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Abstract
Under suitable conditions, we show that the Euler characteristic of a foliated Riemannian
manifold can be computed only from curvature invariants which are transverse to the leaves.
Our proof uses the hypoelliptic sub-Laplacian on forms recently introduced by two of the
authors in Baudoin and Grong (Ann Glob Anal Geom 56(2):403–428, 2019).

1 Introduction

The goal of the paper is to prove the following result:

Theorem 1.1 Let M be a smooth, connected, oriented and n + m dimensional compact
manifold. We assume that M is equipped with a Riemannian foliation F with bundle-like
metric g and totally geodesic m-dimensional leaves. We also assume that the horizontal
distribution H = F⊥ is bracket-generating and that there exists ε > 0 such that

(∇v J )w = − 1

2ε
[Jv, Jw] (1.1)

for any v,w ∈ TxM, x ∈ M, where ∇ is the Bott connection of the foliation and J is the
tensor defined in (2.2). Denoting χ(M) the Euler characteristic ofM:

• If n or m is odd, then χ(M) = 0;
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• If n and m are both even, then

χ(M) =
∫
M

ω̂ε
H ∧

[
det

(
T

sinh(T )

)1/2
]

m

.

Notations are further explained in Sect. 4, but we point out that a remarkable feature of that

result is that the density ω̂ε
H ∧

[
det
(

T
sinh(T )

)1/2]
m
essentially only depends on horizontal

curvature quantities. Therefore, the theorem illustrates further the fact already observed in
[4] that topological properties of M might be obtained from horizontal curvature invariants
only provided that the bracket-generating condition of the horizontal distribution is satisfied;
thus, in essence, the theorem is a sub-Riemannian result. We also note that the condition (1.1)
is satisfied in a large class of examples including the H-type foliations introduced in [5], see
Example 2.4.

The proof of Theorem 1.1 is based on the study of the heat semigroup generated by the
hypoelliptic sub-Laplacian on forms recently introduced in [4]. The heat equation approach
to Chern–Gauss-Bonnet type formulas (or index formulas) that we are using is of course not
new: It was suggested by Atiyah–Bott [1] and McKean-Singer [16] and first carried out by
Patodi [18] and Gilkey [12] and is by now classical, see the book [9]. However, a difficulty
in our setting is that the sub-Laplacian on forms we consider is only hypoelliptic but not
elliptic. To carry out the required small-time asymptotics analysis to obtain the horizontal
Chern–Gauss–Bonnet formula, we will make use of the probabilistic Brownian Chen series
parametrix method first introduced in [3] andwhich is easy to adapt to hypoelliptic situations,
see [2].

The paper is organized as follows. In Sect. 2, we introduce the horizontal Laplacian on
forms �H,ε and prove that it is a self-adjoint operator if and only if the condition (1.1) is
satisfied. In Sect. 3, we prove aMcKean–Singer type formula for�H,ε , namely that for every
t > 0,

Str(et�H,ε ) = χ(M).

Finally, in Sect. 4 we study the small-time asymptotics of Str(et�H,ε ) and conclude the proof
of Theorem 1.1.

2 Preliminaries

In this section, we first recall the framework and notations of Baudoin and Grong [4] and
the references therein to which we refer for further details. We then prove a necessary and
sufficient condition for the form horizontal Laplacian of a totally geodesic foliation to be a
symmetric operator.

2.1 Totally geodesic foliations

Let (M, g) be a smooth, oriented, connected, compact Riemannian manifold with dimension
n + m. We assume that M is equipped with a foliation F with m-dimensional leaves. The
distribution V formed by vectors tangent to the leaves is referred to as the set of vertical
directions (or vertical subbundle). Define the horizontal subbundle H = V⊥ as its orthog-
onal complement. We will always assume in this paper that the horizontal distribution H is
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everywhere bracket-generating. The foliation is called Riemannian and totally geodesic if
for any X ∈ �(H), Z ∈ �(V), the respective conditions are satisfied,

(LZ g)(X , X) = 0, (LX g)(Z , Z) = 0.

Equivalently, we can describe these conditions using the Bott connection. Write πH and
πV for the respective orthogonal projections toH andV . Let∇g be theLevi–Civita connection
of g. Introduce a new connection ∇ on TM according to the rules,

∇XY =

⎧⎪⎪⎨
⎪⎪⎩

πH(∇g
XY ) for any X , Y ∈ �(H),

πH([X , Y ]) for any X ∈ �(V), Y ∈ �(H),

πV ([X , Y ]) for any X ∈ �(H), Y ∈ �(V),

πV (∇g
XY ) for any X , Y ∈ �(V).

(2.1)

We observe that ∇ preserves H and V under parallel transport. The foliation F is then both
Riemannian and totally geodesic if and only if ∇g = 0. For the rest of the paper, we will
assume that ∇ is indeed compatible with the metric g. The torsion T of ∇ is given by

T (X , Y ) = −πV [πHX , πHY ].
Define a corresponding endomorphism valued one-form Z �→ JZ by

〈JZ X , Y 〉g = 〈Z , T (X , Y )〉g, X , Y , Z ∈ �(TM). (2.2)

Let gH and gV be the respective restrictions of g to H and V . We then define the canonical
variation g by gε = gH ⊕ 1

ε
gV , ε > 0, and make the following observations:

(i) If (M,F, g) is a Riemannian, totally geodesic foliation, then so is (M,F, gε).
(ii) Although the Levi-Civita connection ∇gε of gε is different from the connection ∇g of

g, replacing ∇g with ∇gε in formula (2.1) will lead to exactly the same connection. In
other words, when defining the Bott connection ∇, we obtain the same connection for
any metric gε in the family of canonical variations.

