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Abstract. This paper concerns the modeling and numerical simulation of the process of speci-
ation. In particular, given conditions for which one or more speciation events within an ecosystem
occur, our aim is to develop the necessary modeling and simulation tools. Care is also taken to estab-
lish a solid mathematical foundation on which our modeling framework is built. This is the subject
of the first half of the paper. The second half is devoted to developing a multiscale framework for
eco-evolutionary modeling, where the relevant scales are that of species and individual/population,
respectively. The species level model we employ can be considered as an extension of the classical
Lotka--Volterra model, where in addition to the species abundance, the model also governs the evo-
lution of the species mean traits and species trait covariances and in this sense generalizes the purely
ecological Lotka--Volterra model to an eco-evolutionary model. Although the model thus allows for
evolving species, it does not (by construction) allow for the branching of species, i.e., speciation
events. The reason for this is related to that of separate scales; the unit of species is too coarse
to capture the fine-scale dynamics of a speciation event. Instead, the branching species should be
regarded as a population of individuals moving along a selection of trait axes (i.e., trait-space). For
this, we employ a trait-specific population density model governing the dynamics of the population
density as a function of evolutionary traits. At this scale there is no a priori definition of species,
but both species and speciation may be defined a posteriori as, e.g., local maxima and saddle points
of the population density, respectively. Hence, a system of interacting species can be described
at the species level, while for branching species a population level description is necessary. Our
multiscale framework thus consists of coupling the species and population level models where speci-
ation events are detected in advance and then resolved at the population scale until the branching is
complete. Moreover, since the population level model is formulated as a PDE, we first establish the
well-posedness in the time-discrete setting and then derive the a posteriori error estimates, which
provides a fully computable upper bound on an energy-type error, including also for the case of
general smooth distributions (which will be useful for the detection of speciation events). Several
numerical tests validate our framework in practice.
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1. Introduction. Mathematical models have a long history in ecology and evo-
lutionary biology, with the most famous example being the Lotka--Volterra model [18],
which describes the interaction of two species (commonly referred to as predator and
prey) at a timescale where individual traits remain constant, i.e., there is no evolu-
tion. Going beyond strictly ecological models, the interaction between ecology and
evolution has been studied extensively in the so-called adaptive dynamics literature
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(see e.g., [6, 7, 16, 17] and the references therein). In particular, the concept known
as ``adaptive speciation,"" i.e., the idea that a series of small adaptive changes in the
traits of individuals over a long enough time leads to a diversity of species, has received
considerable attention [8, 9, 10, 11, 12, 24]. In the current work, we are studying the
process of adaptive speciation at the level of model formulation where the species
is regarded as the fundamental unit of the eco-evolutionary system, and where the
species dynamics is emergent from the dynamics at the population/individual level.

The process of speciation is a biological phenomenon in which a population within
one species gradually evolves into two (or more) distinct species (for classical liter-
ature on speciation, see, e.g., [4, 16, 21, 23]). As such, speciation is an emergent
property of natural selection acting on a population of individual organisms. If the
individual is regarded as the fundamental unit of the evolutionary process, the point
at which the gradual evolutionary changes has accumulated sufficiently to produce
a new species becomes a matter of definition (e.g., reproductive isolation). On the
other hand, if species is regarded as the fundamental unit, it becomes important to
separate evolution into two categories: cladogenesis, which is the splitting of a parent
species into new distinct child species, and anagenesis, which is the gradual evolution
of a species that continues to exists. Modeling the process of speciation using math-
ematical models therefore presents a different set of challenges whether one takes the
individual or the species as the fundamental unit of the eco-evolutionary system.

The difficulty in modeling the process of speciation using any species interaction-
type model is inherent in the model itself, i.e., it is assumed a priori that distinct
species can be identified at all times within the population. Since a speciation event
will necessarily imply some ambiguity in the identification of distinct species (at least
for a period of time), a breakdown in the underlying assumptions of the model is
therefore unavoidable. In mathematical terms, the coarse-scale species level model
is by construction unable to capture the fine-scale population dynamics of a spe-
ciation event. The mathematical challenge in modeling speciation as an emergent
property is therefore related to the connection of these two scales. Relevant studies
concerning this difficulty have covered, e.g., evolutionary branching driven by stochas-
tic mutations [28], derivation of an eco-evolutionary model at the species level but
not including the variability in species abundance [5], and the derivation of a model
describing the interaction of different morphs within the same species [25].

A fundamental observation of real biological systems is that most of the time
individuals are clearly grouped into distinct species. Thus, it is natural to take the
species as the fundamental unit of any eco-evolutionary model. However, another
observation is that over evolutionary time speciation events do occur. Hence, from
the time there is only the parent species to the time when increasingly diverging traits
among the constituent individuals has resulted in new child species, the natural unit
to consider is instead the individual (or population). These observations form the
basis of our developments; most of the time we assume the species-level formulation
is the correct description of a given biological system (i.e., distinct species evolve as
species), and only for the (short) intermediate time interval between the existence
of parent and child species, and we temporarily discard the species-centric view and
instead regard the relevant population as trait specific distributions.

The species-interaction model we take as the starting point is formulated as a sys-
tem of ordinary differential equations (ODE) describing the dynamics of a biological
system in which any finite number of species interact and evolve adaptively over evo-
lutionary time (referred to in what follows as the species level (SLM), or macroscale
model). This model extends the Lotka--Volterra system by representing each species
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not only by its abundance, but also by its mean traits coordinate and trait covari-
ance matrix. It originates in a recent work by two of the authors [20], wherein the
model equations were derived by applying a moment closure averaging technique on
a deterministic trait-specific population density model (referred to in what follows as
the population level (PLM) or microscale model), under the assumptions that (A1)
distinct species can be identified at all times and that (A2) the species distributions
are of a known statistical quality (in this case, the normal distribution). See also
related derivations in, e.g., [5, 25].

The population level model is formulated as a partial differential equation (PDE)
and governs the abundance density as a function of evolutionary traits. Moreover, the
authors showed in [20] that the species and population level models are consistent,
i.e., they describe the same system dynamics as long as the system behavior is such
that both models are valid. Still, these descriptions are fundamentally different in that
they operate on separate scales: the species level model operates with the coarser unit
of distinct species while the population level model operates with the finer unit of the
individual (i.e., the category of species is not imposed upon the individuals who make
up the population). Thus, the species level model described above approximates the
system dynamics governed by the population level model, under the conditions that
the population can be grouped into distinct species and that each species' distribution
conforms to a normal distribution. While this requirement that trait distributions of
a species are essentially normally distributed may seem restrictive, we note that the
shape of a distribution is not an intrinsic quality of the observed system, but is equally
dependent on the scale of measurement. This assumption can thus be considered
not as much a limitation on the biological system as a constraint on the scale of
measurement. Note also that due to the deterministic nature of the population level
model, this property is also inherited at the species level.

The first part of our developments concerns monitoring the species in the system
and estimating the deviation from the true population density function. We do this
as follows: Since each species is described by an abundance-trait-covariance tuple, we
map these to time dependent distributions. Then, using derived a posteriori error
estimates of the population level model, we track the modeling error of each species'
associated distribution function. The second part concerns the case of residual blow-
up, which implies a model breakdown at the species level, here associated with a
speciation event. Concerning the actual speciation event we compare two different
approaches with regard to splitting the parent species into new child species. (1)
Heuristic approach: When a residual blow-up is detected, we proceed to split the
relevant reconstructed distribution function along the trait directions orthogonal to
the direction of divergence. Each of these subdistributions are then mapped back to
abundance-trait-variance tuples, thus yielding the new child species to be incorporated
at the species level. (2) Multiscale approach: When a residual blow-up is detected,
we delegate the relevant species' reconstructed density function to the population
level model to be solved in an appropriate local region of trait space while coupled to
the species level model which governs the interaction of the remaining species in the
system. Simultaneously, we map the local abundance density function to abundance-
trait-variance tuples and measure the distance between the mean trait coordinates.
At such time when the new child species are sufficiently separated in trait space (e.g.,
by a multiple of the maximum trait standard deviation), we incorporate the new child
species at the species level and decouple the multiscale model. We assess the accuracy
of each approach by comparing the species parameters (pre- and post-speciation) to
the corresponding statistical moments of the reference (global) PLM solution.
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Based on our results, we find that the multiscale approach gives the better ap-
proximation of the reference PLM solution postspeciation and thus conclude that a
multiscale approach is indeed necessary for robust eco-evolutionary modeling at the
level of species interaction, capable of handling speciation events. Although we base
our developments on the specific models described above, our methodology is more
general; it is applicable on any species interaction model which, including the species
abundance, also incorporates the evolution of species mean traits and species trait
covariance in some way (thus allowing for the reconstruction of population density
distributions), whether the model is based on deterministic or stochastic dynamics.
Figure 1 below shows a schematic representation of the micro/macro-scale coupling
strategy for speciation events.

