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Abstract: Accumulating evidence indicates a close relationship between oxidative stress and growth
rate in fish. However, the underlying mechanisms of this relationship remain unclear. This study
evaluated the combined effect of dietary antioxidants and growth hormone (GH) on the liver and
the muscle redox status of Atlantic salmon. There were two sequential experimental phases (EP)
termed EP1 and EP2, each lasting for 6 weeks. In EP1, Atlantic salmon were fed either low-(L,
230 mg/kg ascorbic acid (Asc), 120 mg/kg α-tocopherol (α-TOH)), or high-(H, 380 mg/kg Asc,
210 mg/kg α-TOH)vitamin diets. The vitamins were supplemented as stable forms and the feeding
was continued in EP2. In EP2, half of the fish were implanted with 3 µL per g body weight of
recombinant bovine GH (Posilac®, 1 mg rbGH g BW−1) suspended in sesame oil, while the other
half were held in different tanks and sham-implanted with similar volumes of the sesame oil vehicle.
Here, we show that increasing high levels of vitamin C and E (diet H) increased their content in
muscle and liver during EP1. GH implantation decreased vitamin C and E levels in both liver and
muscle but increased malondialdehyde (MDA) levels only in the liver. GH also affected many genes
and pathways of antioxidant enzymes and the redox balance. Among the most consistent were the
upregulation of genes coding for the NADPH oxidase family (NOXs) and downregulation of the
oxidative stress response transcription factor, nuclear factor-erythroid 2-related factor 2 (nrf2), and
its downstream target genes in the liver. We verified that GH increases the growth rate until the
end of the trail and induces an oxidative effect in the liver and muscle of Atlantic salmon. Dietary
antioxidants do lower oxidative stress but have no effect on the growth rate. The present study
is intended as a starting point to understand the potential interactions between growth and redox
signaling in fish.

Keywords: redox; transcriptional regulation; fish; antioxidant nutrients; growth hormone; oxidative
stress

1. Introduction

The Atlantic salmon is the most important aquaculture species in Norway. The post-
smolts are farmed in open sea cages and their growth rates are affected by environmental
factors; for example, the seasonal variations, especially the changes in daylength and
temperature [1–3]. A close relationship exists between oxidative stress and growth rates
in Atlantic salmon. Antioxidants, such as vitamin C, E, or astaxanthin are reduced in the
tissues of Norwegian-farmed Atlantic salmon during the fast growth period in spring
concomitant with increases in oxidation products such as thiobarbituric acid reactive
substances (TBARS), one of which is malondialdehyde (MDA) [4–6], an end product of
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lipid peroxidation. The levels of those antioxidants are often restored in the late summer
and the fish develop severe cataracts during this period [6]. Cataracts are a well-known
effect of oxidative stress to the lens [7]. Furthermore, growth hormone transgenic fish that
have a high growth rate are known to have elevated oxidative stress [8–11]. These studies
indicate a possible involvement of redox regulation. However, the underlying mechanisms
of the relationship between redox regulation and growth remain unclear.

ROS are highly oxidative, and the uncontrolled accumulation is toxic, which can dam-
age biological molecules such as proteins, lipids, and nucleic acids, and consequently result
in oxidative stress associated with certain diseases [12,13]. Beyond the role of reactive oxy-
gen species (ROS) as damage signals, recent research has established that redox signaling
regulates metabolism and several cellular processes [14]. ROS include superoxide anions
(O2
−) and hydrogen peroxide (H2O2), where H2O2 is a result of the dismutation of O2

−

by superoxide dismutase (Sod). O2
− is produced mainly by NADPH oxidases [15,16] and

the mitochondrial electron transport chain (ETC) among other enzymatic generators [17].
At low physiological levels, H2O2 is the major agent in redox signaling through reversible
oxidation reactions of thiol groups in proteins, thereby affecting protein function, and
changing signal output, enzyme activity, and gene transcription [18,19]. For example,
particular redox-sensitive cysteines in Kelch-like ECH-associated protein 1 (Keap1) are
modified by oxidants such as H2O2. This leads to a conformational change of Keap1, which
prevents nuclear factor-erythroid 2-related factor 2 (Nrf2) ubiquitylation. This allows Nrf2
to accumulate in the nucleus and induces the transcription of target genes. The target
genes code for proteins involved in maintaining the redox balance and/or are involved
in redox signaling. Examples are thioredoxin (Txn) and the glutathione (GSH) synthe-
sis/recycling genes, and genes coding for ROS and xenobiotic detoxification [20]. On the
other hand, increased oxidative stress may reduce the glutathione/glutathione disulfide
and cysteine/cystine ratios and significantly affect the cell redox status. For example,
the intracellular redox environment is generally more reduced in cell proliferation, while
more oxidative in differentiation and even more in apoptosis [21]. Control of the redox
environment is essential for proper development in fish as in other vertebrates [22–25].

Cells have therefore developed intricate antioxidant systems consisting of enzymes,
endogenously synthesized antioxidants, and antioxidant nutrients to control the redox
status. Briefly, there is a collection of fast-acting antioxidant enzymes that can neutralize
the ROS, such as superoxide dismutase (Sod), glutathione peroxidase (Gpx), and catalase
(Cat) [26]. Sod dismutates O2

− into H2O2 and O2, Cat and Gpx neutralizes H2O2, producing
H2O and O2. GSH, thioredoxins, and glutaredoxins reduce most of the oxidatively modified
residues and maintains the balance of the thiol-related redox status [21,27]. In addition,
antioxidant nutrients such as vitamin C and E are organic compounds necessary for the
antioxidant system and must be supplied in appropriate amounts in the diet of fish [28,29].
Vitamin E is recycled by ascorbate [30], constituting an antioxidant network in interaction
with thiol redox cycles [31].

