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Abstract

Computed Tomography, also called CT, is a diagnostic method used to create
images of a patient’s body. These images can be used to identify or discover
illness in the imaged patient. Tomography is nothing new and has been
around since the early 1920s [1]. Today such images are also used to plan
and execute radiation therapy.

A prototype of a Proton Computed Tomography(pCT) system is currently
under development by a research team at the University of Bergen and West-
ern Norway University of Applied Sciences. This project introduces proton-
based imaging instead of the standard photon-based sensors in today’s CT
machines. Protons are used in-place-of photons based on the underlying
properties of a proton particle and the reduction in overall time one round
of treatment would take for each patient.

The Proton Computed Tomography system is built using a chip called ALice
PIxel DEtector(ALPIDE) developed at CERN. Several ALPIDE chips are
used to construct the sensor, which can introduce accuracy issues in the
output data, as these chips can only be mounted with limited mechanical
precision. This thesis introduces the software theory behind a system used
to align the chips based on output data from the sensor.
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Glossary

Bragg peak The peak energy deposition of a particle traveling through
matter, right before it comes to a rest.

calorimeter A device used to measure the quantity of heat transferred to
or from an object.

Docker A platform as a service product that runs software in ”self-sustaining”
packages called containers. Allowing anyone to run software packages
without having to install any dependencies[2].

layer This is the largest element of the DTC constructed from 12 staves.
Forty-three of these combine into the full DTC.

offset Referring to elements inside the DTC being shifted or misaligned in
relation to every other element.

phantom Object used as an obstruction for particles during testing and
simulation of the DTC. Imitating human tissue.

readout unit Component responsible for gathering and parsing incoming
ALPIDE data. One unit for each layer.

residual The difference between an original track and its predicted track.
Measured in the distance from the original hit to the linear regression
line of that track.
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stave A DTC element constructed from 9 ALPIDE chips. 12 of these com-
bines into a layer.

Valgrind A framework used to create tools able to detect bugs and profile
memory management and function calls[3].
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Acronyms

ALICE A Large Ion Collider Experiment.

ALPIDE ALICE pixel detector.

CERN derived from the name Conseil européen pour la recherche nucléaire
meaning The European Organization for Nuclear Research.

CI/CD Continuous Integration/Continuous Delivery: A automation pro-
cess for developers to ensure new code is built and tested properly,
meant to fix issues with integrating new code in a larger codebase.

CT Computed Tomography.

DTC Digital Tracking Calorimeter.

ITS Inner Tracking System.

LET In dosimetry, linear energy transfer (LET) is the amount of energy
that an ionizing particle transfers to the material traversed per unit
distance.

LHC Large Hadron Collider.

MC Monte Carlo. Used here to refer to Monte Carlo simulation.

OLS Ordinary Least Squares. Type of linear regression model.

OS Operating System: A interface between a computer user and computer
hardware.
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pCT Proton Computed Tomography.

TC Transition card. Part of the readout electronics in the Bergen pCT
system.

WSL Windows Subsystem for Linux: A Windows system allowing emula-
tion of a Linux system inside of Windows.
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Chapter 1

Introduction

This section will introduce the information needed to understand the prob-
lem. The section will have little to no connection with software engineering.
However, it will be crucial to understand the more extensive project this
thesis is built upon and create an understanding of why the research has to
be done.

1.1 Background

The Bergen pCT project explores a new method to perform computed to-
mography(CT), mainly the possibility of a fully proton-based CT scanner.
This differs from today’s CT scanner, where photons are the source used
to create images. There are several benefits of using protons as the source,
including reducing errors related to current imaging approaches for parti-
cle therapy treatment planning. This thesis will focus on the detector used
to collect data from proton particles. The detector is constructed by using
several ALPIDE chips from the ALICE(A Large Ion Collider Experiment)
experiment at CERN. The goal is to be able to do CT scans of patients using
this new detector.

The work done on this thesis is part of the Bergen pCT collaborations effort to
reduce errors related to data-gathering from the detector mentioned earlier.
This work will lay the foundation necessary for further development on the
topic.
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1.1.1 Radiation therapy issues

There are many factors in today’s radiation therapy that can introduce errors.
These errors may cause damage or unwanted side effects to a patient. The
factors include conversion errors when going from photon-stopping-power to
proton-stopping-power and the possibility for organs to move between the
imaging process to the proton therapy process [4].

The fact that the target(e.g., cancerous cells) can move inside the patient
between the imaging step and the point where therapy begins opens the
possibility of radiation being delivered to otherwise healthy tissue, increasing
the risk of new development of cancerous cells.

Taking CT scans also introduces radiation to healthy tissue because of the
properties of photons, which is also a reason why protons are researched as a
replacement for photons during CT scans, discussed further in section 1.1.2.

1.1.2 Proton Computed Tomography

When dosage plans are made by the CT machine, the patient is under con-
stant effect of radiation. The most optimal procedure would include no ra-
diation, but this is not possible. Therefore the minimal amount of radiation
possible is the goal. Figure 1.1 shows a comparison between photons and
protons as source used for imaging, which indicates that protons introduce
less radiation than photons to healthy tissue.

Figure 1.1: A comparison between two dose plans for irradiation of a par-
avertebral sarcoma in the lung, overlaid on CT images. Note the difference in
volume between the low dose regions (the so-called low dose bath) visualized
as blue areas, substantially smaller in the proton plan [5].
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In Figure 1.2 you can see the properties of protons and photons clearer.
Less dose is delivered to the patient while the proton pass through tissue,
but a higher dose is delivered where the proton stops. This energy deposit
pattern is described by the ”Bragg Peak”, known from the physics of ionizing
particles. Photons, on the other hand, deliver a dose to the tissue that is
always highest at the entry point, and diminished through the length of
the photon path. The fact that protons stop at a given depth (opposite to
photons having an exponential decline), clearly shows the advantage of using
protons for imaging and treatment.

(a) (b)

Figure 1.2: (a) Averaged LET depth dose deposition for typical forms of
ionizing radiation, assumed to impact in statistically relevant number from
free space into a solid-state target material resembling tissue (IRCU44) at a
given impact energy [6]. (b) showing a thematic diagram showing dose as a
function of depth for overlay of proton radiotherapy and x-ray radiotherapy
to facilitate a comparison of the two radiotherapy methods [7].

The Bragg peak will happen inside the detector during a CT scan, lowering
the total dose applied to the patient. Protons deliver less radiation during
travel than photons, indicating that most of the dosage will be absorbed
by the detector and not the patient. When doing a scan, the energy of the
protons will be higher than what is used doing therapy, ensuring that protons
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will not stop inside the patient. In the case of therapy, from Figure 1.2(b),
one can see that most of the radiation from the proton beam is delivered
inside the tumor, dropping off drastically right after. The fact that protons
can reduce radiation this much is one of the main factors for why the Bergen
pCT project is being developed. By reducing the total radiation delivered to
a patient during a scan, and reducing the inaccuracy introduced by conversion
between photon scans and proton treatment, proton CT can reduce the risks
involved in position measurement and proton therapy[5].

The scope of the Bergen pCT project is to develop a Digital Tracking Calorime-
ter(DTC) capable of collecting data from a proton source, with a goal of
using this in a therapy machine. Its main concepts are visualized in Figure
1.3. This machine will be installed at the new proton center at Haukeland
hospital[8].

Figure 1.3: A proton CT setup with a Digital Tracking Calorimeter and
proton source [9].

1.1.3 The Alice Pixel Detector

The ALICE detector in CERN Switzerland is a detector that is used to
research heavy-ion physics. It is part of the Large Hadron Collider (LHC)
and is used to study particles at very high energy densities[10]. In 2019-2020
a planned upgrade of the LHC was done where a new ALPIDE chip was
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introduced. This chip was developed to withstand the harsh environments
inside the ITS(Inner Tracking System)[11].

The ALPIDE chip is a pixel-based particle sensor for ionizing particles. It
is constructed like a grid with height 512px and width 1024px where each
pixel is 28 µm x 28 µm. The chip can read particle hits in a binary hit/no-hit
fashion and was originally designed for the ALICE experiment at CERN[12].
It is now used in the Bergen pCT project because of its high accuracy and low
power consumption, together with its radiation resistance which makes it able
to last for a considerable amount of time before needing to be replaced[11].

1.2 Problem Description

As the ALPIDE chips are mounted to create a Digital Tracking Calorimeter
there is no way to ensure a perfect mechanical alignment of the chips. A soft-
ware module capable of post-construction realignment is therefore necessary
to limit the data errors resulting from construction and the general life-cycle
of the Digital Tracking Calorimeter. This paragraph will describe the DTC,
and present the alignment problem.

1.2.1 pCT Digital Tracking Calorimeter

The Bergen pCT collaboration was established at the University of Bergen
among many institutions across the world to design and build a prototype
pCT scanner. For this prototype, a sensor referred to as a Digital Tracking
calorimeter is under development. The DTC should be able to do tracking
and residual energy measurements to make scanning simpler[13].

The DTC is a layer-by-layer structure where each layer is comprised of several
smaller components. The smallest component being the previously described
ALPIDE chip. The detector has an aperture of 27 cm width by 16.6 cm height
with a total of 43 of these 27x16.6 layers stacked. A layer consists of 12 staves,
and a stave consisting of 9 ALPIDEs side by side. The active area of the
sensor corresponds to a width of 9 ALPIDEs, and a height of 12 ALPIDEs,
constructing a grid. The total amount of ALPIDEs in the DTC is 43x12x9
or 43 layers, 12 staves per layer and 9 chips per stave, resulting in 4644
ALPIDEs.

