the plate [18–20,27,28], and (iii) narrowing of the transmitted beam, as 
compared to the incident beam [18,23,24,27,28]. For the first overtone 
plane-wave thickness-extensional resonance of the plate, TE2, widening 
of the transmitted beam has been reported [23,24,27,28]. Simulations of 
these phenomena using realistic piezoelectric transducer beam fields 
have been supported by measurements at a close distance from the plate 
[22,23,27,28]. 

The phenomena observed in the frequency band close to TE1 have 
been ascribed to interaction of the finite angular spectrum of the nor-
mally incident beam with the backward-wave branches [34] of the S2 
and S− 2 symmetric Lamb modes in the plate [28]. In backward waves 
the phase and group velocities are of different sign [34]. For the negative 
and positive in-plane (“horizontal”) wavenumbers of the backward- 
wave branches of S2 and S− 2, respectively, the group velocity is posi-
tive and negative [35–38], respectively. For the portion of the incident 
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beam’s angular spectrum that interacts with the backward-wave 
branches, the backward waves effectively confine the beam in the 
plate direction by carrying energy back into the beam center [4]. For 
spectral portions that interact with forward wave branches, energy is 
carried away from the beam center. These mechanisms appear to be the 
explanation for the observed concentration of energy in the (narrowed) 
transmitted beam, the accompanying increase of SPL through the plate, 
and the lowered resonance frequency of the plate. The negative group 
velocity of the backward-wave branch of S− 2 has been interpreted by 
different authors as a coupling effect between shear and compressional 
waves in the plate near cutoff [4], or due to mode repulsion between 
even and odd modes of the same type [38,39]. Detailed knowledge of the 
physics underlying the observed phenomena is of significance in the 
study and understanding of sound beams transmitted through a fluid- 
immersed solid plate, and in practical applications based on the use of 
spectral resonances in the plate. 

Applications in this area include characterization of materials using 
fluid-coupled ultrasonic transducers in a resonant reflection or trans-
mission immersion setup. Examples are measurement of plate and pipe 
wall thickness [3,4,11,15,25,40–42], e.g. for corrosion inspection, 
compressional- or shear-wave bulk velocities [7,12,16,17,41–44], and 
inspection and imaging of discontinuities and inhomogeneities [45]. 
The through-thickness resonance method is commonly used 
[25,33,41,42,45]. The spectral maxima or minima in the pressure field 
measured at some distance from the plate, may be interpreted in terms of 
one or several plane-wave thickness-extensional (TE) or thickness-shear 
(TS) resonances in the plate. In use of TE1 for such measurements, the 
downshifted thickness resonance frequency will require a “finite-aper-
ture correction” for the downshift when accuracy in measurement is of 
importance. 

Another example of relevance is the detection or characterization of 
one or several objects behind a fluid-embedded plate or pipe wall, using 
e.g. a transmission-reflection immersion setup. Knowledge of the sound 
field transmitted through the plate in relevant positions of the object(s), 
including possible anomalies in this field, is then of importance for the 
outcome of the measurement. 

In such applications, using finite-aperture transducers and operation 
in the frequency band of TE1 or other TE or TS plate resonances, several 
questions arise: (1) To what extent does already known bounded beam 
phenomena depend on the distance from the plate to the receiving 
transducer, for the relevant spectral maxima and minima in the trans-
mitted field?; (2) Would there be additional bounded beam phenomena 
not discovered in prior studies, e.g. at specific frequencies and distances 
from the plate?; (3) To which extent may bounded-beam phenomena 
influence when the characterization measurement is interpreted using 
common plane-wave theory for TE and TS resonances?; (4) What are the 
characteristics and spatial extent of the transmitted near-field, for the 
various leaky Lamb modes involved, as a function of frequency and 
increasing distance from the plate? 

In relation to such questions for transmitted beams, there appears to 
be no near- to far-field studies reported on possible changes of spectral 
maxima and minima observed, as compared with the corresponding TE 
or TS resonances. Earlier work has focused on close distance from the 
plate [18–24,26–29,31,32]. From studies of reflected beams, however, it 
has been shown that as the transducer-plate distance increases, an 
observed downshift of the resonant notch being associated with TE1 is 
monotonically reduced [3,4]. In the TE1 frequency band the “effective” 
reflection coefficient asymptotically approaches the plane-wave reflec-
tion coefficient of the plate [4]. For the notch associated with TE2, a 
slight monotonic downshift with increasing distance from the plate has 
been observed [3]. Similar effects may thus possibly be expected for 
beam transmission. In contrast to the reflection studies reported in [3,4], 
it would be of interest to keep the source-plate distance constant (in the 
far-field of the source), while the plate-receiver distance is varied. 

The objective of the present work is to investigate such questions in a 
simulation study. A 6.05 mm thick water-immersed steel plate of infinite 

extent is excited by a sound beam at normal incidence to the plate. Near- 
field phenomena in the plate’s axial pressure transfer function, |Hpp|, 
including radiation from leaky Lamb waves propagating in the plate, are 
investigated along the beam axis as a function of frequency and 
increasing distance from the plate. Frequencies in the range 350–1000 
kHz are considered, covering the frequency band of certain lower leaky 
Lamb modes. Distances up to 500 m from the plate have been found 
necessary to gain sufficient insight into the detailed near- to far-field 
transition characteristics of the transmitted beam. A baffled piston 
source combined with a full-wave angular spectrum propagation model 
(ASM) is used. Here and in the following, “piston” refers to a planar 
circular piston source mounted in a rigid baffle of infinite extent, 
vibrating with uniform particle velocity. Changes in shape, bandwidth, 
level, dynamics, and frequencies of spectral maxima and minima in |Hpp|

are compared with (i) the plate’s plane-wave pressure transmission co-
efficient, |T|, and (ii) the cutoff frequencies of the associated Lamb 
modes of the traction-free plate, vibrating in vacuum. For added confi-
dence, the simulation results are compared with measurements of the 
transmitted beam at three axial distances from the plate using a 575 kHz 
transducer operating over the same frequency range. 

The theoretical basis of the ASM piston model is presented in Section 
2. The experimental and simulation setups are described in Sections 3 
and 4, respectively. Results are presented and discussed in section 5, 
with conclusions given in Section 6. 

2. Theory 

An angular spectrum model (ASM) [30] for investigation of beam 
transmission through a fluid-immersed solid plate at normal beam 
incidence is presented, in which the incident beam is described as the 
field radiated by a circular and baffled piston source. The following 
model capabilities are needed, extending prior approaches used for such 
problems [10,19,20,22,24,25,28]: (i) uniform (constant) particle ve-
locity at the piston source; (ii) full angular (or wavenumber) spectrum 
description of the piston’s near- and far-field regions using cylindrical 
coordinates, accounting for propagating and evanescent wave contri-
butions; and (iii) pressure “reception” in a single point, where the 
source-plate and plate-receiver distances can be varied independently. 

