
University of Bergen
Department of Informatics

Automatic blurring of specific faces

in video

Author: Erlend Fonnes

Supervisors: Pekka Parviainen, Hjalti Gislason and Kenneth Cuomo

June, 2022

Abstract

With the introduction of the General Data Protection Regulation (GDPR) into European

Union law, it became more important than ever before to properly handle personal data.

This is an issue for media companies which distribute large amounts of media containing

identifiable people, which thus may require the subjects’ permission for distribution.

In this Master’s thesis, I propose a solution which supports and facilitates compli-

ance with GDPR regarding the distribution of video containing identifiable subjects by

automatically blurring a select group of people in the videos. The proposed solution is

a pipeline for detecting, identifying and blurring select faces, where the video frames are

processed like individual images to detect and recognize faces, and the interrelatedness of

adjacent frames in continuous videos is exploited to both to improve their prediction qual-

ity and running time. Each part of the pipeline is interchangeable and may be replaced

individually, and the deployment of the entire pipeline has been automated. Aspects

related to video processing, facial detection and facial recognition were explored for this

purpose, and various existing tools and solutions were utilized.

Acknowledgements

I would like to thank Pekka Parviainen, my primary supervisor, who helped me through-

out the project. I would also like to thank my family, friends and colleagues for their

tremendous support.

Erlend Fonnes

Wednesday 29th June, 2022

Contents

1 Introduction 1

1.1 Introductory background . 1

1.2 CuttingRoom . 3

1.3 Existing solutions . 3

1.4 Proposed solution . 4

1.5 Solution requirements . 4

1.6 Project scope . 5

1.7 Report structure . 5

2 Theoretical background 7

2.1 Video . 7

2.1.1 FFmpeg . 7

2.1.2 Smoothing . 8

2.1.3 Interpolation . 8

2.1.4 Shot transition detection . 8

2.2 Facial recognition pipeline . 9

2.3 Facial detection . 10

2.3.1 Convolutional neural network . 10

2.3.2 Histogram of oriented gradients 11

2.4 Facial recognition . 12

2.5 Infrastructure . 13

2.5.1 Amazon Web Services . 13

2.5.2 Terraform . 14

2.5.3 Docker . 16

3 Implementation 17

3.1 Video . 21

3.1.1 Initial processing . 21

3.1.2 Processing every frame . 22

i

3.1.3 Dynamic processing . 22

3.1.4 Identifying facial sequences . 25

3.1.5 Frame interpolation . 27

3.1.6 Detecting shot transition . 33

3.1.7 Selecting specific faces . 34

3.1.8 Smoothing sequences of bounding boxes 39

3.1.9 Handling false negatives . 40

3.1.10 Handling false positives . 42

3.1.11 Blurring . 44

3.1.12 Sequence models . 47

3.2 Facial detection, alignment and representation 51

3.2.1 Retinaface . 51

3.2.2 Multi-task Cascaded Convolutional Networks 51

3.2.3 Pigo . 52

3.2.4 ArcFace . 52

3.2.5 Dlib . 53

3.2.6 Deepface . 54

3.2.7 AWS Rekognition . 56

3.3 Orchestration . 57

3.3.1 AWS SageMaker Processing Job 57

3.3.2 AWS SageMaker Batch Transform 58

3.3.3 Automatization . 61

3.4 Distribution . 62

3.4.1 Example configuration . 62

3.4.2 Interchangeability . 63

4 Analysis 65

4.1 Prediction quality . 65

4.1.1 Prediction quality results . 68

4.2 Cost and running time . 71

4.2.1 Running time results . 72

4.2.2 Cost . 75

4.2.3 Scalability . 77

4.3 Use of computational resources . 78

4.3.1 Optimizing blurring . 79

4.3.2 Optimizing the reading of frames 80

4.4 Removing false negatives . 82

ii

4.5 Removing false positives . 83

4.6 Selecting specific faces for blurring . 85

4.6.1 Selecting known faces . 85

4.6.2 Selecting by time and location . 86

4.7 Detecting shot transitions . 87

4.8 Sequence models . 89

4.9 AWS Rekognition . 91

5 Conclusion 92

Glossary 95

List of Acronyms and Abbreviations 96

Bibliography 97

A Thesis description 105

B Prediction quality video analysis numbers 107

C List of example videos 110

D Memory usage overview 112

E Deepface model licenses 114

iii

List of Figures

2.1 Illustration of a typical convolutional neural network 11

3.1 Overview of proposed pipeline . 18

3.2 Illustrated example mapping faces between frames 26

3.3 Illustration of a piecewise interpolation 28

3.4 Linear interpolation . 29

3.5 Polynomial interpolation . 29

3.6 False positive without apparent reason 42

3.7 Face detected in photography . 42

3.8 Square blurring . 44

3.9 Pixelated blurring . 45

3.10 Blurring mask . 45

3.11 Fully blurred image . 46

3.12 Round blurring . 46

4.1 Interpolated bounding box when a face is out of view 66

4.2 Face on the edge of the screen not detected 67

4.3 Rapid facial movement . 67

4.4 Face from the side not detected by Dlib 69

4.5 Detection of different skin tones in poor lighting conditions 70

4.6 Processing time . 74

4.7 Profiling visualization . 78

4.8 Profiling visualization after optimizing blurring 79

4.9 Memory usage visualization reading all frames once 81

4.10 Profiling visualization after optimizing the reading of frames 81

4.11 False positive and true positive in adjacent frames incorrectly matched . 85

4.12 Selecting known faces . 86

4.13 Missing recognized face . 86

iv

List of Tables

4.1 Prediction quality: Deepface (processing every frame) 68

4.2 Prediction quality: Deepface (dynamic processing) 68

4.3 Prediction quality: Dlib (processing every frame) 69

4.4 Prediction quality: Dlib (dynamic processing) 69

4.5 Running time: ml.t3.large (processing every frame) 73

4.6 Running time: ml.c5.xlarge (processing every frame) 73

4.7 Running time: ml.g4dn.xlarge (processing every frame) 73

4.8 Running time: ml.t3.large (dynamic processing) 73

4.9 Running time: ml.c5.xlarge (dynamic processing) 73

4.10 Running time: ml.g4dn.xlarge (dynamic processing) 73

4.11 Cost: Processing every frame . 75

4.12 Cost: Dynamic processing . 75

4.13 Prediction quality without interpolation 82

4.14 Prediction quality filtering shorter facial sequences 84

v

List of Listings

1 Terraform resource . 14

2 Terraform plan . 15

3 Bounding box format . 19

4 Facial features format . 19

5 Facial sequences format . 20

6 FFmpeg split video . 21

7 FFmpeg combine video . 21

8 Dynamic processing with missing match 24

9 Weighted distance metric for comparing two faces 27

10 SciPy interpolators . 31

11 Manually implemented linear interpolator 32

12 Parsing known faces . 36

13 Filtering known faces . 37

14 Filtering selected faces . 38

15 Unweighted sliding-average smoothing 40

16 RNN loss function . 48

17 Dlib process . 54

18 Batch transform handler using ArcFace and MTCNN 60

19 Package installation . 62

20 Simple usage example . 63

21 Overview of memory usage . 112

22 Overview of memory usage reading every frame once 113

vi

Chapter 1

Introduction

1.1 Introductory background

In recent years, the regulations surrounding the handling of personal data has become

a lot stricter. The General Data Protection Regulation (GDPR), one of the strictest

and impactful privacy regulations, was put into effect on May 25, 2018 [71]. GDPR was

drafted and passed by the European Union (EU), and puts significant restrictions on the

processing of personal data belonging to EU citizens and residents. Of particular interest,

the restrictions apply to pictures where the subjects are identifiable.

Although not a member of the EU, Norway is a member of the European

Economic Area (EEA1). The GDPR was incorporated into the EEA agreement

and became applicable in Norway on 20 July 2018. Norway is thus bound by

the GDPR in the same manner as EU Member States. (The Norwegian Data

Protection Authority [29])

The Personal Data Act2 is the main set of laws regulating the handling of personal data

in Norway, and it incorporates GDPR into Norwegian law and determines how it relates

to other parts of Norwegian law [28]. The Norwegian Data Protection Authority, the

agency of the Norwegian Government responsible for managing the Personal Data Act and

monitoring adherence to it, describes the practical application of the laws relating to the

publishing of media containing identifiable subjects in Norway on their official webpage

https://www.datatilsynet.no/. They distinguish between two types of media [27]:

1https://www.efta.int/eea
2https://lovdata.no/dokument/NL/lov/2018-06-15-38

1

https://www.datatilsynet.no/
https://www.efta.int/eea
https://lovdata.no/dokument/NL/lov/2018-06-15-38

• Portrait photography - Photos where the individual people in the photo are the

primary motive, such as a class photo.

• Situational photography - Photos where the action or event is the primary

motive, such as a football match. These types of images may be distributed publicly

without the permission of the subjects. However, if the subjects are identifiable,

handling the images will still be considered to be processing of personal data and

falls under the regulations of the Personal Data Act [27].

However, there is often not a clear distinction between the two types:

It can sometimes be difficult to decide if something is a situational photo or

a portrait photo, or if the situation could be insulting to someone. Therefore,

one should as a general rule always ask for permission to share the photo or

video. (The Norwegian Data Protection Authority [27] , translated)

Since the regulations apply to all companies processing personal data belonging to Eu-

ropean citizens, this also includes many companies outside of Europe. As a result, the

GDPR ends up affecting handling of data not only in Europe, but the entire world.

Failing to comply with the regulations may result in fines of up to €20 million or 4% of

global revenue (whichever is higher), in addition to potential compensation for damages

to the data subjects [71]. The fine based on percentage of global revenue is especially

impactful because it results in a violation of the regulations being a serious issue even

for big, international businesses. As of May 2022, businesses had in total been fined over

€1.6 billion [35].

This makes it critical for businesses to comply with the regulations, as the alternative

is risking a significant fine. However, media companies often distribute a lot of con-

tent, which makes manually ensuring adherence to the regulations particularly difficult.

Consequently, it would be very useful to have an automated system which facilitates

adherence to the regulations by automatically blurring faces in the distributed media,

thereby anonymizing the subjects such that their permission to publish the media is no

longer required. However, not all faces should be blurred in every video, of course, which

increases the complexity of the problem somewhat since the faces have to be selectively

blurred.

2

1.2 CuttingRoom

CuttingRoom is a browser-based video editing and publishing tool [36]. The platform

is a cloud-native Software as a Service (SaaS) product built on Amazon Web Services

(AWS), which allows the user to ingest footage both from storage and live streams.

The videos processed by CuttingRoom’s customers may, of course, include identifiable

European citizens. As previously mentioned, this is considered processing of personal

data and therefore falls under GDPR. Therefore, it would be beneficial for CuttingRoom’s

customers if CuttingRoom were to facilitate adherence to applicable privacy regulations,

which would also be a potential selling point for CuttingRoom.

1.3 Existing solutions

At the time of writing, there does not appear to be any fully automated tool for selectively

blurring faces in videos available neither free-to-use nor commercially. There are many

tools which allows the user to blur faces, but most of these seem to rely on the user

manually positioning the blur. The user would then have to do this for every frame, use

key-frames or motion tracking to track the blurred face throughout the video.

The following is a list of example tools which have been recommended for blurring

faces in videos by various online sources3:

• Flixier (https://flixier.com/tools/blur-face-in-video)

• DaVinci Resolve (https://www.blackmagicdesign.com/products/davinciresolve/)

• Lightworks (https://lwks.com/)

• Wondershare Filmora (https://filmora.wondershare.com/video-editor/)

None of them fully automates blurring a selection of faces in a video, but Wondershare

Filmora does offer a ”Face-Off” effect, where a face is automatically detected and may

be blurred, or replaced by an emoji or other graphic [33]. This does, however, appear

to blur faces indiscriminately rather than selectively, and may struggle in non-optimal

scenarios. According to Liza Brown, chief editor at Filmora, a high focus on the subject

is required, and faces may not be detected in dark conditions [33].

3Source articles:
https://listoffreeware.com/best-free-software-blur-face-in-video-windows/,
https://filmora.wondershare.com/video-editor/best-blur-faces-apps.html,
https://filmora.wondershare.com/video-editing-tips/blur-face.html,
https://flixier.com/tools/blur-face-in-video

3

https://flixier.com/tools/blur-face-in-video
https://www.blackmagicdesign.com/products/davinciresolve/
https://lwks.com/
https://filmora.wondershare.com/video-editor/
https://listoffreeware.com/best-free-software-blur-face-in-video-windows/
https://filmora.wondershare.com/video-editor/best-blur-faces-apps.html
https://filmora.wondershare.com/video-editing-tips/blur-face.html
https://flixier.com/tools/blur-face-in-video

1.4 Proposed solution

This thesis aims to produce a solution which should facilitate adherence to the privacy

regulations for CuttingRoom and its customers. For this purpose, the solution should

automatically blur a selected group of faces in videos to avoid potential breaches of

privacy. By effectively anonymizing a group of people in the video, their permission is no

longer needed to publish the media. As a result, whether the video would be considered

situational or portrait is no longer of any concern.

In, for instance, a news broadcast at a location, the faces walking by in the background

should likely be blurred, while the news reporter’s face should not. In this case, all

unrecognized faces should be blurred. However, in a video where the main focus of the

video should remain anonymous, like in many criminal cases, all recognized faces should

be blurred. The solution should therefore be able to both blur either recognized or

unrecognized faces, thereby freely specifying the group of faces to blur.

1.5 Solution requirements

The requirements for the solution include the following:

• Technical requirements - The resulting solution should be able to be integrated

with CuttingRoom and must be designed in a way which allows it to do so.

• Regulatory requirements - The licenses of the software and data being used in

the thesis must allow for the solution to be used in a commercial product.

• Performance requirements - The videos being edited may be several hours long.

If the solution uses too much time, or the quality of the blurring is too low, it will

essentially be unusable.

In order to blur faces, the solution needs to detect all faces in each frame of the

video, and recognize each face in order to determine which faces should and should not

be blurred.

There is no specific time or accuracy requirement, as these are often trade-offs. Larger

models may offer greater accuracy than smaller models, but also use more time. However,

regardless of model being used, it is unrealistic for the solution presented in the thesis to

be 100% accurate. As a result, the processed video may need to be manually reviewed

before publication depending on the usage scenario.

4

1.6 Project scope

Although multiple forms of media may be considered personal data, video is the media

form applicable to CuttingRoom’s use case. Additionally, still images would, for instance,

likely pose a different and more limited problem than video, due to its smaller data sizes

(and thus smaller computational requirements) and lack of continuity between images.

The thesis will therefore be specific to video.

People can also be identified based on other factors than their face, such as hair,

clothes, tattoos or other distinct bodily features. More sensitive videos may therefore

also need additional considerations before publication. In some cases, it may be more

appropriate to blur or remove the entire persons body from the video. Similarly, voices

may also be used to identify someone. However, both voices and other bodily features

need to be handled differently than faces. Removing these features may therefore require

a more nuanced and specific process than blurring a subset of the faces on screen, and

will consequently not be covered by this thesis.

To edit videos, CuttingRoom first splits the videos into individual frames using FFm-

peg and stores the frames in an AWS S3 bucket (see Section 2.5.1 and 3.1.1). The solution

should therefore use this as a starting point and use the individual frames as input, and

similarly output the modified frames, thereby making the solution able to be integrated

with CuttingRoom’s existing framework. The scope of the thesis does not include ac-

tually integrating the solution with CuttingRoom as this has to be CuttingRoom’s own

choice and responsibility, and it makes no impact on the rest of the thesis.

1.7 Report structure

After the current introduction, some preliminary background is presented in Chapter 2

to ensure a baseline understanding of important concepts discussed throughout the rest

of the report. Afterwards, the main implementation is presented in Chapter 3, which is

further analyzed in Chapter 4. Lastly, the report is concluded with Chapter 5.

The full source code is available publicly on GitHub: https://github.com/ErlendF/

face blur. Parts of the code may be too large to include in a single listing, or does

not contribute substantially to the text, and are therefore not included in the text nor

appendices. The source of the listings is included in footnotes wherever applicable.

5

https://github.com/ErlendF/face_blur
https://github.com/ErlendF/face_blur

Throughout the report, various example videos are referenced. Each of these are

publicly available as unlisted YouTube videos due to its ease of publication and video

hosting. The links to the example videos are provided in footnotes or in the text itself.

Please note that a lot of the examples are timestamped to a particular point in the video.

A full list of the various example videos is provided in Appendix C.

6

Chapter 2

Theoretical background

This chapter gives an introduction to various tools and technologies which may be useful

to have some preliminary knowledge of when reading the thesis. The explanations do not

go in-depth for each technology, but give an overview to ensure the understanding of its

use in the implementation discussed in Chapter 3.

2.1 Video

These are some tools, methods and terminology which in the context of this thesis will

be used in relation to video and video formats. For instance, neither smoothing nor

interpolation is related to video, but this is the only context for which it is used in this

thesis.

2.1.1 FFmpeg

FFmpeg is an open source collection of tools and libraries used to process multimedia

content such as video [67]. The tools and libraries allow the user to (among other things)

play, manipulate, convert and stream multimedia content. For the purposes of this thesis,

it will only be used to split video into individual frames. A frame is a single image in the

sequence of images which compose a video. Videos are commonly composed of 24, 30 or

60 frames per second.

7

2.1.2 Smoothing

Data smoothing is used to remove statistical noise and other minor fluctuations from

a data set, thereby attempting to capture the important patterns of the data [39, 66].

Many various smoothing algorithms may be used, each with their own advantages and

disadvantages, or other minor differences.

2.1.3 Interpolation

In numerical analysis, interpolation is a type of estimation [69]. It is used as a method

of constructing (finding) new data points based on existing, known data points. Interpo-

lation may be particularly useful in the case of incomplete data. For the purposes of the

thesis, it will specifically be used for estimating the position of bounding boxes for likely

false negatives (see Section 3.1.9) and non-sampled frames when dynamically processing

videos (see Section 3.1.3).

2.1.4 Shot transition detection

A video shot is a continuous part of a video without any transitions. They are composed

of a series of interrelated consecutive frames, and usually represent a continuous action in

time and space [68]. In most forms of processed videos, the shot changes throughout the

video and there needs to be some sort of transition between the shots. These transitions

are usually divided into two main categories:

• Abrupt transitions - An abrupt change in the video, often in a single frame and

with large differences between the frames before and after the transition, which

makes it easier to detect. This usually produces a visual discontinuity in the video.

They are often used to change the subject of the video, or show the subject from a

different angle.

• Gradual transitions - A more gradual change in the video, often with some

graphical effect. These are more difficult to detect than the abrupt transitions as

the content of the video changes over a greater number of frames which makes it

more difficult to distinguish from other changes inside a single shot.

8

For the purposes of the thesis, detecting the shot transitions automatically may be

especially useful in making facial sequences as there is no logical connection between

the position of faces in different shots (see Section 3.1.4). Therefore, detecting the shot

transitions may help distinguish faces which are in the same part of the screen after each

other when there is a shot transition between them. Incorrectly matched faces may cause

jarring artifacts of bounding boxes traveling between the two faces seemingly without

reason1.

2.2 Facial recognition pipeline

A modern face recognition pipeline conventionally consists of four stages: detection,

alignment, representation and classification [65]:

• Facial detection is the task of detecting faces in an image. This is further discussed

in Section 2.3.

• Facial alignment is the task of identifying the geometric structures of faces in an

image, and attempt to obtain a canonical alignment of the face based on translation,

scale and rotation [55]. In this thesis, this step is in practice combined with facial

detection, since a single model will produce both the location of a face and its facial

landmarks (key points of a human face, e.g. corners of eyes, nose tip, corners of the

mouth etc.). The facial landmarks will then be used to align the face. Therefore,

it makes sense to discuss them in the same context in this case.

• Facial representation is the task of mapping an image of a face to a target space

such that the distances in the target space corresponds to a measure of similarity

between faces [57, 34, 65]. Consequently, the representations of the face in the

target space may be compared to each other using simple distance metrics, such as

Euclidean- or cosine distance, in order to make a classification. Since two images

of faces is likely to contain a lot of noise and cannot be viably compared directly,

the representation of facial features makes it possible to compare them. Ideally,

the facial features vector representations should be as identical as possible for the

same person, whereas representations of different people should be as dissimilar as

possible, thereby differentiating them.

1Example timestamped at 00:09: https://youtu.be/IuDkF XdqWc?t=9

9

https://youtu.be/IuDkF_XdqWc?t=9

• Facial classification is the task of classifying a face based on its facial feature vector

representation. Two vector representations are compared to each other to determine

if they are of the same person or not by using some form of classifier. For the

purposes of this thesis, this will primarily be a simple distance metric. These will

produce a single number score for the distance between the vectors. If the score is

below a certain threshold, the faces are classified as the same. If one of the faces

compared is a known person, the other face has consequently also been identified.

Similarly to the discussion of facial detection and alignment, facial representation

and classification will be discussed together under facial recognition as both are

needed to recognize faces.

Facial detection and alignment is discussed in Section 2.3 and the facial representation

and classifications is discussed in Section 2.4.

2.3 Facial detection

Facial detection is used to detect faces in images, and it is one of the most important

part of the thesis. Without facial detection, it would be impossible to target any faces for

blurring. The following are some common technologies utilized for detecting faces. This

is not their only use, but it is the purpose of interest for this thesis. The libraries and

methods implemented for facial detection during the thesis will be discussed in Section

3.2.

2.3.1 Convolutional neural network

A Convolutional Neural Network (CNN) is a type of artificial neural network with mul-

tiple layers, such as convolutional layers, non-linearity layers, pooling layers and fully-

connected layers [2]. They are commonly used in, for instance, computer vision and neural

language processing tasks, including facial detection and recognition. For the purposes of

the thesis, the composition and internal workings of CNNs are of lesser importance and

will therefore not be discussed in further detail.

10

Figure 2.1: Illustration of a typical convolutional neural network, image by Aphex3412

2.3.2 Histogram of oriented gradients

The histogram of oriented gradients (HOGs) is a feature descriptor used for object detec-

tion and recognition in images, including face detection and recognition [54, 40]. When

utilizing HOGs, the image is divided into small regions, called cells, and a histogram of

edge orientations is computed for each cell. The feature descriptor itself is the concate-

nation of these histograms.

For the purposes of the thesis, the main advantage of this technique is its low compu-

tational cost compared to the alternatives, such as methods based on CNNs. However, it

is also often less accurate than the other alternatives. This technique is made available

through the dlib package (see Section 3.2.5), where either HOG or a CNN may be used

for facial detection. HOG should in this case primarily be used if the computational cost

is the main deciding factor as it is less accurate than its counterpart [56].

1https://creativecommons.org/licenses/by-sa/4.0/deed.en
2https://commons.wikimedia.org/wiki/File:Typical cnn.png

11

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:Typical_cnn.png

2.4 Facial recognition

Facial recognition is used to recognize each face and distinguish the faces of different

people from each other. To do so, a vector representation of each face’s features is made

and used to make a classification, as discussed previously.

In recent years, deep convolutional neural networks have become the method of choice

for facial representation [37]. To train these networks to produce facial features repre-

sentations with the highest possible discriminative power, there are two main lines of

research: Methods which train a multi-class classifier to distinguish between the classes

of the dataset by using a softmax classifier, and methods which directly learn a represen-

tation, such as the triplet-loss.

