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ABSTRACT
BACKGROUND: Schizophrenia is a complex polygenic disorder with subtle, distributed abnormalities in brain
morphology. There are indications of shared genetic architecture between schizophrenia and brain measures despite
low genetic correlations. Through the use of analytical methods that allow for mixed directions of effects, this overlap
may be leveraged to improve our understanding of underlying mechanisms of schizophrenia and enrich polygenic risk
prediction outcome.
METHODS: We ran a multivariate genome-wide analysis of 175 brain morphology measures using data from 33,735
participants of the UK Biobank and analyzed the results in a conditional false discovery rate together with
schizophrenia genome-wide association study summary statistics of the Psychiatric Genomics Consortium (PGC)
Wave 3. We subsequently created a pleiotropy-enriched polygenic score based on the loci identified through the
conditional false discovery rate approach and used this to predict schizophrenia in a nonoverlapping sample of
743 individuals with schizophrenia and 1074 healthy controls.
RESULTS:We found that 20% of the loci and 50% of the genes significantly associated with schizophrenia were also
associated with brain morphology. The conditional false discovery rate analysis identified 428 loci, including 267
novel loci, significantly associated with brain-linked schizophrenia risk, with functional annotation indicating high
relevance for brain tissue. The pleiotropy-enriched polygenic score explained more variance in liability than
conventional polygenic scores across several scenarios.
CONCLUSIONS: Our results indicate strong genetic overlap between schizophrenia and brain morphology with
mixed directions of effect. The results also illustrate the potential of exploiting polygenetic overlap between brain
morphology and mental disorders to boost discovery of brain tissue–specific genetic variants and its use in polygenic
risk frameworks.

https://doi.org/10.1016/j.biopsych.2021.12.007
Schizophrenia is a highly heritable complex brain disorder with
a polygenic architecture, involving numerous common poly-
morphisms with small effects (1). While genome-wide associ-
ation studies (GWASs) have identified hundreds of genetic
variants associated with schizophrenia, together these explain
only a fraction of its heritability (2). Identifying more variants will
increase our understanding of the underlying disease mecha-
nisms and improve genetic prediction, with potential for clinical
utility. However, this is currently not feasible, as uncovering a
significant portion of the heritability with conventional ap-
proaches will require sample sizes of more than a million in-
dividuals (3).

The complexity of the genetic architecture of schizophrenia
has made it difficult to determine a genetic relationship with
abnormal brain morphology phenotypes associated with the
disorder (4). Patients with schizophrenia have on average a
thinner cerebral cortex compared with healthy peers as well
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as reductions in cortical surface area (5). Subcortically,
schizophrenia is associated with smaller hippocampal and
amygdala volumes, larger lateral ventricles (6), and smaller
cerebellum (7). In line with the clinical and genetic heteroge-
neity of schizophrenia, imaging studies have documented
substantial brain structural heterogeneity (8), and specific
regional deviations are shared by a only small percentage of
individuals (9).

It is possible to boost the power of schizophrenia genetic
studies by leveraging auxiliary genetic information contained
in a related trait (10), such as brain morphology. Surprisingly,
large-scale investigations have shown no or low genetic cor-
relations between schizophrenia and brain structure (4,11).
However, substantial genetic overlap may remain undetected
by standard measures of genetic correlation owing to mixed
directions of effects of shared genetic variants across the two
traits, canceling each other out (12). Conditional false
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discovery rate (cFDR) analysis uses overlapping variant as-
sociations, regardless of direction of effects, to re-rank the
test statistics in a primary phenotype conditional on the as-
sociations in a secondary phenotype (10,13). The idea behind
this is that in the presence of cross-trait enrichment, a variant
with strong associations with both traits is more likely to
represent a true association. This approach has been shown
to allow for discovery of many novel variants (13), which have
been found to replicate well (14,15). Further, owing to the
distributed effects of genetic variants involved in brain
morphology, the data can be analyzed more powerfully
through a multivariate approach, capitalizing on the shared
genetic signal across regional brain measures by considering
the brain as an integrated unit (16), thereby providing greater
statistical power and better alignment with the underlying
biology than univariate approaches.