The setup used for mathematical-numerical modeling [30] is shown 
in Fig. 1. A steel plate of thickness d is immersed in a fluid. The plate is 
assumed to be elastic, isotropic, homogeneous, and of infinite lateral 
extent. A circular and baffled piston source, representing an ultrasonic 
transducer, generates an acoustic beam field that is transmitted through 

Fig. 1. Schematics of the setup used for mathematical-numerical modeling. A 
baffled circular piston source is vibrating uniformly in a fluid (water). A steel 
plate of thickness d and infinite lateral extent is located at distance z0 from the 
piston front surface. The model is angular symmetric about the z axis. 
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the fluid-immersed plate at normal beam incidence to the plate. The 
piston surface is oriented parallel to the plate, at a distance z0 from the 
plate. A Cartesian coordinate system is indicated, with origin at the 
center of the piston surface, the x and y axes in the source plane z = 0, 
the z axis normal to the piston surface, and the y axis pointing out of the 
paper. The fluid is assumed to be homogeneous, with constant sound 
velocity, cf , and density, ρf . The plate material and the fluid medium are 
taken to be lossless. 

The ASM model is expressed in cylindrical coordinates (r,θ,z), where 
r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
is the radial range and θ is the polar angle (in the x-y 

plane). For the axisymmetric model setup (angular symmetry about the 
z axis) θ is superfluous and omitted. A time convention eiωt is used and 
suppressed, where ω = 2πf is the angular frequency and f is the fre-
quency. The argument of the field quantities is thus the vector (r,z, f). 

The plate’s acoustic response at the acoustic axis (r = 0) is studied 
using the axial pressure transfer function 

Hpp(0, z, f ) =
p(0, z, f )

pi(0, z0, f )
. (1) 

pi(0, z0, f) is the axial free-field sound pressure frequency spectrum 
radiated by the piston at range z0 (i.e., the axial free-field sound pressure 
frequency spectrum incident to the plate, in absence of the plate). p(0, z,
f) is the axial sound pressure frequency spectrum transmitted through 
the steel plate at distance z. Both pi(0, z0, f) and p(0, z, f) are calculated 
using the ASM model as described in the following. 

The z component of the piston’s particle velocity frequency spectrum 
at frequency f is given as. 

vz(r, z = 0, f ) =
{

v0, r ≤ a,
0, r > a, (2)  

where v0 is a constant and a is the piston radius. By Hankel transforming 
vz, the particle velocity wavenumber spectrum in the source plane is 
given as [46] (p. 48) 

Vz(η, 0, f ) = 2π
∫∞

0

vz(r, 0, f )J0(ηr)rdr = πa2v0
2J1(aη)

aη . (3) 

J0 and J1 are the zeroth and first order Bessel functions of the first 
kind, respectively. η is the component of the acoustic wave vector in the 
plane of the plate (the r-direction), here referred to as the “horizontal 
wavenumber” (or simply the “wavenumber”). In the present work only 
real-valued η are considered, since no sources or inhomogeneities within 
the plate are present, eliminating the need for imaginary- and complex- 
valued η, associated, respectively, with evanescent and propagating 
waves that are rapidly decaying in the plate (r) direction [47]. The z- 
component of the linearized Euler’s equation in the frequency domain is 
given as. 

iωρf vz(r, z, f ) = −
∂p(r, z, f )

∂z
. (4)  

A spatial Hankel transform with respect to r yields 

iωρf Vz(η, z, f ) = −
∂P(η, z, f )

∂z
= ihf ,zP(η, z, f ), (5)  

for a plane wave propagating in the positive z direction at a given η and a 
given angle θ (arbitrary). Here, Vz(η, z, f) and P(η, z, f) are the particle 
velocity and sound pressure wavenumber spectra, respectively. From 
Eqs. (3) and (5) one finds 

P(η, 0, f ) =
ωaρf

ηhf ,z
2πv0J1(aη), (6)  

where 

hf ,z =

⎧
⎪⎨

⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2
f − η2

√

, η ≤ hf ,

− i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2 − h2
f

√

, η > hf ,

(7)  

is the z component of the acoustic wave vector in the fluid (the “vertical 
wavenumber”), and hf = ω/cf is the acoustic wavenumber in the fluid. 
For η > hf , hf ,z becomes imaginary, representing evanescent (exponen-
tially decaying) waves in the z direction. 

P(η, 0, f) given by Eq. (6) is then propagated to a distance z0 in the 
fluid using the plane-wave propagation term e− ihf ,zz0 [46], giving. 

Pi(η, z0, f ) = P(η, 0, f )e− ihf ,zz0 . (8) 

Here, Pi is the wavenumber spectrum of the incident free-field sound 
pressure spectrum pi in the fluid, at the upper surface of the plate, in 
absence of the plate. 

Pi(η, z0, f) given by Eq. (8) is then first propagated in the z direction 
through the plate using the plate’s plane-wave transmission coefficient, 
T, and secondly through the fluid beneath the plate using the plane wave 
propagation term e− ihf ,z(z− d− z0), giving, for z > z0 + d, 

P(η, z, f ) = Pi(η, z0, f )T(η, d, f )e− ihf ,z(z− d− z0) = P(η, 0, f )T(η, d, f )e− ihf ,z(z− d).

(9) 

The plane-wave pressure transmission coefficient of the plate is 
defined as [10] 

T(η, d, f ) = P(η, z0 + d, f )
Pi(η, z0, f )

, (10)  

where P(η, z0 +d, f) is the sound pressure wavenumber spectrum in the 
fluid at the plate’s lower surface. T can be expressed as [10]. 

T(η, d, f ) = − iY(A + S)
(S + iY)(A − iY)

(11) 

where. 

Y =
ρf hz

ρhf ,z
k4,

S =
(
2η2 − k2)2cot

(

hz
d
2

)

+ 4η2hzkzcot
(

kz
d
2

)

,

A =
(
2η2 − k2)2tan

(

hz
d
2

)

+ 4η2hzkztan
(

kz
d
2

)

.

(12)  

Here, ρ is the plate density. hz and kz are the z components of the lon-
gitudinal and shear wave vectors in the plate, given as. 

hz =

{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2 − η2
√

, η ≤ h,

− i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2 − h2
√

, η > h,
(13)  

and 

kz =

{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2 − η2
√

, η ≤ k,

− i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2 − k2
√

, η > k,
(14) 

respectively. h = ω/cl and k = ω/ct are the longitudinal and shear 
wavenumbers, and cl and ct the longitudinal and shear wave velocities in 
the plate, respectively. 