Softmax-loss based methods train a network to correctly classify each person in a

training set, where the person is predicted by feeding the output of the final layer of the

network into a softmax unit [65]. The last, or second to last, layer of the network will in

this case have a network activation which is as unique as possible to the specific face in

order to distinguish it from other faces. These activations may consequently be used as

a representation of the face’s features.

Triplet-loss based methods use pairs of images where a given face (the anchor) is

compared to another image of the same person (a positive) and an image of a different

person (a negative) [57]. By basing the loss on minimizing the distance to the positive

and maximizing the distance to the negative, the network is directly trained to produce

a representation of the faces.

For the purposes of the thesis, being able to recognize faces is of particular importance

both when identifying the same face in each frame (see Section 3.1.4) and when selecting

which faces in the videos to blur (see Section 3.1.7). The various implemented tools and

models for facial recognition are discussed in Section 3.2.

12

2.5 Infrastructure

Infrastructure is an important aspect of the solution. It is a requirement that the solution

needs to be able to be integrated with CuttingRoom, and the infrastructure of the solution

therefore needs to allow for this. Additionally, it is important for both its cost and

effectiveness. Automating the deployment of the infrastructure makes it far easier both

to integrate initially and maintain over time, thereby making it cheaper. The reliability

and cost of running the solution itself also depends on the infrastructure.

2.5.1 Amazon Web Services

Amazon Web Services (AWS) is a public cloud platform which offers a myriad of services

and APIs in a pay-as-you-go model [10], and is the cloud platform used by CuttingRoom.

It is one of the largest cloud platforms and it accounts for the largest market share of

cloud infrastructure service providers at 33% [31]. At the time of writing, AWS also

generated all of Amazon’s operating profits [32].

Some of the AWS services most relevant to the thesis are listed below.

• Amazon Elastic Compute Cloud (EC2) - EC2 allows users to utilize virtual

server instances to run their applications [8]. The user can select the type of machine

and software they would like to use.

• Amazon Simple Storage Service (S3) - S3 provides simple object storage to the

user [15]. All objects are stored in buckets, and each bucket can store any number

of objects.

• Amazon SageMaker - SageMaker is a fully managed machine learning service

provided by AWS [19]. It allows the user to build, train and deploy machine-learning

models. It offers a number of features such as Batch Transform and Processing (see

Section 3.3).

• Amazon Elastic Container Registry (ECR) - ECR is a container image reg-

istry service managed by AWS [6]. This allows the user to store container images

in a private repository which may be used by other AWS services, such as AWS

SageMaker.

• Amazon Rekognition - Rekognition is a high level, managed AWS service which

offers various features like celebrity recognition, facial analysis and most notably

facial detection [25].

13

2.5.2 Terraform

Terraform is an open-source Infrastructure as Code (IaC) tool made by HashiCorp which

integrates well with most major cloud services such as AWS, GCP and Azure [46].

HashiCorp, and the various other providers2, provide a multitude of Terraform mod-

ules ; self-contained packages of Terraform configurations which simplifies working with

various services [47].

Using an IaC tool like Terraform allows for easily setting up a consistent and repro-

ducible set of infrastructure. It uses declarative configuration files written in HashiCorp

Configuration Language (HCL) to describe resources. Every part of Terraform exists to

facilitate the deployment, updating or deletion of resources. The configuration files de-

fine what the infrastructure should look like, and Terraform checks the currently deployed

infrastructure and updates it to match the description in the configuration files.

resource "aws_s3_bucket" "example_bucket" {

bucket = var.example_bucket_name

acl = "private"

}

Listing 1: Example of a simple Terraform resource

Using the resource definition in Listing 1, Terraform produces a plan similar to the

plan shown in Listing 2.

2https://registry.terraform.io/browse/providers

14

https://registry.terraform.io/browse/providers

15

> make plan

terraform plan -var-file=variables.tfvars -out=tfplan

(...)

Terraform used the selected providers to generate the following execution plan.

Resource action are indicated with the following symbols:↪→

+ create

Terraform will perform the following actions:

aws_s3_bucket.example_bucket will be created

+ resource "aws_s3_bucket" "example_bucket" {

+ acceleration_status = (known after apply)

+ acl = "private"

+ arn = (known after apply)

+ bucket = "this-is-an-example-name"

+ bucket_domain_name = (known after apply)

+ bucket_regional_domain_name = (known after apply)

+ force_destroy = false

+ hosted_zone_id = (known after apply)

+ id = (known after apply)

+ region = (known after apply)

+ request_payer = (known after apply)

+ tags_all = {

+ "Team" = "Platform"

+ "User" = "Erlend"

}

+ website_domain = (known after apply)

+ website_endpoint = (known after apply)

+ versioning {

+ enabled = (known after apply)

+ mfa_delete = (known after apply)

}

}

Plan: 1 to add, 0 to change, 0 to destroy.

Saved the plan to: tfplan

To perform exactly these actions, run the following command to apply:

terraform apply "tfplan"

Listing 2: Example of Terraform plan output

For the purposes of the thesis, the infrastructure will be deployed to AWS primarily

because the rest of CuttingRoom’s infrastructure is already deployed there. Similarly,

Terraform was chosen for the thesis primarily because CuttingRoom already deploys

their infrastructure using it. Therefore, adding another Terraform module should require

minimal effort.

2.5.3 Docker

Docker is a widely used, open-source containerization platform [41]. It enables developers

to package their applications into containers, which are standardized executable compo-

nents. This packages the application with all its dependencies and a operating system to

run it. The container may be run in any environment which can run containers, which

greatly simplifies distribution. For the purposes of this thesis, Docker has primarily been

used for the deployment of the proposed pipeline, as discussed in Section 3.3.

16

Chapter 3

Implementation

This chapter will discuss the implementation of the proposed solution, provide an expla-

nation for various decisions and designs of the implementation. The solution is meant

as an exploration of existing solutions and how best to combine them for the purpose of

blurring specific faces in videos. Therefore, it is meant to be as technology agnostic as

possible. The proposed solution is a pipeline, where each part of the pipeline should be

interchangeable and easily replaceable with new facial detection, facial recognition, pro-

cessing, interpolation modules etc. Therefore, various options will be discussed wherever

there are multiple viable candidates and their replacement may have a significant impact

on the result.

17

Figure 3.1: Overview of proposed
pipeline

Overview

Figure 3.1 shows an overview of the proposed

pipeline and all its parts:

1. The input video file is split into individual

frames using FFmpeg (Section 3.1.1).

2. The frames are used to detect shot transi-

tions in the video (Section 3.1.6).

3. The frames and shot transitions are used to

process the video (Sections 3.1.2 and 3.1.3).

This utilizes the facial detection, alignment

and representation (Section 3.2).

4. The result of the processing is used to make

facial sequences (Section 3.1.4).

5. The missing bounding boxes of the facial se-

quences are interpolated (Section 3.1.5).

6. The facial sequences of selected faces are re-

moved (Section 3.1.7).

7. The movement of the bounding boxes in

each facial sequence is smoothed out (Sec-

tion 3.1.8).

8. The remaining faces are blurred (Section

3.1.11).

9. The output frames are combined to make

the output video file (Section 3.1.1).

18

Data formats

Throughout this section, the facial detection and recognition are used to make bounding

boxes and facial features for each detected face. The bounding boxes typically consist of

four values representing x1, y1, x2 and y2, which form the corners of a rectangle. For the

purposes of the thesis, the bounding box also contains the frame number in order to keep

track of which frame is being processed at any given time. These values are combined

into a list.

In some cases, bounding boxes may also contain the certainty of the model for the

detected bounding box. However, not all models provide the certainty, it did not appear

to be of much use when processing the videos. Therefore, it is not included in the

bounding boxes used in the thesis.

x1, y1, x2, y2, frame_nr

[1583.54030, 685.96475, 1770.47392, 962.15031, 373]

Listing 3: Bounding box format

The facial features representation is simply a list of floats which can be used to

compare two faces, as discussed in Section 2.4.

[0.016151972115039825, -0.017258254811167717, -0.03813121095299721,

-0.07499738782644272, 0.0544714480638504, -0.007867357693612576,

0.02019760198891163, -0.010829063132405281, -0.0264094490557909,

0.012919466942548752, -0.04304543137550354, -0.04340442642569542,

-0.05539201945066452, -0.0020324839279055595, 0.039676737040281296,

0.05799984186887741, 0.017670873552560806, (...)

↪→

↪→

↪→

↪→

↪→

]

Listing 4: Facial features format

The bounding box and the facial features representation are combined in a map to

represent both the identity and location of a face. These maps are then combined in a

list to form a sequence of faces representing its movement across each frame of the video.

These sequences may then again be combined to contain all the information about every

face in the video, its identity and location in every frame. Since not all faces are present

at the same time in the video, the sequences of each face may start and end at differing

frames. Additionally, frames may not be adjacent. If a face is not detected for a few

frames, these frames will not be present in the sequence.

19

[

[# Sequence 1

Face 1, frame 1

{"bbox":[32, 41, 25, 57, 1], "feat": [0.01, -0.01, -0.03, (...)]},

Face 1, frame 2

{"bbox":[31, 42, 23, 53, 2], "feat": [0.01, -0.01, -0.03, (...)]},

(...)

],

[# Sequence 2

Face 2, frame 90

{"bbox":[98, 47, 77, 44, 90], "feat": [-0.05, 0.02, 0.01, (...)]},

Face 2, frame 91

{"bbox":[96, 45, 79, 46, 91], "feat": [-0.05, 0.02, 0.01, (...)]},

(...)

],

(...)

]

Listing 5: Facial sequences format

In the implementation, facial detection, alignment and facial recognition is combined

into a single processing function such that the function returns the format shown in

Listing 5. An example of a function combining facial detection, alignment and recognition

is shown in Listing 17.

20

3.1 Video

This section will explore various aspects of automatically blurring a selection of faces in

a video. With the exception of the sequence models presented in Section 3.1.12, every

section is relevant to the proposed solution.

3.1.1 Initial processing

As mentioned in Section 1.6, CuttingRoom splits their videos into separate frames using

FFmpeg. FFmpeg will also be used to split the videos into frames for the purposes of

the thesis. This is the starting point of the thesis and will not be further explored since

it is already open source, easy to use and quite convenient. Additionally, it is already

handled by CuttingRoom in their production environment. Consequently, by using the

same tool, the thesis has the same starting point as CuttingRoom has in their production

environment.

Listing 6 shows an example of how FFmpeg may be used. In this case, a video file

named input.mp4 is split into frames, starting from 15 minutes into the video, and ending

at 20 minutes into the video. The resulting images will be written to the current directory,

and be named img0000001.png , img0000002.png etc.

ffmpeg -i input.mp4 -ss 00:15:00 -to 00:20:00 img%07d.png

Listing 6: Using FFmpeg to split a video file

The processed frames may later be recombined into a video again. Listing 7 shows an

example of how this may be done using FFmpeg.

ffmpeg -an -i img%07d.png out.webm

Listing 7: Using FFmpeg to combine frames into a video file

21

3.1.2 Processing every frame

Processing every frame is arguably the most intuitive way of processing videos. In this

case, every frame is first processed completely independently of each other to detect

faces and make a facial features representation for each of them. Processing every frame

is, however, very computationally expensive. Additionally, the bounding boxes in the

processed videos often appear a bit jittery1. The bounding boxes are likely moving

around a bit from frame to frame due to small changes in the position or pose of the

faces. Without any other form of processing, simply detecting faces and recognizing

them would also likely leave a lot of false negatives in cases where a face is not in a

conventional pose recognized by the model. Both the jitter and false negatives may be

very disruptive to the viewer, causes unnecessary noise, and may expose the identity of

the depicted individuals if not handled properly.

The jittering may be helped by combining the detected faces and their facial features

representations into facial sequences. By knowing the sequence of faces belonging to

one person, the sequence of bounding boxes may be smoothed to remove some of the

unnecessary noise. Similarly, the sequence itself may help identify likely false negatives.

If there are only a few frames where a bounding box is missing, the person is likely still

there, but is not detected. These frames may therefore be interpolated to fill the gaps in

the sequence. This is further discussed in Section 3.1.4, 3.1.8 and 3.1.5.

3.1.3 Dynamic processing

In many cases, there may not be a lot of movement in a scene, and the faces may stay fairly

still. In these cases, it is possible to estimate the movement of the faces based on a few

surrounding frames, and fill in the remaining frames without computationally expensive

facial detection and recognition of every frame. The frames may then be processed in a

given interval (such as every 1th, 15th, 30th, 45th frame etc.), and the bounding boxes in

frames that are not directly computed may be interpolated based on the bounding boxes

in computed frames. Interpolating the bounding boxes rather than directly processing

them is significantly less computationally expensive. Interpolation is discussed further in

Section 3.1.5.

1Example without further processing: https://youtu.be/nSvN24R wRU

22

https://youtu.be/nSvN24R_wRU

Unlike processing every frame, dynamic processing cannot be used to fully blur all

the faces in a video without additional processing. At minimum, the bounding boxes in

frames which were not directly computed need to be interpolated. In order to interpolate

the frames, the faces in each frame needs to be matched to each other in order to know

which bounding box should be interpolated to each bounding box of the next frame. This

will be further discussed in Section 3.1.4.

Dynamically processing the video and interpolating the missing frames alone removes

a lot of the problems of processing every frame discussed in Section 3.1.2. The resulting

interpolated sequences of bounding boxes will naturally be smoother since there is no

information gathered from the interpolated frames which may cause noise2. Additionally,

any false negatives between the processed frames will simply be ignored since the frames

are never processed. However, if a false negative occur in a processed frame, the frames

before and after it will likely need to be reprocessed since there would be a change in the

faces visible in frame.

When there is a shot transition in the video, the frames cannot be interpolated across

the shot transition since there is no correlation between the position of the faces in two

distinct shots. Consequently, additional frames need to be processed before and after the

transition to retrieve all necessary information to properly blur faces in every frame of the

video. Identifying shot transitions is therefore essential to interpolating frames correctly.

This is discussed further in Section 3.1.6.

In addition to shot transitions, there may also be other changes in the faces visible in

the frame, such as when there is a false negative or positive, someone enters the frame,

leaves the frame or simply turns around. This will either cause a change in the number

of faces in the frame, or make it so the faces cannot be matched to each other. In these

cases, it is not possible to know when the change took place without checking some of

the frames in question. The first part of Listing 8 shows an example of how frames

may be added to a list of frames to be processed if the faces in two frames could not

be matched to each other. When they cannot be matched, there is missing information

in the frames between the two processed frames. Therefore, the frames between them

need to be processed as well. In the listing, every frame between the processed frame is

added for processing. However, this could potentially be done using another method, like

binary, search to identify the frame(s) where the change(s) occurred. This could reduce

the total number of necessary frames to process.

2This is an example of a dynamically processed video using the same models as the example in Section
3.1.2: https://youtu.be/v 49prmpeec

23

https://youtu.be/v_49prmpeec

Two frames are compared, and faces are matched to each other

matches, matched = compare(frames_by_nr[prev], frames_by_nr[current])

If the two frames are adjacent, there is no more exploration to do even if they do

not match↪→

if not matched and current != prev+1:

Queueing all frames between the non-matched frames

for frame_nr in range(prev+1, current):

imgs.append(get_file_name(frame_nr, img_dir, file_ext=file_ext))

img_nrs.append(frame_nr)

current = prev+1 # Setting back the current

Reducing the interval

interval = max(int(interval*0.7), min_interval)

process_consecutively = 0

break

else:

if current != prev+1:

If enough frames have been successfully processed consecutively, increasing

the interval↪→

if process_consecutively >= proc_count_threshold:

interval = min(int(interval*1.3), max_interval)

process_consecutively = 0

else:

process_consecutively += 1

Storing the matching and updating completed

matchings[(prev, current)] = matches

complete = current

Listing 8: If the faces in the two frames could not be matched correctly, all frames between
the two initial frames are processed3

It is very processing intensive to process every frame when encountering a disruption in

the faces visible in the video, especially for longer processing intervals. For example with

a processing interval of 15, there are 14 additional frames between the initially processed

frames. If these frames also needed to be processed because there was a disruption in that

interval, this would take 15 times longer than simply processing the initially processed

frames. The same computational power could be used to process 14 ∗ 15 = 210 frames

when using an interval of 15 if none of the frames between them needed to be processed

independently. The bounding boxes in the remaining frames would then be interpolated

instead.

3https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

videoface/dynamic processing.py

24

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/dynamic_processing.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/dynamic_processing.py

It is therefore important to optimize the interval for processing frames. However,

as each video is different and the amount of movement and number of shots may vary

significantly throughout each video, there is no global optimal processing interval. The

interval is therefore dynamically adjusted based on how much can be processed at a time,

as shown in Listing 8. If it is frequently needed to process the entire interval in parts

of the video, the interval is decreased such that (hopefully) the interval is small enough

not to require frequent reprocessing. Additionally, with a smaller interval, the cost of

processing the entire interval in the case of a disruption is also lessened. Similarly, if

there are very few disruptions, the interval is increased to faster processes the entire

video.

3.1.4 Identifying facial sequences

In order to do frame interpolation (see Section 3.1.5), the faces in each frame need to be

mapped to the same face in the next processed frame to make a sequence of bounding

boxes for each face. This sequence can then be interpolated both to fill in gaps due to

false negatives or dynamic processing (see Sections 3.1.9 and 3.1.3). A facial sequence

also gives a better chance of correctly identifying a face, as there are multiple facial

features representations available for comparison. The facial features detected may vary

significantly depending on conditions such as illumination, pose and occlusion of the face.

Consequently, it may be difficult to correctly identify moving faces which change pose

or where the illumination is changing. For instance, when selecting which faces to blur,

this is less of an issue when utilizing sequences of faces as there are multiple chances to

identify the face. Facial alignment also helps to lessen the effect of such noise on the

facial features representation.

When processing the frames in this thesis, there are two pieces of information which

may be used to identify the same face in different frames: its position (bounding box)

and facial features representation. Since the frames in each shot are interrelated, the

bounding boxes generally do not move significantly between each frame. However, when

there are larger gaps, such as in dynamic processing or false negatives, the potential

distance moved increases multiplicatively by the number of frames in the gap. Quick

camera movement may similarly result in the subjects moving rapidly across the frame4.

Similarly, the facial features representations may also change, as discussed previously.

Facial alignment also helps reduce these differences in order to make the representations

4Example timestamped at 2:23: https://youtu.be/tORTBS7iEGY?t=143

25

https://youtu.be/tORTBS7iEGY?t=143

more consistent, thereby increasing the chances of correctly recognizing the person. The

positions of the bounding boxes are also not related across shot transitions, so identifying

scene transitions is important for accurately identifying facial sequences. This is further

discussed in Section 3.1.6.

Figure 3.2: Illustrated example of dis-
tances mapping faces between frames (the
distances are example values)

Matching each face to the same face in

different frames is essentially a minimum

cost bipartite matching problem. Given a

complete, weighted, bipartite graph

G = (V,E)

where V is composed of two disjoint subsets

S and T , the objective is to find the

minimum cost matching between S and T

of maximum cardinality [26]. S and T are

in this case the faces detected in the first

and second frame which are being compared,

and the comparisons between each face in

a frame to the other form the edges of the

graph. The calculated distance between the

faces, as shown in Listing 9, provides the

cost of each edge in the problem. Finding

the minimum cost matching with maximum

cardinality, maximizes the likelihood of correctly matching each face to itself. Scipys

linear_sum_assignment 5function is particularly useful when matching faces for this

purpose.

In Listing 9, a weighted distance metric of the bounding box distance and facial feature

distance is made for comparing two faces f1 and f2 . These two distances are multiplied

by hyperparameters to be able to adjust the impact of each on the total distance. This

combined distance is used to identify the same face in each frame by trying to minimize

the total distance, as discussed previously. If the distance of a given face to another is

above a set threshold dist_threshold , they are assumed to be different faces, regardless

of the optimal matching between the two frames.

5https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.optimize.linear sum assignment.html

26

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html

The hyperparameters dist_threshold , feat_weight and bbox_weight shown in Listing

9 were somewhat arbitrarily chosen based on manual testing for the purposes of the thesis.

These should be properly adjusted for a production setting.

dist_threshold = 1.0

feat_weight = 1.0

bbox_weight = 0.001

def bbox_dist(f1, f2):

return (abs(f1['bbox'][0]-f2['bbox'][0]) + abs(f1['bbox'][1]-f2['bbox'][1]) +

abs(f1['bbox'][2]-f2['bbox'][2]) +

abs(f1['bbox'][3]-f2['bbox'][3]))*abs(f1['bbox'][0]-f1['bbox'][2])/100

↪→

↪→

def feat_dist(f1, f2):

return cosine(f1['feat'], f2['feat'])

def face_dist(f1, f2):

fd = feat_weight*feat_dist(f1, f2)

bd = bbox_weight*bbox_dist(f1, f2)

return fd + bd

Listing 9: Weighted distance metric for comparing two faces6

When comparing n number of faces in one frame to m number of faces in another

frame, this problem scales by n ∗m. In most cases, this will not be an issue, but it may

require a greater amount of computational resources when processing footage of large

crowds of people. Large crowds of people would, however, most likely be counted as

situational photography, and not actually require any blurring of faces.

3.1.5 Frame interpolation

Interpolating missing bounding boxes may be necessary both in the case of a false neg-

ative, where a face may not be detected for a few frames (see Section 3.1.9), and when

dynamically processing a video (see Section 3.1.3). When interpolating the bounding

boxes, there are four values to be interpolated for each frame: x1, y1, x2 and y2, where

(x1, y1) define one corner of a rectangle and (x2, y2) define the opposing corner. The

6https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

videoface/dist.py

27

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/dist.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/dist.py

bounding box is the rectangle formed by these two points. Bounding boxes may alter-

natively be formed by defining one point of the rectangle in addition to the width and

height, but these formats are interchangeable and is not used in the pipeline. Both the

Deepface framework and AWS Rekognition discussed in Sections 3.2.6 and 3.2.7 do, how-

ever, return this format, which therefore needs conversion. Regardless of the format,

each of the four values may be interpolated independently, which in turn composes a

complete interpolation of the bounding box in non-processed frames. The following are a

few common types of interpolation and their applicability when interpolating bounding

boxes.

Figure 3.3: Illustration of a piece-
wise interpolation7

Piecewise constant interpolation

This is the simplest type of interpolation, where

all interpolated points are assigned the same value

as their closest valid data point, which is why it is

also called nearest-neighbour interpolation [69]. In

this case, any frame which does not have a valid

bounding box would simply use the same bound-

ing box as the nearest valid frame. This would

require a lot of data points to fully blur a persons

face while they are moving, and it would be very

visually disruptive with the blur ”jumping” from

position to position if there are a lot of frames

without bounding boxes.

Linear interpolation

This is one of the least computationally expensive interpolation methods that will ade-

quately fill in gaps in the sequence of bounding boxes without significant visual disrup-

tions. It simply makes a straight line between each data point and interpolates the value

of enclosed points to this line. For a line between (xa, ya) and (xb, yb), the value y of a

point with an x value between xa and xb would be [69]:

y = ya + (yb − ya)
x− xa

xb − xa

7Source: https://commons.wikimedia.org/wiki/File:Piecewise constant.svg

28

https://commons.wikimedia.org/wiki/File:Piecewise_constant.svg

Figure 3.4: Illustration of how a linear interpolation would look for facial detection
bounding boxes. The corners of interpolated bounding boxes would fall on the blue
lines.

