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A B S T R A C T   

Finite-difference modelling estimates the wavefield in the subsurface by solving the elastic or acoustic wave 
equation numerically in a discrete version of the subsurface. The derivatives in the wave equation are approx-
imated by their finite-difference counterparts. In this paper, we investigate the accuracy of acoustic finite- 
difference modelling as a function of the spatial sampling rate, the frequency, the source-receiver offset and 
the model parameters and parametrisation. To represent discontinuities in a regular grid, we apply a tapered 
low-pass wavenumber filter to densely sampled compliance and density models using the Nyquist wavenumber 
of the desired grid as cut-off wavenumber. A long filter taper improves the finite-difference modelling accuracy 
but also leads to longer oscillations in the model grids. We use a 2D acoustic central-grid pseudospectral scheme 
and compare it to analytical solutions of the wave equation and the reflectivity method. We show that previous 
recommendations for the spatial sampling of four grid points per shortest wavelength in staggered-grid schemes 
also apply to central-grid schemes. In the case of a single thin layer, the accuracy of finite-difference modelling is 
dependent on the impedance contrast and the layer thickness. For accurate wide-angle reflection amplitudes of a 
thin layer with a strong impedance contrast, a denser grid sampling than four grid points per shortest wavelength 
is required. Furthermore, we demonstrate that the presented wavenumber filtering approach is better suited for 
the downsampling of regularly sampled compliance and density data derived from well logs than Backus 
averaging.   

1. Introduction 

Finite-difference (FD) modelling of seismic wave propagation is the 
engine of reverse time migration (RTM) and full-waveform inversion 
(FWI). It is also a valuable tool in the interpretation of seismic images. 
Because the FD technique finds wide application in the seismic industry, 
a thorough understanding of its accuracy is important. 

Although most applications of seismic FD modelling, such as RTM 
and classical diving-wave FWI, are performed on models with relatively 
smoothly varying properties, realistic geological models often contain 
discontinuities. One example is the seabed that acts as a sharp contrast of 
acoustic impedance in marine seismic exploration (Yao et al., 2018). 
Additionally, strong guided waves resulting from the free surface and 
the fluid-solid boundary reflection can be produced in the water column. 
For instance, FWI in shallow-water North Sea data is challenged by 
water bottom reflections and guided waves (Raknes et al., 2015). Other 
examples of discontinuities encountered in seismic exploration are 

sediment-salt boundaries (Jones and Davison, 2014), basalt (Gallagher 
and Dromgoole, 2008), dolerite intrusions (Scheiber-Enslin et al., 2021), 
or thin layers (Juhlin and Young, 1993). Currently, FWI tends to produce 
models with high resolution so that the FD modelling is performed on 
models with more variations (Routh et al., 2017). 

In this paper, we study the accuracy of acoustic FD modelling in the 
presence of discontinuities from a practical viewpoint. The focus is on 
the following research questions: How should discontinuous models be 
represented in regular grid models for FD modelling? What grid sam-
pling is needed for an accurate modelling of models with a step, a thin 
layer or a stack of layers? Does the accuracy vary with offset? What 
consequences does a too coarse grid sampling have for the amplitude 
and phase of each frequency component? The answers to these questions 
give insight into the expected errors of acoustic FD applications and how 
to mitigate them. 

Discontinuous (Aoi and Fujiwara, 1999) and adaptive (Pei et al., 
2009) spatial grids and finite-element methods (De Basabe and Sen, 
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2007) have been proposed for accurate and efficient modelling of wave 
propagation in heterogeneous media. However, adaptive grids make the 
implementation more complex and come with challenges in data man-
agement, grid generation and high-performance computing (Zhang and 
Zhang, 2022). Typically, anisotropic acoustic modelling schemes on 
central, uniform grids are used in FWI (Warner et al., 2013; Agudo et al., 
2018) and RTM (Zhang et al., 2011). We restrict our investigation to 
acoustic modelling on central, uniform grids without considering 
anisotropy. 

Stephen (1983) and Levander (1988) compared FD modelling to the 
reflectivity method. They observed high agreement between these two 
modelling techniques when they were applied to a set of simple models 
provided suitable numerical parameters were chosen. However, a 
comparison for finely layered models has not, to our knowledge, been 
published before. 

Gustafsson and Mossberg (2004) and Gustafsson and Wahlund 
(2004, 2005) analysed the errors associated with models containing 
discontinuities for time compact staggered-grid schemes of order two 
and four in both space and time. They showed that the error can be split 
into grid dispersion error and an interface error caused by a disconti-
nuity. Grid dispersion can be controlled by using higher-order schemes 
in space (Gustafsson and Wahlund, 2005). Gustafsson and Wahlund 
(2004) demonstrated that the interface error is of first order even if the 
schemes they investigated had second- and fourth-order accuracy for 
smoothly varying model properties. Symes et al. (2008), and Symes and 
Vdovina (2009) estimated the interface error for a second-order in time 
and space staggered FD scheme and confirmed that the interface error is 
of first order. They observed a time shift proportional to the time step 
and the distance between the interface and the staggered computational 
grids. To summarize these observations, we can conclude that there are 
two types of errors, the error caused by grid dispersion and the interface 
error. While the grid dispersion can be controlled by higher-order 
schemes, the interface error is of first order in staggered-grid schemes 
irrespective of their order in space (Symes et al., 2008; Symes and 
Vdovina, 2009). 

To increase accuracy, Moczo et al. (2002) constructed a heteroge-
neous staggered-grid scheme based on an averaged medium that rep-
resents a material discontinuity. Volume harmonic averaging of bulk 
and shear moduli and arithmetic averaging of density were applied. 
Lisitsa et al. (2010) and Vishnevsky et al. (2014) showed that second- 
order accuracy of common staggered-grid schemes could be preserved 
by applying such a parameter averaging. 

Various methods have been proposed to reduce the interface error in 
central-grid schemes. Cohen and Joly (1996) achieved second-order 
accuracy for a fourth-order scheme by using an optimal averaging pro-
cedure based on plane-wave analysis. Zhang and Le Veque (1997) 
developed an immersed interface method to achieve second-order ac-
curacy. Another member in the family of interface methods is the 
explicit simplified interface method proposed by Lombard and Piraux 
(2004). 