Figure 1.4 shows the general structure of the Bergen pCT system. Each
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of the 43 layers has one dedicated transition card(TC) being an interface
between the ALPIDEs and the rest of the system. Every odd layer is rotated
to the opposite side to make room for the readout electronics. From the
construction of the DTC each pixels relative position is related to what layer
and stave it is located. Fig 1.4, starting bottom-up, each odd stave(black) is
rotated or ”flipped” to the opposite side of the layer, altering the position of
each pixel relative to the stave above and below(brown).

Figure 1.4: The general structure of the Bergen pCT system [13].

1.2.2 Alignment

During assembly of the DTC described in section 1.2.1, the positional preci-
sion of chips mounted to staves, staves mounted to layers, and layers finally
constructed into the detector can not be done with perfect accuracy. The
concept of an alignment algorithm is therefore investigated in this thesis.
The idea for the alignment algorithm is a software module capable of pro-
ducing correctional alignment parameters for individual elements inside the
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detector(e.g. chip, stave or layer).

Even after construction and alignment have been done, several misalignments
can occur over time. The detector can be affected by, e.g., vibrations or heat
fluctuation, which will produce offsets within the detector during its lifetime.
Some parts will be more affected than others because of how the elements
are mounted. In general, alignment has to be done fairly often to ensure
accurate data from the detector.

In a general case, the detector would have some object between itself and
the source of the particles, but this is not the case when alignment has to be
done. If the particle is hindered by anything in its path, it would increase
the noise in the data and decrease the algorithm’s accuracy. The noise would
interfere with the assumption of straight path particles through the detector
and therefore needs to be minimal.

The concept of this alignment module will be discussed as the primary topic
in this thesis, more precisely, the choices made during development and why
they are optimal for usage in both alignment and the pCT project as a whole.

1.3 Research questions

How to create an alignment algorithm that can find structural mis-
alignment in a pixel-based sensor given simulated data?

Investigate the possibility to produce offset parameters for the Bergen pCT
Digital Tracking Calorimeter given simulation data. Implement a module
that can produce these offsets efficiently and discuss any issues that arise
with the chosen method.

What offset parameters are needed for each detector element, and
what is an optimal way to store these parameters for further usage?

This thesis will also discuss the parameters needed to align each element in
the detector and what an optimal way to store these parameters could be.

1.4 Outline

Chapter 2 - Software Background
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An explanation of the theoretical background will be done in this chapter,
more precisely of what design practices were chosen and used. Prototyping,
simulation, and other practices will be the main focus.

Chapter 3 - Design and Implementation

In this chapter, the design of the system and the general implementation of
the system will be discussed. The choices made before development began
and an explanation of algorithms will be made here.

Chapter 4 - Analysis and assessment

This chapter will cover the analysis of the resulting time usage and accu-
racy of the alignment algorithm and the availability of the resulting offset
parameters.

Chapter 5 - Conclusion

This chapter will summarize the results generated by the work and experi-
ments done for this thesis.

Chapter 6 - Further Work

General suggestions for further development of the system will be listed here.
It will include performance and accuracy improvements and several other
possible improvement cases.
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Chapter 2

Software Background

This section will give an introduction to general concepts and practices re-
lated to this thesis. This includes technologies and methods specific to the
pCT project while also covering broader software design patterns. The pre-
sented knowledge is needed to follow along with the implementation descrip-
tion and experiments done during testing and analysis. The section will finish
with an introduction to related work and used methodologies.

2.1 Concepts and Tools

2.1.1 Prototyping

Software prototyping is often used to get insight into the properties and
functionality of an idea or concept to see if it works or performs as expected.
The outcome is often an incomplete version of the software application, but
one gains information to develop and implement new features. In the end,
one should have sufficient information about the system and know what to
do and not do for continued development[14].

The intended goal for this thesis is to create such a prototype to gain insight
into what is needed for alignment. The implementation is the first draft of
an alignment system, acting as a framework for further development. The
framework will be researched further and improved alongside the improve-
ment of the Bergen pCT project.
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The target of this prototype is the alignment module of the pCT software
package. To implement the prototype, a set of requirements and specifica-
tions was made before development began, as discussed further in section
3.4.1.

2.1.2 Simulation

The use of simulated data can be applied in many critical areas. Using
simulated data, one can find issues with the system and fix them before they
become more significant problems. The simulated data gives insight into
the system’s behavior and how the system’s components work together. It
can also bring further information about the process and architecture and
indicate what needs to be fixed before more time or cost is invested[15].

While writing this thesis, the DTC is still under development. Therefore ac-
quiring actual data for testing is not possible. Because of this, the alignment
prototype relies exclusively on simulated data. For the case of alignment,
the usage of simulated data is actually the preferred method. The proto-
type is based on the concept of misalignment represented in the output data
from the readout unit. To analyze the prototype results, one needs to verify
the result by knowing where the misalignment is located. One also needs to
know by how much the element is misaligned. This misalignment can not
be verified within a physical sensor. However, we can choose where the mis-
alignment is located using simulated data. Simulation of a misaligned sensor
is the reason verification of the alignment module is possible.

Verification is done by running a ”blind” test on data that has hidden mis-
alignment. If the alignment module finds the correct offset parameters, it
indicates that the module works as expected.

2.1.3 Monte Carlo Simulation

Monte Carlo simulation is a method used to generate data based on random
sampling. It is used to generate results from experiments where the expected
results are not known in advance[16]. The Monte Carlo simulation method
uses randomness to compute results, and it is often used in situations where
there is no direct way to produce the same data. Like in the case of getting
readout data from the pCT detector mentioned in section 2.1.2[17].
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In the Monte Carlo simulation, a probability distribution of all interactions
of particles is used to simulate how each particle moves and interacts within
the volume of the simulation ”world.” From this, it is possible to log the
history of each individual particle, including the path and the energy of that
particle[18].

2.1.4 Track Reconstruction

The concept of a track is the path of a particle traversing through the DTC
giving a single x and y coordinate from every layer. This concept is heavily
used throughout this thesis and is essential for the entire alignment module.
Tracks are visualized in Figure 3.5 for reference.

All data collected from the DTC has no order and is just data about one single
hit for a particle hitting an ALPIDE chip. Because the hit information cannot
be combined into tracks based on the timing of hits, a track reconstruction
algorithm has to be applied to find the hits that are most likely to be part
of the same track. The track reconstruction problem is connected to the
alignment problem because the position of elements in the detector affects
the distance between hits.

To create tomography images from the data, this scatter of single points
in the three-dimensional detector needs to be combined into tracks with as
little error as possible. The process of doing this will include applying the
alignment offsets to the data before track reconstruction. One problem is
that the track reconstruction algorithm relies on already aligned data. A
incremental process of reconstruction → alignment → reconstruction may
therefore be necessary. More information on track reconstruction can be
found in section 2.3.

2.1.5 Linear Fit

Linear fit, also known as linear regression, explores the relationship between
an observed variable and a predicted variable. It is often used to make pre-
dictions when the predicted value is closely related to some external factors.
E.g., house pricing based on how many rooms are in that house. The process
of doing this regression is to create a linear function that has the least-squared
error based on a set of training points[19]. A simple formula can express the
resulting estimator:
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y = β0 + β1X,

Where y is n × 1 vector of the response variable of the n observations, β0

the intercept value, β1 is a p× 1 vector of unknown parameters and X is an
n × p matrix of regressors and contains the observed explanatory variables.
β0, β1 are the unknown values that is to be estimated.

2.1.6 ROOT: Data Analysis framework

The ROOT framework is widely used among physicists that need to process
large data sets. It is a framework that can be used to read, save, and process
data, while it can also be used as a visualization tool. The framework is built
around a specific tree-structured file type with the extension ”.ROOT” [20].
The Root file type is the chosen file type for storing output data for the pCT
system alongside binary data.

This framework is used in the alignment module not as a storage tool but
rather as an analysis tool with its histogramming options. Using a Gaussian
fit over a histogram, the mean value of the fit can be calculated and used as
the end product in the alignment algorithm. More on this in section 3.4.4.

2.2 Software design Patterns

As explained in the book Design Patterns: Elements of Reusable Object-
Oriented Software (1994)[21]. The difference between experienced object-
oriented designers and new designers is how they reuse techniques. An expe-
rienced designer will not solve problems from the ground up but rather reuse
past experiences and patterns. These patterns are often proven to be reliable
and make designs better. They are designed around specific problems and
make the development process simpler.

2.2.1 Dependency Injection Pattern

In software engineering, a design pattern called dependency injection is of-
ten used. This pattern is used to deliver services where they are needed.
An object that depends on another object to perform its task, receives this
dependency through a mediator. The mediator is responsible for managing
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every dependency injected into this object. This reduces coupling between
the objects making the code cleaner and more readable[22].

By reducing the number of responsibilities of an object, the code becomes
more reusable. If an object does not have to care about how or where its
dependencies are created, it becomes more testable and maintainable. Fur-
thermore, because every dependency is handled by a single component, less
boilerplate code is created[23].

Figure 2.1: Illustration of dependency injection[24].

There are three types of dependency injection, Constructor injection, Setter
injection, and Interface injection. For this thesis, the constructor injection
method is used. This method requires the dependent object to have the
dependency as a parameter in its class constructor. This ensures that the
dependency is in a valid state upon creation of the dependent object[23].