Polynomial interpolation

Instead of a linear function, this method fits a polynomial of a higher degree to match the

data points. This method may be more computationally expensive, but it may provide

a smoother interpolation than linear. People do not move linearly. Each movement has

momentum; it takes time to speed up and slow down. Every movement is not random, and

a polynomial interpolation would likely capture this better than a linear interpolation.

Figure 3.5: Illustration of how a polynomial interpolation would look for facial detection
bounding boxes. The corners of interpolated bounding boxes would fall on the blue lines.

Spline interpolation

This method uses low-degree polynomials for a series of intervals, which collectively com-

poses a complete function, called a spline [69]. The polynomials are chosen such that they

fit smoothly together. An illustration of this for bounding boxes would look similarly to

Figure 3.5, and it would likely be visually similarly to a polynomial interpolation.

29

Scipy interpolators

The SciPy package offers a collection of various easy to use interpolators8. In this case,

it is the univariate interpolators that are of primary interest, as each of the four values

composing a bounding box may be interpolated independently. Most of the univariate

interpolators have a nearly identical interface, and may therefore be used interchangeably.

Listing 10 shows how these interpolators may be used to interpolate the missing bounding

boxes in a sequence of bounding boxes. In this example, the default interpolator is the

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolator, but it could be

replaced by passing another interpolator in the interpolator parameter.

8https://docs.scipy.org/doc/scipy/reference/interpolate.html

30

https://docs.scipy.org/doc/scipy/reference/interpolate.html

def interpolate(seqs, interpolator=pchip_interpolate):

for i in range(len(seqs)):

if len(seqs[i]) == 1:

continue

x1_observed = [f["bbox"][0] for f in seqs[i]]

y1_observed = [f["bbox"][1] for f in seqs[i]]

x2_observed = [f["bbox"][2] for f in seqs[i]]

y2_observed = [f["bbox"][3] for f in seqs[i]]

frame_nrs = [f["bbox"][4] for f in seqs[i]]

Using the previous valid feature for every frame missing it

feats = []

next = 0

for j in range(seqs[i][-1]["bbox"][4]+1-seqs[i][0]["bbox"][4]):

feats.append(seqs[i][next]["feat"])

if seqs[i][next]["bbox"][4] == j+seqs[i][0]["bbox"][4]:

next += 1

+1 to make inclusive

x_pred = np.arange(seqs[i][0]["bbox"][4], seqs[i][-1]["bbox"][4]+1)

Interpolating each value separately

x1_pred = interpolator(frame_nrs, x1_observed, x_pred)

y1_pred = interpolator(frame_nrs, y1_observed, x_pred)

x2_pred = interpolator(frame_nrs, x2_observed, x_pred)

y2_pred = interpolator(frame_nrs, y2_observed, x_pred)

Replacing sequence with fully interpolated sequence

seqs[i] = [{"bbox": [x1, y1, x2, y2, nr], "feat": feat.copy()} for x1, y1,

x2, y2, nr, feat in zip(x1_pred, y1_pred, x2_pred, y2_pred, x_pred,

feats)]

↪→

↪→

return seqs

Listing 10: Interpolating missing frames using SciPy interpolators9

Manually implemented linear interpolator

Listing 11 is an example of a manual implementation of a linear interpolator for bounding

boxes. The valid frames are identified, and each bounding box in the frames in between

is calculated using the difference between the positions of the bounding boxes in the valid

frames divided by the number of frames between them. This results in the average amount

9https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

videoface/interpolate.py

31

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/interpolate.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/interpolate.py

of movement for a given bounding box per frame, and the direction of the movement,

either positive or negative. Lastly, the average amount of movement is multiplied by the

difference in frame number to get the value of the bounding box for that given frame.

The manual implementation functions as intended, but is far more complicated and

unnecessary than using the scipy interpolators as shown in Listing 10.

def interpolate(seqs):

to_add = []

for i in range(len(seqs)):

prev_frame = -1

for j, s in enumerate(seqs[i]):

if prev_frame == -1: # No previous frames to interpolate

prev_frame = s[4]

continue

if s[4] == prev_frame+1: # No frames between to interpolate

prev_frame = s[4]

continue

frame_diff = s[4] - prev_frame

new_faces = []

for idx, k in enumerate(range(prev_frame, s[4]-1)):

new = [0, 0, 0, 0, k+1]

for l in range(4):

new[l] = seqs[i][j - 1][l] + ((idx + 1) * ((seqs[i][j][l] -

seqs[i][j - 1][l]) / frame_diff))↪→

new_faces.append(new)

to_add.append((i, j, new_faces))

prev_frame = s[4]

for i, j, v in reversed(to_add):

seqs[i] = seqs[i][:j] + v + seqs[i][j:]

return seqs

Listing 11: Manually implemented linear interpolator10

10https://github.com/ErlendF/face blur/blob/3cf47446a595e8731b50fff576f73562e83d73ad/

videoface/interpolate.py

32

https://github.com/ErlendF/face_blur/blob/3cf47446a595e8731b50fff576f73562e83d73ad/videoface/interpolate.py
https://github.com/ErlendF/face_blur/blob/3cf47446a595e8731b50fff576f73562e83d73ad/videoface/interpolate.py

3.1.6 Detecting shot transition

Automatically detecting shot transitions is an active field of research, and has been so

for over two decades [63]. There are some existing standalone solutions with great results

for this problem available for commercial use, but most of these solutions seem to require

the video file itself rather than the frames from the video. This is the case, for instance,

for PySceneDetect11. This is an issue since the video file may be very large and it may

be impractical to load the entire file into memory at once. Additionally, the video file

will not be available in CuttingRoom’s production environment (see Section 1.6) and

can therefore not be used directly in their production environment. It would also be

preferable for the solution to be available in a Python library as this would make it

significantly easier to integrate with the rest of the solution. It would be possible to call

other programs from Python, but this may hurt performance due to out-of-process calls.

TransNetV2 is a deep neural network intended to automatically detect shot transi-

tions [63]. Most notably, it is well suited for integration in this solution because it is

implemented in Python, can use frames directly rather than a video file and is available

for commercial use under the MIT license. It builds on TransNet made for the same

purpose which was also written by, among others, the same authors [64]. Like TransNet,

TransNetV2 operates on smaller, resized frames (47 x 28) of the video and effectively

produces a single number per frame representing the predicted likelihood of that frame

being part of a shot transition. According to their paper, the TransNetV2 model had an

F1-score ranging from 77.9 to 96.2 on the various datasets they tested [63].

The detected shot transitions may be used both when dynamically processing the

video and identifying facial sequences. In both instances the detected shot transitions

are very beneficial.

Dynamically processing

When dynamically processing the video, the detected shot transitions make it possible

to check the frames before and after a transition to ensure all necessary information

is collected to produce an accurate interpolation of the bounding boxes in the scene.

Additionally, this reduces the need for reprocessing an interval when the interval contains

a shot transition which changes the faces in the shot.

11http://scenedetect.com/en/latest/

33

http://scenedetect.com/en/latest/

Utilizing the shot transitions when dynamically processing the video is fairly straight-

forward. The only part affected is determining which frame should be processed next.

Normally, this would be the next frame of the interval (1th, 15th, 30th, 45th etc.). How-

ever, if there is a shot transition in between any of these, both the frame before the

transitions starts and the frames included in the transition itself should be processed.

Afterwards the processing may continue at the regular interval.

Identifying facial sequences

When identifying facial sequences, using the detected shot transitions prevents incor-

rect matchings across shot transitions, which may appear very jarring to the viewer12.

Furthermore, it also removes incorrect matchings to false positives across shot transitions.

Utilizing the detected shot transitions when identifying facial sequences requires a bit

more forethought. When initially making the sequences, faces should not be combined

into a single sequence across a shot transition. Therefore, if there is a transition between

the previously processed frame and the next, all the faces of the newly processed frame

should form new sequences themselves. After all the initial facial sequences are made,

facial sequences likely belonging to the same person are combined into a single sequence

if they are only a few frames apart. When combining the sequences, facial sequences

should not be combined across shot transitions since there is no correlation between the

faces across a shot transition.

3.1.7 Selecting specific faces

After identifying the facial sequences, as discussed in Section 3.1.4, the sequences may be

filtered to remove (or keep) specific faces to select which faces should and should not be

blurred. Any sequence which is kept will be blurred, while any removed sequence will not.

The sequences themselves are beneficial to correctly identifying the selected faces. Since

each of the sequences may contain multiple examples of a face’s features representation,

it makes it possible to do multiple comparisons between a sequence and an image, or two

different sequences, to determine if they are of the same person or not. Various noise,

like the pose of a face and its illumination conditions, may significantly affect the facial

features representation, and consequently make it difficult to identify a person based

12Example timestamped at 00:09: https://youtu.be/IuDkF XdqWc?t=9

34

https://youtu.be/IuDkF_XdqWc?t=9

on a single image. Since both the facial features representations and position of a face

are used to identify facial sequences, they are more reliable than using facial features

representations alone. Therefore, the resulting sequences may contain the same face in a

multitude of conditions, which makes it easier to identify in other parts of the video, or

based on known images.

The faces may be selected in various ways, two of which are demonstrated in this

thesis: filtering known faces and filtering faces based on time and location. In both cases,

facial features representations are compared using cosine similarity (1-cosine distance), a

measure of similarity between two vectors [72]. Cosine similarity is used instead of cosine

distance simply to make it a bit more intuitive to adjust the threshold for determining

two faces to belong to the same person; a higher score is a closer match between faces, 1

being a perfect match.

Filtering known faces

If a face is already known (there are existing images of the person available), these images

may be processed by the same facial detection, alignment and recognition models as the

video such that they have the same form of representation. Consequently, these facial

features representations of the known images may be compared to the facial sequences of

the video in order to identify them.

Multiple images of each known person may be used to give a better chance of recog-

nizing them. It does not matter whose faces are known, only that they are known, and

having multiple images of the same person consequently does not matter either. Either

the known faces should be blurred, or the unknown faces. There should not be a need

where some known faces should be handled separately from both other known faces and

unknown faces. This may, however, in such a case also be accomplished by filtering the

sequences multiple times.

35

Should use the same processing function as when parsing the video

def init_known_faces(known_people_img_dir, processing_func=deep_face_process,

frames=None):↪→

processed_faces = {}

if frames is None:

img_names = sorted(glob(join(known_people_img_dir, "*")))

img_nrs = np.arange(0, len(img_names))

processed_faces = processing_func(img_names, img_nrs)

else:

img_names = np.arange(0, len(frames))

img_nrs = np.arange(0, len(frames))

processed_faces = processing_func(img_names, img_nrs, frames=frames)

if len(processed_faces) == 0:

return None

known_faces = []

for img in processed_faces.values():

for f in img:

The positions of the known people from the reference photos is of no

importance, removing it↪→

known_faces.append(f["feat"])

return known_faces

Listing 12: Parsing known faces13

After parsing the known faces, their facial features representations may be compared

to the facial sequences to find the sequences belonging to known people as shown in Listing

13. For this purpose, each of the images containing known people may be compared

to several samples from each sequence to give a better chance of correctly identifying

the face. Ideally, these samples should be spread across the facial sequence as evenly

as possible to give the best chance of showing the face in multiple facial poses under

multiple illumination conditions. In Listing 13, a simple way of spreading the samples is

shown using the interval intv . The known faces identified may then be kept or removed

depending on the value of the remove_known parameter.

13https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

videoface/filter faces.py

36

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/filter_faces.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/filter_faces.py

def filter_known_faces(facial_sequences, known_faces, remove_known=False, samples=5,

threshold=0.75):↪→

comparisons = [0] * len(facial_sequences)

Comparing each known face to a sample of each facial sequence

for i, seq in enumerate(facial_sequences):

for j, f in enumerate(known_faces):

if len(seq) < samples:

for s in seq:

sim = 1-cosine(f, s["feat"])

if sim > comparisons[i]:

comparisons[i] = sim

else:

intv = len(seq) // samples

if intv < 1:

intv = 1

for k in range(samples):

sim = 1-cosine(f, seq[k*intv]["feat"])

if sim > comparisons[i]:

comparisons[i] = sim

if remove_known:

return [f for f, s in zip(facial_sequences, comparisons) if s < threshold]

else:

return [f for f, s in zip(facial_sequences, comparisons) if s >= threshold]

Listing 13: Filtering known faces14

Filtering faces of known time and location

In addition to faces with pre-existing images available, faces may also be selected based

on their time and location in the video being processed. The time and location may be

used to identify the facial sequence containing the selected face, which again may be used

to identify other facial sequences belonging to the same face. All instances of the persons

face may thereby be blurred, or not blurred depending on the scenario.

In Listing 14, the location is input to the function as the parameters x and y , and

the time is input as the parameter frame_number . These are used to identify the closest

sequence, which again is used to identify sequences belonging to the same face. All the

sequences belonging to the face are then filtered. The function may be used multiple

times, and later combined to keep sequences of faces belonging to multiple people.

14https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

videoface/filter faces.py

37

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/filter_faces.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/filter_faces.py

Filter a selected face based on location and frame number. Use the sequence to

identify other sequences with the same face. x = y = 0 is the top left corner of

the frame.

↪→

↪→

def filter_selected_face(sequences, frame_number, x, y, remove_known=True, samples=5,

threshold=0.75):↪→

closest_seq = -1

closest_dist = float_info.max

Identifying the sequence closest to the selection

for i, seq in enumerate(sequences):

if seq[0]["bbox"][4] > frame_number and seq[-1]["bbox"][4] < frame_number:

continue

for s in seq:

if s["bbox"][4] != frame_number:

continue

dist = abs(x-s["bbox"][0]) + abs(x-s["bbox"][2]) + \

abs(y-s["bbox"][1]) + abs(y-s["bbox"][3])

if dist < closest_dist:

closest_dist = dist

closest_seq = i

(...) # Returning if not found, omitted for brevity, see source

Getting samples from the closest identified sequence

seq_samples = []

if len(sequences[closest_seq]) < samples:

seq_samples = sequences[closest_seq]

else:

intv = len(sequences[closest_seq]) // samples

if intv < 1:

intv = 1

for k in range(samples):

seq_samples.append(sequences[closest_seq][intv*k])

Comparing the samples to other sequences to identify sequences with the same

face↪→

(...) # Omitted for brevity, see source

if remove_known:

return [s for i, s in enumerate(sequences) if i not in identical]

return [s for i, s in enumerate(sequences) if i in identical]

Listing 14: Filtering selected faces15

15https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

videoface/filter faces.py

38

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/filter_faces.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/videoface/filter_faces.py

Ideally, a user interface should be used to simplify the selection of the time and

location of the face. Potentially, such an interface could allow a user to select a face by

simply clicking on it in the video editor. However, it does not make sense to make a

new interface separate from CuttingRoom’s existing user interface. CuttingRoom’s user

interface has not been made available for the thesis and an example user interface will

therefore not be made.

3.1.8 Smoothing sequences of bounding boxes

The machine learning models used throughout the thesis have nearly always been intended

for image recognition, not video. As a result, the bounding boxes found by the facial

detection may move around a bit arbitrarily from frame to frame, even if the person is

standing nearly still16. This is of no consequence to the anonymization of the subjects,

but may be distracting to the viewer and becomes unnecessary noise in the video.

This effect is significantly reduced by not processing every frame and interpolating

the non-processed frames, like discussed in Sections 3.1.3 and 3.1.5. However, this cannot

be done for every shot of the video as the shots with changes in the faces shown in the

frame need to be processed in more detail0. Therefore, it would be beneficial to reduce

the unnecessary movement of each bounding box by smoothing out the minor differences

between each frame. The overall movement of each person still needs to be captured to

correctly blur their face, though ideally with as little unnecessary movement as possible.

Similarly to when interpolating the bounding boxes as discussed in Section 3.1.5,

each of the four values composing the bounding box can be handled separately. Listing

15 shows a rudimentary implementation of the unweighted moving average smoothing

algorithm, one of the simplest smoothing algorithms. In the algorithm, each value is

replaced by the average of a certain number of adjacent points. This effectively lessens

the impact of local changes on the overall function.

16Example: https://youtu.be/nSvN24R wRU

39

https://youtu.be/nSvN24R_wRU

def avg_smoothing(seqs, smoothing_width=9):

df = smoothing_width//2

for i in range(len(seqs)):

Getting a copy of the sequence only containing bounding boxes to make it a

numpy array↪→

seq_copy = np.array([s["bbox"].copy() for s in seqs[i]])

Smoothing each point of the bounding box individually

for j in range(len(seqs[i])):

first = max(0, j-df)

last = min(len(seqs[i]), j+df)

seqs[i][j][0] = np.mean(seq_copy[first:last, 0])

seqs[i][j][1] = np.mean(seq_copy[first:last, 1])

seqs[i][j][2] = np.mean(seq_copy[first:last, 2])

seqs[i][j][3] = np.mean(seq_copy[first:last, 3])

return seqs

Listing 15: Example implementation of unweighted sliding-average smoothing17

Scikit-fdas smoothing functions18 could alternatively also be used fairly easily. Un-

fortunately, at the time of writing there is an issue with one of scikit-fdas dependencies

which causes issues when using Python 3.1019. The current implementation depends on

the key parameter added to the bisect library in Python version 3.1020 and can conse-

quently not use an earlier version of Python. The implementation could be changed to

not require this parameter, but it seems unnecessary as the scikit-fda library will likely

be updated to support Python version 3.10 after some time either way.

3.1.9 Handling false negatives

When someone is moving around, their face often changes pose over the course of a shot.

Certain facial poses are often more difficult to detect than others. For example the side

of a face is generally more difficult than a head-on shot of a face, as discussed in Section

4.1. Therefore, there are often periods where a model fails to detect faces in videos where

17https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

smoothing/average.py
18https://fda.readthedocs.io/en/latest/modules/preprocessing/smoothing.html
19https://bytemeta.vip/repo/GAA-UAM/scikit-fda/issues/433, https://github.com/jdtuck/

fdasrsf python/issues/20
20https://docs.python.org/3/library/bisect.html

40

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/smoothing/average.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/smoothing/average.py
https://fda.readthedocs.io/en/latest/modules/preprocessing/smoothing.html
https://bytemeta.vip/repo/GAA-UAM/scikit-fda/issues/433
https://github.com/jdtuck/fdasrsf_python/issues/20
https://github.com/jdtuck/fdasrsf_python/issues/20
https://docs.python.org/3/library/bisect.html

the person may have turned to face away from the camera. Their face may, however, still

be clearly recognizable from the side and still would be considered personal data. Their

face should be detected, but is not, and would therefore be considered a false negative.

In these cases, the ideal solution would be to train the model to recognize faces in a

greater set of poses, but this may not always be feasible. Some of the models are already

very good at detecting faces under an impressive number of conditions, but not all of

them. Therefore, the rest of the processing should account for potential false negatives in

the data as best as possible. Where false negatives are identified, it would be preferable

to interpolate the bounding boxes where the face is not detected (see Section 3.1.5).

After the faces have been detected, the only indication of potential false negatives

are gaps in the facial sequences. If a face is detected in a given shot for several seconds,

but there are a few intermittent frames where the face is not detected, these are very

likely false negatives and the frames should be interpolated. Unless there is a cut, people

generally do not disappear for only a few frames at a time.

When dynamically processing the video (see Section 3.1.3), false negatives may be

ignored entirely if they fall in the interval of frames that are not processed at all. How-

ever, if one of the frames with a false negative does get processed, this will cause the

entire interval to be processed rather than interpolated, which will slow down the video

processing.

Unlike detecting false positives, discussed in Section 3.1.10, the certainty of a detection

cannot be used when detecting false negatives. Since the face is not detected, there is no

predicted bounding box, and consequently no certainty to use for the detection of false

negatives.

The most reliable method seems to set a maximum missing frame number, and interpo-

lating the missing bounding boxes in the frames of a facial sequence. When making facial

sequences (see Section 3.1.4), the facial sequences are initially constructed by matching

bounding boxes of adjacently processed frames. If there are frames between two detec-

tions of the same face where the face is not detected, they will not initially be made into

the same facial sequence. However, after making the initial sequences, entire sequences

which likely belong to the same person are combined to form larger sequences. When

combining the sequences, a maximum number of frames between the combined sequences

be defined. It does not make sense to combine two sequences at entirely separate points

in the video. Therefore, by setting the threshold sufficiently large; false negatives may

fall inside of a single facial sequence and may easily be interpreted, thereby filling in the

missing bounding boxes.

41

3.1.10 Handling false positives

Handling false positives may be very difficult, and may be detrimental to the anonymiza-

tion of the solution as there is a trade-off between false positives and false negatives. The

lower the threshold for detecting faces, the fewer false negatives there will be, but also

the more false positives. The opposite is also true. The priority depends on the video.

In some of cases, like a football match, the anonymization may just be a precaution.

However, in other cases, like a criminal case, it may be far more important that any

actual faces get blurred rather than any false positives are removed. False positives may

be distracting, but they do otherwise no harm.

Observed cases of false positives

Figure 3.6: False positive
without apparent
reason21

The most prevalent type of false positive seems to be false

positives where the detected area looks nothing like a face,

such as a hand, an arm, a wall decoration etc. These do not

appear to have any meaningful reason for being detected,

and is likely a coincidentally good match for the features

of a face the facial detector is looking for.

Figure 3.7: Face detected
in photography

Statues and faces in pictures displayed in videos

may also be detected as faces. This is not strictly a false

positive, since it is actually correctly detecting a face,

but it would be reasonable to assume that not all pictures

need to be blurred. Famous paintings or pictures in the

public domain likely do not require blurring. However,

pictures of protected individuals and their families

should obviously be removed. A model could potentially

be trained to differentiate between people and pictures,

but this seems unnecessary for such a specific scenario

and would fall outside the scope of the thesis. Similarly,

copyrighted portraits should potentially be blurred, but this is also outside the scope

of the thesis.

21Example from: https://youtu.be/73XS75-tdYQ

42

https://youtu.be/73XS75-tdYQ

Non-human faces may also sometimes be detected. It would be reasonable to assume

that non-human faces should not need to be blurred. The Personal Data Act use the

terminology ”person” when discussing subjects whose data should be protected [52], but

whether or not anything outside of humans should be considered to be a ”person” is more

of a philosophical question and is undoubtedly outside the scope of this thesis. Therefore,

for the purposes of this thesis, detection of non-human faces will be considered a false

positive and handled as such.

Possible solutions

One way of handling false positives would be to use the certainty of a prediction to

evaluate how likely it is to be an actual face. However, not all models provide certainty

for their predictions, so this method is dependent on the model. Unfortunately, even if

the model does provide a certainty score, it may not be very useful for identifying false

positives. From testing the MTCNN detector (see Section 3.2.2), the certainty scores for

false positive sequences were indistinguishable from true positives. It would therefore be

infeasible to use this score algorithmically or in a machine learning model to remove the

false positives.

Another way of handling false positives would be to remove short sequences of faces

that are not related to any other sequences in the scene. False positives appear to often

only be present for a few frames at a time, and only in short time spans. This appears

to be their most distinguishable characteristic, but it may depend on the facial detection

model being used. If this is the case, they may be removed by setting a minimum

number of frames a face need to be detected for the sequence to be considered correctly

identified. However, this would also result in faces that are only visible for a few frames

in the video not being blurred. Consequently, it is a trade-off between false positives

and false negatives. This method of removing false positives is implemented simply by

checking the length of facial sequences, and removing sequences shorter than a specified

minimum22. Alternatively, it could be made to check the amount of frames being detected

in a row rather than the total frames being detected to identify false positives. For this

purpose, an option to set a minimum sequence length was added to the function making

the facial sequences23 (see Section 3.1.4).