Growth hormone (GH) is the principal regulator of vertebrate growth that stimulates
growth independently or in conjunction with insulin-like growth factor I (IGF-I) [32,33].
Several GH transgenic fish show dramatically enhanced growth rates under specific ex-
perimental conditions [11,34,35]. Growing evidence indicates that ROS are important for
growth signaling. In plants, ROS act as a second messenger mediating growth signals
of hormones [36]. In animals, many growth factor receptors are targets of ROS, and the
protein kinases such c-Jun N-terminal kinase and p38 mitogen-activated protein kinase,
which mediate cellular processes including proliferation, differentiation, and apoptosis,
are regulated by oxidants [37]. Further, oxidative stress (H2O2) has been demonstrated to
affect the IGF-I signaling pathway [38]. Considering the important role of redox signaling
in the regulation of pathways, we hypothesize that ROS, probably H2O2 [39], may serve as
a second messenger for growth signaling, and thereby contribute to the growth-promoting
effects induced by GH. To test this, we fed salmon different levels of dietary antioxidant
nutrients and implanted fish with GH to investigate whether and how the redox system
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changed. We analyzed endogenous and nutritional antioxidants, antioxidant enzymes, and
the redox system transcriptome in the muscle and liver of Atlantic salmon based on their
importance within the redox system and/or because of their close relationship with the
redox system [40–42].

2. Materials and Methods
2.1. Fish and Research Ethics

Atlantic salmon (Salmo salar) of strain AquaGen Atlantic QTL-innOva IPN from
AquaGen AS (Trondheim, Norway) were used in the current experiment. The parr were
reared on an off-season 0+ age smoltification protocol that included rearing under constant
light (LD 24:0) until 11 July 2019 when an almost 8-week photoperiod “winter” was
introduced with a LD12:12. After being returned on LD24:0 on 2 September, smoltification
was induced, after which the fish were transferred to seawater (26 g salts L−1) as smolts on
1 October.

The study was carried out in compliance with the Norwegian Animal Welfare Act
guidelines and the regulations concerning experiments with living animals were approved
by the Norwegian Food Safety Authority (FOTS ID 21500). The fish trial was conducted at
the Institute of Marine Research (Matre, Matredal, 61◦ N, Western Norway).

2.2. Diets

Two experimental diets were produced by Biomar AS, Tech Centre (Brande, Denmark).
Both diets contained the same basal mixture of ingredients including 25% fish meal, 11.75%
fish oil, with the remaining plant ingredients (Table 1). The total protein and lipid content
of the diets were 47% and 20%, respectively. The basal diet (low, L) contained 120 mg
kg−1 tocopherol acetate (α-TOH) and 230 mg kg−1 ascorbyl biphosphate (Asc) while the
high-vitamin diet (H) was supplemented with an additional 0.045% α-TOH and 0.035%
Asc giving a total of 210 mg kg−1 α-TOH and 380 mg kg−1 Asc.

Table 1. Ingredient and chemical composition of the experimental diets.

Ingredients (%) Diet L Diet H

Fish Meal LT 1 12.5 12.5
Fish Meal NA 2 12.5 12.5

Soy protein concentrate 3 14.89 14.89
Pea protein concentrate 4 15 15

Wheat gluten 5 6.6 6.6
Guar meal 6 5.4 5.4

Wheat meal 7 12.2 12.12
Fish oil 8 11.75 11.75

Rapeseed oil 9 5.04 5.04
Monocalcium phosphate 3.97 3.97

Amino acid mix 0.63 0.63
Premix vitamins, minerals, and others 1.11 1.11

Vitamin E (%) added 10 0 0.035
Vitamin C (%) added 11 0 0.045

Analytical composition (% dw)
Protein 47 47
Lipid 20 20
Ash 7.7 8.0

Dry matter 94 95
Micronutrients involved in redox regulation (mg

kg−1 dw)
Ascorbic acid 230 380

a-TOH 120 210
γ-TOH 21 21

1. Nordsilmel, Norway. 2. 999, Denmark. 3. Koster, Brazil. 4. Promill, China. 5. Roquette, Germany. 6. Sunita,
India. 7. Hedegaard, Denmark. 8. Koster, Peru. 9. Scanola Denmark. 10. Miavit, Germany (50%). 11. Hebei Tianyin,
China (35%).
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2.3. Experimental Design

On 14 August 2019, 360 Atlantic salmon parr were anesthetized (Finquel and bicarbon-
ate, 0.1 g L−1, respectively) and PIT-tagged in the abdominal cavity with a 2 mm scalpel
cut (Glass tag 2, 12 mm, TrackID AS, Stavanger, Norway). The fish were allowed to recover
from the tagging and acclimate to in the new tanks for 3 weeks before the experiment
started. The fish were randomly distributed into twelve tanks (water dept 0.4 m, 360 L)
with 30 fish per tank, and fed a commercial feed (Skretting AS, Stavanger, Norway) during
the acclimation period. The water temperature was kept constant at 12 ◦C throughout the
experiment and the oxygen saturation in effluent water was always above 80%.

