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Abstract
Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn}. The Sombor matrix of

G, denoted by ASO(G), is defined as the n × n matrix whose (i, j)-entry is
√
d2i + d2j if

vi and v j are adjacent and 0 for another cases. Let the eigenvalues of the Sombor matrix
ASO(G) be ρ1 ≥ ρ2 ≥ · · · ≥ ρn which are the roots of the Sombor characteristic polynomial∏n

i=1(ρ −ρi ). The Sombor energy ESO ofG is the sum of absolute values of the eigenvalues
of ASO (G). In this paper, we compute the Sombor characteristic polynomial and the Sombor
energy for some graph classes, define Sombor energy unique and propose a conjecture on
Sombor energy.

Keywords Sombor matrix · Sombor energy · Sombor characteristic polynomial · Regular
graphs · Eigenvalues

Mathematics Subject Classification 05C12 · 05C50

1 Introduction

In this paper, we are concerned with simple finite graphs, without directed, multiple, or
weighted edges, and without self-loops. Let G = (V , E) be such a graph, with vertex set
V (G) = {v1, v2, . . . , vn}. If two vertices vi and v j ofG are adjacent, thenwe use the notation
vi ∼ v j . For vi ∈ V (G), the degree of the vertex vi , denoted by di , is the number of the
vertices adjacent to vi .

Let A(G) be adjacency matrix of G and λ1, λ2, . . . , λn its eigenvalues. These are said
to be the eigenvalues of the graph G and to form its spectrum (Cvetković et al. 1980). The
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energy E(G) of the graph G is defined as the sum of the absolute values of its eigenvalues

E(G) =
n∑

i=1

|λi |.

Details and more information on graph energy can be found in Gutman (2001), Gutman
(2005), Gutman et al. (2009), Majstorović et al. (2009). There are many kinds of graph
energies, such as Randić energy (Alikhani and Ghanbari 2015; Bozkurt and Bozkurt 2013;
Bozkurt et al. 2010; Das and Sorgun 2014; Gutman et al. 2014), distance energy (Stevanović
et al. 2013), incidence energy (Bozkurt and Gutman 2013), matching energy (Chen and Shi
2015; Ji et al. 2013) and Laplacian energy (Das et al. 2013).

Sombor index is defined as SO(G) = ∑
uv∈E(G)

√
d2u + d2v (see Gutman 2021a). More

details on Sombor index can be found in Alikhani and Ghanbari (2021), Chen et al. (2022),
Cruz et al. (2021), Das et al. (2021), Deng et al. (xx), Ghanbari and Alikhani (2021), Li
et al. (2022), Redžepović (2021), Wang et al. (xx). Recently, in Gutman (2021b), Gutman
introduced Sombor matrix of a graph G as ASO (G) = (ri j )n×n , and

ri j =
{√

d2i + d2j if vi ∼ v j

0 otherwise.

The eigenvalues of ASO (G) are denoted by ρ1 ≥ ρ2 ≥ . . . ≥ ρn , and are said to
form the Sombor spectrum of the graph G. In Gutman (2021b), Gutman introduced Sombor
characteristic polynomial φSO (G, λ) as

φSO(G, λ) = det(λI − ASO(G)) =
n∏

i=1

(λ − ρi ),

and Sombor energy ESO (G) as

ESO (G) =
n∑

i=1

|ρi |.

We refer the reader to Gowtham and Swamy (2021); Gutman and Redžepović (2022);
Jayanna and Gutman (2021) for more details on Sombor energy.

Two graphs G and H are said to be Sombor energy equivalent, or simply ESO-equivalent,
written G ∼ H , if ESO(G) = ESO (H). It is evident that the relation ∼ of being ESO-
equivalence is an equivalence relation on the family G of graphs, and thus G is partitioned
into equivalence classes, called the ESO-equivalent. Given G ∈ G, let

[G] = {H ∈ G : H ∼ G}.
We call [G] the equivalence class determined by G. A graph G is said to be Sombor energy
unique, or simply ESO-unique, if [G] = {G}.

A graph G is called k-regular if all vertices have the same degree k. One of the famous
graphs is the Petersen graph which is a symmetric non-planar 3-regular graph of order 10.
There are exactly twenty one 3-regular graphs of order 10 Khosrovshahi and Maysoori
(2001). In the study of Sombor energy, it is interesting to investigate the Sombor characteristic
polynomial and Sombor energy of this graph and see if it can be recognised by its Sombor
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energy and Sombor characteristic polynomial among other 3-regular graphs with the same
order. We denote the Petersen graph by P .