(iii) For any fixed ε > 0, define a connection

∇̂ε
XY = ∇XY + 1

ε
JXY . (2.3)

This connection preserves H and V under parallel transport and is compatible with gε′
for any ε′ > 0. Furthermore, its torsion

T̂ ε(X , Y ) = T (X , Y ) + 1

ε
JXY − 1

ε
JY X ,

is skew-symmetric with respect to gε. Hence, if we consider its adjoint connection

∇ε
XY = ∇̂ε

XY − T̂ ε(X , Y ) = ∇XY − T (X , Y ) + 1

ε
JY X , (2.4)

it will also be compatible with gε. However,H and V are not parallel with respect to ∇ε.

2.2 Horizontal Laplacian on forms

For the totally geodesic Riemannian foliation (M,F, g), define its horizontal Laplacian on
functions f ∈ C∞(M) by

�H f = trH ∇×d f (×). (2.5)
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We note that sinceH is assumed to be bracket-generating, fromHörmander’s theorem,�H is
a subelliptic operator. We also note that since gH and the Bott connection are independent of
ε > 0, the horizontal Laplacian is as well; that is, the choice of any metric gε in the canonical
variation family will not change gH, the Bott connection, or the horizontal Laplacian.

Consider now the totally geodesic Riemannian foliation (M,F, gε) for some fixed ε > 0.
We want to extend the horizontal Laplacian on functions (2.5) to a differential operator on
forms �H,ε satisfying the following requirements:

(I) �H,ε f = �H f for any smooth function f ;
(II) The operator �H,ε is of Weitzenböck type, i.e., �H,ε = LH,ε + Rε where Rε is a

zero-order differential operator and

LH,ε = trH ∇̃2×,×, (2.6)

is the connection horizontal Laplacian of some connection ∇̃ compatible with gε;
(III) If d is the exterior differential, then

[�H,ε, d] = 0.

Given these requirements, there is an essentially unique extension of�H to forms, see [4,15]
for details. We call �H,ε the ε-horizontal Laplacian on forms. This operator can described
as follows.

Proposition 2.1 (Horizontal Laplacian on forms, see [4]) Consider the ε-horizontal diver-
gence operator defined by

δH,εη = − trH(∇ε×η)(×, ·).
The operator

�H,ε = −δH,εd − dδH,ε

is called the ε-horizontal Laplacian on forms, and it satisfies the requirements (I), (II), (III).
In particular, this operator has Weitzenböck decomposition �H,ε = LH,ε +Rε where LH,ε

is defined as in (2.6) relative to ∇ε.

We can describe the zero order operatorRε can be made explicit, see [4]. For later use, we
will prefer to write the operators using Fermion calculus, see Appendix A.1. Let X1, . . . , Xn

and Z1, . . . , Zm be local orthonormal bases of, respectively, H and V . Define ai = ιXi and
br = ιZr for the corresponding annihilation operators, with the dual operators a∗

i = X∗
i ∧

and b∗
r = Z∗

r ∧ acting by wedge products. The dual are here relative to the L2 inner product
with respect to the fixed metric g. Relative to the curvature tensor R̂ε of ∇̂ε, write

R̂ε,l
i jk = 〈R̂ε(Xi , X j )Xk, Xl〉g, (2.7)

and use similar notation for other tensors with indices i, j, k, l denoting evaluations with
respect to the basis ofH, indices r , s with respect to the basis of V . We emphasize that these
indices are always defined relative to the fixed metric g. Then, Rε is given by

Rε =
n∑

i, j,k=1

R̂ε,i
i jka

∗
k a j +

n∑
i,k=1

m∑
r=1

R̂ε,i
irka

∗
k br + 1

2

n∑
i, j,k,l=1

R̂ε,l
i jka

∗
k a

∗
l a j ai

+
n∑

i, j,k=1

m∑
r=1

R̂ε,l
irka

∗
k a

∗
l br ai + 1

2

n∑
i, j=1

m∑
r ,s=1

R̂ε, j
rsi a

∗
i a

∗
j br bs . (2.8)
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We want to give a formula for this operator that shows the dependence of ε explicitly. Let T
and R be the curvature of the Bott connection ∇ and use indices after semi-colons to denote
covariant derivatives with respect to this connection. Using Lemma A.2, Appendix, we can
write

Rε =
n∑

i, j,k=1

(
Rk
k ji + 1

ε

m∑
r=1

T r
ikT

r
jk

)
a∗
i a j −

n∑
i, j=1

m∑
r=1

T r
i j;i a

∗
j br

+ 1

2

n∑
i, j,k,l=1

(
R j
kli + 1

ε

m∑
r=1

T r
kl T

r
i j

)
a∗
i a

∗
j alak +

n∑
i, j,k=1

m∑
r=1

1

ε
T r
i j;ka

∗
i a

∗
j br ak

+ 1

2

n∑
i, j=1

m∑
r ,s=1

(
2

ε
T s
i j;r + 1

ε2

n∑
k=1

(T r
k j T

s
ik − T s

k j T
r
ik)

)
a∗
i a

∗
j bsbr . (2.9)

2.3 Symmetry of the horizontal Laplacian

Consider the exterior algebra

� = �(M) =
dimM⊕
k=0

�k,

with the L2-inner product from gε . When restricted to elements in �0 ⊕ �1, the operator
�H,ε is symmetric if and only if H satisfies the Yang–Mills condition, i.e., if

n∑
i=1

T r
i j;i = 0, for any j = 1, . . . , n, r = 1, . . . ,m.

see [6]. Considering all forms, we have the following result.

Proposition 2.2 The operator �H,ε is symmetric with respect to the L2-inner product of gε

if and only if

(∇v J )w = − 1

2ε
[Jv, Jw], (2.10)

for any v,w ∈ TxM, x ∈ M. In particular, ∇v J = 0 for any v ∈ H.