The experimental design was presented in Figure 1. The feeding trial (experimental
phase; EP1) commenced on 2 September (day 1). The photoperiod was changed to LD24:0
at this timepoint to induce smoltification. Salinity of the water was changed to 26 g L−1 on
1 October. Each tank contained 30 fish with mean initial body weight (BW) of 38.7 ± 0.6 g.
The fish of six tanks were assigned to diet L, the other six tanks to diet H. The fish were fed
continuously (24 h) and ad libitum.
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Experimental phase 2 (EP2): followed directly after EP1 and the feeding of the H and
L diets continued. At the beginning of the EP2 (14 October) all fish were anaesthetized
and 10 fish per tank sampled for analysis as detailed below. Of the remaining fish, 10 fish
per tank were anesthetized and implanted intraperitoneally with growth hormone (GH)
suspended in sesame oil (3 H- and 3 L-tanks) and 10 fish were injected with sesame oil only
(Sham; 3 H- and 3 L-tanks). They were then distributed into separate tanks giving a 2 × 2
factorial design (H-GH, H-Sham, L-GH, L-Sham; see Figure 1). An approximately 5 mm
incision was made in the abdominal wall and the implants were delivered through the
incision, using a 250 µL positive-displacement pipette (Microman; Gilson, Middleton, WI,
USA). Each fish received 3 µL g BW−1 of GH or sesame seed oil vehicle. The GH implant
used was a sustained-release recombinant bovine GH (rbGH) formula (Posilac®, Monsanto
Co., St Louis, MO, USA), resulting in a dose of 1 mg rbGH g BW−1 for the GH-treated fish.
Following the procedure, the fish were allowed to recover from the anesthesia in aerated
seawater from the facility before being returned to their respective tanks. No mortalities
were noted.

2.4. Sampling Procedure

Sampling was carried out on 14 October (day 42; end of EP1/start of EP2), 1 November
(day 60) and 27 November (day 86; end of EP2). In the first sampling (42 days, end of EP1),
all experimental fish were anesthetized and then BW was recorded. Ten fish per tank from
the two dietary treatments in triplicate tanks (total sixty fish) were killed by an overdose of
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MS222 for analyses. On 1 November, only bulk weights of fish were recorded for minimum
disturbance of the fish. In the last sampling (86 days, end of EP2), 120 fish (10 fish per tank,
12 tanks) were euthanized and then dissected for analyses after cataract evaluation and BW
had been recorded.

Lenses were carefully dissected from ten fish from each tank, put into separate tubes,
immediately frozen on dry ice, and stored at −80 ◦C until analyses. Livers and muscle
from three fish per tank were pooled for vitamin C and E analyses and frozen on dry ice.
Individual samples of liver and muscle were dissected and flash frozen in liquid nitrogen
until further analyses. The samples were transported on dry ice to the laboratory and
stored at −80 ◦C until analyses.

2.5. Cataract Assessment

Cataract assessment was performed according to the methods described [43,44].
Briefly, both lenses of 10 fish per tank were tested with a Kowa SL-15 slit-lamp micro-
scope (Kowa, Tokyo, Japan) under darkened conditions. Each assessment was evaluated
by the same person. Each fish lens was given a score of 0 to 4 according to its opacity,
where 0 is no opacity and 4 is maximum opacity. The scores given are the sum from both
eyes (0–8) [44].

2.6. Chemical Analyses of Diets and Organs

L-histidine (HIS) and Na-Acetyl-L-histidine (NAH) concentrations in individual lenses
were determined by reversed-phase HPLC (Waters Corporation, Milford, MA, USA) [45], as
modified by Breck et al. [46]. Supernatants for total (GSH) and oxidized (GSSG) glutathione
were prepared from samples using a commercial kit (Prod. No. GT40, Oxford Biomedical
Research, Oxford, UK) before being analyzed at 405 nm in a microplate reader (iEMS
Reader Ms; Labsystems, Finland) [25]. Vitamin C was analyzed by HPLC as described
previously [47] and tocopherols according to the CEN method [48]. Malondialdehyde
(MDA) of liver and muscle were analyzed according to the method of Hamre et al. [6].

2.7. Antioxidant Enzyme Measurement

The activities of Sod, Gpx, Cat, glutathione reductase (Gr), and glutathione S-transferase
(Gst) were analyzed with commercial kits (Items 706002 (Sod), 703102 (Gpx), 703202 (Gr),
703302 (Gst), 707002 (Cat); Cayman Chemical Co., Ann Arbor, MI, USA). Frozen tissues
were homogenized (30 shakes per second for one and a half minutes) with ice cold-buffer
(20 mM HEPES, 1mM EGTA, 90 mM mannitol and 70 mM sucrose, pH 7.2) in a ball mill
(Retsch MM301 ball mill; Haan, Germany). For analyzing total Sod, the homogenized sam-
ples were centrifuged at 1500× g for 5 min at 4 ◦C, and the supernatant was collected. For
analyses of Gpx, Gr, Gst, and Cat, the supernatants were further centrifuged at 10,000× g
for 15 min at 4 ◦C and collected. The extracts were immediately stored at −80 ◦C for a
maximum of 1 month before analyses. Total protein concentrations of supernatants were
measured by a commercial assay kit (Prod. No. 22662, Thermo Scientific, Rockford, IL,
USA). All enzyme activities were quantified on a microplate reader (iEMS Reader Ms;
Labsystems, Finland) measuring Sod at 450 nm, Gpx, Gr, and Gst at 340 nm, Cat at 531 nm,
and protein at 660 nm.