The sound pressure frequency spectra pi and p are obtained by taking 
the inverse Hankel transform of Eqs. (8) and (9), respectively, giving 

pi(r, z0, f ) =
1

2π

∫∞

0

Pi(η, z0, f )J0(ηr)ηdη (15)  

and 
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p(r, z, f ) =
1

2π

∫∞

0

P(η, z, f )J0(ηr)ηdη. (16) 

The axial values of pi and p used in Eq. (1) are then obtained at r = 0. 

3. Experimental setup 

Measurement results reported in [30] are used to compare with 
simulations. Fig. 2 shows the water tank in top view (with height 60 cm, 
width 75 cm, length 160 cm) and side view (with the y-z plane at x = 0, 
and the x axis pointing out of the paper). The center of the transducer’s 
front surface is located at x = y = z = 0, where x = y = 0 is approximately 
the mid point of the tank’s cross-sectional plane. 

A piezoelectric transducer with center frequency 575 kHz was used; - 
designed, built, and characterized for measurements and finite element 
studies [23]. A 130 μs voltage tone burst generated by the HP 33120A 
signal generator excites the transducer over a frequency range 
350–1000 kHz at 1 kHz frequency steps. For an assumed constant 
effective piston radius of a = 10.55 mm (obtained from the transducer’s 
− 3dB beamwidth measured at 575 kHz) [23], the ranges of the piston’s 
hf a number, − 3dB angle, and Rayleigh distance, are 15.6–44.6, 
5.9− 2.1◦, and 82–235 mm, respectively, over the frequency band 
considered. 

The acoustic pressure generated by the transducer was transmitted 
through a d = 6.05 mm thick AISI 316L stainless steel plate with lateral 
dimensions 500 and 760 mm in the x and y directions, respectively. The 
plate was located in the transducer’s far-field at a source-plate distance 
z0 = 270mm, corresponding to 3.3–1.2 Rayleigh distances in the piston 
model, over the frequency band considered. 

The axial (x = 0, y = 0) acoustic pressure, p, was measured at dis-
tances z = 376.05, 626, and 875 mm, i.e., 100.00, 349.95, and 598.95 
mm beneath the lower surface of the plate, using a calibrated Precision 
Acoustic PVDF needle hydrophone (1 mm diameter, 100 mm length). In 
addition, the free-field axial acoustic pressure, pi, was measured at dis-
tance z0 = 270 mm. For each frequency, |Hpp| of Eq. (1) was obtained 
from the corresponding voltage amplitudes at that frequency. Further 
details on the experimental setup are given in [23]. 

In Section 5, the measurement results are reported in terms of the 
transfer function given in Eq. (1). It is noted that measurements are used 
here only for qualitative comparison with the simulations; to add con-
fidence to the results, and for discussion of phenomena observed. Close 

quantitative agreement with simulation results can not be expected, 
since the measurements are made using a transducer, whereas the 
simulations are made using an ideal piston source. 

4. Simulation setup 

In the simulation setup shown in Fig. 1, a piston source with radius a 
= 10.55 mm [23] and v0 = 1 m/s [30] is located at distance z0 =

270 mm from a water-embedded steel plate of infinite extent and 
thickness d = 6.05 mm. The sound velocity in water is cf = 1485 m/s. 
The plate and water densities are set to ρ = 8000 kg/m3 and ρf = 1000 
kg/m3, respectively [23]. The plate’s longitudinal and shear wave ve-
locities are cl = 5780 m/s and ct = 3130 m/s [23], corresponding to a 
Poisson’s ratio of 0.2925. Frequencies in the range 350–1000 kHz are 
used. 

For each z and f, the integrals in Eqs. (15) and (16) are solved 
numerically using the trapezoidal rule, where the upper integration 
limit is set to ηmax = hf +400 rad/m. For η > ηmax, the magnitude of the 
integrands in Eqs. (15) and (16) are more than 500 dB lower than the 
average integrand magnitude for η in the region 0 to ηmax, and thus 
negligible. This upper limit is frequency dependent, giving ηmax in the 
range 2480–5240 rad/m over the frequency range. 

To ensure sufficient integration accuracy, a non-uniform wave-
number (η) sampling strategy is used. In the simulations of pi(0, z0, f)
using Eq. (15), an accuracy better than 10-4 dB in magnitude has been 
achieved over the frequency range. For the simulations of p(0, z, f) using 
Eq. (16) an accuracy better than 10-6 dB in magnitude has been achieved 
over the same frequency range, up to z = 40 m. For z = 500 m the ac-
curacy is better than 10-6 dB, at the 478 kHz frequency component 
shown here. (An exception is the simulation of p(0, z, f) shown in Fig. 5, 
for which the accuracy is within 10-2 dB in magnitude. The results in 
Fig. 5 are however used only for visual overview purposes and not to 
report quantitative results.) Possible errors less than these numbers are 
too small to affect any maxima or minima in the frequency spectra being 
discussed in the current work. 

The general frequency resolution in the simulations is 100 Hz. Close 
to sharp spectral maxima and minima in Figs. 4 and 8, a frequency 
resolution as low as 0.5 Hz has been used. The Δz resolution in Figs. 5-6 
is 10 mm. 

Fig. 2. Measurement setup in the water tank. (a) Photograph in top view, showing the transmitting transducer, steel plate, hydrophone and the positioning stages. 
(b) Drawing of the setup in side view (y-z plane, at x = 0). The water level is approximately 50 cm and the transducer and hydrophone are positioned approximately 
25 cm above the bottom. Measurements are conducted at z = 376.05, 626, and 875 mm (10.000, 34.995, and 59.895 cm from the plate, respectively). 
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5. Results and discussion 

5.1. Dispersion curves, Lamb mode cutoff frequencies, and frequencies of 
spectral maxima 

In the following discussion of near-field and far-field effects in beam 
interaction with a fluid-embedded solid plate, the Lamb mode cutoff 
frequencies of the plate (i.e., the plane-wave cutoff frequencies of the 
corresponding traction-free plate vibrating in vacuum) will be useful 
reference frequencies. 

Fig. 3 shows the magnitude of the plane-wave transmission coeffi-
cient for a water-embedded steel plate, |T(η, d, f)|, as a function of fre-
quency f and angle of plane-wave incidence θ, calculated using Eqs. 
(11)-(14). Here, θ = sin− 1(η/hf ), for η ≤ hf . The overlayed black dashed 
curves in Fig. 3 give the dispersion curves for the associated Lamb modes 
in the plate (i.e., vibrating in vacuum), calculated for real η. The sym-
metric and antisymmetric Lamb modes being present in the f-θ range 
shown are marked by S0, S1, S2, S− 2 and A0, A1, A2, A3, respectively. 