We note that under the above condition, the expression of Rε reduces to

Rε =
n∑

i, j,k=1

(
Rk
k ji + 1

ε

m∑
r=1

T r
ikT

r
jk

)
a∗
i a j + 1

2

n∑
i, j,k,l=1

(
R j
kli + 1

ε

m∑
r=1

T r
kl T

r
i j

)
a∗
i a

∗
j alak .

(2.11)

Proof LH,ε is symmetric by Grong and Thalmaier [15, Lemma A.1], so we only need to
determine when Rε is symmetric. We choose a local bases X1, . . . , Xn and Z1, . . . , Zm of,
respectively, H and V . We consider the representation of Rε as in (2.9). Then, for Rε to be
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symmetric, we must have

0 = 〈RεX
∗
k ∧ Z∗

r , X
∗
i ∧ X j 〉ε − 〈RεX

∗
i ∧ X j , X

∗
k ∧ Z∗

r 〉ε = 1

ε
T r
i j;k,

0 = 〈RεZ
∗
r ∧ Z∗

s , X
∗
i ∧ X j 〉ε − 〈RεX

∗
i ∧ X j , Z

∗
r ∧ Z∗

s 〉ε

= 2

ε
T s
i j;r + 1

ε2

n∑
k=1

(T r
k j T

s
ik − T s

k j T
r
ik).

These equations are clearly equivalent to (2.10). If these hold, thenRε reduces to the expres-
sion (2.11), which is symmetric by Lemma A.3 (i). ��

Remark 2.3 If we assume that m = 1 (i.e., the leaves are one-dimensional), then it is imme-
diate from the previous result that the following are equivalent:

(i) �H,ε is symmetric for some ε > 0.
(ii) �H,ε is symmetric for all ε > 0.
(iii) ∇ J = 0.

Recall that the statement ∇ J = 0 is equivalent to ∇T = 0. For m > 1, the above statement
remains true if we replace (i) by the following assumption

(i’) �H,ε is symmetric at least two values ε > 0 and ε′ > 0.

Example 2.4 (H-type foliations) Following definitions given in [5], we say that a foliated Rie-
mannian manifold (M,F, g) is of H-type if for every Z ∈ �(V), we have J 2Z = −‖Z‖2VπH.
Expand the definition of J from taking values from V to its Clifford algebraCl(V) by the rule
J1 = πH and iteratively Ju·v = Ju Jv , u, v ∈ Cl(V). We then further say that the foliation is
of horizontally parallel Clifford type if ∇X J = 0 for any horizontal vector fields X ∈ �(H)

and while for u, v ∈ V .

(∇u J )v ∈ JCl(V).

It then turns out that for some κ ∈ R,

(∇u J )v = −κ Ju·v+〈u,v〉 = −κ

2
[Ju, Jv].

The number κ determines the Ricci curvature of ∇, see [5, Theorem 3.16]. We see that if we
have an H-type Riemannian foliation (M,F, g) of horizontally parallel Clifford type, then
�H,ε is symmetric with respect to gε for ε = 1

κ
.

Finally, to conclude the section we point out the following result. For the definition of
the Carnot–Carathéodory metric dcc of the sub-Riemannian manifold (M,H, gH) and the
tangent cone of a metric space, see, e.g., [13].

Corollary 2.5 Assume that �H,ε is symmetric on forms for some fixed ε > 0. Then, the
following holds:

(a) The horizontal bundleH has step 2, that isH+[H,H] = TM. In particular, the torsion
T of the Bott connection ∇ will be surjective on V .

(b) The tangent cones of the metric space (M, dcc) at any pair of points x, y ∈ M are
isometric.
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Proof (a) Recall that if �H,ε is symmetric on forms for some ε > 0, then in particular
∇v J = 0 for any v ∈ H. We can rewrite it as ∇vT = 0 for any v ∈ H since ∇ is
compatible with g. Define H2 = H + [H,H] and let X1, X2, X3 ∈ �(H) be arbitrary.
We first see that

T (X2, X3) = ∇X2 X3 − ∇X3X2 − [X2, X3] = 0 mod H2,

since ∇ preserves H. Furthermore, by the definition of the Bott connection

[X1, [X2, X3]] = −[X1, T (X2, X3)] mod H2 = −∇X1T (X2, X3) mod H2

= −T (∇X1X2, X3) − T (X2,∇X1X3) mod H2 = 0 mod H2.

It follows that H only generates H2. As we assumed that H is bracket generating, we
have H2 = T M .

(b) Since both H and H2 = H + [H,H] = T M have constant rank, it follows by Mitchell
[17] and Bellaïche [8] that the tangent cone at a point x is a Carnot group Gx . Its Lie
algebra gx is given by

gx = gx,1 ⊕ gx,2 = Hx ⊕ TxM/Hx ,

where T M/Hx is the center, and for Xx , Yx ∈ Hx = gx,1 the Lie bracket is defined as

[[ Xx , Yx ]] = [X , Y ]|x mod Hx .

where X , Y are any pair of vector fields extending this vectors. The Carnot group Gx

is then the corresponding simply connected Lie group of gx with the sub-Riemannian
structure given by left translation of gx = Hx and its inner product.
If identify gx = Hx ⊕ TxM/Hx with TxM = Hx ⊕ Vx through the map v mod Hx �→
πVx (v), v ∈ TxM , then the Lie bracket becomes,

[[ v,w ]] = −T (v,w), v,w ∈ TxM .

Let now y be any other point and let γ : [0, 1] → M be any horizontal curve from x to
y, which exists form our assumption that H satisfies the bracket-generating condition.
Then, ∇γ̇ (t)T = 0 for any t ∈ [0, 1], so if we write

//γ,t = //t : TxM → Tγ (t)M,

for the parallel transport map along γ , then this satisfies

//t T (u, v) = T (//t u, //t v), v,w ∈ TxM.