Mittet (2017) studied the interface error in acoustic FD modelling 
using high-order and pseudospectral staggered-grid schemes. He 
observed that four points per shortest wavelength were required for 
spatial derivatives to avoid this type of error. In a related study, Mittet 
(2021a) confirmed that the pseudospectral method could only provide 
“half-spectral” accuracy in discontinuous media, in the sense that four 
instead of two points (corresponding to spectral accuracy) per shortest 
wavelength were required. This type of spatial aliasing error occurred 
also in high-order finite-difference schemes (Mittet, 2021a). In another 
study, Mittet (2021b) observed an accuracy limit of the order of 1/10 of 
the grid sampling interval for the implementation of interfaces by 
applying a band-limited Heaviside step function to the grids. In this way, 
even layers as thin as 1/1000 of the grid sampling interval could be 
represented properly leading to a small spectral amplitude error of 
±2.5% and a negligible traveltime error. However, the experiments on 
thin-layer models were done in 1D and did not investigate the error for 

non-vertically incident waves. Staggered-grid high-order FD and pseu-
dospectral schemes were used in these experiments. 

The majority of studies analysed the interface error associated with 
staggered-grid schemes. However, many forward-modelling-based ap-
plications in the seismic industry use central-grid schemes that do not 
include special treatment of discontinuities. Central-grid schemes avoid 
numerical inaccuracies introduced by the interpolation necessary in 
staggered-grid schemes (Zhang et al., 2011). It is therefore important to 
investigate the interface error associated with central-grid schemes. 

The cited studies restrict the numerical experiments to simple models 
for which the analytical solution exists. To go further, we use the 
reflectivity method as a reference to include thin-layer and multi-layer 
models. In this way, a better understanding of the accuracy of the FD 
method in more realistic scenarios can be gained. 

In contrast to many other studies, we use a broadband wavelet with a 
uniform amplitude over a large frequency range to study the errors in 
amplitude and phase for each frequency component. Such an investi-
gation yields more insight than a visual comparison of waveforms or 
simple error estimates as has been demonstrated by Mittet (2017, 2021a, 
2021b). Furthermore, we study the variation of amplitude and phase 
errors with offset, which is especially relevant in the context of ampli-
tude and phase variation with offset studies. 

In this study, we compare the results of acoustic FD modelling to a 
true reference and investigate the interface error on simple (but not 
necessarily analytical) cases. In the simple case of a two-layer model, the 
analytical solution is computed by the Cagniard-de Hoop method 
(Cagniard, 1939, 1962; De Hoop, 1960). In multi-layer cases, modelling 
results of the reflectivity method (Fuchs and Müller, 1971; Müller, 1985; 
Kennett, 2009) serve as a reference. This modelling technique allows 
full-waveform modelling for horizontally layered media and is accurate 
for layers of any thickness (Daley and Hron, 1982). In order to save 
computation time in the FD modelling, the numerical experiments are 
done in 2D. The findings are still relevant for 3D modelling, since nu-
merical errors persist when the dimensionality of the simulation is 
increased (Mittet, 2021a). 

The paper is structured as follows: In section 2, we introduce the 
three modelling methods used in this study: the Cagniard-de Hoop 
method, the reflectivity method and the acoustic FD method. Another 
important aspect in section 2 is the preparation of grid models for FD 
modelling. In section 3, we analyse the accuracy of acoustic FD 
modelling results compared to the true reference for a step model, a thin- 
layer model and a realistic multi-layer model derived from a well log. 
Sections 4 and 5 are devoted to a discussion of the results and our 
conclusions for acoustic FD modelling in practice. 

2. Methods 

2.1. Cagniard-de Hoop method 

The Cagniard-de Hoop method provides an analytical solution for 
wave propagation in stratified media. Diaz and Ezziani (2010) imple-
mented this method for simple two-layer models and wave propagation 
in 2D (see Diaz and Ezziani, 2015). We used this code to calculate the 
analytical solution for the step model (section 3.1). Strictly speaking, the 
solution is quasi-analytical, since a numerical convolution is involved, 
but we refer to it as an analytical solution in this article. 

2.2. Reflectivity method 

We used the reflectivity method (RM) as the modelling technique for 
thin-layer and multi-layer models. The RM proved to be highly accurate 
when compared to the analytical solution computed by the Cagniard-de 
Hoop method for a step model. 

Only the relevant principles of the RM are explained here and the 
reader is referred to Müller (1985) and Kennett (2009) for details. The 
RM is based on the Sommerfeld integral, which itself can be derived 
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from the Weyl integral for cylindrical symmetry (Müller, 2007). By the 
Sommerfeld integral, a spherical wave can be expressed as a super-
position of conical waves (Aki and Richards, 2002). The RM was first 
proposed by Thomson (1950) and later developed by Fuchs and Müller 
(1971), Kennett (1979), Fryer (1980) and others. Typically expressed as 
a numerical integration over a part of the real and positive horizontal 
slowness axis, we found it beneficial to change the integration variable 
as proposed by Fuchs (1968). A review of the derivation of the relevant 
equations, which were used to produce the reference solutions for thin- 
layer and multi-layer modelling examples, is provided in Appendix A. 

For the computation of synthetic seismograms in time, first the 
overall P-P reflectivity RPP is computed by Kennett’s method (Kennett, 
1974) for a range of frequencies ω and angles of incidence θ to obtain 
RPP(ω,θ). This recursive computation involves the frequency- 
independent plane-wave reflection and transmission coefficients given 
by the Zoeppritz equations (Aki and Richards, 2002) as well as phase 
terms. The frequency dependency is introduced by those phase terms, 
which are responsible for correct traveltimes and interference of scat-
tering. For a large number of layers, the task of computing RPP(ω,θ) is 
the most demanding in terms of computation time. In the next step, the 
integral over θ (see Eqs. (A.5) and (A.6)) is computed by numerical 
integration using the trapezoidal rule. In practice, the integrand should 
be inspected to find a suitable upper integration limit. Furthermore, a 
taper at the upper integration limit is recommended (Mallick and Frazer, 
1987). After integration, a multiplication with the factors in Eqs. (A.5) 
and (A.6) including the source excitation function is performed. Finally, 
the inverse Fourier transform is used to compute the pressure signals in 
time. 

By relationships between the source excitation F(t) of an explosive 
pressure point or line source and the resulting waveform at any distance 
given by Müller (2007), it is possible to calculate the source function 
that gives rise to a desired wavelet at a specific distance from the source. 
In our modelling examples, we used the tapered Ormsby wavelet shown 
in Fig. 1. As a broadband wavelet with a flat amplitude spectrum over a 
wide frequency range, it allows us to analyse the interface error of each 
frequency component. The tapered Ormsby wavelet has the corner fre-
quencies 6 Hz, 10 Hz, 100 Hz and 120 Hz, a peak time of 0.1 s, a duration 
of 0.2 s and a maximum amplitude of 1. 