In this paper, we consider the Sombor characteristic polynomial and Sombor energy of
graphs. In Sect. 2, we bring some known results about Sombor characteristic polynomial
and Sombor energy. In addition, the Sombor characteristic polynomial and Sombor energy
of some special kind of graphs are computed. In Section 3, we consider to regular graphs,
especially cubic graphs of order 10 and state a conjecture. In Section 4, we state some open
problems for future direction of this research .

2 Sombor energy of specific graphs

In this section, we study the Sombor characteristic polynomial and the Sombor energy for
certain graphs. The following result gives McClelland-type bound for the Sombor energy.

Theorem 2.1 Gutman (2021b) If G is a graph on n vertices, and F(G) is its forgotten
topological index, then

ESO(G) ≤ √
2nF(G).

The following result gives Koolen–Moulton-type bound for the Sombor energy.

Theorem 2.2 Gutman (2021b) Let G be a graph on n vertices, with Sombor and forgotten
topological indices SO(G) and F(G), respectively. Then,

ESO (G) ≤ 2SO(G)

n
+

√√√√(n − 1)

(
2F(G) −

(
2SO(G)

n

)2
)

.

Here, we shall compute the Sombor characteristic polynomial of paths and cycles.

Theorem 2.3 For every n ≥ 5, the Sombor characteristic polynomial of the path graph Pn
satisfy

φSO (Pn, λ) = λ2�n−2 − 10λ�n−3 + 25�n−4,

where for every k ≥ 3, �k = λ�k−1 − 8�k−2 with �1 = λ and �2 = λ2 − 8. In addition,
the characteristic polynomial of P2, P3 and P4 are λ2 − 2, λ3 − 10λ and λ4 − 18λ2 + 25,
respectively.

Proof It is easy to see that the characteristic polynomial of P2 is λ2 − 2. In addition, for P3
is λ3 − 10λ and for P4 is λ4 − 18λ2 + 25. Now, for every k ≥ 3 consider

Mk :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −√
8 0 . . . 0 0

−√
8 λ −√

8 . . . 0 0
0 −√

8 λ . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . λ −√
8

0 0 0 . . . −√
8 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

k×k

,
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and let �k = det(Mk). One can easily check that �k = λ�k−1 − 8�k−2 . Now, consider
the path graph Pn . Suppose that φSO(Pn, λ) = det(λI − ASO (Pn)). We have

φSO (Pn, λ) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −√
5 0 0 . . . 0 0 0

−√
5 0

0 0
0 0
... Mn−2

...

0 0
0 −√

5
0 0 0 0 . . . 0 −√

5 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

Therefore,

φSO(Pn, λ) = λdet

⎛
⎜⎜⎜⎜⎜⎝

0

Mn−2
...

0
−√

5
0 . . . 0 −√

5 λ

⎞
⎟⎟⎟⎟⎟⎠

+ √
5det

⎛
⎜⎜⎜⎜⎜⎜⎝

−√
5 −√

8 . . . 0 0
0 0
... Mn−3

...

0 −√
5

0 0 . . . −√
5 λ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore,

φSO (Pn, λ) = λ

⎛
⎜⎜⎜⎜⎜⎝

λ�n−2 + √
5det

⎛
⎜⎜⎜⎜⎜⎝

0

Mn−3
...

0
0

0 . . . 0 −√
8 −√

5

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

− 5det

⎛
⎜⎜⎜⎜⎜⎝

0

Mn−3
...

0
−√

5
0 . . . 0 −√

5 λ

⎞
⎟⎟⎟⎟⎟⎠

Hence,

φSO (Pn, λ) = λ (λ�n−2 − 5�n−3)
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− 5

⎛
⎜⎜⎜⎜⎜⎝

λ�n−3 + √
5det

⎛
⎜⎜⎜⎜⎜⎝

0

Mn−4
...

0
0

0 . . . 0 −√
8 −√

5

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= λ (λ�n−2 − 5�n−3) − 5 (λ�n−3 − 5�n−4) ,

and, therefore, we have the result. ��

Theorem 2.4 For every n ≥ 3, the Sombor characteristic polynomial of the cycle graph Cn

satisfy

φSO(Cn, λ) = λ�n−1 − 16�n−2 − 2(
√
8)n,

where for every k ≥ 3, �k = λ�k−1 − 8�k−2 with �1 = λ and �2 = λ2 − 8.

