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a b s t r a c t

In multiple sclerosis (MS), the amount of brain damage, anatomical location, shape, and changes are
important aspects that help medical researchers and clinicians to understand the temporal patterns of
the disease. Interactive visualization for longitudinal MS data can support studies aimed at exploratory
analysis of lesion and healthy tissue topology. Existing visualizations in this context comprise bar charts
and summary measures, such as absolute numbers and volumes to summarize lesion trajectories over
time, as well as summary measures such as volume changes. These techniques can work well for
datasets having dual time point comparisons. For frequent follow-up scans, understanding patterns
from multimodal data is difficult without suitable visualization approaches. As a solution, we propose a
visualization application, wherein we present lesion exploration tools through interactive visualizations
that are suitable for large time-series data. In addition to various volumetric and temporal exploration
facilities, we include an interactive stacked area graph with other integrated features that enable
comparison of lesion features, such as intensity or volume change. We derive the input data for
the longitudinal visualizations from automated lesion tracking. For cases with a larger number of
follow-ups, our visualization design can provide useful summary information while allowing medical
researchers and clinicians to study features at lower granularities. We demonstrate the utility of our
visualization on simulated datasets through an evaluation with domain experts.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Multiple Sclerosis (MS) is a disease that affects the central
ervous system. In MS, the immune system attacks the pro-
ective layer, called myelin, around the nerves, causing damage
nd disruption in nerve functionality [1]. The damaged areas are
eferred to as lesions and appear as scar-like features in medical
mages as shown in Fig. 1(a). Depending on the lesion type,
ocation, and other characteristics, MS patients may experience
wide range of problems. Based on the symptoms developed
y a patient, a clinician performs diagnosis and also makes a
isability quantification using methods such as the Expanded
isability Status Scale (EDSS) [2]. For diagnosis, Magnetic Res-
nance Imaging (MRI) is a commonly used technique, where
he clinicians can see the MS lesions as either bright or dark
pots in the image depending on the MRI modality used. It is
mportant to note that there is currently no permanent cure for
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MS, but clinicians rely on medication-based disease management.
Patients also undergo follow-up MRI scans, where clinicians as-
sess medical images to see the clinical impact of medications.
During follow-up, it is a common practice to compare the current
scan with a previous scan. This involves matching both image
slice locations and lesions between two time points to assess the
difference. The process becomes difficult if there is a high lesion
load and/or there are many follow-up scans. The complexity will
further increase when users also need to track lesion information,
e.g., new lesions, growth, and intensity changes, in multimodal
or multiparametric datasets. Fig. 1(b) and (c) show an example
lesion surface variation between a baseline and follow-up scan,
respectively.

Fig. 2 shows an abstract depiction of the lesion change/event
profiles such as shrinking, enlargement, merging, splitting and
the appearance of new lesions.

Analysis of lesion load [3] across time points is important be-
cause it helps to assess the outcomes of MS disease management
through the use of medications. Analyzing lesion information

longitudinally across multiple datasets and modalities also needs
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Fig. 1. (a) An axial view of a brain scan of a patient with multiple sclerosis
reveals lesions as intensity differences, (b) lesion surfaces at a baseline scan,
and (c) lesion surfaces at a follow-up scan.

Fig. 2. An abstract representation of possible lesion changes and events possible
between two scans taken at time t0 and t1. (a) shrinking lesion, (b) enlarging
lesion, (c) merging lesions, (d) splitting lesions, and (e) new lesion. The dotted
curves in t1 represent overlays, showing t0 lesions.

to follow standards like the McDonald criteria [4]. For a diagnosis
based on the McDonald criteria, it is important to understand
the dissemination of lesions in space and time along with in-
tensity variations. When using the diagnostic criteria, clinicians
consider conventional slice views as an excellent mechanism
for evaluating a patient. However, for conducting an explorative
analysis on MS in a research context, advanced visualization
tools can offer an advantage over conventional techniques. This
is mainly due to the fuzzy nature of the disease. Similar to an
iterative prototyping process, we received feedback during differ-
ent stages of development from a collaborating neuroradiologist
with clinical and research experience. The feedback collection
during the development phase helped in guiding the visualization
development. Other collaborators with the subject expertise were
available throughout the development of the project. Realizing
the possibilities of better tools for longitudinal MS analysis, we
present an application that incorporates interactive visualizations
to support lesion exploration and research.

In this design study, we consider the following as the main
contributions:

• A stack plot-centered visualization design for exploratory
analysis of lesion development over time.
• Auxiliary node graph representation of longitudinal MS data

to handle complex analysis.
• An interactive visualization for individual spatial exploration

of lesions.

2. Related work

There is a large body of related work focussing on visual
analytics for temporal data, such as the work by Zhang et al. [5],
which is a good example where they visualize time-varying data
and showcase the benefits of linked plots. The work by [6] pro-
vides a good coverage of challenges involved in multimodal med-
ical data visualization. Our focus is mainly on the visualization
approaches for spatio-temporal MS data in particular.
209
2.1. Approaches for MS lesion data

Visualization approaches for MS longitudinal data so far fo-
cused on visualizing the lesion changes in ways that are suitable
for further statistical analysis. On a high level, we put emphasis
on presenting detailed lesion features from multi-modal datasets
for easy exploration and discovery of patterns. The work by [7] is
an example, where they fight the problem of high dimensionality
and complexity of the data space. Adding to our motivation to do
this study, Mainero et al. [8] states that any improvements made
to visualization of MS lesions is extremely valuable for monitoring
longitudinal lesion dynamics and for understanding their rela-
tions with their contribution towards neurodegeneration and to
the establishment of irreversible disability.

The work by Okuda et al. [9] explores the need for studying
lesion shape changes or shape evolution in the classification of
chronic MS lesions. They visualize lesion differences only be-
tween two time points by providing both mesh- and glyph-
based visualization. In contrast to their approach, we use a view-
synchronized combination of mesh- and contour-based visualiza-
tion. We did not use arrow glyphs in our visualization design, as
glyph geometry adds to the visual scene complexity, especially
for complex-shaped lesions. The work by [10] explores inter
lesion relationships. In our work, we focus on tracking individual
lesions. Fartaria et al. [11] perform statistical analysis of lesion
changes. Their visualization mainly conveys lesion distribution
information at a single time point. They employ similar visu-
alizations as depicted in Fig. 3(b). The challenge with such a
visual representation is that it is not a suitable visualization for
representing data from multiple time points.