2.3. Finite-difference method 

The 2D acoustic wave equation for pressure P(x, t) at position x = (x, 
z) and time t is given by Eq. (1) 

κ(x)
∂2P(x, t)

∂t2 − ∇⋅
(

1
ρ(x)∇P(x, t)

)

= S(x, t), (1)  

where κ(x) and ρ(x) denote compliance and density, respectively, and S 
(x, t) is the source term. The compressional wave velocity α is α =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(κρ)− 1

√
. 

We used the Fourier method (Fornberg, 1975; Kosloff and Baysal, 
1982), also called the pseudospectral method, where the spatial de-
rivatives are computed in the Fourier domain. The spatial derivatives are 
exact up to the Nyquist wavenumber making a sampling of two grid 
points per shortest wavelength sufficient in theory. 

For the time derivatives, a fourth-order finite-difference approxi-
mation (Etgen, 1986) was used. We used small time steps to ensure 
stability according to the Courant-Friedrichs-Lewy condition, avoid er-
rors in the source injection, and to reduce temporal dispersion. The 
maximum relative dispersion error was computed to be <10− 5 so that a 
correction was not required. 

The simulations were performed on a uniform, central grid. Perfectly 
matched layers as well as model extension were used at all model 
boundaries to avoid any model boundary reflections interfering with the 
target reflection signal. 

2.4. Tapered low-pass wavenumber filtering of models 

To find the optimal representation of a discontinuity in a regular 
grid, we devised an aliasing-protected algorithm similar to a procedure 
proposed by Mittet (2017). Starting from ideal models with sharp con-
trasts, very densely sampled models of P-wave velocity α and density ρ 
with a sampling interval of Δz′=0.001 m were created. In the next step, 
the compliance κ = ρ− 1α− 2, the inverse of the bulk modulus, was 
computed. 

The application of a non-windowed low-pass filter to the models 
would lead to long tails of Gibbs oscillations in the filtered models. These 
oscillations would be eventually sharply truncated at the model 
boundaries. Moreover, source and receivers would be located in a 
weakly varying medium instead of a homogeneous medium. In order to 
have a better control over the truncation and to understand its effect on 
the simulation result, we created a tapered low-pass filter. A window of 
length N′Δz′ = NΔz was defined, where Δz is the desired spatial sampling 
interval and N′, N > 0 are even numbers. The ideal filter coefficients fj of 
a low-pass filter with the Nyquist wavenumber kcut =

1
2Δz of the desired 

grid sampling as cut-off wavenumber represent a discrete sinc function, 
here expressed for N′ + 1 samples as 

fj = 2kcut

sin
(

jπ kcut
kNy

)

jπ kcut
kNy

, (2)  

where kNy = 1
2Δz′ , j = 0,±1,±2, …,±N′

2 . The filter coefficients fj were 
multiplied by a flat-top window function wj (D’Antona and Ferrero, 
2006) 

wj = a0 − a1cos
2π

(
j +

1
2
N

′

)

N ′ + a2cos
4π

(
j +

1
2

N
′

)

N ′

− a3cos
6π

(
j +

1
2
N ′

)

N ′ + a4cos
8π

(
j +

1
2
N ′

)

N ′ ,

(3)  

where a0 = 0.21557895, a1 = 0.41663158, a2 = 0.277263158, a3 =

0.083578947, a4 = 0.006947368, to create a tapered low-pass filter. 
This filter was applied to the densely sampled models Vi, i = 1, …, L of 
compliance or density, respectively, 

Vfilt
i = Vi*

(
wjfj

)
. (4) Fig. 1. Tapered Ormsby wavelet (top) used in all numerical experiments and its 

amplitude spectrum (bottom). 
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Finally, the densely sampled filtered model Vi
filt was resampled to the 

desired spatial sampling Δz. The velocity can then be computed from 
filtered compliance and density models. 

Because of the application of a window function to the filter, only N 
+ 1 grid points of the resampled model will be affected by a jump in a 
material property. Fig. 2 illustrates the tapered Gibbs oscillations for two 
different values of N. The windowing of the low-pass filter implies that 
the wavenumber filter has a less steep slope, i.e., its transition zone 
becomes wider as N becomes smaller. Hence, a limited portion of 
wavenumbers above the Nyquist wavenumber will remain after 
filtering. To evaluate the error associated with the tapering, we 
compared FD modelling results from tapered models with different 
window lengths NΔz to modelling results from a non-tapered version. In 
this test, the source and receivers had a vertical distance of 500 m from 
the interface as shown in Fig. 3, so that the Gibbs oscillations have 
decayed almost entirely in the non-tapered version. We used a spatial 
sampling of Δz = 2 m. The L2-norm error E was computed for each trace 
as 

E =

∑S− 1

l=0
(fN(lΔt) − f (lΔt) )2

∑S− 1

l=0
(f (lΔt) )2

, (5)  

where S is the number of trace samples, Δt the time sampling interval, fN 
represents a trace modelled using a tapered model and f represents a 
trace modelled using a non-tapered model. In Fig. 2, the L2-norm error 
averaged over all traces is given as an estimate of the error that is caused 
by applying the taper. Our numerical experiments showed that choosing 
N between 10 and 20 appeared to be a good trade-off to keep the Gibbs 
oscillations short and the taper-induced error low. 

Fig. 4 illustrates how the location of the reflector relative to the grid 
determines where the filtered function is sampled. If the reflector is 

located at the centre of a grid cell, the maximum roughness of the Gibbs 
oscillation is captured (cf. Mittet, 2017) with the samples being located 
at the peaks and troughs of the oscillations as shown in Figs. 2 and 4d. If 
the reflector is located at the boundary of a grid cell (Fig. 4a), the 
samples are located close to the inflection points of the oscillations. We 
will investigate later what impact the interface location with respect to 
the grid has on the FD modelling result. 

3. Results 

3.1. Step model 

In the first example of this study, we analyse the modelling error of 
the acoustic finite-difference (FD) method compared to the analytical 
solution for a single flat reflector. This reflector is located around 500 m 
below the source and receivers, which are all positioned at the same 
depth as visualised in Fig. 3. It separates two homogeneous half spaces 
with the properties given in Fig. 3. We applied the algorithm described 
above to create the grid models for the FD method using a taper of N =
10. 

The direct wave was removed from all modelling results by sub-
traction. In this way, we can compare the single reflection event. We 
computed the normalised amplitude R(ω) and the phase difference 
expressed as the traveltime error Δτ(ω) in milliseconds for a specific pair 
of source and receiver by Eqs. (6) and (7) 

R(ω) =
AFD(ω)
ARef(ω)

, (6)  

Δτ(ω) = 1000
ϕFD(ω) − ϕRef(ω)

ω , (7) 

Fig. 2. Illustration of tapered low-pass wavenumber filtering of a 1D velocity 
step model. The densely sampled model (blue) is low-pass filtered (red) with a 
non-tapered filter (a) and tapered filters (b, c) so that N + 1 grid points are 
affected by the step. Black crosses show the grid samples with an interval of Δz 
= 2.0 m. Note that the Gibbs oscillations are asymmetric because the filtering is 
done in compliance and density. Average L2-norm errors of FD modelling re-
sults caused by the taper are given below the plots. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. Source and receiver locations in all modelling experiments. Receiver 
spacing is 10 m. Layer properties of the step model with constant density 
are given. 