The article is organized as follows: In section 2 we present the relevant PLMs and
SLMs. In section 3 we introduce the time discrete population level model and proceed
to analyze this. In section 4 we derive the a posteriori error bound of the population
level model. In section 5 we present in detail the methodology for species splitting and
micro/macro-scale coupling. In section 6 we refine the derived error bound for the
case of individual species. In section 7 we provide numerical examples where we test
our multiscale framework in detail. Finally, in section 8 we provide some concluding
remarks.

2. Models. In this section we present both the (microscale) PLM and (macroscale)
SLM as described in [19]. We also briefly discuss the consistency of these model for-
mulations.

2.1. The trait-specific population level model. The PLM describes the
abundance of a population in terms of the population density as a function of evo-
lutionary traits over evolutionary time. The model relates the rate of change in
population density to birth/death rate of individuals, interaction between individuals
with different evolutionary traits (cooperation/competition), and interaction between
individuals with equal evolutionary traits (self-limitation). The evolution of the pop-
ulation, i.e., change in traits from one generation to the next, is incorporated as a
diffusion process.

Given an open, bounded domain \Omega \subset \BbbR d in trait space (i.e., the number of evolu-
tionary traits considered is equal to d \geq 1), and final time T > 0, let \Omega T := \Omega \times (0, T )

Ti
m
e

Trait

Pre-speciation

Speciation

Post-speciation SL
M

SL
M

SL
M +

PL
M

Fig. 1. Coupling of SLM and PLM during speciation events. Outside the green area the
macroscale (SLM) model is solved (here, the curve represents the reconstructed distribution func-
tion associated with each species' abundance-trait-covariance tuple); the green area indicates the
microscale (PLM) model is solved (here, the curve represents the abundance density, or, solution
function of the PLM).
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be the space-time domain, and let n : \Omega T \rightarrow \BbbR be the trait-specific population density,
or number of individuals per measure on \BbbR d. The domain \Omega can then be regarded as all
evolutionary traits being attainable by the relevant population over evolutionary time,
and the total number of individuals present at any time t \in (0, T ) is then given by
integration over all attainable traits, i.e.,

\int 
\Omega 
n(x, t)dx, where we require nonnegativity

of the population density, i.e.,

(2.1) n \geq 0 \forall (x, t) \in \Omega T .

Furthermore, let f : \Omega T \rightarrow \BbbR be the source term (net rate of migration/immigration).
The model then reads as the following nonlinear and nonlocal equation:

(2.2) \partial tn - rn+\Phi (n)n - \nabla \cdot (g\nabla n) = f.

The ecological processes consist of the growth term,  - rn, where r : \Omega T \rightarrow \BbbR is the
inherent per-capita growth-rate, and the interaction term,

(2.3) \Phi (n)n := bn2  - n

\int 
\Omega 

\alpha (x, y, t)n(y, t)dy,

where b : \Omega T \rightarrow \BbbR \geq 0 is the local individual limitation coefficient, and \alpha : \Omega \times \Omega T \rightarrow \BbbR 
is the nonlocal individual interaction coefficient, i.e., \alpha (x, y, t) is the effect of an indi-
vidual with trait coordinate y on an individual with trait coordinate x. The diffusive
term represents the evolutionary process, where g : \Omega T \rightarrow \BbbR d\times d is the intergenera-
tional trait diffusion tensor. Generally speaking, the model equation (2.2) belongs
to the class of reaction-diffusion type parabolic conservation equations (in this case,
with a nonlocal reaction term). We remark that several generalizations of (2.2) are
possible. In particular, the diffusive term as stated models incremental evolutionary
processes: To allow for rare but possibly nonincremental evolutionary processes more
general nonlocal operators (such as, e.g., fractional derivatives), should be considered.

Since homogeneous boundary conditions of Dirichlet type are always justified from
a biological perspective given a large enough trait domain \Omega , we shall only consider this
situation for the present purposes. We let initial data be specified by n(x, 0) = n0(x).
The PLM then reads as the following initial/boundary value problem:

Find n : \Omega T \rightarrow \BbbR such that n \geq 0 and

\partial tn - rn+\Phi (n)n - \nabla \cdot (g\nabla n) = f in \Omega T(2.4a)

n = 0 on \partial \Omega \times (0, T ),(2.4b)

n = n0 in \Omega \times \{ 0\} .(2.4c)

For additional details regarding the above model, see [20].

2.2. The species level model. The SLM describes the temporal evolution of
the abundance, mean traits coordinate, and trait covariance matrix of all species
in an eco-evolutionary system. Similarly to the PLM, the rate of change of the
species abundance is related to the growth/death rate, self-limitation, and cooper-
ation/competition, but here among distinct species. Evolution is thus incorporated
in the model by the change in mean traits (i.e., location in trait space) and change in
trait covariance (i.e., spread in trait space).

Indexing the species present in the ecosystem by i = 1, \cdot \cdot \cdot , s (where s \geq 1 is
the total number of species), we denote the abundance, mean traits coordinate, and
trait covariance matrix for species i at time t \in (0, T ) by ni(t) \in \BbbR , xi(t) \in \BbbR d, and
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\upsilon i(t) \in \BbbR d\times d, respectively, and let Ni := (ni, xi, \upsilon i) be the tuple representing the ith
species, and similarly let N := (N1, \cdot \cdot \cdot , Ns) represent the full s-species ecosystem.
Furthermore, let F0,i(t) \in \BbbR be the source of individuals for species i, with associated
mean and covariance F1,i(t) \in \BbbR d and F2,i(t) \in \BbbR d\times d, respectively. The model then
reads as the following system of ODEs (for i = 1, \cdot \cdot \cdot , s):

dni
dt

= Ni(N) := Rini  - Bin
2
i + ni

s\sum 
j=1
j \not =i

Ai,jnj + F0,i, t \in (0, T ),(2.5a)

dxi
dt

= Xi(N) := \upsilon i

\left(  \nabla ri  - 
ni

2\Lambda (\upsilon i)
\nabla bi +

s\sum 
j=1

nj\nabla i\alpha i,j + F1,i

\right)  , t \in (0, T ),(2.5b)

d\upsilon i
dt

= \Sigma i(N) := V0,i + V1,i\upsilon i + \upsilon iV2,i\upsilon i + F2,i, t \in (0, T ),(2.5c)

where \Lambda (\upsilon i) :=
\sqrt{} 
(2\pi )d| \upsilon i| 

1
2 and where (for i, j = 1, \cdot \cdot \cdot , s),

Ri := ri +
1

2
\nabla \nabla ri : \upsilon i,(2.6a)

Bi :=
1

\Lambda (\upsilon i)

\biggl( 
bi +

1

4
\nabla \nabla bi : \upsilon i

\biggr) 
 - (\alpha i,i +\nabla i\nabla i\alpha i,i : \upsilon i) ,(2.6b)

Ai,j := \alpha i,j +
1

2
\nabla i\nabla i\alpha i,j : \upsilon i +

1

2
\nabla j\nabla j\alpha i,j : \upsilon j ,(2.6c)

V0,i := 2gi,(2.6d)

V1,i :=
nibi

2\Lambda (\upsilon i)
,(2.6e)

V2,i := \nabla \nabla ri +
1

4

s\sum 
j=1

\nabla i\nabla i\alpha i,jnj +
ni

4\Lambda (\upsilon i)

\biggl( 
1

2
(\upsilon i : \nabla \nabla bi)\upsilon  - 1

i  - \nabla \nabla bi
\biggr) 
.(2.6f)

Here, we employed the following notational convention: ri(t) := r(xi(t), t), \nabla ri(t) :=
(\nabla r)(xi(t), t), and \nabla \nabla ri(t) := (\nabla \nabla r)(xi(t), t), and similarly for the other PLM coef-
ficients. Subscripts on differential operators indicate on which argument the operator
is acting. For the full s-species ecosystem, we abbreviate the above model as

(2.7) \scrN (N) := (N1(N),X1(N),\Sigma 1(N), \cdot \cdot \cdot ,Ns(N),Xs(N),\Sigma s(N))

and let initial data be given by

(2.8) N(0) = N0 := (N1,0, \cdot \cdot \cdot , Ns,0).

The species level model then reads as the following initial value problem:
Find N : (0, T ) \rightarrow \BbbR s(1+d+d2) such that ni \geq 0 for 1 \leq i \leq s, and

dN

dt
= \scrN (N), t \in (0, T ),(2.9a)

N = N0, t = 0.(2.9b)

In practice, the problem (2.9a)--(2.9b) can be reduced to s(1+d+d(d+1)/2) equations
due to the symmetry of the trait covariance matrix. For additional details including a
derivation of the above model, see [19]. Note also that when indexing the components
of a point x \in \Omega we use subscripts, i.e., x = (x1, \cdot \cdot \cdot , xd), not to be confused with the
species mean trait coordinate xi, where we write xi(t) = (xi,1(t), \cdot \cdot \cdot , xi,d(t)).
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2.3. Relationship between population and species level models. If there
is a time interval J := (t0, t1) \subset (0, T ) where s \geq 1 species can unambiguously be
identified, there exists a collection of nonoverlapping (possibly time dependent), open
and bounded regions in trait space, i.e., \{ Bi \subset \Omega , i \leq s,Bi \cap Bj = \emptyset , i \not = j\} , where
the population density is compactly supported and contains only one local maximum.
Thus, if we let \mu k

Bi
(n) be the kth order moment of n (for k \in \{ 0, 1, 2\} and assuming

n is smooth enough for these moments to exist), within the region Bi, i.e.,

\mu 0
Bi
(n) :=

\int 
Bi

n(x)dx,(2.10a)

\mu 1
Bi
(n) :=

1

\mu 0
Bi
(n)

\int 
Bi

n(x)xdx,(2.10b)

\mu 2
Bi
(n) :=

1

\mu 0
Bi
(n)

\int 
Bi

n(x)(x - \mu 1
Bi
)\otimes (x - \mu 1

Bi
)dx,(2.10c)

we can initialize the SLM at t = t0 with initial data

(2.11) N0 = (\mu 0
B1
, \mu 1

B1
, \mu 2

B1
, \cdot \cdot \cdot , \mu 0

Bs
, \mu 1

Bs
, \mu 2

Bs
)| t=t0 .