Here we characterized the polygenic overlap between
schizophrenia and brain morphology, using a comprehensive
set of brain morphology measures combined in a multivariate
framework, and investigated whether this overlap can be
leveraged to allow for discovery of common genetic variants
contributing to brain-linked schizophrenia risk. We further
sought to improve the polygenic prediction of schizophrenia by
leveraging the newly identified genetic overlap.

METHODS AND MATERIALS

Participants

We used data from the UK Biobank (UKB) population cohort,
under accession number 27412. The composition, set-up, and
data-gathering protocols of UKB have been described else-
where (17). After preprocessing, our sample size for the pri-
mary neuroimaging analyses, excluding individuals with
schizophrenia, was 33,735, with a mean (SD) age of 64.33
(7.49) years, and 52.02% was female. For replication of the
polygenic score (PGS) findings, we used 576 individuals with a
schizophrenia diagnosis (mean [SD] age 55.76 [8.39] years,
35.60% female) and 317,139 individuals without any brain
disorder diagnosis (mean age 57.43 [8.04] years, 54.90% fe-
male) not part of the neuroimaging sample.

We further used the TOP (Thematically Organized Psycho-
sis) clinical cohort. For the polygenic scoring analyses, we had
complete genetic data available for 743 individuals with
schizophrenia (mean age 32.76 [13.29] years, 42.80% female)
and 1074 healthy individuals (mean age 32.49 [10.00] years,
47.39% female). For association of univariate brain measures
with diagnosis, we had available neuroimaging data of 457
individuals with schizophrenia (mean age 30.54 [9.47] years,
41.79% female) and 998 healthy individuals (mean age 33.33
[10.26] years, 45.49% female). Each sample was collected with
the participants’ written informed consent and with approval
by local institutional review boards.

Genetic Data Preprocessing

We used UKB v3 imputed data, quality controlled as described
by the UKB genetics team (18). We carried out standard quality
check procedures, including removing individuals with more
than 10% missingness, lead single nucleotide polymorphisms
(SNPs) with more than 5% missingness, with an INFO score
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below 0.8, and failing the Hardy-Weinberg equilibrium test at
p = 1 3 1029. We set a minor allele frequency (MAF) threshold
of 0.005, leaving 9,061,072 SNPs. This MAF was chosen in
accordance with previous imaging genetics work with UKB
data by our group (16). Extensive information on the TOP ge-
netic processing is given in Supplement 1.

Image Acquisition

For the genetic analyses of neuroimaging data, we used UKB
magnetic resonance imaging data released up to March 2020.
T1-weighted scans were collected from four scanning sites
throughout the United Kingdom, all on identically configured
Siemens MAGNETOM Skyra 3T scanners (Siemens AG). The
UKB core neuroimaging team has published extensive infor-
mation on the applied procedures (19).

For the association of brain morphology with schizophrenia
diagnosis, we used T1-weighted data from TOP, collected at
the Oslo University Hospital on three scanners: a 1.5T Siemens
MAGNETOM Sonata (Siemens AG), a 3.0T Signa HDxt (GE
Healthcare), and a 3.0T GE 750 (GE Healthcare). For details on
scanning protocols, see Brandt et al. (20) and Kaufman et al.
(21).

Neuroimaging Data Preprocessing

We applied the standard recon-all-all processing pipeline of
FreeSurfer v5.3, performing automated surface-based
morphometry and subcortical segmentation (22,23). From the
output, we extracted 175 global, subcortical, and cortical
morphology measures. Table S1 in Supplement 1 contains all
the measures included. We included both the left and the right
hemisphere measures, if applicable.

For the imaging GWAS of UKB data, we first selected all
individuals with White European ancestry, based on self-
identification as White British and similar genetic ancestry. A
cross-ethnic analysis including 5737 non-White participants
and yielding highly similar results is provided in Supplement 1.

We excluded anyone with an ICD-10 schizophrenia diag-
nosis, indicated by an F2 code; individuals with bad structural
scan quality, indicated by an age- and sex-adjusted Euler
number (24) 3 standard deviations below the scanner site
mean; or individuals with a global brain measure 5 standard
deviations from the sample mean. Finally, we removed one of
each genetically related pair of individuals, defined by a
threshold of 0.0625 determined by genome-wide complex trait
analysis (25).

