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Abstract 

As cancer treatment with protons produces a higher biological effect compared to 

photons, a relative biological effectiveness (RBE) is used to account for the difference. 

In clinical proton therapy today, a constant RBE of 1.1 is used, although it is widely 

known that it varies, depending on fractionation dose, the linear energy transfer (LET), 

and the radiosensitivity of the tissue (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥. This has given rise to multiple variable 

RBE models, which aim to model the RBE from in vitro cell experiments. The RBE 

models have found the RBE to be increasing with increasing LET and decreasing 

(𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥, and will therefore be higher in the distal part of the beam. A decreasing RBE 

with an increasing dose is also observed. In recent years, clinical evidence of a variable 

RBE for protons has arisen, showing the need for optimization strategies in proton 

therapy that account for the variable RBE. Furthermore, the biological effectiveness of 

radiotherapy has also been shown to depend on the level of oxygenation, quantified by 

the oxygen enhancement ratio (OER), which ideally should be accounted for in 

treatment planning.  

In the first part of the thesis, treatment plans were optimized with respect to variable 

RBE using a treatment plan optimization algorithm based on the FLUKA Monte Carlo 

(MC) software. Different strategies were explored, including a differential approach, 

which maintained an RBE of 1.1 in the target and reduced the variable RBE in the 

organs at risk (OAR). The results showed a large case dependency, as the (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 

values varied between the target volumes, where the prostate case provided the highest 

modification of the physical dose due to the low (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 values and thus high RBE 

estimated in the tumor. We also saw how LET-weighted dose models could provide a 

steppingstone towards using variable RBE in clinics as it is independent of the tissue 

type parameter that is still fraught with uncertainties. 

A method for optimizing treatment plans with respect to RBE and OER weighted dose 

(ROWD) was developed and applied in silico. PET images were used to calculate the 

oxygen levels in patients, and treatment plans were optimized using the FLUKA MC 
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software-based treatment planning system. The results showed that the physical dose 

was the main factor that changed in the ROWD optimization, and large differences 

were found in the physical dose between the hypoxic and normoxic regions, although 

a large modification of the LET was found in the water phantom case. Further, five 

different ROWD models were explored by comparing the outcome of varying oxygen 

levels and radiosensitivity, the models from Strigari (STR), Tinganelli (TIN), Dahle 

(DAH), Wenzl and Wilkens (WEN), and Mein (MEI). The models were compared in 

a simulated water phantom case and a clinical patient case. A grouping between the 

models was found, as the STR and TIN model estimated a higher OER compared to 

the other models, possibly due to their differences in how the OER is included in the 

ROWD calculation. Still, a large increase in the OER in the most hypoxic areas was 

found for all models, suggesting that an increase in dose is needed for hypoxic cases.  

In the final part of this thesis, the effect of increasing LET in the central part of the 

tumor using pruning techniques in proton arc therapy (PAT) was explored. By 

removing the highest energies of each beam in the arc, the LET levels can be increased 

within the target while simultaneously decreasing the LET in the surrounding normal 

tissue. This technique was demonstrated in a germinoma case, where PAT plans with 

varying degrees of pruning were created and optimized for an RBE of 1.1. A higher 

degree of pruning resulted in higher LET values in the target volume. This also led to 

an increase in RBE weighted dose to the target, and a decrease in the surrounding 

normal tissue.  This technique could therefore contribute to OAR sparing and could be 

an alternative to improve the treatment of hypoxic and radioresistant tumors. 

Overall, this thesis presents developments and exploration of RBE- and hypoxia-based 

optimization strategies for proton therapy. The thesis shows how clinical treatment 

planning can be improved by including more than the physical dose used in current 

treatment planning, such as variable RBE, LET, and hypoxia-related parameters. 
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Sammendrag 

Sidan kreftbehandling med proton gir ein høgare biologisk effekt enn foton, blir ein 

relativ biologisk effekt (RBE) brukt for å ta omsyn til forskjellen. I klinisk 

protonterapi i dag blir ein konstant RBE på 1.1 nytta, sjølv om det er kjent at RBE 

varierer og avheng av fraksjonsdose, den lineære energioverføringa (LET) og 

radiosensitiviteten til vevet (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥. Dette har gitt opphav til fleire variable RBE 

modellar som har som mål å modellere RBE utifrå in vitro celle-eksperiment. 

Modellane har vist at RBE aukar med minkande LET og aukande (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥, og vil 

derfor vere høgare i den distale delen av strålen. Ein minkande RBE med aukande 

dose er også observert. I dei seinare år har klinisk bevis for variabel RBE blitt påvist, 

noko som har ført med seg eit behov for optimaliserings-strategiar i protonterapi som 

tar omsyn til variabel RBE. Dessutan, har den biologiske verknaden av 

strålebehandling vist seg å vere avhengig av nivået av oksygenering, kvantifisert av 

oksygenforsterkingsforholdet (OER), som ideelt sett også burde blitt tatt omsyn til i 

behandlingsplanlegginga. 

I den første delen av oppgåva blei behandlingsplanar optimalisert med omsyn til 

variabel RBE ved å nytte ein behandlingsplan-optimaliseringsalgoritme basert på 

FLUKA Monte Carlo (MC) programvara. Ulike strategiar blei utforska, inkludert ein 

differensial tilnærming som oppretthaldt ein RBE på 1.1 i målvolumet, samt reduserte 

RBE-verdiane i risikoorgana (OAR). Resultata viste ein stor pasient-avhengigheit, 

sidan (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 varierte veldig mellom målvoluma, der prostatapasienten gav den 

høgaste modifisering av fysisk dose grunna dei lave (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 verdiane og derav høg 

RBE i målvolumet. Me såg og korleis LET-vekta dosemodellar kan vere eit 

springbrett mot å nytte variabel RBE klinisk, sidan den er uavhengig av 

radiosensitivitets-parameteren som framleis er full av usikkerheit.  

Ein metode for å optimalisere behandlingsplanar med omsyn til RBE og OER-vekta 

dose blei utvikla og nytta in silico. PET-bilete blei nytta for å berekne oksygennivået 

hos pasientar, og behandlingsplanar blei optimalisert ved hjelp av det FLUKA MC  
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programvarebaserte behandlingsplanlegging-systemet. Resultata viste at den fysiske 

dosen var hovudparameteren som endra seg i ROWD optimaliseringa. Det ble funnet 

store forskjellar i fysisk dose mellom hypoksiske og normoksiske regionar , samt  

store endringa i LET i vannfantom-planen. Videre blei fem ROWD modellar utforska 

ved å samanlikne utfallet av varierande oksygen-nivåer, i modellane frå Strigari 

(STR), Tinganelli (TIN), Dahle (DAH), Wenzl og Wilkens (WEN) og Mein (MEI). 

Modellane blei samanlikna i eit simulert vannfantom og eit klinisk pasienttilfelle. Ei 

gruppering mellom modellane blei funnet, da STR og TIN modellane estimerte ein 

høgare OER samanlikna med dei andre modellane, moglegvis på grunn av forskjellen 

deira i korleis OER er inkludert i ROWD-berekningane. Likevel blei det funnet ein 

stor auke i OER i dei mest hypoksiske områda for alle modellane, noko som tyder på 

at ein auke i dose er nødvendig for hypoksiske tilfelle. 

I den siste delen av denne oppgåva blei effekten av å auke LET i den sentrale delen 

av svulsten undersøkt ved bruk av beskjæringsteknikkar i strålebogeterapi (PAT) 

utforska. Ved å fjerne dei høgaste energiane frå kvar stråle i bogen, kan LET-

verdiane aukast innanfor målvolumet, samstundes som LET-verdiane i det friske 

vevet kan bli redusert. Denne teknikken blei demonstrert på eit germinom 

pasienttilfelle, der PAT-planar med ulik grad av beskjæring blei oppretta og 

optimalisert for ein RBE på 1.1. Ein høgare grad av beskjæring førte til høgare LET-

verdiar til målvolumet. Det førte også til ein auke i den RBE-vekta dose til 

målvolumet, og ein reduksjon i det omkringliggande friske vevet. Denne teknikken 

kan derfor bidra til å spare risikoorgan og kan vere eit alternativ for å forbetre 

behandlinga av hypoksiske og radioresistente svulstar. 

Samla sett viser denne oppgåva utvikling og utforsking av RBE- og hypoksibaserte 

optimaliseringsstrategier for protonterapi. Oppgåva viser korleis klinisk 

behandlingsplanlegging kan forbetrast ved å inkludera meir enn berre den fysiske 

dosen som blir nytta i behandlingsplanlegging i dag, slik som variabel RBE, LET og 

hypoksiarelaterte parameter. 
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1. Introduction 

Cancer is a term for mutated cells that rapidly grow in the body, invading other regions 

and organs. In 2020, there were approximately 19.3 million new cancer cases 

worldwide and it was one of the leading causes of death with around 10 million 

casualties  (Sung et al. 2021). Radiation therapy is one of the primary modalities for 

treating cancer, alongside surgery and chemotherapy. The principle is to deliver 

ionizing radiation to the malignant cancer cells, destroying their ability to proliferate 

while still sparing the surrounding healthy tissue.  

The primary radiation used for radiation therapy is high energetic X-rays. X-rays were 

first discovered by Wilhelm Rontgen (Röntgen 1896) in 1896, using a Crookes tube. 

Soon after, E. H. Grubbe got the idea of using it therapeutically after suffering from X-

ray dermatitis due to exposure to radiation (Lederman 1981). Today, external 

radiotherapy (with the ionization source outside of the body) use linear accelerators to 

create high energetic photons. Due to technological advances, such as volumetric 

modulated arc therapy (VMAT), radiotherapy is a big part of the continuous improving 

prognosis for multiple cancer types. However, photons do not have a finite range, and 

parts of a photon beam will therefore pass through the tumor and deposit dose both 

proximal and distal to the target.  

External radiotherapy with protons is a relatively new cancer treatment modality, 

which uses the energy deposition properties of charged particles to spare even more 

healthy tissue than photons. It was first proposed by Robert R. Wilson in 1946, but the 

first hospital based treatment centers did not open until 1990 (Coutrakon et al. 1994). 

Today, over 100 particle therapy centers are in use, and more are planned, including 

two proton therapy centers in Norway (PTCOG 2022). 

The physical properties of protons lead to an increased biological effect compared to 

photons. This difference is quantified through the relative biological effectiveness 

(RBE), where the proton RBE is the ratio between the dose from photons and the proton 

dose needed to produce the same biological effect. Based on in vivo experiments done 
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in the 1970s, the value was set to a constant of 1.1, assuming that protons are 10% more 

effective in killing cells compared to photons (Paganetti et al. 2019). This value is used 

clinically at proton centers today. However, this value was set conservatively to ensure 

tumor control, and the RBE could be higher. The RBE is also known to vary and 

depends on several different parameters, such as tissue type, dose fractionation and the 

linear energy transfer (LET). To account for these parameters, several different variable 

RBE models have been developed based on in vitro cell survival data. The models all 

show an increasing RBE with increasing LET, decreasing fractionation dose and 

decreasing tissue sensitivity. An increasing amount of  data from clinical studies from 

proton therapy patients also indicates an increase in biological effects at the end of the 

proton beam where the LET is high (Paganetti 2022). This suggests that effects from 

variable RBE should be considered for the proton treatment plan.   

The variations in biological effects could also be considered more in treatment planning 

of radioresistant tumors. When the oxygen-level of a tumor is low, known as hypoxia, 

it is more resistant to radiation (Vaupel and Mayer 2007). The levels of oxygen within 

in a tumor is highly heterogenous, meaning some areas may be hypoxic and other 

normoxic (Bader, Dewhirst, and Hammond 2020). It is therefore important to both 

quantify the level of hypoxia in the tumor, as well as accounting for this in the clinical 

treatment plan. The biological and physical properties of the protons offer a potential 

to precisely deposit higher dose to circumvent the radio resistance.   

Today, proton therapy is generally delivered through intensity modulated proton 

therapy (IMPT) where different inhomogeneous treatment fields are optimized 

simultaneously using multi field optimization. As for VMAT using photons, proton arc 

therapy is considered as a new option to increase the quality and robustness of the 

treatment further. By rotating the proton beam around the patient, additional degree of 

freedom is achieved. Although it provides a low dose bath to the healthy tissue, the 

integral dose has been shown to be lower than for IMPT (Ding et al. 2016), and it could 

also provide a better RBE and LET distribution (Mein et al. 2021). 
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This thesis aimed to explore how treatment plans can be created with respect to 

biological effects and show how treatment outcome can be improved by including LET 

effects and hypoxia as part of the treatment planning both with conventional field 

arrangements and new delivery techniques such as proton arc therapy. Using Monte 

Carlo (MC) code, different methods were created to account for variable RBE and 

hypoxia in the treatment planning and then compared. This would add knowledge to 

how different strategies to handle RBE effects can be used in clinical proton therapy. 
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2. Physics of proton therapy 

Protons that travel through tissue lose energy primarily through ionization of the atoms. 

The energy loss rate increases with depth as the proton energy is decreased and the 

maximum energy deposition occurs at the end of their range. This physical property 

makes protons superior to photons for radiation therapy as dose beyond its range is 

negligible, thereby providing sparing of healthy tissue distal to the tumor. 

2.1 Interactions of protons with matter 

Protons have several different ways of interacting with matter, and with varying 

mechanisms of energy depositions, as illustrated in Figure 2.1.  

 

 

Figure 2.1 Illustration of the three main interactions between a proton and an atom: (a) the 

inelastic interactions with the atomic electron, (b) Coulomb-scattering of the atomic nuclei and 

(c) nuclear interactions. Adapted from (Newhauser and Zhang 2015). 

Interaction through inelastic Coulomb scattering to the atomic electron is accountable 

for slowing down the charged particle and is the main cause of dose deposition from 

protons (Newhauser and Zhang 2015). The charged particle will free the atomic 

electron from the atom, losing a small fraction of its energy in the process, and continue 

in a near straight path as the mass of the proton is significantly larger than the electron 

(Figure 2.1a). The rate of energy loss,  from a particle with charge 𝑧𝑧, traveling through 
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a medium with atomic number 𝐴𝐴 and charge 𝑍𝑍, is often referred to as the stopping 

power, described by the Bethe-Bloch equation (Bethe 1930; Bloch 1933): 

 

where 𝐸𝐸 is the energy lost over a distance 𝑥𝑥, 𝑁𝑁𝑎𝑎 is Avogrado’s number, 𝑟𝑟𝑒𝑒 is the 

classical electron radius, 𝑚𝑚𝑒𝑒 is the electron mass, 𝑐𝑐 is the speed of light in vacuum, 𝜌𝜌 

is the density of the absorbing material, 𝛽𝛽 is the relativistic velocity given as 𝑣𝑣 𝑐𝑐⁄  with 

𝑣𝑣 being the speed of the incident particle, 𝛾𝛾 is the Lorentz-factor defined as �1 − 𝛽𝛽2 , 

𝑊𝑊𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum energy transfer from a single collision,  𝐼𝐼 is the mean excitation 

potential, 𝛿𝛿 is the density correction and 𝐶𝐶 is the shell correction factor. The stopping 

power of the proton is illustrated in Figure 2.2a. 

The most influential factor in the Bethe-Bloch equation is the term 𝑧𝑧2/𝛽𝛽2, which shows 

that the energy loss is inversely proportional to the relativistic velocity and that the 

energy loss rate increases with the square of the incident particle’s charge. This means 

that the stopping power will be highest when the particles has almost stopped, leading 

to a sharp peak, called the Bragg Peak (Figure 2.2b).  

The Bethe-Bloch formula also suggests that all protons with a specific energy would 

end up in a sharp peak at the stopping point, which can be found by integration. 

However, due to statistical fluctuations in the slowing down process, the Bragg Peak 

would be broadened for beams with a high amount of particles (Schardt, Elsässer, and 

Schulz-Ertner 2010). These fluctuations can be described mathematically by the 

Vavilov distribution, which becomes Gaussian for many collisions. It has a 1/√𝑚𝑚 

dependency, where the 𝑚𝑚 is the particle mass. Thus heavier ions are less susceptible 

for range straggling compared to protons. 

 −
𝑑𝑑𝐸𝐸
𝑑𝑑𝑥𝑥

= 2𝜋𝜋𝑁𝑁𝑎𝑎𝑟𝑟𝑒𝑒2𝑚𝑚𝑒𝑒𝑐𝑐2𝜌𝜌
𝑍𝑍
𝐴𝐴
𝑧𝑧2

𝛽𝛽2
�ln �

2𝑚𝑚𝑒𝑒𝛾𝛾2𝑣𝑣2𝑊𝑊𝑚𝑚𝑎𝑎𝑥𝑥

𝐼𝐼2
� − 2𝛽𝛽2 − 𝛿𝛿 − 2

𝐶𝐶
𝑍𝑍
� 

 

(2.1) 
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Figure 2.2 (a) The stopping power in water as a function of the kinetic energy of the proton. 

(b) Dose deposition of a 150 MeV proton beam in water (solid line) resulting in a Bragg peak, 

and the corresponding fluence (Fjæra 2021). 