Solving (2.9a)--(2.9b) then amounts to approximating (2.10a)--(2.10c) for t \in J .

3. Time discrete PLM. In this section we introduce the time discrete PLM,
which will serve as the basis for the a posteriori error bounds: For k = 0, \cdot \cdot \cdot ,M , we
let tk denote the discrete times, such that 0 = t0 < t1 < \cdot \cdot \cdot < tM := T , and where
tk = tk - 1 + \tau k =

\sum k
j=1 \tau k, for some set of time increments \{ \tau k\} Mk=1 (in the following,

we use superscripts to indicate dependency on the discrete times, e.g., uk := u(tk)).
The time-discrete version of (2.2) then reads as (for k \geq 1)

(3.1) nk  - \tau kr
knk + \tau k\Phi 

k(nk)nk  - \tau k\nabla \cdot (gk\nabla nk) = \tau kf + nk - 1,

where we have discretized in time using a standard implicit first order method (i.e.,
the backward Euler method). While we do not prove convergence of the above discrete
scheme to the original continuous problem, the local truncation error for the back-
ward Euler method is known to be of second order, and one would expect first order
convergence of the time-discrete problem to the continuous problem for sufficiently
smooth problems.

We remark that the time-discrete problem has significant biological relevance by
itself, as many processes are naturally modeled on a discrete timescale due to the
presence of strong temporal cycles (e.g., day, year, and generation).

In the following, we first establish the existence of a solution to (3.1) in the weak
sense for every discrete time, and then we derive an identity for the residual which
also provides uniqueness of the time-discrete solution.

3.1. Notation. We employ standard notation for function spaces. For a function
space V we denote by \| \cdot \| V its energy norm, by V \ast its dual space, and by \langle \cdot , \cdot \rangle V \ast ,V

the dual pairing. In particular, for 1 \leq p \leq \infty and a domain D \subset \Omega we denote
by Lp(D) the Lebesgue-spaces of integrable functions defined on D, with associated
norm \| \cdot \| p,D (the domain subscript is omitted if this is clear from the context). Fur-
thermore, let Lp

+(D) := \{ u \in Lp(D) : u \geq 0 a.e.\} . For the case p = 2, we let

\| u\| := \| u\| 2 = (u, u)
1
2 , where (\cdot , \cdot ) is the standard L2 inner product. Moreover, we

denote by H(div,\Omega ) the space of functions in [L2(D)]d admitting a weak divergence
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and by H1(D) the space of functions in L2(D) admitting weak gradients, with its
vanishing trace subspace denoted by H1

0 (D), where H - 1(D) := H1
0 (D)\ast . Finally,

denote by H1
0,+(D) := H1

0 (D) \cap L2
+(D).

3.2. Preliminaries. Regarding the coefficients and source term of the PLM we
introduce the following assumption.

Assumption 3.1 (coefficients and source term). Assume that r, b, \alpha , g, and f are
defined for all discrete times tk such that the following holds for all for 1 \leq k \leq M :

1. rk, bk \in L\infty (\Omega ), and \alpha k \in L\infty (\Omega \times \Omega ), such that

(3.2a) | (rku, u)| \leq Rk\| u\| 2 \forall u \in L2(\Omega )

for some set of positive constants \{ Rk\} Mk=1.
2. The time increments \tau k are chosen such that

(3.2b) \gamma k := 1 - \tau kRk > 0.

3. gk \in [L\infty (\Omega )]d\times d, symmetric and uniformly positive definite, and such that

(3.2c) 0 < Gk| \zeta | 2 \leq \zeta Tgk(x)\zeta \forall \zeta \in \BbbR d \setminus \{ 0\} 

for some set of positive constants \{ Gk\} Mk=1.
4. n0 \in H1

0,+(\Omega ).

5. fk \in H - 1(\Omega ).

Due to (3.2b) and (3.2c), we now equip the space H1
0 (\Omega ) with the equivalent inner

product,

(3.3) (u, v)k := ((1 - \tau kr
k)u, v) + \tau k(g

k\nabla u,\nabla v),

and associated energy norm,

(3.4) | | | v| | | 2k := (v, v)k,

and define the Hilbert space Xk := (H1
0,+(\Omega ), (\cdot , \cdot )k) and corresponding dual space

X\ast 
k with respect to L2(\Omega ). For \xi \in X\ast 

k , we denote the dual norm by

(3.5) | | | \xi | | | k\ast := sup
v\in Xk,
| | | v| | | k=1

\langle \xi , v\rangle k,

where \langle \cdot , \cdot \rangle k := \langle \cdot , \cdot \rangle X\ast 
k ,Xk

is the dual pairing. Furthermore, let \scrL (Xk, X
\ast 
k) be the

space of all linear maps from Xk into X\ast 
k . For \Xi \in \scrL (Xk, X

\ast 
k), we denote the operator

norm by

(3.6) | | | \Xi | | | k,k\ast := sup
v\in Xk,
| | | v| | | k=1

| | | \Xi (v)| | | k\ast .

Due to Assumption 3.1 and the Poincar\'e inequality, there exists a constant ck,\Omega > 0
(depending on rk, gk, and \tau k in addition to the domain \Omega ) such that

(3.7) \| v\| \leq ck,\Omega | | | v| | | k \forall v \in Xk.

For 1 \leq k \leq M we now introduce the following assumption regarding the nonlineari-
ties of the PLM.
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Assumption 3.2 (nonlinear terms). Assume that \Phi k(u) \in \scrL (Xk, X
\ast 
k) for any u \in 

Xk, such that the following hold:
1.

(3.8a) \langle \Phi k(u)v, v\rangle k \geq 0 \forall v \in Xk.

2. For every ball \scrB a \subset Xk of finite radius a > 0, there exists Lk > 0 (depending
on k and a) such that there holds

(3.8b) | | | \Phi k(u) - \Phi k(v)| | | k,k\ast \leq Lk\| u - v\| 1 \forall u, v \in \scrB a.

3. \Phi k(u) is a monotone operator, i.e., there holds

(3.8c) \langle \Phi k(u)u - \Phi k(v)v, u - v\rangle k \geq 0 \forall u, v \in Xk.

With this, we introduce now the weak time-discrete formulation of the problem
(2.4a)--(2.4c): For k \geq 1 and given nk - 1 \in Xk find nk \in Xk such that the following
integral equality holds,

(nk, v)k + \tau k\langle \Phi k(nk)nk, v\rangle k = \tau k\langle fk, v\rangle k + (nk - 1, v) \forall v \in Xk,(3.9a)

and such that initial condition (2.4c) is satisfied in the weak sense, i.e.,

(3.9b) (n0, v) = (n0, v) \forall v \in Xk.

Remark 3.3 (assumptions). Assumption 3.1 is, to the best of the authors' un-
derstanding, natural from a biological point of view. On the other hand, Assumption
3.2 is introduced for the analysis and may be more restrictive than desired for cer-
tain biological systems. We will return to this issue in the numerical examples (cf.
section 7).

3.3. Solvability. In this section we discuss the solvability of the weak time-
discrete PLM (3.9). We summarize the result in the following theorem.

Theorem 3.4 (well-posedness). For d \geq 3 and given Assumptions 3.1 and 3.2,
for every 1 \leq k \leq M there exists a unique solution nk \in Xk to problem (3.9) satisfying

(3.10) | | | nk| | | k \leq \tau k| | | fk| | | k\ast + ck,\Omega \| nk - 1\| .

Proof. The proof follows by a series of calculations done in the next sections.
First, we show the existence of a linearized problem in 3.3.1, which we then use to
infer the existence to the nonlinear problem in 3.3.2. Then, we derive an identity for
the dual norm of the residual in 3.3.3, which we then apply to obtain the uniqueness
in 3.3.4. Our existence proof is based on techniques from [1].

3.3.1. Linearization. We establish the well-posedness of a linearized problem.
Choose \^\Phi \in \scrL (Xk, X

\ast 
k) such that \langle \^\Phi u, u\rangle k \geq 0 for all u \in Xk, and define the bilinear

form ak : Xk \times Xk \rightarrow \BbbR by

(3.11) ak(u, v) := (u, v)k + \tau k\langle \^\Phi u, v\rangle k.