Fig. 4. Tapered low-pass wavenumber filtering of a 1D velocity step model 
with varying locations of the step relative to the grid. The densely sampled 
model (blue) is low-pass filtered (red) using a tapered filter of N = 10. Black 
crosses show the grid samples with an interval of Δz = 2.0 m. The step is 
located at z = 500.0 m (a), z = 500.1 m (b), z = 500.5 m (c) and z = 501.0 m 
(d), while the samples at z = 499 m, 501 m, etc. represent the centres of grid 
cells. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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where AFD(ω) and ϕFD(ω) denote the amplitude and phase spectrum of 
the FD signal and ARef(ω) and ϕRef(ω) denote the amplitude and phase 
spectrum of the reference signal, which is the analytical solution in this 
case. 

3.1.1. Varying reflector location with respect to grid 
In a first experiment, we analysed the impact of the reflector location 

with respect to the grid on the FD modelling accuracy. Fig. 5 illustrates 
various locations of an interface related to a grid cell of Δx = Δz = 4.0 m 
that is located between z = 500 m and z = 504 m. We tested four 
different reflector depths. At z = 500 m, the reflector is aligned with the 
boundary of a grid cell. At z = 500.66 m and z = 501.33 m, the reflector 
crosses a grid cell. At z = 502 m, the reflector is aligned with the centre 
of a grid cell. These locations can be expressed as 500 m + aΔz depth 
with a = 0, a = 1

6, a = 1
3 and a = 1

2. The amplitude and phase errors for 
these four scenarios are given in Fig. 6. It turns out that the best accuracy 
in terms of both amplitude and phase is achieved if the reflector is 
aligned with a grid cell boundary or, in other words, is located mid-way 
between two grid nodes. The largest error is observed if the reflector is 
located at the centre of a grid cell. This case represents the most chal-
lenging scenario and will be the focus of subsequent experiments to 
evaluate the accuracy of FD modelling. From Figs. 2 and 4, we can 
observe that the grid captures the maximum roughness of the Gibbs 
oscillations if the interface is located at the centre of a grid cell. 

3.1.2. Varying grid sampling 
Having identified the least and most challenging location of reflector 

position relative to the grid, we tested various grid samplings Δx = Δz in 
these two locations using a taper size of N = 10. The normalised 
amplitude and traveltime errors are shown in Fig. 7. The Fourier method 
used in this study requires a spatial sampling of at least two grid points 
per shortest wavelength. With a maximum frequency of 120 Hz and a 
minimum velocity of 1500 m/s, the shortest wavelength is 12.5 m long. 
Theoretically, a grid sampling of 6.0 m should be sufficient to avoid grid 
dispersion. In the optimal case, where the interface is aligned with the 
grid cell boundaries, all tested grid samplings gave accurate modelling 
results. However, in the most challenging scenario, where the interface 
is aligned with the centres of the grid cells, the accuracy deteriorates 
with increasing frequency and grid sampling interval. We observe a 
slight amplitude loss in the high-frequency components for Δx = Δz =
2.0 m. This effect is even more dramatic for larger spatial sampling in-
tervals. For Δx = Δz = 3.0 m, the amplitudes are reliable up to about 80 
Hz. In the case of a grid sampling of 4.0 m, the limit is already reached at 
about 60 Hz and additionally a small phase error is observed at high 
frequencies. At long offset, that is, for wide-angle reflections, the 
amplitude and phase errors vanish for all tested grid sampling intervals. 
This observation is demonstrated by Fig. 8, which shows the normalised 
amplitude and traveltime error at 1000 m offset corresponding to an 
incidence angle of 45◦. 

3.1.3. Varying taper size 
The aim of our next experiment was to analyse the impact the taper, 

which is used in the wavenumber filtering of the grid models, has on the 
accuracy of the FD modelling results. We focus on the most challenging 
reflector location where it is aligned with the grid cell centres. Instead of 
using a taper size of N = 10, we increase N to 20 and 100, which means 
that longer tails of Gibbs oscillations away from the interface are 
included (see Fig. 2). The accuracy of the FD modelling results is shown 
in Fig. 9. Allowing more grid points to sample the Gibbs oscillations and 
represent the parameter jump improves the modelling results by shifting 
the amplitude accuracy limit to higher frequencies for each grid sam-
pling. We observe that the limit is shifted up by about 20 Hz for N = 20 
compared to the previous example where a taper of size N = 10 was used 
(Fig. 7, right). When using N = 100, highly accurate modelling results up 
to a grid sampling of 3.0 m are achieved. These results suggest that there 
is a trade-off between shortness of the operator containing the Gibbs 
oscillations on the one hand and required minimum grid sampling for 
full-bandwidth accuracy on the other. 

3.1.4. Model grid in compliance vs. slowness 
Another interesting question concerns which material property the 

tapered low-pass wavenumber filtering should be applied to in order to 
create the model grids. For this experiment, we added a jump in density 
from 1000 kg/m3 to 2000 kg/m3 at the same location as the velocity 
increase from 1500 m/s to 3000 m/s. We applied the tapered filter to 
compliance κ = ρ− 1α− 2 (the inverse of bulk modulus) and density ρ 
(Fig. 10, left) and to slowness α− 1 and density ρ (Fig. 10, right). The 
reflector was aligned with the grid cell centres to create the most chal-
lenging scenario. A taper of size N = 10 was used. Fig. 10 shows the 
normalised amplitude and traveltime errors for various grid sampling 
intervals. While performing the wavenumber filtering in slowness yields 
amplitude accuracy up to higher frequencies compared to the case of 
filtering in compliance, increasing phase errors occur with increasing 
spatial sampling. Already for a grid sampling of 2.0 m, a small traveltime 
error can be observed, which is present for all frequencies. The results 
suggest that using compliance results in best accuracy in phase, while 
using slowness results in best accuracy in amplitude. Note that slowness 
is not decoupled from density. It was demonstrated by Mittet (2017) that 
compliance and density are the best choice of material properties on 
which to perform the filtering operation. This observation is in agree-
ment with the averaging derived by Backus (1962) and Moczo et al. 
(2002). We therefore decided to do the wavenumber filtering procedure 
in compliance and density in the subsequent tests. 