As a consequence, //1 : gx = TxM → gy = TyM is a Lie algebra isomorphism, which
can be integrated to a Lie group isomorphism from Gx to Gy . Since the parallel transport
//1 also maps Hx onto Hy isometrically, the induced map on Carnot groups is in fact a
sub-Riemannian isometry.

��

3 Horizontal McKean–Singer theorem

Wework on a totally geodesic foliation (M,F, g) and assume that there is some0 < ε < +∞
such that horizontal Laplacian �H,ε , is symmetric. From Proposition 2.2, this assumption is
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equivalent to the fact that

(∇v J )w = − 1

2ε
[Jv, Jw].

Since �H,ε commutes with d on smooth forms and is symmetric, it also commutes on
smooth forms with the coderivative δε , and thus, it also commutes with the Hodge–de Rham
operator �ε := −dδε − δεd on smooth forms. From Hodge theorem, the operator �ε is
elliptic with a compact resolvent and the space of L2-forms can be decomposed as ⊕+∞

k=0Eλk

where the Eλk ’s are the eigenspaces of �ε . Those eigenspaces only contain smooth forms,
therefore �H,ε(Eλk ) ⊂ Eλk . This implies that �H,ε is essentially self-adjoint and generates
the semigroup:

et�H,ε = ⊕+∞
k=0e

t�H,ε |Eλk (3.1)

By hypoellipticity (see [4, Lemma 4.9]), this semigroup has a smooth kernel pH,ε(t, x, y)
and is a bounded trace class operator in L2

μ(∧·
M, gε). Let us denote by E+

0 (�H,ε) (resp.
E−
0 (�H,ε)) the space of harmonic even forms for �H,ε (resp. the space of harmonic odd

forms for �H,ε).
The goal of the section is to prove the following theorem, which is an analogue for our

horizontal Laplacian of the classical McKean–Singer formula found in [16] :

Theorem 3.1 (Horizontal McKean-Singer formula) For every t > 0,

Str(et�H,ε ) : =
∫
M

Tr(p+
H,ε(t, x, x))dμ(x) −

∫
M

Tr(p−
H,ε(t, x, x))dμ(x)

= dim E+
0 (�H,ε) − dim E−

0 (�H,ε)

= χ(M)

where χ(M) is the Euler characteristic ofM.

We turn to the proof of Theorem 3.1. We denote by

Dε = d + δε

the Dirac operator of the metric gε. Observe that Dε commutes with �H,ε since both d and
δε commute with it. The main idea to prove Theorem 3.1 is to introduce a deformation of
�H,ε as follows:

�ε,θ = (1 − θ)�H,ε − θD2
ε, θ ∈ [0, 1].

A first lemma is the following:

Lemma 3.2 Let λ be a nonzero eigenvalue of �ε,θ . Then, Dε : E+
λ (�ε,θ ) → E−

λ (�ε,θ ) is an
isomorphism. Therefore, dim E+

λ (�ε,θ ) = dim E−
λ (�ε,θ ).

Proof Let λ be a nonzero eigenvalue of �ε,θ . The corresponding eigenspace Eλ(�ε,θ ) is
finite-dimensional since et�ε,θ is a compact operator for t > 0.Moreover, sinceDε commutes
with �ε,θ , Dε : E+

λ (�ε,θ ) → E−
λ (�ε,θ ) is well defined. Let now α ∈ E+

λ (�ε,θ ) such that
Dεα = 0. One has then

dα = −δεα.

This implies that

‖dα‖2L2(∧·M,gε)
= −〈dα, δεα〉L2(∧·M,gε)

= 0,

123



Annals of Global Analysis and Geometry (2022) 61:759–776 767

so dα = 0. Similarly, one has ‖δεα‖2
L2(∧·M,gε)

= 0, so δεα = 0. Therefore,

α = 1 − θ

λ
�H,εα = −1 − θ

λ
(dδH,ε + δH,εd)α = −1 − θ

λ
dδH,εα.

One deduces

‖α‖2L2(∧·M,gε)
= −1 − θ

λ
〈α, dδH,εα〉L2(∧·M,gε)

= −1 − θ

λ
〈δεα, δH,εα〉L2(∧·M,gε)

= 0.

As a consequence, Dε : E+
λ (�ε,θ ) → E−

λ (�ε,θ ) is injective. Let us now prove that it is
surjective. Let α ∈ E−

λ (�ε,θ ) which is orthogonal to the space DεE
+
λ (�ε,θ ). For every

ω ∈ E+
λ (�ε,θ ), one has

0 = 〈α,Dεω〉L2(∧·M,gε)
= 〈Dεα, ω〉L2(∧·M,gε)

.

Thus, Dεα = 0 and from the first part of the proof, we deduce that α = 0. We conclude that
Dε : E+

λ (�ε,θ ) → E−
λ (�ε,θ ) is indeed an isomorphism. ��

A second lemma is the following:

Lemma 3.3 For every t > 0, the map θ → Str(et�ε,θ ) is continuous on [0, 1].
Proof Let qε,θ (t, x, y) be the heat kernel of �ε,θ = (1 − θ)�H,ε − θD2

ε , pH,ε(t, x, y) be
the heat kernel of �H,ε and pε(t, x, y) be the heat kernel of −D2

ε . Since −D2
ε and �H,ε

commute, we have

et�ε,θ = et(1−θ)�H,εe−tθD2
ε .

Therefore:

qε,θ (t, x, y) =
∫
M

pH,ε(t(1 − θ), x, z)pε(tθ, z, y)dz

and the result easily follows since

Str(et�ε,θ ) =
∫
M

qε,θ (t, x, x)dx .