The linearized problem then reads as follows: For k \geq 1 and given nk - 1 \in Xk, find
\^nk \in Xk such that

(3.12) ak(\^nk, v) = \tau k\langle fk, v\rangle k + (nk - 1, v) \forall v \in Xk.
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The form ak is continuous and coercive on Xk:

| ak(u, v)| \leq (1 + \tau k| | | \^\Phi | | | k,k\ast )| | | u| | | k| | | v| | | k,(3.13a)

ak(u, u) \geq | | | u| | | 2k.(3.13b)

Thus, by the Lax--Milgram theorem [15] there exists a unique solution \^nk \in Xk to
(3.12) satisfying

| | | \^nk| | | k \leq | | | \tau kfk + nk - 1| | | k\ast 

\leq \tau k| | | fk| | | k\ast + ck,\Omega \| nk - 1\| ,(3.14)

since the action of \tau kf
k+nk - 1 \in X\ast 

k on Xk is defined by the right hand side of (3.9a),
and where we used the triangle inequality and (3.7) in the second line.

3.3.2. Nonlinear problem. We establish the existence of a solution to the
nonlinear problem. For given w \in Xk, let \^nkw \in Xk be the unique solution to the
following linear problem:

(3.15) (\^nkw, v)k + \tau k\langle \Phi k(w)\^nkw, v\rangle k = \tau k\langle fk, v\rangle k + (nk - 1, v).

Define the map \scrF k : Xk \rightarrow Xk by \scrF k(w) = \^nkw. Due to the result of the previous
section this is well defined. Moreover, let

(3.16) \scrB k
a := \{ w \in Xk : | | | w| | | k \leq | | | \tau kfk + nk - 1| | | k\ast =: a\} .

Due to (3.14), it follows that \scrF k(\scrB k
a) \subset \scrB k

a .
The next step is to show that \scrF k is continuous and compact on \scrB k

a . Let \{ wj\} \infty n=1 \subset 
\scrB k
a be a sequence. Since Xk is a Hilbert space, and since \{ wj\} \infty n=1 is bounded, the

Eberlein--\v Smulian theorem [3] applies; there exists a subsequence (denoted the same
way) and w \in Xk such that wj \rightharpoonup w weakly in Xk. Moreover, since d \geq 3, by the
Rellich--Kondrachov theorem [15], the embedding Xk \subset L1(\Omega ) is compact. Thus,
wj \rightarrow w strongly in L1(\Omega ). Now, let \^nkj = \scrF k(wj). Then \^nkj solves

(3.17) (\^nkj , v)k + \tau k\langle \Phi k(wj)\^n
k
j , v\rangle = \tau k\langle fk, v\rangle k + (nk - 1, v).

Furthermore, \^nkw = \scrF k(w) solves (3.15). This establishes the continuity of \scrF k.
The next step is to show \^nkj \rightarrow \^nkw strongly in Xk. To this end, subtract (3.15)

from (3.17) to obtain

(3.18) (\^nkj  - \^nkw, v)k + \tau k\langle \Phi k(wj)(\^n
k
j  - \^nkw), v\rangle k =  - \tau k\langle (\Phi k(wj) - \Phi k(w))\^nkj , v\rangle k.

Since we have

| \langle (\Phi k(wj) - \Phi k(w))\^nkj , v\rangle k| \leq | | | (\Phi k(wj) - \Phi k(w))\^nkj | | | k\ast | | | v| | | k
\leq | | | \Phi k(wj) - \Phi k(w)| | | k,k\ast | | | \^nkj | | | k| | | v| | | k
\leq Lk\| wj  - w\| 1| | | \tau kfk + nk - 1| | | k\ast | | | v| | | k,(3.19)

it follows that

(3.20) | \langle (\Phi k(wj) - \Phi k(w))\^nkj , v\rangle k| \rightarrow 0 \forall v \in Xk,

and consequently \^nkj \rightarrow \^nkw in Xk as j \rightarrow \infty , since (3.18) holds for any v \in Xk and is

linear in the argument \^nkj - \^nkw. Thus, \scrF k is a continuous and compact operator on \scrB k
a ,

and the Schauder theorem [3] applies; there exists nk \in \scrB k
a such that nk = \scrF k(nk),

which is the solution to the nonlinear problem (3.9).
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3.3.3. Residual identity. Based on the previous existence result, we introduce
now the residual operator \scrR k(\psi ) \in X\ast 

k for a given \psi \in Xk and for all v \in Xk as

\langle \scrR k(\psi ), v\rangle k := \tau k\langle fk, v\rangle k + (nk - 1, v) - (\psi , v)k  - \tau k\langle \Phi k(\psi )\psi , v\rangle k.(3.21)

We also introduce the semimetric (cf. the monotonicity condition (3.8c))

\scrJ k(nk, \psi ) := \tau 2k | | | \Phi k(nk)nk  - \Phi k(\psi )\psi | | | 2k\ast 

+ 2\tau k\langle \Phi k(nk)nk  - \Phi k(\psi )\psi , nk  - \psi \rangle k.(3.22)

The following lemma now makes precise the connection between the dual norm of the
residual and the resulting error.

Lemma 3.5 (residual-error identity). For all \psi \in Xk there holds

(3.23) | | | \scrR k(\psi )| | | 2k\ast = | | | nk  - \psi | | | 2k + \scrJ k(nk, \psi ).

Proof. Choose \phi \in Xk such that

(3.24) (\phi , v)k = \tau k\langle \Phi k(nk)nk  - \Phi k(\psi )\psi , v\rangle k \forall v \in Xk.

Thus, we have the identity

(3.25) | | | \phi | | | k = \tau k| | | \Phi k(nk)nk  - \Phi k(\psi )\psi | | | k\ast .

We can then write the dual norm of the residual as follows:

| | | \scrR k(\psi )| | | k\ast = sup
v\in Xk,
| | | v| | | k=1

\{ (nk  - \psi , v)k + \tau k\langle \Phi k(nk)nk  - \Phi k(\psi )\psi , v\rangle k\} 

=| | | \phi + nk  - \psi | | | k

=
\Bigl( 
| | | \phi | | | 2k + 2(\phi , nk  - \psi )k + | | | nk  - \psi | | | 2k

\Bigr) 1
2

=
\Bigl( 
\tau 2k | | | \Phi k(nk)nk  - \Phi k(\psi )\psi | | | 2k\ast 

+ 2\tau k\langle \Phi k(nk)nk  - \Phi k(\psi )\psi , nk  - \psi \rangle k + | | | nk  - \psi | | | 2k
\Bigr) 1

2

.(3.26)

The assertion follows.

Remark 3.6 (semimetric). Due to the nonlinear nature of the model equation
(3.9), the norm of the residual cannot be shown to be equal to some energy norm of
the error. Instead, it is a combination of a norm and a semimetric. The semimetric
satisfies the nonnegativity, symmetry, and identity of indiscernibles, but not the tri-
angle inequality. See, e.g., [30], where a nonlinear parabolic equation was analyzed
and similar terms appear.

3.3.4. Uniqueness. It remains to show the uniqueness of nk. To this end, we
suppose that \psi satisfies (3.9), which implies that | | | \scrR k(\psi )| | | k\ast = 0. Then, since the
first term on the right hand side of (3.23) is a norm and since the second term is
convex due to the monotonicity condition (3.8c), we obtain that \psi = nk in Xk. This
section concludes the proof of Theorem 3.4.
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4. A posteriori error bound. In this section we adopt energy-type a posteriori
error bounds based on the dual norm of the residual for the weak time-discrete PLM,
i.e., the problem (3.9) using similar techniques as in [13, 14, 22, 26]. We then provide
a guaranteed and fully computable upper bound on the energy-type error in terms of
various error estimators, using suitable flux and density reconstructions.

4.1. Space approximations. Let \scrZ h be a partition of the domain \Omega , consisting
of rectangular or simplicial elements, such that \=\Omega = \cup K\in \scrZ h

K. We let hK denote the
diameter of the element K \in \scrZ h and define h := maxK\in \scrZ h

hK as the maximum diam-
eter over all elements in \scrZ h. For two elements K,L \in \scrZ h, we require their intersection
to be either a common face, edge, on vertex or the empty set. We use subscripts to in-
dicate dependency on the discrete mesh \scrZ h, e.g., uh. Our a posteriori error estimates
given next will involve approximations of the coefficients and source term appearing
in (3.9). Thus, for any function \varphi k \in 

\bigl\{ 
rk, bk, \alpha k, gk, fk

\bigr\} 
(see Assumption 3.1), we

denote by \varphi k
h its approximation satisfying the following orthogonality:

(4.1) (\varphi k
h  - \varphi k, v)K = 0 \forall v \in L2(\Omega )

with the approximation of the interaction \Phi k
h corresponding to (2.3). Furthermore,

for a convex element K \in \scrZ h, there holds the Poincar\'e--Friedrichs inequality (see,
e.g., [27]), i.e.,

(4.2) \| v  - vk\| K \leq hK
\pi 

\| \nabla v\| K \forall v \in H1(K),

where vk is the mean value of v over K.