Elastic Coulomb scattering between the proton and the atomic nuclei (Figure 2.1b) 

results in an angular deflection of the proton. Such collisions lead to a broadening of a 

proton beam with depth. A single elastic interaction will have a small effect on the 

trajectory of the charged particle, however, the sum of all the deflections for a beam 

can lead to a high lateral spreading of protons (Mohan and Grosshans 2017). This is 

called multiple Coulomb scattering, and similar to the range straggling, the magnitude 

of the spread is mass dependent. This gives heavier ions an advantage compared to 

protons as the lateral scattering from the heavier ions will be lower. The Coulomb 

scattering is therefore necessary to include in dose calculations in treatment planning 

systems (Newhauser and Zhang 2015). 

Protons can also undergo nuclear interactions with the atomic nuclei if the energy is 

high enough to overcome the Coulomb barrier of the nucleus (Figure 2.1c). This 

interaction is non-elastic, meaning the nucleus is irreversibly transformed. As the 

proton is removed from the treatment field, a small decrease in dose from the primary 

proton will occur, however, this is compensated for in the creation of secondary 

particles (Newhauser and Zhang 2015). 



7 

 

2.2 Dosimetry 

Ionizing radiation is defined as radiation with energies high enough to remove electrons 

from an atom or molecule. The energy deposited in the medium from ionizing radiation 

is termed absorbed dose and is defined by the international commission of radiation 

protection (ICRP) as the mean energy Δ𝐸𝐸 imparted to matter with mass Δ𝑚𝑚 (ICRP 103, 

107), and can be written as: 

 

The unit for absorbed dose, or physical dose, is Gray (Gy), where 1 Gy is 1 J/kg. 

Absorbed dose is the standard for reporting dose in photon radiotherapy.  

2.2.1 Spread-Out Bragg Peak 
The dose deposition from a single monoenergetic proton beam will increase 

significantly at the end of its range resulting in a peak, called the Bragg Peak. A single 

beam is not capable of producing homogenous dose to a certain region, so a spread-out 

Bragg peak (SOBP) is created. The SOBP consists of multiple beams with different 

energies so that uniform dose is achieved. Both the Bragg peak and the SOBP is 

illustrated in Figure 2.3 alongside the lateral dose. 

 𝐷𝐷 =
Δ𝐸𝐸
Δ𝑚𝑚

 

 

(2.2) 
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Figure 2.3 a) A SOBP (solid lines) consisting of several Bragg peaks (dashed lines). The 

belonging metrics as range, modulation width and distal dose fall-off are also given. b) The 

belonging lateral dose for the SOBP with the different lateral penumbra definitions (Fjæra 

2021). 

2.3 The linear energy transfer 

An important parameter in proton therapy is the linear energy transfer (LET), which is 

defined by the ICRU as the energy 𝑑𝑑𝐸𝐸 transferred from a charged particle per unit 

length 𝑑𝑑𝑑𝑑 (Thomas 2012): 

The LET describes the radiation quality and is an important biological parameter as 

high LET is associated with increased biological effect (Barendsen 1964). 

We can further divide this definition into restricted and unrestricted LET, depending 

on what particles are included in the calculation. If the energies of the incident protons 

are high enough, secondary delta-ray electrons can be produced, potentially depositing 

their energy far from the proton trajectory. We therefore define the restricted LET as 

the energy lost by the primary charged particle, omitting secondary delta-ray electrons 

with a higher energy than a certain threshold: 

 𝐿𝐿𝐸𝐸𝐿𝐿 =
𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

 

 

(2.3) 



9 

 

 

Here, 𝑆𝑆𝑒𝑒𝑒𝑒 is the linear electronic stopping power, and 𝑑𝑑𝐸𝐸𝑘𝑘𝑒𝑒,Δ is the mean sum of energies 

above a threshold Δ. If no such threshold has been applied (i. e, Δ = 0) it will result in 

an unrestricted LET which is the value most often used in proton therapy.  

At a single point along the proton beam, the protons and secondary particles will have 

a specter of energies, leading to a specter of LET values. To simplify the LET value, it 

is common to use an average value in each point. There are two main ways to average 

the LET; dose averaged, which is most commonly used in proton therapy, and track 

averaged (Figure 2.4). Dose averaged LET (LETd) is defined as the sum of the LET 

contributions to a location 𝑧𝑧, weighted by the dose: 

where the 𝐷𝐷(𝐸𝐸, 𝑧𝑧) is the dose,  𝑆𝑆𝑒𝑒𝑒𝑒 is the electronic stopping power and E is the kinetic 

energy of the proton. The dose can also be estimated with the fluence (𝛷𝛷) and electronic 

stopping power, with the continuous slowing down approximation (CSDA), and will 

be given as: 

where 𝜌𝜌 is the mass density of the medium. Substituting (2.6) in (2.5) we can write the 

dose-averaged LET as: 

 

The track averaged LET (LETt) is given as: 

 𝐿𝐿𝐸𝐸𝐿𝐿Δ = 𝑆𝑆𝑒𝑒𝑒𝑒 −
𝑑𝑑𝐸𝐸𝑘𝑘𝑒𝑒,Δ

𝑑𝑑𝑑𝑑
 

 

(2.4) 

 
𝐿𝐿𝐸𝐸𝐿𝐿𝑑𝑑(𝑧𝑧) =

∫ 𝑆𝑆𝑒𝑒𝑒𝑒(𝐸𝐸)𝐷𝐷(𝐸𝐸, 𝑧𝑧)𝑑𝑑𝐸𝐸∞
0

∫ 𝐷𝐷(𝐸𝐸, 𝑧𝑧)𝑑𝑑𝐸𝐸∞
0

 

 

 

(2.5) 

 𝐷𝐷(𝐸𝐸, 𝑧𝑧) =
𝑆𝑆𝑒𝑒𝑒𝑒(𝐸𝐸)Φ(𝐸𝐸, 𝑧𝑧)

𝜌𝜌(𝑧𝑧)
 

 

 

(2.6) 

 
𝐿𝐿𝐸𝐸𝐿𝐿𝑑𝑑(𝑧𝑧) =

∫ 𝑆𝑆𝑒𝑒𝑒𝑒2 (𝐸𝐸)Φ(𝐸𝐸, 𝑧𝑧)𝑑𝑑𝐸𝐸∞
0

∫ 𝑆𝑆𝑒𝑒𝑒𝑒Φ(𝐸𝐸, 𝑧𝑧)𝑑𝑑𝐸𝐸∞
0

 

 

 

(2.7) 
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For protons, the dose and track averaged LET are similar, except for low protons 

energies, as the dose averaged LET will be higher at the end of the beam (Grzanka, 

Ardenfors, and Bassler 2018). 

 

Figure 2.4 The dose from a 150 MeV proton in water with the corresponding dose averaged 

LET (dashed line), and the track averaged LET (dotted line). The LET values are cut off at 

1% dose levels (Fjæra 2021). 

 
𝐿𝐿𝐸𝐸𝐿𝐿𝑡𝑡(𝑧𝑧) =

∫ 𝑆𝑆𝑒𝑒𝑒𝑒(𝐸𝐸)Φ(𝐸𝐸, 𝑧𝑧)𝑑𝑑𝐸𝐸∞
0

∫ Φ(𝐸𝐸, 𝑧𝑧)𝑑𝑑𝐸𝐸∞
0

 

 

 

(2.8) 
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3. Radiobiology 

When any biological system gets irradiated with ionizing radiation, a series of complex 

processes occur, with significantly different timescales. In the physical phase, a proton 

will typically eject an electron from the atom, which will traverse the DNA and, with 

sufficient energy, start a cascading event of ionization. This leads to a chemical reaction 

where the ionization and excitation can either cause damage to the biological tissue 

through direct action or create broken molecules known as free radicals, causing 

damage through indirect damage (Joiner and Van der Kogel 2009).  

The damage can lead to either single strand break (SSB) or double strand break (DSB) 

of the DNA. In the biological phase, the majority of the radiation damage from the SSB 

is fully repaired from the radiation damage, while the DSB lead to cell death and 

mutations. Cell death for proliferating cells, such as stem cells, is when they lose their 

ability to reproduce, which is a common end point in in vitro experiments (Hall 2012). 

Late effects from radiation includes mainly toxicities, but can also include secondary 

tumors, however this time-scale extends up to several years (Joiner and Van der Kogel 

2009). 

3.1 The linear quadratic model 

The relationship between the absorbed dose and the fraction of surviving cells is most 

commonly described by the linear quadratic model, where the cell survival 𝑆𝑆 after a 

dose 𝐷𝐷 is given as: 

Here, 𝛼𝛼 and 𝛽𝛽 are often referred to as radiosensitivity parameters and are found through 

the fitting of experimental in vitro data or clinical radiotherapy (van Leeuwen et al. 

2018). The 𝛼𝛼 parameter represent single hit events, and is independent of the 

fractionation dose, while the 𝛽𝛽 parameter represent multiple-hit cell damage. The ratio 

 − ln(𝑆𝑆) = 𝛼𝛼𝐷𝐷 + 𝛽𝛽𝐷𝐷2 

 

(3.1) 
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between the parameters (𝛼𝛼/𝛽𝛽) is used to describe the fractionation sensitivity, where a 

higher 𝛼𝛼/𝛽𝛽 means lower fractionation sensitivity (McMahon 2018).  

Usually, tumors have an estimated 𝛼𝛼/𝛽𝛽 of 10 Gy, while in some cases, as breast and 

prostate tumors, the value is between 1-4.5 Gy (van Leeuwen et al. 2018). Healthy 

craniospinal tissue has a low 𝛼𝛼/𝛽𝛽 of 1-2 Gy, and will often be especially sensitive to 

radiation (Chang et al. 2014).  

Since protons have an increased cell killing ability, the curve in the LQ model will 

naturally be steeper compared to photons. Similar, as a high LET particles causes more 

concentrated dose deposition, hence more damage to the DNA, high LET has a steeper 

curve. This is seen in Figure 3.1. 

3.2 The relative biological effectiveness 

As explained in chapter 2, there are differences in how photons and protons deposit 

their energies in tissue, and thus a difference in how efficient the two modalities are in 

terms of inducing biological damage. To account for this, a relative biological 

effectiveness (RBE) is used in proton therapy. The RBE is defined as the ratio between 

a reference dose (usually photons) and proton dose needed to produce the same 

biological effect: 

 

In clinical proton therapy today, a constant RBE of 1.1 is used. The value is based on 

in vivo cell experiments, and even though it is approved by the ICRU (2007) , it is also 

a consensus that the RBE varies, which can be seen in Figure 3.1, where the photon 

dose needed to have the same biological effect (when looking at 10% clonogenic cell 

survival), is 35% higher than for photons. The RBE-weighted dose can therefore be 

written as:  

 𝑅𝑅𝑅𝑅𝐸𝐸 =
𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟
𝐷𝐷𝑝𝑝𝑟𝑟𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝

 

 

(3.2) 
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We separate between total physical dose, 𝐷𝐷, and dose from protons 𝐷𝐷𝑝𝑝, as only 𝐷𝐷𝑝𝑝 is 

used in the RBE calculations. 

 

 

Figure 3.1 The survival fractions for two types of radiation, X-ray (solid) and 1.9 𝑘𝑘𝑘𝑘𝑘𝑘/𝜇𝜇𝑚𝑚 

protons (dashed). The RBE is calculated for 10% survival fraction and is estimated to be 1.35. 

Data from Mara et al. (2020) 

3.3 Modelling the biological effects 

Several variable RBE models have been developed in recent years. The models can be 

divided into two subgroups, mechanistic and phenomenological RBE models. The 

mechanistic models are based on the mechanism of the cell death and are considered 

biophysical models. Two of these models are the microdosimetric kinetic model 

(MKM) and the local effect model (LEM), which are used clinically in carbon-ion 

 𝑅𝑅𝑅𝑅𝐸𝐸-𝑤𝑤𝑘𝑘𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑘𝑘𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘 = 𝐷𝐷 ∗ 𝑅𝑅𝑅𝑅𝐸𝐸 

 

(3.3) 
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therapy. These models aim to use mechanistic parameters decided for photons, and 

predict the effects for higher LET irradiation (McMahon and Prise 2019).  

The other model group is phenomenological models and is based on dose response data 

from in vitro cell experiments, where the parameters are decided by regression. The 

most common parameters to model after are the LET and the radiosensitivity 

parameters 𝑎𝑎 and 𝛽𝛽.  

A mathematical formulation of the RBE can be achieved through combining the 

definition of RBE in (3.1) with the LQ-model in (3.2): 

where 𝐷𝐷 is the physical dose from the protons, 𝛼𝛼 and 𝛽𝛽 are the proton radiosensitivity 

parameters from the LQ model, and 𝛼𝛼𝑥𝑥 and 𝛽𝛽𝑥𝑥 are the photon radiosensitivity 

parameters from the LQ model. The expression in (3.4) can be further simplified by 

looking at the extreme values for the physical dose: 

 

Inserting (3.4) and (3.5) into (3.3), we achieve a new expression for the RBE: 

All LQ-based RBE models have this equation in common, and the difference comes 

from the modelling of the 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝 (Rørvik 2017). The shape of  𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 

and 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 is usually in linear form, and given as 

 𝑅𝑅𝑅𝑅𝐸𝐸(𝐷𝐷,𝛼𝛼,𝛼𝛼𝑥𝑥 ,𝛽𝛽,𝛽𝛽𝑥𝑥) =
1
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𝛼𝛼𝑥𝑥
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𝛽𝛽
𝛽𝛽𝑥𝑥
−
𝛼𝛼𝑥𝑥
𝛽𝛽𝑥𝑥
� 

 

(3.4) 

 lim
𝐷𝐷→0

𝑅𝑅𝑅𝑅𝐸𝐸 = 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 =
𝛼𝛼
𝛼𝛼𝑥𝑥

  (3.5) 

 lim
𝐷𝐷→∞

𝑅𝑅𝑅𝑅𝐸𝐸 = 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝 = �𝛽𝛽 𝛽𝛽𝑥𝑥⁄   (3.6) 

  𝑅𝑅𝑅𝑅𝐸𝐸 �𝐷𝐷, �𝛼𝛼
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(3.7) 
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where 𝑘𝑘1 and 𝑘𝑘2 is the fitting parameters. 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝 is also often set to a constant value 

of 1. 

Several different phenomenological models have been developed (Belli, Campa, and 

Ermolli 1997; Wilkens and Oelfke 2004; Tilly et al. 2005; Chen and Ahmad 2012; 

Carabe et al. 2012; Wedenberg, Lind, and Hardemark 2013; Jones 2015; McNamara, 

Schuemann, and Paganetti 2015; Mairani et al. 2017; Rørvik et al. 2017), and a 

comparison of many of the published models was made by Rørvik et al. (2018) 

showing the similarities in terms of the LET dependency.  

Another way to model RBE and LET effects is through LET-weighted dose models, 

where the RBE is still 1.1 but additional LET objectives are added to avoid high LET 

in organs at risk (OARs), and instead move these values into the target. These models 

are not based on cell data but rather assume a linear relationship between the LET and 

RBE, formulated as  

 

The 𝑐𝑐 is a scaling parameter varied through literature based on the reduction of RBE 

variability (McMahon, Paganetti, and Prise 2018), mean RBE of 1.1 to a water phantom 

(Unkelbach et al. 2016), and median RBE of 1.1 to the tumor volume (Fjæra et al. 

2017). 

3.4 Hypoxia 

Tumor hypoxia occurs when the oxygen consumption by the tumor tissue is higher than 

in the surrounding vasculature system (Koch and Evans 2015). The increased 

radioresistance can be described by the oxygen enhancement ratio (OER). The OER 

 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥/𝑚𝑚𝑚𝑚𝑝𝑝 = 𝑘𝑘1 + 𝑘𝑘2
𝐿𝐿𝐸𝐸𝐿𝐿

(𝛼𝛼/𝛽𝛽)𝑥𝑥
 

 

 

(3.8) 

 𝑅𝑅𝑅𝑅𝐸𝐸 = 1 + 𝑐𝑐 × 𝐿𝐿𝐸𝐸𝐿𝐿 (3.9) 
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quantifies the ratio of the dose at a given oxygen pressure to that at a normal oxygen 

pressure (normoxic) producing the same biological effect: 

 

As the OER decreases with increasing LET, carbon ions are highly efficient in reducing 

the OER, while x-rays and protons are in general similar, except at the end of range for 

protons (Wenzl and Wilkens 2011).  

Imaging of hypoxia is usually done with Positron Emission Tomography (PET), which 

utilizes radioactive tracers to acquire metabolic and biochemical information in the 

patient. Even though there are no ideal hypoxia tracers, some have been demonstrated 

as feasible, depending on the type of tumors (Fleming et al. 2015). The levels of 

hypoxia in the tumors are usually quantified through the partial oxygen levels (pO2), 

where mild hypoxia starts at a pO2 level of 19 mmHg, while moderate hypoxia can be 

found at semi quantitative pO2 levels of 3.8 mmHG (Koch and Evans 2015). The 

connection between oxygen levels and radioresistance is not clear, but radiation 

therapy relies on the formation of free radicals to induce DNA damage, which is 

enhanced by the presence of oxygen (Fleming et al. 2015). There are several methods 

suggested to radiosensitize the hypoxic tumors, however, no option is available 

clinically (Apilan and Mothersill 2021). Another option to improve hypoxic patient 

outcome is to modify the treatment plan, so the levels of hypoxia are considered. The 

technique of dose painting, where the dose to hypoxic volumes are increased, and LET 

painting, where the LET values are boosted in the hypoxic regions, have been 

suggested but not yet used clinically (Bassler et al. 2014; Bassler et al. 2010; Malinen 

and Sovik 2015). There has also been suggested quantifying the OER directly in the 

RBE calculations, giving rise to several models that quantify the RBE and OER based 

on oxygen levels and radiation quality (Wenzl and Wilkens 2011; Tinganelli et al. 