Using the terminology of Aanes et al. [28], the plane-wave cutoff 
frequencies of the S2, A2, and A3 Lamb modes of a solid plate with 
Poisson’s ratio in the range 1/5–1/3, are labeled fS

l1, fS
t2, fA

t3, and fA
l2, 

respectively. S2 is the 3rd symmetric Lamb mode, and A2 and A3 are the 
3rd and 4th antisymmetric Lamb modes, respectively [48]. fS

l1 and fS
t2 are 

the lower and upper cutoff frequencies of the S2 mode [48]. fA
t3 and fA

l2 are 
the cutoff frequencies of the A2 and A3 modes. Table 1 gives expressions 
and calculated figures for the four cutoff frequencies. These Lamb mode 
cutoff frequencies are indicated in Fig. 3. 

Equivalently, expressed in terms of the TE and TS resonances of the 
plate, fS

l1 and fA
l2 are the resonance frequencies of the 1st and 2nd plane- 

wave thickness-extensional resonances in the plate, TE1 and TE2. fS
t2 and 

fA
t3 are the resonance frequencies of the plate’s 2nd and 3rd plane-wave 

thickness-shear resonances, TS2 and TS3, cf. Table 1. 
It should be noted that in the literature in this field, fS

l1 is often 
described as the cutoff frequency at the frequency axis of the 2nd sym-
metric Lamb mode, S1 [49,50,51]. In the present work, in coherence 
with the complex dispersion curve description given by Mindlin [34,48], 
the S2 Lamb mode is interpreted as having two cutoff frequencies at the 
frequency axis, here denoted the lower and upper cutoff frequencies of 
the S2 mode, fS

l1 and fS
t2, cf. Table 1. In this description S1 has no cutoff 

frequency at the frequency axis. 
It is noted that fS

l1 and fS
t2 are also the lower and upper cutoff fre-

quencies of the S− 2 mode [28,48], but for simplicity in discussion they 
will here be associated with the S2 mode only. 

For acoustic beam incidence, the frequencies of those maxima in the 
sound pressure frequency spectrum and the axial pressure transfer 
function |Hpp| that are associated with the lower cutoff frequency of the 
S2 Lamb mode and the A3 Lamb mode (i.e., the TE1 and TE2 plate res-
onances), respectively, will in the sequel be labeled f1 and f2. 

5.2. Change of |Hpp| with z and f 

Fig. 4 shows simulations and measurements of |Hpp(0, z, f)| at z =
376.05 mm, 626 mm, and 875 mm, together with simulations at z = 40 
m, plotted as a function of frequency. The vertical lines give the cutoff 
frequencies of the corresponding Lamb modes in the plate, cf. Table 1. 

In the simulation results at z = 376.05 mm (Fig. 4(a)), the spectral 
maximum observed at f1 ≈ 458 kHz is associated with TE1, i.e., with S2 
at its lower cutoff frequency. The spectral minimum at about 517 kHz is 
associated with TS2, i.e., with S2 at its upper cutoff frequency. The 
maximum and minimum doublet observed at approximately 775 kHz 

Fig. 3. Magnitude of the plane-wave pressure transmission coefficient |T(η,d, f)|, for a 6.05 mm steel plate in water, plotted together with dispersion curves (black 
dashed lines) for the associated Lamb modes of the plate vibrating in vacuum, as a function f and θ. Lamb modes and the four Lamb mode cutoff frequencies 
addressed in the sequel are indicated. For numerical calculations, values for cl, ct , and d are taken from Section 4. (Modified after [18].). 

Table 1 
Lamb mode cutoff frequencies for a steel plate of thickness d (a traction-free plate vibrating in vacuum), and their relationships to the S2, A2, and A3 Lamb modes. The 
cutoff frequencies are the resonance frequencies of the plane-wave thickness-extensional (TE) and thickness-shear (TS) modes in the plate. For calculations, values for 
cl, ct , and d are taken from Section 4.  

Lamb mode 3rd symmetric Lamb mode 
(S2) 

3rd antisymm. Lamb mode 
(A2) 

4th antisymm. Lamb mode 
(A3) 

Lower cutoff Upper cutoff 

Cutoff frequency fS
l1 = cl/2d fS

t2 = 2ct/2d fA
t3 = 3ct/2d fA

l2 = 2cl/2d 
477 686 Hz 517 355 Hz 776 033 Hz 955 372 Hz 

Plane-wave plate thickness resonance 1st thickness- extensional mode, 
TE1 

2nd thickness-shear mode, 
TS2 

3rd thickness- 
shear mode, 
TS3 

2nd thickness- 
extensional mode, 
TE2  
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are associated with TS3, i.e., with A2. The maximum at f2 ≈ 956 kHz is 
associated with TE2, i.e., with A3. In addition, a shallow spectral mini-
mum (“notch”) is observed below f1, at approximately 443 kHz. 

From |T(η, d, f)| given in Fig. 3 it appears that the two shear reso-
nances associated with TS2 and TS3 both appear as a maximum and 
minimum doublet, and that the two doublets are caused by wave 
interaction internally in the plate, due to the finite angular spectrum of 

the beam. In |T| of Fig. 3 no event is identified that can be related to the 
notch at 443 kHz, which suggests that this notch is not due to wave 
interaction internally in the plate, but to destructive interference caused 
by the wave propagation in water. 

At f1 an increased SPL of about 3 dB for the transmitted field is 
observed, as compared to the incident field (20log10|Hpp| ≈ 3 dB). These 
results at z = 376.05 mm are in agreement with earlier studies using this 

Fig. 4. Simulations and measurements [30] of |Hpp(0,z, f)|, for normal beam incidence to the plate, at (a) z = 376.05 mm, (b) z = 626 mm, and (c) z = 875 mm. (d) 
Corresponding simulation of |Hpp(0, z, f)| at z = 40 m. The vertical lines in the plots show the Lamb mode cutoff frequencies f S

l1 = 477.69, f S
t2 = 517.36, fA

t3 = 776.03, 
and fA

l2 = 955.37 kHz, cf. Table 1. 

Fig. 5. Simulated |Hpp(0, z, f)| over the frequency band 350 kHz − 1000 kHz and z in the range 276.05 mm (at the plate) to 4 m, using the ASM piston model.  
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setup [18,19,23,27,28]. 
By increasing axial distance, z (Fig. 4(b)-(d)), simulated spectral 

maxima and minima in |Hpp| are subject to frequency shift and change in 
magnitude and dynamics. At f1, one finds 20log10|Hpp| < 0 dB for all 
axial distances z shown in Fig. 4(b)-(d). The notch appearing below f1 is 
very prominent at z = 626 mm, then more shallow at z = 875 mm, and 
totally absent at z = 40 m. Its frequency increases by increasing depth. 