��
We are now ready for the proof of Theorem 3.1.

Proof From the first lemma:

Str(et�ε,θ )

= dim E+
0 (�ε,θ ) − dim E−

0 (�ε,θ ) +
∑
λ�=0

(dim E+
λ (�ε,θ ) − dim E−

λ (�ε,θ ))e
λt

= dim E+
0 (�ε,θ ) − dim E−

0 (�ε,θ ).

Therefore, Str(et�ε,θ ) ∈ Z. From the second lemma, θ → Str(et�ε,θ ) is continuous, thus
constant. We deduce

Str(et�ε,0) = Str(et�ε,1).

Since �ε∗,1 = −D2
ε is the Hodge–de Rham Laplacian of the Riemannian manifold (M, gε),

from the usual Riemannian Hodge theory (see [16]), we have

Str(et�ε,1) = χ(M),

4 which concludes the proof. ��
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Remark 3.4 (Dependence on the symmetry condition) It would obviously be beneficial to
prove the above statement without the assumption of symmetry on �H,ε . A semigroup
approach to non-symmetric horizontal Laplacians has been used, see [15, AppendixA]. In the
above proof, however, we really rely on the fact that �H,ε commutes with the codifferential
δε , and with the Laplace–Beltrami operator −D2

ε . We can no longer use these properties if
we remove the symmetry assumption.

4 Horizontal Chern–Gauss–Bonnet formula

As before, we consider the horizontal Laplacian

�H,ε = −dδH,ε − δH,εd,

and assume that it is symmetric for a fixed ε. As seen earlier, �H,ε satisfies the Weitzenböck
identity

�H,ε = LH,ε − Rε = −(∇ε
H)∗∇ε

H − Rε. (4.1)

where the later equality follows from [15, Lemma 2.1]. The goal of the section is to compute
the pointwise limit

lim
t→0

Str (pH,ε(t, x, x))

and deduce from it our horizontal Chern–Gauss–Bonnet formula. The computation of that
limit will be based on the probabilist method of Brownian Chen series (see [3,7]) which
has the advantage of being easily adapted to subelliptic operators like �H,ε , see [2]. For
convenience and to introduce notation, we include in Appendix A.2 the main elements of
that theory.

A first step to implement the method in [2] is to study the small-time heat kernel asymp-
totics of a diffusion tangent to the scalar horizontal Laplacian �H . Since we assume that
�H,ε is symmetric, from Corollary 2.5 one has TM = H + [H,H], and thus the tangent
diffusion will take its values in a two-step Carnot group [the so-called tangent cone, see
Corollary 2.5(b)] for which an explicit formula for the heat kernel is known (see [10,11]). In
a local horizontal frame {X1, . . . , Xn} around x0 write

Vt (x0) =
n∑

i=1

√
2Xi (x0)B

i
t +

∑
1≤i< j≤n

πV ([Xi , X j ](x0))
∫ t

0
Bi
sdB

j
s − B j

s dB
i
s ,

where (Bt )t≥0 is a Brownian motion inRn . We note that Vt (x0) can be written in a basis free
way as

√
2Bt (x0) −

∫ t

0
T (Bs(x0), dBs(x0))

where Bt (x0) = ∑n
i=1 Xi (x0)Bi

t is a standard Brownian motion in Hx0 .

Lemma 4.1 Let x0 ∈ M. For t > 0, let dt (x0) be the density at 0 of the Tx0M valued random
variable Vt (x0). Then, when t → 0,

dt (x0) ∼ 2m

(4π t)
n
2 +m

∫
Vx0

det

( √
J ∗
z Jz

sinh
√
J ∗
z Jz

)1/2

dz.
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Proof The process (Vt (x0))t≥0 is the horizontal Brownian motion in the tangent cone Gx0
which is a 2-step Carnot group when it is identified with Tx0M using the group exponential
map. The heat kernel of the horizontal Laplacian is known explicitly in 2-step Carnot groups
(see [10,11]) which yields the small-time asymptotics. ��

Remark 4.2 We note that dt (x0) is independent of x0 because of Corollary 2.5(b).

In the sequel, we will use the notationFI (defined with respect to the connection D = ∇ε)
and �I (B)t , as introduced and discussed in Appendix A.2.

Corollary 4.3 It will hold that as t → 0

Str(pH,ε(t, x0, x0)) ∼ dt (x0)E

⎛
⎝Str

⎛
⎝exp

⎛
⎝ ∑

I ,d(I )≤n+2m

�I (B)tFI

⎞
⎠ (x0)

⎞
⎠
∣∣∣∣∣∣ B1 = 0

⎞
⎠

where dt (x0) is the density at 0 of Vt (x), as in Lemma 4.1.

Proof SinceH is two-step bracket generating, the homogeneous dimension is Q = dimH+
2 dim V = n + 2m. Taking N = n + 2m in Theorem A.1, and applying similar arguments as
in the proof of Proposition 4.2 in [3], the corollary follows by recognizing that for |I | > 2, XI

is a linear combination of Xi , [X j , Xk] so that when t → 0 the density at 0 of

∑
I ,d(I )≤n+2m

�I (B)t X I

is equivalent to dt (x0) from the previous lemma. ��

Applying the previous results, we are now able to compute limt→0 Str(pH,ε(t, x0, x0)).
Choose local orthonormal bases X1, . . . , Xn and Z1, . . . , Zm of, respectively, H and V .