4.2. First upper bound. To be agnostic with regard to the scheme (micro
and/or macro levels) we use to approximate the weak solution, we make the following
definitions.

Definition 4.1 (density reconstruction). We call a density reconstruction any
function skh \in Xk.

Definition 4.2 (equilibrated flux and density reconstructions). We call an equi-
librated flux reconstruction any function \bfitsigma k

h : \Omega \rightarrow \BbbR d which satisfies

\bfitsigma k
h \in H(div,\Omega ),(4.3a)

(\tau k\nabla \cdot \bfitsigma k
h, 1)K

= (\tau kf
k
h + sk - 1

h  - (1 - \tau kr
k
h)s

k
h  - \tau k\Phi 

k
h(s

k
h)s

k
h, 1)K , 1 \leq k \leq M,\forall K \in \scrZ h.(4.3b)

For all K \in \scrZ h, define the local residual, flux, r -data, \Phi -data, g-data, and f -data
oscillation estimators:

\eta kR,K := \~\omega k
K\| \tau kfkh + nk - 1  - (1 - \tau kr

k
h)s

k
h  - \tau k\Phi 

k
h(s

k
h)s

k
h  - \tau k\nabla \cdot \bfitsigma k

h\| K(4.4a)

\eta kDF,K := \tau kG
 - 1

2

k \| gkh\nabla skh + \bfitsigma k
h\| K ,(4.4b)

\eta kr,K := \tau k\~\omega 
k
K\| (rk  - rkh)s

k
h\| K ,(4.4c)

\eta k\Phi := \tau k| | | (\Phi k(skh) - \Phi k
h(s

k
h))s

k
h| | | k\ast ,(4.4d)

\eta kg,K := \tau kG
 - 1

2

k \| (gk  - gkh)\nabla skh\| K ,(4.4e)

\eta kf := \tau k| | | fk  - fkh | | | k\ast ,(4.4f)

D
ow

nl
oa

de
d 

09
/1

2/
22

 to
 7

8.
91

.1
03

.1
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

462 M. BRUN, E. AHMED, J. NORDBOTTEN, AND N. STENSETH

where we introduced also the following weight:

\~\omega k
K := min(\gamma 

 - 1
2

k , G
 - 1

2

k

hK
\pi 

).(4.5)

We now give the first (abstract) a posteriori error bound of the problem (3.9).

Theorem 4.3 (energy-error bound). For 1 \leq k \leq M , let nk be the (unknown)
exact solution to the weak-time discrete problem (3.9), skh the reconstructed density of
Definition 4.1, and \bfitsigma k

h the reconstructed flux of Definition 4.2. Then, the following
estimate holds true:

| | | nk  - skh| | | 
2

k + \scrJ k(nk, skh)

\leq 

\left(  \Biggl\{ \sum 
K\in \scrZ h

\bigl[ 
\eta kR,K + \eta kr,K + \eta kDF,K + \eta kg,K

\bigr] 2\Biggr\} 1
2

+ \eta k\Phi + \eta kf

\right)  2

.(4.6)

Proof. We let \psi = skh in (3.21), and then we subtract the terms \tau k(\bfitsigma 
k
h,\nabla v)+\tau k(\nabla \cdot 

\bfitsigma k
h, v) = 0, followed by adding and subtracting the terms \tau k(r

k
hs

k
h, v), \tau k(\Phi 

k
h(s

k
h)s

k
h, v),

\tau k(g
k
h\nabla skh,\nabla v), and \tau k(fkh , v), which leads to

\langle \scrR k(skh), v\rangle k = (\tau kf
k
h + nk - 1  - (1 - \tau kr

k
h)s

k
h  - \tau k\Phi 

k
h(s

k
h)s

k
h  - \tau k\nabla \cdot \bfitsigma k

h, v).

 - \tau k(g
k
h\nabla skh + \bfitsigma k

h,\nabla v) + \tau k((r
k  - rkh)s

k
h, v)

+ \tau k\{ (\Phi k
k(s

k
h)s

k
h, v) - \langle \Phi k

h(s
k
h)s

k
h, v\rangle k\} 

+ \tau k((g
k
h  - gk)\nabla skh,\nabla v) + \tau k\{ \langle fk, v\rangle k  - (fkh , v)\} 

=:

6\sum 
i=1

T k
i(4.7)

for all v \in Xk. Recalling the local estimators (4.4), we estimate each of the terms
T k
1 --T

k
6 on the right hand side of (4.7), i.e., for the first term, we can use (3.2b) to get

T k
1 \leq 

\sum 
K\in \scrZ h

\gamma 
 - 1

2

k \| \tau kfkh + nk - 1  - (1 - \tau kr
k
h)s

k
h - \tau k\Phi k

h(s
k
h)s

k
h  - \tau k\nabla \cdot \bfitsigma k

h\| K

\cdot \| (1 - \tau kr
k)

1
2 v\| K .(4.8)

Also, we can use the equilibration property (4.3b) together with the orthogonality
(4.1) to obtain

T k
1 =

\sum 
K\in \scrZ h

(\tau kf
k
h + nk - 1  - (1 - \tau kr

k
h)s

k
h  - \tau k\Phi 

k
h(s

k
h)s

k
h  - \tau k\nabla \cdot \bfitsigma k

h, v)K ,

=
\sum 

K\in \scrZ h

(\tau kf
k
h + nk - 1  - (1 - \tau kr

k
h)s

k
h  - \tau k\Phi 

k
h(s

k
h)s

k
h

 - \tau k\nabla \cdot \bfitsigma k
h, v  - vK)K .(4.9)

By applying the Poincar\'e--Friedrichs inequality (4.2) we get

T k
1 \leq G

 - 1
2

k

hK
\pi 

\sum 
K\in \scrZ h

\| \tau kfkh + nk - 1  - (1 - \tau kr
k
h)s

k
h - \tau k\Phi k

h(s
k
h)s

k
h  - \tau k\nabla \cdot \bfitsigma k

h\| K

\cdot \| (gk) 1
2\nabla v\| K .(4.10)
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Combining (4.8) and (4.10), we obtain

(4.11) T k
1 \leq 

\sum 
K\in \scrZ h

\eta kR,K | | | v| | | K,k.

The same procedure applied to the term T k
3 yields

(4.12) T k
3 \leq 

\sum 
K\in \scrZ h

\eta kr,K | | | v| | | K,k.

On the terms T2 and T5 we use (3.2c) to obtain

T k
2 \leq 

\sum 
K\in \scrZ h

\eta kDF,K\| (gk) 1
2\nabla v\| K ,(4.13a)

T k
5 \leq 

\sum 
K\in \scrZ h

\eta kg,K\| (gk) 1
2\nabla v\| K .(4.13b)

Finally, on T4 and T6 we use the definition of the dual norm (3.5) to obtain

T k
4 \leq \eta k\Phi | | | v| | | k,(4.14a)

T k
6 \leq \eta kf | | | v| | | k.(4.14b)

Combining the above bounds leads to

\langle \scrR k(skh), v\rangle k

\leq 
\sum 

K\in \scrZ h

\Bigl\{ \bigl[ 
\eta kR,K + \eta kr,K + \eta kDF,K + \eta kg,K

\bigr] 
| | | v| | | K,k

\Bigr\} 
+ (\eta kf + \eta k\Phi )| | | v| | | k

\leq 

\left(  \Biggl\{ \sum 
K\in \scrZ h

\bigl[ 
\eta kR,K + \eta kr,K + \eta kDF,K + \eta kg,K

\bigr] 2\Biggr\} 1
2

+ \eta kf + \eta k\Phi 

\right)  | | | v| | | k,(4.15)

since | | | v| | | 2k =
\sum 

K\in \scrZ h
| | | v| | | 2K,k. By (3.5) and (3.23) we prove the assertion.

5. Speciation. In this section we present our strategies for the actual speciation
event. The first is based on splitting the support of the relevant reconstructed density
function into subregions of trait space and mapping back to new species abundance-
trait-variance tuples by calculating the statistical moments of the reconstructed den-
sity in each subregion. The second approach is based on coupling the PLM and SLM
in a multiscale framework for the duration of the speciation event, where the diverging
species is delegated to the PLM to be solved locally in trait space.