2.2.2 Policy-based Design

Policy-based design is a design approach with what is referred to as policies
as its central concept. It resembles the strategy-pattern, with its difference
being a compile-time variant rather than runtime[25].

A policy class is an interface containing: inner type definitions, member
functions, and member variables. This interface defines the functionality
of the specified policy and makes the system design highly customizable.
By using policies, the detailed functionality of the system can always be
changed without any significant consequences. It also makes these changes
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easy as it does not affect other parts of the system, ensuring safe and efficient
development[26].

The concept of a policy-based design is centered around a host class acting as
a behavioral manager. The host class is responsible for the final functionality
of the system by using the policy classes. Each policy class is responsible for
its behavior but is restricted by some rules set in the system’s design. The
system sets these rules and has no specifications set by the design pattern.
In the case of the alignment module, these rules are based on the input
and output each policy must follow. Apart from that, what the policy does
has no clear definition. As long as the policies consume and produce the
correct input/output, the system should work without issues related to the
policy interface[25]. Figure 2.2 visualized the concept of policy-based design
through the strategy-pattern.

This design pattern makes the system very modular. By keeping code de-
coupled, rewriting stays manageable as each policy can easily be replaced
without replacing or changing the other policies. The design pattern also
allows several different approaches to be utilized simultaneously if necessary.
The usage of the pattern will be explained further in section 3.4.

Figure 2.2: General example of the strategy pattern[27].
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2.2.3 Generic Programming

Generic programming is a programming style where classes or functions are
written in terms of unspecified types that are then provided as parameters
upon the definition of that class or function. This allows writing functions
that are different in the types they operate with but are equal in the way
they are written, reducing code duplication. This concept is most com-
monly referred to as generics but in C++, it is known as templates [28]. This
programming style is mentioned as parameterized types in Design Patterns:
Elements of Reusable Object-Oriented Software[21].

Generic programming is defined in Musser & Stepanovs Generic Program-
ming* (1989)[29] as:

Generic programming centers around the idea of abstracting from
concrete efficient algorithms to obtain generic algorithms that can
be combined with different data representations to produce a wide
variety of useful software.

By generic programming, what is meant is the definition of algorithms and
data structures at an abstract or ”generic” level. A great example of this is
presented as a List data structure in Listing 2.1 where the type stored in the
list is specified by the typename T. Example given here is Animal and Car
as types ”replacing” T.

1 template<typename T>
2 class L i s t {
3 // Class contents .
4 } ;
5

6 List<Animal> l i s t o f a n im a l s ;
7 List<Car> l i s t o f c a r s ;

Listing 2.1: C++ template/generics example.

One now has a List data structure to store objects with, no matter the type
of the object. Because of this, one no longer needs to create the same list
structure for every type in the system.
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2.3 Related work

This thesis is built on top of work done over several years, from the design of
the DTC to implementations of protocols. Some of the work related to this
thesis is listed here.

A High-Granularity Digital Tracking Calorimeter Optimized for
Proton CT [13]

This article by Johan Alme covers how the digital tracking calorimeter is
constructed and how it functions with the rest of the system.

Scalable Readout for Proton CT[30]

This thesis focuses on much of the logic behind the readout process of the
pCT system, specifically parsing of particle events recorded by the DTC for
output file writing.

Proton Tracking Algorithm in a Pixel Based Range Telescope for
Proton Computed Tomography[31]

&

Optimization of the Track Reconstruction Algorithm in a Pixel
Based Range Telescope for Proton Computed Tomography[32]

These articles focus on track reconstruction algorithms for a proton-based
particle detector and explain how this is done in more detail.

2.4 Methodology

This thesis is a tiny part of a larger project done by the pCT collaboration.
Both quantitative and qualitative evaluations have been done to produce
something usable for the project. This ensures consistency in formats across
modules and systems in the project. Weekly group meetings and consistent
discussion on several other channels made it easier to progress and discuss
solutions to arising problems.

Pinpointing the exact research methodology is, in many cases, very difficult.
Even though both qualitative and quantitative evaluations were done, the
research was not limited to these methodologies. The most obvious com-
parison would be exploratory research, where the approach is more flexible
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and investigative. The results are topic-related, which helps with the further
development of this research.
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Chapter 3

Design and Implementation

This section will explain the design and implementation of the alignment
module in detail. This includes explanations of the more extensive pCT-
Online software, test environments, and a detailed explanation of the im-
plemented algorithm used for alignment. Several external tools will also be
explained regarding how they are used for developing a prototype.

3.1 pCT-online

3.1.1 The pCT-Online package

The pCT-online package contains all modules related to online readout. As
opposed to offline, this means data is fetched, parsed, and stored while the
DTC is actively registering particle hits during a scan. The code contains
several protocols, data structures, and algorithms related to the readout
chain.

The alignment module is part of the pCT-Online software package as a tool
used to create more accurate data. It is not expected to be used in the
readout chain.

3.1.2 The Readout chain

The readout chain is a collection of several components that together makes
the system responsible for everything related to data collection from the
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DTC. The readout chain is visualized in Appendix C, giving a simple expla-
nation of all involved parts.

Because of high radiation around the DTC, multiple TCs are used as an
interface between the layers of the DTC, the readout units, and power control
unit. The TC gives the possibility to increase the distance between sensible
electronics and areas of high radiation, decreasing both cost and development
time. The power control unit is responsible for managing the power delivery
to the DTC but is not directly connected to the data readout.

The readout units are responsible for the initial data collection and parsing
before the data is sent to a general control system. It needs to collect, parse,
and deliver the data as quickly as possible to avoid losing critical information.
When a particle hits an ALPIDE, the hit information is initially processed
on the readout unit, which could easily overflow if the data is not parsed
fast enough. When the central control unit receives the data, further heavier
calculations can be done on it as it has a more permanent storage option[30].

3.1.3 The pCT-Online Continuous Integration pipeline

A pipeline has been implemented in the pct-online repository to ensure the
software is in an executable state. This pipeline uses Docker to build and test
code pushed to the ”dev” branch. It is a common strategy used for CI/CD to
ensure that any merges to a ”main” branch are free of potentially software-
breaking bugs before being pushed to production. The Docker service also
ensures that the pct-online package can run on any computer, which confirms
that any new implementations are not system-specific. The Docker building
step of the pipeline also enables cross OS development, making it easier
for anyone participating in the codebase to develop on any system. E.g., the
Docker version runs on the intended CentOS distribution of Linux. However,
most of the development done in this thesis is done on either the Ubuntu
distribution or Windows Subsystem for Linux(WSL), which is part of the
Windows operating system.

3.2 The Test Environment

A set of tools and simulation scripts was created to understand, verify, and
create data. These tools were used as a test environment for the alignment
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module to ensure things worked as expected.

3.2.1 The Toy simulation script

To start development on this prototype, a way to create usable data with
the possibility of inputting offsets was necessary. It was not yet implemented
in the Monte Carlo simulation from section 3.2.2, so a very simplified ”toy”
simulation script had to be implemented to generate data. This script does
not include any accurate particle simulation but creates somewhat real tracks
through the DTC if the energy of the particle is very high. The high energy
makes it more likely for a straight track(a particle that does not change
direction upon collision) to occur.

The data produced by this script is rigorous and only contains one hit per
layer for every track and always produces the exact amount of tracks specified
as a parameter. The data is structured using the format: Layer, Stave, Chip,
x, y, eventID. This format is in a local perspective, as explained in section
3.3 which is also the data format that is retrieved from the readout units
during a scan. A general source position for the particle beam is not taken
into account by the script. A random point is chosen on the first layer,
representing the beginning of a track.

To make the tracks seem more realistic, a Gaussian normal distribution is
added to each hit, simulating the uneven path of a particle through mate-
rials(see Figure 3.1). This Gaussian distribution is reflected in the output
data, where the calculated offset of an element rarely is the exact expected
value but rather a value close to it. This is only true if a relatively small
number of tracks is analyzed, as the offset is expected to get closer to the
expected value as more tracks are analyzed.

The toy simulation script includes the possibility of introducing offsets in
different elements of the detector. It makes it possible to see if the alignment
algorithm works as expected and will be discussed further in chapter 4.

3.2.2 The Monte Carlo simulation

The Monte Carlo simulation used for this prototype was built using the
GATE toolkit for medical physics applications. It is a GEANT4-based sim-
ulation platform used for emission tomography[33]. The platform is capable
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Figure 3.1: 10 tracks from the toy simulation script. Values are given as
readout data in a global perspective.
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of simulating particles as they pass through matter. The GATE toolkit uses
GEANT4 to create a set of C++ functions capable of defining volumes at
a precise location and further do operations on these volumes like rotating
them[34]. These volumes can be specified as several different materials that
interact differently with particles.

This simulation script was not developed as part of this thesis but is critical
for generating the data used by the alignment module.

In this case, the GATE toolkit is used to specify the geometry and materials
of the DTC as well as the phantom used. This simulation is used to create
as accurate as possible data for every part of the Bergen pCT prototype that
needs to analyze detector data, such as track reconstruction, alignment, or
general analysis of the functionality of the detector design itself.

The output data from this simulation is considerably more complex than that
of the toy simulation described in section 3.2.1, as it describes everything
happening with a particle when it is traversing the detector. This includes,
e.g., directional angles and if a particle splits into other particles, where it also
simulates what happens with these new particles. The large amount of data
produced makes the output files consequently large, possibly several GBs
depending on how many particles one simulates and how high the energy is.
These file sizes are somewhat representative of actual data files and indicate
the capabilities of the alignment module in terms of speed and data handling.
The size of the output files are to a large extent related to the human readable
format, which will be discussed further.