2015; Strigari et al. 2018; Mein et al. 2021; Dahle et al. 2020). An illustration of the 

 𝑂𝑂𝐸𝐸𝑅𝑅 =
𝐷𝐷ℎ𝑦𝑦𝑝𝑝𝑝𝑝𝑥𝑥𝑚𝑚𝑦𝑦
𝐷𝐷𝑝𝑝𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝𝑥𝑥𝑚𝑚𝑦𝑦

 

 

(3.10) 
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LET dependency of the Dahle model, and how the varying degree of oxygen levels 

reduces the RBE and OER weighted dose (ROWD) in a water phantom can be seen in 

Figure 3.2. The models are based on in vitro cell experiments, where the difference in 

cell survival between hypoxic and normoxic tissue was calculated at 10% cell survival. 

 

Figure 3.2 pO2 and LET dependency for the OER model from Dahle et al. (2020) (left) and 

the RBE and OER weighted dose in a water phantom with varying degrees of hypoxia (right). 
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4. Treatment planning 

The first step in the treatment planning process is to acquire anatomical images of the 

patient, where the gold standard is computed tomography (CT). It provides information 

about the photon attenuation, which can be used to create a 3D image of the patient. 

The CT images, alongside other modalities, are used for delineation of the regions of 

interest in the patient and are done by a physician or dose planner. The first target 

region is the gross tumor volume (GTV) which consists of the visible tumor. The 

clinical tumor volume (CTV) includes the sub-clinical spread of the tumor, and the 

planning tumor volume (PTV) includes any uncertainties in beam delivery (Paganetti 

2016). It has also become common to robust plan for the CTV, as the PTV concept has 

a limitation, e.g., where the worst-case scenario with respect to different uncertainties 

is planned for (Unkelbach and Paganetti 2018). The OARs are also delineated for 

planning purposes so that the dose can be minimized in these regions. In the treatment 

planning system (TPS), the CT and delineated structures are used to create a treatment 

plan for the patient, which includes the dose distribution and plan settings to assure 

delivery of this dose distribution with the selected proton beam. The dose optimization 

in commercial TPSs is based on inverse planning, where the TPS will iteratively try to 

optimize a dose distribution plan that satisfies the pre-determined objectives and the 

given field angles. 

4.1 Dose calculation 

The standard way to calculate dose in treatment planning is through analytical pencil 

beam (PB) algorithms. Most clinical implementations of these algorithms are based on 

the works of Hong et al. (1996) and Schaffner et al. (1999). Firstly, the target is covered 

in spots, both distally and laterally, and each spot gets assigned a pencil beam which is 

transported through the medium. As the pencil beam traverse through the medium, the 

dose to each voxel is calculated based on analytical equations. When all pencil beams 
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have been transported, the dose is summed up to achieve the final dose distribution 

(Saini et al. 2018). 

4.1.1 Monte Carlo 
Monte Carlo (MC) simulations are known to be the gold standard in terms of accurate 

tracking of particles through mediums. A particle is sampled from a source, and its path 

through matter is discretized. At every small step, the particle-matter interactions are 

calculated from a probability function, tracking the path of the particle through the 

medium (Paganetti 2016). With a large enough sample size, an accurate representation 

of the particle dose deposition can be made. A clear advantage of MC compared to 

pencil beam algorithms is the ability to score the LET, which is the basis of RBE 

calculation.  

As high statistics are needed to provide results with certainty, and the calculations often 

are complex, significant computational power and storage are required. Although MC 

could improve treatment planning, it has not been available in the treatment planning 

process due to the time limit, and most of the software is CPU-based MC. However, 

fast GPU-based MC simulations have recently been implemented and verified in 

clinical TPSs, e.g., Raystation (Schreuder et al. 2019a, 2019b; Fracchiolla et al. 2021), 

which will be important moving forward for a more accurate description of the dose 

distribution.  

Most MC software have flexible frameworks which are ideal for research purposes. 

This includes the FLUKA MC code (Bohlen et al. 2014; Ferrari et al. 2005), which is 

used in both Heidelberg Ion-beam Therapy Center (HIT) and CNAO as both a 

treatment planning tool and for research (Parodi et al. 2012) (Tessonnier et al. 2014). 

Our group developed a FLUKA MC based dose recalculation system, which converts 

clinical DICOM files to a format readable for the FLUKA software, and vice versa. 

Mairani et al. (2013) and Bohlen et al. (2013) developed a FLUKA based TPS that 

optimized clinical particle therapy plans with respect to variable RBE, which have been 

used in this thesis. Further, other MC toolkits such as the GEANT4 and MCNPX all 
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show good agreement to both FLUKA and experimental results (Kimstrand et al. 

2008). 

4.2 Optimization 

In treatment planning, the goal is to achieve sufficient dose coverage to the tumor 

volume while still avoiding high doses to critical structures. This can be divided into 

objectives and constraints and is used for treatment plan optimization. The objective 

function represents the objective of the optimization, while the constraints impose 

limitations of optimization. The objectives and constraints are parameterized through 

a cost function, which shows the difference between the planned dose to the region of 

interest (ROI) and the calculated dose through a dose volume histogram (DVH). To 

calculate how costly a treatment plan is, the dose 𝐷𝐷𝑚𝑚 in a voxel 𝑤𝑤 can be written as the 

sum of all dose contributions 𝑑𝑑𝑚𝑚𝑖𝑖 from a pencil beam 𝑗𝑗 with weighting 𝑥𝑥𝑖𝑖   

 

The dose contributions from the pencil beams are then used in cost functions, where 

the most common are the quadratic objective and penalty functions, used for the target 

and OAR, respectively: 

where 𝐷𝐷𝑚𝑚 is the sum of the dose contribution to the PTV, 𝐷𝐷�𝑚𝑚 the prescribed dose the 

target, 𝐷𝐷𝑖𝑖 the dose contribution to the OAR, 𝐷𝐷�𝑖𝑖 the maximum dose limit to the OAR, H 

the Heaviside step function and 𝑤𝑤 the respective weighting of each contribution. The 

Heaviside step function, 𝐻𝐻, is 1 when the dose in the voxel is above the dose limit, and 

0 if not. Equation (4.2) only represent an example of a cost function as multiple 

 𝐷𝐷𝑚𝑚 =  �𝑥𝑥𝑖𝑖 ∙ 𝑑𝑑𝑚𝑚𝑖𝑖  
𝑖𝑖

 

 

(4.1) 

 𝑂𝑂(𝑑𝑑) = � 𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃�𝐷𝐷𝑚𝑚 − 𝐷𝐷�𝑚𝑚�
2

+ 
𝑚𝑚∈𝑃𝑃𝑃𝑃𝑃𝑃

� 𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂𝐻𝐻�𝐷𝐷𝑖𝑖 − 𝐷𝐷�𝑖𝑖��𝐷𝐷𝑖𝑖 − 𝐷𝐷�𝑖𝑖�
2
 

𝑖𝑖∈𝑂𝑂𝑂𝑂𝑂𝑂

 

 

(4.2) 
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modifications can be made. We want to minimize this function, and thus achieve an 

optimization problem 

 

Meaning that we want to minimize the optimization problem based on the beam 

weighting parameter 𝑥𝑥𝑖𝑖. 

This can be done by several different algorithms, such as the plain gradient algorithm 

and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which are 

implemented in the Eclipse TPS.   

4.2.1 LET and RBE -optimization 
With intensity-modulated proton therapy (IMPT) many different field setups and 

energies can be used, which will give the clinician multiple alternatives to deliver an 

optimal plan, also with respect to RBE and LET, without compromising the RBE of 

1.1. Even though this is not directly RBE and LET optimization, it could be a 

steppingstone towards it. This has been explored by Fjæra et al. (2017) and Mein et al. 

(2022), and similar techniques are also in clinical use (Indelicato et al. 2014). Fager et 

al. (2015) divided the target into subvolumes which were assigned individual IMPT 

fields which showed an increased LET in the target without sacrificing tumor coverage. 

There are also studies showing how treatment planning could include LET in the 

optimization. This is demonstrated by several studies by either implementing LET 

directly (Giantsoudi et al. 2013; Cao et al. 2017; Inaniwa et al. 2017) as an objective 

in the treatment planning process, or using a dose-weighted LET model (Unkelbach et 

al. 2016) to optimize the plan with respect to LET weighted dose, as mentioned in 3.3. 

This approach could also be used to treat hypoxic tumors by elevating the LET values 

in regions with low oxygen to increase the cell killing in so-called LET painting. 

 min
𝑥𝑥𝑗𝑗

{𝑂𝑂(𝑑𝑑)} 

 

(4.3) 
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However, it has been shown that LET painting is more efficient for heavier ions than 

protons due to the limited range of LET values for protons (Malinen and Sovik 2015). 

Another approach to RBE optimization is to include phenomenological models in the 

dose calculation, as mentioned in 3.3, and plan according to the RBE-weighted dose 

(Wan Chan Tseung et al. 2016; Guan et al. 2018). Other optimization techniques 

include distal edge tracking, as proposed by Bai et al. (Bai et al. 2020), where the PB 

spots with non-optimal LET distribution were penalized, which provided comparable 

results to LET optimization. 

Reviews of the clinical RBE in proton therapy suggested that the opportunity to 

calculate RBE and LET clinically should be implemented at most PT centers for this 

reason (Paganetti et al. 2019), and now several different PT centers in Europe have 

local procedures for calculating the RBE clinically (Hahn et al. 2021) mostly based on 

MC (Sorensen et al. 2021). However, there is still no consensus for future RBE and 

LET strategies between different centers, but LET and RBE calculations are becoming 

available in clinical TPSs, and optimization is expected to be introduced soon. 

4.3 Beam Delivery 

There are two main methods for delivering proton dose, passive scattering, and active 

scanning. Passive scattering uses different components to shape and conform the 

proton beam such that the target receives a homogenous dose. For active scanning, or 

Pencil Beam Scanning (PBS), dipole magnets are used to steer the beam so the 

prescribed dose is delivered to predetermined spots in the target.  

Single field optimization (SFO) consists of simple linear addition of multiple fields. In 

SFO, the fluence of each field is optimized so that the dose will be as homogenous as 

possible. The weighting of each field can also be different and is done to reduce the 

contribution from either field with low homogeneity, or if it ends in a critical organ 

(Lomax 2016).  
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The proton beam can also be sculpted by multiple fields using multi-field optimization 

(MFO), meaning the fields are optimized in unison. Unlike SFO, the different fields in 

the plan are aware of each other, and the combined dose distribution is only guided by 

the optimization goals (Langen and Zhu 2018).  

4.3.1 Intensity-Modulated Proton Therapy (IMPT) 
MFO opens up for IMPT, which exploits PBS flexibility to allow each proton field to 

assume an arbitrary dose distribution as long as the sum of fields provides desired 

distribution (Kooy and Grassberger 2015).  The degree of freedom achieved through 

IMPT compared to SFO is significant, as the weighting of each pencil beam is now 

individual and only related to the overall objective. This also leads to an increased 

computational time and complexity in the treatment planning process. However, a 

physician or treatment planner will have considerable more choices to improve the 

treatment plan (Kooy and Grassberger 2015). 

4.4 Proton Arc Therapy (PAT) 

A new emerging treatment planning technique for protons is Proton Arc Therapy 

(PAT) which consists of rotating the gantry around the patient in an arc, delivering a 

continuous dose similar to the photon therapy technique Volumetric Arc Therapy 

(VMAT). This concept was first suggested in 1997 (Sandison et al. 1997), but it was 

not until recently that Ding et al. (2016) used the potential of IMPT to create the first 

PAT plans. This has led to several treatment planning studies showing the potential of 

PAT in different clinical scenarios (Blanco Kiely and White 2016; Rah et al. 2016; Li 

et al. 2018; Ding et al. 2019; Liu et al. 2020b; Chang et al. 2020; Liu et al. 2021b). 

Although not yet clinically available, beam delivery testing has been performed (Li et 

al. 2019), as well as studies aiming to optimize beam delivery time (Gu et al. 2020) 

(Liu et al. 2020b) (Nesteruk et al. 2021). Different delivery techniques such as 

stereotactic treatment have also been improved with arcing techniques (Liu et al. 

2021a; Liu et al. 2021b).  
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The additional degree of freedom achieved with PAT gives rise to new planning 

methods such as mono-energetic beams (Sanchez-Parcerisa et al. 2016; Bertolet and 

Carabe 2020; Carabe-Fernandez et al. 2020), which can give a LET distribution in the 

target and reduce it in healthy tissue while also decrease the treatment time.  
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5. Thesis objective 

The overall objective of this thesis was to provide knowledge of and explore how 

different optimization strategies could be used in proton therapy planning to account 

for variable RBE and OER. By introducing optimization strategies which accounts for 

biology in proton therapy clinics, treatment outcome could be improved. The specific 

objectives of each paper are described in the following 

Paper I: 

• Optimize proton therapy plans with respect to LET and variable RBE models  

• Investigate the effect of different RBE and LET based proton optimization 

strategies on dose distributions in OARs and target volumes 

Paper II: 

• Develop a proton optimization tool for voxel-by-voxel based hypoxia treatment 

using clinical PET and CT images 

• Include hypoxia modelling in variable RBE models to optimize ROWD 

Paper III: 

• Review different ROWD models in terms of pO2 and LET dependency 

• Compare how the OER from the different models varies within different 

scenarios 

Paper IV: 

• Investigate the effect of beam pruning in PAT plans on RBE and LET 

distributions 
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6. Materials and methods 

6.1 FLUKA MC recalculation tool 

In this thesis, treatment plans for the clinical patient cases and water phantoms were 

originally made in Eclipse TPS (Varian Medical Systems, Palo Alto, California, US). 

Dose verification and recalculation from these plans were done by the FLUKA MC 

code, which also has been used as the primary tool for re-optimization of plans. 

To achieve the density information about the tissue, treatment planning CT images are 

converted into voxels in the graphical interface for FLUKA, FLAIR. The conversions 

curves were calibrated previously in our group (Fjæra 2016).  For complex simulations, 

subroutines were used in FLUKA to sample primary particles, as well as score 

biological parameters. 

The source.f subroutine is used to simulate the pencil beams in the plan. In this 

subroutine, the property from a primary particle is randomly sampled from the pencil 

beam distribution. These properties include energy spot position and beam focus, while 

we define the pencil beam by energy and position.  

The fluscw.f subroutine is used to score dose to water from all particles, as well as the 

LET and the dose from protons and deuterium. These values are needed to calculate 

the RBE-weighted dose as described in section 3.3. As described in section 2.3, we use 

the fluence of a particle to calculate dose described in equation (2.6), and the fluence 

can be estimated as the infinitesimal length 𝑑𝑑𝑑𝑑𝑚𝑚 of the trajectory of a particle 𝑤𝑤, divided 

by the infinitesimal volume 𝑑𝑑𝑘𝑘 (Papiez and Battista 1994): 

The fluence 𝜃𝜃𝑚𝑚 can further be weighted by a factor 𝑊𝑊𝑚𝑚 defined in the subroutine to 

modify the spatial scoring. The scored quantity will then be: 

 𝜃𝜃𝑚𝑚 =
𝑑𝑑𝑑𝑑𝑚𝑚
𝑑𝑑𝑘𝑘

 (6.1) 
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Applying this, we can achieve the dose scored to water by summing over all dose 

contributions 𝑤𝑤 in a voxel, multiply by the LET contribution from particle 𝑤𝑤 in water 

(𝐿𝐿𝐸𝐸𝐿𝐿𝑚𝑚𝑤𝑤) and divide by the density of water 𝜌𝜌𝑤𝑤: 

The LET value from water is obtained through the built-in function in FLUKA called 

GETLET, which outputs LET based on particle type, energy, and type of material. 

In our study, we calculate the dose from all particles, along with the dose from only 

protons, which are needed for RBE calculations.  

For the LET, the dose to water was multiplied by the LET 

To achieve the LETd, dose division was done offline in a separate python script (Fjæra 

et al. 2017).  

For our studies, the fluscw.f subroutine was modified again, so the 𝛼𝛼 and 𝛽𝛽 for every 

respective model were calculated online, as this is required for the FLUKA MC based 

optimizer. 

6.2 Methods for optimization of proton therapy treatment 
plans 

6.2.1 The optimizer 
A FLUKA MC based optimization tool developed by Mairani et al. (2013) and Bohlen 

et al. (2013) was used in this thesis. The tool was modified to fit our in-house 

recalculation system described in chapter 6.1. 