Kuckertz et al. [12] propose a system for automated moni-
toring of lesion evolution. In contrast to our method, they use a
tree data structure with repeated nodes that represents the same
lesion. Tory et al. [13] present multiple approaches to visualize
longitudinal lesions. One of their approaches includes the use of
3D surface rendering, where they display each time step as an
animation. As the complexity of reading the scene increases (as
shown in Fig. 4) with an increasing number of time points and
lesions, this approach is not suitable in our context. As visible
in Fig. 4(c), the aggregation of data in the same scene is not
a suitable visualization choice, especially when there are many
follow-up scan data points with many lesions. In contrast to this
approach, our visualization provides an interactive lesion-wise
analysis of shape changes. The work by Köhler et al. [14] is a
closely related visualization approach intended for longitudinal
lesion data. After tracking the lesions over multiple follow-up
scans, they visualize the lesions in a way that is analogous to
what we depict in Fig. 3(a). Such bar charts works well if the
number of follow-up scans available is low, however, it does not
scale. For datasets including a larger number of follow-up scans
like Filippi et al. [15], the cognitive load to understand the chart
becomes high. Also, the visualization does not support studying
the total lesion volume trend over time because every separate
grouping in the bar chart represents a single lesion. People who
are involved in MS lesion research can consider more follow-up
cases than usual or even make research datasets through frequent
follow-up scans. The work by Brune et al. [16] has developed into
a commercial application supporting lesion analysis along with
visualization of longitudinal data. Interestingly, they also make
use of a bar chart-based visualization similar to what we depict
in Fig. 3(c). In their work, they only compare the current and the
previous scan. In contrast to the approaches in Köhler et al. [14],
Fartaria et al. [11], and Brune et al. [16], our visualization appli-
cation provides support for the explorative analysis of MS lesions

which scales to datasets with a larger number of follow-ups.
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Fig. 3. Examples of current standards in longitudinal MS lesion visualization.
(a) Each bar grouping represents the baseline and three follow-up scans for
a specific lesion [14]. (b) Stacked bar chart representing lesions from cortical
and white matter regions [11]. (c) The pair in every bar grouping indicates the
current scan and prior scan size per lesion [16].

Fig. 4. Surface rendering of longitudinal lesions [13] where surfaces from
multiple time points are rendered together in the same window (a) 2 time
steps (b) 4 time steps and (c) all 11 time steps.

2.2. Approaches for spatio-temporal medical data

Several visualization studies have focused on improving the
nderstanding of longitudinal medical datasets. For improved
isual exploration capabilities, the work by Meuschke et al. [17]
hows approaches for visualization of scalar fields using multiple
inked abstract visualizations. Our work, in contrast, involves
isualization of surface variations. Busking et al. [18] evaluate dif-
erent methods for visually representing shape differences. While
hey focus on representing changes using contours generated
rom intersecting surfaces, we use a combination of surfaces on
hich we depict change in one of our visualizations. The reasons

or avoiding point correspondence glyphs in our approach include
n increased scene complexity and the incompatibility with han-
ling the significant topology variations for lesions. Furmanova
t al. [19] visualize the anatomical variability of structures using
ontours bands in order to represent a group of patients. In our
pplication, we focus instead on visualizing time-varying data for
single subject, where we communicate lesion variability using
ontours and meshes along with a high-level brain structure con-
ext. Hermann et al. [20] present a detailed study on visualizing
arge deformations and variability in biomedical images. Instead
f using glyphs, they have used a streamline visualization. In ad-
ition, they present change information using volume rendering
nd combination of contour and isosurface to visualize change. In
ur visualization tool, we use a combination of 2D contours and
D meshes that are color-coded to show previous and current
ime points. Murugesan et al. [21] visualize time-varying brain
ata by clustering brain regions. They represent cluster evolution
y using a node graph with an associated time axis. We associate
time axis only for our stack plot visualization. The work by
laßer et al. [22] includes visualization of longitudinal tumor
olume data using time intensity curves. For visual analysis, they
se a mask-based segmentation of color-mapped 2D tumor slice
ata. Those maps are not suitable for a superimposed display.
n contrast to their approach of visualizing the pathology and
he context in the same scene, we separate them into separate
cenes considering workflow-related benefits. Smith et al. [23]
ffer visualizations similar to stack plots, but they show infor-
ation represented in a tree data structure. They have abstract
isualizations that are manually linked to an anatomical image.
n our visualizations, we primarily use the stack plot to convey
210
information on total lesion load, and we use automatic linking for
connecting visualizations to a 3D anatomical context. To depict
the evolutionary history of tumor samples, the work by Alves
et al. [24] visualizes abstract changes that capture evolution and
change information in a tree. We make use of a directed node
graph for visualizing lesion evolution along with their properties
encoded as node sizes and colors.

2.3. Approaches for other spatio-temporal data

There exists extensive literature on visualization approaches
that are used in non-medical domains. In the work by Reh
et al. [25], the tracking graph that is horizontally laid out in-
cludes repeated nodes to show tracking. Such an approach is
not applicable in our context as we need to capture long follow-
up information. The work by Diehl et al. [26] includes the use
of multiple abstract visualizations to study spatio-temporal data
relating to thunderstorms. Unlike our tracking graph, they use
a tracking graph with repeated node and edge crossings. Our
work relates to the comparative visualization work by Alabi
et al. [27], which showcases a visualization that uses opaque and
transparent geometry. They introduce two sets of glyphs into the
scene, which would add to the difficulty in perceiving differences
in our context. In contrast, we do not use glyphs to show change
in 3D as the visual clutter increases proportionally to the amount
of deformations.

3. Requirement analysis

Based on discussions with experts, existing literature, and
standard diagnostic protocols, we identified several important
lesion attributes and potential approaches to visualize them. Al-
though clinicians make use of 2D MRI slices for diagnosis, we
found from the discussion with clinicians that there is a need for
better interactive visual analysis tools, especially when studying
lesion evolution in larger datasets for research purposes. The
need for such supporting visualizations for longitudinal data arise
mainly when dealing with a high number of follow-ups, high
lesion load, and multiple modalities. According to a radiologist we
interacted with, removing the manual effort that goes into com-
paring lesion pairs in the large longitudinal dataset is something
that needs to be solved.