2.8. RNA Extraction and RNA Sequencing

Total RNA of samples was prepared by using Promega simplyRNA kit (AX2420,
Madison, WI, USA) and the Biomek 4000 automated workstation following the manu-
facturer’s instruction. The quality and quantity of RNA were measured by a Nanodrop
spectrophotometer (ND-1000, NanoDrop Technologies, Wilmington, DE, USA) and all
samples were evaluated for quality of RNA on the Agilent RNA 6000 Nano Kit in 2100 Bio-
analyser (Agilent Technologies, Santa Clara, CA, USA). The isolated RNA was normalized
to 50 µL/ng for RNA-sequencing by adding RNA-free double-distilled water (dd H2O).
RNA-Seq library preparation was performed using the Illumina TruSeq Stranded mRNA
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library prep kit, according to the manufacturer’s protocol. Libraries were barcoded using
unique barcodes and multiplexed before sequencing at the Illumina HiSeq4000 system.
Library prep and sequencing were performed by the Genomics Core Facility (GCF) at the
University of Bergen.

The genome sequences (ICSASG_v2; Accession: GCA_000233375.4) and the RefSeq
gene annotation (Annotation release ID: 100) of Atlantic salmon were downloaded from the
National Center for Biotechnology Information (NCBI) website (https://www.ncbi.nlm.nih.
gov/assembly/GCF_000233375.1; accessed on 30 July 2020). The target genes used in the
present study were expanded corresponding Atlantic salmon genes by performing manual
searches for matched gene symbols and gene names in RefSeq. A total of 316 genes involved
in the redox system, covering antioxidant, thiol oxidoreductase, GSH synthesis/recycling,
redox system transcription factors, NADPH oxidase family (NOXs), heat shock protein
(HSP) and aquaporins (AQPs), DNA damage and repair, apoptosis, and inflammation were
selected for analyses (see Supplementary Material for the full list of analyses).

After the initial read quality checks by FastQC (https://qubeshub.org/resources/
fastqc; accessed on 19 December 2019), adapters, short reads (less than 20 bases), and low-
quality reads (phred score < Q30) were eliminated by Cutadapt [49] through Trim Galore
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/; accessed on 18 May
2018). Quality control reports were subsequently generated by MultiQC [50] for manual
inspection. Prior to the alignment, the chromosome sequences were indexed by STAR [51]
with the exon/intron information. All the reads that passed the quality control were aligned
to the Atlantic salmon genome by STAR with the default parameters for paired-ends reads.
Only uniquely aligned reads on the genome were selected for the subsequent quantification,
which were counted to quantify gene expression by featureCount [52] with the default
parameters for paired-ends reads. Only uniquely mapped reads to RefSeq genes were used
for counting as the counts of unmapped, multi-mapped, and ambiguously mapped reads
were discarded. The pipelines of the preprocessing as well as the following deferential
gene expression analyses were developed and maintained using Snakemake [53].

Differentially expressed genes (DEGs) were calculated in a pairwise manner between
six treatment groups of EP1 (H vs. L) and EP2 (H vs. L, H-GH vs. L-GH, H-GH vs. H-Sham,
L-GH vs. L-Sham) by DESeq2 [54]. p-values of the fold changes between two groups were
calculated by the Wald test from DESeq2 followed by multiple testing correction by the
Benjamini–Hochberg procedure. The heatmaps were generated by ComplexHeatmap [55]
to investigate the expression patterns of the target genes among different groups.

2.9. Calculations

Specific growth rate (SGR, %) was calculated as: (lnBWf − lnBWi) × 100/num-
ber of feeding days, where BWi and BWf are the initial and final body weights (tank
means), respectively.

Redox potential (Eh) is the half-cell potential for oxidation of GSH to GSSG and was
calculated according to the Nernst equation:

Eh = E0′-RT/nF ln([GSH]2/[GSSG])

where R is the gas constant (R = 8.314 J K−1 mol−1), T the temperature (in Kelvin), and F the
Faraday constant (F = 9.6485 × 104 C mol−1). The units of GSH and GSSG concentrations,
and Eh, are in moles and Volts, respectively. E0′ is the standard reduction potential and
was assumed to be −240 mV at the environmental condition of 25 ◦C and pH 7 [21,56].
The measurements are calculated as the average of whole organs and do not take into
account that the reduction potential varies between cell types and between organelles
within the cells.

2.10. Statistical Analyses

Tanks (n = 3) were used as experimental unit for data on SGR (WP1, n = 6; WP2,
n = 3) and vitamin C, vitamin E, and micro-mineral concentrations (n = 3). Individual fish

https://www.ncbi.nlm.nih.gov/assembly/GCF_000233375.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000233375.1
https://qubeshub.org/resources/fastqc
https://qubeshub.org/resources/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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was the experimental unit for data on cataract assessment (n = 30), on GSH and enzyme
analyses (n = 9), on RNA-seq (n = 9) and on Lens HIS and NAH levels (n = 9). Data were
analysed using Free software environment R version 4.0.4 (R Foundation for Statistical
Computing, Vienna, Austria). Data from the first sampling of the two dietary treatments
were subjected to the independent T-test. A 2 × 2-way factorial ANOVA was used to
analyze the relationship between feed type and growth hormone implantation from the
second sampling. Tukey’s HSD post-hoc test was used when interaction effects were found.
Homogeneity of variances and normality were checked using Levene’s test and Shapiro–
Wilk’s test, respectively. Data from EP1 and EP2 that were non-normal or heteroscedastic
or both were analyzed using the Wilcox test and Scheirer–Ray–Hare extension of the
Kruskal–Wallis test, respectively. The data of antioxidant enzyme activities were examined
by principal component analysis PCA (R: factoextra, version 1.0.6) to explain the effects of
GH or diet on antioxidant capacity of liver and muscle. Results are presented as means
with standard deviation (mean ± SD) and a significance level of 95% was used (p < 0.05).
Potential outliers were analyzed (ROUT, Q = 1) using GraphPad Prism, version 8 (GraphPad
Software, La Jolla, CA, USA). Figures were made using GraphPad Prism. Differentially
expressed genes (DEGs) of RNA-Seq data were defined when the genes had adjusted
p-values < 0.1.