 𝑑𝑑𝑐𝑐𝑑𝑑𝑟𝑟𝑤𝑤𝑠𝑠𝑤𝑤 = �𝑊𝑊𝑚𝑚
𝑚𝑚

× 𝜃𝜃𝑚𝑚 (6.2) 

 𝐷𝐷𝑤𝑤 = �
1
𝜌𝜌𝑤𝑤

 
𝑚𝑚

𝐿𝐿𝐸𝐸𝐿𝐿𝑚𝑚𝑤𝑤 × 𝜃𝜃𝑚𝑚 (6.3) 

 𝐿𝐿𝐸𝐸𝐿𝐿𝑤𝑤𝐷𝐷𝑤𝑤 = �
1
𝜌𝜌𝑤𝑤

 
𝑚𝑚

(𝐿𝐿𝐸𝐸𝐿𝐿𝑚𝑚𝑤𝑤)2 × 𝜃𝜃𝑚𝑚 (6.4) 



28 

 

The optimizer uses information from the FLUKA simulation to create new treatment 

plans. More specifically, the inputs for the optimizer are the physical dose and 

biological variables, 𝛼𝛼 and 𝛽𝛽, information about the initial weightings of each pencil 

beam, and voxel location for the region of interest (ROI). The 𝛼𝛼 and 𝛽𝛽 are LET 

dependent, and an OER and pO2 dependency were introduced in Paper II and III. The 

optimizer uses this information to create an optimal plan based on given dose objectives 

and outputs a file with the new pencil beam weightings. 

There are two algorithms implemented in the optimizer, the dose-difference algorithm, 

and a plain gradient algorithm. Both algorithms allowed for optimization based on 

variable RBE and showed similar results. 

6.2.2 Patient material 
A simulated water phantom case was used to explore different optimization strategies. 

The phantom consisted of a 4 x 4 x 4 cm3 SOBP, starting at 8 cm depth and with a 

prescribed dose of 2 Gy(RBE1.1). The phantom was used to investigate the effects of 

RBE optimization (Paper I), and further, the oxygen levels in the phantom were varied 

to explore the effect of hypoxia in ROWD optimization (Paper II) and model variation 

(Paper III). The oxygen levels varied from fully normoxic to fully hypoxic in the 

middle of the target (Figure 6.1). Two plans were created for the water phantom in 

Paper II, a single field SOBP case and an SOBP with two opposing fields.  

 

Figure 6.1 Illustration of the water phantom with varying oxygen levels where the amount of 

redness represents lower pO2 levels. 
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In Paper I, three different patient cases were used to demonstrate how RBE based 

optimization strategies would work for different clinical scenarios. A prostate tumor 

case, a pituitary adenoma (brain tumor) case, and a rhabdomyosarcoma (head and neck 

cancer, HNC) case were planned using the Eclipse TPS and multi field optimization. 

The (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 values used for the different cases were found in the literature and are 

listed in the table below. 

Table 6-1 Plan properties for the different patient cases used in Paper I. 

 Brain tumor Prostate Head and neck 

Number of fields and field 

angles 

GA 257°, PSA 0° 

GA 291°, PSA 60° 

2 opposing 

fields 

GA 55°, PSA 0° 

GA 85°, PSA 0° 

GA 135°, PSA 0° 

Prescribed dose to PTV 

[Gy(RBE)] 

54 67.5 50.4 

OARs included in the 

optimization 

Brainstem 

Left optic nerve 

Rectum 

Bladder 

Left pterygoid 

Right parotid gland 

(𝜶𝜶/𝜷𝜷)𝒙𝒙 PTV [Gy] 10.6 (Pedicini et al. 

2015) 

1.5 (Brenner 

and Hall 1999) 

2.8 (Mendonca and 

Timmerman 2002) 

(𝜶𝜶/𝜷𝜷)𝒙𝒙 OAR [Gy] 2.1 (Meeks et al. 

2000) 

3.5 (Terry and 

Denekamp 

1984) 

2.8 (Mendonca and 

Timmerman 2002) 

GA – Gantry Angle 
PSA – Patient Support Angle 

 

For Paper II and III, HNC cases were explored with prescribed doses of 70 Gy(RBE) 

divided into 35 fractions, where the pO2 values were estimated from [18F]-EF5 PET 

images. The conversion from PET-uptake to pO2 has been previously published by our 

group (Dahle et al. 2020). The HNC cases differed in the levels of hypoxia, as one case 

was significantly more hypoxic than the other. We evaluated the PTV coverage as well 

as the dose to the parotid glands. Only the estimated pO2 values in the PTV were used, 
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while the OARs were assumed to be normoxic. The (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 for the tumor was 10 Gy 

(van Leeuwen et al. 2018), while for the OAR, an (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 of 3 Gy was used (Emami 

et al. 1991).  The PET images were acquired at Turku University Hospital in Finland 

using a GE D690 PET/CT scanner (General Electric Medical Systems, Milwaukee, WI, 

USA). 

In Paper IV, we demonstrated a method of pruning the energy layers in PAT-beams to 

increase the LET and RBE in the target. The pruning technique was demonstrated on a 

germinoma case, with a prescribed dose of 54 Gy(RBE) divided into 30 fractions. For 

a plan to be valid, the optimization criteria were 95% of the prescribed dose to 100% 

of the PTV and 107% of the prescribed dose to 0% of the PTV ([V95%, V107%]).  

6.2.3 Model selection 
Several different RBE models have been developed in recent years, and three RBE 

models were included in this study based on their difference in origin. Both the Rorvik 

(ROR) (Paper I-IV) and McNamara (MCN) model (Paper I) is based on in vitro data, 

but the MCN model assumes a linear relationship with LET, whereas the ROR model 

assumes a non-linear fit to the LET-spectrum. Both models also depend on the 

radiosensitivity parameter (𝛼𝛼 𝛽𝛽)𝑥𝑥⁄ . 

The 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝 parameters for the MCN model are given as: 

 

 

while the 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝 for the ROR model are given as: 

 𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥(𝑀𝑀𝐶𝐶𝑁𝑁) = 0.99064 +
0.35605 𝐺𝐺𝐺𝐺

�𝛼𝛼𝛽𝛽�
𝐿𝐿𝐸𝐸𝐿𝐿𝑑𝑑  (6.5) 

 
𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝(𝑀𝑀𝐶𝐶𝑁𝑁) = 1.1012 −  0.0038703𝐺𝐺𝐺𝐺−

1
2(𝑘𝑘𝑘𝑘𝑘𝑘 𝜇𝜇𝑚𝑚)−1��

𝛼𝛼
𝛽𝛽
�
𝑥𝑥
𝐿𝐿𝐸𝐸𝐿𝐿𝑑𝑑  (6.6) 
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where 𝐿𝐿 is the LET, 𝑑𝑑(𝐿𝐿) is the LET spectrum, and 𝑟𝑟max is the biological weighting 

function. 

The LET-weighted dose (LWD) model (Paper I and IV) is independent of cell data and 

is instead fitted to a linear relationship with the LET as described in section 3.3. The 𝑐𝑐 

parameter was varied for the different studies. In Paper I, it was normalized to a median 

RBE of 1.1 in the target, and in Paper IV the 𝑐𝑐 parameter was set to 0.055 𝜇𝜇𝑚𝑚/𝑘𝑘𝑘𝑘𝑘𝑘, as 

described by McMahon et al (2018) to reduce the biological variability between RBE 

models.  

6.2.4 Optimization strategies 
Two different RBE optimization strategies were used in Paper I, full RBE optimization 

(FO) and differential optimization (DO). In full RBE optimization, both the PTV and 

OARs were optimized with respect to variable RBE. These plans were denoted FOROR 

FOMCN and FOLWD for the full MCN, ROR, and LWD strategy, respectively. RBE 

optimization strategy used an RBE of 1.1 in the target and variable RBE to the OARs. 

Similar to the full strategies, the differential optimization strategies are denoted DOROR 

DOMCN and DOLWD for the variable RBE models. In Paper II, only full optimization 

was deployed on the target and OAR. 

 

𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥(𝑑𝑑(𝐿𝐿)) = � 𝑟𝑟𝑚𝑚𝑎𝑎𝑥𝑥(𝐿𝐿)𝑑𝑑(𝐿𝐿)𝑑𝑑𝐿𝐿
∞

0
    

𝑟𝑟𝑚𝑚𝑎𝑎𝑥𝑥(𝐿𝐿) = 1 +
Gy

(𝛼𝛼 𝛽𝛽)𝑥𝑥⁄ �0.578 �keV
μm
�
−1
𝐿𝐿 − 0.0808 �keV

μm
�
−2
𝐿𝐿2 + 0.00564 �keV

μm
�
−3
𝐿𝐿3

− 9.92 × 10−5 �keV
μm
�
−4
𝐿𝐿4� , 𝐿𝐿 < 37.0

keV
μm

 

𝑟𝑟𝑚𝑚𝑎𝑎𝑥𝑥(𝐿𝐿) = 1 + 10.5
𝐺𝐺𝐺𝐺

(𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥
,                     𝐿𝐿 ≥  37.0

keV

μm
                     

𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝 = 1 

(6.7) 
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6.3 Optimization of treatment plans for hypoxic tumors 

To compare how OER is accounted for in treatment planning, as well as optimize plans 

with respect to hypoxia, OER models were studied. The different published models to 

account for OER and RBE in proton therapy were compared in a simulated water 

phantom and a clinical patient case (Paper III).  

6.3.1 RBE and OER calculations and optimization 
We defined an RBE and OER Weighted Dose (ROWD), which combined the OER and 

RBE calculation as: 

where 𝛼𝛼𝑥𝑥 and 𝛽𝛽𝑥𝑥 are the aerobic tissue radiosensitivity parameters and 𝛼𝛼ℎ and 𝛽𝛽ℎ are the 

pO2-dependent proton radiosensitivity parameters. The pO2-dependent proton 

radiosensitivity parameters are found by combining 𝛼𝛼 and 𝛽𝛽 values from RBE models, 

with the definition of OER found in equation (3.10): 

 

where 𝛼𝛼𝑂𝑂𝑅𝑅𝑅𝑅 and 𝛽𝛽𝑂𝑂𝑅𝑅𝑅𝑅 are the biological parameters for the variable RBE models. 

6.3.2 OER models 
Several models for calculating the OER based on pO2 have been proposed, generally 

based on in vitro data from different cell lines under normoxic and hypoxic conditions. 

The models are then fitted to a reverse-sigmoid-shaped curve, which describes the 

relationship between the pO2 and OER through the Alper-Howard-Flanders formalism. 

We left out models from this study which would either result in heavy, time-consuming 
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 𝛼𝛼ℎ = 𝛼𝛼𝑂𝑂𝑅𝑅𝑅𝑅/OER(𝐿𝐿,𝑝𝑝ℎ) (6.9) 

 𝛽𝛽ℎ = 𝛽𝛽𝑂𝑂𝑅𝑅𝑅𝑅/OER2(𝐿𝐿,𝑝𝑝ℎ) (6.10) 
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calculations or earlier versions of models. The models we studied were from Wenzl 

and Wilkens (WEN) (Wenzl and Wilkens 2011), Tinganelli (TIN) (Tinganelli et al. 

2015), Strigari (STR) (Strigari et al. 2018), Dahle (DAH) (Dahle et al. 2020) and Mein 

(Mein et al. 2021), and the different properties were compared in Paper III. 

6.3.3 Calculation of hypoxia 
In papers II and III, the OER as a function of LET and hypoxia was calculated in the 

fluscw.f subroutine as: 

where the 𝐿𝐿 is the dose-averaged LET, 𝑝𝑝ℎ and is the partial pressure of oxygen (𝑝𝑝𝑂𝑂2) 

in a given voxel in the patient, while 𝑝𝑝𝑎𝑎 is the partial pressure of oxygen in normoxic 

tissue. The radiosensitivity parameters 𝛼𝛼(𝐿𝐿,𝑝𝑝) and 𝛽𝛽(𝐿𝐿,𝑝𝑝) for hypoxic and normoxic 

tissue are given by: 

 

where 𝑝𝑝 is the 𝑝𝑝𝑂𝑂2 for both the hypoxic and normoxic tissue, where the normoxic value 

was set to 60 mmHg, and 𝐾𝐾 is a parameter set to 3 mmHg (Alper and Howard-Flanders 

1956). The remaining model parameters were found by non-linear least square curve 

fit of the in vitro proton data,  and given as: a1 = 0.10 Gy-1, a2 = 0.0010 µm/(Gy·keV), 

a3 = 0.010 Gy-1, a4 = 0.0100 µm/(Gy·keV), b1 = 0.765 Gy-1and b2 = 0.273 Gy-1. 

 OER(𝐿𝐿,𝑝𝑝ℎ) =
�𝛼𝛼2(𝐿𝐿,𝑝𝑝ℎ) − 4𝛽𝛽(𝑝𝑝ℎ) ∙ ln(0.1) − 𝛼𝛼(𝐿𝐿, 𝑝𝑝ℎ)

�𝛼𝛼2(𝐿𝐿,𝑝𝑝𝑎𝑎) − 4𝛽𝛽(𝑝𝑝𝑎𝑎) ∙ ln(0.1) − 𝛼𝛼(𝐿𝐿,𝑝𝑝𝑎𝑎)
∙
𝛽𝛽(𝑝𝑝𝑎𝑎)
𝛽𝛽(𝑝𝑝ℎ) (6.11) 

 𝛼𝛼(𝐿𝐿,𝑝𝑝) =
(𝑎𝑎1 + 𝑎𝑎2 ∙ 𝐿𝐿) ∙ 𝑝𝑝 + (𝑎𝑎3 + 𝑎𝑎4 ∙ 𝐿𝐿) ∙ 𝐾𝐾

𝑝𝑝 + 𝐾𝐾
, (6.12) 

 �𝛽𝛽(𝑝𝑝) =
𝑏𝑏1 ∙ 𝑝𝑝 + 𝑏𝑏2 ∙ 𝐾𝐾

𝑝𝑝 + 𝐾𝐾
, (6.13) 
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6.4 Pruning techniques in PAT 

6.4.1 Pruning the treatment plans 
In Paper IV, we wanted to demonstrate different pruning techniques in PAT arc 

therapy. Therefore, seven different plans were created in the Eclipse TPS for this study 

to compare the effects of the pruning: 

• A PAT plan consisting of a 240-degree arc where no beams were positioned 

anterior to the patient (Figure 6.2c). The beams had a 10-degree separation, and 

this plan was used as a reference plan.  

• Six pruned PAT plans (PX-PAT, where X represents the degree of pruning) 

were created from the reference plan. The pruning was performed by shrinking 

the PTV in all dimensions corresponding to approximately one energy layer of 

the beam and adding margins in all directions except for the distal part. An 

illustration of the pruning process can be seen in Figure 6.2a and b, while the 

highest energies for each beam for the different PX-PAT plans can be seen in 

Figure 6.2d 
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Figure 6.2 a) Illustration of a spot map for a PAT plan, b) and the P2-PAT plan where the blue 

color represents the pruned spots in this map. The red outline shows the PTV, and the green 

outline shows the shrunken PTV volume. c) shows the beam positioning for the arc around 

the tumor volume, and d) shows the maximum energy from each beam in the arc.   

 

To visualize biological effects, the plans were recalculated in our in-house FLUKA 

MC recalculation system with respect to two variable RBE models, the ROR model 

and the LET-weighted dose model (LWD). The clinical OARs that were included in 

this study were the left hippocampi and right optic nerve, alongside a 2 cm spherical 

shell covering the PTV, to observe the surrounding LET effects.  
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6.5 Ethical considerations 

The patient data applied in this study originate from Haukeland University Hospital 

(Paper I and III) and Turku University Hospital (Paper II and IV), and was used with 

permission from these facilities. The patient material was anonymized. The patients 

from Turku University Hospital were part of a study registered at ClinalTrials.gov 

under the number NCT 01774760. 
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7. Summary of results 

7.1 Paper I: Exploring OAR sparing techniques with 
different RBE based optimization strategies 

In Paper I, we saw how different RBE based optimization strategies would affect the 

LETd, RBE-weighted dose, and physical dose distribution for different patient cases. 

A clear difference was observed in both physical dose and LETd for the different 

variable RBE models (Figure 7.1). For the prostate case, there was a large difference 

between the (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥- dependent models (MCN and ROR), and the LWD model, as 

the mean physical dose to the target from the FOMCN and the FOROR strategies were 

respectively 10% and 5 % lower than for the RBE1.1. For both LWD strategies, there 

were negligible differences compared to the reference plan. 

 

Figure 7.1 Overview of RBE1.1-weighted dose (top row) and LETd (bottom row) resulting from 

the different optimization strategies. The colors indicate the respective RBE and LWD models, 

while the cyan line represents the reference plan (RBE1.1 optimization). The square markers 

represent the full strategy, while the circle markers represent the differential strategies. 
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The brain tumor showed less variation in results compared to the prostate case. Here, 

the differential optimization strategies (variable RBE only in OARs) provided the 

highest OAR sparing: DOMCN reduced the maximum OAR dose by 3-5%, as 

compared to the reference RBE1.1 plan, while still fulfilling the prescribed RBE1.1-

dose to the target. For FOLWD, the reduction varied between 2-3% for the different 

OARs. The physical dose in the target was also significantly reduced with this 

strategy (Figure 7.1b) 

In the head and neck case, it was again the full strategies that provided the highest 

difference compared to the reference plan. The FOMCN plan reduced the maximum 

dose to the right pterygoid by 10%, the full ROR reduced it by 7%, and the full LWD 

reduced it by 2% (Figure 7.1c). This study shows that for tumors with high (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥, 

small differences are seen between the optimization strategies, while for low (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 

tumors, the differences were high, illustrating how heavily it affects the biological 

optimization. 