We conducted a requirement elicitation with the support of
clinicians and subject experts for understanding the needs in
longitudinal MS visualization. Even though we derive some of
the primary motivations from existing literature, we carefully
validated those requirements with clinicians as well. During re-
quirement elicitation, we got an impression that more advanced
tools are in particular of interest to researchers who are trying
to decode the patterns in MS. The clinicians generally follow
accepted and approved standards during clinical practice. Due
to the fuzzy nature of the disease, whose underlying cause is
still unknown, it was difficult for clinicians to comment on the
exact application. We derived the high-level requirements based
on the discussion with experts, including clinicians, whereas we
derived the feature level requirements based on both literature
and expert inputs.

Sugathan et al. [28] recently presented work on visualizing
spatial aspects of lesions where the need for longitudinal MS
visualization became clear. There is a significant manual effort
to understand patterns from longitudinal datasets with large
number of followups. Here, we see a requirement for better
visualization approaches that can help in an explorative analysis
of the entire range of longitudinal scan data for a subject. Besides
visualizing statistical properties of lesions, we identify that it is
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seful to see important events like the occurrence of new, enlarg-
ng, splitting, and merging lesions. In addition to capturing lesion
olume-related features, we see a requirement for visualizing
bnormalities in intensity related features, as they are useful in
ongitudinal studies [29]. We identify another requirement that
s related to the complexity in understanding a 3D scene when
here is a high lesion load. Unlike the existing tools, users would
ike to interactively analyze lesions without occlusion. Based on
discussion with a radiologist, we also found that, in some cases,

t would be ideal to compare scans from arbitrary time points.
ccording to the radiologist we interacted with, the normal com-
arison workflow always considers the current scan and previous
can. When analyzing follow-up data in a tool, it is useful to allow
omparisons between arbitrary time points. As per the clinician,
his would allow for them to capture the trend clearly.

Based on the requirement elicitation described above, we
ummarize the following main requirements:

R.1 Visual support to quickly identify lesions of interest
through exploratory analysis.

R.2 Individual lesion changes in shape and extent over time
must be shown.

R.3 Lesion intensity changes over time should be shown for
visual analysis.

R.4 Detailed visualizations to study statistical lesion attributes
in relation to new and enlarging lesions.

R.5 A representation that supports understanding the state of
lesions at the current time-point while having an overview
of the whole time series evolution.

. Longitudinal lesion visualization

To satisfy the requirements outlined in the previous sec-
ion, we have designed and implemented a visualization applica-
ion to support spatio-temporal lesion development analysis. An
verview diagram of our visualization approach is visible in Fig. 5.
e present all our interactive visualizations in an application
ritten using Python and Qt. For data preprocessing, we use
dditional tools such as FreeSurfer and the Visualization Toolkit
VTK) and Insight Toolkit (ITK). After the preprocessing stages,
ur interactive visualization system can load longitudinal data of
single patient at a time.
We present the interactive visualizations using four dominant

iews as depicted in Fig. 5(c), (d), (e) and (f).

.1. Preprocessing

Our visualization pipeline starts with a preprocessing mod-
le with structural MRI data along with annotations (binary le-
ion masks) as input. The reason for needing a preprocessing
tage is due to dependency on FreeSurfer [30] for segmentation,
hich takes several hours to finish, and size of the longitudinal
ata. The application can handle both measured as well as simu-
ated data sets. In this study, we have used a simulated dataset,
hich reflects a situation where there are many patient follow-up
cans available to demonstrate the scalability of our approach to
ata with many followups and multiple modalities. The instances
hown in Fig. 1 are from a real dataset that contains only a
aseline and a single followup scan, which is less suitable for
howcasing the potential of the application. Another motivation
or using a synthetic dataset is that it enables us to mimic all
ossible morphological changes that a lesion can undergo. The
ynthetic dataset includes a total of 80 timepoints including the
aseline. There are at most 8 lesions in each timepoint, and they
ndergo changes as already illustrated in Fig. 2. The real datasets

hen compared with our synthetic dataset, cannot expect many

211
Fig. 5. An overview of our visualization system showing the components in
the preprocessing and visualization stages. Preprocessing stage involves (a)
surface generation and (b) preparing data using re-slicing and registration. The
application finally provides interactive visualization through four different views
((c), (d), (e) and (f)) that are linked.

followups especially in a clinical setting. However, real datasets
used in research studies that are aimed at exploring MS lesions
can have many and frequent followups. We have developed this
dataset in such a way that it gives clinicians or researchers
an opportunity to consider the potential for clinical treatment
assessment as well as research opportunities. When using a syn-
thetic dataset, we avoid the need for volume registration of the
data at all time steps by creating the synthetic data from the same
original scan. When using real measured data, users can include a
registration step using existing tools such as FSL [31], FreeSurfer
Longitudinal [32,33] or Elastix [34]. Here we discuss some of the
important preprocessing steps that need to be done before using
the application:

4.1.1. Lesion surface and anatomy reconstruction
One of the first steps in the preprocessing module includes

the extraction of lesion surfaces from volume data (Fig. 5(a)).
In addition, when we display the resulting lesion mesh in the
visualization tool, we also present context brain anatomy such
as the cortical surface, ventricles, etc. This helps users to get
spatial context while interacting with the lesions. To generate
the surface of the brain and other subcortical structures, we use
the standard FreeSurfer version 6.0 reconstruction pipeline. As
shown in Fig. 5, our system considers the longitudinal structural
scans and their corresponding data annotations (lesion masks)
as mandatory inputs. When using a real dataset, we can extract
lesion masks by employing manual or automatic segmentation.
This can follow the use of any standard iso-surface generation
algorithm for generating the lesion surfaces. Since we are using
a synthetic dataset in the study, we create lesion surface pro-
files using the modeling capabilities available in Blender version
2.9 [35] and generate lesion masks from those surfaces. To mimic
a corresponding change in the structural data, we also write
varying intensities into the structural data at places where we
created the synthetic lesions.

Besides lesions, we also need to display surfaces of other struc-
tures that can act as an anatomical context. For this, we obtain the
brain surface from FreeSurfer reconstruction results and compute
the ventricle surface from FreeSurfer segmentation results. In

addition, we do necessary data transformations, volume reslicing,
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Fig. 6. High level flowchart for node graph generation.

and compute statistical information about lesions to reduce the
computational overhead while running our application. We store
part of the preprocessing results of the preprocessing as a JSON
(JavaScript Object Notation) file. We configure the visualization
application to use the data in the JSON file instead of processing
the datasets for every user interaction.