3. Results
3.1. Specific Growth Rate and Lens Health

The SGR did not vary between the L and H groups during EP1 and EP2 (p > 0.05;
Figure 2A). Over the course of EP2, GH implantation initially reduced SGR (days 43–60,
p > 0.05) compared with Sham, after which, the SGR increased until the end of the trial at 86
days (p < 0.05; Figure 2B). Overall, for days 43–86, there were no differences in growth rates
between the groups. Neither GH nor diet affected the cataract score during EP2 (p > 0.05).
There were significant increases in HIS and NAH in the lens from fish implanted with GH
(p < 0.01; Figure 3).
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Figure 2. Specific growth rate in Atlantic salmon in response to dietary vitamins and growth hormone
(GH) implantation or sham implantation over EP1 and EP2. The specific growth rate is calculated
over the EP1 from 0 to 42 days, EP2 from 42 to 60 days as well as 61 to 86 days. Data presented
as means ± SD. p-values obtained from two-way ANOVA on the main effects of diet, GH, and
interaction are provided in insets. * Significant effect of treatment (p < 0.05, two-way ANOVA).
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Figure 3. Cataract score, lens histidine, and lens N-acetyl L-histidine (NAH) in Atlantic salmon.
Cataract score was only detected in the EP2. Data presented as means ± SD. p-values obtained from
two-way ANOVA on the main effects of diet, GH, and interaction are provided in insets. **; significant
effect of treatment (p < 0.01, two-way ANOVA).

3.2. Vitamin C, Vitamin E, and MDA Levels

Vitamin C and E levels in tissues were not affected by the diets during EP1 (Figure 4).
During EP2, both GH and diet effects were significant for vitamin C and E levels of both
liver and muscle. Fish implanted with GH had generally reduced levels of these vitamins.
There was a significant interaction between liver vitamin E (p < 0.05) and the H sham group,
which resulted in the highest levels of vitamin E compared with other groups. Liver and
muscle MDA were not affected by diet in the two groups in EP1 (p > 0.05). In EP2, liver
MDA was affected by both dietary treatment and GH (p < 0.01), where GH increased MDA
levels and high vitamin levels (diet H) reduced it. Muscle MDA was not affected by any
treatment (p > 0.05).
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Figure 4. Tissue concentrations (mg kg−1 wet weight) of redox-dependent micronutrients in Atlantic
salmon in response to dietary vitamins and GH implantation or sham implantation over EP1 and EP2.
Data presented as means ± SD. P-values obtained from two-way ANOVA on the main effects of diet,
GH, and interaction are provided in insets. *, **, ***; significant effect of treatment (p < 0.05, p < 0.01,
p < 0.001, two-way ANOVA). Small letters are the result of post-hoc after significant interaction
(two-way ANOVA with Tukey HSD post-hoc).



Antioxidants 2022, 11, 1708 9 of 18

3.3. Glutathione Levels and Antioxidant Enzyme Activities

The glutathione levels and redox potential in liver, muscle, and lens were not influ-
enced by dietary treatment during EP1 (p > 0.05; Figure 5). GH reduced the GSH level
in muscle but not in liver or lens during EP2. Further, there were no differences among
treatment groups in muscle and liver redox potential during EP2.
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Figure 5. Tissues reduced and oxidized glutathione (GSH and GSSG, µmoles kg−1 wet weight) and
the GSH-based redox potential (mV) in Atlantic salmon in response to dietary vitamins and GH
implantation or sham implantation over EP1 and EP2. Data presented as means ± SD. p-values
obtained from two-way ANOVA on the main effects of diet, GH, and interaction are provided in
insets. **; significant effect of treatment (p < 0.01, two-way ANOVA).

In general, diet had little effect on the analyzed enzymes during EP1, except that fish
fed diet H had a lower Cat activity compared to those fed L (p < 0.05, Figure 6). The PCA of
antioxidant enzymes in liver and muscle during EP2 were grouped by GH (Figure 7A,B),
but not by dietary vitamins C and E (Figure 7C,D). Accordingly, GH treatment significantly
reduced Sod and Cat activities (p < 0.001) and increased the activity of Gr in liver (p < 0.05).
There was a significant interaction for Gpx and GH (p < 0.05) where fish fed H tended to
increase Gpx activity in the sham groups (H-Sham), while being reduced in the GH group
(H-GH). GH on the other hand increased muscle Sod and Gst activities compared to the
sham groups (p < 0.01) but reduced Gpx (p < 0.01). There were significant interactions
for muscle Sod and diet (p < 0.01) where Sham-treated fish fed H (H-Sham) had reduced
activity while the highest activity was found in the H-GH group.
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Figure 6. Changes in specific antioxidant enzyme activity in response to dietary vitamins and GH
implantation or shame implantation over EP1 and EP2. Data presented as means ± SD. P-values
obtained from two-way ANOVA on the main effects of diet, GH, and interaction are provided in
insets. *, **, ***; significant effect of treatment (p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, two-way ANOVA).
Different l letters denote significant effect between groups in the EP1, small letters are the result of
post-hoc after significant interactions (two-way ANOVA with Tukey HSD post-hoc) in the EP2.