A fair quantitative agreement between measurements and simula-
tions is observed in Fig. 4. Some deviation is found in description of the 
maximum-minimum doublet at the TS3 resonance, close to fA

t3. In 
simulation the maximum and minimum are very narrow with high dy-
namics, whereas the measured response appears more damped. In the 
model intrinsic losses in the plate and water are not accounted for, 
which may be of significance for this deviation. 

To investigate in further detail how spectral maxima and minima in | 
Hpp| change with f and z, Fig. 5 shows the simulated |Hpp(0, z, f)| for z in 
the range 276.05 mm (at the lower surface of the plate) to 4 m. In Fig. 6, 
the results of Fig. 5 are shown in more detail, for four “zoomed-in” 
frequency ranges close to TE1, TS2, TS3 and TE2, cf. parts (a), (b), (c), 
and (d), respectively. In addition, measured spectral maxima and 
minima from the experimental results given in Fig. 4 are shown with 
filled dot and open circle markers, respectively. The vertical lines give 
the cutoff frequencies of the associated Lamb modes. 

In Fig. 6(a), the frequency band associated with TE1 and fS
l1 exhibits a 

complex near-field. At f1 an increased SPL of about 5 dB is observed at 
the plate (at z = 276.05 mm) as compared to the incident field (20log10| 
Hpp| ≈ 5 dB). f1 is shifted upwards by increasing z, from about 455 kHz to 
about 478 kHz, accompanied by a reduction in SPL. The frequency 
downshifts of f1 as compared with fS

l1 at z = 276.05, 376.05 mm and 4 m 
are about 4.8 %, 4.5 %, and 0.15 %, respectively. Causes of such 

downshift, and consequences for applications, are discussed in Sections 
1 and 5.6. 

A similar upwards frequency shift by increasing z is observed for the 
notch appearing below f1, from about 440 to 468 kHz, in the z range of 
approximately 0.35–3.4 m. The minimum is particularly prominent for z 
in the ranges 0.6–0.7 m and 0.9–1.5 m. This can also be seen in the 
measurements and simulations shown in Fig. 4, for which the minimum 
is deeper for z = 626 mm as compared with z = 376.05 mm and 875 mm. 
The notch is discussed in Section 5.6. 

In Fig. 6(b), in the frequency band associated with TS2 and fS
t2, the 

frequency of the simulated spectral minimum is 517.4 kHz, which is 
within the 100 Hz frequency resolution as compared with the upper 
cutoff frequency of S2, fS

t2 = 517.36 kHz. Within this frequency resolu-
tion, the frequency of this minimum is found to be constant over the z 
range 276.05 mm to 4 m. Potentials for plate characterization using 
finite-aperture transducers are significant, as discussed in Section 5.6. 

In the frequency region of the TS3 plate resonance, |Hpp(0, z, f)| ex-
hibits a rather complex behavior, cf. Fig. 6(c). The frequency of the 
narrow spectral maximum associated with A2 is slightly downshifted 
relative to fA

t3 = 776.03 kHz. By increasing z it increases slightly, from 
774.8 to 775.7 kHz over the range z = 276.05 mm to 4 m, which cor-
responds to about 0.16 % and 0.04 % downshift relative to fA

t3. 
As discussed for Fig. 4(a), the spectral maximum at TS3 is accom-

panied by a narrow spectral notch at slightly higher frequency. This 
“upper frequency” notch is shifted slightly downwards in frequency by 
increasing z, from about 777.8 kHz to about 776.2 kHz over the range z 
= 276.05 mm to 4 m. As z increases, another spectral notch emerges at 
slightly lower frequency than the maximum, at about 774–774.5 kHz. 
This “lower frequency” notch is particularly prominent over the ranges z 
≈ 0.75–1.25 m and z ≈ 2–3 m. As a result, close to the plate a spectral 

Fig. 6. Zoomed-in version of |Hpp(0, z, f)| shown in Fig. 5, for frequency ranges (a) 430–480 kHz (in the vicinity of the S2 Lamb mode’s lower cutoff frequency, f S
l1, i. 

e., TE1), (b) 500–530 kHz (in the vicinity of the S2 Lamb mode’s upper cutoff frequency, f S
t2, i.e., TS2), (c) 765–785 kHz (in the vicinity of the A2 Lamb mode’s cutoff 

frequency, fA
t3, i.e., TS3), and (d) 900–1000 kHz (in the vicinity of the A3 Lamb mode’s cutoff frequency, fA

l2, i.e., TE2). The filled dots and open circle markers 
represent measured spectral maxima and minima, cf. Fig. 4. The vertical lines give the cutoff frequencies of the corresponding Lamb modes, cf. Table 1 and Figs. 3 
and 4. 
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“doublet” (maximum-minimum) occurs; developing into a spectral 
“triplet” (minimum–maximum-minimum) in the range 0.75–3 m. 

Thus, in the TS3 frequency region the complex near-field extends to 
axial ranges of 4 m or more. From |T(η, d, f)| given in Fig. 3 no event is 
identified that can be related to the “lower frequency” notch. This fact, 
together with the observation that the notch occurs only at relatively 
large distances from the plate, suggests that it is not due to wave 
interaction internally in the plate, but to destructive interference caused 
by the wave propagation in water. 

In Fig. 6(d), in the TE2 frequency region, the frequency f2 of the 
spectral maximum associated with A3 is slightly upshifted relative to 
fA
l2 = 955.37 kHz. Over the range z = 276.05 mm to 4 m f2 decreases 

slightly by increasing z, from 956.6 to 955.4 kHz. The upshift of f2 as 
compared with fA

l2 is about 0.13 % and 0.05 %, for z = 276.05 and 
376.05 mm, respectively. At 4 m f2 is within the 100 Hz resolution as 

compared with fA
l2. A similar slight monotonic downshift with increasing 

z is thus observed as reported by [3] for beam reflection. About ten times 
larger change with distance was however reported in [3]. Potentials in 
applications are discussed in Section 5.6. 

In general, the measured spectral maxima and minima indicated by 
filled dots and open circle markers in Fig. 6 are in fair quantitative 
agreement with the simulations. Exceptions are the frequencies of the 
spectral maximum at the TS3 resonance, close to fA

t3, cf. Fig. 6(c). For 
increasing z, two of the three measured frequencies are subject to small 
deviation from the simulated maximum “ridge”, towards lower fre-
quencies. The underlying causes of these deviations remain to be 
investigated. 