Proof Similar to the proof of Theorem 2.3, for every k ≥ 3, we consider

Mk :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −√
8 0 0 . . . 0 0 0

−√
8 λ −√

8 0 . . . 0 0 0
0 −√

8 λ −√
8 . . . 0 0 0

0 0 −√
8 λ . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . λ −√
8 0

0 0 0 0 . . . −√
8 λ −√

8
0 0 0 0 . . . 0 −√

8 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k×k

,

and let �k = det(Mk). We have �k = λ�k−1 − 8�k−2. Suppose that φSO (Cn, λ) =
det(λI − ASO (Cn)). We have

φSO (Cn, λ) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −√
8 0 0 . . . 0 0 −√

8
−√

8
0
0
... Mn−1

0
0

−√
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

Therefore,

φSO(Pn, λ) = λ�n−1 + √
8det

⎛
⎜⎜⎜⎜⎜⎝

−√
8 −√

8 0 . . . 0
0
... Mn−2

0
−√

8

⎞
⎟⎟⎟⎟⎟⎠

123



  242 Page 6 of 14 N. Ghanbari

+ (−1)n+1(−√
8)det

⎛
⎜⎜⎜⎜⎜⎝

−√
8

0 Mn−2
...

0
−√

8 0 . . . 0 −√
8

⎞
⎟⎟⎟⎟⎟⎠

.

Hence,

φSO(Pn, λ) = λ�n−1 + √
8

(
−√

8�n−2 + (−1)n(−√
8)n−1

)

+ (−1)n+1(−√
8)

(
(−√

8)n−1 + (−1)n(−√
8)�n−2

)
,

and, therefore, we have the result. ��
Now, we consider to star graph Sn and find its Sombor characteristic polynomial and

Sombor energy. We need the following Lemma.

Lemma 2.5 Cvetković et al. (1980) If M is a nonsingular square matrix, then

det

(
M N
P Q

)
= det(M)det(Q − PM−1N ).

Theorem 2.6 For n ≥ 2,

(i) The Sombor characteristic polynomial of the star graph Sn = K1,n−1 is

φSO(Sn, λ)) = λn−2 (
λ2 − (n − 1)(n2 − 2n + 2)

)
.

(ii) The Sombor energy of Sn is

ESO (Sn) = 2
√

(n − 1)(n2 − 2n + 2).

Proof (i) One can easily check that the Sombor matrix of K1,n−1 is

ASO(Sn) =
√
n2 − 2n + 2

(
01×1 J1×n−1

Jn−1×1 0n−1×n−1

)
.

We have

det(λI − ASO (Sn)) = det

(
λ −√

n2 − 2n + 2J1×(n−1)

−√
n2 − 2n + 2J(n−1)×1 λIn−1

)
.

Using Lemma 2.5,

det(λI − ASO(Sn))=λdet(λIn−1−
√
n2 − 2n + 2J(n−1)×1

1

λ

√
n2 − 2n + 2J1×(n−1)).

Since J(n−1)×1 J1×(n−1) = Jn−1, therefore,

det(λI − ASO (Sn)) = λdet(λIn−1 − 1

λ
(n2 − 2n + 2)Jn−1)

= λ2−ndet(λ2 In−1 − (n2 − 2n + 2)Jn−1).

On the other hand, the eigenvalues of Jn−1 are n − 1 (once) and 0 (n − 2 times), the
eigenvalues of (n2 − 2n + 2)Jn−1 are (n − 1)(n2 − 2n + 2) (once) and 0 (n − 2 times).
Hence,

φSO(Sn, λ)) = λn−2 (
λ2 − (n − 1)(n2 − 2n + 2)

)
.
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(ii) It follows from Part (i).
��

Here, we shall investigate the Sombor energy of complete graphs.

Theorem 2.7 For n ≥ 2,

(i) The Sombor characteristic polynomial of complete graph Kn is

φSO(Kn, λ) = (λ − (n − 1)2
√
2)(λ + (n − 1)

√
2)n−1.

(ii) The Sombor energy of Kn is

ESO (Kn) = 2(n − 1)2
√
2.