The two first layers of the DTC are called tracking layers. These two layers
differ from the rest, both considering construction and usage. During the
analysis of the data generated by the MC simulation, an issue with the first
two layers was noticed. A slight ”misalignment” was detected, making all
calculations highly inaccurate. This was without any actual introduction of
misalignment in the simulation. These two layers are removed when running
the alignment algorithm to mitigate this ”misalignment” of the first two
layers. This is also why ”layer 0” and ”layer 1” are missing from the output
when using MC data. The removal is done during filtering and is easily
reversible.

Because of current limitations in the implementation of the MC simulation,
a representative data set for alignment is difficult to generate. Data was
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limited to the center of the detector without any offset. There are ongoing
efforts to make data generation easier and have data generated for every
element in the DTC, including the introduction of offsets.

3.2.3 Tools and Scripts

To begin working with the data generated by the DTC several scripts and
tools were used. This made it easy to visualize the data and understand
the general geometry of the detector and how it works. Some scripts were
implemented in the early stage of this research and give insight into the
presented work’s evolution. They contain information about formats and
methods used to produce a prototype and can be found in appendix A.

3.3 Coordinate Transformation

Because the DTC outputs a local format for each particle hit, a tool is needed
to transform the local coordinate into a global perspective, describing every
element in the coordinates of one unified detector geometry. Transforma-
tion of coordinates was necessary to begin the development of the alignment
module and was therefore implemented early in the process. The coordinate
transformer transforms a local detector data point into a global perspective.
Local meaning the information about a hit on a single ALPIDE chip, and
global being a hit in the perspective of the whole detector, independent of
layer, stave, and chip values.

There are several coordinate transformation methods. Including going from
local hits to global and vice versa, there is pixel-based transformation and
millimeter-based transformation. These two base transformations are used
in different objectives and have different accuracy, but both depend on the
defined detector geometry. This detector geometry describes the distances
between elements within the detector, e.g., the distance between two layers
or the width and height of a ALPIDE chip as mentioned in section 3.4.3. In
Figure 3.2 one can see a detailed explanation of the layer-by-layer geometry
of the DTC with an explanation of all the materials used to construct it.
We first see the tracking layers followed by the first calorimeter layer and a
repeating pattern for all other layers.

The pixel-based transformation is, e.g., used to transform a global pixel value
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Figure 3.2: A view of the DTC showing the size and material used for each
layer. The figure is a up to date version of Figure 9 from [13] (Alexander
Schilling, personal communication, May 5, 2022).

into information about which element the hit was located. Knowing what
element ”owns” a specific offset is necessary to assign residuals to the right
one. The millimeter-based transformation is used to get better accuracy for
calculating offsets where pixel information is not accurate enough.

These two methods of coordinate transformation are likely to be used by
other modules than the alignment module in the future of the pCT project.
Therefore, it is essential that the coordinate transformer is optimized for
time usage and does not hinder time-sensitive computations. This is also
the case for alignment, as transformation is used in almost every part of the
alignment algorithm. The general performance of the coordinate transformer
will be discussed further in chapter 4.

In total, there are four implemented functions that provide different precision
and functionality:

1. Local to Global pixel-based. This function takes local hit data and
returns global pixel values x, y, z

2. Local to Global millimeter based. This function takes local hit data
and returns global millimeter values x, y, z

3. Global to Local pixel-based. This function is given a global pixel value
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and returns local hit value layer, stave, chip, x, y

4. Global to Local millimeter based. This function takes global millimeter
data and returns local hit data layer, stave, chip, x, y

Before the Monte Carlo simulation data was introduced, the global to local
millimeter-based transformation did not exist. This data is only given as
global millimeter values, which is not the output format of the DTC data
(given in local values). Therefore the global to local millimeter-based trans-
formation had to be implemented explicitly for the MC simulation and may
require modifications later as values change.

It is important to note that the coordinate transformer and the alignment
module are two separate systems. Braking the coordinate transformer does
not brake the alignment module. The alignment module does not affect the
coordinate transformer whatsoever. Changing the output of the coordinate
transformer one also changes the output of the alignment module as it is
directly related to the global coordinates given by the transformer.

3.4 Implementing the Alignment module

The alignment module is part of the pCT-Online software and is responsible
for producing a set of alignment parameters for elements inside the DTC.
The module is built in three parts using a policy-based design mentioned
in section 2.2.2, an input policy, a processing policy, and an output policy.
The three parts each have one dedicated responsibility, making the design
very modular and easy to change. This reduces the technical debt and the
possibility that the module must be rewritten entirely.

3.4.1 Design

A set of requirements were defined for the prototype of the alignment module:

1. The calculation of offsets values from each element should be done in
a reasonable amount of time.

2. Produced output should be stored in a format that can be easily used
for further development

3. The module must be easy to maintain and service.
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4. The module must be scalable as it is a prototype, and further improve-
ments will be implemented.

All these requirements affected the final design. While all are important for
the final product, not all were weighted equally. Maintainability, scalability,
and the possibility for easy continued development had the most significant
impact on the design. Other requirements will be heavier weighted as the
development of the alignment module progresses.

Before any implementation began, the interface between the policies had to
be defined. This is important to make sure each policy can be switched
with any other policy that contains the proper functions. Figure 3.3 displays
both the general objects/functions in each policy and with what format each
function interchange information.

The input policy transforms the simulation data into tracks, and these tracks
are passed to the alignment handler. The alignment handler passes each track
into the offset producer and further into the offset finalizer. When done with
all the tracks, the final output is sent to the output handler responsible for
formatting and storing the output.

Figure 3.3: The alignment module data flow.

The format of the simulation data has yet to be specified, and the same holds
for the final storage format. While the processing policy always works with
the ”track” format, ”offset parameters” format, and ”final output” format.
The unspecified input and output formats for the input and output policy are
excellent for flexibility and unnecessary as it is not crucial for the alignment
algorithm to work. The used interface between the three policies is listed in
Table 3.1.
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Policy Input Output
Input Handler Unspecified AliTrack

Alignment Handler AliTrack unordered map<...>
Output Handler unordered map<...> Unspecified

Table 3.1: Alignment module policy interface

Here AliTrack is the defined data structure for tracks in the Alignment mod-
ule. The unordered map has the <key, value> pair

<staveKey , tuple<double,double,double,double,double,double>>

were staveKey refers to the stave element and the tuple being all six degrees
of freedom for that element, explained further in section 3.4.4. staveKey
uses a predefined hash function which is given as argument to the un-
ordered map.

To get a more specific idea of the structure of the alignment module, see
Figure 3.4. Here we see the main executable ”run-pct-alignment” and its
dependencies. This is the central part of the alignment module where each
of the ”Handler” policies can be replaced or used interchangeably with other
policy implementations.

3.4.2 The Alignment host

The interface of the alignment module is explicitly defined within the calls of
the alignment host class. The host currently combines all the implemented
policies into one working system. This class defines what functionality should
be available in the policies, and if the functionality does not exist, it will
throw an error message and abort processing. The host class knows nothing
about the given policies upon execution, and if a called function does not
exist within the given policy, it will stop when this function is called.

The host class is defined to include the three policies through template design
as seen in Listing 3.1. It requires the three used policies to be defined upon
the creation of the host class. An example of defining the alignment host
class using toy simulation input can be found in Listing 3.2. A concrete
definition and run of the alignment module can be found in Listing 3.3.
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Figure 3.4: The basic class structure of the alignment module.

1 template<class InputPol icy , class Proces s ingPo l i cy , class
OutputPolicy>

Listing 3.1: Alignment Host 3-tuple policy declaration.

1 us ing AlignmentHost = AlignmentHost<AlignmentToySimInputHandler ,
AlignmentHandler , OutputHandler>;

Listing 3.2: Defining Alignment Host with toy simulation input.
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1

2 // de f i n e used p o l i c i e s
3 us ing AlignmentHost = AlignmentHost<AlignmentToySimInputHandler ,

AlignmentHandler , OutputHandler>;
4

5 // c r e a t e po l i c y i n s t an c e s
6 auto inputHandler = AlignmentToySimInputHandler ( ”path/ to / input /

data” ) ;
7

8 auto al ignmentHandler = AlignmentHandler ( ) ;
9

10 auto outputHandler = OutputHandler ( ”path/ to /output/ f i l e ” ) ;
11

12 // c r e a t e the host ob j e c t with po l i c y i n s t an c e s
13 AlignmentHost host = AlignmentHost ( inputHandler ,

al ignmentHandler , outputHandler , numTracks ) ;
14

15 host . run ( ) ;

Listing 3.3: Creating a Alignment Host with toy simulation input and running
it.

3.4.3 Constructing Input Data

As described in section 1.2.1, the DTC contains many elements that are put
together to create the final sensor. This concept of many small pixel grids
(ALPIDEs) put together into a global perspective calls for a well-defined
geometry. With geometry to work with, it is possible to transform a local
hit (data from one ALPIDE) into a global hit position within the detector
and vice versa.

There are many distances to define to have a complete specification of the
geometry of the DTC. This detector geometry defines the distances between
elements within the detector, e.g., the distance between two layers or the
width and height of an ALPIDE chip. The definitions are created with
the C++ data structure ”struct,” and the code is implemented with the
possibility of having a user-defined geometry. Every part of the code that
relies on geometry is not strictly relying on any specific value.