5.1. Trait space density regions. For any integer \nu = 1, 2, . . . and time step
k \geq 1, we associate with species i the (d-hyper-rectangular) density region, Bk

i,\nu \subseteq \Omega 

centered on xki and with orientation according to the (orthonormal) spectrum of \upsilon ki (t),
and with side lengths equal to 2\nu (\lambda k1)

1/2, \cdot \cdot \cdot , 2\nu (\lambda kd)1/2, where \{ \lambda kj , j \leq d\} are the

eigenvalues of \upsilon ki (i.e., for any time discrete time tk the density region Bk
i,\nu extends \nu 

times the jth standard deviation of the trait covariance along the jth trait dimension
from the mean traits coordinate xki ).
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5.2. Heuristic approach. If at time tk there is detected diverging traits within
a species Nk

i , we split this into two child species, Nk
i,1 and Nk

i,2, as follows: The

associated density region Bk
i,\nu is divided along the directions orthogonal to the largest

eigenvector of the trait covariance matrix, \upsilon ki , into two subregions Bk,1
i,\nu and Bk,2

i,\nu 

such that Bk,1
i,\nu \cup Bk,2

i,\nu = Bk
i,\nu , and the new species are initialized by the moments of

the reconstructed density function of the parent species in each subregion, i.e., for
j \in \{ 1, 2\} , we define

(5.1) Nk
i,j := (\mu 0

Bk,j
i,\nu 

(\scrD Nk
i ), \mu 

1
Bk,j

i,\nu 

(\scrD Nk
i ), \mu 

2
Bk,j

i,\nu 

(\scrD Nk
i )),

where \scrD : \BbbR 1+d+d2 \rightarrow C\infty (\Omega )\cap Xk is the density reconstruction operator (i.e., macro-
to-micro scale mapping), such that \scrD Nk

i is any smooth distribution characterized by
a mean and variance, and adhering to the relevant boundary condition (in this case,
homogenous Dirichlet). Figure 2 below shows the splitting of an example density
region in two dimensions, where xki = (0, 0) and \upsilon ki = diag(\upsilon ki,11, \upsilon 

k
i,22).

5.3. Multiscale approach. In this section we couple the PLM, (2.4a)--(2.4c),
and the SLM, (2.9a)--(2.9b), in a multiscale framework, following [29]. In particular,
if a speciation event is detected for species i at time step k \geq 1, we delegate its
reconstructed density function to the PLM to be solved locally in the associated
density region of trait space, while coupled to the SLM which governs the remaining
s  - 1 species in the system. With this, we write the coupled multiscale model as
follows:

Microscale:\Biggl\{ 
\partial tn

\ell  - rn\ell +\Phi (n\ell )n\ell  - \nabla \cdot (g\nabla n\ell ) + n\ell \BbbC \ell (N \ell ) = f \ell in Bk
i,\nu \ell > k,

nk = \scrD Nk
i in Bk

i,\nu .
(5.2a)

Macroscale:\left\{   
dN \ell 

dt
= \scrN (N \ell ) + \BbbD \ell (n\ell )N \ell , \ell > k,

Nk = (Nk
1 , \cdot \cdot \cdot , Nk

i - 1, 0, N
k
i+1, \cdot \cdot \cdot , Nk

s ),
(5.2b)

(a) Density region, with spectrum of
covariance matrix scaled with \nu .

(b) Splitting of density region along direc-
tion orthogonal to direction of trait diver-
gence into two subregions.

Fig. 2. Splitting of example density region in two dimensions. Dotted line represents species
distribution.

D
ow

nl
oa

de
d 

09
/1

2/
22

 to
 7

8.
91

.1
03

.1
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MODELING THE PROCESS OF SPECIATION 465

where \partial tn
\ell and

dN \ell 

dt
denotes the discrete time derivatives for the PLM and SLM,

respectively, and where \BbbC \ell : \BbbR s(1+d+d2) \rightarrow \BbbR and \BbbD \ell : H1
0,+(B

k
i,\nu ) \rightarrow \BbbR s(1+d+d2) are

the micro/macro couplings, approximating, respectively, the individual and species
interactions. These are defined as follows:

(\BbbC \ell (N \ell ))(x) :=

s\sum 
j=1
j \not =i

\int 
B\ell 

j,\nu 

\alpha \ell (x, y)(\scrD N \ell 
j )(y)dy,(5.3a)

\BbbD \ell (n\ell ) := (n\ell 1A
\ell 
1,i, \nabla 1\alpha 

\ell 
1,i, \upsilon 

\ell 
1\nabla 1\nabla 1\alpha 

\ell 
1,i\upsilon 

\ell 
1/4,

\cdot \cdot \cdot ,ni - 1Ai - 1,i, \nabla i - 1\alpha i - 1,i, \upsilon 
2
i - 1\nabla i - 1\nabla i - 1\alpha i - 1,i\upsilon 

2
i - 1/4,

0, n\ell i+1A
\ell 
i+1,i, \nabla i+1\alpha 

\ell 
i+1,i, \upsilon 

\ell 
i+1\nabla i+1\nabla i+1\alpha 

\ell 
i+1,i\upsilon 

\ell 
i+1/4,

\cdot \cdot \cdot ,n\ell sA\ell 
s,i, \nabla s\alpha 

\ell 
s,i, \upsilon 

\ell 
s\nabla s\nabla s\alpha 

\ell 
s,i\upsilon 

\ell 
s/4)| \scrC Bk

i,\nu 
(n\ell )

\int 
Bk

i,\nu 

n\ell (x)dx.(5.3b)

During the speciation event, we map the local abundance density function to m ``vir-
tual"" species, i.e.,

(5.4) \^N \ell = ( \^N \ell 
1 , \cdot \cdot \cdot , \^N \ell 

m) := \scrC m
Bk

i,\nu 
(n\ell ),

where \scrC m
Bk

i,\nu 
(n\ell ) : H1

0 (B
k
i,\nu ) \rightarrow \BbbR m(1+d+d2) is the m-species compression operator,

defined by

(5.5) \scrC m
Bk

i,\nu 
(n\ell ) := argmin

nj ,xj ,\upsilon j ,
1\leq i\leq m

\bigm\| \bigm\| \bigm\| n\ell  - m\sum 
j=1

\scrD (nj , xj , \upsilon j)
\bigm\| \bigm\| \bigm\| 2
Bk

i,\nu 

.

The speciation event is then complete when the distances between the mean trait
coordinates of the virtual species are larger than some specified tolerance (e.g., some
multiple of the largest trait standard deviation). At this point, we initialize the SLM
with the new species configuration consisting of s - 1 +m species, i.e.,

(5.6) (N \ell 
1 , \cdot \cdot \cdot , N \ell 

i - 1, Ni+1, \cdot \cdot \cdot , N \ell 
s) \cup \^N \ell ,

and decouple the micro- and macro-scales until the next speciation event is detected.

6. Application: Distinguishing the modeling error. In this section we
apply the results from section 4 to derive an energy-type a posteriori error bound for
the heuristic and multiscale methods. The error bound distinguishes in particular the
micro-to-macro modeling error, which will be employed for the purposes of detecting
speciation events in the SLM.

6.1. Abundance density reconstruction and flux equilibration with
smooth sources. To apply the results of Theorem 4.6, we reconstruct the species
density with smooth distributions, and for the sake of simplicity we only consider
smooth data. At the time step k \geq 0, for the species i \leq s, we construct its density
function by setting

(6.1) skh,i := \scrD Nk
i .

Thus, the global (s-species) abundance density reconstruction is H1-conforming in
space, i.e.,

(6.2) skh :=

s\sum 
i=1

skh,i \in C\infty (\Omega ) \cap Xk.
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What remains is to construct the equilibrated flux, \bfitsigma k
h satisfying Definition 4.2. The

idea is to reconstruct this equilibrated flux as the sum of a discretization flux \bfitsigma k
h,disc

and the remainder flux \bfitsigma k
h,rem. In this section we assume the source term f is smooth

enough to calculate the discrete residual for single species, rkh,i explicitly, i.e., for
1 \leq i \leq s, 1 \leq k \leq M , let

rkh,i :=
1

s
(\tau kf

k
h + sk - 1

h ) - (1 - \tau kr
k
h)s

k
h,i  - \tau k\Phi 

k
h(s

k
h)s

k
h,i + \tau k\nabla \cdot (gkh\nabla skh,i)(6.3)

with the global residual defined by rkh :=
\sum s

i=1 r
k
h,i. The equilibrated discretization

flux for species i is then given by

(6.4) \bfitsigma k
h,disc,i :=  - gkh\nabla skh,i.

The construction of the micro-macro misfit (remainder) flux for species i is given
componentwise by

\bfitsigma k
h,rem,i :=

1

d\tau k

\Biggl[ \int x1

xi,1

rkh,i| (\zeta ,x2,\cdot \cdot \cdot ,xd)d\zeta , \cdot \cdot \cdot ,
\int xd

xi,d

rkh,i| (x1,\cdot \cdot \cdot ,xd - 1,\zeta )d\zeta 

\Biggr] \top 

.(6.5)

Then, for 1 \leq k \leq M , we let

(6.6) \bfitsigma k
h := \bfitsigma k

h,disc + \bfitsigma k
h,rem :=

s\sum 
i=1

\{ \bfitsigma k
h,disc,i + \bfitsigma k

h,rem,i\} .

The following key result shows that \bfitsigma k
h from the above definition leads to an equili-

brated flux in the sense of Definition 4.2.