4.1.2. Lesion tracking
To track a lesion between consecutive scans, we check for

ntersections between a pair of binary lesion masks and maintain
node graph to store the tracking information. Fig. 6 depicts the
igh level steps we use for the generation of a node graph. We
eep this process in the preprocessing step because it is a time-
onsuming task which involves processing all the follow-up scan
olumes. For tracking, we make use of the binary lesion mask
olumes, where a scalar value of 1 represents lesion regions and
value of 0 represents non-lesion regions. Before our tracking
lgorithm, we label the mask volume lesions using connected
omponent analysis. We cannot use the same lesion labels for
racking because it varies depending on the lesion shape and
ocation inside the volume. To circumvent this problem, we use
separate graph-based data structure where the lesions are con-
idered nodes and we store a time list and label list per node as
ode metadata. The directed edges of the graph reveal split or
erge patterns and point toward the direction of advancing time.
lgorithm 1 provides an overview of the lesion tracking script.
n a nutshell, the algorithm traverses through all the labels in
he dataset and iteratively builds a graph out of it. Every node in
he graph represents a specific lesion, and every edge represents
split or merge event. Lesions that are not part of a splitting
r merging event are represented by a single node. The lesion
racking data represented as a graph forms the basis for most of
he computations and visualizations in our tool.

.2. Visualization components

Before starting the visualization tool, we write all the prepro-
essed data from the previous step to folders with predefined
ames. We can assign a separate folder for every single subject
nd every subject folder can hold the individual follow-up scans.
n overview of the visual components of our application can
e seen in Fig. 7. In our application, we provide the commonly
sed Multiplanar reconstruction (MPR) images, which are the
tandard orthogonal planes (axial, coronal and sagittal) extracted
rom structural MRI data. For specifying lesions, we provide an
verlay of the lesion mask on all the three MPRs. To provide
xtra guidance when a user interacts with 3D lesions, we auto-
atically update the MPR planes to show the slices having the
elected lesion. In addition to the standard MPR view available
n many clinical applications, we provide four views representing
dditional visual encoding and functionality to support task in

ongitudinal lesion data analysis.

212
Algorithm 1: Lesion tracking for longitudinal MS data
Data: S, an array storing scan data of a subject.
Result: G, a directed graph storing lesion tracking data.

1 NS ← n(S) ; /* Number of follow-ups */
2 N0 ← number of lesions in S0 ; /* baseline */
3 Initialize G← graph with N0 disconnected nodes;
4 for i = 1 to NS do
5 p← Set of lesions in Si−1 ; /* previous scan */
6 q← Set of lesions in Si ; /* current scan */
7 Np ← n(p) ; /* #lesions (previous) */
8 Nq ← n(q) ; /* #lesions (current) */
9 Initialize pData← NULL; qData← NULL;

10 for j = 0 to Nq do
11 for k = 0 to Np do
12 pData← Append intersection pk on qj;
13 qData← Append intersection qj on pk;
14 end
15 end
16 for k = 0 to Nq do
17 if qDatak has intersection then
18 if multiple intersection then
19 Add new node in G and set metadata;
20 Add edge between relevant nodes in G;
21 else
22 Update metadata of existing node in G;
23 end
24 else
25 Add new node in G;
26 end
27 end
28 for k = 0 to Nx do
29 if pDatak has multiple intersection then
30 Add edge between relevant nodes in G;
31 end
32 end
33 end

4.2.1. 3D lesion view
To support requirement R.1, we use lesion surfaces as an

interactive object and render them in spatial context to brain
anatomy. Fig. 7(f) shows the 3D visualization of lesions along
with minimal context information that helps users to get an
impression of the overall lesion load and distribution. The 3D
lesion view basically renders all the lesions along with the ven-
tricles inside the brain, and acts as the primary view where user
interaction typically starts. A common method to provide context
involves supporting user interaction on the image planes (MPRs)
itself, but it is challenging to get a full picture of the lesion
development over time across multiple imaging sequences due
to multiplane navigation and the mental load of constructing a
3D view from 2D slice information. As an alternative, we provide
the visualization as a 3D scene where we can also render other
3D structures, such as the ventricles, to provide spatial context.
The lesion surface data is available from the lesion mask data
while the ventricle surface can be acquired from segmentation
in, for example, FreeSurfer. We choose ventricles as a context
structure instead of the brain surface to provide an occlusion-free
view of the lesions. Using the ventricles as a context also helps
us to assess radiographic features such as Dawson fingers [36],
i.e., a situation where lesions appear in a specific pattern near the
ventricles. The view also includes a standard orientation marker
to provide a correct impression of brain orientation.

We use the same viewport for displaying a comparative visu-
alization of lesions. Here, we inspire the conceptual design of the
visualization based on the inputs we received from a radiologist.
According to the radiologist, the usual clinical workflow compares
a scan with its immediate previous scan. Instead of this, it is
sometimes useful to compare two arbitrary timepoints for study-
ing long-term trends especially in longitudinally large datasets.
Here, if the user-selected duration is large, then we can expect

significant changes in shape and spatial distribution of lesions.
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Fig. 7. Our system for explorative analysis of MS longitudinal lesions. The application consists of main user interface controls (a,b,c,d), MPR views (e), 3D lesion
isualization (f), stack plot and intensity plots (g), node graph visualization (h), and visualization for longitudinal shape analysis for a selected lesion (i). The linked
isualization views (f,g,h,i) help to perform interactive analysis on longitudinal lesion research data.
Fig. 8. Comparative visualization of abstract lesion differences computed be-
tween an arbitrary range of time points, tx and ty where x < y. In the third
column showing the combination of two surfaces, we represent the lesions
from time point tx and ty using dotted and solid curves, respectively. When
color mapped, we use a red-like color to show areas where a lesion is growing,
green-like color to show areas where lesion is shrinking, and a gray color to
show areas without change.

This significant difference makes a glyph-based visualization a
poor choice for conveying change information. By displaying a
combination of surfaces from both timepoints as a single surface
enables us to mark (using color patches) the areas where the
lesion is improving (shrink) and the areas where the lesion is
getting worse (grow). Even though the combined surface can
sometimes include mesh fragments from both timepoints, it gives
useful information on the change pattern of the lesions. The size
and location (on the lesions) of the color patches gives a high level
information on the degree of MS activity. As shown in Fig. 8, we
compute the visualization for an arbitrary range of time points tx
and ty, set by the user. We generate a combined mask volume M
and a corresponding meshMs, from time points tx and ty to visual-
ize lesion changes. For probing purposes, we generate a difference
volume D that stores the difference values (representing growth,
shrinkage or no change) between the original lesion meshes at
time points tx and ty. To copy the difference values to Ms, we
probe Ms on D. We then enable the scalar-based coloring for the
mesh Ms, where vertices with scalar values less than zero, equal
to zero, and greater than zero get the color values red, gray, and
green, respectively. Please note that the colors are not pure red
and green, but colorblind safe shades from ColorBrewer [37]. We
213
Fig. 9. Example visualizations showing specific lesion change patterns for a set
of lesions captured from time points tx and ty . (a) A lesion growing only towards
a certain direction, (b) a lesion splitting into two separate lesions, (c) two lesions
growing towards each other, and (d) two lesions where one of them shrink and
the other appear as new.

use these colors to communicate the improving and worsening
lesions.