A general data structure for the particle tracks has been created from the
definition of the geometry. This structure contains all relevant data points
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from each hit from every layer, ultimately representing a particle track. As
explained in section 1.2.1, the detector is built up of 43 layers, each layer
containing 12 staves and each stave having nine ALPIDE chips. Based on
this, the data structure for a hit can be represented like in Listing 3.4 and a
track can be represented like in Listing 3.5. As seen, a track is a vector of
AliHits.

1 s t r u c t Al iH i t {
2 int l a y e r ;
3 int s tave ;
4 int chip ;
5 int x ;
6 int y ;
7 } ;

Listing 3.4: C++ representation of alignment hit data

1 s t r u c t AliTrack {
2 std : : vector<AliHit> h i t s ;
3 } ;

Listing 3.5: C++ representation of alignment track data

The AliHit structure contains the relevant data points for each hit. What
layer the hit is from, which stave on that layer, the chip from the stave,
and the local x,y (sometimes referred to as column and row) coordinate of
the hit. Regarding the element rotations mentioned in section 1.2.1, it is
now possible to represent every hit from a global perspective for analytical
calculations and from a local perspective to know the origin of the hit.

The objective of the input policy is to read data from a file and structure
the data as AliHit and AliTrack. At this stage, the data is verified, and if
any problems occur, the run is aborted. As long as this is done correctly,
the processing policy can use the data without problems. If the input file is
large, containing millions of tracks, one can decide to give a specific amount
of tracks n to be analyzed. n is given as a parameter to the input policy
where it stops reading after n tracks. Limiting the number of tracks can help
with reducing the run-time in a case where one knows there is a diminishing
return after n tracks have been analyzed.
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3.4.4 Calculating the Alignment parameters

To make sure the readout data from the DTC has as few errors as possible
from the unavoidable misalignment mentioned in section 1.2.2, the exact ro-
tational and directional values of each element has to be corrected. Therefore
knowing what these alignment constants are is key to producing a prototype.

For the directional alignment constants, knowing of the three-dimensional
structure of the DTC, it is clear that the elements can shift in all x, y, and
z directions. As explained, the DTC is layer-based, which means that each
layer can have three other misalignment parameters, namely (yaw) rotation
around the z-axis and (pitch) rotation around the y-axis, and (roll) rotation
around the x-axis. Optional alignment parameters will be discussed further
in section 4.3. To summarize, each element that is considered to be aligned
needs six different alignment constants, which can be structured like this:

(x, y, z, yaw, pitch, roll)

As will be explained in section 3.4.5, the stave element has the most focus
during the development of this prototype as this element is most likely to
have individual directional shifts. For the rotational shifts, all elements of an
entire layer are expected to have the same values, which should be researched
in further iterations of the module. As it is more difficult to produce some of
these parameters than others, the x and y parameters have the most focus for
this prototype. While x and y offsets can be produced through histogram-
ming, more complex methods are needed for the four other parameters.

The job of the processing policy, also known as the alignment handler, is to
calculate all six alignment constants based on the input it receives from the
input policy. To do alignment, we assume some things always to be true. The
assumption does not mean they are not considered within the system, only
that the alignment handler does not do any calculation to know if it is true
or not. Most apparent is the concept of straight particle paths. A particle
that changes direction during travel would make linear regression produce
incorrect values. An example of these straight tracks can be seen in Figure
3.5, where you also can see the difference between low energy unusable and
high energy usable tracks.

Using linear regression (OLS) to calculate the expected track of a single
particle, based on the actual values of that particle, and doing this for all
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(a) (b)

Figure 3.5: Figure (a) shows 10 tracks from protons at 500 MeV with a large
change in direction. Figure (b) shows 10 tracks from protons at 2500 MeV
with mostly straight tracks. Z-axis values are given in relation to where the
detector is located in the simulation space. Zero indicates the center of the
detector.

the recorded particles produces large numbers of residuals. A residual is the
deviation between the predicted track(from the regression model) and the
actual track and can be directly used to find if an element is offset in some
direction. Gathering the residuals from every track for all elements, one can
take the average of all the residuals(using histograms) and use this as the
offset value for each element, see Figure 3.6. The method is based on the
law of large numbers, which states that by performing the same experiment
a large number of times, the average value tends to become closer to the
expected value the more trials that are performed[35]. It also explains that
alignment cannot be done with a small number of tracks, explained further
in section 4.1.4.

As explained in section 3.4.3 the data given to the alignment handler is in
the form of local pixel data (see Listing 3.4). To both increase accuracy and
make the data usable, the data is transformed into global millimeter ”hits”
described in section 3.3. Transformation makes sure the structuring of the
ALPIDEs described in section 1.2.1 does not influence the linear regression.
A pixel-based transformation is done alongside the millimeter-based one to
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Figure 3.6: The combined residuals of a DTC element in a histogram dis-
playing the calculated offset for that element as mean. Residual values are
given in millimeters.
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find what element the current residual value belongs to based on the predicted
track. This is why the regression model is implemented using generics. Be-
cause of this, the same class implementation can do regression on both data
types. To mitigate some confusion, the implementation of linear regression is
done using concepts from machine learning like ”fit” and ”predict,” meaning
calculate regression line and extract prediction, respectively.

The output of the alignment handler is given as a list that contains the six
alignment constants for each element. Algorithm 1 contains the proposed
algorithm used for calculating the offset parameters as pseudo-code. See
Table 3.2 for an explanation of the used variables.

Variable Explanation

t Currently parsed track already converted to
global coordinates.

T Collection of all usable tracks from input.
p Predicted track based on information from t.
e Element hit by predicted track(as index) for

each residual r.
E All elements in DTC.
r Residual of singular hit from track(t).
r’ Collection of residuals from all hits in track(t).
R Collected residuals for current element e.
w Calculated offset for element e.

Table 3.2: Explanation of used variables in Algorithm 1
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Algorithm 1 Algorithm for calculating alignment offsets.

1: //Note this is done separately for x and y axis
2: for t in T do
3: p = predicted track using OLS(t)
4: r’ = residuals of p given t
5:

6: for e in elements of p do
7: r = r’[e]
8: add r to R[e]
9:

10: for e in E do
11: w = mean(R[e])

3.4.5 Formatting and Storage of the Output data

JavaScript Object Notation or JSON is a syntax used for structuring data
into text-based objects. It is derived from the ECMAScript programming
language but is used independently of any programming language. Using a
set of structuring rules, data can be structured and represented in a text
format[36].

The JSON syntax was created to be easy to read and write for humans and
machines. It is based on a subset of the JavaScript programming language
standard ECMA-262 3rd edition - December 1999. JSON is a popular data-
interchange language that is built on two structures that are universal for
nearly all programming languages[37]:

1. A collection of name/value pairs. In languages referred to as objects,
records, structs, dictionaries, hash tables, keyed lists, or associative
arrays.

2. An ordered list of values. In languages referred to as arrays, vectors,
lists, or sequences.

The most basic empty JSON object is simply two braces ”{}.” To make
any more complicated JSON object, the standard defines it as in Figure 3.7.
Here value is a standard definition for any string, number, object, array,
true, false, or null.

JSON is used in the alignment module to store output data. The format
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Figure 3.7: The JSON object representation [37].

makes it easy for anyone to use the data later. It makes sure the data is
as accessible as possible for further development, whether in C++ or any
other language. Here the LAYER, STAVE(staveKey) key of the alignment
handler output is used to structure the JSON objects for the final output.
The JSON structure of the output file is as in Listing 3.6.

1 {
2 ”Layer 0” :
3 {
4 ”Stave 0” :
5 {
6 ”x” : number ,
7 ”y” : number ,
8 . . .
9 } ,

10 . . .
11 } ,
12 . . .
13 ”Layer 42” :
14 {
15 ”Stave 0” :
16 {
17 ”x” : number ,
18 ”y” : number ,
19 . . .
20 } ,
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21 . . .
22 }
23 }

Listing 3.6: Alignment output JSON object structure.

The order of the layers and staves within the JSON object is not strict as, e.g.,
”Layer 10” is less than ”Layer 2” (because strings are compared character
by character), and therefore ”Layer 10” is stored before ”Layer 2”. This
example happens multiple times in the output JSON object. However, it
should not affect the usage of the object within any programming language.
The example in Listing 3.6 is one where staves are the focused alignment
elements. It is a decision made because staves are the smallest detector
element that still has a high potential for noticeable shifts. The focused
element is not a vital part of the code, and it is relatively easy to change
the focused element between layers, staves, and chips. To change the focused
element, change the output key as defined in Table 3.3, and respectively
change what residual values are combined to create the final offset values.

Element Key name Key value
Chip chipKey tuple< int, int, int >
Stave staveKey tuple< int, int >
Layer layerKey int

Table 3.3: Defined element keys.

3.4.6 The Working Alignment module

The currently implemented functionality of the alignment module covers ev-
erything mentioned in section 3.4.1. Using the predefined interface, it pro-
duces an output file storing the calculated offset parameter for every element.
It can process sizeable MC input files, with thousands of tracks, in seconds.
For now, this is done using the .csv format with lots of redundant data,
making benchmarking inaccurate. There are plans for binary input files con-
taining only necessary variables to fix this issue. A timer is included to time
each execution of the module, making it easy to see the difference between
current and new implementations. Figure 3.8 illustrated the alignment mod-
ule and its policies.
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Figure 3.8: Overview of the current software modules. All modules visualized
here are new and implemented for use in the alignment module.