Proof (i) The Sombor matrix of Kn is (n − 1)
√
2(J − I ). Therefore,

φSO(Kn, λ) = det(λI − (n − 1)
√
2J + (n − 1)

√
2I )

= det((λ + (n − 1)
√
2)I − (n − 1)

√
2J ).

Since the eigenvalues of Jn aren (once) and0 (n−1 times), the eigenvalues of (n−1)
√
2Jn

are n(n − 1)
√
2 (once) and 0 (n − 1 times). Therefore,

φSO(Kn, λ) = (λ − (n − 1)2
√
2)(λ + (n − 1)

√
2)n−1.

(ii) It follows from Part (i).
��

We end this section by finding Sombor characteristic polynomial of complete bipartite
graphs and their Sombor energy.

Theorem 2.8 For natural number m, n 	= 1,

(i) The Sombor characteristic polynomial of complete bipartite graph Km,n is

φSO (Km,n, λ) = λm+n−2(λ2 − mn(m2 + n2)).

(ii) The Sombor energy of Km,n is 2
√
mn(m2 + n2).

Proof (i) It is easy to see that the Sombor matrix of Km,n is
√
m2 + n2

(
0m×m Jm×n

Jn×m 0n×n

)
.

Using Lemma 2.5, we have

det(λI − ASO (Km,n)) = det

(
λIm −√

m2 + n2 Jm×n

−√
m2 + n2 Jn×m λIn

)
.

Therefore,

det(λI − ASO(Km,n)) = det(λIm)det(λIn −
√
m2 + n2 Jn×m

1

λ
Im

√
m2 + n2 Jm×n).

We know that Jn×m Jm×n = mJn . Therefore,

det(λI − ASO (Km,n)) = λmdet(λIn − 1

λ
m(m2 + n2)Jn)

= λm−ndet(λ2 In − m(m2 + n2)Jn).

The eigenvalues of Jn are n (once) and 0 (n − 1 times). Therefore, the eigenvalues of
m(m2 + n2)Jn are mn(m2 + n2) (once) and 0 (n − 1 times). Hence,

φSO (Km,n, λ) = λm+n−2(λ2 − mn(m2 + n2)).

(ii) It follows from Part (i). ��
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3 Sombor energy of 2-regular and 3-regular graphs

In this section, we consider 2-regular and 3-regular graphs. As a beginning of this section,
we have the following easy lemma:

Lemma 3.1 Let G = G1 ∪ G2 ∪ G3 ∪ . . . ∪ Gn. Then

(i) φSO(G) = ∏n
i=1 φSO(Gi ).

(ii) ESO(G) = ∑n
i=1 ESO(Gi ).

As an immediate result of Lemma 3.1, we have the following results:

Proposition 3.2 (i) If e = vrvr+1 ∈ E(Pn), then ESO (Pn − e) = ESO(Pr ) + ESO (Ps),
where r + s = n.

(ii) If e ∈ E(Cn), (n ≥ 3), then ESO (Cn − e) = ESO (Pn).
(iii) Let Sn be the star on n vertices and e ∈ E(Sn). Then, for any n ≥ 3,

ESO (Sn − e) = ESO (Sn−1).

Now, consider to the 2-regulars. Every 2-regular graph is a disjoint union of cycles. By
Theorem 2.4, we can find all the eigenvalues of Sombor matrix of cycle graphs. Therefore, by
Lemma 3.1, we can find Sombor characteristic polynomial and Sombor energy of 2-regular
graphs. Now, we consider to the characteristic polynomial of 3-regular graphs of order 10.
In addition, we shall compute Sombor energy of this class of graphs. There are exactly 21
cubic graphs of order 10 given in Fig. 1 (see Khosrovshahi and Maysoori (2001)).

Using Maple, we computed the Sombor characteristic polynomials of 3-regular graphs
of order 10 in Table 1. By finding the roots of Sombor characteristic polynomial of cubic
graphs of order 10, we can have the Sombor energy of these graphs. We compute them to
three decimal places. Therefore, we have them in Table 2.

Proposition 3.3 Six cubic graphs of order 10 are not ESO-unique.

Proof By observing Table 2, we see that [G1] = {G1,G8}, [G12] = {G12,G17} and [G16] =
{G16,G20}. Therefore, we have 15 cubic graphs of order 10 which are ESO-unique. ��

As an immediate result of Proposition 3.3, we have

Corollary 3.4 In general, two k-regular graphs of the same order may not have same Sombor
energy.