Proposition 6.1 (flux equilibration). Let the flux reconstruction \bfitsigma k
h be defined

by (6.6), where \bfitsigma k
h,disc,i is defined by (6.4) and \bfitsigma k

h,rem,i by (6.5). Then \bfitsigma k
h \in H(div,\Omega )

and we have the flux equilibration property (4.3b) satisfied in the strong sense, i.e.,

(1 - \tau kr
k
h)s

k
h + \tau k\Phi 

k
h(s

k
h)s

k
h + \tau k\nabla \cdot \bfitsigma k

h = \tau kf
k
h + sk - 1

h .(6.7)

Proof. By construction, from relations (6.2) and (6.3), we have

\tau k\nabla \cdot \bfitsigma k
h,disc,i =

1

s
(\tau kf

k
h + sk - 1

h ) - (1 - \tau kr
k
h)s

k
h,i  - \tau k\Phi 

k
h(s

k
h)s

k
h,i  - rkh,i,(6.8a)

\tau k\nabla \cdot \bfitsigma k
h,rem,i = rkh,i.(6.8b)

Thus, from (6.6) and (6.2) we obtain

\tau k\nabla \cdot \bfitsigma k
h = \tau kf

k
h + sk - 1

h  - 
s\sum 

i=1

\bigl\{ 
(1 - \tau kr

k
h)s

k
h,i + \tau k\Phi 

k
h(s

k
h)s

k
h,i

\bigr\} 
= \tau kf

k
h + sk - 1

h  - (1 - \tau kr
k
h)s

k
h  - \tau k\Phi 

k
h(s

k
h)s

k
h \in L2(\Omega ).(6.9)

Remark 6.2 (equilibrated flux). The choice of the equilibrated discretization flux
in (6.4) is motivated by the fact that we wish to be as general as possible with regard
to from where skh,i is obtained. In practice, this means we may overestimate the error.
In principle, one could solve an optimization problem to get a better estimate (see
e.g., [2]), but then additional requirements on skh,i are needed.
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6.2. Distinguishing the error components. The preceding developments
lead to the following result.

Theorem 6.3 (error components). For the species i \leq s, let skk,i be the popula-
tion density as given in (6.1) and the equilibrated flux as characterized in (6.7). We
have the following a posteriori error bound distinguishing the error components. For
1 \leq k \leq M , the following estimate holds true:\Bigl\{ 

| | | nk  - skh| | | 
2

k + \scrJ k(nk, skh)
\Bigr\} 1

2 \leq 
s\sum 

i=1

(\eta krem,i + \eta kr,i + \eta kg,i + \eta k\Phi ,i +
1

s
\eta kf ),(6.10)

where

(6.11) \eta k \star ,i =

\Biggl\{ \sum 
K\in \scrZ h

\bigl( 
\eta k \star ,K,i

\bigr) 2\Biggr\} 1
2

,

with the species-dependent counterparts of the estimators (4.4) defined by

\eta kr,K,i := \tau k\~\omega 
k
K\| (rk  - rkh)s

k
h,i\| K ,(6.12a)

\eta kg,K,i := \tau kG
 - 1

2

k \| (gk  - gkh)\nabla skh,i\| K ,(6.12b)

\eta k\Phi ,i := \tau k| | | (\Phi k(skh,i) - \Phi k
h(s

k
h,i))s

k
h,i| | | k\ast (6.12c)

and the modeling-remainder estimator defined by

(6.12d) \eta krem,K,i := \tau kG
 - 1

2

k \| \bfitsigma k
h,rem,i\| K .

Proof. First, observe that \eta kR,K = 0 since the flux satisfies the strong equilibration
property (6.7). Next, substitute (6.2) and (6.6) in (4.6). Due to (6.4), this gives

\eta kDF,K = \tau kG
 - 1

2

k \| 
s\sum 

i=1

\bfitsigma k
h,rem,i\| K .

Finally, use the triangle inequality to separate error components for individual species
to arrive at (6.10).

6.3. Detection of speciation events. Using Theorem 6.3 we can now detect
speciation events in the SLM as follows: At each time step k > 1, we reconstruct the
density function of each species in the system using the reconstruction operator, \scrD ,
and compute the a posteriori error bound (6.10). Then, if the estimate exceeds some
given tolerance we infer that a speciation event is about to happen for species i.

7. Numerical examples. In this section we present two numerical examples
where we employ both the heuristic and multiscale methods. The examples are chosen
such that the first example conforms to Assumption 3.2, and thus all the theoretical
results apply. The first example thus allows us to validate the applicability of the
methodology. The second example is motivated by the biological setting of speciation
in a predator-prey setting, for which Assumption 3.2 does not hold. Most notably, d <
3 in addition to the operator \Phi not satisfying the monotonicity condition (3.8c), thus
invalidating the assertion of Lemma 3.5. This example provides numerical evidence to
the efficacy of the multiscale algorithm outside of the parameter space where we have
been able to prove error bounds. In this context, the bound (6.10) must be considered
more loosely as an error indicator.
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For both examples we assess the accuracy of the speciation methods by solving
simultaneously the PLM globally and calculating the statistical moments which are
then compared to the corresponding species parameters. Moments of the reference
PLM solution are always shown as dotted lines and indicated by the letter \mu in
the legends. For the multiscale method, the start and end of the speciation event
is indicated by two vertical dotted lines. For the heuristic method, speciation is
indicated by a single vertical dotted line.

We assume the discretization errors associated with solving the models are negli-
gible compared to the modeling error which we are interested in, and hence in practice
we calculate only the remainder estimator \eta krem,i from (6.12d) when estimating (6.10).
Moreover, the density reconstruction operator \scrD is implemented as a normal distri-
bution, i.e., for a species Nk

i = (nki , x
k
i , \upsilon 

k
i ) we have

(7.1) (\scrD Nk
i )(x) :=

1

\Lambda (\upsilon ki )
exp

\biggl( 
 - 1

2
(x - xki )

\top (\upsilon ki )
 - 1(x - xki )

\biggr) 
.

Note that this does not satisfy the homogenous Dirichlet boundary conditions. How-
ever, in practice for a large enough domain, boundary conditions are still satisfied
within working precision. An alternative approach would be to truncate the tails of
the normal distribution, but for the problems considered herein, we do not expect this
to make any difference in the results. Finally, the m-species compression operator,
\scrC m
Bk

i,\nu 
, is implemented using a nonlinear least squares iteration (here for m = 2), where

we iterate until convergence with a relative tolerance of 1e - 3.

7.1. Numerical approximations. We advance in time using a fourth order
Runge--Kutta scheme. Numerical integration is by the midpoint rule, and the differ-
ential term of the PLM is approximated by the two-point flux approximation method
on a regular Cartesian grid. All numerical examples are implemented in MATLAb v.
R2019b.

7.2. Example 1. For the first numerical example we let d = 3 and consider a
system initially consisting of s = 1 species, and where one speciation event occurs.
Here, we let the micro and macro time increments be given by \tau m = \tau M = 5e  - 2,
respectively, and set T = 600 as the final time. The spatial grid size is \Delta x =
(1, 1, 1)/20. The residual relative tolerance is chosen as TOLres = 5e1, and the num-
ber of standard deviations for the trait space density regions (and tolerance distance
between mean trait coordinates during speciation) as \nu = 10. When the computed
error bound exceeds the tolerance, we backtrack 100 time units before initiating the
multiscale/heuristic algorithms. Furthermore, since the Assumption 3.2 is fulfilled for
this example, we calculate the difference between the global PLM solution and the
reconstructed SLM solution in the energy norm, i.e., | | | nk  - sk| | | k. The trait space do-
main is the unit cube, i.e., \Omega = [0, 1]3. Initial data is given by N0 = (n0, x0, \upsilon 0), where

(7.2) n0 = 2e - 1, x0 = (0.2, 0.2, 0.2), and \upsilon 0 = 5e - 3\times \BbbI .

7.2.1. Parameters. We impose a speciation event on the system by having a
time dependent growth-rate, where a single attractor point in trait space gradually
transitions into two attractor points. In particular, for \gamma > 0 the growth rate is
defined as

(7.3) r(x, t) := 1 - \gamma (f0(t)r0(x) + f\infty (t)r\infty (x)),
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where

r0(x) := \| x - (0.5, 0.5, 0.5)\| 2,(7.4a)

r\infty (x) := \| x - (0.2, 0.8, 0.8)\| 2\| x - (0.8, 0.2, 0.2)\| 2,(7.4b)

and where (for \theta > 0)

(7.5) f0(t) :=

\Biggl\{ 
1 - t/\theta , t < \theta ,

0, t \geq \theta ,
and f\infty (t) :=

\Biggl\{ 
t/\theta , t < \theta ,

1, t \geq \theta .

Thus, \gamma determines the speed at which the species moves toward the attractor points
set by (7.4a) or (7.4b), and \theta is the transition time between r0 and r\infty . For the
present situation we choose the following parameter values:

(7.6) \gamma = 2 and \theta = 300.

The remaining coefficients are defined by constant values, i.e.,

b(x, t) = 1e - 3,(7.7a)

\alpha (x, y, t) =  - 1,(7.7b)

g(x, t) = 5e - 6\times \BbbI .(7.7c)

7.2.2. Simulation. With the parameters given in the previous section, we em-
ploy both the heuristic and multiscale speciation algorithms. Figure 3 below shows the
species abundance, Figure 4 the species mean trait coordinates, Figure 5 the largest
eigenvalue of the trait covariance matrix, Figure 6 the a posteriori error bound, and

(a) Multiscale method. (b) Heuristic method.

Fig. 3. Species abundance as functions of time.