We followed a similar preprocessing procedure for
associating brain measures with schizophrenia in TOP.
White European ethnicity was based on self-report. DSM-IV
diagnosis of schizophrenia was determined based on the
Structured Clinical Interview for DSM-IV Axis I disorders.
Controls were individuals without brain damage or history of
a severe psychiatric disorder themselves or first-degree
relatives.

For both samples, separately, we regressed out age, sex,
scanner site, Euler number, and the first 20 genetic principal
components from each brain measure. We further regressed
out estimated intracranial volume for subcortical volumes,
mean thickness for regional thickness measures, and total
surface area for regional surface area measures. We then
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applied rank-based inverse normal transformation (26) to the
residuals.
Genetic Analyses

A univariate GWAS on each of the 175 processed brain
morphology measures was carried out using the additive
model in PLINK2 (27). We ran a multivariate GWAS on all pre-
residualized brain morphology measures using the Multivariate
Omnibus Statistical Test (MOSTest). MOSTest yields one set
of summary statistics that captures the significance of its as-
sociation across all measures for each SNP. See van der Meer
et al. (16) for an extensive description of MOSTest, its valida-
tion, and application to brain morphology data. The MOSTest
software is openly available via https://github.com/precimed/
mostest.

We further ran a GWAS on nonmelanoma skin cancer for
use as a negative control, given that this is a heritable trait (28)
with no significant association with psychiatric disorders (29).
We made use of the UKB data, categorizing all individuals with
an ICD-10 code C44 as cases, restricted to White Europeans
without brain disorders. We ran a logistic regression with
PLINK2, covarying for age, sex, and 20 genetic principal
components.

We used summary statistics from the Psychiatric Genomics
Consortium Wave 3 (PGC3) schizophrenia GWAS (30) to check
for genetic overlap between brain morphology and schizo-
phrenia. We selected meta-analyzed summary statistics
excluding the TOP sample, preventing sample overlap, con-
taining 13,025,668 SNPs for 50,965 individuals with schizo-
phrenia and 68,049 controls.

We conducted cFDR analysis, conditioning the PGC3
schizophrenia GWAS on the brain morphology GWAS, through
the pleioFDR tool using default settings (https://github.com/
precimed/pleiofdr). PleioFDR builds on statistical pleiotropy,
defined as the presence of associations with both traits (31).
We set an FDR threshold of 0.01 as whole-genome signifi-
cance, in accordance with recommendations.

Independent significant SNPs and genomic loci were iden-
tified from the resulting GWAS summary statistics in accor-
dance with the Functional Mapping and Annotation (FUMA)
SNP2GENE definition (32). We also used FUMA (https://fuma.
ctglab.nl/) to map SNPs to genes, using default settings. Given
that cFDR output is incompatible with FUMA, we first identified
lead SNPs according to FUMA definitions by clumping these
summary statistics at an FDR threshold of 0.01 (https://github.
com/precimed/python_convert) before using the FUMAs pre-
defined lead SNPs option.

We carried out gene-based analyses through MAGMA v1.08
for the GWASs of brain morphology and schizophrenia (not for
cFDR, as this is not valid), with a SNP-wide mean model and
the 1000 Genomes Phase 3 EUR reference panel.

Hypergeometric tests were applied through FUMA
GENE2FUNC function to calculate overlap between the
sets of mapped genes and differentially expressed genes
in each of the 54 tissues available in the Genotype-Tissue
Expression (GTEx) v8 database. Differentially expressed
genes were defined as genes with log2 transformed,
normalized expression values (reads per kilobase million,
zero mean) with p value # .05 after Bonferroni correction
Biological Ps
and absolute log fold change $0.58 in a given tissue, the
default set by FUMA.

Polygenic Scoring

We calculated PGSs through PRSice v2 (33). We first clumped
each of the summary statistics (skin cancer, brain morphology,
schizophrenia, and cFDR) through PLINK, using an MAF
threshold of 0.05, p-value threshold of 1, linkage disequilibrium
threshold of 0.1, and distance threshold of 10 mb. We then ran
PRSice, calculating PGSs for the individuals in TOP (and UKB
replication sample) based on the PGC3 summary statistics,
using the most significant lead SNPs from each of the four
clumped summary statistics as determined by the indicated
PGS threshold.