Fig. 7. Magnitude of the pressure transfer function |Hpp(0, z, f)| shown in the TE1 frequency band, for increasing axial depth, z. (a) Simulated |Hpp| at lower plate 
surface, z = 276.05 mm. Simulated and measured |Hpp| at (b) z = 376.05 mm, (c) z = 626 mm, and (d) z = 875 mm. Simulated plane wave transmission coefficient, 
|T(η = 0, d, f)|, and normalized |Hpp(0, z, f)| at (e) z = 10 m and (f) z = 40 m. f S

l1 is indicated with a vertical line in each plot. 
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5.3. Near-field effects in |Hpp| as compared to |T|

Fig. 7 (a)-(d) show the simulated |Hpp(0, z, f)| for z = 276.05, 376.05, 
626, and 875 mm, over the TE1 frequency band. Measurements are 
given at the three latter ranges. In parts (e) and (f), |Hpp(0, z, f)|
normalized to its maximum value is shown together with |T(η = 0,d,f)|, 
for z = 10 and 40 m, respectively. fS

l1 is indicated in each plot using a 
vertical line. Note that Hpp(0, z, f) represents the axial response of the 
plate and subsequent fluid in the frequency - space domain for a sound 
beam propagating normally to the plate, whereas T(η = 0, d, f) repre-
sents the response of the plate in the frequency - wavenumber domain 
for a plane wave propagating normally to the plate. 

The |Hpp| response is observed to be highly asymmetric from the plate 
to distances well in excess of z = 875 mm. This is ascribed to the notch 
appearing below f1, discussed above. The measurements shown in parts 
(b)-(d) support the simulations. At these ranges |Hpp| and |T| are signif-
icantly different, and still differ at z = 10 m. By further increasing z, |Hpp|

attains a more symmetric response, which becomes almost identical to |
T| at z = 40 m, cf. Fig. 7(f). The results indicate that in the TE1 frequency 
band the normalized |Hpp|→|T| as z→∞, analogous to the asymptotic 
result reported by [4] for the reflected field, cf. Section 1. Very large z 
are however required before this occurs, due to significant near-field 
effects being influent to large ranges. 

In Fig. 8, the simulated and normalized |Hpp(0, z, f)| from Fig. 7(f) is 
plotted together with |T(η = 0, d, f)| over the wider frequency range 
350–1000 kHz. A rather close agreement is found, except for the very 

narrow spectral minimum and the maximum-minimum doublet in |Hpp|

close to TS2 and TS3, at about 517 kHz and 775 kHz. As discussed above, 
these are associated with the cutoff frequencies fS

t2 and fA
t3, respectively, 

for the S2 and A2 Lamb modes. Corresponding minima and maxima are 
not present in |T|, since a plane wave at normal incidence cannot excite 
shear waves in the plate. The deviations between |Hpp| and |T| at 40 m 
shows that the near-field in radiation from the plate extends to very 
large ranges, especially in the frequency bands of the TS2 and TS3 plate 
resonances. 

5.4. Non-monotonic f1 shift in near- to far-field transition 

Fig. 9 shows f1 as a function of axial distance, z, extracted from three 
different spectra: |p(0,z, f)|, |p(0,z, f)/f |, and |Hpp(0,z, f)|. fS

l1 is indicated 
by the purple line denoted “T”. The three curves approach constant 
values for large z. In Fig. 9(a), with ordinate range 30 kHz, the three 
curves are not distinguishable at long ranges. To emphasize the small 
but nonzero changes in f1 at longer axial ranges, results for f1 are shown 
in Fig. 9(b) to 500 m, at a smaller ordinate range of 600 Hz. The fre-
quency resolution in extraction of f1 is 1 Hz, obtained from the 20 Hz 
simulation resolution by 4th order polynomial interpolation and the 
least squares method. 

In Fig. 9(b), the blue f1 curve determined from |p(0, z, f)| is found to 
be systematically higher than fS

l1 at long ranges. This is explained as 
follows. In the far-field of the plate, |p(0, z, f)| may be expected to 
depend linearly on f, in a similar way as the piston far-field in a fluid 
without plate [52]. This hypothesis is confirmed by the black f1 curve 
determined from |p(0, z, f)/f |, which approaches fS

l1 at large ranges. 
Consequently, the red f1 curve determined from |Hpp(0, z, f)| also ap-
proaches fS

l1 at large ranges, since z0 at which |pi(0, z0, f)| of Eq. (1) is 
evaluated is in the piston’s far-field (at about 2.5 Rayleigh distances in 
the TE1 frequency range). However, since z0 must be very large for 
pi(0, z0, f) to exhibit a linear frequency dependency, a small deviation 
may be expected between f1 extracted from |p(0, z, f)/f | and |Hpp(0,z,f)|. 

At the lower surface of the plate (z = 276.05 mm) f1 is downshifted 
about 23 kHz (4.8 %) relative to fS

l1, for all the three curves shown in 
Fig. 9(a). By increasing distance from the plate, the downshift of f1 de-
creases up to z ≈ 6 m, at which f1 is about equal to fS

l1. For z in the range 
6–500 m, f1 overshoots fS

l1. f1 continues to increase up to z ≈ 11 m, and 
then decreases at larger distances. At z ≈ 11 m the overshoot of f1 
relative to fS

l1 is at its maximum, and approximately equal to 402, 250 
and 252 Hz, respectively, for the curves labeled p(0, z, f), p(0, z, f)/f , and 
Hpp(0, z, f) in Fig. 9(b). At z = 500 m, f1 extracted from |p(0, z, f)|, 
|p(0, z, f)/f |, and |Hpp(0, z, f)| are about 202, 4, and 7 Hz higher than fS

l1, 

Fig. 8. Comparison of simulated and normalized pressure transfer function, |
Hpp(0,z,f)|, for a beam normally incident to the plate, at z = 40 m; and the plane 
wave pressure transmission coefficient for a plane wave normally incident to 
the plate, |T(η = 0, d, f)|. 

Fig. 9. The frequency of the spectral maximum in the TE1 frequency range, f1, as determined from the simulated frequency spectra |p(0,z,f)|, |p(0,z,f)/f |, and |Hpp(0,
z, f)|, shown as a function of axial distance, for z in the ranges (a) 276.05 mm to 20 m, and (b) 276.05 mm to 500 m. f S

l1 is indicated by the line denoted “T”. 
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respectively. 
For beam transmission the f1 approach to fS

l1 is thus not monotonic as 
reported by [3,4] for beam reflection. Possible explanations for such 
deviation, and consequences in applications, are discussed in Section 
5.6. 