The visualization shown in Fig. 9 captures some example
patterns from the range compare visualization. In the figure, the
first two rows represent the inputs from time points tx and ty.
The last row represents the resulting visualization that shows
the color mapped lesions. We show the change pattern using
red, green, and gray colors representing growing, shrinking, and
inactive parts of lesions, respectively. In Fig. 9(a), we show a
visualization that identifies lesion growth in a specific direction.
This visualization can be used to study whether a lesion is grow-
ing towards a specific structure or not. Fig. 9(b) captures the
splitting location of a lesion and 9(c) shows a merging lesion
when comparing the data from time steps tx and ty. If there are
significant uniform variations all around the surface of a lesion,
we would get a similar visualization as shown in Fig. 9(d).

4.2.2. Lesion property view
To visualize the different statistical lesion properties, we con-

sider a stack plot as the basis for encoding lesion information.
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Fig. 10. An abstract depiction of stack plot design for showing lesion features
such as physical size evolving over time with each lesion encoded in a color
(a). Abstract depiction of intensity visualization highlighting individual lesion
properties and their changes over time (b). To convey additional information,
we overlay different markers (c) that can be manipulated using the user interface
controls (d).

This view fulfills requirement R.1, R.3 and R.4. In our application,
we render the stack plot as shown in Fig. 7(g). An illustration
of the stack plot design and related aspects is shown in Fig. 10.
The motivation for using a stack plot comes from the limitations
in extending the visualizations depicted in Fig. 3. In addition,
the changes happening to the total lesion volume load is better
understood when using a stackplot than using a bar chart vi-
sualization. With our design choice, a user can easily track the
changes of a single lesion over time, while conveying the overall
trend of lesion load. For instance, if we consider the depiction
in Fig. 10(a), we can see that the lesion represented as a pink-
colored stackplot component undergoes enlargement while the
total lesion load reduces. The parallel observations on individual
lesions and overall lesion trend is useful to identify lesions that
are deviating from a global trend. For the stack plot, we use colors
from ColorBrewer [37] that are color-blind safe. The color coding
makes it easier to identify a lesion across multiple visualizations
in the application. By using different colors and adding borders
for stack plot components, we can easily understand relative
sizes of individual lesions and the events like merging, splitting
and appearance of new lesions. It is important to note that we
visualize the longitudinal lesion data in such a way that the
lesions linked to the same event are ordered together in the stack
plot and get the same color. Understanding total lesion volume
load from the stack plot is a useful aspect for clinicians because
it can show whether a patient is improving or not in relation to
treatment. In the stack plot, we plot the follow-up instance on the
x-axis and a user set lesion property on the y-axis. Lesion volume
s the most useful and default feature we assign to the y-axis. It
s possible to change the y-axis variable to any other available
tatistical feature as needed.
For a selected lesion in the stack plot, we display the average

oxel intensity visualization in a plot as shown in Fig. 10(b).
e present the intensity information in a way that supports

omparison across modalities and time. We always show the
rayscale intensities of a pair of modalities in the intensity plot. In
ig. 10(b), the modality T1 follows an increasing pattern of voxel
ntensity and T2 shows a decreasing pattern. With the intensity
isualization, we intend to support researchers who study or
odel intensity variations.
Unlike regular stack plots that plot the data arrays in arbitrary

rder, we sort the data such that lesions that are connected by
vents such as merge or split comes together. To derive this
rder for the stack plot data arrays, we rely on a graph G, which

captures the split/merge events that may occur during the lesion
timeline. In G, we consider any of its subgraphs with a minimum
3 nodes as a case of split or a merge event. We plot the stack plot
in such a way that all the nodes corresponding to a split or merge

event are aligned as much as possible by their vertical ordering.
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Fig. 11. The stack plot and intensity plot show lesion evolution over time. The
state of the plots without overlay markers (a) and with overlay markers (b).
By right clicking on a specific lesion (pink), the user can bring a specific lesion
plotted over a flat baseline (c).

We overlay several markers shown in the first column of
Fig. 10(b) on the intensity visualization plot. These markers in-
dicate the degree of intensity changes between consecutive time
points tx and ty where y ̸= 0. If there is no intensity difference
between consecutive time points, no markers will be shown. The
second column of markers in Fig. 10(b) shows the markers used
on the stack plot. Based on the user requirements, we also provide
user controls (Fig. 10(d)) that determine the computation and
appearance of the glyphs.

Fig. 11 shows three example screenshots with different states
of the stack plot visualization. During application development,
with the help of an experienced radiologist, we refined the design
of the stack plot. Initially, the intensity visualization and overlay
glyphs were separate views from the stack plot. Based on the
inputs received in a feedback discussion, we synchronized the
intensity visualization with the stack plot, and added glyphs as
an overlay on top of the stack plot. According to the radiologist,
bringing everything into one place is more useful than separating
them for the sake of avoiding clutter. This is the reason we
provide options to enable/disable overlay glyphs.

4.2.3. Lesion event view
For an overview of events that happen during lesion evolution

over time, we provide an interactive node graph visualization in
addition to the stack plot. An illustrative example depiction of
such a node graph is shown in Fig. 12. Fig. 7(h) shows an example
render of the node graph in our application. In the node graph,
every node represents a unique lesion and the directed edges
represent either a split or merge scenario of lesion(s). The arrows
in the graph point to the direction of time advancement, where
the origin of the arrow points to a lesion which was subsequently
merged or split. The entire node graph visually communicates le-
sion information representing all the time points, while showing
indications of currently active lesions for a specific time point.
This fulfills requirement R.1 and R.5. Nodes that are colored in
white show lesions that are absent in the currently selected
time point or follow-up instance. Colored lesions in the graph
represent the present lesions in the current follow-up. The colors
correspond to the colors in the stack plot for visual linking. To
visualize the statistical properties of the lesions, we support en-
coding several lesion properties as graph node sizes. With this, we
link the node graph with other views, especially when there are
too many tiny lesions to get a good overview or when there is a
high variance in the physical size of the lesions. In the latter case,
the larger lesions will dominate the stack plot and it is possible
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Fig. 12. The node graph view displays a summary of lesion event data and
selected lesion properties. The drop down box allows for statistical lesion
parameters to be mapped to node size.

that one may overlook the small lesion events. We update the
node graph visualization whenever the user interacts with the
time slider. We also see lesion properties (set using a combo
box) encoded as the size, i.e. circle radius, of the nodes in the
node graph. The nodes will always keep a default minimum size
for proper visibility. To map lesion attributes to nodes, we add
the normalized lesion attribute values to the default node sizes.
We can see value and topological changes as an animation by
updating the current time using the time slider. In contrast to
the stack plot, sometimes the node graph can serve as a better
alternative for understanding lesion events. This is true especially
when we have tiny lesions and high lesion load for a dataset. The
linking between stack plot and node graph helps a user to refine
the observations obtained from the visualizations.