22https://github.com/ErlendF/face blur/blob/15b62ce828e6662d2838fc1d4b45052504822b32/

videoface/filter faces.py#L127
23https://github.com/ErlendF/face blur/blob/15b62ce828e6662d2838fc1d4b45052504822b32/

videoface/facial sequences.py

43

https://github.com/ErlendF/face_blur/blob/15b62ce828e6662d2838fc1d4b45052504822b32/videoface/filter_faces.py#L127
https://github.com/ErlendF/face_blur/blob/15b62ce828e6662d2838fc1d4b45052504822b32/videoface/filter_faces.py#L127
https://github.com/ErlendF/face_blur/blob/15b62ce828e6662d2838fc1d4b45052504822b32/videoface/facial_sequences.py
https://github.com/ErlendF/face_blur/blob/15b62ce828e6662d2838fc1d4b45052504822b32/videoface/facial_sequences.py

3.1.11 Blurring

When blurring faces in videos, the faces need to be blurred in each individual frame of

the video and the blur needs to be sufficiently strong not to reveal the identity of the

individual being blurred. Therefore, it is necessary to read every frame, blur the selected

faces, and write the image back to the disk. In these examples, only the face is blurred.

However, the entire head may easily be blurred to better protect subjects anonymity by

slightly expanding the blurred area, and moving it a bit higher.

Likely the easiest way to blur a face, is to simply blur the specific region of the frame

delimited by the bounding box24. This produces a square blur, which can hardly be

described as appealing. An example of this is shown in Figure 3.8.

Figure 3.8: Square blurring

By splitting these bounding boxes into smaller regions and taking the mean of each

region individually25, a pixelated blurring effect may be achieved, as shown in Figure 3.9.

24See https://github.com/ErlendF/face blur/blob/123704872683c16b0a42eeec13cf86ef1e9b5216/

blur/blur.py#L38
25See https://github.com/ErlendF/face blur/blob/88515a05db7e48381c68e9e6ddbcdbe12c3df6ae/

blur/blur.py#L45

44

https://github.com/ErlendF/face_blur/blob/123704872683c16b0a42eeec13cf86ef1e9b5216/blur/blur.py#L38
https://github.com/ErlendF/face_blur/blob/123704872683c16b0a42eeec13cf86ef1e9b5216/blur/blur.py#L38
https://github.com/ErlendF/face_blur/blob/88515a05db7e48381c68e9e6ddbcdbe12c3df6ae/blur/blur.py#L45
https://github.com/ErlendF/face_blur/blob/88515a05db7e48381c68e9e6ddbcdbe12c3df6ae/blur/blur.py#L45

Figure 3.9: Pixelated blurring

Another way to blur a face would be to blur a circle around the bounding box rather

than only the area delimited by the bounding box26. To make such a round blur, a mask

needs to be made marking a circle over the desired locations around the bounding boxes

which should be blurred. This mask may then itself be blurred in order to make the

transition gradual between blurred and non-blurred regions, as shown in Figure 3.10.

Having a gradual transition between the blurred and non-blurred areas of the frame

makes the blurring a lot less noticeable compared to the hard-cut edges of the square

blur example.

Figure 3.10: Blurring mask, blurred to make transition gradual

26See: https://github.com/ErlendF/face blur/blob/123704872683c16b0a42eeec13cf86ef1e9b5216/

blur/blur.py#L18

45

https://github.com/ErlendF/face_blur/blob/123704872683c16b0a42eeec13cf86ef1e9b5216/blur/blur.py#L18
https://github.com/ErlendF/face_blur/blob/123704872683c16b0a42eeec13cf86ef1e9b5216/blur/blur.py#L18

Lastly, a copy of the frame is fully blurred as shown in Figure 3.11, and the blurred

and non-blurred versions of the frame are blended using the mask. In each location where

the mask is white, the blurred image is used, where it is black, the original image is used.

This produces circular blurs around each bounding box with a gradual transition, as

shown in Figure 3.12.

Figure 3.11: A fully blurred version of the image

Figure 3.12: Round blurring

46

3.1.12 Sequence models

Sequence models have great potential for handling video, and could potentially resolve

a lot of issues surrounding false positives, false negatives and noisy bounding boxes that

would otherwise have to be handled algorithmically (see Sections 3.1.3, 3.1.5 and 3.1.8).

For this purpose, a many to many model would be most appropriate, since we need to

use the entire set of bounding boxes, and all of them should be handled appropriately.

RNN, LSTM and GRU Pytorch models were used for this thesis.

Ideally, the sequence model should take the bounding boxes of detected faces as input

and output only true positive bounding boxes, with missing bounding boxes approximated

and less noise in the movement of existing bounding boxes. To do so, the bounding

boxes need to be organized into sequences for each face (see Section 3.1.4). The sequence

should start at the earliest detected instance of the face and end at the last. The detected

bounding boxes should be formatted appropriately, and missing bounding boxes should

have an appropriate value to signify them as missing values. The format of the bounding

box sequences used in the thesis is (B x S x d) where B is the batch size, S is the

sequence length and d is the dimension of the bounding box. Typically, d would be of

size 4, representing x1, y1, x2 and y2 which form the corners of a rectangle. It could also

include the certainty of the model for the detected bounding box. This is the same format

presented as presented in Chapter 3, but with the facial features removed. Additionally,

all sequences need to be the same length to form a Pytorch tensor. Therefore, the shorter

sequences are padded using the torch.nn.utils.rnn.pad_sequence function27.

Handling false negatives and smoothing sequences of bounding boxes

No dataset was made for this thesis. Consequently, there is no true value to compare

with the predictions when calculating the loss of a prediction. An appropriate sequence

of bounding boxes could be made manually to be used as a true value, but this is work

intensive and outside of the scope of the thesis. Therefore, it would be ideal to calculate

the loss based on how well the predicted bounding boxes fit together and how closely they

relate to the input bounding boxes. Distance between adjacent bounding boxes should

be penalized in order to make a smoother movement of the bounding boxes and avoid

minor, unnecessary movement. Furthermore, penalizing the distance between adjacent

bounding boxes should incentivize an appropriate approximation of missing bounding

27https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad sequence.html

47

https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad_sequence.html

boxes in order to minimize the loss. The distance between input bounding boxes with

missing values and predicted bounding boxes is therefore not penalized.

Distance between the predicted and input bounding boxes is required in order to

follow the faces movement. If the distance between the predicted and input bounding

boxes was not penalized, there would be no incentive for the model to move the bounding

boxes around at all. Simply predicting 0 for all values of the bounding box would in this

case result in a loss of 0 since the distance between adjacent bounding boxes would also

be 0.

An example loss function is shown in Listing 16, where the loss of the batch is cal-

culated as the sum of the difference between the input bounding box and the predicted

bounding box plus the difference between the given bounding box and its previous, ad-

jacent bounding box. The squared loss is to allow for minor movement of the bounding

boxes. However, large movement should be avoided whenever possible. In the listing,

index 4 of the bounding box is used for the certainty. If the certainty is 0.0, it means that

there was no bounding box there originally and it should be approximated. Therefore,

distance to the original value is not penalized since it was a missing value.

def sq_frame_diff(x1, x2):

return torch.add(torch.add(

torch.pow(torch.abs(torch.sub(x1[0], x2[0])), 2),

torch.pow(torch.abs(torch.sub(x1[1], x2[1])), 2)),

torch.add(

torch.pow(torch.abs(torch.sub(x1[2], x2[2])), 2),

torch.pow(torch.abs(torch.sub(x1[3], x2[3])), 2)))

def sep_loss_func(x, pred):

sum_diff = torch.tensor(0)

for b in range(x.shape[0]): # batches

Remaining predictions after the end of the sequence are not penalized

seq_end = len(x[b]) - next(i for i, f in enumerate(reversed(x[b])) if

torch.round(f[4]) != 0.0)↪→

for i in range(seq_end):

if torch.round(x[b, i, 4]) != 0.0:

sum_diff = sum_diff.add(sq_frame_diff(pred[b, i], x[b, i]))

if i != 0:

sum_diff = sum_diff.add(sq_frame_diff(pred[b, i], pred[b, i-1]))

return sum_diff.sum()

Listing 16: RNN loss function

48

Handling false positives

Similarly to handling false positives without a sequence model, detecting and removing

false positives was difficult. In order to train the model to be able to distinguish between

true and false positives, the loss needs to be adjusted according to the models perfor-

mance. Consequently, the loss function needs to be designed reduce the loss when the

model correctly classifies true and false positives, and penalize incorrect classifications.

Normally, this would be done using a dataset where true and false positives are known,

and incorrect classifications are penalized. The model would then learn patterns of the

features of true and false positives to distinguish them. However, making such a loss

function without knowing the true and false negatives beforehand is less straightforward.

The same methods for handling false positives as discussed in Section 3.1.10 could

possibly be utilized when making the loss function. The sequence model could potentially

receive the facial detection models certainty score as an additional input and output

its own certainty score, or alternatively be trained to otherwise differentiate bounding

boxes which should be removed. Unfortunately, as also discussed in Section 3.1.10, there

was no discernible difference between the certainty scores of true and false positives.

Consequently, it is unclear both how the model may interpret the certainty and how the

loss should be calculated. Furthermore, the sequence models performance also seemed to

deteriorate when passing the certainty as an additional input.

The model could also be penalized for outputting valid bounding boxes for sequences

shorter than a certain threshold. However, the bounding boxes may in this case simply

be removed before passing them to the model instead.

49

The potential of a bidirectional model

A unidirectional model can only base its predictions on preceding (or succeeding) bound-

ing boxes. This may cause issues with rapid movement and approximating missing val-

ues. By only using past bounding boxes, there would essentially be no difference between

sequences with a few missing frames and sequences which simply end. Furthermore,

to interpolate the bounding box of a missing value between two known values is fairly

straightforward, as discussed in Section 3.1.5. However, this becomes far more difficult

if only one of the two bounding boxes on either side is known. It would then be impos-

sible to know the direction of movement accurately. The movement could potentially be

estimated based on the previous bounding boxes, but this cannot be as reliable as when

both bounding boxes are known.

Using a bidirectional model could potentially solve both of these issues. Using suffi-

ciently large sequences, the model should be able to distinguish short intervals of missing

bounding boxes and approximate these. Additionally, it could utilize both the preceding

and succeeding bounding boxes to make a smoother sequence of bounding boxes.

Separating responsibilities

The original intention was to make a single model which would remove false positives,

approximate false negatives and make a smoother sequence of bounding boxes. The

smoothing of the sequence and approximating the false negatives are quite closely related

and it makes sense for them to be done by the same model. However, removing false

positives is a different task entirely. It might make more sense for this to be done by

another model, or alternatively an algorithm. By separating the tasks, each task may be

simplified and possibly make the result more reliable. Each model could in this case be

trained independently.

50

3.2 Facial detection, alignment and representation

The section discusses a selection of tools and models for facial detection, alignment and

representation explored. These are discussed together as several of the projects discussed

perform more than one of these tasks. Facial classification is based on the facial features

representations made, and is discussed in Section 3.1 where applicable, particularly in

Sections 3.1.4 and 3.1.7.

3.2.1 Retinaface

Retinaface is a single-stage face detector which can both detect and align faces of var-

ious scales by taking advantage of joint extra-supervised and self-supervised multi-task

learning [38]. The original implementation is based on MXNet and is the facial detection

module of the Insightface project28. It is released under the MIT license, but the pre-

trained models provided with the library are only available for non-commercial research

purposes [45]. However, it has been reimplemented in TensorFlow29, and later simplified

and made available as a pip package30 which is available for commercial use under the

MIT license31 [58]. This pip package is again used by Serengil/Deepface and implemented

in this thesis through it (see Section 3.2.6).

3.2.2 Multi-task Cascaded Convolutional Networks

Multi-task Cascaded Convolutional Networks (MTCNN) is a framework designed to both

detect and align faces in images [73]. It uses a cascaded structure with three stages of

deep convolutional networks that predict face and landmark locations in a coarse-to-fine

manner. In the first stage, candidate windows are produced through a fast Proposal

Network. Then, the candidates are refined through a Refinement Network. Lastly, the

final bounding boxes and facial landmark positions are produced by the Output Network.

This method works well and is highly accurate. In this thesis, it is used in combination

with ArcFace as shown in Section 3.3.2, and is also one of the facial detectors offered by

the Serengil/Deepface framework (see Section 3.2.6).

28https://insightface.ai/
29https://github.com/StanislasBertrand/RetinaFace-tf2
30https://pypi.org/project/retina-face/
31https://github.com/serengil/retinaface

51

https://insightface.ai/
https://github.com/StanislasBertrand/RetinaFace-tf2
https://pypi.org/project/retina-face/
https://github.com/serengil/retinaface

3.2.3 Pigo

Esimov/Pigo is a face detection, pupil/eyes localization and landmark points detection

library written by Endre Simo [61]. It is based on the Pixel Intensity Comparison-based

Object detection paper by Nenad Markuš et al. [51], which describes a method for visual

object detection based on an ensemble of optimized decision trees organized in a cascade

of rejectors. This method is notable for how fast it is compared to other methods such

as HOG and CNNs.

Since this library is written in Go, it is incompatible with the Python implementation

of the pipeline presented in this thesis. It may be used to predict the bounding boxes,

which may be used with a lot of the implementation when pre-computed, but it cannot

feasibly be used with the dynamic processing (see Section 3.1.3). It could potentially

be called as a standalone executable, but this is far too slow for regular use, and the

detection is not nearly accurate enough to warrant this, as shown by this example: https:

//youtu.be/hQ7EhRiJKdo.

3.2.4 ArcFace

ArcFace is a deep convolutional neural network which uses additive angular margin loss

to obtain highly discriminative features for face recognition [37]. It is one of the face

recognition modules of the Insightface project32. Like the licensing of Retinaface (see

Section 3.2.1), the original implementation is provided under the MIT license, but the

pre-trained models are only available for non-commercial research purposes only [45].

However, the Open Neural Network Exchange (ONNX) model zoo offers a pre-trained

model of ArcFace under the Apache 2.0 license which does permit commercial use. It

is also available through the serengil/Deepface framework under the MIT license (see

Section 3.2.6). An example SageMaker model was made for serving Batch Transform

Jobs (see Section 3.3.2). The example is available here: https://github.com/ErlendF/

face blur/tree/main/models/arcface-mtcnn-batch-transform.

32https://insightface.ai/

52

https://youtu.be/hQ7EhRiJKdo
https://youtu.be/hQ7EhRiJKdo
https://github.com/ErlendF/face_blur/tree/main/models/arcface-mtcnn-batch-transform
https://github.com/ErlendF/face_blur/tree/main/models/arcface-mtcnn-batch-transform
https://insightface.ai/

3.2.5 Dlib

Dlib is an open-source C++ toolkit offering machine learning algorithms and various

tools [49]. Most notably, the machine learning algorithms include facial detection, facial

alignment and facial recognition features. For the facial detection, there are two main

algorithms of note; convolutional neural network33 and histogram of oriented gradients34.

For the facial recognition, a ResNet model is used35.

Though Dlib is principally a C++ library, a number of its tools is also available for

python applications [50]. These tools fortunately includes the facial detection and facial

recognition methods. Furthermore, these methods have been used to make a wrapper for

the Dlib functions named ageitgey/face recognition to simplify their use [44].

Listing 17 shows how the face recognition python library may be used to detect and

locate faces in a batch of images and make facial features representations for each detected

face. This example uses the Dlib CNN model rather than the HoG method. The CNN

model was in this case chosen because it is more accurate than the HoG method, though

a bit slower [56]. The accuracy was here prioritized since there is little point of blurring

someone if their identity is revealed anyway. This is further discussed in Chapter 4.

33http://dlib.net/python/index.html#dlib pybind11.cnn face detection model v1
34http://dlib.net/python/index.html#dlib pybind11.get frontal face detector
35http://dlib.net/python/index.html#dlib pybind11.face recognition model v1

53

http://dlib.net/python/index.html#dlib_pybind11.cnn_face_detection_model_v1
http://dlib.net/python/index.html#dlib_pybind11.get_frontal_face_detector
http://dlib.net/python/index.html#dlib_pybind11.face_recognition_model_v1

def dlib_process(img_names, img_nrs, frames=None):

if len(img_names) == 0:

return {}

imgs = []

if frames is None:

for filename in img_names:

imgs.append(read_frame(filename))

else:

for nr in img_nrs:

imgs.append(frames[nr])

locs = batch_face_locations(

imgs, number_of_times_to_upsample=0, batch_size=len(imgs))

faces = {}

for ls, img, inr in zip(locs, imgs, img_nrs):

img_faces = []

fs = face_encodings(img, known_face_locations=ls, model="large")

for l, f in zip(ls, fs):

img_faces.append(

{'bbox': [l[3], l[0], l[1], l[2], inr], 'feat': f.tolist()})

faces[inr] = img_faces

return faces

Listing 17: Using the Face Recognition library built on Dlib to detect and recognize all
the faces in the list of images36

3.2.6 Deepface

Serengil/Deepface37 is a face recognition and facial attribute analysis framework wrap-

ping state-of-the-art models like VGG-Face, Google FaceNet, Facebook DeepFace and

ArcFace [59, 60]. The framework also provides some functionality to detect and pre-

process images of faces before feeding them into the facial recognition models. For facial

detection, it offers a choice between Retinaface, MTCNN, OpenCV, SSD, Dlib and Medi-

aPipe. In the thesis, the Facenet512 model38 is used for facial recognition and Retinaface

is used as the facial detection backend (see Section 3.2.1). These may easily be replaced

by changing two lines of code. The serengil/Deepface framework itself is available under

36https://github.com/ErlendF/face blur/blob/68b99220241526885deedfde878c55f8d4bfd449/

videoface/dlib.py
37https://github.com/serengil/deepface
38https://github.com/davidsandberg/facenet

54

https://github.com/ErlendF/face_blur/blob/68b99220241526885deedfde878c55f8d4bfd449/videoface/dlib.py
https://github.com/ErlendF/face_blur/blob/68b99220241526885deedfde878c55f8d4bfd449/videoface/dlib.py
https://github.com/serengil/deepface
https://github.com/davidsandberg/facenet

the MIT license39 which notably permits commercial use, copying, modification, publish-

ing and distribution [59]. However, it also wraps various models which have their own

licenses. Thankfully, only the VGG-Face model appear to have a license which does not

permit commercial use40. A full list of the model licenses is included in Appendix E.

The Serengil/Deepface framework does not natively provide the functionality to detect

all faces in an image and get their locations and facial representation. However, as it

already uses facial detection models which do detect all faces in the processed image, and

it does get the facial representation for a single face, the code may be adapted to return all

detected faces and representations for each face. The detect_faces 41 function used by the

higher level functions like verify 42 (used to compare two faces) and represent 43 (used

to make a facial features representation) in the library simply discards every detected face

except for the first one returned, and discards the rest. For the Deepface framework to

be utilized in the pipeline, this was adapted to keep all the detected faces returned, and

make a facial features representation for all of them. The prediction of the representations

were batched in order to increase performance.

The framework is mainly powered by TensorFlow and Keras [59], and TensorFlow

code and tf.keras models44 can run both on CPUs and on a single GPU without any code

changes required [1]. Using a CPU, the Deepface implementation of the facial processing

is significantly slower than using the dlib implementation (see Section 3.2.5). However,

the Deepface implementation is far more accurate, and when running on a GPU, it is

also notably faster. This is further discussed in Chapter 4.

Although multiple projects are named ”Deepface”; the serengil/Deepface framework

will be referred to simply as ”Deepface” for the sake of simplicity from this point onwards.

39https://github.com/serengil/deepface/blob/master/LICENSE
40https://www.robots.ox.ac.uk/~vgg/software/vgg face/
41https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/

deepface/detectors/FaceDetector.py#L35
42https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/

deepface/DeepFace.py#L70
43https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/

deepface/DeepFace.py#L721
44https://www.tensorflow.org/api docs/python/tf/keras

55

https://github.com/serengil/deepface/blob/master/LICENSE
https://www.robots.ox.ac.uk/~vgg/software/vgg_face/
https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/deepface/detectors/FaceDetector.py#L35
https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/deepface/detectors/FaceDetector.py#L35
https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/deepface/DeepFace.py#L70
https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/deepface/DeepFace.py#L70
https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/deepface/DeepFace.py#L721
https://github.com/serengil/deepface/blob/5d767e2d493b47b914a257b6dbf14dd3d472eddf/deepface/DeepFace.py#L721
https://www.tensorflow.org/api_docs/python/tf/keras

3.2.7 AWS Rekognition

AWS Rekognition is a high level, managed AWS service which offers various features such

as facial detection and facial recognition in images and video [25]. It is a managed service

rather than a machine learning model, but may be used in place of the facial detection

and recognition models discussed previously. In order to recognize specific faces, the

faces have to be indexed into a server-side container known as a collection [13]. Then,

the stored media may be searched to look for the indexed faces. AWS Rekognition will

then detect faces in the media and indicate which faces were matched to each of the faces

in the stored collection. The detected faces will also be given an index which is supposed

to be unique to the specific face.

Python scripts are provided in the GitHub repository45 to make a collection, in-

dex faces, start a face search job, collect the results and parse the results: https:

//github.com/ErlendF/face blur/tree/main/scripts/rekognition. The output re-

sults of the AWS Rekognition face search is a list of faces detected in the video with their

index, timestamp (in milliseconds) and which faces in the collection they were matched

to (if any)46. When parsing the results, this information is used to make sequences of

faces, which may be handled similarly to the rest of the pipeline. AWS Rekognition only

processes one frame every half a second, and the results therefore need to be interpolated

to get bounding boxes for every frame, similarly to how the interpolation is needed with

dynamic processing (see Section 3.1.3).

The scripts are basic examples made to test the feasibility of using AWS Rekognition to

replace the facial detection and recognition parts of the pipeline and should be expanded

upon if used in a production setting such that the results will be automatically collected

and parsed once the face search job finishes.

45The same repository discussed previously: https://github.com/ErlendF/face blur
46Full description of response syntax: https://boto3.amazonaws.com/v1/documentation/api/

latest/reference/services/rekognition.html#Rekognition.Client.get face search

56

https://github.com/ErlendF/face_blur/tree/main/scripts/rekognition
https://github.com/ErlendF/face_blur/tree/main/scripts/rekognition
https://github.com/ErlendF/face_blur
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html#Rekognition.Client.get_face_search
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html#Rekognition.Client.get_face_search

3.3 Orchestration

The orchestration explored in the thesis focuses on AWS since this is the cloud platform

used by CuttingRoom. However, the proposed pipeline may be used in any environment

supplying its dependencies, including Google Cloud Platform and Microsoft Azure. The

exploration of the AWS services focused primarily on AWS SageMaker, a fully managed

machine learning service which offers a variety of tools and services for building, training

and deploying machine learning model [19]. Two of the services offered by AWS Sage-

Maker are explored for the purposes of running inferencing using the full pipeline in a

cloud environment.

3.3.1 AWS SageMaker Processing Job

Amazon SageMaker Processing Jobs are used for analysing data and evaluating machine

learning models [24]. This may include feature engineering, data validation, model eval-

uation and model interpretation.