Fig. 5. Finite-difference grid cell (blue) of size Δx = Δz = 4.0 m and various 
reflector depths indicated by lines: z = 500.0 m (black, solid), z = 500.66 m 
(dark red, dash-dotted), z = 501.33 m (red, dashed) and z = 502.0 m (orange, 
dotted). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. Normalised amplitude (top) and traveltime error (bottom) of the 
reflection signal from a reflector at 500 m + aΔz depth observed at 100 m offset 
and modelled by the acoustic FD method using a spatial sampling Δx = Δz =
4.0 m. The factor a determines the location of the reflector relative to the grid as 
shown in Fig. 5. 
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3.2. Thin-layer model 

In this experiment, we analyse the accuracy of the FD modelling of a 
reflection response from a thin, flat layer. The background model has a 
velocity of 1500 m/s and a density of 1000 kg/m3. At a depth of about 
500 m below the source and receivers (located as shown in Fig. 3), a thin 

layer with a thickness of 2 m, a velocity of 3000 m/s and a density of 
2000 kg/m3 was inserted. Wavenumber filtering and model sampling 
were performed in compliance and density using a taper size of N = 10. 
Similar to the previous examples, the direct wave was removed by 
subtraction prior to analysis of the reflection signal. The reference signal 
was calculated by the reflectivity method. The normalised amplitude of 
the FD modelling results and the traveltime error were computed by Eqs. 
(6) and (7). 

With a thickness of 2 m and a velocity of 3000 m/s, the layer can be 
regarded as thin according to the Widess criterion of a thickness below 
λ/8 (Widess, 1973), where λ denotes the wavelength computed by the 
velocity of the thin layer and the maximum frequency of the wavelet. In 
such a case and opposite polarity reflectivity, the thin layer acts as an 
approximate time derivative operator to the wavelet. Fig. 11 illustrates 
how the initially flat spectrum is now altered such that there is a 
maximum amplitude at approximately 96 Hz. The figure also demon-
strates the high accuracy of amplitudes for a grid sampling of up to 1.0 m 
and a weak amplitude loss for Δx = Δz = 2.0 m. 

We investigated two different cases for the location of the thin layer 
with respect to the grid. In one case, the layer centre is aligned with a 
grid cell boundary, in the other case, it is aligned with a grid cell centre. 
Fig. 12 illustrates the velocity models after wavenumber filtering in 
compliance and density and the sample locations in these two cases for 
two different layer thicknesses. If the layer is centred at a grid cell 
boundary (Fig. 12a, c), the samples do not capture the maximum of the 
filtered function, but they capture the oscillations away from the layer. If 
the layer centre is aligned with the centre of a grid cell (Fig. 12b, d), the 

Fig. 7. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a single reflector aligned with grid cell boundaries (left) and aligned 
with grid cell centres (right) observed at 100 m offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz. 

Fig. 8. Normalised amplitude (top) and traveltime error (bottom) of the 
reflection signal from a single reflector aligned with grid cell centres observed 
at 1000 m offset and modelled by the acoustic FD method using varying spatial 
sampling Δx = Δz. 

Fig. 9. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a single reflector aligned with grid cell centres observed at 100 m 
offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz and using a taper size of N = 20 (left) and N = 100 (right) to prepare the grids. 
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maximum of the filtered function is sampled, but the oscillations away 
from the layer are only weakly represented in the sample locations. 
Fig. 13 shows the normalised amplitude and traveltime error for varying 
spatial sampling if a 2 m thick layer is centred at grid cell boundaries and 
if its centre is aligned with grid cell centres. 

For a thin layer, the FD modelling result is better if the layer centre is 
aligned with the centre of a grid cell. In this ideal case, full bandwidth 
accuracy up to Δx = Δz = 3.0 m can be achieved. By analogy with the 
step model, this is the case in which the oscillations represented by grid 
samples are the weakest. We have also seen that the maximum of the 
filtered velocity is captured by a sample, which supports amplitude ac-
curacy. In the most challenging case where the layer is centred at the 
boundary of a grid cell, good accuracy is observed for the fine grid 
samplings of 0.5 m and 1.0 m. A weak amplitude loss occurs at the high- 
frequency components of the signal for Δx = Δz = 2.0 m, but the ac-
curacy is still acceptable. For a larger spatial sampling, significant 
amplitude errors at high frequencies are seen. The traveltimes are cor-
rect except for Δx = Δz = 4.0 m above 95 Hz. It should be noted that the 
relative amplitude and phase errors seem to be large at low frequencies 
but are small in absolute values because the amplitudes are very low at 
such low frequencies (see Fig. 11). 

Fig. 14 shows how the normalised amplitude varies with incidence 
angle for a layer thickness of 2.0 m (solid lines) and 0.2 m (dashed lines). 

In addition, an example with a weaker contrast in material properties is 
shown (dash-dotted lines). In this model, the velocity is increased by 
200 m/s and the density is increased by 200 kg/m3 in the 0.2 m thin 
layer. We used the most challenging scenario where the layer is centred 
at the grid cell boundaries and plotted the normalised amplitude at 60 
Hz. 

Unlike the step model, where amplitude and phase errors were 
reduced with increasing offset, in a thin-layer case, we observe an 
amplitude loss which increases as the angle of incidence or offset in-
creases. This amplitude error is frequency-independent. It strongly de-
pends on the layer thickness and the contrast in material properties. For 
all examples, we see that the amplitude error increases with increasing 
grid sampling. The results suggest that it is challenging to obtain an 
accurate amplitude variation with offset (AVO) response by FD model-
ling when very thin layers with strong contrasts in material properties 
are present. Traveltime errors were negligible in all shown examples. 

3.3. Multi-layer model 

After evaluating the accuracy of FD modelling for simple discontin-
uous models, we analysed the accuracy of the FD method in a more 
realistic model. At the same time, we compared the model down-
sampling by wavenumber filtering used in this study to the widely used 
Backus average (Backus, 1962). Based on well log data, we built a multi- 
layer model consisting of a stack of thin layers with a constant thickness 
of 0.2 m between 500 m and 600 m depth and extrapolated constant 
model properties upwards and downwards. We applied the tapered low- 
pass wavenumber filtering to the compliance and density models of the 
original sampling Δz′ = 0.2 m to create models of sampling Δz = 3.0 m 
and Δz = 4.0 m using N = 14 and N = 20, respectively. An alternative 
approach to downsample densely sampled elastic properties is to use the 
Backus average. For our case of acoustic, isotropic layers, the equations 
reduce to an averaging of compliance and an averaging of density. 
Hence, for Δz = 3.0 m, 15 layers of thickness 0.2 m contribute to one 
sample point. For Δz = 4.0 m, averaging is done over 20 layers. Fig. 15 
demonstrates that the resulting downsampled models of wavenumber 
filtering and Backus average are similar but not identical. It should be 
noted that the Backus averaging is only valid if Δz is much smaller than 
the seismic wavelength, that is, maximum 1/10 of the wavelength 
(Mavko et al., 2009). With the shortest wavelength being 15.5 m in this 
example, the criterion is not fulfilled for Δz = 3.0 m or larger. 