4.2.4. Spatial variation view
Both the stack plot and the node graph focus on conveying

hange information purely based on the statistical properties of
esions. To support requirement R.2, we provide the 3D spatial
ariation visualization, where we aim to provide multiple (past,
urrent and future) comparisons performed around a selected
ime point for a selected lesion. With this view (Fig. 7(i)), oc-
luding lesions are less of a concern, as the user explores only
ne selected lesion at a time. Selectively displaying lesions like
his, along with local context information, helps a user to under-
tand shape changes in relation to other brain structures. When
selected lesion undergoes a split, merge, or disappear event,

he selection highlight will disappear and the lesion viewport
tops updating. These major events are also visible from the color
hanges in the node graph.
We designed our visual encoding to support exploratory anal-

sis of the spatial activity trend of a single lesion. A high level
esign depiction of the viewport setup for studying spatial vari-
tion is given in Fig. 13. The module contains six viewports.
he main viewport (see Fig. 13(a)) is at the top, and we reserve
t for displaying the selected lesion along with brain context
tructures. For anatomical context, we display the ventricles and
transparent brain surface rendering. To display longitudinal

esion changes, we use the remaining five viewports at the bot-
om, inspired by motion animation sequences (see Fig. 13(b),
c), (d), (e), and (f)). Among those five lesion viewports, the
iddle viewport renders the current lesion, and the viewports
panning to the left and right, displays the previous and future
imepoints, respectively. By default, the viewports at the bottom
ender a contour view of a selected lesion based on the viewing
ngle. Since a side-by-side visualization of the data from two
ime points is not ideal for perceiving spatial differences, we also
isplay the contour from the previous time point as an overlay. As
hown in the lesion viewports in Fig. 13, the black color contour
n a particular viewport represents a lesion from the time point
isplayed in the same viewport. In every lesion viewport, we use
n orange contour to represent a lesion coming from a previous
ime point. As shown in Fig. 13, the contour view can convey
215
Fig. 13. Design for the analysis of spatial changes of individual lesions. Here,
we use (a) a context viewport to display the selected lesion relative to other
brain structures. The views (b), (c), (d), (e) and (f) represent lesion viewports,
where we render lesions with an overlay from one of the previous time points.

the spatial difference in contours when looking from the viewer’s
perspective. This helps a user to align the brain context shown in
Fig. 13(a) to a suitable orientation where we can study relevant
changes in the lesion. Having the contour visualization along with
a linked brain context enables a user to understand whether a
lesion is active toward a specific anatomy or not. The user can also
switch to a mesh view to see the lesion difference in 3D. Here,
instead of a combination of black and red, we use blue and orange
colors, respectively. If a previous time point is not available, we
do not show the orange contour as shown in Fig. 13(b).

We use a follow-up interval value, F to determine which previ-
ous and next time points to display. The value F is user adjustable.
Consider a dataset with several time points. If a user wants to
study a specific time point, say C , by using a follow-up interval
value F , then selecting a lesion at time point tC would display
lesions from the time points; tC−(F×2), tC−(F×1), tC , tC+(F×1) and
C+(F×2). For the overlay, the viewports would use the time points
C−(F×3), tC−(F×2), tC−(F×1), tC , and tC+(F×1). We show an example
f the visualization outcome for different values of the follow-up
nterval in Fig. 15. As the follow-up interval increases, changes
ecome more pronounced. A suitable value for the follow-up
nterval purely depends on the degree of lesion changes and
ay vary across patients. When increasing the zoom level, it is
ossible to see the volumetric differences as shown in Fig. 15(b).
hen we zoom out, as shown in Fig. 15(c), we do not see the
etails but an abstract view of mesh variations. This gives us an
bstract view of mesh variations. In terms of workflow, a user can
irst inspect the 3D lesion zoomed out, and then later start looking
t the details by zooming in. Since the appearance of new lesion
s clinically important, we visualize them in the stack plot with
n additional glyph.
We choose to include a contour visualization in the design to

elp understand the direction of lesion activity towards certain
rain structures. To quote an example scenario, imagine that
here is a lesion near the optical nerve; if the lesion grows toward
he optical nerve, then it is more likely that the patient may
xperience vision problems in the future. For comparing two
esions using the mesh view, we use a design where we render
oth the lesion meshes together with different styles (surface and
ireframe) in the same space as this helps to identify surface
reas where the one lesion changes compared to the other. In our
esign, we use five lesion viewports because showing consecutive
airs of lesions is useful to understand the trend of spatial vari-
tion, inspired by the current clinical practice of comparing two
cans at a time.

.3. Interaction and linking

To support exploratory analysis studies on lesions, we struc-
ure our visualization idioms as multiple linked views. Here,
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Fig. 14. Comparative visualization of lesions at two arbitrary time points (a)
and (b) y where x < y. The user can toggle between lesions at current time
tep y and (c) an abstract change visualization depicting the lesion changes using
ifferent colors.

e discuss all interaction- and linking-related aspects that are
ntegrated in our visualizations. To visually understand the main
nteractions in the application, please refer to the supplementary
ideo accompanying this paper.
3D lesion view: This view is intended to be the starting point

for analysis. A mouse selection of a lesion in this view will
highlight the lesion and also show statistical properties as a text
overlay. Using the time slider, we can visually inspect the changes
happening to the surface mesh and properties of the selected
lesion. The surface mesh changes appear as an animation, which
is useful to capture the nature of the changes happening. We link
this view to other view on-demand based on whether the Control
key is pressed on the keyboard.