Lemma 4.4 The integral

J = J (x0) = 2m

(2π)
n
2 +m

∫
Vx0

det

( √
J ∗
z Jz

sinh
√
J ∗
z Jz

)1/2

dz,

is a constant, so independent of the point x0 ∈ M chosen. Furthermore, it holds that

lim
t→0

Str(pH,ε(t, x0, x0)) =

⎧⎪⎪⎨
⎪⎪⎩

J
( n
2 +m)!E

(
Str

[
A

n
2 +m
x0

]∣∣∣ B1 = 0
)

, if n is even

0, if n is odd.

where the random variable Ax0 is given by

Ax0 = −1

2

n∑
i, j,k,l=1

(
R j
kli + 1

ε

m∑
r=1

T r
kl T

r
i j

)
a∗
i a

∗
j alak

,
∑

1≤i< j≤n

m∑
r ,s=1

T s
i j;r b

∗
r bs

∫ 1

0
Bi
t dB

j
t − B j

t dB
i
t . (4.2)
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Proof First, observe that

J (x0) = (2t)
n
2 +mdt (x0),

and so the independence of J (x0) from x0 follows from Corollary 2.5(b) as in Remark 4.2.
Consider the expansion

Str

⎡
⎣exp

⎛
⎝ ∑

I ,d(I )≤n+2m

�I (B)tFI

⎞
⎠ (x0)

⎤
⎦ =

∑
k≥0

1

k!Str
⎡
⎢⎣
⎛
⎝ ∑

I ,d(I )≤n+2m

�I (B)tFI

⎞
⎠
k

(x0)

⎤
⎥⎦ .

From the Weitzenböck identity (4.1), we have for i, j ∈ {1, . . . , n + m} that
F0 = −Rε, Fi = 0, F(i, j) = R̂ε(Yi , Y j )

where {Y1, . . . , Yn+m} forma local orthonormal frameand the {ci , c∗
i }n+m

i=1 form the associated
Fermion calculus of TM. Equation (2.11) allows us to write

Rε =
n∑

i, j,k=1

〈R̂ε(Xi , Xk)X j , Xi 〉ga∗
k ai +

∑
i, j,k,l

〈R̂ε(Xi , X j )Xk, Xl〉ga∗
i a

∗
j alak

where {ai , a∗
i } form the Fermion calculus for H.

Recalling equation (A.1) in the appendix, we see that the supertrace will vanish for any
term that is not of full degree; from our expressions forFI , it is thus clear that for k < n

2 +m

Str

⎡
⎢⎣
⎛
⎝ ∑

I ,d(I )≤n+2m

�I (B)tFI

⎞
⎠

k

(x0)

⎤
⎥⎦ = 0.

Let us assume that n is even. Applying the scaling property of Brownian motion, when
t → 0 the term k = n

2 + m will be dominant. More precisely,

E

(
Str

[
exp

(∑
I ,d(I )≤n+2m �I (B)tFI

)
(x0)

]∣∣∣ B1 = 0
)

= 1( n
2 +m

)!E
(
Str

[(∑
I ,d(I )≤n+2m �I (B)tFI

) n
2 +m

(x0)

]∣∣∣∣ B1 = 0

)
+ O

(
t
n
2 +m+ 1

2

)
. (4.3)

Then, we have,

E

(
Str
[(∑

I ,d(I )≤n+2m �I (B)tFI

) n
2 +m

(x0)

]∣∣∣∣B1=0

)

=E

(
Str
[(

−tR ε(x0)+
∑

1≤i< j≤n
∑s

r ,s=1 R̂ε,s
iir b

∗
r bs

∫ t
0 BiudB

j
u−B j

u dB
i
u

) n
2 +m

]∣∣∣∣B1=0

)
+O

(
t
n
2 +m+ 1

2

)
.(4.4)

We can further simplify this expression using that by Lemma A.2, Appendix, we know that
R̂ε,s
i jr = Rs

i jr = T s
i j;r . We also use (2.11) and the fact that only the last term inRε contributes

to the supertrace. Combining Lemma 4.1, Corollary 4.3, and Eqs. (4.3) and (4.4), we apply
the scaling property of Brownian motion again to find

Str(pH,ε(t, x0, x0)) = J( n
2 + m

)!E
(
Str

[
A

n
2 +m
x0

]∣∣∣
B1 = 0) + O

(
t
1
2

)
.

If n is odd, we get by similar arguments that

Str(pH,ε(t, x0, x0)) = O
(
t
1
2

)
.
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completing the proof. ��
In what follows, we will introduce the tensor T by

T (Y1, Y2) = R̂ε(πHY1, Y2)πV = πV R̂ε(πHY1, Y2).

We observe that for any X1, X2 ∈ �(H) and Z ∈ V ,

T (X1, X2)Z = (∇Z T )(X1, X2) = 1

2ε
(T (JZ X1, X2) + T (X1, JZ X2)) ,

where the latter equality follows from the symmetry condition of �H,ε .

Example 4.5 (H-type foliation) We again consider the case of the of H-type foliations as in
Example 2.4. We recall that in this case, we have that �H,ε for ε = 1

κ
. Let x ∈ M be a fixed

point and letCl(Vx ) be the Clifford algebra of the vertical space. We remark that in this case,
for any u, v ∈ Hx with v ∈ (spanζ∈Cl(Vx )

Jζ u)⊥, we have T (u, v) = 0. On the other hand,
if v = Jζ u, then for any z ∈ Vx ,

T (u, Jζ u)z = κπVx (z · ζ odd),

where ζ odd is the odd part of ζ and πVxCl(Vx ) → Vx is the projection to the first-order part.

We can use the above definition and the previous lemma to prove the following.

Proposition 4.6 Assume that n or m is odd, then

lim
t→0

Str (pH,ε(t, x, x)) dx = 0

Assume that both n and m are even, then

lim
t→0

Str (pH,ε(t, x, x)) dx = ω̂ε
H ∧

[
det

(
T

sinh(T )

)1/2
]

m

where [·]m denotes the m-form part and ω̂ε
H is the horizontal Euler form, locally defined as

ω̂ε
H = (−1)n/2m!