5.5. Far-field analysis of |Hpp| as compared to |T|

The results of Section 5.3 (Fig. 8) suggest that as z→∞, the normal-
ized pressure transfer function |Hpp(0, z, f)| may possibly approach the 
plane-wave transmission coefficient |T(η = 0, d, f | over a wide frequency 
band 350–1000 kHz covering the TE1, TS2, TS3 and TE2 plate reso-
nances, analogous to the asymptotic result reported by [4] for the re-
flected field in the TE1 region. It may be of some interest to examine this 
situation in some more detail. An analysis is here made for f = 478 kHz, 
close to fS

l1 in the TE1 region. Similar analyses may be done for other 
frequencies in the band. 

Fig. 10(a)-(c) show the magnitude and phase of the integrand of Eq. 
(16) normalized to the reference quantity Aref = 1Pa⋅m/Hz, over the 
wavenumber range η = 0 − 800 rad/m, for z = 376.05 mm, 4 m, and 40 
m. To investigate how the different wavenumber components contribute 
to the total integrated pressure spectrum, the accumulated integrated 
pressure spectrum component at 478 kHz is shown in Fig. 10(d), 
calculated at the mentioned 3 ranges using Eq. (16). 

The red curve in Fig. 10(d) gives the 478 kHz accumulated integrated 
pressure spectrum component at z = 4 m normalized to the reference 
quantity pref = 1Pa/Hz, “oscillating” around the total integrated value of 
95.0310 dB re. pref . Corresponding oscillations are observed also for the 
blue (z = 376.05 mm) and black (z = 40 m) curves. The oscillations are 

present throughout the η wavenumber range, but decrease in magnitude 
for larger η, at which the pressure spectrum converges towards the in-
tegrated pressure values 111.5327, 95.0310, and 72.6077 dB re. pref , for 
z = 376.05 mm, 4 m, and 40 m, respectively. 

Because of the oscillatory nature of the integrand, these pressure 
values are also found at specific low wavenumber values, ηosc, indicated 
in Fig. 10(a)-(d) by the vertical lines. The ηosc values given are 136.5854, 
38.6406, and 10.4118 rad/m, for z = 376.05 mm, 4 m, and 40 m, 
respectively. Wavenumber components larger than ηosc will ultimately 
cancel during the integration using Eq. (16), due to the oscillatory na-
ture of the integrand. That means, the integral over the wavenumber 
range (ηosc,∞) is zero. The non-zero plane wave contributions to the 
integrated pressure spectrum thus come from the region η < ηosc. (This 
argumentation is similar to the one used in the stationary phase method 
for oscillating integrals, cf. e.g. [53].). 

From Fig. 10(d), it is observed that the η region (0, ηosc) contributing 
to the integrated pressure spectrum decreases by increasing z. That is, 
ηosc is largest for z = 376.05 mm, and smallest for z = 40 m. From this it 
may be hypothesized that beam simulations at large z become more 
similar to a plane wave propagating normally to the plate (for which η =

0) than simulations at small z. This hypothesis is largely confirmed by 
the simulation results of Fig. 7(f) in the TE1 frequency range, and by 
Fig. 8 over most of the frequency range 350–1000 kHz. The exceptions 
are the two highly narrow frequency bands at the TS2 and TS3 plate 
resonances in Fig. 8. These are subject to discussion in Section 5.6. 

5.6. Discussion 

The main findings for a beam interacting with the plate at normal 

Fig. 10. Calculated magnitude and phase of the integrand P(η, z, f)J0(ηr)η of Eq. (16), shown as a function of η for f = 478 kHz, at (a) z = 376.05 mm, (b) 4 m, and (c) 
40 m. (d) Accumulated integrated pressure spectrum using Eq. (16), shown as a function of η for the same three values of z. The three ηosc values are marked with 
vertical lines in the figure, each one with color matching its corresponding curve. 
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beam incidence can be summarized as follows: 
For the leaky Lamb mode associated with the TE1 plate resonance at 

fS
l1, the frequency of its maximum, f1, is downshifted about 4.8 % at the 

plate, relative to fS
l1. By increasing distance from the plate, f1 approaches 

fS
l1 from below. At larger ranges f1 becomes slightly higher than fS

l1 (up to 
about 0.5 ‰) and then approaches fS

l1 from above as z→∞. Very large 
distances are required before f1 ≈ fS

l1. For beam transmission the f1 

approach to fS
l1 is thus not monotonic as reported by [3,4] for beam 

reflection. Possible explanations for such deviation may be the limited 
plate-receiver range investigated by [3,4], possible different hf a num-
ber, or that by these authors the source-plate and plate-receiver dis-
tances were varied simultaneously. The results are essential for finite- 
aperture correction when TE1 is used for accurate immersion mea-
surement of plate thickness and/or compressional-wave sound velocity, 
cf. Section 1. 

In the frequency band of TE1, at slightly lower frequency than f1, a 
narrow minimum (“notch”) is revealed for z in the range of about 
0.35–3.4 m, at a frequency which varies with range, z. It is evident that 
the notch is caused by leaky ultrasonic guided plate waves interacting 
with the finite angular spectrum of the beam. Clarification of the un-
derlying physical causes of the notch in more detail requires further 
investigations. The fact that it does not exist at the plate surface suggests 
that it may be related to water-borne interference, as discussed above. 
The notch will significantly affect the transmitted beam over approxi-
mately a 20 kHz frequency band close to f1 and TE1. 

The simulations show that due to bounded beam interaction with the 
backward-wave branch in the frequency band of TE1, the near-field of 
the transmitted wavefield extends to very far axial distances. As z→∞, |
p| approaches a spherical divergence (1/z) axial distance dependency. 
Very large distances z are however required before this far-field char-
acteristic is reached: at z = 40 and 500 m the deviations from spherical 
divergence (1/z) are found to be about 0.5 and 0.01 dB, respectively. 

For the leaky Lamb mode associated with the TS2 plate resonance at 
fS
t2, the frequency of the narrow and significant minimum (“notch”) in |

Hpp| observed close to the plate [18,27,28], is found to be practically 
constant for all z investigated. The notch is caused by the beam’s finite 
angular spectrum, where the beam’s plane wave components at oblique 
angle of incidence excite shear waves in the plate. Use of finite-aperture 
ultrasonic transducers in combination with TS2 (i.e., fS

t2) for accurate 
immersion measurement of thickness or shear-wave velocity of the 
plate, thus appears promising for a range of measurement distances, 
from the close near-field to the far-field of the plate, without need for 
finite-aperture correction nor other efforts to achieve plane-wave 
conditions. 