We used logistic regression to calculate the log odds and
Nagelkerke R2 of the PGSs at each threshold, with schizo-
phrenia diagnosis as outcome in TOP and UKB separately. We
included age, sex, batch, and the first 20 genetic principal
components as covariates. See Supplement 1 for robustness
analyses, whereby we created PGSs based on different
GWASs to predict schizophrenia and intelligence.

Statistical Analyses

All downstream analyses were run in R v3.6.1 (R Foundation
for Statistical Computing). Graphs were created using ggplot2
(34), and brain maps were created through pysurfer https://
pysurfer.github.io/. Coding applied for this study and an
overview of the steps involved in the novel polygenic scoring
approach, pleiotropy-enriched PGS (pleioPGS), are available at
https://github.com/norment/open-science.

RESULTS

There was considerable overlap between the loci and genes
identified in the PGC3 schizophrenia GWAS and those
discovered through the multivariate analysis of 175 brain re-
gions. There were 571 independent unique genetic loci asso-
ciated with brain morphology at p, 53 1028. Of these, 32 loci
were also among the 164 genome-wide significant loci (i.e.,
19.5%) associated with schizophrenia (Figure 1A). Through
MAGMA (32,35), we found 1586 genes significantly associated
with brain morphology after multiple comparisons correction,
of which 252 were also among the 508 genes (i.e., 49.6%)
identified through the schizophrenia GWAS. Supplements 2
and 3 list all discovered loci and genes.

Conditional FDR

The cFDR analysis, conditioning the schizophrenia GWAS on
the multivariate brain morphology GWAS, further indicated
genetic overlap (Figure 1B). Through cFDR, we identified 428
independent significant loci, of which 267 were novel
compared with the schizophrenia GWAS (Figure S1 in
Supplement 1). Supplement 2 lists information on all identified
loci.

As follow-up of the main analyses using multivariate
data, we checked for significant genetic overlap between
schizophrenia and the individual univariate brain measures.
The number of cFDR-discovered loci were between 235 and
315 per region (median = 270), while genetic correlations
were between 20.11 and 0.11 (median = 20.01, maximum
ychiatry August 15, 2022; 92:291–298 www.sobp.org/journal 293
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Figure 1. Identification of genetic overlap
between schizophrenia and brain morphology. (A)
Miami plot, depicting the 2log10 (p values) on the
y-axis, of each genetic variant by their genomic po-
sition per chromosome on the x-axis, as identified
through the multivariate brain morphology GWAS
(top half) and schizophrenia GWAS (bottom half). The
red dashed lines indicate the genome-wide signifi-
cance threshold of 5 3 1028. Note that the y-axis is
clipped at 2log10 (p value) = 100. (B) Quantile-
quantile plot conditioning the schizophrenia GWAS
on the multivariate brain morphology GWAS. Suc-

cessive leftward deflection from the null distribution (dotted line) of the observed p-value distributions at more stringent significance thresholds (color-coded
lines) indicates genetic overlap between the two traits. GWAS, genome-wide association study; SNPs, single nucleotide polymorphisms.
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p value 1.2 3 1024). The full results are summarized in
Supplement 5.

Functional Annotation

There were 50 lead SNPs with a Combined Annotation-
Dependent Depletion score above 12.37, categorizing them
as deleterious (36), versus 20 of the schizophrenia GWAS lead
SNPs. There were no significant differences in distributions of
minimum chromatin state scores or RegulomeDB scores (37),
indicating that the SNPs identified through either cFDR or the
schizophrenia GWAS were equally likely to be located in reg-
ulatory regions.