7.2 Paper II: Optimizing treatment plans with respect to 
hypoxia. 

A FLUKA MC based optimization method for hypoxia was created and demonstrated 

on a simulated water phantom and two HNC cases.  

For the water phantom case, a homogenous ROWD dose was achieved in the SOBP, 

verifying our method. Including pO2 in the optimization caused an increase in the 

maximum physical dose of up to 30%, and an LETd increase from approximately 5 

keV/μm to 12 keV/μm was seen in the most hypoxic area. This shows how our 

hypoxia optimization method could account for hypoxia, and the outcome of the 

optimization was highly dependent on the pO2 levels. 

For the HNC cases, one case had significantly lower pO2 levels compared to the other 

case, thus representing different clinical scenarios. The hypoxic case had 95% of the 
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PTV under 60 mmHg, while this was 50% for the normoxic case. The optimization 

depended heavily on these levels. Both provided comparable dose coverage to the 

PTV but differed in mean physical dose to the PTV. The mean physical dose to the 

PTV increased by 12.2 Gy for the ROR(OER) plan compared to the reference RBE1.1 

plan, and 9.3 Gy higher for the RBE1.1(OER) plan Figure 7.2, top left panel). For the 

normoxic case, the increase was smaller, as the mean physical dose to the PTV 

increased by 3.5 Gy for the ROR(OER) plan compared to the reference RBE1.1 plan, 

and 1.1 Gy higher for the RBE1.1(OER) plan (Figure 7.2, bottom left panel).  

The increased dose to the PTV led to an increased dose to the OARs, as the maximal 

physical dose was 10.7 Gy higher for the ROR(OER) plan compared to the reference 

plan. For the normoxic case, the same increase was only 3.3 Gy (Figure 7.2, right 

column). 

 

Figure 7.2 DVHs for the different plans optimized with respect to ROWD for the hypoxic 

case (top row) and the normoxic case (bottom row), where the solid lines represent the 

ROWD, while the dashed lines represent the respective physical dose.  
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7.3 Paper III: Exploration and comparison of OER models 
in proton therapy 

The five ROWD models were successfully implemented in FLUKA and compared. 

Even though large differences were seen between some of the models, they all 

showed a similar shape. All models show an increase in OER as the pO2 decreased. 

For the water phantom, this corresponded to a reduction between 25% and 40% when 

comparing the ROWD models to RBE models not accounting for the OER.  

In the first hypoxic region (pO2 = 20mmHg), the lowest ROWD is predicted by TIN, 

while the highest ROWD can be seen from MEI, DAH, and WEN. In the next region 

(pO2 = 10mmHg), the STR, WEN, DAH, and MEI are comparable. In the most 

hypoxic area, the lowest ROWD is predicted by STR and the highest from DAH and 

MEI. 

For the HNC case, all models provide a significantly lower ROWD than the RBE1.1 

reference plan. The median ROWD (ROWD to 50% of the volume) varied between 

53.6 to 60.2 Gy(RBE), while the prescribed dose was 70 Gy(RBE). WEN and DAH 

showed similar results both in terms of RBE1.1 and ROR adaptation. These models 

showed similar ROWD to MEI, which again showed higher ROWD than STR and 

TIN (Figure 7.3).  
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Figure 7.3 DVH for all ROWD models, including the RBE1.1 reference plan (solid black line). 

7.4 Paper IV: Exploring LET and RBE effects from pruning 
in proton therapy 

The pruned PAT (P-PAT) plans significantly increased the LETd in the target 

compared to the reference P-PAT plan (Figure 7.4a), with an elevation of mean LETd 

of 0.4, 0.7, and 1.5 μm/keV for the P4-, P5-, and P6-PAT plan, respectively. This 

also lead to a corresponding decrease in the LETd in the surrounding healthy tissue 

and the OARs for all plans (Figure 7.4b,c, and d).  

For the RBE-weighted doses, all plans were comparable in terms of PTV coverage. 

All P-PAT plans reduced the mean RBE-weighted dose from the variable RBE 

models (ROR and LWD) to the surrounding tissue, except the P6-PAT plan, which 

increased the RBE-weighted dose. However, this plan showed the largest increase in 

the RBE weighted dose to the target, so a potential decrease in overall physical dose 

could be applied to compensate for this.  
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Figure 7.4 LETd volume histogram for the PTV, healthy surrounding tissue, and the OARs 

calculated with 2 Gy(RBE1.1) dose cutoffs. The dashed lines represent the P-PAT plans, while 

the solid lines represent the PAT plan. 
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8. Discussion 

This thesis shows how optimizing both the physical dose and LET distribution in 

proton therapy plans may utilize more of the potential of proton therapy. Pencil beam 

scanning in proton therapy gives high flexibility and allows for LET redistribution. The 

treatment can therefore be adapted to provide a superior biological effect compared to 

both photon therapy and the current clinical proton therapy treatment, where an RBE 

of 1.1 is used.  

The strategies presented in this study may provide helpful insight into how variable 

RBE optimization can be implemented and exploited. This includes how a differential 

RBE strategy could provide an intermediate step towards full RBE or LET optimization 

(Paper I). The optimization strategies were further explored when applying RBE in 

hypoxic cases, where the hypoxia data was derived from PET images, and the 

belonging treatment plans were optimized on a voxel-by-voxel basis (Paper II). Several 

approaches to hypoxia-modelling were explored and compared, which revealed good 

agreement between several models, but also significant deviations between the 

estimates of some models (Paper III). The model differences and also the large OER 

values considering the change in dose prescription they suggest, reveals that more 

research effort is needed to find a path to clinical implementation. Further, the 

emerging treatment technique, PAT, was used in a novel method of PAT pruning 

(Paper IV). This study showed how the increased degree of freedom in PAT could 

provide more biologically advantageous treatment plans by shifting high RBE regions 

from healthy tissue into the tumor volume. 

8.1 RBE based optimization strategies 

Optimizing proton therapy plans with respect to RBE is motivated by recent clinical 

evidence of a higher RBE at the distal end of the beam (Peeler et al. 2016; Underwood 

et al. 2018; Engeseth et al. 2019; Eulitz et al. 2019; Bahn et al. 2020; Bolsi et al. 2020; 

Engeseth et al. 2020; Oden et al. 2020; Engeseth et al. 2021; Bertolet et al. 2022; 
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Engeseth et al. 2022). These are related to asymptomatic toxicity, corresponding to 

radiation-induced image change from either MRI or CT. In addition, a study by Wang 

et al. (2020) showed an increased risk of rib fracture due to high RBE in healthy tissue. 

A recent study by Harrabi et al. (2021) revealed a significant correlation between image 

change and high LET values, suggesting that LET is an important factor in terms of 

radiation-induced image change. The clinical evidence indicates that the treatment 

planning today should consider accounting for a variable RBE, and different RBE 

optimization strategies have thus been explored in this thesis.  

In vitro experiments using proton beams have shown an increased RBE with higher 

values of LET, which has its maximum at the distal end of the proton beam. This 

increase is reflected by the phenomenological RBE models, which are based on such 

in vitro data sets (Rørvik et al. 2017). Even though the RBE models estimate different 

magnitudes of RBE values depending on the dose level, LET, and tissue type, they all 

project a similar shape of elevated RBE towards the distal end. A biological shift in the 

dose can also be observed, extending the beam range up to 1-2 mm compared to the 

RBE of 1.1 used clinically (Paganetti et al. 2002). This is also the case for mechanistic 

dose models, which also show an increase in RBE at the distal part of the beam (Grun 

et al. 2013; Giovannini et al. 2016) and a similar biological shift as the 

phenomenological models. New in vivo experiments support this, as an elevated RBE 

is observed at the distal end with the increased LET, even for high fraction doses 

(Saager et al. 2018). Thus, when applied for biological dose reduction in OARs in 

treatment planning, applying different models may give a similar result in terms of 

physical dose and LET to the OARs as all models will push “in the same direction.” 

However, if the models are simultaneously used to optimize the target dose, the 

different levels of physical dose to the target could also affect the OAR dose 

significantly. This was seen in Paper I, where the optimization reduced the physical 

dose in the distal part of the beam for the brain tumor case and the head and neck case 

for most variable RBE models. In addition to the model differences, the optimization 

in Paper I also showed a great case dependency. The main parameter that was changed 
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for the different cases was the (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥, which caused large differences in the RBE. The 

(𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 is an uncertain parameter  and can vary greatly between certain tumor types 

and endpoints (Paganetti 2022), which will therefore affect the RBE as we saw that the 

physical dose outcome from the different patient cases varied substantially as an effect 

of the diverse (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥. 

Additionally, the difference in anatomy and field setup will also cause differences in 

the LET distribution and in the potential to “move” the LET in the optimization 

process, as seen in Paper I, where the optimization of the prostate case did not shift any 

LET values. In general, the field setup is important as it could provide more freedom 

to adjust both the physical dose and the LET for the target. For instance, more field 

angles or arc treatments (as applied in photon therapy) would give the freedom to also 

substantially change the LET in prostate patients. 

Most RBE models have a linear dependency on the LET, as well as a dependency on 

the (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 (Rørvik et al. 2018) and although the RBE models possess uncertainties 

from the in vitro data, the acquiring of better in vitro data, i.e. large datasets with 

smaller deviations and precise reporting of beam quality and other relevant parameters, 

will reduce these uncertainties. 

A tissue independent approach to optimization with a variable RBE is to simply use a 

linear LET dependency on the dose, with a scaling parameter 𝑐𝑐, and the shape 𝑅𝑅𝑅𝑅𝐸𝐸 =

1 + 𝑐𝑐 × 𝐿𝐿𝐸𝐸𝐿𝐿𝑑𝑑. This type of RBE is often referred to as LET-weighted dose and 

excludes the dose dependency of RBE, which is easily observable in vitro and was used 

in Paper I and IV with different scaling parameters. The LWD approach was first 

introduced by Unkelbach et al. (2016) as a way to reoptimize an RBE1.1 plan with 

respect to LET.  The scaling parameter 𝑐𝑐, has been varied between studies and thus 

altered the estimated effect of LETd in the planning. The scaling parameter used by 

Unkelbach was 0.04 μm/keV, which corresponds to a mean RBE of 1.1 for an SOBP 

of 5 cm modulation and 10 cm range in a water phantom. The RBE will then be below 

1.1 in the proximal part of the beam, while an increase towards the distal part of the 
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beam will be observed. Different modifications of this model have been proposed in 

studies from other groups. Fjæra et al. (2017) scaled the 𝑐𝑐 value so that the median 

RBE in the CTV would correspond to 1.1 which was also used in the RBE optimization 

strategies in Paper I, where the values ranged between 0.032 μm/keV and 

0.039 μm/keV. This RBE would still lead to a median value of 1.1 in the target; 

however, the high RBE values that usually appear at the distal part of the beams would 

be lower. Using a 𝑐𝑐 value of 0.055 μm/keV in Paper III, resulted in a significantly 

higher RBE than for the ROR model in the PTV ((𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 = 10 Gy), while similar to 

the ROR model for healthy tissue with low (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥. This 𝑐𝑐 value was found through 

fitting the LWD model to the survival curve of two cell lines with vastly different 

(𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 to reduce the biological variability (McMahon, Paganetti, and Prise 2018).  

Although this LWD modification account to some degree for the biological uncertainty 

of the in vitro data by fitting the LWD directly to the cell survival data, (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 should 

not be ignored, although this varies for different patient cases. This is highlighted in a 

study by Mara et al. (2020) reporting new experimental in vitro data from four human 

cell lines, suggesting that most phenomenological models are underestimating the 

impact of (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥. The in vitro data are also endpoint specific, meaning that different 

OARs could both have low and high (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥, depending on the choice of endpoint. 

The report by Paganetti et al. (2019) also suggested that clinics should consider the 

consequences of regions with low (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 near the tumor. Studies have also shown that 

the tumor volume can be underdosed when the (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 becomes higher (Jones 2014; 

Sethi et al. 2014). Similar results were found in Paper I where the target (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 varied 

across each case, and the RBE observed was distinctively lower for target volumes with 

high (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥. Considering that late radiation induced side-effects in healthy tissue are 

generally associated with lower (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 values compared to tumors, there is an 

increased risk of underestimating the dose to healthy tissue when using a conservative 

RBE of 1.1.  Paganetti et al. (2019) therefore recommended in an extensive rapport 
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that the RBE could be increased to 1.2 or 1.3 in areas with low  (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 located in the 

end of SOBPs. 

By using variable RBE in the OARs only, the risk of underdosing the target is removed, 

while high RBE-weighted doses caused by increased LET in the distal part of the beam 

can be avoided. Thus, a differential RBE optimization strategy could be a steppingstone 

towards implementing variable RBE models clinically, as the RBE in the tumor is 1.1, 

and a variable RBE is deployed in the OARs. A similar approach has been suggested 

by Sanchez-Parcerisa et al. (Sanchez-Parcerisa et al. 2019), where the MCN model was 

used to reduce the biological dose to the surrounding OARs.  

However, to what degree in vitro based RBE estimates can be representative of normal 

tissue damage is very uncertain (Paganetti 2022). Still, with emerging knowledge of 

normal tissue RBE, both in vivo (Suckert et al. 2020) and clinically (Underwood et al. 

2018; Peeler et al. 2016; Oden et al. 2020; Harrabi et al. 2021; Eulitz et al. 2019; 

Engeseth et al. 2020; Engeseth et al. 2019; Engeseth et al. 2022; Engeseth et al. 2021; 

Bolsi et al. 2020; Bertolet et al. 2022; Bahn et al. 2020) better and more endpoint 

specific RBE estimates could enable the use of differential optimization clinically. 

Additionally, an LWD approach could be a good intermediate step towards using 

variable RBE in clinics, as it could reduce the biological dose to some extent in the 

OARs while avoiding translational uncertainties between in vitro and in vivo data 

associated with the (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥.   

8.2 Hypoxia in optimization of IMPT 

There have been several attempts to model the effects of low oxygenation, giving rise 

to multiple RBE and OER weighted dose (ROWD) models, where the main difference 

is how they incorporate the OER into the RBE. The ROWD model used for treatment 

plan creation in Paper II was based on the Dahle model. This model was developed in 

a previous study of ours (Dahle et al. 2020) and was based on in vitro data from protons 

in normoxic and hypoxic conditions. This is in contrast to all other published models, 
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which are based on in vitro data from not only protons but also heavier ions (Wenzl 

and Wilkens 2011; Tinganelli et al. 2015; Strigari et al. 2018; Mein et al. 2021). All of 

these models were compared, and the differences were explored in Paper III. A 

similarity between all models was the inclusion of the Alper-Howard-Flanders relation 

(Alper and Howard-Flanders 1956), which first included the oxygen level as a 

parameter to quantify hypoxia. The difference between the models was the range of in 

vitro data used, as well as how they implemented the OER into the LQ model. 

However, as seen in Paper III, the Dahle model estimated a similar OER as the Wenzl 

and Wilkens model, and the Mein model, while an overall higher OER was estimated 

from the Tinganelli model and Strigari model. This would lead to an overall higher 

physical dose in the hypoxic area. The physical dose would also depend on the 

normalization of the models, as we assumed a normoxic pO2 value of 160 mmHg, 

which would give a higher OER compared to using normoxic values of 60 mmHg as 

in Paper II. The uncertainty of the models could be traced back to the conversion from 

pO2 to OER, which is based on in vitro data from experiments comparing normoxic 

and hypoxic cell survival. With respect to the LET dependence of the models, this 

could be a critical point if heavier ions are included and the models are intended for 

protons. It is well known from RBE models that different biological effectiveness may 

be found for different ions for the same LET (Scholz 2003). Thus giving a general LET 

dependence of the OER may also be an oversimplification, and the impact of this 

should be investigated further. 

The treatment plans optimized for hypoxia showed a significant increase in physical 

dose to the target, illustrating how the doses would have to be scaled according to the 

OER model. However, the prescribed dose to the target was high (70Gy(RBE1.1)), and 

it is therefore also possible that the dose is too high in the normoxic area, and not too 

low in the hypoxic areas. This is, therefore, a topic that needs more investigation. 

Mortensen et al. (2012) showed that 63% of the cases in their study of HNC patients 

included hypoxic volumes, while this was the case for  35% of the patients in a gene 

base study by Toustrup et al. (2012). The median tumor pO2 in HNC cancers has also 



49 

 

been found to be low, varying between 10 and 14.6 mmHg (McKeown 2014). With 

improved quantification of hypoxia, it may therefore be possible with dose de-

escalation in parts of the target, giving room for more normal tissue sparing. 

Although there exist multiple PET-tracers which are able to detect hypoxia, they all 

have a varying degree of effectiveness depending on the tumor site. For instance, 18F-

EF5 is a recommended tracer for brain tumors as well as head and neck tumors 

(Fleming et al. 2015) and has shown an ability to quantify pO2 values in these regions, 

also seen in Paper II. There is, however, uncertainty associated with the usage of 18F-

EF5 or other PET tracers to quantify oxygen levels, as hypoxic tumors are complex 

micro-environments and can change between the treatment planning and treatment 

delivery (Hompland, Fjeldbo, and Lyng 2021) (Powathil et al. 2012). This could affect 

the treatment planning process, as a variation in the hypoxic volume could lead to 

inadequate plans. However, multiple studies (Wright et al. 2021) (Silvoniemi et al. 