Theorem 3.5 Let G be the family of 3-regular graphs of order 10. For the Petersen graph P
(Fig. 2), we have the following properties:

(i) P is not ESO-unique in G.
(ii) P has the maximum Sombor energy in G.
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Proof (i) The Sombor matrix of P is

ASO(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3
√
2 0 0 3

√
2 3

√
2 0 0 0 0

3
√
2 0 3

√
2 0 0 0 3

√
2 0 0 0

0 3
√
2 0 3

√
2 0 0 0 3

√
2 0 0

0 0 3
√
2 0 3

√
2 0 0 0 3

√
2 0

3
√
2 0 0 3

√
2 0 0 0 0 0 3

√
2

3
√
2 0 0 0 0 0 0 3

√
2 3

√
2 0

0 3
√
2 0 0 0 0 0 0 3

√
2 3

√
2

0 0 3
√
2 0 0 3

√
2 0 0 0 3

√
2

0 0 0 3
√
2 0 3

√
2 3

√
2 0 0 0

0 0 0 0 3
√
2 0 3

√
2 3

√
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore,

φSO(P, λ) = det(λI − ASO(P)) = (λ − 9
√
2)(λ + 6

√
2)4(λ − 3

√
2)5.

Therefore, we have

λ1 = 9
√
2, λ2 = λ3 = λ4 = λ5 = −6

√
2, λ6 = λ7 = λ8 = λ9 = λ10 = 3

√
2,

and so we have ESO(P) = 48
√
2. By Table 2, we have P ∈ {G12,G17}. Hence, P is

not ESO-unique in G.
(ii) It follows from Part (i) and Table 2.

��
Now, we check that is there any relationship between Sombor energy and permanent of

adjacency matrix of two connected k-regular graphs of the same order?

Observation 3.6 If two connected k-regular graphs have the same Sombor energy, then their
adjacency matrices may have or have not the same permanent.

Proof We consider to the cubic graphs of order 10. By Table 2, ESO (G1) = ESO (G8)

and ESO (G16) = ESO (G20). Now, we find per(A(G1)), per(A(G8)), per(A(G16)) and
per(A(G20)). For graph G1, we have

A(G1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 0 0 0 1
1 0 1 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0 1
1 0 0 0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Ryser’s method, we have per(A(G1)) = 72. Similarly, we have

per(A(G8)) = 72, per(A(G16)) = 144, per(A(G20)) = 180.

Therefore, we have the result. ��
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Table 1 Sombor characteristic polynomial P(Gi , λ), for 1 ≤ i ≤ 21

Gi P(Gi , λ)