Currently, two different input policies are implemented and used, one for the
toy simulation and one for the Monte Carlo simulation. The use of each policy
is defined through commands and injected based on given parameters. The
host class (see Figure 3.4) is responsible for upholding the defined interface,
which allows for using different policies where needed.
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Chapter 4

Analysis and Assessment

In this section, several experiments will be explained alongside the results
from these experiments. Issues and limitations with the implementation will
also be discussed. The methods used for developing the alignment module
are discussed, ending with a summary of the impact of this thesis.

4.1 Alignment performance

As mentioned in section 2.1.2, running a ”blind” test of the alignment module
would indicate if it works as expected. While visualizing the data through
scatterplots does not show the algorithm’s accuracy, comparing the output
value to the value given as input to the simulation does. The accuracy is
related to the number of analyzed tracks, which will be discussed further in
this chapter.

A limitation introduced from the available Monte Carlo input data is the
size of the files. It is not a problem for the Alignment module but rather a
local workspace problem as hard drives fill up. While testing, the files had
to be limited to around 20 GB, reducing the number of available tracks. The
limited filesizes may be a reason for unnoticed faults or incorrect accuracies.

54



4.1.1 Accuracy using toy simulation data

To determine the accuracy of the alignment module, comparing the results
from the alignment module to the known values will indicate if it is accu-
rate or not. While interference from noise in the input data is difficult to
counteract in the results, results are still expected to be consistently equal to
the expected value. Approaching this analysis with a basic example can be
valuable for further development and comparison to further results. Using
the toy simulation to apply offsets at layers 10 and 30, the resulting offset
values can be compared to the applied offsets. For this basic example, a 200
pixels shift in both the x and y direction for layers 10 and 30 was applied.
This is visualised in Figure 4.1.

Using the output from the alignment module on 50000 tracks, one can see if
the result is as expected. As a start, let us consider the total offset applied
to layers 10 and 30. The applied offset is equal to 200 pixels where each pixel
is of size 29 µm, which translates to 0.029 mm. This means the total shift
is expected to be 200 × 0.029 mm = 5.8 mm. Comparing this to the output
values, it is almost correct, see Figure 4.2. The exact values from the output
were x = 5.66 mm and y = 5.66 mm.

Keep in mind that this kind of large misalignment is uncommon. A more
realistic scenario would be small offsets on every layer, while some elements
may have larger offsets. The used regression model is not robust enough for
this, which will be discussed further in section 4.3. Two things to be aware
of for these data:

• Large misalignments like this (5.8mm) example can be corrected using
mechanical methods and should not be possible because of the structure
of the DTC.

• The method used for this prototype is known to work on ”large” mis-
alignments. However, if several tiny misalignments are present in every
layer, more complex methods need to be implemented to get a precise
output.

The example introduced here is used to prove the principle of accurately
detecting misalignments. The 0.2 mm inaccuracy seen would tell us it is not
very accurate, but in fact, it is because of limitations of the used regression
model. The regression limitations and the case of implementing a more
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(a)

(b)

Figure 4.1: (a) showing a top down view of 100 tracks in the DTC with offsets
at layer 10 and 30. (b) showing a side view of the DTC with the same offsets
and tracks as in (a). Values are given as readout data in a global perspective.
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complex algorithm will be discussed further.

Figure 4.2: Per layer offset values produced by data from the toy simulation.
Notice how the introduced misalignment creates offsets on every layer.

Now we know it is possible to get accurate measurements by analyzing the
track data. Seeing how it performs on more complex Monte Carlo simulations
with misalignment is still not possible. However, performance on perfectly
aligned elements will still be analyzed in section 4.1.2. An illustration of how
tracks are realigned using the output data is available in appendix B.

4.1.2 Accuracy using MC simulation data

When using Monte Carlo simulation, we know the data is very likely to
be reproduced during real-world usage of the DTC. This is why the results
gathered from MC simulation data are much more interesting than the toy
simulation. However, the state of the simulation does still not allow for
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the introduction of misalignment. This is why the expected results from this
data should be much less than the width and height of a pixel while expecting
zero is unrealistic because of noise in the data. Table 4.1 shows some selected
offset values produced by the alignment module on Monte Carlo data without
misaligned elements.

Layer Stave Offset X Offset Y
11 4 −0.221 µm 0.206 µm
13 5 −0.683 µm −0.463 µm
15 7 0.375 µm 3.448 µm
17 4 −0.727 µm −3.512 µm
21 4 −0.458 µm −5.085 µm
24 4 −0.957 µm −5.513 µm
30 5 0.153 µm −0.709 µm
35 6 −0.280 µm 0.602 µm
39 4 −0.227 µm 0.619 µm
42 5 −0.155 µm 0.554 µm

Table 4.1: Offset values from MC simulation data.

Because the data is generated with very high energy particles (10000 MeV),
every parsed track has a relatively straight path with little to no angle. The
output data is therefore expected to be around zero for every element. On
some staves, the offset is observed as exactly zero (0.000000). Figure 4.3
shows every offset value on each layer from stave 7.

4.1.3 Multiple Layers Offset using Toy Simulation

An example with several layers being offset was performed to understand
the alignment module’s accuracy better. With this example, a layer-based
accuracy comparison can be made. To do this correctly, a large number
of tracks were simulated, which makes sure each element had a sufficient
amount of tracks to do calculations. The values will always be better with
more tracks, but at one point, the number of tracks becomes too many to be
considered realistic. This is why this example uses a total of 1.000.000(one
million) tracks. The reason why so many tracks are needed will be explained
further in section 4.1.4. The predicted offset for the x and y-axis is listed in
Table 4.2 together with the actual offset given in millimeters. The difference
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Figure 4.3: Per layer offset values produced by data from the MC simulation
given in millimeters.
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between prediction and actual offset is also given. This is also visualized in
Figure 4.4.

Layer Offset X Offset Y Pred X Pred Y Diff x Diff y
6 0.2924 -0.17544 0.29256 -0.18160 -0.00016 0.00616
9 -0.11696 0.20468 -0.11712 0.20038 0.00016 0.00429
10 0.08772 -0.05848 0.08789 -0.06238 -0.00017 0.00390
11 -0.2924 -0.05848 -0.29215 -0.06136 0.00024 0.00288
15 0 0.26316 0.00068 0.26414 -0.00068 -0.00098
22 0.23392 0.08772 0.23568 0.09187 -0.00176 -0.00415
23 -0.23392 -0.08772 -0.23202 -0.08268 -0.00189 0.00503
30 -0.17544 -0.1462 -0.17328 -0.13766 -0.00215 -0.00853
35 0.20468 0.1462 0.20848 0.15630 -0.0038 0.01010
40 -0.05848 -0.23392 -0.05461 -0.22141 -0.00386 -0.01250

Table 4.2: Predicted offset values for all misaligned elements in multi layer
offset example. Offset represents the introduced misalignment, pred repre-
sents the predicted offset, and diff is the difference between offset and pred
for each axis. Note: Some unnecessary precision has been removed. All
values are given in millimeters.

Every offset prediction is far less than the width of a pixel, which can be
considered a reasonably good accuracy. It proves that the alignment module
can predict misalignment values of several elements at once. In the case of the
current implementation this relates to staves as the corrected element. Using
even more tracks would further improve accuracy. The data is comparable
to the data displayed in section 4.1.1 which means this method of offset
calculation does not depend on the number of misaligned elements.

An issue noticed during testing is the case where several elements are shifted
in the same direction. It leads to a systematic skew in all elements, reducing
accuracy. This issue is also present in the data presented in section 4.1.1
where the output is off by 0.2 mm. A possible solution to this problem is to
use a different regression model, discussed further in section 4.3.
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Figure 4.4: Offset values per layer for stave 7 in the multi-layer offset exper-
iment.

4.1.4 Convergence

Calculating the offset for each track analyzed indicates the necessary amount
of tracks needed per element to get an accurate offset value. To test this,
measurements were done on a random but same element for both the toy and
Monte Carlo simulation on the x-axis and can be found plotted in Figure 4.5.

It shows that after a certain amount of tracks, the offset value converges
towards the expected misalignment value of that element. While the Monte
Carlo simulation seems to get a much better result than the toy simulation,
both have an accuracy below a single pixel’s width. Keep in mind that the
plotted data is in millimeters, and the toy simulation is expected to have less
accurate and more noisy data.

The convergence of the offset values could be used to find a limit to the
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(b)

Figure 4.5: Per track offset values in millimeter produced by data from the
MC simulation(a) and toy simulation(b).
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number of analyzed tracks to reduce the run-time and complexity of the
alignment module. The current state of the alignment module is likely to be
changed as more complex methods are introduced. However, by the values
presented in Figure 4.5 we see that after about 4000-6000 tracks, it converged
both in the toy and MC simulation scenario. This indicates a minimum
number of tracks needed per element for this alignment method.

The plotted data also indicates the danger of having too few tracks passing
through an element. Too few tracks may lead to false offset values for that
element. Filtration should be done when producing the final output of the
Alignment Handler policy to remove offset values calculated from too few
tracks.
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4.2 Benchmarks

4.2.1 The Coordinate Transformer

The coordinate transformer is not exclusively made for the alignment module
but rather as a tool needed to produce usable data for many data analyzing
modules within the system. This transformation class may also be used
to transform coordinates for the real-time full data stream of the readout
chain. Because the readout chain is very time-sensitive, every amount of
time added must be considered. Hence benchmarking the transformer to
find its potential throughput is beneficial.