In the frequency band of the leaky Lamb mode associated with the 
TS3 plate resonance at fA

t3, a relatively complex near-field is revealed for 
|Hpp| extending to z = 4 m or more. A spectral maximum due to shear 
waves in the plate dominates close to the plate, with frequency close to 
fA
t3. By increasing z into the near-field, a narrow spectral “doublet” 

(maximum-minimum) evolves, further developing into a narrow spec-
tral “triplet” (minimum-maximum-minimum) at larger z. Use of finite- 
aperture transducer with the spectral maximum may have potentials 
for immersion measurement of thickness or shear wave velocity of the 
plate. Use of finite-aperture transducers may require finite-aperture 
correction when very high accuracy is required. 

For the leaky Lamb mode associated with the TE2 plate resonance at 
fA
l2, a slight upshift of f2 is found relative to fA

l2. The difference f2 − fA
l2 

decreases by increasing distance, from about 1.3 ‰ at the plate to less 
than 0.1 ‰ at z = 4 m. This is a similar trend as reported by [3] for beam 
reflection, but ten times larger change with distance was reported in [3]. 
That could possibly be due to different hf a number. For the relatively 
high hf a number used here (about 42.6 at fA

l2), accurate immersion 
measurement of thickness or compressional-wave velocity of the plate 
thus appears promising at a range of distances from the plate into the far- 

field, using finite-aperture ultrasonic transducers in combination with 
TE2 (i.e., fA

l2). No finite-aperture correction nor other efforts to achieve 
plane-wave conditions appears to be needed, except for measurement 
close to the plate when very high accuracy is required. To which extent 
such a conclusion will be affected by using a source transducer with 
lower hf a number, remains to be investigated. 

In the near-field, |Hpp| deviates significantly from |T|, for all leaky 
Lamb modes involved. As z→∞, the normalized |Hpp| is shown to closely 
approach the |T| response over the 350–1000 kHz frequency band 
addressed. These asymptotic features are explained in terms of the ASM 
model, cf. Section 5.5. At z = 40 m some deviations are still observed, 
however, related to the TS2 and TS3 modes. 

An interesting question in this context (of more principal than 
practical importance, perhaps) is whether the normalized |Hpp| will 
actually approach |T| at all frequencies in the band 350–1000 kHz as 
z→∞. That is, whether the narrow spectral minimum and maximum- 
minimum doublet associated with TS2 and TS3 observed in Fig. 8, 
respectively, will actually vanish in |Hpp(0, z, f)| as z→∞. According to 
the analysis of Section 5.5, a non-zero η will generate shear waves in the 
plate, and in that case the normalized |Hpp(0, z, f)| ∕= |T(η = 0, d, f | at 
these frequencies. For the shear waves to vanish, η has to be zero, for 
which the integral of Eq. (16) is zero, and thus |Hpp(0, z, f)| = 0. A more 
thorough analysis of this case remains. 

The phenomena discussed above for frequency regions of different 
Lamb modes will depend on a range of parameters. Examples are the 
source-plate distance (determining near- to far-field transition effects in 
the field of the source transducer), the plate-receiver distance (deter-
mining near- to far-field transition effects in the plate’s transmitted field, 
as discussed here), the hf a number of the source transducer field (and 
thus the angular spectrum of the incident field) [26], the plate’s Poission 
number [28], intrinsic losses in the plate and water [28], the aperture of 
the receiving transducer [30], and the angle of beam incidence [21–23]. 

6. Conclusions 

Prior literature on bounded-beam transmission through a water- 
embedded steel plate has revealed anomalous phenomena in the trans-
mitted sound pressure field close to the plate. The phenomena are 
caused by diffraction due to the finite angular spectrum of the incident 
beam, interacting with leaky Lamb waves being excited (by the beam) to 
propagate in the plate. The present analysis extends earlier work by 
investigating these complex bounded-beam phenomena in an analysis of 
the near- to far-field transition of the plate’s transmitted field, for 
normal beam incidence to the plate. The field quantity studied is the 
axial pressure transfer function through the plate, |Hpp(0, z, f)|. The 
analysis is conducted over the 350–1000 kHz frequency band of leaky 
Lamb modes corresponding to the S2, A2, and A3 Lamb modes of a 6.05 
mm thick plate. 

An angular spectrum method (ASM) is presented and used to 
describe propagation of the sound field radiated by a circular, baffled, 
and uniformly vibrating piston source, through a fluid-embedded 
isotropic elastic solid plate of infinite extent, at normal beam inci-
dence to the plate. For the piston with 10.55 mm radius used here, the 
hf a number, − 3dB angle, and source-plate distance are in the ranges 
15.6–44.6, 5.9− 2.1◦, and 3.3–1.2 Rayleigh distances, respectively, over 
the frequency band considered. For this case, the simulations show that 
for certain leaky Lamb modes, the near-field of the transmitted wave-
field extends to very far axial distances. This is so especially in the fre-
quency bands of TE1 and TS3. 

Close to TE1, the downshift of the resonance frequency f1 relative to 
fS
l1 is significant to about 6 m. At longer ranges a slight upshift is expe-

rienced, before f1→fS
l1 as z→∞. Nearfield influences are observed to 

hundreds of meters. A significant and influent notch below and close to 
f1 is observed in the range z = 0.35–3.4 m. In the frequency band of TS3, 
a complex nearfield extends to at least z = 4 m, including a spectral 
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maximum-minimum doublet close to the plate, and a mini-
mum–maximum-minimum triplet at longer ranges. In the frequency 
band of TE2, a slight up-shift of the resonance frequency f2 relative to fA

l2 
is observed in the close vicinity of the plate, which decreases rapidly by 
increasing range, z. For the TS2 plate resonance, no frequency shift of 
the resonance frequency is observed. In the near-field, the normalized |
Hpp(0, z, f)| deviates significantly from the plane-wave pressure trans-
mission coefficient |T(η,d, f)|, for all leaky Lamb modes considered. For 
very large axial ranges the normalized |Hpp| approaches |T|. At z = 40 m 
there are still some deviations, however, in the narrow frequency bands 
of TS2 and TS3. 

In general, the simulation results are supported by measurement 
results at three axial distances, about 10, 35, and 60 cm from the plate (z 
= 376.05, 626 and 875 mm, respectively). Some deviations are experi-
enced in modelling of details for precise description of the two frequency 
bands close to the TS2 and TS3 plate resonances. 

The results are of importance for experimental characterization of 
plates and materials using e.g. the through-transmission resonance 
method, cf. Sections 1 and 5.6. The ASM model presented here provides 
potentials for calculation of finite-aperture corrections in measurement 
situations for which such are required, including the effects of a finite- 
aperture receiving transducer [30]. 
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