When using a processing job, the underlying infrastructure is fully managed by Ama-

zon. The user needs to specify the ECR image to use, the instance count, instance type

and S3 bucket containing the data which should be processed [11]. This image is used to

start the number of instances of the given type specified. Amazon SageMaker Processing

starts by copying the data from the specified S3 bucket to the instances. SageMaker then

starts the container, which should read the data from the instance’s local storage, process

it and write the result back to local storage. Consequently, it is fairly simple to adapt a

simple example, like the one shown in Listing 20 in Section 3.4.1, to run in a Processing

Job as it still reads and writes to local storage. After either all or parts of the processing

finishes, Amazon SageMaker copies the result back to an S3 bucket.

Since both the instance number and type are easily customizable, this makes it really

easy to scale jobs both vertically and horizontally to speed up processing. For larger

jobs, larger instances may be used to speed up the process, thereby scaling vertically.

Alternatively, several instances may be used to process the job, and the data is distributed

among them, thereby scaling horizontally. When starting the processing job using input

from S3, the user is given options to choose between distribution the data to the instances

ShardingByS3Key or FullyReplicated [12]. However, due to the inherent requirement

for an uninterrupted sequence of frames when utilizing the interrelatedness of frames,

57

sharding the data by S3 key may not be suitable for processing, depending on how the

data is sharded. Though there is no definitive documentation, AWS appears to use

hashing of the S3 key to distribute the data evenly across the instances, in which case,

the data will not be sequential [30].

When fully replicating the data across instances, it would be beneficial to be able to

identify each instance such that each instance could process a separate, sequential part

of the data and the job could be manually distributed. Unfortunately, there is seemingly

no way for an instance to identify itself. The number of instances could be passed to

the processes using for instance environment variables, but this could not identify each

instance. Additionally, replicating the entire dataset to each instance would theoretically

work fine for a smaller dataset if it was possible to manually distribute the work, but

for larger datasets, this would be infeasible. Processing all the frames of an up to eight

hour video would require a great deal of space, not to mention processing power, so fully

replicating it to several instances would be incredibly costly and wasteful.

When testing the processing jobs, the processing image used needed to be custom

made. The Docker container was based on the nvidia/cuda47 docker image to allow

for running the models using GPU acceleration. The latest version of the develop-

ment image based on Ubuntu with Cudnn 8 was used. An Docker container example

is available here: https://github.com/ErlendF/face blur/tree/main/models/face-

blur-processing-job. It may be used with the scripts provided scripts to automatically

start a processing job.

3.3.2 AWS SageMaker Batch Transform

AWS SageMaker Batch transform is used to, for instance, preprocess datasets or perform

inferencing on large datasets [20]. When using batch transform, the data which should

be processed needs to be stored in S3. Amazon SageMaker sends this data from S3 over

HTTP POST requests to the processing container [4]. The container then processes the

request and returns the result. Amazon SageMaker receives the result and stores it in a

specified location in S3 and names the object the same as the input, but appending the

extension .out . The returned result needs to be in a JSON format.

47https://hub.docker.com/r/nvidia/cuda

58

https://github.com/ErlendF/face_blur/tree/main/models/face-blur-processing-job
https://github.com/ErlendF/face_blur/tree/main/models/face-blur-processing-job
https://hub.docker.com/r/nvidia/cuda

Because the multiple image files cannot be combined in a single request48, this is the

equivalent of processing every frame like discussed in Section 3.1.2. The output may later

be combined and handled like discussed for processing every frame. However, this would

require an AWS Lambda, AWS Batch Job49 or similar to be triggered after the batch

transform job has finished.

To use batch transform jobs for preprocessing images to detect and make a represen-

tation for the faces in each image, the container needed to be custom made. Adapting a

simple example such as the one shown in Listing 20 in Section 3.4.1 therefore requires a bit

more work than for an AWS Processing Job. The container needs to listen for HTTP GET

requests to the \ping endpoint and HTTP POST requests to the \invocations endpoint,

both on port 8080 [4]. The \ping endpoint is used by Amazon SageMaker as a health

check for the container, and the actual processing requests are sent to the \invocations

endpoint. Ideally, the container should also listen to the \execution-parameters endpoint,

which allows for setting various tuning parameters for a job during runtime.

The simplest way of fulfilling these requirements is to use the SageMaker Inference

Toolkit. It is built on AWS Labs’ Multi Model Server and handles various aspects of

serving models, such as the endpoints mentioned [17]. It also starts the maximum num-

ber of possible concurrent models automatically, defined by the MaxConcurrentTransforms

parameter. When using the toolkit, the user needs to implement a handler and package

entire program in a docker container. An example handler using MTCNN (see Section

3.2.2) for facial detection and ArcFace (see Section 3.2.4) to make facial representation

is shown in Listing 18. First, the handler is initialized if it has not been already. Then,

when a request is received, the inference function is ultimately called. It parses the

image from the request and passes it to the MTCNN and ArcFace models to get the

locations and facial features representation of each face. Lastly, the result is format-

ted and returned. The toolkit will JSON encode the response and return it to Amazon

SageMaker.

48There are batch strategies, but this requires individual files to be split, which is infeasible for im-
ages [5]

49Not to be confused with an AWS SageMaker Batch Transform Job: https://aws.amazon.com/
batch/

59

https://aws.amazon.com/batch/
https://aws.amazon.com/batch/

class Handler(object):

(...) # __init__ function, omitted for brevity, see source

def initialize(self, context):

(...) # setting variables, omitted for brevity, see source

self.detector = MtcnnDetector(

model_folder=model_path,

ctx=ctx,

num_worker=1,

accurate_landmark=True,

threshold=det_threshold,

)

self.model = get_model(ctx, full_model_path)

def inference(self, data):

resp = []

for input in data:

body = input.get("body")

img = Image.open(io.BytesIO(body)).convert("RGB")

input = get_input(self.detector, np.array(img)[:, :, ::-1].copy())

if input is None:

resp.append([])

continue

inp, bboxes = input

feats = get_feature(self.model, inp)

faces = []

(...) # Transforming data, omitted for brevity, see source

resp.append(faces)

return resp

Listing 18: Batch transform handler using ArcFace and MTCNN50

The entire program, including all classes and other functions not shown in Listing

18, is then packaged into a docker image with the required dependencies51. The docker

image is used to make a SageMaker model as discussed in Section 3.3.3.

50https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

models/arcface-mtcnn-batch-transform/model/handler.py
51See: https://github.com/ErlendF/face blur/tree/main/models/arcface-mtcnn-batch-

transform

60

https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/models/arcface-mtcnn-batch-transform/model/handler.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/models/arcface-mtcnn-batch-transform/model/handler.py
https://github.com/ErlendF/face_blur/tree/main/models/arcface-mtcnn-batch-transform
https://github.com/ErlendF/face_blur/tree/main/models/arcface-mtcnn-batch-transform

3.3.3 Automatization

All parts of the infrastructure deployment has been automated using Terraform52 and

Python scripting53. This is done to ensure consistency, reproducibility and ease of use.

Several ways of running the project in a cloud environment have been explored, and it is

up to CuttingRoom and anyone else who uses the project how they would like to deploy

and utilize it to fulfil their needs.

The Terraform code was made to deploy the following resources to simplify most

deployments. These resources facilitate multiple ways of deploying the project, and should

be adjusted for how the project is actually deployed. This includes the IAM policies

which are currently fairly broad to assist development and should be restricted to a least

privilege level in a production environment.

• An ECR repository to store the containers.

• A S3 bucket to store the data. Public access to the bucket is blocked.

• A SageMaker Notebook instance for development.

• An IAM role with various permissions to the ECR repository, S3 bucket and various

other permissions which may be required for development and inferencing.

Two Python scripts were also made to deploy AWS SageMaker Processing Jobs and

Batch Transform Jobs. These scripts require various variables such as the name of the

ECR repository and the IAM role to use for the processing. These may be retrieved from

the output of the Terraform code, and an example configuration is provided54. The scripts

then automatically start the job with the given configuration. This makes it easy to run

the jobs, and makes it possible to automatically start based on end-user interactions.

Lastly, a group of Python scripts were made to use AWS Rekognition for facial de-

tection and recognition as discussed in Section 3.2.7. The scripts for AWS Rekognition

are useful for the same reasons as the rest of the automation, but they were also strictly

required since the AWS console cannot be used for the operations required, such as start-

ing the face search. The AWS CLI could be used to perform these operations, but this

is a more manual approach which would hurt the consistency and reproducibility of the

results.

52https://github.com/ErlendF/face blur/tree/main/terraform
53https://github.com/ErlendF/face blur/tree/main/scripts/sagemaker
54https://github.com/ErlendF/face blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/

scripts/sagemaker/ex variables.py

61

https://github.com/ErlendF/face_blur/tree/main/terraform
https://github.com/ErlendF/face_blur/tree/main/scripts/sagemaker
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/scripts/sagemaker/ex_variables.py
https://github.com/ErlendF/face_blur/blob/b9efa56c27fd69dedb01c378cff631fc2d045ac6/scripts/sagemaker/ex_variables.py

3.4 Distribution

The majority of the implementation is made available as a package using pip, the most

popular package-management system for Python [53], for easy use and installation55. It

can be installed using the command shown in Listing 19.

pip install git+ssh://git@github.com/ErlendF/face_blur.git

Listing 19: Package installation

3.4.1 Example configuration

Listing 20 shows a very simple example of how the full pipeline may be used, which follows

the outline given in the overview 3.1. First the shot transitions are detected. Then, the

video is dynamically processed, and the facial sequences are made, both utilizing the

detected shot transitions. Afterwards, the sequences are interpolated to remove gaps and

false positives. In this case, any face which is not recognized is then removed from the

facial sequences, thereby only blurring known faces. Finally, the faces are blurred and

written back to disk.

55It is available from the same GitHub repository as discussed previously: https://github.com/
ErlendF/face blur

62

https://github.com/ErlendF/face_blur
https://github.com/ErlendF/face_blur

from videoface import get_shot_transitions, dynamically_process, make_sequences,

interpolate, filter_short_sequences, init_known_faces, filter_known_faces,

write_faces, copy_remaining_files

↪→

↪→

from smoothing import avg_smoothing

from os import makedirs

img_dir = "/path/to/your/image/folder"

out_dir = "/path/to/your/output/folder"

known_faces_dir = "/path/to/your/known/faces/folder"

makedirs(out_dir, exist_ok=True)

shot_transitions = get_shot_transitions(img_dir)

frames, matchings = dynamically_process(img_dir, processing_func=deep_face_process,

shot_transitions=shot_transitions)↪→

seqs = make_sequences(frames, matchings, shot_transitions=shot_transitions)

seqs = interpolate(seqs)

seqs = filter_short_sequences(seqs)

known_faces = init_known_faces(known_faces_dir)

seqs = filter_known_faces(seqs, known_faces)

seqs = avg_smoothing(seqs)

write_faces(seqs, img_dir, out_dir)

copy_remaining_files(img_dir, out_dir)

Listing 20: Simple usage example

3.4.2 Interchangeability

Each function is designed to be as modular as possible. Any function may be

easily replaced, as long as it follows the same interface. The full_process and

dynamically_process functions are interchangeable, and could be replaced by any other

function, as long as the inputs and outputs are the same. Except for the two process-

ing functions and the make_sequences function, all of the other functions operate using

the facial sequences. This makes every function independent and interchangeable. Each

function may be used separately, replaced or ignored, and new functions may be added

without affecting any other function. Some functions are, however, intended to work

together. For instance, it does not make a lot of sense to dynamically process a video

without interpolating the missing frames, or otherwise processing them in some other

way. Without the interpolation, only a selection of frames would contain any information

to blur the faces in the video.

63

Similarly, both the full_process and dynamically_process functions take the

processing_func function (which detects faces in the frames and produces facial features

representations) as a parameter, as shown in Listing 20. This makes it easy to replace

the facial detection and facial recognition. This is also how the tests in Section 4.1 were

performed; by simply replacing the processing function with either the deep_face_process

or dlib_process , depending on the test.

64

Chapter 4

Analysis

This chapter will discuss and analyse the most important aspects of the implementation,

and the performance of the proposed pipeline will be explored primarily in terms of its

prediction quality, running time and cost. It is meant to further highlight and justify the

various implementation decisions discussed in Chapter 3, and their various benefits and

drawbacks.

4.1 Prediction quality

In this section, the prediction quality of four different configurations presented in the

thesis will be tested and compared:

• Processing every frame using Deepface

• Processing every frame using Dlib

• Dynamic processing using Deepface

• Dynamic processing using Dlib

In order to measure the prediction quality of each configuration, an example video

was made with multiple moving faces in various scales, poses, occlusions, and illumi-

nation conditions: https://youtu.be/ 5i5kza5C-M. The video has several cuts and is

intended to be a fairly ”normal” video. It does, however, have some situations where the

configurations may struggle to correctly detect or recognize the faces in the video. This

is intended to highlight the differences in the quality of each configuration’s predictions.

65

https://youtu.be/_5i5kza5C-M

The processed videos were made using the example shown in Listing 20, modifying it

to test the various configurations. A full list of the videos is available in Appendix C. In

the videos, the bounding boxes are also displayed rather than blurring the faces. This is

simply to make it clearer what is actually detected correctly and what is not. The videos

are 2 minutes and 32 seconds long, and contain a total of 4587 frames each (30 frames

per second), and are without sound since it is outside the scope of the thesis. Each frame

is divided into one of four categories:

• True positive: All faces in the frame are correctly detected.

• True negative: There are no faces in the frame, and no faces are detected.

• False positive: Something other than a face is detected as a face.

• False negative: A face in the frame is not detected.

The videos were manually reviewed to count the number of frames in each category.

There are, however, some frames which are not easily categorizable. The following criteria

was used to categorize these. The full overview of the frames and their categorization is

available in Appendix B. The frame number has been added at the bottom of each video

(except the original) to make it easier to refer to specific sections of the video.

Figure 4.1: The bound-
ing box is interpolated
when a face is out of view
for a brief period1

- Instances where a face is briefly out of view, but

is still marked by a bounding box, is not considered

a false positive. This is the intended behaviour, and

arguably not particularly disruptive. It does, however,

contribute greatly in other aspects by filling in missing

values.

1Example timestamped at 02:01:
https://youtu.be/v 49prmpeec?t=121

66

https://youtu.be/v_49prmpeec?t=121

Figure 4.2: Faces on the
edge of the frame may be
difficult to detect2

- False negatives are counted as instances of faces

being visible without being detected, where at least one

eye is clearly visible. This is typically only a problem

with faces viewed from the side. It is difficult to clearly

define when a missing detection should be counted as

a false negative when someone is entering the frame.

Each frame was therefore counted as either a true or

false negative for every configuration in order to not

differentiate between them. The example shown in

Figure 4.2 is counted as a false negative.

Figure 4.3: Rapid facial
movement3

- In instances with excessive movement, where it

is impossible to identify the face even without blurring,

like shown in Figure 4.3, the frame is not counted as a

false negative.

- Incorrect matchings where the bounding boxes ”travel” across the screen are counted

as false positives4.

- In the example video, there is a face in every frame of the video. Consequently, there

are no true negatives since there are no frames where detecting no faces would be correct.

2Example timestamped at 01:40:
https://youtu.be/v 49prmpeec?t=100

3Example timestamped at 01:17: https://youtu.be/v 49prmpeec?t=77
4Example timestamped at 01:17: https://youtu.be/nnXTJOOwLiQ?t=77

67

https://youtu.be/v_49prmpeec?t=100
https://youtu.be/v_49prmpeec?t=77
https://youtu.be/nnXTJOOwLiQ?t=77

4.1.1 Prediction quality results

The Deepface configurations outperformed the Dlib configurations in every metric, being

both more accurate, precise and with a higher recall. The overall best configuration was

the dynamic processing using Deepface, which had slightly fewer false positives than the

Deepface configuration processing every frame. Each of the instances of false positives

present when processing every frame was still visible when dynamically processing, but

they lasted for fewer frames. The dynamic processing likely had fewer false positives

because it does not process every frame.

Table 4.1: Prediction quality: Deepface (processing every frame)5

Positive Negative
True 4497 (98.0%) 0 (0.000%)
False 23 (0.501%) 67 (1.461%)

Accuracy 0.980
Precision 0.995
Recall 0.985
F1-score 0.990

Table 4.2: Prediction quality: Deepface (dynamic processing)6

Positive Negative
True 4514 (98.4%) 0 (0.000%)
False 6 (0.131%) 67 (1.461%)

Accuracy 0.984
Precision 0.999
Recall 0.985
F1-score 0.992

5https://youtu.be/tORTBS7iEGY
6https://youtu.be/73XS75-tdYQ

68

https://youtu.be/tORTBS7iEGY
https://youtu.be/73XS75-tdYQ

Table 4.3: Prediction quality: Dlib (processing every frame)7

Positive Negative
True 3783 (82.5%) 0 (0.000%)
False 38 (0.828%) 766 (16.7%)

Accuracy 0.825
Precision 0.990
Recall 0.832
F1-score 0.904

Table 4.4: Prediction quality: Dlib (dynamic processing)8

Positive Negative
True 3753 (81.8%) 0 (0.000%)
False 33 (0.719%) 801 (17.5%)

Accuracy 0.818
Precision 0.991
Recall 0.824
F1-score 0.900

Figure 4.4: Face from the side
not detected by Dlib

All of the configurations struggled with a face hov-

ering at the edge of the screen, particularly the one

shown in Figure 4.2. That shot alone is the source of

all of the false negatives for the Deepface configura-

tions. Generally, the Deepface configurations seemed

to handle faces viewed from the side very well, and

it is unclear why this shot in particular was more

difficult. It could potentially have struggled because

more than half of the face was never visible, and it

was at the very edge of the screen. In all other cases,

it handled faces from the side without difficulty.

7https://youtu.be/nnXTJOOwLiQ
8https://youtu.be/v 49prmpeec

69

https://youtu.be/nnXTJOOwLiQ
https://youtu.be/v_49prmpeec

The Dlib configurations did, however, seem to struggle more with faces viewed from

the side in general. There were several instances where it was unclear whether or not

it should be counted as a false negative or not, since parts of the face were visible, like

shown in Figure 4.4, but not enough to be considered a false negative by the definition

provided above. It would be hard to identify someone based on such an image, but it

does reveal some of their facial features. The Deepface configurations had far fewer of

these instances and it mostly detected the faces before the faces became clear enough to

properly identify them.

The Dlib configurations also struggled in poor lighting conditions, especially with

darker skin tones, as shown in Figure 4.5. There was otherwise no noticeable difference

between skin tones in the scenes with better lighting conditions in the video. However, in

the example of using Dlib to process every frame without interpolation shown in Section

4.4, there were a greater number of instances of false negatives for darker skin tones,

though this is not nearly a large enough sample size to definitively conclude there is such

a bias.

Figure 4.5: Difference between detection of two different skin tones in poor lighting
conditions

There were no significant differences between the dynamic processing and processing

every frame, neither for the Deepface nor Dlib configurations. As mentioned, in the case

of the Deepface configurations, the only difference between the two was that the dynamic

processing had slightly fewer false positives, likely because it did not process every frame.

In the case of the Dlib configurations, processing every frame was a bit more accurate

due to its fewer false negatives, but also very slightly less precise due to a minor increase

in the number of false positives.

70

Regardless of the performance metrics, the Deepface configurations bounding boxes

moved a lot smoother throughout the video. The Dlib bounding boxes were noticeably

more jittery, especially when processing every frame. This is not as disruptive to the

viewer when blurring the images rather than displaying the bounding boxes, but is still

very noticeable. When dynamically processing the frames, the jitter of the bounding

boxes was less noticeable (as discussed in Section 3.1.3), but it was still clearly present

and far more noticeable than with the Deepface configurations.

4.2 Cost and running time

Due to the results of Section 4.1.1, only the implementations using Deepface were tested in

this section. The following is a collection of tests of three different AWS instances running

AWS SageMaker Processing Jobs (see Section 3.3.1) using three various videos as input.

AWS SageMaker Processing Jobs were used since they handle the underlying transfer of

data and utilize standardised AWS instances, thereby making reproducible results. Each

of the test videos is 1 minute long, 30 frames per second at 1080p quality, and each tests a

different scenario. The variety of videos was chosen to test the dependence of the running

time on the video being processed, and highlight any differences between the impact on

running time on the various configurations.

• Multiple faces - A video containing multiple moving faces, entering and exiting

the view9.

• Single face - A video containing a single, still face visible for the entire duration

of the video10.

• No face - A video without any faces at all11.

9https://youtu.be/HZz4862 lII
10https://youtu.be/VXteG6A2ME0
11https://youtu.be/Mku0Um84Iew

71

https://youtu.be/HZz4862_lII
https://youtu.be/VXteG6A2ME0
https://youtu.be/Mku0Um84Iew

The three different AWS instances were chosen to present a variety in options of

instance types for the processing. Each of the instances are at a different price point per

hour of usage, and each serve different purposes [18]12. The prices provided are the prices

of the Stockholm region (AWS region ”eu-north-1”) at the time of writing — May 2022.

• ml.t3.large - A standard instance. Fairly cheap ($0.104 per hour), with 2 vCPUs

and 8GiB of memory.

• ml.c5.2xlarge - A compute optimized instance. A bit more expensive ($0.437 per

hour), with 8 vCPUs and 16GiB of memory.

• ml.g4dn.xlarge - A GPU accelerated instance, utilizing an NVIDIA T4 GPU [23].

Even more expensive ($0.781 per hour), with 4 vCPUs and 16GiB of memory.

Each of the tests measured three separate values in order to detect differences in how

each configuration affected the running time of each part of the application:

• The container time - The total processing time as reported by AWS SageMaker.

• The full running time - The total time spent by the application, as recorded

from the start to the end of the main function.

• The processing time - The time spent processing the frames themselves, using

either dynamic processing or processing every frame.

These tests were performed after the optimizations presented in Section 4.3.

4.2.1 Running time results

As shown by the test result tables and Figure 4.6, the dynamic processing is significantly

faster than processing every frame, especially when there is little facial movement in the

video. With multiple moving faces, the dynamic processing was between 3 and 4 times

faster than processing every frame, depending on the AWS instance type being used.

In contrast, with both a single, still face and no faces at all, the dynamic processing

was between 6 and 18 times faster, again depending on the instance type. This effect is

lessened somewhat when comparing the total runtime of the container, as there is some

constant overhead when starting both the container and application.