Gene Mapping

The lead SNPs identified by the cFDR analysis were mapped
onto 1114 genes, of which 645 genes were not mapped
through the schizophrenia GWAS. Among the top novel genes
identified were RORA, encoding a nuclear receptor essential
for development of the cerebellum (38) and for regulating
circadian rhythm and immune function (39), hailed as a strong
potential drug target (40); BCL11A, a transcription factor
294 Biological Psychiatry August 15, 2022; 92:291–298 www.sobp.org
important for cortical development by regulating axon
outgrowth (41), coupled to intellectual disability (42); and
ALG14, encoding a catalyst of glycosylation, mutation of which
is known to cause early, severe neurodegeneration (43) and
behavioral problems (44). Information on each mapped gene is
listed in Supplement 4.

Further, the set of genes mapped through the cFDR loci
was significantly enriched for genes with known differential
expression in the brain, particularly in the cerebellum and
frontal cortex, but not in nonbrain tissues. This contrasts
with the genes identified through the brain morphology
GWAS (n = 2245) and schizophrenia GWAS (n = 660), which
showed less specificity of expression in brain tissue
(Figure 2). As we have previously shown that the brain
morphology GWAS does produce highly significant asso-
ciations with genetic pathways central for brain develop-
ment (16), we speculate that these findings speak to the
nature of this test, capturing specificity, which is lost for the
multivariate brain morphology data owing to the large
number of genes identified.

The cFDR-identified genes were significantly over-
represented in Gene Ontology (GO) nervous system
Figure 2. Brain tissue–specific expression of the
mapped genes. (A) Results for the genes mapped
through the multivariate brain morphology GWAS.
(B) The schizophrenia GWAS and (C) conditioning
the schizophrenia GWAS on the multivariate brain
morphology GWAS. The y-axis shows the 2log10
(p values) of the hypergeometric tests, testing for
enrichment of the identified genes among gene sets
with tissue-specific gene expression based on the
GTEx v8 database. The x-axis shows each of the 54
tissues, split by brain and body tissues, and sorted
within these categories by the significance of the
pleiotropy-informed gene set enrichment. The hori-
zontal dashed red line indicates the multiple
comparisons–corrected significance threshold, at
p = .05/(54 tissues 3 3 analyses). BA, Brodmann
area; GWAS, genome-wide association study.
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development gene sets and previously identified through
GWASs of bipolar disorder, neuroticism, cognitive ability, and
intelligence. This was also the case when rerunning these
analyses on only the 645 novel genes (Figures S3 and S4 in
Supplement 1).

We additionally compared our gene list with two studies
coupling transcriptomics data to GWAS summary statistics to
boost identification of schizophrenia genes not linked to the
PGC set of significant loci. Of the non-PGC identified genes,
16 were among the 62 additional genes reported by Gusev
et al. (45), 43 were overlapping with the 162 additional genes
identified by Walker et al. (46), and 7 were overlapping between
all three.
Figure 3. Prediction of schizophrenia diagnosis by polygenic scores in
the TOP sample. The x-axis indicates the number of most significant single
nucleotide polymorphisms that went into the polygenic scores, based on the
results from the skin cancer GWAS (green bars), brain morphology GWAS
(orange bars), schizophrenia GWAS (purple bars), or conditional false dis-
covery rate analysis conditioning the schizophrenia GWAS on the multi-
variate brain morphology GWAS (pink bars). The y-axis indicates Nagelkerke
R2. The p values of the association between the polygenic scores and
schizophrenia diagnosis are listed above the bars. GWAS, genome-wide
association study; TOP, Thematically Organized Psychosis.
Polygenic Scoring