Source and receiver locations are the same as in previous experi-
ments (see Fig. 3). We used the reflectivity method to produce a refer-
ence dataset based on the original densely sampled model with Δz′ = 0.2 
m. Fig. 16 shows the FD modelling results for the model versions 

Fig. 10. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a single reflector aligned with grid cell centres observed at 100 m 
offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz. Left: The discontinuity was filtered in compliance and density. Right: The 
discontinuity was filtered in slowness and density. 

Fig. 11. Absolute amplitude of the reflection signal from a 2 m thick layer 
centred at grid cell boundaries observed at 100 m offset. The cyan graph shows 
the reference amplitude spectrum modelled by the reflectivity method (RM). 
The other graphs display the amplitude spectra of the acoustic FD modelling 
results using a varying spatial sampling Δx = Δz. 
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downsampled to Δz = 3.0 m compared to the reference dataset. The FD 
modelling results for the models resampled by the tapered low-pass 
wavenumber filter are in good agreement with the reference dataset 
and superior to the modelling results for the models produced by Backus 
averaging although differences are small. As noted before, the Backus 
average loses validity if the layer thickness becomes too large with 
respect to the wavelength. 

Using a grid sampling interval of 4.0 m, which results in less than 
four points per shortest wavelength, yields poorer results as can be seen 
in Fig. 17. At short offsets, the high-frequency components of the FD 
modelling results based on the models produced by wavenumber 
filtering are too low in amplitude. At longer offset, the accuracy is 
satisfactory. As for 3.0 m sampling, the model created by Backus aver-
aging leads to larger errors. The observations support the conclusion 
from the simple step model that four to five grid points per shortest 
wavelength are needed for full bandwidth accuracy. Similar to the step 
model, this requirement can be relaxed at long offsets. 

4. Discussion 

The reflectivity method can be regarded as a pseudo-analytical so-
lution of the wave equation for layered models and has been used as a 
reference in other studies dealing with the accuracy of the FD method 
(Levander, 1988). By using the reflectivity method as a reference, we 
were able to analyse the offset-dependent accuracy of acoustic FD 
modelling for finely layered models. 

Symes and Vdovina (2009) demonstrated that a discontinuity 
without special treatment leads to an interface error in finite-difference 
(FD) modelling. The interface error is purely in phase, thus, creating a 
time shift. It arises from misalignment between material discontinuities 
and computational grids. Mittet (2017) proposed the use of a band- 
limited Heaviside step function to properly implement a parameter 
jump in the simulation grid. The wavenumber limit is defined by the 
Nyquist wavenumber of the grid. By following this approach, the loca-
tion of the interface is arbitrary and the phase error caused by 

Fig. 12. Tapered low-pass wavenumber filtering of a 1D velocity model of a thin layer with increased velocity of 3000 m/s compared to the background velocity of 
1500 m/s for varying locations of the layer centre relative to the grid. The densely sampled model (blue) is low-pass filtered (red) with a tapered filter of taper size N 
= 10. Black crosses show the grid samples with an interval of Δz = 2.0 m. a: 2 m thick layer centred at a grid cell boundary. b: 2 m thick layer centred at a grid cell 
centre. c: 0.2 m thick layer centred at a grid cell boundary. d: 0.2 m layer centred at a grid cell centre. The velocity axis is clipped in c and d. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a thin layer of 2 m thickness with its centre being aligned with grid 
cell boundaries (left) and grid cell centres (right) observed at 100 m offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz. 
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misalignment with the grid (when there is no special treatment of the 
interface) is corrected. In our study, we used a similar approach to limit 
the wavenumbers to the Nyquist wavenumber of the simulation grid. In 
all examples, we have shown that there is no phase error if discontinu-
ities are filtered in compliance and density and the grid sampling is 
sufficiently fine. 

Regarding the accuracy of amplitudes in the step-model example, we 

make similar observations to the staggered-grid observations of Mittet 
(2017, 2021a). For the general case, where the location of the discon-
tinuity is not aligned with the grid, Mittet (2017) concluded from ex-
periments using staggered-grid schemes that four to five grid points per 
shortest wavelength are required. In our experiments using a central- 
grid scheme, we observed that a spatial sampling of Δx = Δz = 3.0 m, 
corresponding to four grid points per shortest wavelength, is sufficient 
for accuracy in amplitude and phase when allowing N + 1 = 101 grid 
points to sample a discontinuity in material properties. Using a grid 
sampling of 4.0 m, corresponding to only 3 grid points per shortest 
wavelength, leads to inaccuracies in amplitude and phase for the high- 
frequency components. The amplitude error is dominant over trav-
eltime error. 

Reducing the taper size N shifts the accuracy limit for each grid 
sampling towards lower frequencies, so that a grid sampling of Δx = Δz=
3.0 m is no longer sufficient for full bandwidth accuracy when N = 20 or 
N = 10. Using a small N makes the accuracy of the FD modelling more 
dependent on the location of the discontinuity relative to the grid. In 
agreement with Mittet (2017), we concluded that the most challenging 
scenario is reached when the interface is aligned with the centre of a grid 
cell. In such a situation, the grid samples capture the peaks and troughs 
of the Gibbs oscillations (see Fig. 4). An interesting observation is that 
the strict requirement concerning the number of grid points per shortest 
wavelength can be relaxed in the case of a wide-angle reflection from a 
single interface (see Fig. 8). 

We have shown that the wavenumber filtering is ideally done in 
compliance and density for optimal accuracy. This choice is in agree-
ment with the Backus average that reduces to an averaging in compli-
ance and density for the isotropic, acoustic case and with the averaging 
proposed by Moczo et al. (2002). 

Fig. 14. Amplitude variation with incidence angle of the normalised amplitude 
at 60 Hz of the reflection signal from a thin layer for a varying spatial sampling 
Δx = Δz. Solid lines represent the example with a layer thickness of 2.0 m, 
dashed lines represent the example of a 0.2 m layer thickness and dash-dotted 
lines correspond to a 0.2 m layer thickness and a weaker contrast in acous-
tic impedance. 