2018) have also shown high repeatability between 18F-EF5 images for head and neck 

cancers acquired within different time periods. This shows the robustness of the 

treatment planning method shown in Paper II, although repeated imaging may be 

warranted. 

Although we saw an increase in LETd for the water phantom case in Paper II, it was 

the physical dose that was increased in the hypoxic regions in the HNC case, similar to 

dose painting. Two methods for including hypoxia in treatment planning are dose 

painting and LET painting, where Malinen and Sovik (2015) found no increase in 

tumor control probability with LET painting as compared to only dose painting with 

protons. For carbon ions, however, the LET painting effect was greater. This had 

previously been seen by Bassler et al. (2010), which saw a greater reduction in OER in 

a boost volume for carbon ions compared to protons, illustrating a higher effect from 

the LET-painting with heavier ions than protons.  

PAT has shown that the LET increases substantially in the target as compared to IMPT. 

This was demonstrated by Mein et al. (2021) for three different types of ions, and even 
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though carbon ions showed the highest effect, the high LET for protons in the target 

also reduced the hypoxia-effect in the regions with the lowest pO2 values. And even 

though LET painting showed no effect for protons with IMPT (Malinen and Sovik 

2015), the higher LETd values achieved with PAT, as seen in Paper IV, could improve 

LET painting with protons. Clinical dose painting has not yet been performed with 

protons; however, a clinical study by Welz et al. (2017) showed how photon dose 

escalation to known hypoxic volumes could increase the loco-regional tumor control, 

as compared to patients with regular treatment, without additional toxicities. Including 

dose painting in the target by elevating the dose in certain areas, as in Paper II, could 

therefore be a safe option in terms of additional toxicities. 

8.3 PAT in treatment planning 

Although the concept of PAT contradicts one of the main rationales behind proton 

therapy, where a small dose bath from photons is removed, studies show a lower 

integral dose to the surrounding tissue compared to IMPT (Ding et al. 2016) (Ding et 

al. 2018) (Liu et al. 2020a) (Engwall et al. 2022). 

PAT also has an important impact on the biology of proton therapy as it distributes the 

LET more superior compared to IMPT (Toussaint et al. 2019). Combined with the 

increased degrees of freedom, PAT allows for techniques in terms of LET manipulation 

that are not feasible to the same degree using IMPT. The idea of LET re-distribution 

by pruning IMPT fields was presented by Fager et al. (2015) which demonstrated that 

by adding multiple IMPT fields covering only parts of the PTV, higher LET values 

could be re-distributed in the target volume. This technique was further developed for 

PAT in Paper III, where pruning the highest energies of each beam in the arc led to a 

substantial increase of LET in the target. As the LET distribution is vastly different for 

IMPT compared to PAT, Li et al. (2021) compared how LET optimization would affect 

these two modalities, and PAT was found to improve the LET distribution to both the 
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target and the OAR, again illustrating how the new degrees of freedom from PAT could 

improve treatment planning.  

Other studies have also exploited the fact that each individual PAT beam does not need 

to cover the target as well. By using monoenergetic beams with PAT in cell 

experiments, Carabe et al. (2020) showed an increased biological effect for PAT 

compared to IMPT. It was also found that the monoenergetic PAT plans had a larger 

amount of unrepaired DSB compared to IMPT due to a denser energy deposition, as 

expected, with higher LET values. Further studies have explored different techniques 

to create monoenergetic arc plans (Blanco Kiely and White 2016) and both mono- and 

bi-energetic plans (Sanchez-Parcerisa et al. 2016), illustrating the flexibility of PAT 

compared to IMPT. Bertolet and Carabe (2020) also increased the LET within the target 

by using monoenergetic beams without any additional LET based objectives. Similarly, 

in Paper IV, the LET distribution was optimized in the target, as this indirect way of 

optimizing plans could lead to higher tumor control due to the increased biological 

effect. Combining RBE based optimization, as applied in Paper I, with PAT could 

therefore show a greater improvement in terms of OAR sparing, as LET values could 

more efficiently be re-distributed into the target volume. By including pruning 

techniques in the optimization of PAT plans, the elevated LET values in the target 

could help the optimizer achieve a better outcome.  

8.4 RBE in the future 

Even though the in vivo and in vitro data show an increased RBE in the distal part of 

the proton beam, clinical evidence would be a strong factor in the introduction of 

variable RBE in clinics.  

For tumors tissues, in vitro studies have shown that the main DNA repair mechanism 

is through homologous recombination (HR) (Fontana et al. 2015; Grosse et al. 2014; 

Liu et al. 2015) and Zhou et al. (2021) demonstrated how a defection in HR occurred 

in the Bragg peak region of a proton beam. This implies that high LET values cause 
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more complex damage to DNA, rendering it harder to repair, leading to an increased 

biological effect. In vivo data, although uncertain, also supports the elevated LET at 

the distal end of the proton beam when irradiating normal tissue (Gueulette et al. 2000; 

Gueulette et al. 2001; Sorensen et al. 2017; Saager et al. 2018).  

The sum of evidence of a variable RBE in proton therapy has not only led to careful 

recommendations of RBE inclusion in the clinics for special cases such as when the 

beam ends in tissue with low (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥 (Paganetti et al. 2019), but also warranted more 

studies. Clinical trials to include LET in treatment planning for anal canal squamous 

cell cancer and pediatric ependymoma are also started, which could directly show how 

LET optimization could reduce the risk for toxicity (MD Anderson Cancer Center 

2018b, 2018a).  

There is consensus in nearly all recent RBE reports that variable RBE should be 

considered in clinics. However, to which degree it should be implemented is not yet 

agreed on. As there is a need for more clinical RBE data, Hahn et al. (2022) proposed 

that proton therapy centers in Europe should agree on a system for reporting LETd, 

such that late effects due to LET could easier be followed up. This is supported by 

Kalholm et al. (2021) which reported a large inconsistency when reporting LET values 

from studies, as well as the calculation techniques.  Bauer et al. (2021) postulated that 

today’s treatment is not sufficient in terms of knowledge of radiosensitive areas with 

high RBE and therefore suggest that biological guided plan optimization should be 

included to achieve risk minimization in the treatment of low-grade glioma. This could 

include visualization of RBE effects in the clinics in terms of LET and variable RBE 

models. This was recently done in a study by Mein et al.  (2022), which showed that 

evaluating treatment plans with varying field angles for LET and RBE could help 

clinical decision-making. This was also seen by Fjæra et al. (2017), where the lower 

LET values in the brainstem were observed by changing the treatment field angles for 

a pediatric brain tumor case. A similar approach was presented in Paper IV, where we 
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created seven different plans for a single case with different beam properties and 

evaluated the RBE effects before recommending a plan.  
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9. Conclusion 

In this thesis, different RBE and hypoxia-based methods with the aim to show how the 

treatment in proton therapy can be improved were presented. This work shows how 

clinical treatment planning can be improved by including more than the physical dose 

used in current treatment planning, such as variable RBE, LET, and hypoxia related 

parameters.  

The introduction of variable RBE optimization strategies and further investigation of 

their influence on treatment plans (Paper I) revealed that full optimization with RBE 

models shows the largest potential for OAR sparing but can lead to reduced physical 

dose in tumors with low (𝛼𝛼 𝛽𝛽⁄ )𝑥𝑥. This decrease in tumor dose was avoided with our 

differential optimization strategy while also including some OAR sparing. We 

therefore suggest the latter as a step towards planning with variable RBE clinically. To 

improve control of hypoxic tumor volumes, our method with the inclusion of OER 

alongside RBE in treatment plan optimization (Paper II) showed how a more 

homogeneous biological effect across the target volume can be achieved through 

increasing the physical dose and LET in the hypoxic regions. It is however important 

to select a relevant OER model, since we found clear distinctions between the OER 

estimates using different models. The models based primarily on data from heavy ions 

resulted in higher OER estimates compared to models using more proton in vitro data 

(Paper III). With reliable hypoxia imaging and OER modeling, ROWD calculations 

could become a useful tool for treatment plan evaluation and optimization. 

To further account for LET effects that recently have been correlated to the risk of 

toxicity, PAT through pruning energy layers can reduce LET to surrounding tissue and 

OARs whilst increasing LET in the target (Paper IV). This technique could be even 

more efficient when combined with RBE or ROWD models.  

With the technological advances in treatment delivery, as well as increased quality of 

patient imaging, new knowledge of the RBE accompanied by biological optimization 
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shows great potential and should be considered for improving patient outcome moving 

forward. 
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Abstract
Purpose: Variable relative biological effectiveness (RBE) models allow for differences in linear energy transfer (LET), physical dose,

and tissue type to be accounted for when quantifying and optimizing the biological damage of protons. These models are complex and

fraught with uncertainties, and therefore, simpler RBE optimization strategies have also been suggested. Our aim was to compare

several biological optimization strategies for proton therapy by evaluating their performance in different clinical cases.

Methods and Materials: Two different optimization strategies were compared: full variable RBE optimization and differential RBE

optimization, which involve applying fixed RBE for the planning target volume (PTV) and variable RBE in organs at risk (OARs).

The optimization strategies were coupled to 2 variable RBE models and 1 LET-weighted dose model, with performance demonstrated

on 3 different clinical cases: brain, head and neck, and prostate tumors.

Results: In cases with low ða=bÞx in the tumor, the full RBE optimization strategies had a large effect, with up to 10% reduction in

RBE-weighted dose to the PTV and OARs compared with the reference plan, whereas smaller variations (<5%) were obtained with

differential optimization. For tumors with high ða=bÞx; the differential RBE optimization strategy showed a greater reduction in RBE-

weighted dose to the OARs compared with the reference plan and the full RBE optimization strategy.

Conclusions: Differences between the optimization strategies varied across the studied cases, influenced by both biological and

physical parameters. Whereas full RBE optimization showed greater OAR sparing, awareness of underdosage to the target must be

carefully considered.

© 2021 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Currently, a constant relative biological effectiveness

(RBE) of 1.1 (RBE1.1) is applied in clinical proton ther-

apy (PT), as recommended by the International Commis-

sion on Radiation Units and Measurements.1,2 However,

based on the broad range of in vitro data showing vari-

ability in the RBE, as well as recent in vivo data3 and

clinical results,4-8 there is a growing concern that the
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constant RBE approach may lead to suboptimal treat-

ment. This has given rise to both phenomenologic and

mechanistic RBE models, which can be applied to esti-

mate the variation in RBE in PT treatment plans.9-15

Most models show the same general dependencies, such

as increasing RBE with decreasing dose, increasing linear

energy transfer (LET), and decreasing a/b of the refer-

ence radiation (photon-based ða=bÞx).16 Owing to these

observations, there is a growing consensus that incorpo-

ration of LET- or RBE-based parameters in the optimiza-

tion of PT treatment plans is a natural step to improve the

precision and quality of the treatment.17,18 In a recent

comprehensive report,19 the PT community emphasized

the risk of unexpected toxicities from ignoring RBE vari-

ation, underlining the importance to address RBE uncer-

tainties and to provide clinical solutions for LET- or

RBE-based optimization in PT.6

Full biological optimization, where variable RBE is used

for both the planning target volume (PTV) and the organ at

risk (OAR), is a strategy to reduce the suspected elevated

RBE-weighted doses in both the target and healthy tissue.

However, a significant uncertainty in RBEmodels lies in the

cell-line dependency derived from in vitro data with consid-

erable deviations in response.20 This uncertainty is circum-

vented by instead using LET-weighted dose (LWD) models.

McMahon et al21 found that an LET-dependent dose is

almost as effective as variable RBEmodels when it comes to

reducing biological variability. The main reservations of full

biological optimization have been a risk of underdosage to

the target, a possible consequence if the RBE is overesti-

mated. As a solution, a combination of multiple RBEmodels

in the optimizationwas recently suggested inwhich the tradi-

tional RBE of 1.1 was applied to the target, whereas a vari-

able RBE was allowed for OARs (differential biological

optimization).22 However, although different approaches to

RBE-weighted dose optimization have been proposed,23-27 a

coherent comparison between different techniques has not

yet been done. Hence, our aim was to compare full and dif-

ferential biological optimization strategies using different

RBE models, to quantify how the physical and RBE-

weighted dose is affected in different clinical scenarios. For

this purpose, we developed a flexible framework for biologi-

cal optimization based on the FLUKA Monte Carlo (MC)

code28-30 and a prototype optimization algorithm.31,32 Two

recent proton RBE models and an LWD model were imple-

mented into the biological optimization software and applied

for 3 different clinical cases.

Materials and Methods

We used MC-based treatment plan optimization,

enabling scoring of dose, LET, and secondary particles

and biological parameters, thus allowing optimization

with respect to the RBE-weighted dose. The FLUKA-

based treatment plan reoptimization method consists of 3

steps: a FLUKA MC simulation of a treatment plan from

a commercial treatment planning system using the

FLUKA development version, reoptimization of the pen-

cil beam weightings with respect to the variable RBE-

based strategies using the dose estimates for each pencil

beam from the initial simulation, and a second FLUKA

MC simulation of the new plan for verification. The

scored values (the proton radiosensitivity parameters

along with the physical dose (aD and
ffiffiffi

b
p

D), along with

spatial information about the planning target volume and

OARs and their respective ða=bÞx, are used as input to

the optimization algorithm. To achieve a homogeneous

RBE-weighted dose to the PTV while minimizing the

dose to the OARs according to the selected objectives,

the optimizer adjusts the weightings of the pencil beams

without adding or removing pencil beams from the origi-

nal plan to achieve a homogeneous RBE-weighted dose

to the PTV while minimizing the dose to the OARs

according to the selected objectives.

Optimization strategies

We implemented full and differential RBE optimiza-

tion strategies by applying RBE-weighted dose objec-

tives. During the RBE optimization, the RBE-models by

Rørvik et al (ROR)15 and McNamara et al (MCN)13 were

incorporated. These models include LET, dose, and

(a/b)x as input parameters. The MCN model assumes a

linear relationship between LET and RBE and can there-

fore make use of the dose-weighted LET (LETd) as an

input parameter, whereas the ROR model is based on a

nonlinear LET-RBE relationship and requires the full

LET spectrum to estimate the RBE. We also applied the

LWD approach, which combines only the physical dose

and LETd.
23,27 This approach does not account for tissue

dependence and uses a normalization factor to maintain

the mean RBE of 1.1 to the clinical target volume, as

described by Fjaera et al33 (details are provided in

Appendix E1 in the Supplement). Identical target pre-

scription for the RBE-weighted dose was applied for all

the different strategies; that is, all optimization strategies

aimed to give the same prescribed dose accounting for

their respective RBE variations, primarily enabling com-

parison of the optimization strategies and the resulting

physical parameters of absorbed dose and LET resulting

from the different optimization processes. In addition, all

patient cases were also optimized using a global RBE of

1.1 for reference. The RBE1.1 optimized plans were also

recalculated using the different RBE models for compari-

son in terms of variable-RBE weighted doses.

The following optimization strategies were thereby

explored:

1. Full RBE optimization (FO): Optimizing the dose to

both the PTV and the OARs with respect to each of
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the models—MCN (FOMCN), ROR (FOROR), and

LWD (FOLWD)—using organ-specific tissue parame-

ters in RBE modeling for the MCN and ROR models.

2. Differential RBE optimization (DO): Optimizing the

dose to the PTV using RBE1.1 to avoid potential

underdosage while applying the MCN (DOMCN),

ROR (DOROR), and LWD (DOLWD) models when

optimizing the RBE-weighted dose to the OARs.

In the results, the RBE-weighted doses are denoted DX
Y ;

X is the model used for plan optimization, and Y is the

model applied to calculate the reported dose (eg, DRBE1:1
MCN is

the RBE-weighted dose from a plan optimized with RBE1.1

and recalculated with the MCN model).

The generated dose distributions were compared in

terms of dose-volume histograms and dose metrics for

the PTVs and OARs. The RBE-weighted dose difference

between the strategies and the reference RBE1.1 were

also quantified, where the RBE1.1-optimized dose was

recalculated to the respective RBE models of the differ-

ent strategies to provide a comparison of the variable

RBE-weighted dose. The evaluated values for the PTV

were mean dose, volumes receiving 95% and 107% dose

(V95% and V107%), and for OARs, the mean dose and

dose to 95% and 2% of the volume (D95% and D2%).

Treatment plans

Intensity modulated proton therapy (IMPT) treatment

plans were generated in the Eclipse treatment planning

system (Varian Medical Systems, Palo Alto, California)

applying an RBE of 1.1. For verification of the biological

optimization software, simple treatment plans were cre-

ated for a water phantom. An RBE-weighted dose of 2

Gy (RBE) was prescribed to a spread-out Bragg peak

4 cm wide.