We hypothesized that a pleiotropy-informed approach, iden-
tifying SNPs that influence schizophrenia conditioned on brain
morphology in independent samples, can reduce noise in the
creation of PGSs owing to locus selection being based on two
traits, lowering the likelihood of chance findings. To test this,
we created PGSs to predict schizophrenia diagnosis for par-
ticipants of the TOP clinical cohort. We first selected the most
significant lead SNPs identified by 1) the multivariate brain
morphology GWAS; 2) the schizophrenia GWAS; 3) the cFDR
(schizophrenia/multivariate brain morphology) analysis; or 4)
nonmelanoma skin cancer, as a control measure. We then
calculated the PGSs for each of these sets of lead SNPs,
based on the regression coefficients from the schizophrenia
GWAS summary statistics (excluding the TOP cohort). We
calculated the scores for a number of lead SNPs rather than for
significance thresholds to allow for direct comparison between
the approaches, at equal numbers of SNPs in each set. Here,
the 200 SNPs threshold corresponds approximately to whole-
genome significance, and the 30,000 SNPs threshold corre-
sponds approximately to the number of lead SNPs identified in
the schizophrenia GWAS at nominal p = .05, the threshold
commonly applied for schizophrenia PGSs (30). As shown in
Figure 3, at these thresholds, the cFDR-based pleioPGSs
showed best prediction. Expressed as variance in liability,
pleioPGSs explained 0.013 with the top 200 SNPs versus
0.008 for regular PGSs. With the top 30,000 SNPs, this was
0.077 versus 0.069. Figure S5 in Supplement 1 shows the
explained variance in schizophrenia diagnosis per 1000 lead
SNPs for each locus selection strategy through a sliding win-
dow approach. This graph illustrates that the variance
explained by each subsequent window goes down strongest
for the pleioPGS and the standard schizophrenia-based PGS,
while there is no difference between the first and the last
window of SNPs based on the skin cancer GWAS, indicating
the lack of information captured by selecting loci based on this
trait.

We subsequently sought to determine the robustness of
these findings by rerunning the PGS analyses with different
settings. In each case, the pleioPGS approach performed as
good as or better than the conventional PGS approach. We
first tested the use of a different replication sample: when
calculating scores on 576 UKB participants with a schizo-
phrenia diagnosis versus 317,139 individuals without brain
disorders, the pleioPGS explained 0.022 (top 200 SNPs) and
Biological Ps
0.063 (top 30,000 SNPs) variance in liability compared with
0.012 and 0.059 for regular PGSs. Second, we used an earlier
subset of the schizophrenia GWAS to generate the PGSs,
namely, the smaller (and thus likely noisier) PGC2 schizo-
phrenia GWAS (2), with the TOP cohort excluded. With this, the
explained liability in TOP was 0.017 and 0.057 for pleioPGS
versus 0.009 and 0.050 for regular PGSs. Third, we checked
how the approach generalizes to a different outcome measure:
we first ran a GWAS of fluid intelligence on 100,000 UKB
participants, followed by a cFDR analysis whereby we condi-
tioned this GWAS on the multivariate brain morphology GWAS.
We then created PGSs based on the resulting summary sta-
tistics and predicted intelligence in a random holdout set of
18,515 participants. Here, the pleioPGS approach explained
0.023 and 0.059 variance at the two thresholds versus 0.020
and 0.055 for regular PGSs. Therefore, with each of these three
analyses, we saw that pleioPGS performed better at lower
thresholds and that it reached a plateau earlier, indicating that
it may allow for improved prioritization of genetic variants to
study and predict brain traits (see Supplement 1 for more de-
tails and the full results).

DISCUSSION

With the present study, we provide evidence of polygenic
overlap between schizophrenia and brain morphology that has
not been detected with standard genetic approaches (4,11).
We showed that this shared genetic architecture may be used
to discover novel genetic variants that may play a role in
schizophrenia, identifying 267 loci not discovered by the PGC
and implicating schizophrenia-associated genes with high
relevance for brain morphology. Lastly, we found that PGSs
based on the shared genetic architecture between schizo-
phrenia and brain magnetic resonance imaging morphology
can be used for predicting schizophrenia.
ychiatry August 15, 2022; 92:291–298 www.sobp.org/journal 295
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The present identification of genetic overlap between
schizophrenia and brain morphology probably results from the
application of analytical approaches more in line with the
complex nature of the polygenic architecture of the brain and
brain-related disorders such as schizophrenia. In particular,
the distributed nature of genetic signal relevant to schizo-
phrenia across the brain supports the use of multivariate
methods (16), and the mixed directions of effects involved in
the genetic overlap support the use of methods that do not
rely on globally consistent directionality of effects (13,16). The
high polygenicity of nearly all clinically relevant traits suggest
that there are a large number of neurobiological mechanisms
involved (3), and there is often large genetic overlap between
many pairs of traits, while there is a relatively low genetic
correlation (12). This indicates that some of these mecha-
nisms strengthen both traits, while others inhibit the expres-
sion of one trait and strengthen the other. Given this, the
approaches put forth here are able to better characterize the
complex genetic architecture beyond genetic correlation,
providing a more accurate model of the genetic relationship
between brain-related traits and disorders (1), essential for our
understanding of the etiology of schizophrenia and other
mental disorders.