12A full list of instances and their cost is available here: https://aws.amazon.com/sagemaker/
pricing/

72

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

Table 4.5: Running time: ml.t3.large (processing every frame)

Measurement \Test Multiple faces Single face No face
Container time 10h, 5m, 15s 9h, 45m, 39s 9h, 34m, 35s
Full running time 9h, 56m, 2s 9h, 36m, 27s 9h, 25m, 24s
Processing time 9h, 43m, 32s 9h, 23m, 1s 9h, 23m, 46s

Table 4.6: Running time: ml.c5.xlarge (processing every frame)

Measurement \Test Multiple faces Single face No face
Container time 48m, 41s 47m, 24s 45m, 2s
Full running time 46m, 34s 45m, 59s 43m, 5s
Processing time 41m, 53s 41m, 14s 42m, 36s

Table 4.7: Running time: ml.g4dn.xlarge (processing every frame)

Measurement \Test Multiple faces Single face No face
Container time 15m, 27s 14m, 49s 9m, 57s
Full running time 14m, 9s 13m, 46s 8m, 12s
Processing time 8m, 23s 8m, 4s 8m, 2s

Table 4.8: Running time: ml.t3.large (dynamic processing)

Measurement \Test Multiple faces Single face No face
Container time 2h, 41m, 43s 55m, 6s 42m, 22s
Full running time 2h, 32m, 46s 45m, 59s 33m, 19s
Processing time 2h, 20m, 24s 32m, 11s 31m, 42s

Table 4.9: Running time: ml.c5.xlarge (dynamic processing)

Measurement \Test Multiple faces Single face No face
Container time 17m, 38s 9m, 22s 5m, 37s
Full running time 15m, 50s 7m, 57s 3m, 41s
Processing time 10m, 45s 3m, 0s 3m, 0s

Table 4.10: Running time: ml.g4dn.xlarge (dynamic processing)

Measurement \Test Multiple faces Single face No face
Container time 9m, 58s 8m, 11s 2m, 52s
Full running time 8m, 47s 7m, 7s 1m, 34s
Processing time 2m, 53s 1m, 24s 1m, 23s

73

The difference in speedup when using dynamic processing for the multiple faces ex-

ample compared to the single- and no face examples, as visualized in Figure 4.6, is likely

primarily due to certain sections of the video needing to be reprocessed. In the single-

and no face examples, there is no instance of any face entering nor leaving the frame, and

it is therefore very easy to interpolate without needing to process additional frames (as

discussed in Section 3.1.3). Therefore, the interval used for the dynamic processing may

be increased, such that a greater number of frames are interpolated and do not need to

be processed. Additionally, a facial features representation needs to be made for every

face detected, thereby further increasing the running time by the number of faces. How-

ever, this increase is comparatively small, as demonstrated by the little to no difference

between the single- and no face examples.

Figure 4.6: Processing time

Additionally, the tests performed on the smaller AWS instances had a much larger

speedup when using dynamic processing compared to processing every frame. This is

likely because as the processing time decreases, the overhead which is constant regardless

of the instance, such as the time spent reading images from the disk, becomes a greater

part of the total processing time. In the case of the ml.g4dn.xlarge instance utilizing GPU

acceleration for the facial detection and facial recognition, there is also some overhead

each time the work is handed off to the GPU [70], though it was still the fastest AWS

instance by a wide margin. Using larger batch sizes for the processing would likely

alleviate the extra overhead partly, as the GPU processing would be started fewer times,

but with a greater workload each time. The batch size can be passed as a parameter

both when dynamically processing and processing every frame.

74

The tests also showed the significant performance impact of utilizing GPU acceler-

ation. The ml.g4dn.xlarge instance, which only has 4 vCPUs, but also an NVIDIA T4

GPU, ran each test significantly faster than the ml.c5.2xlarge instance, which has 8 vC-

PUs [23, 18]. The processing was completed about 5 times faster on the ml.g4dn.xlarge

instance compared to the ml.c5.2xlarge instance when processing every frame, and be-

tween 2 and 4 times faster when using dynamic processing. The difference between

speedups when using dynamic processing and processing every frame is likely for the

same reason as the other instances discussed previously.

4.2.2 Cost

Unfortunately, the costs of the AWS bills are aggregated and can therefore not be used

for direct price comparisons. The prices for the AWS instances are listed per hour, but

they are billed per second of usage [9]. Therefore, the costs shown in Tables 4.11 and

4.12 are calculated by multiplying the cost of the AWS instance type by the container

running time, rounded off to the nearest cent. They show the cost of the same tests as in

Section 4.2.1 on each AWS instance type, both when processing every frame and using

dynamic processing.

Table 4.11: Cost: Processing every frame

AWS Instance \Test Multiple faces Single face No face
ml.t3.large $1.05 $1.02 $1.00
ml.c5.2xlarge $0.35 $0.35 $0.33
ml.g4dn.xlarge $0.20 $0.19 $0.13

Table 4.12: Cost: Dynamic processing

AWS Instance \Test Multiple faces Single face No face
ml.t3.large $0.28 $0.10 $0.07
ml.c5.2xlarge $0.13 $0.07 $0.04
ml.g4dn.xlarge $0.13 $0.11 $0.04

75

Since processing every frame takes more time than dynamic processing, as discussed

in Section 4.2.1, it is consequently also more expensive. In most cases, processing every

frame is between twice and ten times more expensive than dynamic processing. Consider-

ing the small differences in prediction quality, as discussed in Section 4.1, it makes sense

to use dynamic processing in nearly every case. In scenes with multiple faces moving in

and out of the frame, the differences between the two processing methods are reduced,

but still clearly noticeable. On a larger scale, these differences in cost will be much more

apparent.

There is no one cheapest instance among the AWS instances tested. When processing

every frame, the ml.g4dn.xlarge was the cheapest in every case. However, when using

dynamic processing, the ml.g4dn.xlarge and ml.c5.2xlarge instances were equal with the

exception of the single face test, where the ml.c5.2xlarge instance was slightly cheaper.

Consequently, the cheapest instance may differ based on the dataset. Considering the

minor differences, and the lower running time of the ml.g4dn.xlarge instance, it is likely

preferable to use it for most applications. Additionally, the ml.g4dn.xlarge instance will

likely be cheaper in comparison to instances without GPU acceleration for larger data sets.

Since processing the frames is the most computationally intensive part of the application,

a larger portion of the workload can be offloaded to the GPU with larger data sets. Using

larger batch sizes may also affect performance, as previously discussed in Section 4.2.

Additional costs

There are also some additional costs related to storing both the data in S3, and the

container image in ECR. For the S3 bucket, it costs $0.023 per GB per month [16], and

for ECR it costs $0.10 per GB per month [7]. There is also an additional fee when

retrieving data from S3 of $0.0004 per 1000 requests for a standard S3 instance, and a fee

for outbound data transfers from ECR private repositories at $0.09 per GB. This would

for instance be when you retrieve the image for use. The image could also be moved to

a public repository, which has no fee associated, given certain constraints13. These costs

are, however, likely of little importance in a production environment, and most of them

will be required regardless of using the proposed pipeline at all. The videos still need to

be stored regardless of whether or not any faces are blurred in them.

13See https://aws.amazon.com/ecr/pricing/

76

https://aws.amazon.com/ecr/pricing/

Cheaper alternatives

Using AWS SageMaker Processing Jobs is comparatively expensive compared to using the

underlying EC2 instances directly. For instance the ml.g4dn.xlarge instance costs $0.558

in EC2 on demand [21]. Using spot instances (unused EC2 capacity14), this cost is further

reduced to $0.1982, nearly a fourth of the Processing Job cost [22]. However, the spot

price fluctuates frequently, and spot instances may be terminated by AWS at any time

when there is not enough unused EC2 capacity. Additionally, when using EC2 directly,

data transfers and spinning up and down instances need to be handled independently.

Using AWS Batch (not to be confused with AWS SageMaker Batch Transform) may be

a good alternative since it can scale up and down automatically, and has no additional

cost compared to the underlying EC2 instances [3].

4.2.3 Scalability

Larger videos may potentially be split and processed in parallel with nearly a linear

speedup since sequential parts of the video should be able to be processed entirely inde-

pendently. Consequently, the only overhead would be splitting and recombining the data

set. Given that the data is stored in S3 and needs to be retrieved and written back re-

gardless of the parallelization, this should be practically indistinguishable from processing

the data on a single node. Thus, the only overhead should be deciding how to split the

video. This is assuming that the video is processed by already running instances, thereby

ignoring startup times. In the examples given, this would however not be the case, and

the instances would have to be started specifically to process the video. Starting the

instances takes time and the cost consequently scales by the number of instances started.

The time overhead of starting the instances should be constant, but as the data set is

split across a greater number of instances, it will become a greater portion of the total

running time.

When processing the video in parallel, it could be split evenly across the instances,

but this may cause artifacts at the points in the video where it was divided since there

will be no information shared before and after the divide. This could be alleviated by

having some overlap between adjacent sections of the video, and averaging the results in

the overlap. Alternatively, the video could be split on detected shot transitions. This

may, however, be problematic if there are no shot transitions, and it would limit the

possible parallelization of the processing. This may or may not be an issue depending on

the video and the time requirement.

14https://aws.amazon.com/ec2/spot/

77

https://aws.amazon.com/ec2/spot/

4.3 Use of computational resources

When discussing the use of computational resources, it is important to measure what is

using the most resources. For this purpose, profiling is a well suited tool. In this case,

the python profiler15 was used. The profiler generates a profile, which is simply a list of

statistics which describes the time spent on various parts of the program, and how many

times each function was called [43]. This profile may then be visualized using Graphviz16,

but it first needs to be converted into a dot graph, which Graphviz can visualize [42]. In

order to do so, gprof2dot17 was used.

Profiling the running time of the dynamically processed Deepface implementation

produced the graph shown in Figure 4.7. The figure only shows a part of the graph

since the whole graph would not fit into a single page18. Please note that the profiling

was done on a personal computer using an SSD and GPU acceleration, which greatly

decreases running time as discussed in Section 4.2.

Figure 4.7: Profiling visualization

15https://docs.python.org/3/library/profile.html#module-profile
16https://graphviz.org/
17https://github.com/jrfonseca/gprof2dot
18Full graph available here: https://github.com/ErlendF/face blur/blob/

7346af7216f5bef12d645b2d5e544134fe3e6cec/docs/Profiling before blur update.png

78

https://docs.python.org/3/library/profile.html#module-profile
https://graphviz.org/
https://github.com/jrfonseca/gprof2dot
https://github.com/ErlendF/face_blur/blob/7346af7216f5bef12d645b2d5e544134fe3e6cec/docs/Profiling_before_blur_update.png
https://github.com/ErlendF/face_blur/blob/7346af7216f5bef12d645b2d5e544134fe3e6cec/docs/Profiling_before_blur_update.png

Each node in the graph shown in Figures 4.7, 4.8 and 4.10 represents a function and

contains four pieces of information, in the following order [43]:

• The name of the function (filename:lineno(function)).

• The percentage of total running time of the function and all sub-functions. This is

the cumulative time of the function, measured from invocation till exit.

• The percentage of the total running time of the function alone, excluding sub-

functions.

• The number of times the function was called.

4.3.1 Optimizing blurring

Figure 4.8: Profiling visualization after op-
timizing blurring19

As shown in

Figure 4.7, the write_faces function

(which blurs and writes the frame

to disk) makes up the majority of the

running time of the program at 72%

while the dynamic processing itself

only used 18%. Most notably, over

half of the total running time was

spent by the round_blur function

alone, which simply blurs the selected

faces as described in Section 3.1.11.

This seemed a bit excessive and

should be reduced. By replacing both

the medianBlur and GaussianBlur

OpenCV functions with the

blur OpenCV function, and slightly

simplifying the alphaBlend function,

the total time spent blurring faces was reduced from 55% to 21%, more than

halving its impact, as shown in Figure 4.8. The optimization did slightly change

how the blurring looked, though not very noticeably.

19Full graph available here: https://github.com/ErlendF/face blur/blob/

7346af7216f5bef12d645b2d5e544134fe3e6cec/docs/Profiling after blur update.png

79

https://github.com/ErlendF/face_blur/blob/7346af7216f5bef12d645b2d5e544134fe3e6cec/docs/Profiling_after_blur_update.png
https://github.com/ErlendF/face_blur/blob/7346af7216f5bef12d645b2d5e544134fe3e6cec/docs/Profiling_after_blur_update.png

4.3.2 Optimizing the reading of frames

As shown in Figure 4.8, simply reading the frames from disk makes up 19% of the run-

ning time (the imread function from the OpenCV python library20) after optimizing the

blurring. This could be reduced by using a faster disk, but this is not always feasible.

The comparatively long running time is partly because the current implementation reads

each frame 2-3 times depending on the configuration, as shown in Figure 3.1. A frame

may be read in the following occasions:

1. To detect scene transitions. These frames are only stored as a significantly down

scaled version (48x27).

2. When processing the frames. Processing every frame will, of course, read every

frame. Dynamic processing will only read a subset of the frames.

3. When blurring the faces, the frame needs to be read, the faces blurred, and the

frame is written back to the disk.

4. Any frame which did not have any faces to blur is copied to the output folder.

Each frame may be read at four different occasions, but since only frames which did

not contain any faces to blur are copied to the output folder, a single frame will never be

read to both blur the faces in it and copy it to the output folder. Consequently, a single

frame can be read a maximum of three times.

As shown in Section 4.2, when using dynamic processing with GPU acceleration, more

time was spent reading and writing the frames to disk than actually processing the video

itself. This could be significantly reduced by only reading each frame once, rather than

2-3 times. This implementation is mostly due to memory capacity restrictions. Storing

every frame of larger videos is infeasible with limited memory capacity, though it would

be possible by increasing the memory available, or by splitting the video into smaller

sections in order to reduce the total number of frames each instance needs to process.

20https://pypi.org/project/opencv-python/
21https://pypi.org/project/memory-profiler/

80

https://pypi.org/project/opencv-python/
https://pypi.org/project/memory-profiler/

Figure 4.9: Memory usage visualization reading all frames once, made using memory-
profiler library21

In the case of the 720p example video, it is just small enough to be fully loaded using

16GB of memory, as shown in Figure 4.9 (a full overview is available in Appendix D).

For this purpose, the implementation was adapted to both accept pre-loaded frames, and

reading them manually like the previous implementation for when the video is too large.

By doing so, the frames could be read a single time rather than 2-3 times and passed to

each required section of the pipeline. This reduced the percentage of time spent reading

the frames from 19% to 8% as shown in Figure 4.10, more than halving its impact.

Figure 4.10: Profiling visualization after optimizing the reading of frames22

22Full graph available here: https://github.com/ErlendF/face blur/blob/

605eef859e6097351acbc8bc5f91d2de0072f278/docs/Profiling reading frames once.png

81

https://github.com/ErlendF/face_blur/blob/605eef859e6097351acbc8bc5f91d2de0072f278/docs/Profiling_reading_frames_once.png
https://github.com/ErlendF/face_blur/blob/605eef859e6097351acbc8bc5f91d2de0072f278/docs/Profiling_reading_frames_once.png

Even in the cases where there is not sufficient memory to read all frames at the same

time, some of the frames may still be kept in memory automatically by read caching.

When reading data from I/O, a copy may be retained in order to accelerate future requests

for the data [62]. This is managed by a cache replacement algorithm [48], and there is

no guarantee of the data still being in cache the next time it is read. It would therefore

still be beneficial to reduce the number of times the frames are read.

4.4 Removing false negatives

Removing false negatives was mostly effortless using the facial sequence and interpola-

tion mechanisms when the face was intermittently detected correctly. Table 4.13 shows

the prediction quality results of an example where Dlib was used to process every frame

without interpolating the result. Comparing this to Table 4.3, where the results were

interpolated, shows that there are a bit fewer false positives, but a lot more false nega-

tives, resulting in a slightly lower accuracy, recall and F1-score, but a slightly increased

precision. This is because there were far more instances of false negatives, where the

bounding boxes were missing for frames at a time. In the example with interpolated

sequences, there were 7 separate instances of false negatives, each being several frames

long (see Appendix B for a full overview). However, in this case where the sequences

where not interpolated, there were 34 instances, nearly five times as many, each often

being just a few frames long.

Table 4.13: Prediction quality without interpolation: Dlib (processing every frame)23

Positive Negative
True 3672 (80.1%) 0 (0.000%)
False 6 (0.131%) 909 (19.8%)

Accuracy 0.801
Precision 0.998
Recall 0.802
F1-score 0.889

23https://youtu.be/nSvN24R wRU

82

https://youtu.be/nSvN24R_wRU

As shown, the interpolation and facial sequences successfully removed most instances

of false negatives. However, when a face is not detected at all, like in the example shown

in Figure 4.2, there is no way of detecting the face based on the output information from

the facial detection model. In these cases, the only options available are to either replace

or further train the model since any changes to other parts of the pipeline cannot affect

this. Fortunately, the Retinaface model performed very well and had only one instance

of a face not being detected at all, as discussed in Section 4.1.1.

The downside of using interpolation with inaccurate models is the increase in false

positives. There were fewer false positives when not interpolating since the interpolation

often also interpolated between the false positives, thereby extending them. Addition-

ally, when the facial sequences were incorrectly matched, and the bounding boxes were

interpolated between different faces, which was also counted as false positives. With the

Dlib model, this happened a few times throughout the example video. In contrast, there

was not a single instance of false positives due to interpolation in the Deepface examples.

Consequently, it greatly depends on the model. Regardless, it is likely beneficial to have

fewer false negatives at the cost of slightly more false positives in most scenarios, since

the false negatives may reveal the faces of the people in the video.

4.5 Removing false positives

In both of the configurations using Deepface to process the video, there were three in-

stances of false positives, each of which lasted for two frames (see Appendix B). By

filtering short facial sequences (as discussed in Section 3.1.10), these could potentially be

removed without negatively impacting the true positive facial detections. In this case,

the false positives and their length are known, and we could therefore remove them by

filtering any sequence shorter than three frames. However, in most cases, this will not be

known beforehand. Therefore, it would be a more representative test to filter sequences

shorter than 10 frames (1/3 of a second at 30fps) instead. A face would then have to

be visible for 10 frames or more in order to be detected. The following test was there-

fore performed filtering sequences shorter than 10 frames using dynamic processing with

Deepface.

83

Table 4.14: Prediction quality filtering shorter facial sequences: Deepface (dynamic pro-
cessing)24

Positive Negative
True 4518 (98.5%) 0 (0.000%)
False 2 (0.0436%) 67 (1.461%)

Accuracy 0.985
Precision 1.00
Recall 0.985
F1-score 0.992

This worked well for two of the three instances of false positives. Unfortunately, the

last instance has been incorrectly matched to a facial sequence, which makes the total

facial sequence longer than the filtering length. Consequently, it was not removed when

filtering the short sequences. The false positive was incorrectly matched to the facial

sequence for two reasons:

1. The false positive was coincidentally in the same area of the screen (a bounding

box distance of 0.47), and had a surprisingly low facial feature distance of 0.27.

Combining the bounding box and facial feature distances results in a score lower

than the threshold of 1, which allowed them to form a single facial sequence.

2. The false positive ended on the exact frame before the actual facial sequence started.

This allowed the sequences to be matched since there was no actual detected in-

stance of the face to be correctly matched. If there had been an actual instance of

the face, it would most likely have had a lower distance to the rest of the sequence,

thus being matched to the sequence instead of the false positive. The false positive

would then have formed a separate facial sequence two frames long, which would

have been removed.

24https://youtu.be/yaW0VuOyGPk

84

https://youtu.be/yaW0VuOyGPk

Figure 4.11: False positive and
true positive in adjacent frames
which were incorrectly matched

This could be prevented by lowering the

threshold for considering two faces to belong

to the same person. However, this would also

increase the number of faces which are not

correctly matched in cases where a face is

moving, or for various reasons (illumination,

pose, occlusion etc.) may produce a facial

features representation with substantial changes

between frames.

4.6 Selecting specific faces for blurring

A selected group of the detected faces in the video may be blurred, or not blurred,

depending on the desired result. Similarly to the previous tests, the bounding boxes are

displayed rather than blurring the faces in order to clearly show what has been correctly

detected and what has not. For the purposes of selecting specific faces, the selected faces

are coloured blue, and all non-selected faces are still coloured red.

4.6.1 Selecting known faces

When selecting already known faces, images of the face or faces which should be selected

need to be provided. For this test, the images shown in Figure 4.12 were provided. Five

images were provided, giving five different opportunities to correctly recognize the face

in the video. Furthermore, the photos are taken from various angles, thereby giving a

variety of perspectives which may make it easier to correctly recognize. Obtaining such

photos, for instance, for any show host or news reporter which should not be blurred in

a video would be very easy given the likely high number of recordings of them available.

85

Figure 4.12: Selecting known faces

Figure 4.13: Missing rec-
ognized face

This worked fairly well, and all instances of the selected face

were correctly identified except for one: https://youtu.be/

Wf yMDSXteo?t=27. In order to fix this, the threshold for

recognition could be lowered, which would likely include the

missing sequence. However, this would also increase the like-

lihood of other faces incorrectly being identified. Alterna-

tively, additional images could be added, which would pro-

vide additional opportunities to correctly match the face.

The easiest images to use in order to ensure detection, are

images taken directly from the video itself, as shown in Figure 4.13. This image is easily

retrievable after processing the video, and could potentially be selected using some form

of user interface. All instances of the face were correctly identified after adding the image

shown in Figure 4.13: https://youtu.be/AJNC70xWvrs.

4.6.2 Selecting by time and location

When selecting a face based on time and location, a frame number and its coordinates in

the frame need to be provided. For this test, the frame number 1500, and the coordinates

(640, 300) were used (coordinates are the number of pixels counted from the top left corner

of the frame). The resulting video25 nearly perfectly selected the correct face in each of the

shots, except for the very first shot, which was incorrectly not included in the selection.

It was likely not included due to the poor illumination in the first shot, which may have

caused the facial features to be too different from the other sequences to be recognized.

In order to include it in the selection, a second selection may be made in order to

include the missed face in the first shot. In this case, where only a single facial sequence

needed to be selected, the threshold for identifying another sequence as belonging to the

same face can be set to 1. With a threshold of 1, the other sequence needs to contain

a perfect match of the facial features in the primary sequence. This will in practice

25https://youtu.be/fkTlFBNTb94

86

https://youtu.be/Wf_yMDSXteo?t=27
https://youtu.be/Wf_yMDSXteo?t=27
https://youtu.be/AJNC70xWvrs
https://youtu.be/fkTlFBNTb94

never happen, unless the video is artificially constructed to accomplish this. A second

test was made to validate this (selecting frame number 200, location (500, 360))26, which

selects the facial sequence incorrectly not included in the original video. As expected, all

instances of the face in each shot was correctly selected in the second video.

In a real world scenario, this could be done by going through the output video and

using some sort of user interface to select any faces which was not correctly selected, or

selecting any faces which were incorrectly included in the selection. Thereby, the selection

could be easily changed to only include the correct selection of faces.

4.7 Detecting shot transitions

Shot transition detection using TransNetV2 has worked remarkably well, and has been

used to make all of the other examples shown. Without detecting the shot transitions,

facial sequences are sometimes made across shot transitions when dynamically processing,

which may look very peculiar27. This was not a major issue for the example video, likely

due to the changing number of faces between frames which caused these sections to

require reprocessing. When all the frames are processed in the section containing a shot

transition, it is less likely that a facial sequence will be made across the shot transition

due to the additional information gathered.

The TransNetV2 model detected all the shot transitions in the original example video

perfectly. This is an example where all the shot transitions have been marked by a red

circle in the lower right corner to display detections: https://youtu.be/sTvsOq-1orQ.

Note that the mark is only visible for the exact frame of before the transition. The original

example video, however, only contained cuts, which are easier to detect than gradual tran-

sitions [68]. Therefore, a second example video was made with a variety of gradual tran-

sitions and cuts to test how well the model handled it: https://youtu.be/ZBVLBcMtlIE.

This also worked well, and nearly all the shot transitions were still detected, with the

exception of two ”push-left” transitions. However, the model is still more than good

enough for the purposes of this thesis, and likely the most of video types that will likely

be processed.

26https://youtu.be/cvGPJ06klzc
27Example timestamped at 00:08: https://youtu.be/IuDkF XdqWc?t=8

87

https://youtu.be/sTvsOq-1orQ
https://youtu.be/ZBVLBcMtlIE
https://youtu.be/cvGPJ06klzc
https://youtu.be/IuDkF_XdqWc?t=8

When using the shot detection, the frames need to be handled separately from the

rest of the pipeline since the TransNetV2 model uses scaled down versions of the frames.