GH

Sham

Group

Group

High

Low

A: GH effect on liver B: GH effect on muscle

D: Dietary effect on muscleC: Dietary effect on liver

Figure 7. PCA biplots on specific antioxidant enzyme activity grouped by GH (A,B) or dietary
vitamins C and E feeding (C,D) measured in liver and muscle, respectively. Arrows represent the
5 most contributing variables to the model, respectively (Cat, catalase; Sod, superoxide dismutase; Gst,
glutathione S-transferase; Gpx, total glutathione peroxidase). Ellipses represent the 95% confidence
intervals around a center of 9 rearing tanks (pool of 3 individuals).
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3.4. Mineral Concentrations

Levels of the redox-active metals Fe, Cu, Mn, Zn, and Se were measured in EP2
(Table 2). The levels of Se in liver and muscle were significantly decreased by GH (p < 0.05).
GH increased Mn levels in liver (p < 0.05) but deceased them in muscle (p < 0.001). Fish fed
the H had significantly higher Mn levels in muscle (p < 0.05).

Table 2. Micro-mineral concentration in the liver and muscle of Atlantic salmon during EP2 (mg/kg
wet weight.

Sham GH p Value

L-Sham H-Sham L-GH H-GH Diet GH Diet × GH

Liver
Se 1.33 ± 0.21 1.30 ± 0.10 1.07 ± 0.14 1.09 ± 0.11 NS <0.05 NS

Mn 1.70 ± 0.17 1.75 ± 0.21 2.20 ± 0.35 1.87 ± 0.06 NS <0.05 NS
Fe 70.33 ± 23.46 71.00 ± 51.29 57.67 ± 24.01 41.67 ± 13.58 NS NS NS
Cu 38.33 ± 4.51 34.33 ± 5.03 32.67 ± 10.69 34.67 ± 11.55 NS NS NS
Zn 23.00 ± 1.00 22.00 ± 1.00 23.33 ± 1.15 24.00 ± 2.00 NS NS NS

Muscle
Se 0.18 ± 0.01 0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 NS <0.05 NS

Mn 0.36 ± 0.04 0.23 ± 0.06 0.19 ± 0.02 0.14 ± 0.04 <0.05 <0.001 NS
Fe 1.53 ± 0.49 1.33 ± 0.06 1.37 ± 0.15 1.35 ± 0.07 NS NS NS
Cu 0.21 ± 0.02 0.22 ± 0.02 0.32 ± 0.20 0.21 ± 0.03 NS NS NS
Zn 4.53 ± 0.23 4.40 ± 0.10 4.47 ± 0.06 4.50 ± 0.14 NS NS NS

p-value indicates statistical significance as obtained through two-way ANOVA, n = 3. Se: selenium; Mn: man-
ganese; Fe: iron; Cu: copper; Zn: zinc.

3.5. Transcriptomic Assay and Gene Expression

In the EP1, diet had a minor effect on the regulation of redox-related genes. The only
significantly differentially expressed gene found was pgc-1a, which was upregulated in
H-fed fish. In the EP2, H upregulated only ucp2 compared to L among GH-treated groups
(H-GH vs. L-GH). Both GH and diets induced differential regulation of the redox system
(Figure 8). Here, GH significantly affected 43 genes in the liver of L-fed fish (L-GH vs.
L-Sham) and 34 genes of H-fed fish (H-GH vs. H-Sham). In contrast, fewer genes were
affected by GH in muscle, where 4 and 17 genes were in L-fed and H-fed fish, respectively.

The summary of the DEGs (L-GH vs. L-Sham, H-GH vs. H-Sham) and their propor-
tions in the respective groups are shown in Table 3. The approximate proportions of DEGs
of several biologically relevant groups are listed. In the liver, 21% (7 out of 33) and 18%
(6 out of 33) of the genes coding for antioxidant enzymes in L- and H-fed fish, respectively,
were DEGs. Of these, GH upregulated gpx3 and mta and downregulated mnsod, cat, and
ucp2 in L-fed fish, and upregulated gpx2 and mta while downregulated mnsod as well as
msrb2 in H-fed fish. Of the group of genes coding for thiol oxidoreductases and GSH
synthesis/recycling, txnrd1 was significantly upregulated and txnl1, glrx, prxl2c, and gclr
gene expression were significantly downregulated in L-fed fish, while upregulated txn and
downregulated txn2, prxl2ctxinp, and gclc were found in H-fed fish. In addition, GH down-
regulated liver gene expression of the nrf2 and pgc-1a in both dietary groups. A total of 53%
(8 out of 15) of the genes coding for NOXs were affected by GH in both dietary groups. GH
significantly upregulated the expressions of ncf1, ncf2, cyba, cybb, and spd2a genes in both L-
and H-fed fish, but the nox1 gene was downregulated in L-fed fish, only, while cyba was
upregulated in H-fed fish. The HSP genes were affected by GH. As well as upregulated
hopl, GH upregulated hsp70 and hsp90b1 in L-fed and H-fed fish respectively, while GH
downregulated hsf1, dnajb4, hspa8, hspa9, hsp90b1, and hs90a in L-fed fish, expression of hsf1
was only downregulated inf H-fed fish.
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Figure 8. Expression of genes involved in redox system affected by dietary vitamins and GH
implantation. Heat map of the expression of genes associated with the redox system over EP1 and
EP2. Normalization genes was performed using size factors calculated by DESeq2, followed by log2
fold-change (LFC) and adjusted p-value estimates between sample group; red and blue indicate
upregulated and downregulated expression, respectively, while the symbol *, •, and ◦ indicate
p-values lower than 0.001, 0.01, and 0.1, respectively.