Table 4.3 displays the speed of each of the four transformation functions
explained in section 3.3. Iterations specify the number of iterations of the
function that were done to get a stable result.

Function Timing Iterations
localToGlobalHitCoordinatePixel 13.1 ns 56000000
localToGlobalHitCoordinateMM 16.3 ns 40727273
globalToLocalHitCoordinatePixel 49.8 ns 14451613
globalToLocalHitCoordinateMM 17.6 ns 37333333

Table 4.3: Time usage of all coordinate transformation functions.

This timing is done using the google benchmark library[38]. The processor
specifications were (24 X 3701 MHz CPU s), which may be a faster processor
than what will be used, but in general, one can expect transformation to be
done in some nanoseconds. Using the above data, the expected throughput
of the coordinate transformer is:

1. Local to Global pixel based: 1s/13.1ns = 76MHz transformations per
second. Given in tracks per second 76MHz/43 = 1,7MHz.

2. Local to Global millimeter based: 1s/16.3ns = 61MHz transformations
per second. Given in tracks per second 61MHz/43 = 1,4MHz.

3. Global to Local pixel based: 1s/49.8ns = 20MHz transformations per
second. Given in tracks per second 20MHz/43 = 0.5MHz.

4. Global to Local millimeter based: 1s/17.6ns = 57MHz transformations
per second. Given in tracks per second 57MHz/43 = 1,3MHz.
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Given that only the Local to Global conversion has to be done in real-time,
it can theoretically handle the data generated by 76,335,877 pixel activa-
tions per second when pixel-based. When millimeter-based, it can handle
61,349,693 pixel activations per second.

The current implementation uses a basic arithmetic approach to the problem
to optimize for speed. Not using any object-based structure to do transfor-
mation makes the implementation complicated and less maintainable. As
this is a prototype, it is expected that more work has to be done before
this is used in real scenarios. It would be beneficial to do more research on
implementing a more maintainable coordinate transformer.

4.2.2 The Alignment Handler

Even though the alignment handler has several helper functions, only one
function is relevant to benchmark for this policy. This is the analyse-
TrackXY() function responsible for calculating offset parameters from a
single track. The performance of this function is relevant for the time re-
quired to analyze n amount of tracks. The speed is listed in Table 4.4.

Function Timing Iterations
analyzeTrackXY 8545 ns 89600

Table 4.4: Time usage of Alignment Handler functions.

The speed is roughly the same as 117027 tracks every second. Because of
this, one would expect the alignment module to use only some seconds to
calculate enough tracks, but this is not the case. The primary source of time
used for the alignment module is the Input handler which will be discussed
further in section 4.3.7. The alignment handler’s fast speeds result from the
used method for calculating offsets as it is not computationally heavy. Other
alignment methods require heavier computations, resulting in higher time
usage, which will be discussed further.
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4.3 Method analysis

4.3.1 Policy Pattern

Using the policy pattern ensures that the implemented alignment module
upholds the modularity of the pCT-Online package. The pattern has made
development more straightforward and the code-base easier to understand.
Based on the fact that this is a prototype, the primary outcome of using this
pattern is the possibility for further development on this implementation
without any significant refactoring. As mentioned in section 3.4.4 a more
complex method for calculating all the offset parameters is needed, and this
pattern should make the process of implementing this easier.

A significant drawback of using this pattern is the problem of documenting
the implemented interface as the module becomes complex. The interface has
no explicit representation in code and therefore has to be well documented.

4.3.2 Data storage

As an output file format, JSON is excellent for this task. It is widely used and
easy to read for both humans and machines. Other options could have been
used, like XML or CSV, but the easiest to use and implement is still JSON.
This option was also chosen because of its resemblance to non-relational
database storage. Further development of this module will include a database
for the output data. This way, timing, and other data points can be generated
together with a history of misalignments for each element.

A database like MongoDB uses the JSON format to store data, making it
a relevant database for storing alignment output. At this point, the future
of data storage for the alignment module is not decided. Therefore choosing
the most frequently used and most accessible format was favorable.

4.3.3 Offset calculation method

The current method for calculating the offset parameters can produce reason-
ably accurate calibration parameters for the alignment in x- and y-direction.
This is shown in section 4.1.1 and 4.1.3. To calculate the other alignment
parameters, a more complex method is needed. Some algorithms for this
have already been developed for other particle detectors and require good
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knowledge of linear algebra. It also requires one to understand the details
of how tracks behave inside the detector. This will be discussed further in
section 6.

The current implementation can perform pre-alignment to correct for shifts
in the x and y direction before the alignment of rotations is considered. It is
another benefit of using the policy pattern, allowing one to first run a pre-
alignment before applying the more complex policy for a detailed alignment.

4.3.4 Using simulation data

Implementing a simulation script gave great insight into the data format gen-
erated from the DTC. It has been crucial for the possibility to implement the
alignment module and the coordinate transformer. The format has already
been covered in section 1.2 and 3.4.3.

The main reason simulated data was used in this thesis is that accurate mis-
alignment has to be introduced to the data. Introducing this misalignment
in a real detector is not possible. It made analyzing the accuracy of the
alignment module possible because the location of the misaligned elements
was known. It also made it possible to prove that this form of alignment is
possible.

The limitations in the number of tracks analyzed because of the large input
files are expected to be resolved. There are plans to remove all unnecessary
data points and make the input stream binary. It will allow for a higher
density of usable tracks within the input file.

4.3.5 Regression model

During testing, it was found that the OLS regression model relies on a fairly
even spread in the offset directions on each layer. Too much shift in one
direction will introduce a systematic shift of all offset values. The systematic
shift is not optimal if some elements have no shift. It was discussed in section
4.1.3 and is visualized in Figure 4.2. Another well-defined example of this
systematic shift is shown in Figure 4.6, where misalignment(2 pixels) in the
same direction from just a few elements creates offsets in every element.

While the robustness of the used regression model is not too relevant when
the offsets are smaller, it is still an error that is the source of less accurate
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Figure 4.6: Visualization of how all parameter values are skewed from a few
outliers. All values are expected to be lined up at zero, but offsets from a few
elements create a offset in every correctly aligned element.

offset values. A more robust linear regression model could be used to improve
this. A new model must be aware of outliers in the given data, making
every large offset unnoticeable in the regression function, also known as the
predicted track. Because residuals can be affected by the misalignment of
any other element, implementing a more robust model could remove the issue
as outliers will no longer skew the prediction.

4.3.6 Optional Alignment parameters

The general concept of alignment is to find where an element is located
relative to the other elements. It is done by analyzing the data acquired by
the DTC. The data acquired are only represented by x and y coordinates
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from each layer. It means that the only correction that can be done directly
is to each hit’s x and y coordinates. There are no z-axis or rotations to
adjust. This leads to several different ways one can define the alignment
parameters. For this prototype, the idea was to find the misalignment values
of each element, not correcting any tracks. The correction has to be done
later. As this was the idea, giving the offset in millimeters for each element
for the six parameters mentioned earlier was done. Another option could be
to combine some of the misalignment parameters, e.g., the shift in the z-axis
could be defined as ∆x

∆z
. This option says how much x shifts based on the

shift in the z-axis. And the same for y, ∆y
∆z

. This alteration would change the
alignment parameters to something like:

(x, y, ∆x
∆z

, ∆y
∆z

, rotations)

Optional parameters may be researched in further work on the alignment
module to optimize accuracy when applying the parameters to realign ele-
ments.

4.3.7 Profiling

To get an insight into the performance of all parts of the alignment module,
a tool called Valgrind was used to profile the code. More specifically, the
Callgrind tool. Callgrind is a profiling tool that records the call history among
functions in a program’s execution[3]. It gives a very detailed rundown of
every function and how much relative time is used within each one. The
data can be utilized to find where optimization is needed and where other
improvements can be made.

Where the current implementation uses most of its time is in the getTrack()
function of the input policy. The function is responsible for fetching a track
from an input data file. This behavior is expected as the input file is large
and data filtering is done here. This function does not have a consistent
runtime because of the unfiltered data. Not accounting for the track fetching
function, the system performs remarkably well, using only seconds to parse
hundred-thousands of tracks.
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4.3.8 Testing

Even though test-driven development rules have not been followed, unit tests
have been implemented to ensure the proper functioning of the implemented
code. As of now, automatic tests cover the functionality of the coordinate
transformer from local to global and vice versa for pixel and millimeter-based
transformation.

The alignment module functionality has been developed through manual test-
ing. These tests are undocumented and do not ensure exact functionality.
Observing the output data, we can find if it is functioning as it should. E.g.,
if we know tracks are passing every stave in the detector, we should expect
the output to contain 12 ∗ 43 = 516 elements. Any other results would in-
dicate that some functionality is not working correctly. Discrepancies in the
output have not been noticed with the current implementation with several
million tracks tested.

4.4 Impact of thesis

The work done in this thesis is based on work done by many others but is
also a completely new addition to the Bergen pCT project. At the beginning
of this work, a general way to transform local particle hit data into a global
perspective was implemented. The new global data was then used to produce
an alignment module capable of producing misalignment values for elements
inside the DTC. The data transformation is expected to be used by many
other future projects as actual data becomes available from the DTC. The
software developed is a solid prototype highlighting the key concepts needed
for alignment of the DTC elements and what is needed from this module in
the future.
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Chapter 5

Conclusion

In this section brief explanation of the performance of all the included im-
plementations will be discussed. The results will be summarised, mentioning
both issues and what was done right.