2n/2
( n
2 + m

)!J
∑

σ,τ∈Sn

ε(σ )ε(τ )

n−1∏
i=1

R̂ε,τ (i+1)
σ (i)σ (i+1)τ (i)dxH,

In the above formula,Sn is the set of the permutations of the indices {1, ..., n}, ε the signature
of a permutation, R̂ε,l

i jk is as in (2.7) and dxH the n-form X∗
1 ∧ · · · ∧ X∗

n .

Proof Wefirst assume that bothn andm are even. It remains to computeE
(
Str

[
A

n
2 +m
x0

]∣∣∣ B1 = 0
)
.

Looking at (4.2), we have

E

(
Str
[
A
n
2 +m
x0

]∣∣∣∣B1=0

)

= Str
[(

−∑i, j,k,l 〈R̂ε(Xi ,X j )Xk ,Xl 〉ga∗
i a

∗
j al ak

)n/2
E

[ (∑
1≤i< j≤n T (Xi ,X j )(x0)

∫ 1
0 BisdB

j
s −B j

s dB
i
s

)m ∣∣∣B1=0
]]

The term
(∑

i, j,k,l〈R̂ε(Xi , X j )Xk, Xl〉ga∗
i a

∗
j alak

)n/2
is then analyzed as in the proof of

Proposition 5.6 in [7] (see also Lemma 2.35 in [19]) and up to constant yields the horizontal
Euler form ω̂ε

H. On the other hand, using again the formula for the supertrace, the term

E

⎡
⎣
⎛
⎝ ∑

1≤i< j≤n

T (Xi , X j )(x0)
∫ 1

0
Bi
sdB

j
s − B j

s dB
i
s

⎞
⎠

m ∣∣∣∣∣∣ B1 = 0

⎤
⎦
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can be replaced with

m!E
⎡
⎣exp

⎛
⎝ ∑

1≤i< j≤n

T (Xi , X j )(x0)
∫ 1

0
Bi
sdB

j
s − B j

s dB
i
s

⎞
⎠
∣∣∣∣∣∣ B1 = 0

⎤
⎦

and is analyzed using the Lévy area formula as in the proof of Theorem 4.3 in [3]: it yields

the top degree Fermionic piece of det
(

T
sinh(T )

)1/2
(x0) ∈ End

(∧V∗
x0

)
(Fermionic calculus

is done here on Vx0 ).
If n is even and m is odd, a similar analysis shows that

E

(
Str

[
A

n
2 +m
x0

]∣∣∣ B1 = 0
)

= 0.

��
Combining Theorem 3.1 and Proposition 4.6 finally yields our main theorem:

Theorem 4.7 Assume that both n and m are even, then

χ(M) =
∫
M

ω̂ε
H ∧

[
det

(
T

sinhT

)1/2
]

m

.

Assume that n or m is odd, then χ(M) = 0.

As a corollary, since ∇ J = 0 implies T = 0, we obtain the following result:

Corollary 4.8 Assume that ∇ J = 0, then χ(M) = 0.
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A Appendices

A.1 Fermion calculus and supertraces

In this section, we recall some basic elements of Fermion calculus, see section 2.2.2 in [19]
for more details. Let V be a d-dimensional Euclidean vector space.We denote V ∗ its dual and
∧V ∗ = ⊕

k≥0 ∧kV ∗, its exterior algebra. If u ∈ V ∗, we denote a∗
u the map ∧V ∗ → ∧V ∗,

such that a∗
u (ω) = u ∧ ω. The dual map is denoted au . Let now θ1,..., θd be an orthonormal

basis of V ∗. We denote ai = aθi . If I and J are two words with 1 ≤ i1 < · · · < ik ≤ d and
1 ≤ j1 < · · · < jl ≤ d , we denote

AI J = a∗
i1 · · · a∗

ik a j1 · · · a jl .

123

http://creativecommons.org/licenses/by/4.0/


Annals of Global Analysis and Geometry (2022) 61:759–776 773

The family of all the possible AI J forms a basis of the 22d -dimensional vector space
End (∧V ∗).

If A ∈ End (∧V ∗), the supertrace Str(A) is the difference of the trace of A on even forms
minus the trace of A on odd forms. If A = ∑

I ,J cI J AI J , then we have

Str(A) = (−1)
d(d−1)

2 c{1,...,d}{1,...,d}. (A.1)

In this paper, c{1,...,d}{1,...,d} will be called the top degree Fermionic piece of A and

[A]d := (−1)
d(d−1)

2 c{1,...,d}{1,...,d}θ1 ∧ · · · ∧ θd

the d-form part of A.

A.2 The Brownian Chen series parametrix method

For the sake of completeness and to introduce some notations used in the paper, we reproduce
here the essential ideas from [2,3,7] to which we refer for further details. Let E be a finite-
dimensional vector bundle over a compact manifold M equipped with a connection D and
consider a second-order differential operator L = D0 + ∑d

i=1 D
2
i with Di = Fi + DXi

for some smooth vector fields Xi and potentials Fi on E . It is known that the differential
equation

∂�

∂t
= L�, �(0, x) = f (x)

has solution

�(t, x) = (etL f )(x) = Pt f (x).

At strongly regular points x0 ∈ M, it is furthermore true that Pt admits a smooth heat kernel

pt (x0, ·) : R>0 → �(M,Hom(E))

t �→ pt (x0, ·)
which is to say

(Pt f )(x0) := (etL f )(x0) =
∫
M

pt (x0, y) f (y) dy.

We have a method of approximation for the heat kernel in this setting.