For this reason, the frames either need to be read from disk an additional time, or all the

frames need to be read before processing, like discussed in Section 4.3.2, and a downscaled

copy of each frame needs to be stored. In either case, the memory usage when detecting

shot transitions is small, as shown by Listings 21 and 22 in Appendix D, at an approximate

700MiB for the example video.

Detecting shot transitions also uses some additional time. Although the time spent

detecting the transitions themselves is negligible at 1-2% of the total running time, as

shown in Figures 4.8 and 4.10 in Section 4.3, it takes significantly longer if the images

need to be loaded an additional time. When reading the frames and resizing them inde-

pendently from the rest of the pipeline when detecting shot transitions, detecting shot

transitions was responsible for about 9% of the total running time, as shown in Figure

4.10, a significant increase in time spent. The detection of shot transitions is in other

words limited by I/O performance when it has to read the images independently, and

thus benefits greatly from not having to read the images directly, like implemented in the

performance optimalizations in Section 4.3.2.

Though detecting shot transitions takes some additional time, it also sped up the

processing itself when using dynamic processing. Because the shot transitions are known

beforehand, the frames before and after the transitions could be processed. Consequently,

there were no instances where an entire interval needed to be processed due to a shot

transition. Whether or not this speedup will make up for the time spent detecting the

shot transitions will depend entirely on the video and the number of transitions in it.

When reading the frames only once, the impact of detecting the shot transitions will be

smaller, thus making it easier to be compensated for when using dynamic processing.

88

4.8 Sequence models

When first starting to experiment with sequence models for smoothing and removal of

false positives and negatives, the intention was to use a bidirectional Pytorch RNN28,

GRU29 or LSTM30 models, followed by two fully connected layers separated by ReLU

activation functions. These models were trained using the output of processing every

frame of the example video using the Dlib processing and the dynamic processing using

Deepface. Afterwards, the models were used to predict the bounding boxes for the same

video to see that it could fit the training data properly. If it could not properly fit the

training data, it was very unlikely to fit any other data. The input coordinates of the

bounding boxes were normalized by dividing them by the width and height of the image,

thereby making the input range from 0 to 1.

Primarily, the RNN was used for testing, although all three models behaved similarly.

Unfortunately, with the original loss function used (see Section 3.1.12), it was not able to

properly follow the bounding boxes, and very poorly covered the faces in the video. The

predicted bounding boxes were also mostly the same size, regardless of the size of the

input bounding boxes and consequently the size of the faces in the video. Therefore, one

of the fully connected layers were removed to simplify the model, and the loss function

was simplified to only penalize the distance between adjacent bounding boxes if the

input bounding box was missing. Otherwise, only the distance to the input bounding

boxes would be penalized. This worked better, but the missing bounding boxes, and the

beginning and end of sequences, were still not correctly matching the faces. Therefore,

the loss function was yet again changed to use the absolute distance between each point

of the bounding box rather than the square of the distance. This worked better, and

the bounding boxes which were not missing fit the input data better, but the missing

bounding boxes and the start and end of each sequence did not.

Therefore, the default value of the missing bounding boxes was changed from 0 to the

value of the previous bounding box which was not missing, and the penalty was increased

for the first and last few frames of each sequence. It could alternatively be set to the

mean of the sequence, but the previous bounding box is more likely to be closer to the

desired prediction value. This helped somewhat for the missing values, but not really for

the ends of the sequences. The loss function was therefore changed yet again to penalize

28https://pytorch.org/docs/stable/generated/torch.nn.RNN.html
29https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
30https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

89

https://pytorch.org/docs/stable/generated/torch.nn.RNN.html
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

deviation from the input bounding boxes even more in the first and last frames of each

sequence This did unfortunately not particularly improve the result.

Ultimately, the algorithmic alternatives worked very well, and exploring the sequence

model consequently seemed less than fruitful31. The sequence models still have a great

potential and would ideally be explored further. However, due to the limited time and

resources for this project, other parts of the thesis had to be prioritized. Thus, the

sequence models were never in a state where they could properly be used as a replacement

nor addition to any of the other functions of the pipeline in a production environment.

The sequence models may have had issues due to a lack of training data, too little

training, configuration issues or a combination of these. However, there were more fun-

damental issues with the approach. By penalizing the loss between bounding boxes of

adjacent frames for missing values, the prediction with the lowest possible loss would have

been to place the bounding box directly between the two adjacent frames. Therefore, it

would have been indistinguishable from a linear interpolation given that the model had

predicted the bounding box perfectly. In other words, there would not have been any

reason to use the sequence models in place of interpolation. Lastly, using the sequence

model for smoothing may have worked well. However, the algorithmic smoothing func-

tion is interchangeable and may easily be replaced by another, and since there is a myriad

of smoothing algorithms available32, one of them would likely have functioned similarly

anyway.

31This is an example of the results (the predicted bounding boxes are coloured blue, and the input
bounding boxes are coloured red): https://youtu.be/5PALkWWpv44

32Examples: https://opendatascience.com/a-short-summary-of-smoothing-algorithms/,
https://en.wikipedia.org/w/index.php?title=Smoothing&oldid=1084668720

90

https://youtu.be/5PALkWWpv44
https://opendatascience.com/a-short-summary-of-smoothing-algorithms/
https://en.wikipedia.org/w/index.php?title=Smoothing&oldid=1084668720

4.9 AWS Rekognition

The Python scripts provided in the GitHub repository were used to make an exam-

ple video testing using AWS Rekognition for facial detection and recognition: https:

//youtu.be/6mmBY0YsQVU. Searching for faces stored in a collection may be used equiva-

lently to filtering by known faces, and in the example, the same images as in Section 4.6.1,

shown in Figure 4.12, were indexed into the collection which was used when searching

for faces. The faces in the video which were matched to the collection are coloured blue,

like in Section 4.6.1.

As shown in the video, faces are frequently not detected correctly33, and the faces in

the collection are not correctly identified from the side34. Some of the faces which were

not detected is likely due to AWS Rekognition only parsing one frame every half second.

Thus, anyone entering the frame will be visible for up to half a second before their face is

detected and may be blurred. The half-second processing interval also causes some faster

movement to be completely missed35.

Some of these issues may be fixed by additional processing of the output of the AWS

Rekognition face search job. However, the job unfortunately does not return any facial

features representations, which somewhat limits the possible improvements after the ini-

tial facial detection and recognition. AWS Rekognition does make a vector representation

of facial features for each face indexed into a collection in order to recognize the faces,

but unfortunately only stores them in a backend database without any way of retrieving

them directly [14]. The facial features representations could be used in combination with

the position of the bounding boxes to fix some of the issues discussed, such as some of

the instances of the faces in the collection not being correctly identified. The position of

the bounding box could also be used to improve this alone, but this was not implemented

due to the clear issues with utilizing AWS Rekognition for the thesis.

Due to the issues discussed, AWS Rekognition is not suitable for the purpose of

automatically blurring specific faces in videos in its current state. The facial detection

and recognition is simply not accurate enough, and the half-second interval is not suitable

for the application. This is, however, likely not the services primary intended use case.

Additionally, it is regularly updated and may be more suitable in the future36.

33Examples at timestamps 0:01, 0:30, 0:33 etc.
34Example at timestamp 0:36, 0:39, 0:49 etc.
35Example timestamped at 1:17: https://youtu.be/6mmBY0YsQVU?t=77
36See https://docs.aws.amazon.com/rekognition/latest/dg/document-history.html

91

https://youtu.be/6mmBY0YsQVU
https://youtu.be/6mmBY0YsQVU
https://youtu.be/6mmBY0YsQVU?t=77
https://docs.aws.amazon.com/rekognition/latest/dg/document-history.html

Chapter 5

Conclusion

Overall, the proposed solution to the project turned out very well, as demonstrated by the

example videos1. A wide range of tools, technologies and areas of research were explored

and evaluated, which was really interesting. It was particularly enjoyable to work with

a real-world problem, which may directly be of use to others. The work includes a large

variety of subjects, such as machine learning, video and media, and cloud technologies,

and it was a great learning experience to be able to utilize and combine these subjects in

a single project.

The proposed pipeline has a high quality of predictions and a reasonable running

time, which was further improved utilizing GPU accelerated hardware. It is by no means

perfect, as discussed in Chapter 4, and there should be manual reviews in scenarios where

maintaining the anonymity of the subjects is critical. However, for other scenarios, it is

likely more than good enough without extensive reviews. Consequently, the proposed

solution ended up fulfilling all of the solution requirements to an arguably acceptable

degree:

• Technical requirements - The solution pipeline is made as technology agnostic

as possible, with examples for running it both locally and deployed in AWS. The

infrastructure deployment has been automated using Terraform, the same tool used

by CuttingRoom, in addition to Python scripts. Consequently, it should be pos-

sible to integrate with CuttingRoom’s existing platform without too much effort.

However, as discussed in Section 3.1.7; although fully functional without it, would

be beneficial to make a user interface for selecting which faces should and should

1Complete example blurring selected faces: https://youtu.be/2mkA9qIHXHc

92

https://youtu.be/2mkA9qIHXHc

not be blurred. Blurring known faces works well without any custom user interface

by simply providing a list of images, but blurring by time and location would be

more difficult without it.

• Regulatory requirements - All parts of the proposed pipeline use tooling and

software available for commercial use, and should therefore be able to be used

without regulatory restrictions in CuttingRoom’s production environment2. Some

of the software offers options for using models which are not available for commercial

use, but the user would have to actively choose to use it. This has been documented

in Section 3.2.6 and Appendix E.

• Performance requirements - The performance requirement was intentionally

never specifically defined; both the prediction quality and running time require-

ments need to be determined by CuttingRoom depending on the service they would

like to offer their customers. The proposed pipeline has been optimized as best as

possible given the various constraints and considerations discussed in the thesis. In

a production environment, the total running time of such a job will entirely depend

on the input, models used and orchestration of the pipeline. As discussed in Sec-

tion 4.2, a single input video may be processed in parallel to significantly decrease

the running time. The prediction quality is dependent on the models being used

for facial detection, alignment, representation and classification, and they may be

replaced at any time.

It would have been nice to spend more time to explore a greater number of tools, and

further explore the use of sequence models for facial detecting, alignment, representation

and classification in video. This is likely a field with great potential, but it requires more

time and resources than available for this thesis. Given more time, it would be interesting

to try using video motion tracking combined with facial detection and facial recognition

to further increase the prediction quality of the pipeline. Additionally, it may be possible

to use the differences between frames, rather than the whole frames themselves, to track

the movement of faces in the video which could also possibly improve performance. In

the case of these areas being explored further, or simply the ever improving facial de-

tection and recognition technology, each part may be replaced independently due to the

interchangeable nature of the pipeline components.

2The source code, dependencies and references are all listed. This is no guarantee of correctness, and
this claim should be validated independently before use.

93

An alternative, non-technical solution would simply be to ask the video subjects for

permission to publish the media in question. In cases where there are few participants,

this should not be an issue. For sporting events or other larger events, permission could

be a requirement for attending the event. This would, however, be difficult to enforce

for past, large scale events, although for large scale events, the majority of the media

would very likely be considered situational photography, and therefore not require the

permission of the subjects.

94

Glossary

Bounding box For the purposes of this thesis, the bounding box is a rectangle that

surrounds a face, specifying its possition, and potentially the confidence of it being

correctly identified. In other cases, it may also define the type of object, but this is

not applicable in this case as all objects of interest are faces.

Data processing ”Any action performed on data, whether automated or manual.” [71]

This includes collecting, recording, organizing, structuring, storing, using, erasing

etc.

Data subject ”The person whose data is processed. These are your customers or site

visitors.” [71]

Frame A frame is a single image in the sequence of images which compose a video.

Videos are commonly composed of 24, 30 or 60 frames per second.

Interpolation Estimating unknown intermediate values of a function based on known

values [69].

Personal data ”Personal data is any information that relates to an individual who can

be directly or indirectly identified. Names and email addresses are obviously personal

data. Location information, ethnicity, gender, biometric data, religious beliefs, web

cookies, and political opinions can also be personal data.”[71] Similarly, pictures and

videos where the subjects are clearly identifiable can also be personal data.

Shot ”A video shot is composed of a series of interrelated consecutive frames. It usually

represents a continuous action in time and space. These frames in a shot are related

in contents.” [68]

95

List of Acronyms and Abbreviations

API - Application Programming Interface

AWS - Amazon Web Services

CLI - Command-Line Interface

CNN - Convolutional Neural Network

CPU - Central Processing Unit

GDPR - General Data Protection Regulation

GiB - Gibibyte

GPU - Graphics Processing Unit

GRU - Gated Recurrent Unit

HoG - Histogram of Oriented Gradients

HTTP - Hypertext Transfer Protocol

IaC - Infrastructure as Code

JSON - JavaScript Object Notation

LSTM - Long Short-Term Memory

MTCNN - Multi-Task Cascaded Convolutional Network

ONNX - Open Neural Network Exchange

RNN - Recurrent Neural Network

SSD - Single Shot Detector

96

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Use a gpu, 2022.

URL: https://www.tensorflow.org/guide/gpu. [Online; accessed 10-May-2022].

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a con-

volutional neural network. In 2017 International Conference on Engineering and

Technology (ICET), pages 1–6, 2017. doi: 10.1109/ICEngTechnol.2017.8308186.

[3] Amazon. Aws batch pricing, 2022.

URL: https://aws.amazon.com/batch/pricing/. [Online; accessed 09-June-2022].

[4] Amazon. Use your own inference code with batch transform, 2022.

URL: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-

code.html. [Online; accessed 13-May-2022].

[5] Amazon. Transforminput, 2022.

URL: https://docs.aws.amazon.com/sagemaker/latest/APIReference/

API TransformInput.html. [Online; accessed 13-May-2022].

[6] Amazon. What is amazon elastic container registry?, 2022.

URL: https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html. [On-

line; accessed 11-May-2022].

[7] Amazon. Amazon elastic container registry pricing, 2022.

URL: https://aws.amazon.com/ecr/pricing/. [Online; accessed 25-May-2022].

97

https://www.tensorflow.org/guide/gpu
https://aws.amazon.com/batch/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html
https://aws.amazon.com/ecr/pricing/

[8] Amazon. What is amazon ec2?, 2022.

URL: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html. [Online;

accessed 25-June-2022].

[9] Amazon. New – per-second billing for ec2 instances and ebs volumes, 2022.

URL: https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-

and-ebs-volumes/. [Online; accessed 06-June-2022].

[10] Amazon. Aws pricing, 2022.

URL: https://aws.amazon.com/pricing/. [Online; accessed 25-June-2022].

[11] Amazon. Build your own processing container (advanced scenario), 2022.

URL: https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-

container.html. [Online; accessed 11-May-2022].

[12] Amazon. Processings3input, 2022.

URL: https://docs.aws.amazon.com/sagemaker/latest/APIReference/

API ProcessingS3Input.html. [Online; accessed 13-May-2022].

[13] Amazon. Searching faces in a collection, 2022.

URL: https://docs.aws.amazon.com/rekognition/latest/dg/collections.html. [Online;

accessed 20-April-2022].

[14] Amazon. Indexfaces, 2022.

URL: https://docs.aws.amazon.com/rekognition/latest/APIReference/

API IndexFaces.html. [Online; accessed 18-June-2022].

[15] Amazon. What is amazon s3?, 2022.

URL: https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html. [Online;

accessed 25-June-2022].

[16] Amazon. Amazon s3 pricing, 2022.

URL: https://aws.amazon.com/s3/pricing/. [Online; accessed 25-May-2022].

[17] Amazon. Sagemaker inference toolkit, 2022.

URL: https://github.com/aws/sagemaker-inference-toolkit/blob/

52cd814baccd64d611427a6e8a23e4b8169b42b3/README.md. [Online; accessed 13-May-

2022].

[18] Amazon. Amazon sagemaker pricing, 2022.

URL: https://aws.amazon.com/sagemaker/pricing/. [Online; accessed 25-May-2022].

98

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProcessingS3Input.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProcessingS3Input.html
https://docs.aws.amazon.com/rekognition/latest/dg/collections.html
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_IndexFaces.html
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_IndexFaces.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://aws.amazon.com/s3/pricing/
https://github.com/aws/sagemaker-inference-toolkit/blob/52cd814baccd64d611427a6e8a23e4b8169b42b3/README.md
https://github.com/aws/sagemaker-inference-toolkit/blob/52cd814baccd64d611427a6e8a23e4b8169b42b3/README.md
https://aws.amazon.com/sagemaker/pricing/

[19] Amazon. What is amazon sagemaker?, 2022.

URL: https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html. [Online; accessed

11-May-2022].

[20] Amazon. Use batch transform, 2022.

URL: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html. [Online;

accessed 13-May-2022].

[21] Amazon. Amazon ec2 on-demand pricing, 2022.

URL: https://aws.amazon.com/ec2/pricing/on-demand/. [Online; accessed 09-June-

2022].

[22] Amazon. Amazon ec2 spot instances pricing, 2022.

URL: https://aws.amazon.com/ec2/spot/pricing/. [Online; accessed 09-June-2022].

[23] Amazon. Amazon ec2 g4 instances, 2022.

URL: https://aws.amazon.com/ec2/instance-types/g4/. [Online; accessed 06-June-

2022].

[24] Amazon. Process data, 2022.

URL: https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html. [Online;

accessed 07-December-2021].

[25] Amazon. What is amazon rekognition?, 2022.

URL: https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html. [Online; ac-

cessed 20-April-2022].

[26] Giovanni Righini at Universita degli Studi di Milano. Minimum cost bipartite

matching (complements of operations research), 2018.

URL: https://homes.di.unimi.it/righini/Didattica/OttimizzazioneCombinatoria/

MaterialeOC/11%20-%20Min%20cost%20bipartite%20matching.pdf. [Online; accessed

26-May-2022].

[27] The Norwegian Data Protection Authority. Deling av bilder, 2019.

URL: https://www.datatilsynet.no/personvern-pa-ulike-omrader/internett-og-apper/

bilder-pa-nett/. [Online; accessed 12-March-2022].

[28] The Norwegian Data Protection Authority. Om personopplysningsloven med

forordning og n̊ar den gjelder, 2021.

URL: https://www.datatilsynet.no/regelverk-og-verktoy/lover-og-regler/om-

personopplysningsloven-og-nar-den-gjelder/. [Online; accessed 12-March-2022].

99

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/instance-types/g4/
https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html
https://homes.di.unimi.it/righini/Didattica/OttimizzazioneCombinatoria/MaterialeOC/11%20-%20Min%20cost%20bipartite%20matching.pdf
https://homes.di.unimi.it/righini/Didattica/OttimizzazioneCombinatoria/MaterialeOC/11%20-%20Min%20cost%20bipartite%20matching.pdf
https://www.datatilsynet.no/personvern-pa-ulike-omrader/internett-og-apper/bilder-pa-nett/
https://www.datatilsynet.no/personvern-pa-ulike-omrader/internett-og-apper/bilder-pa-nett/
https://www.datatilsynet.no/regelverk-og-verktoy/lover-og-regler/om-personopplysningsloven-og-nar-den-gjelder/
https://www.datatilsynet.no/regelverk-og-verktoy/lover-og-regler/om-personopplysningsloven-og-nar-den-gjelder/

[29] The Norwegian Data Protection Authority. Regulations, 2022.

URL: https://www.datatilsynet.no/en/regulations-and-tools/regulations/. [Online;

accessed 29-March-2022].

[30] Rahul Awati and James Denman. Sharding, 2022.

URL: https://www.techtarget.com/searchoracle/definition/sharding. [Online; ac-

cessed 13-May-2022].

[31] Justinas Baltrusaitis. Amazon aws accounts for 33service market, 2022.

URL: https://finbold.com/amazon-aws-statistics/. [Online; accessed 19-April-2022].

[32] Justinas Baltrusaitis. How amazon makes money, 2022.

URL: https://www.investopedia.com/how-amazon-makes-money-4587523. [Online; ac-

cessed 19-April-2022].

[33] Liza Brown. Ep. 30 how to use face-off effect in wondershare filmora9, 2022.

URL: https://filmora.wondershare.com/get-creative/face-replacement.html. [Online;

accessed 09-May-2022].

[34] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively,

with application to face verification. In 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546

vol. 1, 2005. doi: 10.1109/CVPR.2005.202. [Accessed 15-May-2022].

[35] CMS. Statistics: Fines imposed over time, 2022.

URL: https://www.enforcementtracker.com/?insights. [Online; accessed 09-May-2022].

[36] CuttingRoom. The next-generation video editing, live clipping and publishing plat-

form, 2022.

URL: https://www.cuttingroom.com/. [Online; accessed 10-May-2022].

[37] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive

angular margin loss for deep face recognition. In 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 4685–4694, 2019. doi:

10.1109/CVPR.2019.00482. [Accessed 10-May-2022].

[38] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou.

Retinaface: Single-shot multi-level face localisation in the wild. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

June 2020. [Accessed 10-May-2022].

100

https://www.datatilsynet.no/en/regulations-and-tools/regulations/
https://www.techtarget.com/searchoracle/definition/sharding
https://finbold.com/amazon-aws-statistics/
https://www.investopedia.com/how-amazon-makes-money-4587523
https://filmora.wondershare.com/get-creative/face-replacement.html
https://www.enforcementtracker.com/?insights
https://www.cuttingroom.com/

[39] Rajeev Dhir. Data smoothing definition, 2021.

URL: https://www.investopedia.com/terms/d/data-smoothing.asp. [Online; accessed 25-

June-2022].

[40] O. Déniz, G. Bueno, J. Salido, and F. De la Torre. Face recognition using histograms

of oriented gradients. Pattern Recognition Letters, 32(12):1598–1603, 2011. ISSN

0167-8655. doi: https://doi.org/10.1016/j.patrec.2011.01.004.

URL: https://www.sciencedirect.com/science/article/pii/S0167865511000122. [Online;

accessed 25-June-2022].

[41] IBM Cloud Education. Docker, 2021.

URL: https://www.ibm.com/in-en/cloud/learn/docker. [Online; accessed 26-April-

2022].

[42] José Fonseca. About gprof2dot, 2022.

URL: https://github.com/jrfonseca/gprof2dot/blob/2245ac568b4bb0b97762eca71061075a709d7d86/

README.md. [Online; accessed 27-May-2022].

[43] Python Software Foundation. The python profilers, 2022.

URL: https://docs.python.org/3/library/profile.html. [Online; accessed 27-May-

2022].

[44] Adam Geitgey. Face recognition, 2020.

URL: https://github.com/ageitgey/face recognition/blob/

87a8449a359fbc0598e95b820e920ce285b8a9d9/README.md. [Online; accessed 10-May-

2022].

[45] Jia Guo, Jiankang Deng, Xiang An, and Jack Yu. Insightface: 2d and 3d face

analysis project, 2022.

URL: https://github.com/deepinsight/insightface/blob/

92a0bb6b0f0ff4266c9a1d285d3fbbd191ac2e96/README.md. [Online; accessed 14-May-

2022].

[46] HashiCorp. Terraform, 2022.

URL: https://www.terraform.io/. [Online; accessed 18-April-2022].

[47] HashiCorp. Modules, 2022.

URL: https://registry.terraform.io/browse/modules. [Online; accessed 28-May-2022].