5.1 Performance Evaluation

5.1.1 The Coordinate Transformer performance

The data presented in section 4.2.1 show that the coordinate transformer can
potentially transform millions of hits per second. As this can potentially be
run in parallel for each layer it results in 43 × 61, 349, 693 = 2, 638, 036, 799
transformations every second. However, testing has to be done to ensure this
does not introduce any errors to the data stream processing.

The implemented coordinate transformer allows estimation of the required
time for transformation. It is based on trivial operations and there is only
little potential for optimization. Hence it is a statement on the feasibility of
real-time processing.

5.1.2 The Alignment Module performance

As explained, the performance of the alignment module is based on how
accurately it can find the offset values of each element inside the DTC. It
is validated by running a ”blind” test where the offset values are known to
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us but not known for the alignment module. Suppose it produces values
representing the actual offset, then we know that it works as intended. This
was shown to be true in section 4.1.

The implemented software is capable of producing alignment offsets and is a
solid foundation for further development of the module. Except for the errors
produced by the chosen regression model, the ability to produce values well
within a pixel’s width indicates that it can produce very accurate offset values
given enough data. This is true both for single and multiple layers offset.

5.2 Design Evaluation

5.2.1 The Alignment module

With the design of the alignment module explained in section 3.4 the high
modularity of the pCT-Online package is continued. It is based on proven
design patterns that allow for a manageable continuation of development.
The implemented software performs within expectations and should, with
minor changes, be able to perform simple alignment correction.

This design is optimal for further development on the alignment module, but
it also makes it easier to use it in combination with other modules if needed.

The implementation of this module introduced several key concepts of align-
ment, and it also highlighted several things that need to be researched and
implemented in future work.

5.2.2 The Coordinate Transformer

From a performance point of view the current implementation of the coor-
dinate transformer is the most optimal. It is designed around a definition of
the geometry of the DTC through a C++ struct. This geometry allows for
easy calculations of distances between individual layers, staves, chips, and
pixels. The solid throughput of the current implementation should allow for
real-time transformation which is optimal for the pCT project.

Some issues with the current implementation has been noted, like the use of
basic arithmetic to do transformation, this makes the individual functions
somewhat complicated, which a more object based implementation could
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fix. Because the transformation task in itself is not too complicated this
approach would only increase time and was therefore not used. Testing
other ways of implementation has to be done to find the most optimal way
of transformation for the pCT project.

5.3 Summary

For this thesis, a new system for the Bergen pCT project was researched
and implemented, namely the Alignment module, responsible for detecting
misalignments of elements inside the Digital Tracking Calorimeter(DTC).
Because this system had little to no previous work done on it before, several
parts had to be implemented to get a working prototype of this module. The
resulting prototype has acceptable performance suitable for further use and
works as a baseline for further research on this topic.

The coordinate transformer implemented to transform local detector data
into a global x,y, and z coordinate was made with performance in mind.
This is because transforming the data in real-time as it is collected is optimal.
Benchmark results indicate that real-time transformation is possible with the
current implementation making this a reliable option for further usage.

As a collection, the work done here provides insight into implementations that
work and what is needed from future iterations of the Alignment module. It
also provides tools needed to perform research on other systems developed
for the DTC that relies on global hit information.
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Chapter 6

Further Work

6.1 Improving the Alignment Module

To further increase the accuracy and performance of the alignment module,
several steps can be done. This refers to all parts of the current alignment
module. Some of the most apparent are discussed here.

6.1.1 Per Element Track Filtration

The used method relies on the fact that calculations need many tracks to
result in a stable offset value. If an element has too few tracks traversing
through it, this will lead to incorrect calculations. Therefore implementing a
filter on every element which defines a metric for how certain an offset value
is could be done, preventing wrong alignment values.

6.1.2 Regression Models

Several linear regression models used for different types of data exist. Trying
a regression model which is more robust to outliers could result in better
accuracy. It would also counteract the systematic skew that happens when
there is a large offset.
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6.1.3 Error Handling

Basic error handling is already present in all parts of the alignment module.
A more complex error handling system could be implemented to log errors as
they happen. Errors can be grouped into terminating and non-terminating
errors, making the system more rigid. Terminating errors will stop the pro-
gram if they happen, and non-terminating could simply be written to a log
file. The log file can be used to detect problems with the system and provide
feedback of the processing performance.

6.1.4 Database

A history of the individual elements offsets over time may become helpful in
the future, alongside when the most recent alignment was done. It is easily
done through the implementation of a database, as mentioned in section
4.3.2.

6.1.5 Advanced Alignment Algorithms

Implementing a more advanced alignment handler capable of making calcu-
lations on all alignment parameters must be done. There are already several
alignment algorithm examples available for various particle detectors that
can be used for inspiration, e.g., the millipede II algorithm[39]. As far as the
design of the DTC goes, examples can become more difficult to find.

This task is relatively advanced and could take substantial time to do cor-
rectly. Many examples were found during research for this thesis, but all
were poorly documented for implementation standards or source code sim-
ply inaccessible.

6.2 Evaluating External Tools

6.2.1 Real time Coordinate Transformation

Testing the coordinate transformer on a real-time data stream to see how it
affects the system must be done. Most important here is time usage, but
measuring the relative resource usage of the system could also be beneficial.
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6.2.2 Alternative Coordinate Transformation Methods

Implementing different variations of the coordinate transformer to make it
more maintainable can be done. An example of this is an object-based variant
”constructing” the DTC through objects and using this to do the transfor-
mation. What is essential here is to keep the transformation fast such that
it can be used in real-time.
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Appendix A

Source code

The source code for the alignment module is available at this URL: https:
//git.app.uib.no/pct-public/pct-online.

Contributed files:

Under the alignment folder:

1. Everything under /alignment/include/alignment

2. Everything under /alignment/test

3. All loose files under /alignment

Files under /alignment/include/json is a imported library that can be
found here https://github.com/open-source-parsers/jsoncpp.

Under the io-adaptors folder:

1. /include/io-adaptors/AlignmentMCSimInputHandler.h

2. /include/io-adaptors/AlignmentToySimInputHandler.h

3. AlignmentMCSimInputHandler.cxx

4. AlignmentToySimInputHandler.cxx

Under the geometry folder:

1. DetectorConstants.h
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Under the datamodel folder:

1. /include/datamodel/AliTrack.h

Tools and scripts used are available at this URL: https://github.com/

runalmaas/pCT-Alignment-Tools. Everything here was created to analyze
input and output data from the alignment module and coordinate trans-
former. Keep in mind that most scripts have outdated formats.

The toy simulation code is available at this URL: https://git.app.uib.
no/pct-public/pru_datasim.

Contributed files can be found under the /simulation folder.

The Monte Carlo simulation code is available at this URL: https://git.
app.uib.no/pct/ztt-monte-carlo-func-test. This tool was not devel-
oped by me.

Building the pct-online software is relatively complicated. A guide on how to
build all the code should be available within each repository’s README.md.
A detailed guide is available at this URL: https://wiki.uib.no/pct/index.
php/Building_pct-online_software.
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Appendix B

Offset Correction
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(a)

(b)

Figure B.1: Original 100 tracks with offset on layer 10 and 30 for x-axis(a)
and for y-axis(b). Values are given as readout data in a global perspective.
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(a)

(b)

Figure B.2: The 100 tracks from Figure B.1 with corrected values for x-axis(a)
and for y-axis(b). Values are given as readout data in a global perspective.
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Appendix C

Readout chain
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Figure C.1: The general structure of the proton readout chain[9].

87


	Glossary
	Acronyms
	Introduction
	Background
	Radiation therapy issues
	Proton Computed Tomography
	The Alice Pixel Detector

	Problem Description
	pCT Digital Tracking Calorimeter
	Alignment

	Research questions
	Outline

	Software Background
	Concepts and Tools
	Prototyping
	Simulation
	Monte Carlo Simulation
	Track Reconstruction
	Linear Fit
	ROOT: Data Analysis framework

	Software design Patterns
	Dependency Injection Pattern
	Policy-based Design
	Generic Programming

	Related work
	Methodology

	Design and Implementation
	pCT-online
	The pCT-Online package
	The Readout chain
	The pCT-Online Continuous Integration pipeline

	The Test Environment
	The Toy simulation script
	The Monte Carlo simulation
	Tools and Scripts

	Coordinate Transformation
	Implementing the Alignment module
	Design
	The Alignment host
	Constructing Input Data
	Calculating the Alignment parameters
	Formatting and Storage of the Output data
	The Working Alignment module


	Analysis and Assessment
	Alignment performance
	Accuracy using toy simulation data
	Accuracy using MC simulation data
	Multiple Layers Offset using Toy Simulation
	Convergence

	Benchmarks
	The Coordinate Transformer
	The Alignment Handler

	Method analysis
	Policy Pattern
	Data storage
	Offset calculation method
	Using simulation data
	Regression model
	Optional Alignment parameters
	Profiling
	Testing

	Impact of thesis

	Conclusion
	Performance Evaluation
	The Coordinate Transformer performance
	The Alignment Module performance

	Design Evaluation
	The Alignment module
	The Coordinate Transformer

	Summary

	Further Work
	Improving the Alignment Module
	Per Element Track Filtration
	Regression Models
	Error Handling
	Database
	Advanced Alignment Algorithms

	Evaluating External Tools
	Real time Coordinate Transformation
	Alternative Coordinate Transformation Methods


	Source code
	Offset Correction
	Readout chain