Fig. 15. Resampling of densely sampled models with Δz′ = 0.2 m (blue, solid line) using Backus averaging (red, dashed line) and tapered low-pass wavenumber 
filtering (black, solid line). From left to right: velocity and density resampling to Δz = 3.0 m, velocity and density resampling to Δz = 4.0 m. 
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Fig. 16. FD modelling results (top) and corresponding amplitude spectra (bottom) for models downsampled from 0.2 m to 3.0 m spatial sampling by Backus 
averaging (red, dashed line) and tapered low-pass wavenumber filtering (black, solid line) compared to the reference dataset computed by the reflectivity method for 
the densely sampled model (cyan, solid line). The reflection response of the 500–600 m interval (Fig. 15) is shown after removal of the direct wave. Centre: difference 
between FD modelling results and reference. Left: observed at 100 m offset. Right: observed at 1000 m offset. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 17. FD modelling results (top) and corresponding amplitude spectra (bottom) for models downsampled from 0.2 m to 4.0 m spatial sampling by Backus 
averaging (red, dashed line) and tapered low-pass wavenumber filtering (black, solid line) compared to the reference dataset computed by the reflectivity method for 
the densely sampled model (cyan, solid line). The reflection response of the 500–600 m interval (Fig. 15) is shown after removal of the direct wave. Centre: difference 
between FD modelling results and reference. Left: observed at 100 m offset. Right: observed at 1000 m offset. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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A typical application of these findings would be seabed reflections. 
Mittet (2021b) proposed a method to perform the parameter smoothing 
locally for continuous horizons. In this way, the seabed can be properly 
implemented in the simulation grid. With the right choice of taper size N 
and a grid sampling such that the requirement of four to five grid points 
per shortest wavelength is fulfilled, the seabed reflection will be accu-
rate in amplitude and phase for the full bandwidth of the signal. 

Although the tapered wavenumber filtering approach allows the 
representation of layers that are thinner than a grid cell, increasing 
amplitude accuracy problems were observed with increasing incidence 
angle, decreasing layer thickness and increasing contrast in material 
properties. Mittet (2021b) observed a slightly increased amplitude error 
but acceptable accuracy even for layers that were significantly thinner 
than a grid cell, e.g., an amplitude error of ±2.5% for a layer thickness 
1/1000 of the grid step length. However, he did not investigate the 
offset-dependency of the amplitude error and used a considerably larger 
number of grid cells to capture the effect of a thin layer in the grid. Our 
results suggest that thin layers with strong parameter contrasts pose a 
challenge to the FD method, especially if an accurate amplitude varia-
tion with offset (AVO) response is needed. In such a case, decreasing the 
grid sampling further may help, as Fig. 14 suggests, but may also in-
crease computational costs dramatically. Tests have shown that 
increasing the taper size N will only slightly reduce the amplitude error. 
Our work demonstrates that the reflectivity method provides a fast and 
efficient alternative for modelling the AVO effects of thin layers pro-
vided that lateral variations in material properties can be neglected. It 
should be noted that such extreme opposite polarity contrasts in acoustic 
impedance rarely occur in realistic subsurface models. 

The multi-layer experiment confirmed that minimum four grid 
points per shortest wavelength are required to obtain an accurate FD 
modelling result. The model contains moderate contrasts in material 
properties such that the extreme case tested in the thin-layer example 
does not need to be considered. We have seen that the tapered low-pass 
wavenumber filtering in compliance and density yields similar results to 
averaging of compliance and density following the procedure proposed 
by Backus, adapted to acoustic and isotropic media. Mittet (2017) has 
already noted that the low-pass filtering in wavenumber domain re-
sembles an averaging although there is no averaging done in the strict 
mathematical sense. For the downsampling of densely sampled models 
to build coarser regular grids for FD modelling, Backus averaging is not 
accurate enough because the spatial sampling becomes too large with 
respect to the wavelength. We have shown that the wavenumber 
filtering approach is a better alternative for such a case. Similar but more 
advanced downsampling methods were discussed by Capdeville et al. 
(2010) and Fichtner and Hanasoge (2017). 

The experiments have shown that in the presence of discontinuities a 
finer grid sampling is required than for smooth models. Because our 
observations agree well with those of Mittet (2017, 2021a), we conclude 
that the recommendation of four to five grid points per shortest wave-
length also apply to non-staggered, central-grid schemes, which are 
widely used in the seismic industry. This requirement assumes a proper 
representation of the discontinuity in the grid, limited to the Nyquist 
wavenumber of the grid. To achieve this, we used an adaptable wave-
number filtering procedure in compliance and density for optimal re-
sults. Although this representation of a discontinuity should guarantee 
invariance of the interface location relative to the grid, we observed that 
this was not generally the case when a taper was used with the filter. The 
most challenging situation for a single interface was created when the 
interface was aligned with the centre of a grid cell. For a single thin 
layer, the most challenging scenario was created when the layer was 
centred at a grid cell boundary. We have seen that the choice of taper 
size N affects amplitude accuracy. Allowing more grid cells to sample the 
Gibbs oscillations by choosing a larger N, generally improves accuracy. 
In other words, a coarser spatial sampling is then sufficient to achieve 
good accuracy for the full bandwidth of the signal. On the other hand, a 
large N creates models with wider zones of Gibbs oscillations, which 

might be unwanted. The parameter N allows easy adaption of the filter 
to specific needs. 

The tapered low-pass wavenumber filtering of a finely sampled 
model as demonstrated here is a valid, effective and adaptable approach 
for models which vary only in one dimension. However, in the case of 2D 
or 3D models, this approach becomes computationally costly. Mittet 
(2021b) proposed a more efficient algorithm for continuous horizons. 
We agree with Mittet (2021a) that the study results for 2D wave prop-
agation should also be applicable to 3D wave propagation. Similar nu-
merical experiments for elastic, visco-elastic and anisotropic models are 
beyond the scope of this research, but the methodology and setup of the 
experiments presented in this paper will be useful for future studies on 
the topic. Mittet (2017) included an elastic example in his study and 
found that the same grid step was required as in the acoustic case, but 
higher wavenumbers had to be included in the grid generation. The 
consequences of the investigated inaccuracy of FD modelling in 
discontinuous models for applications such as full-waveform inversion 
and reverse time migration should be analysed in more detail in separate 
studies. 