The 3 patient cases included a brain tumor (pituitary

adenoma), a prostate cancer case, and a head and neck

cancer case (rhabdomyosarcoma). Multifield optimiza-

tion was used for all 3 cases. The ða=bÞx for the different
regions of interest were found in the literature13,34-38 and

are given in Appendix E2 together with treatment specifi-

cations. In many cases, depending on the ða=bÞx value,

the MCN and ROR models’ RBE estimates will differ

significantly from the LWD estimates (no ða=bÞx depen-
dency). Owing to the large differences between models

in RBE and RBE-weighted dose in the OARs, the use of

the identical OAR dose constraint across different models

likely would not give optimal OAR sparing for all strate-

gies. To achieve the best possible OAR sparing with the

different strategies, the planning and optimization pro-

cess was done in 2 steps. First, a pure PTV-based optimi-

zation (no constraints on the OAR dose) was performed

with respect to RBE-weighted dose. Then, the OAR dose

constraint levels were set below the maximum values

from the previous step to penalize the OAR dose equally

for all strategies (values are provided in Table EB.1). The

highest priority during optimization was the mean dose to

the PTV. We defined a homogeneity criterion specifying

that 100% of the PTV should be receiving 95% and

107% of the dose after step 2.

The optimizer

The framework for biological optimization was based

on a prototype optimizer for particle therapy developed

by Mairani et al.31,32 The optimizer uses the information

about pencil beams, physical dose, biological variables

from the linear-quadratic model (aD and
ffiffiffi

b
p

D), and

voxel information to achieve an optimized treatment plan

with respect to either physical or RBE-weighted dose.

The optimization algorithm is described in Appendix E2

and the calculation of RBE-weighted dose in Appendix E3.

In short, for the MCN and ROR models, the dose is calcu-

lated as a combination of the linear quadratic model and the

definition of RBE, which makes the RBE dependent on a

and b for both reference radiation and the physical dose.

For the LWD, the RBE is defined as a linear function of the

LET, normalized to provide a mean RBE of 1.1 to the clini-

cal target volume. For differential RBE optimization, the

variable RBE-weighted dose in the PTV-term is replaced

with a constant RBE1.1-weighted dose, whereas a variable

RBE-weighted dose is used in the OAR term. This allowed

us to apply different biological and physical objectives to

different segmented volumes during the same optimization.

For regions where the PTV and OARs overlapped, the cost

for each volume was calculated independently using their

respective ða=bÞx values, with no additional priority of the

PTV.

Results

All optimization strategies resulted in a homogeneous

RBE-weighted dose within the spread-out Bragg peak for

the water phantom (Appendix E4), verifying the imple-

mentation of the optimization software. RBE values were

consistent with previous results from the respective RBE

models, and as expected, a lower ða=bÞx reduced the

physical dose to the PTV (Fig E4.1).

Prostate cancer case

Full optimization with ða=bÞx-dependent models gave

alterations of the dose to the PTV and lower RBE-weighted

doses to the rectum and bladder compared with the differen-

tial strategies and the RBE1.1 reference plan. The FOMCN

model provided a mean PTV RBE-weighted dose reduction

of 10% compared with the reference plan, whereas the
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FOROR model gave a mean dose reduction of 5% (Fig 1A

and 1C). For the OARs, the FOMCN model reduced the max-

imum dose (D2%) by 10% for the rectum. The correspond-

ing value for the FOROR model was 5% (Fig 1B and 1D).

The high RBE in the target volume, owed to a low

ða=bÞx, provided large differences between the reference

plan and the variable RBE plans from the FO strategies

with the MCN and ROR models. This is shown in

Figure 2B for both the mean and maximum RBE1.1-

weighted dose to the PTV and OARs, respectively; the

full RBE strategies provided significantly lower doses

compared with the other strategies. Both LWD-based

strategies and the differential MCN and ROR strategies

provided only negligible differences compared with the

RBE1.1 reference plan.

Brain tumor case

The results from the optimization strategies for the

brain-tumor case showed less variation compared with

the results for the prostate case. However, the differential

MCN and ROR optimization as well as the FOLWD strat-

egy achieved some OAR sparing in terms of both the

RBE1.1 dose (Fig 2A) and the RBE-weighted dose

(Fig 3B and 3D). The DOMCN strategy reduced the RBE-

weighted maximum dose by 3% to 5% for the OARs

compared with the RBE1.1 plan, and the DOROR strategy

showed a reduction of 2% to 3%, whereas for the DOLWD

strategy, the dose difference was negligible (Fig 3F). The

reduction in the maximum OAR dose compared with the

reference plan for FOMCN and FOROR was small (<1%),

whereas for FOLWD, the reduction varied from 2% to 3%

(Fig 3B, D, and F).

The largest reductions in dose were observed at the

distal part of the beams where the chiasm and left optic

nerve are located (first column in Fig 4). For the tissue-

dependent models, the DO strategy gave the largest

reduction in OAR dose (Fig 3B and 3D), whereas FO

gave the largest reduction when applying the LWD model

(Fig 3F). We observed only minor changes in the median

LETd between the different strategies (Fig 2D), which

indicates that the difference between the strategies are

mainly based on the physical dose and the ða=bÞx:

Patient with head and neck cancer

In the case of head and neck cancer, the full RBE opti-

mization strategies provided a larger reduction in OAR

dose compared with the differential strategies, whereas

the MCN strategies provided the greatest OAR dose

reduction and the LWD strategies provided the lowest

compared with the RBE1.1 reference plan (Fig 2C). Full

Figure 1 The RBE-weighted dose difference between the reference RBE1.1 plan and the variable RBE models in the different strate-

gies. The blue, red and green areas represent the PTV for the respective cases. In the brain tumor case, the OARs are brain stem (yel-

low), left optic nerve (turquoise), and chiasm (yellow). For the prostate case, the OARs are bladder (blue) and rectum (pink). For the

head and neck case, the OARs are the right pterygoid (orange) and left parotid gland (light green). Abbreviations: OAR = organ at

risk; PTV = planning target volume; RBE = relative biological effectiveness.
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optimization with ða=bÞx-dependent models provided a

lower RBE-weighted dose overall compared with the

RBE-weighted dose recalculated from the reference plan

(Fig 4P and 4Q). Here, the greatest change relative to the

reference plan was seen for the FOMCN model, in which

the maximum dose to the right pterygoid was reduced by

10% (Fig 5B). The FOROR model provided similar

results, with a reduction in maximum dose of 7%

(Fig 5D). For FOLWD, the corresponding dose was

reduced by 2% (Fig 5F). The observed variations

between strategies were likely owed to the low ða=bÞx
values for the target volume and the OARs, leading to a

high RBE in both the target organ and OARs for the

ða=bÞx-dependent models. Not allowing a variable RBE

in the target from the differential RBE strategies, the

DOMCN strategy provided a 4% reduction in the maxi-

mum dose to the right pterygoid, whereas the DOLWD

strategy provided a reduction of 1%. The DOROR model

provided a similar but slightly smaller reduction in the

OAR dose compared with DOMCN. There was no signifi-

cant change in the median LETd between the strategies

in this case (Fig 2F). The trends from the differential

optimizations are similar to those observed in the brain

tumor case, suggesting lower case variability for the dif-

ferential strategies.

The head and neck case provided plans outside the

homogeneity criterion, but a comparison between the

original treatment plan and the RBE-optimized plans

from our optimizer (Fig E7.3 in Appendix E7) showed

only small differences between the original treatment

plan and the optimized plans in terms of dose coverage to

the PTV.

Discussion

Motivated by the concern for unanticipated toxicity

from LET and RBE effects when using RBE1.1 in treat-

ment planning7,19,39 and the need to assess the impact of

different biological optimization strategies, variable RBE

models, and an LWD model were implemented and

applied for dose calculation in 2 optimization strategies.

Overall, the full RBE optimization was found to give the

greatest reduction in the RBE-weighted dose to both the

PTV and the OARs compared with the reference plan.

However, in the brain tumor case, where the high target

ða=bÞx resulted in low RBE values, differential RBE

optimization gave the greatest reduction in the RBE-

weighted dose to the OARs. We also observed that LWD

strategies reduced the RBE-weighted dose to the OARs,

Figure 2 Overview of RBE1.1-weighted dose (top row) and LETd (bottom row) resulting from the different optimization strategies.

The colors indicate the respective RBE and LWD models and the cyan line represents the reference plan (RBE1.1 optimization). The

square markers represent the full strategy and the circle markers represent the differential strategies. Abbreviations: LET = linear

energy transfer; LWD = LET-weighted dose; RBE = relative biological effectiveness.
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Figure 3 Dose-volume histograms for all strategies in the prostate case. The solid line represents the RBE-weighted dose for the full

RBE optimization strategies and the dashed line represents the RBE-weighted dose for the differential RBE optimization strategies.

The teal color represents the respective model recalculated from the RBE1.1 reference plan. The dose on the axis is the RBE-weighted

dose for the given model. Abbreviation: RBE = relative biological effectiveness.
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Figure 5 Dose-volume histograms for all strategies in the head and neck cancer case. The solid line represents the RBE-weighted

dose for the full RBE optimization strategies and the dashed line represents the RBE-weighted dose for the differential RBE optimiza-

tion strategies. The teal color represents the respective model recalculated from the RBE1.1 reference plan. The dose on the axis is the

RBE-weighted dose for the given model. Abbreviation: RBE = relative biological effectiveness.

Figure 4 Dose-volume histograms for all strategies in the brain tumor case. The solid line represents the RBE-weighted dose for the

full RBE optimization strategies (FO) and the dashed line represents the RBE-weighted dose for the differential RBE optimization

strategies (DO). The teal color represents the respective model recalculated from the RBE1.1 reference plan. The dose on the axis is the

RBE-weighted dose for the given model. Abbreviation: RBE = relative biological effectiveness.
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but generally to a lesser degree than the MCN and ROR

models.

The FOMCN and FOROR strategies showed similar

RBE-weighted dose distributions for all cases, although

the MCN-based optimization provided a greater RBE-

weighted dose reduction compared with the reference

plan (RBE1.1). This implies that introducing the MCN

model clinically will be a greater step away from an RBE

of 1.1 compared with applying the ROR model. For the

brain tumor case, with high ða=bÞx to the PTV and low

ða=bÞx elsewhere, the optimizer was not able to signifi-

cantly reduce the RBE-weighted dose to the OARs

through full RBE optimization (Fig 3B and 3D). There-

fore, the full LWD optimization strategy gave the largest

differences in RBE-weighted dose compared with the ref-

erence plan in this case, because it was not affected by the

large difference in ða=bÞx between the OARs and the

PTV. This suggests that for high ða=bÞx tumors, full RBE

optimization may overestimate the need for physical dose

deposition in the PTV. Also, to our knowledge, observa-

tion of underdosage in proton therapy from using an RBE

of 1.1 has not been an issue raised, with the exception of

medulloblastoma cases with high ða=bÞx.40
For the case of full RBE optimization of the prostate, the

mean physical dose reduction to the reference plan for the

PTV was 10% and for the MCN and ROR models, 5%,

showing both a larger difference to the reference plan and a

difference between the RBE models as compared with the

brain tumor case. This is a reflection of the low PTV

ða=bÞx value for the prostate, giving opportunities for OAR
dose reduction at the cost of reduced physical dose deliv-

ered to the target. The relatively homogeneous LET distri-

bution, owed to the opposing fields, resulted in a small

effect for both the full and differential LWD-optimization

strategies, with marginal differences compared with the ref-

erence plan. This was also the case for all the differential

RBE optimization results, indicating that this strategy is

indeed more effective in reducing dose to OARs when hav-

ing notable high LET values. Overall, these results suggest

that applying a differential strategy or an LWD-based strat-

egy for a prostate case, or similar cases with opposing fields,

would have little potential to reduce OAR doses. On the

other hand, for such cases with a low target ða=bÞx value,

full MCN and ROR could be a good option if OAR sparing

is of high priority. This should only be done after a careful

consideration of potential underdosage of the tumor because

this strategy will significantly reduce the physical dose (up

to 10% in this case) in the high-LET regions in the target.

In the head and neck case, the 3 fields, combined

with an identical ða=bÞx value for both the PTV and the

OARs, resulted in a clear reduction in maximum dose

for all the full RBE strategies, because the higher degree

of freedom allowed reduction of the RBE-weighted

dose at the distal beam ends. Because the largest differ-

ences in this case were found in the distal part of the

beams, as in the brain tumor case (Fig 4, columns 1 and

3), it is clear that the effect of a certain optimization

strategy in general will depend on the field configura-

tion. Further investigation of this could be relevant (eg,

for proton arc therapy).

The ða=bÞx parameter has uncertainties and is thereby a

current intrinsic limitation of the variable RBE models.

They are, however, commonly accepted in clinics, and we

therefore found it relevant to use them in this study. Other

limitations of the study include the parameter D2%, which

was applied to assess the maximum dose levels to the

OARs. In this study, we used the parameter for case com-

parisons, although an alternative approach would be to com-

pare dose levels directly associated with reported toxicity.

The cases in this study were selected to show and compare

the optimization strategies relative to each other, and there-

fore, 3 common cases for proton therapy were chosen.

Another factor that could be included would be to keep the

same OAR constraint for all models and then see how the

different strategies would differ from the results in this

study. Because the dose constraint to the OARs varied

between the cases, a common physical dose constraint could

be applied to compare the strategies’ abilities.

The largest differences between the optimization

strategies were observed at the distal part of the

beams. This could relate to clinical LET effects; pos-

sible evidence of this was found by Eulitz et al, Peeler

et al, Underwood et al, Bahn et al, and Engeseth

et al,4-7,39 who observed treatment-related change,

mostly at the distal end of the PTV, in magnetic reso-

nance imaging and computed tomography follow-up

in patients who received proton therapy. The treatment

plans from these studies were optimized using an RBE

of 1.1, which might indicate that there is some over-

dosage at the distal end of the beam, and this may

have negative consequences both inside and outside

the target. Although more clinical evidence is war-

ranted, the emerging clinical observations support the

introduction of OAR dose reduction through full RBE

or LWD optimization by reducing the dose within

OARs. A combination between this study’s strategies

and robust optimization could provide a good continu-

ation from this work. With robust optimizaton, for

example, biological range uncertainties would be

taken into account. Robust optimization of set-up

errors could also reveal potential LET and RBE hot-

spots in the patient. The disadvantage is that with

MC-based treatment-planning tools, robust optimiza-

tion would be time consuming.

The results in this study could be generalized for

cases with similar properties in terms of field position-

ing. The prostate case, especially, could be general-

ized becuase it is a very standard case in terms of

field positioning. For the other cases, the field configu-

ration created high LET values in the distal end,

which will likely be similar for many brain tumor and

head and neck cases.
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Conclusion

This study shows that RBE- and LET-based optimiza-

tion has great potential for OAR dose reduction, but the

risk of target underdosage must be carefully considered.

The varying effects of the optimization strategies depend-

ing on case-specific parameters illustrate that applicabil-

ity of a certain model and optimization strategy requires

solid understanding of the models, input variables, and

potential dosimetric pitfalls. For tumors with high

ða=bÞx, better OAR sparing may in some cases be

achieved with differential RBE optimization or LWD

optimization strategies compared with full RBE optimi-

zation. However, applying a differential strategy or an

LWD-based strategy for a prostate case, or similar cases

with opposing fields and low target ða=bÞx, would have

little potential for lowering OAR doses.

Supplementary materials

Supplementary material associated with this article

can be found in the online version at https://doi.org/

10.1016/j.adro.2021.100776.
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Supplementary materials 

 

This is the supplementary material, where the first paragraph explains the RBE models, and the 

background for choosing them in our project. The second paragraph contains details about the 

treatment plans and the optimization algorithm. Appendix E3 describes how the RBE is derived and 

used in our study, while Appendix E4 contains the results for the water phantom case. The next 

paragraphs consist of additional results in terms of physical dose to the different cases, and DVHs. 

Appendix E1 RBE models 

 

MCN model 

The MCN model is based on a regression fit to 287 experimental data points. It is based on all 

published in vitro cell survival data [13]. The 𝑅𝐵𝐸𝑚𝑎𝑥 and 𝑅𝐵𝐸𝑚𝑖𝑛 are defined as follows: 

𝑅𝐵𝐸𝑚𝑎𝑥 = 0.99064 +
0.35605 𝐺𝑦

(
𝛼
𝛽
)
𝑥

𝐿𝐸𝑇𝑑 

𝑅𝐵𝐸𝑚𝑖𝑛 = 1.1012 −  0.0038703𝐺𝑦−
1
2(𝑘𝑒𝑉 𝜇𝑚)−1

√(
𝛼

𝛽
)
𝑥

𝐿𝐸𝑇𝑑 

ROR model 

ROR is based on a non-linear dependency between the RBE and LET. The RBEmin  =

 1,while the 𝑅𝐵𝐸𝑚𝑎𝑥 is based on a biological weighting function (BWF) which is derived from in vitro 

cell experiments. The BWF (𝑟𝑚𝑎𝑥(𝐿)) weights the LET spectrum (𝑑(𝐿)). The 𝑅𝐵𝐸𝑚𝑎𝑥 and 𝑅𝐵𝐸𝑚𝑖𝑛 are 

defined as follows: 
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𝑅𝐵𝐸𝑚𝑖𝑛 = 1 

 

LWD model 

LWD is not an explicit RBE-model, but a model made for LET-optimization. The principle is that the LET 

has a linear dependency to the RBE, and the median RBE should be 1.1 to the CTV. The RBE can 

therefore be written as:  

𝑅𝐵𝐸 = 1 + 𝑐 ×  𝐿𝐸𝑇𝑑 

To create an RBE model after our formalism, we put 𝑅𝐵𝐸 = 𝑅𝐵𝐸𝑚𝑎𝑥 = 𝑅𝐵𝐸𝑚𝑖𝑛 which gives us 

𝑅𝐵𝐸𝑚𝑎𝑥(𝐿𝐸𝑇𝑑) = 1 + 𝑐 × (𝑘𝑒𝑉 𝜇𝑚)−1𝐿𝐸𝑇𝑑 

𝑅𝐵𝐸𝑚𝑖𝑛(𝐿𝐸𝑇𝑑) = 1 + 𝑐 × (𝑘𝑒𝑉 𝜇𝑚)−1𝐿𝐸𝑇𝑑 

where the c is calculated from the median LET to the CTV, so that the RBE is 1.1 : 

𝑐 =
𝑅𝐵𝐸𝑚𝑒𝑑𝑖𝑎𝑛 − 1

𝐿𝐸𝑇𝑑−𝑚𝑒𝑑𝑖𝑎𝑛
=

0.1

𝐿𝐸𝑇𝑑−𝑚𝑒𝑑𝑖𝑎𝑛
 

The LETd-median used in this study, and their respective c-values are given in Table E1.1. The c-value for 

the water phantom case comes from Unkelbach et al. [23]. 