Theorem A.1 Let N ≥ 1 and define (PN
t f )(x) = E(�(1, x)) where �(τ, x) solves the

random differential equation

∂�

ψτ
=

∑
I : d(I )≤N

�I (B)t (DI�)(τ, x), �(0, x) = f (x). (A.2)

where I = (i1, . . . , ik) ∈ {0, . . . , d}k is a word, DI = [Di1 , [. . . , [Dik−1 , Dik ] . . . ]], d(I ) =
n(I ) + k with n(I ) the number of 0’s in I , and the random coefficients are defined by

�I (B)t = 2d(I )/2
∑

σ∈Sk

(−1)e(σ )

k2
(
k − 1
e(σ )

)
∫

�k [0,t]
◦dBσ−1(I )

where (Bt )t≥0 is a standard Brownian motion in Rd . Then,
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• For k ≥ 0, define the norm

‖ f ‖k = sup
0≤l≤k

sup
0≤i1,...,ik

sup
x∈M

‖Di1 · · · Dil f (x)‖.

It will hold that for any k ≥ 0

‖Pt f − PN
t f ‖k = O

(
t
N+1
2

)
, t → 0

• PN
t admits a smooth kernel pNt such that for N ≥ 2

pt (x0, x0) = pNt (x0, x0) + O
(
t
N+1−Q

2

)
, t → 0

where Q is the homogeneous dimension at x0.
• Write FI = DI − DXI . For N ≥ 2, it holds as t → 0 that

pNt (x0, x0)

= dNt (x0)E

⎛
⎝ exp

⎛
⎝ ∑

I ,d(I )≤N

�I (B)tFI

⎞
⎠ (x0)

∣∣∣∣∣∣
∑

I ,d(I )≤N

�I (B)t X I (x0) = 0

⎞
⎠+ O

(
t
N+1−Q

2

)

where dN
t (x) is the density at 0 of the random variable

∑
I ,d(I )≤N �I (B)t X I (x).

We refer to Baudoin [2] and Baudoin [7, Section 5.1] for the proofs and further details,
but we remark that roughly the theorem says that in small time we can approximate the heat
kernel of L by the kernel associated with solutions of Eq. (A.2), for which we will be able to
say much more.

A.3 Curvature of the connection ∇̂"

We want to give details on writing the curvatures of ∇̂ε in terms of the Bott connection ∇.

Lemma A.2 Relative to the notation of (2.7) we have the following identities. Recall that
i, j, k, l denotes vector fields from a basis of H, while indices r , s denotes such elements
from a basis of V

(i) Rl
i jk = R j

kli , R
s2
r1s1r1 = Rs1

r2s2r1 ,

(ii) Rs
i jr = T s

i j;r , R
l
irk = 0, Rs2

is1r2
= 0,

(iii) T r
i j;r = 0. Equivalently (∇Z J )Z = 0 for any vector field Z with values in V .

(iv) R̂ε,l
i jk = Rl

i jk + 1
ε

∑m
s=1 T

s
i j T

s
kl .

(v) R̂ε,l
irk = 1

ε
T s
kl;i .

(vi) R̂ε,l
rsk = 2

ε
T s
kl;r + 1

ε2

∑n
i=1(T

r
il T

s
ki − T s

il T
r
ki )

Proof From (2.3), we observe that

R̂ε(X , Y )Z = R(X , Y )Z + 1

ε
(∇X J )Y Z − 1

ε
(∇Y J )X Z

+ 1

ε
JT (X ,Y )Z + 1

ε2
[JX , JY ]Z . (A.3)

We will also use the first Bianchi identity for connections with torsion

� R(X , Y )Z =� (∇XT )(X , Y )+ � T (T (X , Y ), Z),

where � denotes the cyclic sum. We furthermore observe the following identities.
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(i) Since 〈T (Y1, Y2), Y3〉 and T (T (Y1, Y2), Y3) vanishes if Y1, Y2, Y3 are either all vertical
or all horizontal,

〈R(X1, X2)X3, X4〉g = 〈R(X3, X4)X1, X2〉g,
〈R(Z1, Z2)Z3, Z4〉g = 〈R(Z3, Z4)Z1, Z2〉g,

for any Xi ∈ �(H), Zi ∈ �(V), i = 1, 2, 3, 4.
(ii) From Grong [14, Appendix A], we know that for X1, X2 ∈ �(H), Z1, Z2 ∈ �(V),

R(X1, X2)Z1 = (∇Z1T )(X1, X2), R(X1, Z1)X2 = 0 R(X1, Z1)Z2 = 0.

(iii) Since ∇ is compatible with the metric then (∇Z J )Z = 0 for any Z ∈ �(V), as for any
X1, X2 ∈ �(H),

0 = 〈Z , R(X1, X2)Z〉g = 〈Z ,� R(X1, X2)Z〉g
= 〈Z , (∇Z T )(X1, X2)〉g = 〈X2, (∇Z J )Z X1〉g.

(iv) We observe first that from (A.3), for any X1, X2, X3, X4 ∈ �(H)

〈R̂ε(X1, X2)X3, X4〉g = 〈R(X1, X2)X3, X4〉g + 1

ε
〈JT (X1,X2)X3, X4〉g

(i)= 〈R(X3, X4)X1, X2〉g + 1

ε
〈T (X1, X2), T (X3, X4)〉g.

(v) Next, for any X1, X2 ∈ �(H), Z ∈ �(V),

R̂ε(X1, Z)X2
(ii)= 1

ε
(∇X1 J )Z X2.

(vi) For the final property observe that

R(Z1, Z2)X1
(ii)=� R(Z1, Z2)X1 = 0.

Hence,

R̂ε(Z1, Z2)X1 = 1

ε
(∇Z1 J )Z2 X1 − 1

ε
(∇Z2 J )Z1X1 + 1

ε2
[JZ1 , JZ2 ]X1

(iii)= 2

ε
(∇Z1 J )Z2 X1 + 1

ε2
[JZ1 , JZ2 ]X1.

��
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