Thehighyield in termsofgenome-widesignificant loci fromthe
cFDR analyses further support the value of considering genetic
overlap between schizophrenia and brain morphology, providing
important leads for understanding the neurobiological un-
derpinnings of this disorder. Through the cFDR approach, we
more than doubled the number of loci identified compared with
the largest schizophrenia GWAS available to date (30). Condi-
tioningaschizophreniaGWASonamultivariatebrainmorphology
GWAS allows for the identification of genetic determinants,
particularly of brain-linked schizophrenia risk. This is further
supported by functional annotation of these cFDR loci, with the
mapped genes being linked to brain tissue–specific gene
expression. A subset of the genes not reported by the PGC were
also found in studies identifying schizophrenia risk genes on the
basis of brain transcriptome data (45,46), thereby increasing the
confidence in these findings through converging evidence.
Further experimental interrogation of the identified loci may un-
cover biological insights that can lead to better understanding of
the disease mechanisms and inform the development of novel
treatment regimens. In addition, the specificity attained by our
current approach may be valuable to parse schizophrenia ge-
netics. Here we applied a brain morphology GWAS to boost the
identification of nervous system genes associated with schizo-
phrenia; we expect that other novel genes may be found when
conditioning the schizophrenia GWAS on other system-specific
GWAS, such as immune-related disorders or traits.

We further found that a pleioPGS has the potential to
improve PGSs. We note that this was specifically the case for
more stringent significance thresholds, in line with the
reasoning that this approach brings about greater specificity,
being particularly relevant for identifying the subset of loci that
are most relevant for brain-linked schizophrenia risk. This
approach appears robust, as the improved performance is also
seen when using a subset of the main schizophrenia GWAS,
i.e., less statistical power, as well as when using another in-
dependent schizophrenia test sample. We also found a similar
pattern of results when analyzing another brain-related trait,
296 Biological Psychiatry August 15, 2022; 92:291–298 www.sobp.org
fluid intelligence. This suggests that the concept underlying the
pleioPGS may be widely applicable. This approach is based on
the selection of loci identified by conditioning the genetics of
one trait on that of another trait, leading to better out-of-
sample prediction, possibly by reducing noise in GWAS
signal and identifying more biologically relevant genetic vari-
ants. This is conceptually similar to a previous report that
PGSs based on genetic variants specific to placental tissue are
more predictive of schizophrenia than PGSs based on
nonspecific variants (47). We are currently following up on this
approach with the investigation of more pairs of traits.

It should be noted that the presence of statistical pleiotropy
leveraged in this study to improve gene discovery and pre-
diction can be partly driven by patterns of linkage disequilib-
rium and MAF (31). This warrants replication of the findings in
new samples in the future. We also note the discrepancy in
demographics between the elderly population–based UKB and
younger clinical TOP sample, which may have contributed to
larger error in the polygenic scoring analyses. Further, exper-
imental studies are needed to clarify the molecular mecha-
nisms underlying the current statistical associations. Last, we
note that our aim was to illustrate the broad concept of
leveraging genetic overlap to aid discovery and prediction. We
thereby recognize that we did not explore other tools to ach-
ieve this, as that falls outside the scope of the current work,
leaving that for future studies. Regardless of these limitations,
our approach may be of particular clinical interest in the
context of comorbidity; by conditioning a disease on comorbid
traits or disorders, we may be able to improve the prediction of
clinical subgroups.

To conclude, we provide evidence in this study for poly-
genic overlap between schizophrenia and brain morphology.
This enabled us to identify 267 novel loci and 645 genes with
specific relevance for the nervous system in schizophrenia. It
also made it possible to develop enriched PGSs based on
overlapping genetic architecture between brain morphology
and schizophrenia. This suggests that the current approach
can be used to attain greater specificity in identifying the un-
derlying biological pathways and improve our understanding of
the disease mechanisms of schizophrenia.
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