𝑅𝐵𝐸𝑚𝑎𝑥(𝑑(𝐿)) = ∫ 𝑟𝑚𝑎𝑥(𝐿)𝑑(𝐿)𝑑𝐿,
∞

0

    

𝑟𝑚𝑎𝑥(𝐿) = 1 +
1 Gy

(𝛼 𝛽)𝑥⁄
(0.578 (

keV

μm
)

−1

𝐿 − 0.0808 (
keV

μm
)

−2

𝐿2 + 0.00564 (
keV

μm
)

−3

𝐿3

− 9.92 × 10−5 (
keV

μm
)

−4

𝐿4) , 𝐿 < 37.0
keV

μm
 

𝑟𝑚𝑎𝑥(𝐿) = 1 + 10.5
𝐺𝑦

(𝛼 𝛽⁄ )𝑥

,                                          𝐿 ≥  37.0
keV

μm
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Table E1.1 Mean median dose to the CTV, and the calculated c-value for each case 

 Water 

Phantom 

Brain Tumor Prostate Head and neck 

LETd-median(CTV) 

[𝑘𝑒𝑉/𝜇𝑚] 

N/A 3.16 2.87 2.57 

c-value 0.040 0.0316 0.0348 0.0389 

 

The LETd for each voxel, v is calculated by the equation (E1.1)[41]: 

 

where Φ𝑖,𝑣(𝐸) is the fluence of the proton with kinetic energy 𝐸 in voxel 𝑣, 𝐿𝐸𝑇𝑣(𝐸) is the unrestricted 

LET for the same kinetic energy and voxel, and 𝜌𝑤 is the density of water (1 g/cm3). Here, only the LET 

from primary and secondary protons was considered as described by Grassberger and Paganetti [42]. 

 

Background of model selection 

 

The MCN model is based on the largest collection of cell-line data of all published models and fitted 

linearly to the LET, and this model was therefore natural to consider in this study. Other RBE models 

which are based on linear fit to the LET, generally have similar linear RBE vs. LET relationship as the 

MCN model [16]. The ROR model is also based on a large cell-line library and on the LET but applies a 

non-linear relationship between RBE and LET relationship. Therefore, only monoenergetic in vitro 

experiments are included in the database and the model also uses the LET spectrum as parameter for 

the radiation quality, in contrast to most models which applies the LETd. It was important to have two 

RBE models which was depended on the (𝛼 𝛽⁄ )𝑥 so the differences between the models were 

 𝐿𝐸𝑇𝑑,𝑣 =
∑ ∫

Φ𝑣(𝐸)
𝜌𝑤

(𝐿𝐸𝑇𝑣(𝐸))
2
𝑑𝐸𝑖

∑ ∫
Φ𝑣(𝐸)

𝜌𝑤
(𝐿𝐸𝑇𝑣(𝐸))𝑑𝐸𝑖

 

 

. 

E1.1  
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illuminated, and thus we could compare the differences and quantify the uncertainties in the 

strategies. A comparison to more recent and emerging RBE data from in vivo [3, 43] and clinical studies 

[6, 7] may be useful to adapt RBE models to application for OARs, as more knowledge of the RBE in 

especially OARs is still needed. Therefore, using the LWD model could be a wise step in the right 

direction until the uncertainties in these libraries are lower. The LWD model is purely dependent on 

the LET without any use of cell-line data, and was made to prevent high LET values in critical structures, 

as shown by Unkelbach et al. [23]. Here, a c-value scales the value of the RBE, so that the mean RBE to 

the CTV was 1.1. This value was varied in this study, depending on the median LETd in the computed 

target volume (CTV). The LWD model is not technically classified as an RBE model because of its 

neglection of the quadratic term in the LQ-model, which should be taken into consideration as it 

represents the fractionation effects [23].  

 

 

 

 

 

 

 

 

Appendix E2 Treatment plans 

Details of the treatment plans are given below in Table E2.1, while the details of the optimization 

algorithm are given in the following paragraph. 
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Table E2.1 Properties and parameters for the different cases used in this study, with the angles given as Gantry Angle (GA) 

and Patient Support Angle (PSA) 

 Water 

phantom 

Brain tumor Prostate Head and neck 

Number of fields and field 

angles 

1 GA 257°, PSA 0° 

GA 291°, PSA 60° 

2 opposing 

fields 

GA 55°, PSA 0° 

GA 85°, PSA 0° 

GA 135°, PSA 0° 

Prescribed dose to PTV 

[Gy(RBE)] 

2 54 67.5 50.4 

OARs included in the 

optimization 

N/A Brainstem 

Left optic nerve 

Rectum 

Bladder 

Left pterygoid 

Right parotid gland 

Upper dose limit to OAR 

[Gy(RBE)] (FOMCN and 

FOROR) 

N/A 55 58 40 

Upper dose limit to OAR 

[Gy(RBE)] (FOLWD) 

N/A 50 64 45 

Upper dose limit OAR 

[Gy(RBE)] (DOMCN and 

DOROR) 

N/A 55  67.5 45 

Upper dose limit OAR 

[Gy(RBE)] (DOLWD) 

N/A 45 67.5 40 

Fractions 1 30 25 28 

(𝜶/𝜷)𝒙 PTV [Gy] 2 and 10 10.6 [34] 1.5 [35] 2.8 [36] 

(𝜶/𝜷)𝒙 OAR [Gy] N/A 2.1 [38] 3.5 [37] 2.8 [36] 

 

 



6 
 

Treatment planning 

This optimizer is part of a multi-step procedure to optimize a given number of particles (𝑁𝑥) for a 

given pencil beam (𝑃𝑥), from 𝑃1(𝑁1) to an MC optimized solution 𝑃2(𝑁2). 

Based on the pre-optimized spot list, we define the physical dose to a voxel 𝑗 as: 

where 𝑵 is the vector of beam particle numbers for each pencil beam 𝑖 and 𝑑𝑖,𝑗  is the dose contribution 

from pencil beam 𝑖 to the dose in voxel 𝐷𝑗. 

For the optimization problem, we defined the cost function to be minimized as: 

 

where �̂�𝑗 is the prescribed dose in voxel 𝑗, 𝑫𝑗 ≡ 𝐷𝑗(𝑵), as given in equation (E2.1) and 𝑤𝑗 is the 

weighting factor for the different PTV and OARs. Θ is the Heaviside function, with contribution only if 

the dose in the voxel is higher than the prescribed dose. 

In the optimizer, the dose difference algorithm is used, introduced by Lomax [44]. It states that for the 

(𝑘 + 1)th iteration step, the particle numbers 𝑵𝑖+𝑘 for pencil beam 𝑖 are calculated as: 

 

where 𝐹𝐷𝐷𝑂 is a damping factor. There is no monitor unit constraint for the optimizer, i.e., there were 

no lower boundary for particles per pencil beam. 

For biological optimization, we replace the dose in equation (E2.1) with the RBE-weighted dose. 

 𝐷𝑗(𝑵) =  ∑ 𝑑𝑖,𝑗 ∙ 𝑁𝑖 ,

𝑖∈𝑃𝐵

 (E2.1) 

 χ2(𝑵) = ∑
𝑤𝑗(�̂�𝑗 − 𝑫𝑗)

2

�̂�𝑗
2

𝑗𝜖𝑃𝑇𝑉

+ ∑
𝑤𝑗(�̂�𝑗 − 𝑫𝑗)

2

�̂�𝑗
2

𝑗𝜖𝑂𝐴𝑅

Θ(�̂�𝑗 − 𝑫𝑗), 

 

. 

(E2.2) 

 𝑵𝑖,𝑘+1 = 𝑵𝑖,𝑘 ∙

[
 
 
 
 

1 + 𝐹𝐷𝐷𝑂

(

 
 

∑ 𝑤𝑗𝑑𝑗,𝑘
2

𝑗∈𝑃𝑇𝑉

�̂�𝑗

𝑫𝑗,𝑘
+ ∑ 𝑤𝑗𝑑𝑗,𝑘

2
𝑗∈𝑂𝐴𝑅

�̂�𝑗

𝑫𝑗,𝑘
Θ(�̂�𝑗 − 𝑫𝑗)

∑ 𝑤𝑗𝑑𝑗,𝑘
2

𝑗∈𝑃𝑇𝑉 + ∑ 𝑤𝑗𝑑𝑗,𝑘
2

𝑗∈𝑂𝐴𝑅 Θ(�̂�𝑗 − 𝑫𝑗)
− 1

)

 
 

]
 
 
 
 

, 

 

. 

(E2.3) 
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Appendix E3 Definition of variable RBE and LETd-weighted dose (LWD) 

 

The variable RBE models for RBE are based on the definition of RBE and the LQ-model, where the 

RBE can be written as: 

𝑅𝐵𝐸 (𝐷𝑝, (
𝛼𝑥

𝛽𝑥
) , 𝑅𝐵𝐸𝑚𝑎𝑥, 𝑅𝐵𝐸𝑚𝑖𝑛) =

1

2𝐷𝑝
(√(

𝛼𝑥

𝛽𝑥
)
2

+ 4𝐷𝑝 (
𝛼𝑥

𝛽𝑥
)𝑅𝐵𝐸𝑚𝑎𝑥 + 4𝐷𝑝

2𝑅𝐵𝐸𝑚𝑖𝑛
2 − (

𝛼𝑥

𝛽𝑥
)). 

Here, 𝐷𝑝 is  the physical proton dose, 𝛼𝑥 and 𝛽𝑥 are the LQ-model parameters for the reference 

radiation [45], and 𝑅𝐵𝐸𝑚𝑎𝑥 and 𝑅𝐵𝐸𝑚𝑖𝑛 are the parameters which are varied for each individual 

model. 𝑅𝐵𝐸𝑚𝑎𝑥  and 𝑅𝐵𝐸𝑚𝑖𝑛 are defined as 

lim
𝐷𝑝→0

𝑅𝐵𝐸 = 𝑅𝐵𝐸𝑚𝑎𝑥 =
𝛼

𝛼𝑥
 

lim
𝐷𝑝→∞

𝑅𝐵𝐸 = 𝑅𝐵𝐸𝑚𝑖𝑛 = √
𝛽

𝛽𝑥
. 

 

The LWD approach is a tissue-independent alternative which may reduce the risk of RBE-weighted 

dose hotspots in OARs without explicit modelling of the RBE and the associated uncertainties. It 

assumes an RBE surrogate, given as 

𝑅𝐵𝐸𝐿𝑊𝐷 = 1 + (𝑐 × 𝐿𝐸𝑇) 

where c is a constant that scales the LET and is normalized so the mean RBE to the CTV is 1.1.  
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Appendix E4 Water phantom results 

 

Implementation verification in water phantom 

All optimization strategies resulted in a homogenous RBE-weighted dose within the SOBP for their 

respective RBE models, as seen in Figure E4.1 panels a and b, thus verifying the implementation. The 

shape of the physical dose distribution is similar for the different variable RBE optimizations, with the 

highest physical dose at the proximal part of the SOBP and decreasing dose towards the distal end as 

the optimization strategies compensates for the expected increase in RBE along the beam path. The 

LWD model is based on a mean RBE of 1.1 to the target, which we observe for this case where the 

mean physical dose (𝐷𝑝ℎ𝑦𝑠
𝐿𝑊𝐷) was 1.78 Gy, close to the prescribed physical dose of 1.82 Gy 

(corresponding to a 2 Gy(RBE1.1) dose). For low (𝛼 𝛽⁄ )𝑥, a clear reduction in physical dose to the target 

for the tissue dependent models was, as expected, seen since both ROR and MCN have an inverse 

relationship with the (𝛼 𝛽⁄ )𝑥. Therefore, the (𝛼 𝛽⁄ )𝑥 dependent models provided a lower mean 

physical dose for (𝛼 𝛽⁄ )𝑥 of 2 Gy, and higher for (𝛼 𝛽⁄ )𝑥 of 10 Gy (panel a and b in Figure E4.1), showing 

the strong impact of the tissue parameters in the optimization process. The difference in physical dose 

between the 2 and 10 Gy (𝛼 𝛽⁄ )𝑥 was greater near the distal end of the beam, compared to the 

entrance region, as seen in Figure E5.1 in Appendix E5. 

The SOBP optimized with RBE1.1 and recalculated with the variable RBE models can be seen in panels c 

and d in Figure E4.1, with corresponding DVHs for the water phantom plan are given in Appendix E7, 

Figure E7.1 and Figure E7.2. Here, the highest mean RBE-weighted dose comes from the MCN model 

for(𝛼 𝛽⁄ )𝑥 of 2 Gy ((𝐷𝑀𝐶𝑁
𝑅𝐵𝐸1.1) of 2.22 Gy(RBE)), and the LWD gives the highest for (𝛼 𝛽⁄ )𝑥 of 10 Gy 

((𝐷𝐿𝑊𝐷
𝑅𝐵𝐸1.1) of 2.03 Gy(RBE)), also displayed by the color wash plots of the RBE-weighted dose 

differences in Figure E5.1 in Appendix E6. A shift up to several millimeters in the dose fall-off is also 

observed towards the distal part in the (𝛼 𝛽⁄ )𝑥 = 2 Gy scenario, for all recalculations.  
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Figure E4.1 Depth dose distributions for the water phantom with (𝛼 𝛽⁄ )𝑥  of 2 Gy to the left and (𝛼 𝛽⁄ )𝑥  of 10 Gy to the 

right. The upper panels (a and b) show the RBE-weighted (solid) and physical (dashed) dose of the plans optimized with 

respect to the four different models. The lower panels (c and d) show the RBE1.1-optimized plan (solid line), recalculated with 

the variable RBE-models (dashed lines). 

 

 

Appendix E5 Physical dose comparison   

 

In this appendix, the physical dose distribution for the different strategies are compared.  Figure E5.1 

shows the physical dose difference between the variable RBE and the reference RBE1.1-plan, while 

Figure E5.2 shows the same difference for the three patient cases. The DVH for the physical dose 

difference for the patient cases are given in Figure E5.3 and FigureE5.4 
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Figure E5.1 Physical dose difference for the different variable models and the RBE1.1 reference plan, for the water phantom 

case. 
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Figure E5.2 Physical dose difference for the different variable models and the RBE1.1 reference plan, for the different patient 

cases. 
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Figure E5.3 DVH for the physical dose (dashed lines) and the RBE1.1 reference plan for the full RBE optimization strategies 

(solid lines).  

 

 



13 
 

Figure E5.4 DVH for the physical dose for the different variable models and the RBE1.1 reference plan for the differential RBE 

optimization strategies. 

 

 

Appendix E6 Additional colorwash plots 

Water Phantom 

The RBE-weighted dose differences between the RBE1.1 and the variable RBE models for the water 

phantom are seen in Figure E6.1.  
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Figure E6.1 RBE-weighted dose differences between the variable RBE models and the variable RBE recalculated from the 

RBE1.1-plan. 
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Patient cases 

Figure E6.2 shows the RBE-weighted dose for the different strategies for the three cases respectively.  
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Figure E6.2 RBE-weighted dose distribution for the patient-cases, optimized with respect to the different strategies. The PTV 

are marked in blue, red and green respectively. 

 

 

Appendix E7 Additional Dose Volume Histograms 

 

Water phantom 

The DVH for the water phantom strategies are given below in Figure E7.1 (RBE1.1-comparison) and 

Figure E7.2 (MCN-comparison). 

 

Figure E7.1 DVH for the water phantom. The solid lines represent the RBE-weighted dose from the different strategies, while 

the dashed lines represent the RBE-weighted dose from the respective models, recalculated from the RBE1.1-plan. 
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Figure E7.2 DVH for the water phantom. The dashed lines represent the RBE-weighted dose from the respective plans 

calculated with the MCN-model. 

 

Patient cases: 

Figure E7.3 shows the RBE-weighted dose to the PTV for the different strategies in the head and neck 

case, as well as the RBE-weighted dose to the PTV from the original Eclipse plan. 
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Figure E7.3 Comparison of the RBE-weighted dose to the PTV in the head and neck case. The TPS-plans are given in purple, 

and the optimized RBE-weighted dose for the different strategies are given in their respective colors. 
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