[48] Amir Keshavarz. Cache replacement algorithms: How to efficiently manage the

cache storage, 2021.

101

https://www.investopedia.com/terms/d/data-smoothing.asp
https://www.sciencedirect.com/science/article/pii/S0167865511000122
https://www.ibm.com/in-en/cloud/learn/docker
https://github.com/jrfonseca/gprof2dot/blob/2245ac568b4bb0b97762eca71061075a709d7d86/README.md
https://github.com/jrfonseca/gprof2dot/blob/2245ac568b4bb0b97762eca71061075a709d7d86/README.md
https://docs.python.org/3/library/profile.html
https://github.com/ageitgey/face_recognition/blob/87a8449a359fbc0598e95b820e920ce285b8a9d9/README.md
https://github.com/ageitgey/face_recognition/blob/87a8449a359fbc0598e95b820e920ce285b8a9d9/README.md
https://github.com/deepinsight/insightface/blob/92a0bb6b0f0ff4266c9a1d285d3fbbd191ac2e96/README.md
https://github.com/deepinsight/insightface/blob/92a0bb6b0f0ff4266c9a1d285d3fbbd191ac2e96/README.md
https://www.terraform.io/
https://registry.terraform.io/browse/modules

URL: https://dev.to/satrobit/cache-replacement-algorithms-how-to-efficiently-

manage-the-cache-storage-2ne1. [Online; accessed 28-May-2022].

[49] Davis E. King and Dlib Authors. Dlib c++ library, 2022.

URL: http://dlib.net/. [Online; accessed 10-May-2022].

[50] Davis E. King and Dlib Authors. Dlib c++ library, 2022.

URL: http://dlib.net/python/index.html. [Online; accessed 10-May-2022].

[51] Nenad Markuš, Miroslav Frljak, Igor S. Pandžić, Jörgen Ahlberg, and Robert Forch-

heimer. Object detection with pixel intensity comparisons organized in decision

trees, 2013.

URL: https://arxiv.org/abs/1305.4537. [Online; accessed 29-October-2021].

[52] Justis og beredskapsdepartementet. Lov om behandling av personopplysninger (per-

sonopplysningsloven), 2018.

URL: https://lovdata.no/dokument/NL/lov/2018-06-15-38. [Online; accessed 26-

October-2021].

[53] Python Packagin Authority (PyPa). Project summaries, 2022.

URL: https://packaging.python.org/en/latest/key projects/. [Online; accessed 18-

March-2022].

[54] Lourdes Ramirez Cerna, G. Cámara-Chávez, and D. Menotti. Face detection: His-

togram of oriented gradients and bag of feature method, 2013. [Accessed 25-June-

2022].

[55] Meta AI Research. Face alignment, 2021.

URL: https://paperswithcode.com/task/face-alignment. [Online; accessed 14-May-

2022].

[56] Adrian Rosebrock. Face detection with dlib (hog and cnn), 2021.

URL: https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/.

[Online; accessed 18-April-2022].

[57] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

embedding for face recognition and clustering. In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 815–823, 2015. doi:

10.1109/CVPR.2015.7298682.

[58] Sefik Ilkin Serengil. Retinaface, 2022.

URL: https://github.com/serengil/retinaface/blob/34b1ec11a4a0beee2ebd2c095742b3d070e23fb5/

README.md. [Online; accessed 10-May-2022].

102

https://dev.to/satrobit/cache-replacement-algorithms-how-to-efficiently-manage-the-cache-storage-2ne1
https://dev.to/satrobit/cache-replacement-algorithms-how-to-efficiently-manage-the-cache-storage-2ne1
http://dlib.net/
http://dlib.net/python/index.html
https://arxiv.org/abs/1305.4537
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://packaging.python.org/en/latest/key_projects/
https://paperswithcode.com/task/face-alignment
https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/
https://github.com/serengil/retinaface/blob/34b1ec11a4a0beee2ebd2c095742b3d070e23fb5/README.md
https://github.com/serengil/retinaface/blob/34b1ec11a4a0beee2ebd2c095742b3d070e23fb5/README.md

[59] Sefik Ilkin Serengil and Alper Ozpinar. Lightface: A hybrid deep face recognition

framework. In 2020 Innovations in Intelligent Systems and Applications Conference

(ASYU), pages 23–27. IEEE, 2020. doi: 10.1109/ASYU50717.2020.9259802.

URL: https://doi.org/10.1109/ASYU50717.2020.9259802.

[60] Sefik Ilkin Serengil and Alper Ozpinar. Hyperextended lightface: A facial at-

tribute analysis framework. In 2021 International Conference on Engineering

and Emerging Technologies (ICEET), pages 1–4. IEEE, 2021. doi: 10.1109/

ICEET53442.2021.9659697.

URL: https://doi.org/10.1109/ICEET53442.2021.9659697. [Online; accessed 25-June-

2022].

[61] Endre Simo. esimov/pigo, 2021.

URL: https://github.com/esimov/pigo/blob/131dc573e45a067006e318d7072e49070420e98d/

README.md. [Online; accessed 09-October-2021].

[62] Carol Sliwa. Read cache, 2013.

URL: https://www.techtarget.com/searchstorage/definition/read-cache. [Online; ac-

cessed 28-May-2022].

[63] Tomáš Souček and Jakub Lokoč. Transnet v2: An effective deep network architecture

for fast shot transition detection, 2020.

URL: https://arxiv.org/abs/2008.04838. [Online; accessed 03-May-2022].

[64] Tomáš Souček, Jaroslav Moravec, and Jakub Lokoč. Transnet: A deep network for

fast detection of common shot transitions, 2019.

URL: https://arxiv.org/abs/1906.03363. [Online; accessed 03-May-2022].

[65] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:

Closing the gap to human-level performance in face verification, 2014.

URL: https://research.facebook.com/publications/deepface-closing-the-gap-to-

human-level-performance-in-face-verification/. [Online; accessed 10-May-2022].

[66] Corporate Finance Institute Team. Data smoothing, 2021.

URL: https://corporatefinanceinstitute.com/resources/knowledge/other/data-

smoothing/. [Online; accessed 25-June-2022].

[67] FFmpeg team. Ffmpeg readme, 2021.

URL: https://github.com/FFmpeg/FFmpeg/blob/52a14b8505923116ed6acc5e691c0c7c44e6f708/

README.md. [Online; accessed 8-May-2022].

103

https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ICEET53442.2021.9659697
https://github.com/esimov/pigo/blob/131dc573e45a067006e318d7072e49070420e98d/README.md
https://github.com/esimov/pigo/blob/131dc573e45a067006e318d7072e49070420e98d/README.md
https://www.techtarget.com/searchstorage/definition/read-cache
https://arxiv.org/abs/2008.04838
https://arxiv.org/abs/1906.03363
https://research.facebook.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/
https://research.facebook.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/
https://corporatefinanceinstitute.com/resources/knowledge/other/data-smoothing/
https://corporatefinanceinstitute.com/resources/knowledge/other/data-smoothing/
https://github.com/FFmpeg/FFmpeg/blob/52a14b8505923116ed6acc5e691c0c7c44e6f708/README.md
https://github.com/FFmpeg/FFmpeg/blob/52a14b8505923116ed6acc5e691c0c7c44e6f708/README.md

[68] Shaohua Teng, Wenwei Tan, and Wei Zhang. Cooperative Shot Boundary Detec-

tion for Video, page 99–110. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN

9783540927181.

URL: https://doi.org/10.1007/978-3-540-92719-8 10. [Online; accessed 03-May-2022].

[69] Wikipedia contributors. Interpolation — Wikipedia, the free encyclopedia, 2022.

URL: https://en.wikipedia.org/w/index.php?title=Interpolation&oldid=1068675581.

[Online; accessed 13-March-2022].

[70] Holly Wilper, Robert Knight, and Jason Cohen. Understanding the visualization of

overhead and latency in nvidia nsight systems, 2020.

URL: https://developer.nvidia.com/blog/understanding-the-visualization-of-

overhead-and-latency-in-nsight-systems/. [Online; accessed 06-June-2022].

[71] Ben Wolford. What id gdpr, the eu’s new data protection law?, 2022.

URL: https://gdpr.eu/what-is-gdpr. [Online; accessed 04-March-2022].

[72] Peipei Xia, Li Zhang, and Fanzhang Li. Learning similarity with cosine similarity

ensemble. Information Sciences, 307:39–52, 2015. ISSN 0020-0255. doi: https:

//doi.org/10.1016/j.ins.2015.02.024.

URL: https://www.sciencedirect.com/science/article/pii/S0020025515001243. [Online;

accessed 25-June-2022].

[73] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and

alignment using multitask cascaded convolutional networks. IEEE Signal Processing

Letters, 23(10):1499–1503, oct 2016. doi: 10.1109/lsp.2016.2603342.

URL: https://doi.org/10.1109%2Flsp.2016.2603342. [Online; accessed 14-May-2022].

104

https://doi.org/10.1007/978-3-540-92719-8_10
https://en.wikipedia.org/w/index.php?title=Interpolation&oldid=1068675581
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://gdpr.eu/what-is-gdpr
https://www.sciencedirect.com/science/article/pii/S0020025515001243
https://doi.org/10.1109%2Flsp.2016.2603342

Appendix A

Thesis description

105

Automatic blurring of selected faces in
video
This Master’s thesis will explore solutions to automate the process of blurring a selected
group of faces, or alternatively all faces except for a selected group of faces. The blurring of
faces is mainly intended to anonymize people present in the background of videos, thus
assisting in following various regulations regarding the distribution of media containing
identifiable people, such as the Personal Data Act in Norway1.

The solution is intended to be integrable with Vimond IO such that it may be used in IO if it is
considered to be beneficial to the product. The thesis will therefore take into account the
requirements of IO. This doesn’t necessarily mean the solution will be used after completion
of the thesis. Nor is the solution critical to the operation of IO in any way, rather it would be a
“nice to have” feature.

The requirements to be considered include the following:
● Technical requirements - The resulting solution should be integrable with Vimond IO

and must be designed in a way which allows it to do so.
● Regulatory requirements - The licences of the software and data being used in the

thesis must allow for the solution to be used in a commercial product.
● Performance requirements - The videos being edited may be several hours long. If

the solution takes too long to run, or is not accurate enough, it will essentially be
unusable.

In order to blur faces, the solution needs to both detect and localize all faces in each frame
of the video. It also needs to recognize the faces in order to determine which faces should
and should not be blurred. Additionally, segmentation may also be beneficial in order to
accurately distinguish a face from its surroundings and restrict the blur to the face
specifically, thereby preserving the rest of the frame. However, this will probably be more
difficult to find both existing solutions and datasets for segmentation compared to
localization.

The thesis will explore the use various machine learning models, such as RNNs and SVMs,
in addition to building upon pre-existing solutions, such as AWS Rekognition2. It may also be
useful to make use of pre-trained models for facial recognition, thus lessening the time spent
training models and the need for labeled data. No labeled data will be provided for the
thesis, although some unlabeled data may be received from TV2 news.

After completion of the thesis, the code produced will be published along with the thesis,
although certain parts may be excluded if necessary.

2 https://aws.amazon.com/rekognition
1 https://www.datatilsynet.no/personvern-pa-ulike-omrader/internett-og-apper/bilder-pa-nett/

Appendix B

Prediction quality video analysis numbers

The following is a list of each frame which was considered to be false positives, false neg-

atives, true negatives and true positives for each video calculating performance numbers.

The frame numbers start from 0 and end at 4586. The ranges are inclusive.

Full processing Deepface(RetinaFace and FaceNet512)

• False positive (23 total): 2505-2506, 2833-2838, 2977-2978, 2995-3007

• False negative (67 total): 3013-3061, 3100-3117

• True negatives (0 total): N/A

• True positives (4497 total): 0-2504, 2507-2832, 2839-2976, 2979-2994, 3008-

3012, 3062-3099, 3118-4586

Dynamic processing Deepface (RetinaFace and FaceNet512)

• False positive (6 total): 2505-2506, 2833-2834, 2977-2978

• False negative (67 total): 3013-3061, 3100-3117

• True negatives (0 total): N/A

• True positives (4514 total): 0-2504, 2507-2832, 2835-2976, 2979-3012, 3062-

3099, 3118-4586

107

Full processing Dlib

• False positive (38 total): 1878-1891, 1905-1906, 1910-1911, 2345, 2349-2354,

2850-2853, 3865-3869, 4556-4559

• False negative (766 total): 0-298, 545-578, 834-1185, 2305-2307, 3013-3061,

3100-3117, 3630-3640

• True negative (0 total): N/A

• True positive (3783 total): 299-544, 579-833, 1186-1877, 1892-1904, 1907-

1909, 1912-2304, 2308-2344, 2346-2348, 2355-2849, 2854-3012, 3062-3099, 3118-

3629, 3641-3864, 3870-4555, 4560-4586

Dynamic processing Dlib

• False positive (33 total): 1887-1889, 1905-1906, 2349-2354, 2831-2833, 2850-

2853, 3865-3869, 4550-4559

• False negative (801 total): 0-298, 545-607, 834-1185, 2305-2313, 3013-3061,

3100-3117, 3630-3640

• True negative (0 total): N/A

• True positive (3753 total): 299-544, 608-833, 1186-1886, 1890-1904, 1907-

2304, 2314-2348, 2355-2830, 2834-2849, 2854-3012, 3062-3099, 3118-3629, 3641-

3864, 3870-4549, 4560-4586

Dynamic processing Deepface (removing short sequences)

• False positive (2 total): 2977-2978

• False negative (67 total): 3013-3061, 3100-3117

• True negatives (0 total): N/A

• True positives (4518 total): 0-2976, 2979-3012, 3062-3099, 3118-4586

108

Full processing Dlib (without interpolation)

• False positive (6 total): 1887-1889, 1910-1911, 3869,

• False negative (909 total): 0-298, 545-578, 580, 582-583, 590-598, 602-607, 651-

652, 655-663, 668-670, 834-1185, 1872-1873, 1876-1886, 1890-1891, 1896-1902, 1905-

1906, 2305-2307, 2310-2313, 2570-2571, 2849-2854, 2925-2931, 2954-2955, 3013-

3061, 3100-3117, 3603-3604, 3630-3640, 3810-3826, 3881-3883, 3886-3887, 4032-

4049, 4054-4059, 4441, 4457-4464, 4529-4535, 4584-4585

• True negatives (3672 total): N/A

• True positives (3672 total): 299-544, 579, 581, 584-589, 599-601, 608-650,

653-654, 664-667, 671-833, 1186-1871, 1874-1875, 1892-1895, 1903-1904, 1907-

1909, 1912-2304, 2308-2309, 2314-2569, 2572-2848, 2855-2924, 2932-2953, 2956-

3012, 3062-3099, 3118-3602, 3605-3629, 3641-3809, 3827-3868, 3870-3880, 3884-

3885, 3888-4031, 4050-4053, 4060-4440, 4442-4456, 4465-4528, 4536-4583, 4586

109

Appendix C

List of example videos

The following is a list of the various example videos linked throughout the thesis.

• Original example video: https://youtu.be/ 5i5kza5C-M

• Complete example, dynamically processed with Deepface, selectively blurring faces

based on time and location: https://youtu.be/2mkA9qIHXHc

• Processing every frame (Deepface): https://youtu.be/tORTBS7iEGY

• Processing every frame (Dlib): https://youtu.be/nnXTJOOwLiQ

• Dynamically processed (Deepface): https://youtu.be/73XS75-tdYQ

• Dynamically processed (Dlib): https://youtu.be/v 49prmpeec

• Processing every frame without interpolation (Dlib): https://youtu.be/nSvN24R wRU

• Filtering short sequences: https://youtu.be/yaW0VuOyGPk

• Selecting faces by time & location: https://youtu.be/fkTlFBNTb94

– Additional selection: https://youtu.be/cvGPJ06klzc

• Selecting known faces: https://youtu.be/Wf yMDSXteo

– Adding additional face: https://youtu.be/AJNC70xWvrs

• Without detected shot transitions: https://youtu.be/IuDkF XdqWc

• Marked shot transitions (cuts): https://youtu.be/sTvsOq-1orQ

• Marked shot transitions (gradual transitions): https://youtu.be/ZBVLBcMtlIE

• Example LSTM predictions: https://youtu.be/5PALkWWpv44

• Processed using AWS Rekognition: https://youtu.be/6mmBY0YsQVU

• Processed using Pigo: https://youtu.be/hQ7EhRiJKdo

110

https://youtu.be/_5i5kza5C-M
https://youtu.be/2mkA9qIHXHc
https://youtu.be/tORTBS7iEGY
https://youtu.be/nnXTJOOwLiQ
https://youtu.be/73XS75-tdYQ
https://youtu.be/v_49prmpeec
https://youtu.be/nSvN24R_wRU
https://youtu.be/yaW0VuOyGPk
https://youtu.be/fkTlFBNTb94
https://youtu.be/cvGPJ06klzc
https://youtu.be/Wf_yMDSXteo
https://youtu.be/AJNC70xWvrs
https://youtu.be/IuDkF_XdqWc
https://youtu.be/sTvsOq-1orQ
https://youtu.be/ZBVLBcMtlIE
https://youtu.be/5PALkWWpv44
https://youtu.be/6mmBY0YsQVU
https://youtu.be/hQ7EhRiJKdo

Example videos used for testing running times:

• Multiple faces: https://youtu.be/HZz4862 lII

• Single face: https://youtu.be/VXteG6A2ME0

• No face: https://youtu.be/Mku0Um84Iew

111

https://youtu.be/HZz4862_lII
https://youtu.be/VXteG6A2ME0
https://youtu.be/Mku0Um84Iew

Appendix D

Memory usage overview

Line # Mem usage Increment Occurrences Line Contents

===

11 1554.0 MiB 1554.0 MiB 1 @profile

12 def main():

13 1554.0 MiB 0.0 MiB 1 img_dir =

"/mnt/sdb3/erlend/multiface_cut"↪→

14 1554.0 MiB 0.0 MiB 1 out_dir =

"/mnt/sdb3/erlend/test"↪→

15

16 2256.9 MiB 702.9 MiB 1 shot_transitions =

get_shot_transitions(img_dir)↪→

17 2879.6 MiB 622.7 MiB 1 proc_frames, matchings =

dynamically_process(img_dir, shot_transitions=shot_transitions)↪→

18 2879.6 MiB 0.0 MiB 1 seqs =

make_sequences(proc_frames,

matchings,shot_transitions=shot_transitions)

↪→

↪→

19 2885.7 MiB 6.1 MiB 1 seqs = interpolate(seqs)

20 2278.4 MiB -607.2 MiB 1 write_faces(seqs, img_dir,

out_dir)↪→

21 2277.3 MiB -1.1 MiB 1

copy_remaining_files(img_dir, out_dir)↪→

Listing 21: Overview of memory usage by line of source code when reading frames during
processing

112

113

Line # Mem usage Increment Occurrences Line Contents

===

15 1577.8 MiB 1577.8 MiB 1 @profile

16 def main():

17 1577.8 MiB 0.0 MiB 1 img_dir =

"/mnt/sdb3/erlend/multiface_cut"↪→

18 1577.8 MiB 0.0 MiB 1 out_dir = "/mnt/sdb3/erlend/test"

19

20 1577.8 MiB 0.0 MiB 1 frames = []

21 13452.5 MiB -1039.6 MiB 4588 for filepath in

sorted(glob(join(img_dir, "*.png"))):↪→

22 13452.5 MiB 10849.3 MiB 4587

frames.append(imread(filepath))↪→

23

24 13452.5 MiB 0.0 MiB 1 print(len(frames))

25

26 14168.6 MiB 716.1 MiB 1 shot_transitions =

get_shot_transitions(img_dir, frames=frames)↪→

27 14168.6 MiB -42.8 MiB 2 proc_frames, matchings =

dynamically_process(↪→

28 14168.6 MiB 0.0 MiB 1 img_dir,

shot_transitions=shot_transitions, frames=frames)↪→

29 14125.8 MiB -42.8 MiB 2 seqs = make_sequences(proc_frames,

matchings,↪→

30 14125.8 MiB 0.0 MiB 1

shot_transitions=shot_transitions)↪→

31 14132.2 MiB 6.4 MiB 1 seqs = interpolate(seqs)

32 13988.7 MiB -143.4 MiB 1 write_faces(seqs, img_dir,

out_dir, frames=frames)↪→

33 13990.1 MiB 1.4 MiB 1 copy_remaining_files(img_dir,

out_dir)↪→

Listing 22: Overview of memory usage by line of when reading every frame only once
before processing

Appendix E

Deepface model licenses

The following is a list of their licenses.

• DeepFace model: MIT 1

• VGG-Face: Non-commercial Creative Commons Attribution 2

• Facenet: MIT 3

• OpenFace: Apache 2.0 4

• DeepID: GNU 3 5

• ArcFace: MIT 6

1https://github.com/swghosh/DeepFace/blob/master/LICENSE
2https://www.robots.ox.ac.uk/~vgg/software/vgg face/
3https://github.com/davidsandberg/facenet/blob/master/LICENSE.md
4https://github.com/iwantooxxoox/Keras-OpenFace/blob/master/LICENSE
5https://github.com/Ruoyiran/DeepID/blob/master/LICENSE.md
6https://github.com/leondgarse/Keras insightface/blob/master/LICENSE

114

https://github.com/swghosh/DeepFace/blob/master/LICENSE
https://www.robots.ox.ac.uk/~vgg/software/vgg_face/
https://github.com/davidsandberg/facenet/blob/master/LICENSE.md
https://github.com/iwantooxxoox/Keras-OpenFace/blob/master/LICENSE
https://github.com/Ruoyiran/DeepID/blob/master/LICENSE.md
https://github.com/leondgarse/Keras_insightface/blob/master/LICENSE

	Introduction
	Introductory background
	CuttingRoom
	Existing solutions
	Proposed solution
	Solution requirements
	Project scope
	Report structure

	Theoretical background
	Video
	FFmpeg
	Smoothing
	Interpolation
	Shot transition detection

	Facial recognition pipeline
	Facial detection
	Convolutional neural network
	Histogram of oriented gradients

	Facial recognition
	Infrastructure
	Amazon Web Services
	Terraform
	Docker

	Implementation
	Video
	Initial processing
	Processing every frame
	Dynamic processing
	Identifying facial sequences
	Frame interpolation
	Detecting shot transition
	Selecting specific faces
	Smoothing sequences of bounding boxes
	Handling false negatives
	Handling false positives
	Blurring
	Sequence models

	Facial detection, alignment and representation
	Retinaface
	Multi-task Cascaded Convolutional Networks
	Pigo
	ArcFace
	Dlib
	Deepface
	AWS Rekognition

	Orchestration
	AWS SageMaker Processing Job
	AWS SageMaker Batch Transform
	Automatization

	Distribution
	Example configuration
	Interchangeability

	Analysis
	Prediction quality
	Prediction quality results

	Cost and running time
	Running time results
	Cost
	Scalability

	Use of computational resources
	Optimizing blurring
	Optimizing the reading of frames

	Removing false negatives
	Removing false positives
	Selecting specific faces for blurring
	Selecting known faces
	Selecting by time and location

	Detecting shot transitions
	Sequence models
	AWS Rekognition

	Conclusion
	Glossary
	List of Acronyms and Abbreviations
	Bibliography
	Thesis description
	Prediction quality video analysis numbers
	List of example videos
	Memory usage overview
	Deepface model licenses