5. Conclusion 

In this study, we investigated the accuracy of acoustic finite- 
difference modelling using the Fourier method for spatial derivatives 
when it is applied to a step model, a thin-layer model and a multi-layer 
model by comparing it to the analytical solution and modelling by the 
reflectivity method. The reflectivity method enabled us to extend 
existing studies that were restricted to simple models, where the 
analytical solution is available, and allowed us to study the accuracy of 
finite-difference modelling for finely layered models. We showed that 
previous recommendations for staggered-grid schemes to apply a low- 
pass wavenumber filter to densely sampled compliance and density 
models and to use a spatial sampling of minimum four grid points per 
shortest wavelength also apply to central-grid schemes. An exception are 
thin layers with very strong parameter contrasts, where the accuracy of 
finite-difference modelling deteriorates with increasing incidence angle. 
A denser spatial sampling is required in such a case. The presented 
aliasing-protected algorithm to represent discontinuities in a regular 
grid for finite-difference modelling includes an adaptable taper size. The 
taper size determines the steepness of the filter slope and the extent to 
which Gibbs oscillations are present in the model. Including more os-
cillations increases the accuracy. We have shown that this algorithm is 
better suited for the downsampling of densely sampled well logs for the 
finite-difference method than using Backus averaging. 
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Appendix A. Computing 2D pressure seismograms by the reflectivity method 

To explain the theory of the reflectivity method, we assume a layered medium of plane horizontal, isotropic and homogeneous layers and cy-
lindrical symmetry. We further assume that the first layer is a fluid and that the source and receivers are located in this layer, so that only P-waves are 
generated and measured. The source is assumed to be located at z = 0 and the z-axis is pointing downwards. To make the modelling comparisons 
easier, the free surface is not included here but could be implemented in general. Under these assumptions, we can express the incident and reflected 
wavefield from a point pressure source measured by a receiver at offset x and depth z in terms of the compression potentials Φinc and Φrefl by eqs. (A.1) 
and (A.2), respectively (cf. Müller, 2007) 

Φinc(x, z, t) =
1

2π

∫ +∞

− ∞
F̂(ω)eiωt

∫ ∞

0

kx

ikz,1
J0(kxx)e− ikz,1 |z| dkx dω, (A.1)  

Φrefl(x, z, t) =
1

2π

∫ +∞

− ∞
F̂(ω)eiωt

∫ ∞

0

kx

ikz,1
J0(kxx)RPP(ω, kx)e− ikz,1 |z| dkx dω, (A.2)  

where F̂(ω) denotes the Fourier transform of the source excitation function F(t), t is time, ω is the angular frequency, kx is the horizontal wavenumber, 
kz, 1 is the vertical wavenumber of the first layer, i is the imaginary unit, J0 denotes the Bessel function of first kind and order zero, and RPP(ω,kx) 
denotes the complex overall P-P reflection coefficient of the stack of layers. It should be noted that RPP(ω,kx) is computed by an iterative scheme 
introduced by Kennett (1974) and contains all single and multiple reflections, mode conversions and evanescent waves. The phase terms in this 
computation lead to the frequency dependency. The outer integral in Eqs. (A.1) and (A.2) is an inverse Fourier transform back to the time domain 
while the inner integral is a Sommerfeld integral. 

Following the derivations by Tsvankin (1995), the Sommerfeld integrals in Eqs. (A.1) and (A.2) can be expressed in terms of the departing or 
incidence angle θ instead of the horizontal wavenumber kx by using the definition of the wavenumber k, the length of the wavenumber vector, k = ω

α1 

with α1 being the P-wave velocity in the uppermost fluid layer. Using the following identities: kx = k sin θ, kz, 1 = k cos θ, kxdkx = k2 sin θ cos θdθ, we 
can now exchange the integration variable in Eq. (A.2) and find the Sommerfeld integral for the reflected wavefield to be 

Φ̂refl(x, z,ω) = − ikF̂(ω)

∫

Γ

J0(kxsinθ)RPP(ω, θ)e− ik|z|cosθsinθ dθ. (A.3) 

The integration path Γ goes along the real axis from 0 to π
2 and then parallel to the imaginary axis from π

2 + i0 to π
2 + i∞ in order to include ho-

mogeneous and inhomogeneous plane waves. 
Using the derivations by Amundsen and Reitan (1994), we can transform Eq. (A.3) so that it gives the corresponding compression potential for a 

line source and 2D propagation instead of a point source and 3D propagation. This expression is relevant because we want to perform the numerical 
examples in 2D to save computational cost in the finite-difference modelling. The corresponding Eq. (A.4) for the potential in 2D is 

Φ̂
2D
refl(x, z,ω) = − 2iF̂(ω)

∫

Γ

cos(kxsinθ)RPP(ω, θ)e− ik|z|cosθ dθ. (A.4) 

Using the relationship between pressure P and compression potential Φ, P̂(ω) = ω2ρ1 Φ̂(ω) in a fluid with density ρ1 (Müller, 2007), we can express 
the full reflection response of a stack of layers in pressure in the case of a line source (2D) and point source (3D) by the following Eqs. (A.5) and (A.6), 
respectively, 

P̂
2D
refl(x, z,ω) = − 2iω2ρ1 F̂(ω)

∫

Γ

cos(kxsinθ)RPP(ω, θ)e− ik|z|cosθ dθ, (A.5)  

P̂
3D
refl(x, z,ω) = − ikω2ρ1 F̂(ω)

∫

Γ

J0(kxsinθ)RPP(ω, θ)e− ik|z|cosθsinθ dθ. (A.6) 

The corresponding horizontal and vertical displacement components, ux and uz, can be derived by taking the derivative of the potential Φ with 
respect to x and z, respectively. The incident wavefield in pressure can be derived from Eq. (A.1) in the same way as shown here for the reflection 
wavefield. 

Typically, the reflectivity method is expressed using a limited integral over the horizontal wavenumber kx or the horizontal slowness p, with kx =

ωp (Fryer, 1980; Aki and Richards, 2002). As can be seen from Eq. (A.2), the integrand attains very large values when the vertical wavenumber 
approaches zero. In general, poles that correspond to surface wave modes lie on the real kx- or p-axis and hence on the integration path (Aki and 
Richards, 2002). These poles lead to difficulties in the numerical integration and to artefacts in the resulting synthetic seismograms. A common way to 
mitigate this difficulty is to introduce attenuation through complex velocities (see for example Müller, 1985). In our study, however, we wanted to 
compare to results from finite-difference modelling without attenuation and therefore needed a way to compute attenuation-free synthetic data by the 
reflectivity method. We found that changing the integration variable to the incidence angle θ is beneficial because the resulting integral no longer has a 
denominator that can approach zero (see Eqs. (A.3) to (A.6)). Several authors have made similar modifications to the traditional Sommerfeld integral 
(Fuchs, 1968; Fuchs and Müller, 1971). However, the expression of the Sommerfeld integral using the incidence angle is less advantageous if the 
method needs to be extended to anisotropic media. Note that the reflectivity method is a (visco-)elastic modelling tool, but acoustic modelling can be 
achieved by assuming very low S-wave velocities in all layers. 
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