Genes coding for AQPs and DNA damage and repair were more affected and apoptosis
in L-fed fish compared to that in H-fed fish. Here, 57% (4 out of 7) of these genes were
affected by GH where the aqp9 homologs were upregulated or downregulated, and aqp8
was downregulated in L-fed fish. Only aqp9 was upregulated in fish fed the H. Twenty
percent (3 out of 15) and twelve percent (3 out of 26) of genes involved in DNA damage
and repair and apoptosis were affected by GH only in L-fed fish, respectively, e.g., tp53,
gadd45a, ogg1, and casp9 were upregulated and bcl-2 and bcl-xl were downregulated. In
contrast, GH affected more genes involved in inflammation in the H-fed fish compared to
L-fed fish (46% vs. 25%). GH upregulated the Ikba and il-8 in both diet groups, while nf-kb
was upregulated only in the H-fed fish.

In muscle, GH upregulated the expression of genes involved in thiol oxidoreductase,
GSH synthesis/recycling, redox transcription factors, NOXs, HSP, apoptosis, and inflam-
mation in H-fed fish (H-GH vs. H-Sham); txnip, gr, nrf2, ncf1, ncf2, cybb, spd2a, hsp30,
hspa9, casp9, and ikba, and downregulated aqp3. The expression of genes involved in HSP
and DNA damage and repair: hsp60, hspa9, and gadd45a, were upregulated in fish fed L
(L-GH vs. L-Sham).
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Table 3. A summary of the changes in differentially expressed genes (DEGs) involved in redox system
regulation in response to GH and dietary vitamin C and E in liver and muscle of Atlantic salmon.

Tissue L-GH vs. L-Sham H-GH vs. H-Sham

Liver Affected
(%) * Upregulated † Downregulated † Affected

(%) * Upregulated † Downregulated †

Antioxidant (7/33) 21 gpx3, mta mnsod2, cat, ucp2 (6/33) 18 gpx2, mta mnsod, msrb2
Thiol oxidoreductase (4/42) 10 txnrd1 txnl1, glrx, prxl2c (5/41) 12 txn txn2, txnip, prxl2c

GSH synthesis/recycling (1/8) 13 gclr (2/8) 25 gclc

NADPH oxidase system (8/15) 53 ncf1, ncf2, cybb, spd2a nox1 (8/15) 53 ncf1, ncf2, cyba, cybb,
spd2a

Redox system transcription
factors (3/8) 38 nrf2, pgc-1α (2/9) 22 nrf2, pgc-1α

Heat shock protein (7/52) 13 hsp70, hopl hsf1, dnajb4, hspa8, (4/52) 8 hopl, hsp90b1 hsf1hspa9, hsp90b1,
hs90a

Aquaporin (4/7) 57 aqp9 aqp8, aqp9 (1/8) 13 aqp9
DNA damage and repair (3/15) 20 tp53, gadd45a, ogg1 (0/15) 0

Apoptosis (3/26) 12 casp9 bcl2, bcl-xl (0/26) 0
Inflammation (3/12) 25 ikbα, il-8 (6/13) 46 nf-kb, ikbα, il-8
Antioxidant (0/31) 0 (0/31) 0

Thiol oxidoreductase (0/41) 0 (2/40) 5 txnip
GSH synthesis/recycling (0/8) 0 (1/8) 13 gr
NADPH oxidase system (0/13) 0 (4/13) 31 ncf1, ncf2, cyba, cybb

Redox system transcription
factors (0/7) 0 (1/7) 14 nrf2

Heat shock protein (3/62) 5 hsp60, hspa9 (6/62) 10 hsp30, hspa9
Aquaporin (0/4) 0 (1/4) 25 aqp3

DNA damage and repair (1/15) 7 gadd45a (0/15) 0
Apoptosis (0/25) 0 (1/25) 4 casp9

Inflammation (0/11) 0 (1/11) 9 ikbα

* Differentially expressed genes/total mapped genes. † Some gene symbols are associated with multiple gene IDs.
Gene abbreviation and name: gpx2: glutathione peroxidase 2; gpx3: glutathione peroxidase 3; mnsod: superoxide
dismutase 2; cat: catalase; ucp2: uncoupling protein 2; mta: metallothionein A; msrb2: methionine sulfoxide
reductase B2; txn: thioredoxin; txnrd1: thioredoxin reductase 1, cytoplasmic-like; txnl1: thioredoxin-like 1; glrx:
glutaredoxin; prxl2c: peroxiredoxin-like 2C; gclr: glutamate–cysteine ligase regulatory subunit; gclc: glutamate–
cysteine ligase, catalytic subunit; gr: glutathione reductase; ncf1: neutrophil cytosolic factor 1; ncf2: neutrophil
cytosolic factor 2; cyba: cytochrome b-245 light chain; cybb: cytochrome b-245 heavy chain; spd2a: SH3 and PX
domain-containing protein 2A; nox1: NADPH oxidase 1; nrf2: nuclear factor erythroid 2-related factor 2; pgc-1α:
peroxisome proliferator-activated receptor gamma coactivator 1-alpha-like; hsp70: heat shock 70 kDa protein; hopl:
hsp70-Hsp90 organizing protein-like; hsf1: heat shock transcription factor 1; dnajb4: DnaJ heat shock protein family
(hsp40) member B4; hsp60: heat shock protein 60; hsp70: heat shock protein 70; hspa8: heat shock protein 8; hsp90:
heat shock protein 90; aqp3: aquaporin 3; aqp8: aquaporin 8; aqp9: aquaporin 9; tp53: tumor protein p53; gadd451:
growth arrest and DNA damage-inducible protein GADD45 alpha; ogg1: 8-oxoguanine DNA glycosylase; casp9:
caspase 9; bcl2: apoptosis regulator Bcl-2-like; bcl-xl: Bcl-2-like1; nf-kb: transcription factor p65; ikbα: NF-kappa-B
inhibitor alpha; il-8: interleukin 8.