(a) Multiscale method. (b) Heuristic method.

Fig. 4. Species mean traits as functions of time (first component).
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(a) Multiscale method. (b) Heuristic method.

Fig. 5. Maximum eigenvalue of trait covariance matrix as functions of time.

(a) Multiscale method. (b) Heuristic method.

Fig. 6. A posteriori modeling-remainder estimator, \eta krem,i, as a function of time.

(a) Multiscale method. (b) Heuristic method.

Fig. 7. Global error measured in energy norm as function of time.

Figure 7 the error in energy norm, as functions of time. Note that due to the pres-
ence of G - 1

2 in the definition of \eta krem,i (equation (6.12d)), the magnitudes in Figure 6
cannot be directly compared to those of the preceding figures.

We observe from the results a very close match between the reference solution and
the multiscale method throughout the simulation time. Indeed, the error in the energy
norm, as seen in Figure 7, is lower during the multiscale window than during the pure
SLM simulation, indicating that the modeling error of the SLM in terms of capturing
species dynamics dominates over the error associated with the speciation event. In
terms of species-level parameters, as shown in the remaining figures, the qualitative
match is also quite satisfactory for the multiscale method outside the speciation event
(these quantities are of course not defined during the speciation event itself).

In contrast, while the heuristic method is somewhat acceptable in terms of cap-
turing the initial dynamics and final state, it does not capture the speciation dynamics
themselves as accurately as the multiscale method, thus emphasizing the value of the
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multiscale simulation framework. The lack of accuracy during the speciation event
leads to later errors in the higher moments of the solution (i.e., velocities and covari-
ances in trait space), as seen in particular in Figures 4 and 5.

7.3. Example 2. For the second numerical example we let d = 2 and consider a
predator-prey system initially consisting of s = 2 species, and where the prey-species
undergoes a speciation event by traveling along a Y-shaped ridge in trait space. Hence,
the divergence will happen at the branching point of the ridge. Here, we let the micro-
and macro time increments be given by \tau m = 1e  - 3 and \tau M = 1e  - 2, respectively,
and set T = 600 as the final time. Spatial grid size is \Delta x = (1, 1)/50. The residual
relative tolerance is chosen as TOLres = 1e1, and the number of standard deviations
for the trait space density regions as \nu = 10. When the computed error bound exceeds
the tolerance, we backtrack 250 time units before initiating the multiscale/heuristic
algorithms. The trait-space domain consists of two disjoint regions, \Omega 1 = [0, 1]2 and
\Omega 2 = [2, 3]2, i.e., \Omega = \Omega 1 \cup \Omega 2, wherein the two species are located, respectively.
Initial data is given by N0 = (Nprey,0, Npred,0), where

nprey,0 = 2e - 1, xprey,0 = (0.5, 0.3), and \upsilon prey,0 = 5e - 3\times \BbbI ,(7.8a)

npred,0 = 2e - 1, xpred,0 = (2.5, 2.5), and \upsilon pred,0 = 5e - 3\times \BbbI .(7.8b)

7.3.1. Parameters. We impose a speciation event upon the prey-species by
initializing it at the foot of a ridge in trait space, and as the species travels along this
ridge, the ridge splits into two branches. This branching ridge is incorporated in the
growth-rate coefficient, which for c0, \delta , r0 > 0 and c \in \BbbR 2 is defined as

(7.9) r(x) :=

\Biggl\{ 
c0 + \delta c \cdot x\top  - \varphi \epsilon (x) \ast dist(x, Y ), x \in \Omega 1,

 - r0, x \in \Omega 2,

where the set of points Y \subset \Omega 1 is the three line segments connecting the nodes
\{ (0.5, 0.3), (0.5, 0.5), (0.2, 0.7), (0.8, 0.7)\} to form a Y-shape, and where \varphi \epsilon is the mol-
lifier function centered on the origin with radius of support \epsilon > 0, and where dist(x, Y )
is the distance from the point x to the set Y . Hence, c0 is the growth-rate of the prey,
\delta is the speed at which it travels along the ridge, c is a direction vector, \epsilon is the steep-
ness of the ridge, and r0 is the loss rate of the predator. The interaction coefficient is
defined by

(7.10) \alpha (x, y) :=

\left\{         
0, x \in \Omega 1, y \in \Omega 1,

 - \gamma , x \in \Omega 1, y \in \Omega 2,

\beta , x \in \Omega 2, y \in \Omega 1,

0, x \in \Omega 2, y \in \Omega 2,

where \gamma > 0 is the rate of predation upon the prey, and where \beta > 0 is the growth
rate of the predator. For the present situation we choose the following parameter
values:

c0 = 0, \delta = 0.8, r0 = 0.5, \epsilon = 0.2, \gamma = 3.0,

\beta = 8.0, and c = (0, 1)\top .(7.11)

The remaining coefficients are defined by constant values, i.e.,

b(x, t) := 0,(7.12a)

g(x, t) := 2e - 6\times \BbbI .(7.12b)
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7.3.2. Simulation. With the parameters given in the previous section, we em-
ploy both the heuristic and multiscale algorithms. Figures 8--9 below show the species
abundance, Figures 10--11 the species mean trait coordinates, Figure 12 the largest
eigenvalue of the trait covariance matrix, and Figures 13--14 the a posteriori error
bounds, as functions of time.

We recall that for this example, Assumption 3.2 is not satisfied, and the re-
sults are thus not expected to be as strong as for the previous example. Indeed,
we observe that while the multiscale method performs fairly overall, the a posteri-
ori error bound, now being only an error indicator, is not precise enough to identify
the speciation event early enough, necessitating a larger backtrack window than the
previous example. Note also that the abundance plots, Figures 8--9, indicate that
the predator-prey cycles have been shifted out of phase, but the correct structure is
still retained. However, the multiscale method still clearly outperforms the heuristic
method, which due to the reliance on the same error indicator also suffers from a some-
what delayed speciation event. On the other hand, the heuristic method models the
speciation event less accurately than the multiscale method, and thus the errors after
the speciation event are significantly larger when seen in terms of the species-level
parameters.

Remark 7.1 (computation times). The heuristic method will have a computa-
tion time approximately equal to that of solving only the species level model for the
same time interval. On the other hand, the multiscale method will have a computa-
tion time higher than that of solving the population level model for a time interval
equal to the speciation interval (with the same grid size as the local density region)
since the compression operator is implemented as an iteration procedure. Thus, the
heuristic method will in general be orders of magnitude faster than the multiscale
method.

(a) Multiscale method. (b) Heuristic method.

Fig. 8. Prey abundance as function of time. Curves for child-species are overlapping.

(a) Multiscale method. (b) Heuristic method.

Fig. 9. Predator abundance as function of time.
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(a) Multiscale method. (b) Heuristic method.

Fig. 10. Prey mean traits coordinate as functions of time (first component).

(a) Multiscale method. (b) Heuristic method.

Fig. 11. Prey mean traits coordinate as functions of time (second component). Curves for
child-species are overlapping.

(a) Multiscale method. (b) Heuristic method.

Fig. 12. Prey maximum eigenvalue of trait covariance matrix as functions of time. Curves for
child-species are overlapping.

(a) Multiscale method. (b) Heuristic method.

Fig. 13. A posteriori modeling-remainder estimator, \eta krem,i, for prey-species as functions of time.
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(a) Multiscale method. (b) Heuristic method.

Fig. 14. A posteriori modeling-remainder estimator, \eta krem,i, for predator-species as a function
of time.

8. Conclusions. We have developed two strategies for modeling speciation
events within the context of species interaction models. The first, the heuristic ap-
proach, is based on splitting the diverging species according to the spectrum of the
trait covariance matrix. The second, the multiscale approach, is based on resolving
the diverging species as a population density distribution using a fine-scale population
level model for the duration of the speciation event (i.e., until child-species are suffi-
ciently separated in trait space). Crucial to both these approaches is the connection
between the species scale and the population scale, i.e., the ability to view the species
either as an abundance-trait-covariance tuple or as a population density distribution.
This allows for defining a multiscale framework in which these two scales are coupled
and to calculate the a posteriori error bound of the reconstructed macroscale solution
which then indicates the modeling error. We have also given conditions on the non-
linearities of the microscale model for which the well-posedness of the time-discrete
problem is guaranteed. Using explicit equilibrated flux and density reconstructions,
we presented a posteriori error estimates for an error measure composed of an energy
H1-norm and a semimetric in terms of a residual monotone operator. In particular,
the dual norm of the residual is found to be equal to the error between the exact and
approximate solutions, again given conditions on the nonlinearities. Even when the
theoretical conditions are not fulfilled, our framework provides a working algorithm in
practice, as our second numerical example shows. Finally, regarding the heuristic and
multiscale methods, by comparison of the species parameters with the corresponding
moments from the reference (global) PLM solution, it is clear that the multiscale ap-
proach is superior to the heuristic approach. In fact, from our experiments it appears
that a multiscale approach to speciation is indeed required for eco-evolutionary mod-
eling at the species level, in which speciation events are allowed. We propose that
this multiscale approach might serve as a productive way of integrating ecological
processes and evolutionary processes.
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