Since we use the same viewport for providing the range com-
pare visualization, we can exploit the benefits of toggling be-
tween original lesion view (Fig. 14(b)) and the comparison view
(Fig. 14(c)). While the comparison view conveys abstract infor-
mation about lesion changes, toggling to the original lesion view
can help users to assess the amount of difference that happened
to the lesions.

Stack plot and intensity visualization: We provide user-
selectable components in the stack plot to relate observations
with other views. The glyphs we display on the intensity plot
depend on the value set by the intensity variation threshold slider
provided in the user interface. We can dynamically set the thresh-
old value and it defines the amount of variation above which
the intensity change is significant. The stack-plot can also display
glyphs showing new and enlarged lesions. In terms of design, we
implemented this as an on-demand feature to minimize clutter.
Even though the stack plot provides an excellent overview of the
lesion load trends over time, it might be difficult to understand
the size variation happening to individual lesions. This happens
as many components get plotted on a curved x-axis baseline.
Except for the bottom component, which gets plotted on a zero
x-axis baseline, all the remaining components in the stack plot
usually get plotted on a non-straight baseline. To help users get
a good understanding of the lesion size difference, we provide
an option to pick the stack plot components using the right
mouse click. This interaction will plot the selected component
on a zero x-axis baseline as a temporary overlay. By default,
we use a scale-to-width display style for plotting the stack plot
inside the viewport. Here, if there are too many follow-ups in
the dataset, reading the intensity visualization horizontally would
be difficult, especially when there are active glyph overlays. To
remedy this, we have enabled a zoom and pan interaction using
the mouse scroll wheel to provide a detailed view of intensity
changes as needed. Since we have linked the x-axis of the stack
plot and the intensity plot, interaction on the stack plot will also
proportionally affect the intensity visualization. Keeping the x-
axis of both the visualization in sync also helps us to compare

and analyze data vertically. w
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Node-graph visualization: The link between the node graph
and the stack plot is useful especially when the stack plot con-
tains a lot of information due to high lesion load. The need to
spot tiny lesions also motivated the design of the node graph.
Interaction with the nodes will show the relevant components in
the stack plot and highlight corresponding lesions in the 3D lesion
view. Using a rectangle selection, users can also select multiple
items from the node graph and can find related items in the stack
plot.

Spatial change visualization: For a selected lesion in the
D lesions view, we visualize detailed spatial variations in the
esion viewports. The time slider at this point will remain linked
ith this view as long as there is tracking information available.
his linking enables us to inspect the shape evolution of the
elected lesion at any time point. The linking between context
iewports and lesion viewports is unidirectional. Any interaction
n the lesion viewports will update the contents in the context
iewport due to the view synchronization, but no interactions in
he context viewport will disturb the lesion viewport. We use
his design because the context is a view that supports the lesion
iewports. Interactions in the context view by rotating in 3D
re useful for inspecting the lesion surroundings for a specific
isualization/feature found in the lesion viewport. We added the
ollowup-interval control based on the input of a radiologist, who
anted to see trends better by increasing the followup duration.

. Evaluation

We conducted a qualitative user study to assess the utility
nd potential for impact of the visualizations and application we
eveloped.

.1. Evaluation setup

The user study was set up to understand the usefulness of
he application from a clinical and medical research perspective,
nd our participant pool aligns with this background. We include
our experts with relevant knowledge and experience in brain
esearch. Among the four participants, there are two experienced
adiologists who helped us to understand the utility of the ap-
lication from a clinical perspective. To assess the utility for the
esearch community, we also included two additional partici-
ants with backgrounds in brain and MS research. We followed
hese general steps for both onsite and remote study participants:

1. We made the participants aware of the features available
in existing tools through a presentation.

2. We demonstrated the tool to the experts by giving a walk-
through of all the important features in a live demo.

3. We let the participants interact with the tool and encour-
aged them to think-aloud.

4. We captured additional feedback about the visualizations
using a prepared set of statements.

In the user study, we allowed the users to interact with our
ool after providing them a feature demonstration. For the ques-
ionnaire part, we asked the users to submit their responses on a
ive-point Likert scale with possible answers: Strongly Disagree,
isagree, Neutral, Agree and Strongly Agree. The questions were
hrased in a way that 50% of them take a negative form to reduce
ias. All the 18 statements are included in Table 1. Negative
tatements are marked with an asterisk and phrased positively

ith inverted scores for ease of interpretation.
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Fig. 15. Example visualization results from the spatial variation view for different follow-up interval values i = 3 to 5. (a) A contour visualization for a user selected
esion, (b) a mesh visualization (when zoomed in) showing longitudinal lesion evolution where zooming in helps a user to see volume differences, and (c) a mesh
isualization (when zoomed out) showing longitudinal lesion evolution where zooming out provides a better abstract perception of lesion changes.
.2. Evaluation results

The first participant C1 is an experienced clinician with 7 years
f experience in radiology. The second participant C2 is also
n experienced clinician having 11 years of experience in ra-
iology. To better understand the research utility, we included
articipants R1 and R2 with a background in brain research.
Thinking about the potential users, C1 stated that the tool can

e useful for clinical experts and that the usage is not limited
o the research domain. The user C2 being well aware of the
tandard criteria for reading MS lesions from MRI slices, stated
hat the tool can have several potential research benefits. Overall,
2 agrees with the potential utility of the application. Participant
1, having experience with MS lesion research, commented that
he tool has great potential to find useful patterns in longitudinal
S data. R2, who has experience in using several research tools,
ommented that the user interface of the tool is excellent when
ompared to other similar research tools. After interacting with
he application, R2 left some additional comments stating that
he range of analysis tools was impressive and the user interface
as enjoyable. R2 also finds that the application’s performance

s fast, especially for the user interactions. Finally, R2 appreciated
he detailed measurement variations presented in the application.

We had some areas in the application where the users pro-
ided some negative feedback. In the user study feedback form,
1 commented that besides the glyphs, it would be nice to
ave relative differences provided in numerical form. C2 was
ot sure about the benefit of the node graph because C2 could
ot find a clinical use case. However, C2 stated that the node
raph might be useful for researchers who deal with large and
omplex datasets. While adding responses in the feedback form,
2 commented that the responses are purely based on standard
adiology workflows and do not consider any research users.
n general, C2 disagreed with all the statements (3, 4 and 15)
elating to the node graph. In addition, C2 did not like the original
lyphs we used in the stack plot. At the time of the user study,
e had tiny circles showing enlarging lesions. C2 said that the
esponse would go in favor of the application if we changed
he circular glyph to an arrow pointing upwards. Based on C2’s
reference, we revised relevant visualizations to use an arrow
lyph. With this revision, we addressed the negative comment
bout the overlay glyph. Apart from this, thinking from a clinical
erspective, C2 remained neutral for statements 8 and 14 because

C2 could not relate to any direct clinical uses.
Overall, the users from a research background consider our

visualizations to be beneficial with no negative responses to the
user study statements.