4. Discussion

The present study strengthens the notion that there is a functional relationship between
GH and the oxidative stress of fish. Vitamin E is fat soluble and tissue concentrations in
Atlantic salmon increase linearly with dietary inclusions [29]. Studies in mice indicate
that damage to tissues and oxidative stress deplete vitamin C and E storages [57,58]. This
was very much in line with our results where GH treatment led to reductions of vitamins
C and E, which clearly suggest that the fish had elevated oxidative stress. This notion
is strengthened by GH-stimulated increased liver accumulation of the lipid oxidation
product MDA. Despite these changes in oxidative stress status, there were no changes in
the redox potential. This clearly indicates that salmon are capable of controlling the redox
environment under these conditions.

An interesting notion of the present study was that the GH effect on the antioxidant
defense and transcription regulation of the redox system appeared to be regulated through
Nrf2 modulation. Pgc-1 α protein is an important regulator of mitochondrial function
and homeostasis, regulating the expression of mitochondrial antioxidant genes and thus
preventing oxidative stress and mitochondrial dysfunction [59]. The loss of nrf2 and pgc-1a
genes cripples the antioxidant defense system and leads to increased oxidative stress [60].
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The downregulation of nrf2, pgc-1a, and their cytoprotective target genes such as gclc, gclr,
sod, and cat indicate that GH suppresses antioxidant activity in the cell and in mitochondria
of the liver, respectively. Accordingly, GH decreased the enzyme activities of both Sod and
Cat in the liver. Microminerals such as Mn, Se, Fe, Cu, or Zn are closely linked to the redox
system of Atlantic salmon [61], where Se is an essential component of the selenoproteins
such as Gpx, and Mn is a required component of Mnsod (Sod2) for reducing mitochondrial
oxidative stress [62]. Besides the critical role of Mn in managing the superoxide level,
oxidative stress is induced when Mn is excessive [63]. The present study demonstrates
that decreased Se levels in GH-treated fish are highly correlated with suppression of the
antioxidant system, while the liver Mn levels were negatively correlated with Sod activity
and mnsod expression. Similarly, hepatic Mnsod activity has been found to be reduced in
fish that had a high level of Mn [64,65]. Based on the results and the redox-active role of
Se and Mn, GH affected the Se and Mn levels, which may impact the redox environment
of the tissues of Atlantic salmon. NOXs can be activated by various growth factors and
cytokines, exemplified by IGF-I [66]. The upregulation of NOX genes corresponds with
higher ROS generation [8,67–69]. In the present study, the upregulation of liver genes such
as ncf1, ncf2, and cybb coding for essential components of NOXs suggests that GH might
promote ROS generation by upregulating NOXs expression. Taken together, it is reasonable
to suggest that GH could have effects on ROS metabolism by affecting the sources of ROS
and antioxidative defenses in the liver of Atlantic salmon. We raised a systemic overview
of redox regulation in the GH-treated Atlantic salmon liver and muscle (Figure 9).
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Figure 9. Effect of GH and vitamin C and E nutrition on the redox system in liver (A) and muscle
(B) of Atlantic salmon during the EP2. The systemic overview of redox regulation was raised based
on the results in this study. Arrows in blue color represent the regulation of antioxidants by GH, in
pink color represent the regulation of antioxidants by dietary vitamin C and E. Arrows in red and
green color represent the regulation of redox relative gene expression of the comparisons of L-GH vs.
L-Sham and H-GH vs. H-Sham, respectively.
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Our results suggest that the effects of GH on the muscle of Atlantic salmon are tissue-
specific, and these interact with dietary antioxidants. In the muscle of H-fed fish, more
redox genes were affected by GH than in L-fed fish, including nrf2 and NOX genes, which
were both upregulated. Nrf2 signaling has been shown to be upregulated by the antioxidant
vitamins [70–72] and to interact with the expression of NOXs [73,74]. It is therefore possible
that H2O2 production by NOX signaling was increased by GH and that Nrf2 provided
protection in the muscle, and that the H diet might promote a healthier growth signal than
the L diet. However, of greater importance may be that increased Sod activity increases
the dismutation of O2

− to H2O2, and without simultaneous increases in the activities
of H2O2-reducing enzymes, such as Gpx, which will lead to the accumulation of H2O2.
Hormones that regulate the growth and defense pathway in plants use ROS as second
messengers [75]. If GH promotes growth through ROS as second messengers in animals,
a possible outcome by increasing dietary antioxidant vitamins is growth inhibition. This
cannot be deduced from the results of the present study. However, the trial period was
short and the variation in growth was too large to be able to see such effects.

In summary, high GH levels lead to increased oxidation in Atlantic salmon, as seen
by the decrease in tissue vitamin C and E levels, higher MDA, regulation of the activity of
antioxidant enzymes, and GSH. It appears likely that GH induces redox signaling derived
from NOXs signaling, mitochondrial ROS production, and from modulation of the Nrf2
pathway to weaken the ROS sinks. These processes are affected by dietary antioxidants.
The L diet, which is close to the recommended levels of vitamin C and E, seems to give
insufficient protection against oxidation and the H diet seems to promote healthy growth
in response to high levels of GH. This indicates that GH involves redox signaling and may
use ROS as second messengers.
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