G1 λ10 − 270λ8 − 432
√
2λ7 + 23004λ6 + 62208

√
2λ5 − 589032λ4 − 1819584

√
2λ3 + 4618944λ2

+15116544
√
2λ

G2 λ10 − 270λ8 − 216
√
2λ7 + 23004λ6 + 27216

√
2λ5 − 705672λ4 − 839808

√
2λ3 + 6718464λ2

+7558272
√
2λ

G3 λ10 − 270λ8 − 324
√
2λ7 + 22356λ6 + 46656

√
2λ5 − 559872λ4 − 1329696

√
2λ3 + 3149280λ2

+8188128
√
2λ + 5668704

G4 λ10 − 270λ8 − 216
√
2λ7 + 20412λ6 + 34992

√
2λ5 − 355752λ4 − 979776

√
2λ3 − 1259712λ2

G5 λ10 − 270λ8 − 432
√
2λ7 + 23004λ6 + 66096

√
2λ5 − 542376λ4 − 2309472

√
2λ3 − 3779136λ2

G6 λ10 − 270λ8 + 21060λ6 − 612360λ4 + 5773680λ2 − 17006112

G7 λ10 − 270λ8 + 22356λ6 − 11664
√
2λ5 − 682344λ4 + 629856

√
2λ3 + 6193584λ2 − 3779136

√
2λ

−17006112

G8 λ10 − 270λ8 + 23004λ6 − 15552
√
2λ5 − 775656λ4 + 1119744

√
2λ3 + 7978176λ2 − 15116544

√
2λ

G9 λ10 − 270λ8 − 108
√
2λ7 + 23004λ6 + 7776

√
2λ5 − 769824λ4 − 34992

√
2λ3 + 9552816λ2

−2519424
√
2λ − 22674816

G10 λ10 − 270λ8 + 21060λ6 − 3888
√
2λ5 − 495720λ4 − 349920

√
2λ3 + 3674160λ2 + 6298560

√
2λ

+5668704

G11 λ10 − 270λ8 − 216
√
2λ7 + 22356λ6 + 31104

√
2λ5 − 612360λ4 − 1119744

√
2λ3 + 2414448λ2

+6298560
√
2λ + 5668704

G12 λ10 − 270λ8 − 216
√
2λ7 + 24300λ6 + 23328

√
2λ5 − 915624λ4 − 629856

√
2λ3 + 15116544λ2

+5038848
√
2λ − 90699264

G13 λ10 − 270λ8 − 108
√
2λ7 + 21708λ6 + 11664

√
2λ5 − 559872λ4 − 384912

√
2λ3 + 3674160λ2

+3779136
√
2λ

G14 λ10 − 270λ8 − 324
√
2λ7 + 24300λ6 + 46656

√
2λ5 − 839808λ4 − 1994544

√
2λ3 + 7873200λ2

+21415104
√
2λ + 22674816

G15 λ10 − 270λ8 − 108
√
2λ7 + 22356λ6 + 11664

√
2λ5 − 676512λ4 − 419904

√
2λ3 + 5668704λ2

+8188128
√
2λ + 5668704

G16 λ10 − 270λ8 + 20412λ6 − 495720λ4 + 3779136λ2

G17 λ10 −270λ8+24300λ6−23328
√
2λ5−962280λ4+2099520

√
2λ3+12597120λ2−50388480

√
2λ

+9069926

G18 λ10 − 270λ8 − 432
√
2λ7 + 20412λ6 + 62208

√
2λ5 − 215784λ4 − 979776

√
2λ3 − 1259712λ2

G19 λ10 − 270λ8 − 216
√
2λ7 + 23652λ6 + 27216

√
2λ5 − 822312λ4 − 909792

√
2λ3 + 10392624λ2

+5038848
√
2λ − 39680928

G20 λ10 − 270λ8 − 648
√
2λ7 + 20412λ6 + 93312

√
2λ5 − 75816λ4 − 1469664

√
2λ3 − 3779136λ2

G21 λ10 − 270λ8 − 432
√
2λ7 + 16524λ6 + 69984

√
2λ5 + 157464λ4

ByObservation 3.6,we know that if two connected k-regular graphs have the sameSombor
energy, we can say nothing about the permanent of their adjacency matrices. Now by the
following Remark, we show that if two graphs have the same permanent, then we cannot
conclude that they have same Sombor energy. Therefore, in general, there is no relation
between Sombor energy and permanent of adjacency matrices of k-regular graphs with the
same order.
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Remark 3.7 In the class of cubic graphs of order 10, we have per(A(G7)) = per(A(G11)) =
85, but as we see in Table 2, ESO (G7) 	= ESO (G11).

As an observation, we see that every graph does not have integer-valued Sombor energy.
We end this section with the following conjecture:

Conjecture 3.8 There is no graph with integer-valued Sombor energy.

4 Conclusions

In this paper, we obtained the Sombor characteristic polynomial and Sombor energy of
specific graphs such as paths, cycles, stars, complete bipartite graphs and complete graphs.
In addition, we studied Sombor energy of 2-regular and 3-regular graphs.

Future topics of interest for future research include the following suggestions:

• Proving Conjecture 3.8 or giving a graph with integer-valued Sombor energy.

Table 2 Sombor energy of cubic
graphs of order 10

Gi ESO (Gi ) Gi ESO (Gi ) Gi ESO (Gi )

G1 64.161 G8 64.161 G15 62.767

G2 63.043 G9 64.981 G16 59.396

G3 62.880 G10 61.399 G17 67.882

G4 57.336 G11 62.375 G18 57.517

G5 60.638 G12 67.882 G19 66.096

G6 63.403 G13 61.000 G20 59.396

G7 63.969 G14 65.835 G21 50.911

v1

v2

v3 v4

v5

v6

v7

v8 v9

v10

Fig. 2 Petersen graph
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• What is the relationship between ESO (G) and ESO (G − e) where e ∈ E(G)?
• What can we say about ESO (G) and ESO (G − v) where v ∈ V (G)?
• What is the Sombor energy of G ∗ H where ∗ is some kind of operation on two graph?
• If two graphs of the same order be ESO-equivalent, do they have any properties in

common?
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