6. Discussion

The evaluation results show that there is a good degree of
agreement on the utility of the application. The visualization
results generated based on lesion change patterns in the synthetic
217
dataset were sufficient to convey the potential. In particular, the
stack plot visualization synced with multimodal intensity visu-
alization received good feedback due to its capability to convey
the trend of total lesion load while showing individual lesion
states. With added interactions and overlays, the module received
the most attention. One limitation we see with the stack plot
is the increased interaction effort when there are many tiny
lesions present in the dataset. In such scenarios, a user will have
to zoom-in and/or pan for exploring lesions. In our synthetic
dataset, we prioritized covering all possible morphological lesion
changes. To handle scenarios where there are many tiny lesions,
we anticipate increased use of the node graph visualization as a
better medium to understand the lesion properties and events.
The linking between the views enables us to relate the identified
features or patterns.

When compared with existing tools discussed in Section 2,
our visualizations are more effective according to the users we
had in the evaluation. In contrast to the bar chart-based visual-
ization shown in Fig. 3, we found that the stack plot is a more
scalable approach that does not compromise the user’s ability to
comprehend the nature of the longitudinal dataset.

The visualization pipeline visible in Fig. 5 will have to incorpo-
rate registration steps using external libraries or make use of the
FreeSurfer capabilities for measured datasets. When considering
the range-compare visualization, by using a synthetic dataset,
we benefit from perfect registration, which we visualize as areas
of no change. On a real dataset, we foresee the inclusion of
some tolerance in the probing mechanism to correct for imperfect
registration and partial volume effects. It is important to note
that while the synthetic dataset mimics all the lesion shape
variations that are possible, it does not mimic any pathology
specific features such as activity rate, activity distribution and
specific spatial distribution patterns of lesions, as we may observe
in a real dataset. If we consider deployment of this tool, it is a
limitation that the application depends on the time-consuming
FreeSurfer preprocessing. The delay in preprocessing further in-
crease for real datasets because of the dependency on medical
image registration.

It was a bit difficult to do the design research solely from
clinician inputs. This was mainly because the clinicians were
more used to 2D than 3D. In order to convey the potential of
better visualizations for longitudinal studies, we found it useful to
show existing visualizations from the literature. This helped the
radiographer to comment on what would be useful, and guide
our visualizations to maximize potential benefits. Considering
the reusability of our visualizations, we also emphasize that it
is feasible to generalize our visualization application to handle
other kinds of pathologies, such as a brain tumor analysis. In
summary, while the synthetic data highlights the scalability of
our approach, clinical use cases for real datasets and optimization
of the preprocessing workflow need to be investigated in more
detail.
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Table 1
User response to 18 statements on a 5-point Likert-scale: 1: Strongly disagree, 2: Disagree, 3: Neither agree nor disagree, 4: Agree, 5: Strongly agree. Negatively
phrased statements in the original form are indicated by a ⋆ . Their phrasing and scores are inverted for ease of interpretation.

Statement C1 C2 R1 R2

1 The visualization tool is useful for explorative analysis of longitudinal MS lesions ⋆ 5 4 4 5
2 It is useful to have an interactive stack plot for studying the progression of MS lesion features (especially the

volume of lesions) ⋆

5 5 4 5

3 MS lesion activity presented in the interactive node-graphs helps to get an easy summary of events like split,
merge, and appearance of new lesions ⋆

4 2 5 5

4 The node graph provides a good overview of the total number of lesions across timepoints ⋆ 4 2 4 5
5 The support offered by the application to pick individual lesions and study the changes while comparing with

previous scans is useful
5 4 5 5

6 Selecting individual lesion data from the stack plot and relating it with other visualizations is NOT helpful ⋆ 5 4 5 5
7 Showing new lesion indicators in the stack plot is a useful feature when exploring datasets with tiny lesions & high

lesion load ⋆

4 4 5 5

8 Horizontally visualizing the intensity of a selected lesion for multiple modality and follow-up helps ⋆ 4 3 4 5
9 Showing lesion properties as glyph overlays on intensity visualization is helping to understand the

increase/decrease trend of a lesion under study
4 4 5 5

10 While interactively selecting lesions from the stack plot using the right mouse button, display of individual lesion
data on a zero-baseline helps me to read the longitudinal progress clearly ⋆

4 4 4 5

11 The slider control provided for traversing through all the time points while viewing immediate updates on other
views (stack plot, node graph and lesion overlay timeline) is useful

5 5 5 5

12 Display of individual lesions with detailed contour and surface differences while having a linked view to the brain
context is useful

4 4 5 5

13 The contour visualization helps me to see the volume changes from the view perspective 5 5 4 5
14 Displaying the current and previous time point lesions as surface and wireframe respectively is a good choice to

get an idea about the spatial differences of both lesions
5 3 5 5

15 The statistical properties of lesions encoded as node sizes in the node graph is useful 4 2 4 5
16 Visualizing the changes in an abstract form using the ‘‘Range Compare’’ feature is NOT useful ⋆ 4 4 5 5
17 Using the Ctrl+right click action on views for on-demand linking with other views is useful 4 5 4 4
18 Visualizing longitudinal landmarks to indicate enlarging lesions (overlaid on the stack plot) is useful ⋆ 5 2 5 4
D
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7. Conclusion and future work

We have presented a visualization tool composed of multiple
inked visualizations tailored for supporting explorative studies
n longitudinal MS data. The user study participants helped us
iscover the utility of the tool in understanding overall lesion
rend, individual lesion patterns, and in the possibility of infer-
ing new findings through lesion research. We performed the
valuation using a synthetic dataset that only mimics the lesion
hape and intensity variations. However, this did not affect the
nderstanding of the potential uses of the visualization design.
e also emphasize the interactive linking we enabled between
ur detailed visualizations and a real 3D brain context which
s familiar to clinicians, which became a main reason for the
cceptance by the radiologists.
For a better adaptability of this tool in lesion research, we see

hat further directions in our work include automating prepro-
essing pipelines enabling researchers to integrate this tool to
heir existing data pipelines. This step will bring the tool closer
o a clinical and research audience alike.
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