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A B S T R A C T   

Accelerometers provide detailed data about physical activity (PA) across the full intensity spectrum. However, 
when examining associations with health, results are often aggregated to only a few summary measures [e.g. 
time spent “sedentary” or “moderate-to-vigorous” intensity PA]. Using multivariate pattern analysis, which can 
handle collinear exposure variables, we examined associations between the full PA intensity spectrum and 
cardiometabolic risk (CMR) in a population-based sample of middle-aged to older adults. Participants (n = 3660; 
mean ± SD age = 69 ± 8y and BMI = 26.7 ± 4.2 kg/m2; 55% female) from the EPIC-Norfolk study (UK) with 
valid accelerometry (ActiGraph-GT1M) data were included. We used multivariate pattern analysis with partial 
least squares regression to examine cross-sectional multivariate associations (r) across the full PA intensity 
spectrum [minutes/day at 0–5000 counts-per-minute (cpm); 5 s epoch] with a continuous CMR score (reflecting 
waist, blood pressure, lipid, and glucose metabolism). Models were sex-stratified and adjusted for potential 
confounders. There was a positive (detrimental) association between PA and CMR at 0-12 cpm (maximally- 
adjusted r = 0.08 (95%CI 0.06–0.10). PA was negatively (favourably) associated with CMR at all intensities 
above 13 cpm ranging between r = − 0.09 (0.07–0.12) at 800-999 cpm and r = − 0.14 (0.11–0.16) at 75–99 and 
4000-4999 cpm. The strongest favourable associations were from 50 to 800 cpm (r = 0.10–0.12) in men, but 
from ≥2500 cpm (r = 0.18–0.20) in women; with higher proportions of model explained variance for women (R2 

= 7.4% vs. 2.3%). Most of the PA intensity spectrum was beneficially associated with CMR in middle-aged to 
older adults, even at intensities lower than what has traditionally been considered “sedentary” or “light-in-
tensity” activity. This supports encouragement of PA at almost any intensity in this age-group.   

1. Introduction 

Recent research utilising wearable devices (accelerometers) has 
shown physical activity (PA) intensity may play a role in mortality risk 
over and above total PA volume (Strain et al., 2020). Accelerometers 
provide high resolution time-stamped data on both total PA volume and 
across the full spectrum of PA intensities (Doherty et al., 2017; Golubic 
et al., 2014; Berkemeyer et al., 2016; Lindsay et al., 2019). However, one 
barrier to investigating the full PA intensity spectrum in relation to 
health outcomes is that time spent at different intensities are highly 
correlated with each other (i.e. multicollinearity) and thus challenging 

to model together. Although compositional data analysis approaches can 
address co-dependency of PA intensities, it remains common to collapse 
detailed PA intensity information into broad summary variables (e.g. 
time spent in moderate-to-vigorous intensity activity, sedentary time) 
using pre-defined cutpoints to give behavioural and biological meaning 
(Whitaker et al., 2019; Swindell et al., 2018; Powell et al., 2018; 
LaMonte et al., 2017; Alessa et al., 2017; Brocklebank et al., 2015; 
Henson et al., 2013; Healy et al., 2008; Healy et al., 2007). While this 
approach can lead to more easily interpretable messages, it can lead to 
loss of information and, importantly, pre-supposes which intensities are 
most important to examine with respect to health, rather than letting 
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this information arise in a data-driven manner (Rowlands, 2018; 
Troiano et al., 2014; Trost, 2007). 

Whilst several analytical or data-driven approaches attempt to 
address issues around cutpoints by examining accumulation of activity 
in different intensities and/or by deriving metrics to represent intensity 
distributions (e.g. (Rantalainen et al., 2021; Rowlands et al., 2018)), 
most analytical approaches at present give limited consideration to 
collinearity issues (Aadland et al., 2019a). Multivariate pattern analysis, 
a method previously applied in biomedical and pharmaceutical research 
to handle multicollinearity issues between explanatory variables 
(Rajalahti et al., 2010; Rajalahti and Kvalheim, 2011), allows for 
simultaneous examination of multiple highly correlated accelerometer 
intensity variables which parameterise the whole intensity spectrum. 
This method uses a different analytical approach (partial least squares 
regression) to identify and model regions of the PA intensity spectrum 
most strongly associated with health (Aadland et al., 2019b; Migueles 
et al., 2021). Multivariate pattern analysis was recently applied to 
examine associations of multiple accelerometer-derived PA intensity 
variables across the spectrum with cardiometabolic risk (CMR) factors in 
a sample of 841 Norwegian children (Aadland et al., 2018a) and over 
4000 children from the International Children's Accelerometry Database 
(ICAD) database (Aadland et al., 2020a). Results suggested that associ-
ations were strongest for time spent at the more ‘vigorous’ end of the 
intensity spectrum, with weaker associations for ‘moderate’ intensities, 
and more trivial associations for time spent ‘sedentary’ or in ‘light-in-
tensity’ activities in this age-group. 

However, it is unclear whether the relative importance of more 
vigorous intensity activity seen in children holds true in middle-aged to 
older adults, who generally accumulate much less vigorous PA (Strain 
et al., 2020; Whitaker et al., 2019; Swindell et al., 2018; Powell et al., 
2018; LaMonte et al., 2017; Alessa et al., 2017; Brocklebank et al., 2015; 
Henson et al., 2013; Healy et al., 2008; Healy et al., 2007). The influence 
of confounding factors on PA intensity associations with CMR, as well as 
potential sex differences, may also be more pertinent factors to consider 
in adult populations. Indeed, which PA intensities are most important 
for CMR has not been studied using this high-resolution intensity spec-
trum approach. We therefore aimed to establish which intensity regions 
are most important for CMR, using multivariate pattern analysis, in a 
well-phenotyped, population-based sample of middle-aged to older 
adults. 

2. Methods 

2.1. Participants and procedures 

We used data collected as part of the European Prospective Investi-
gation of Cancer (EPIC) Norfolk Study (Hayat et al., 2014). In brief, 
25,639 participants were recruited from 35 general practices and invited 
to attend a clinic assessment between 1993 and 1997. The participating 
cohort at initial recruitment was similar to the national population 
studied in the Health Survey for England in terms of anthropometry, 
serum lipids and blood pressure (Hayat et al., 2014). At the 3rd health 
examination in EPIC-Norfolk (2004–2011), 8623 participants, then aged 
48–92 years, attended a central research clinic for questionnaire 
assessment and biomedical examination (including anthropometry, 
blood pressure and venous blood sampling). The present study uses data 
from a subsample of 4142 participants aged 49–91 years from this 3rd 
health check who were also asked to wear an accelerometer (randomly 
sampled based on monitor availability), the descriptive epidemiology of 
which has been previously described (Berkemeyer et al., 2016). The 
final sample size was 3660 (1634 men and 2026 women) after excluding 
those with insufficient valid wear time (n = 91) or missing data on any of 
the covariates or outcomes of interest (n = 391). The Norfolk Local 
Research Ethics and East Norfolk and Waveney NHS Research Gover-
nance Committee (05/Q0101/191) approved the study and signed 
informed consent was obtained from all participants. 

2.2. Physical activity 

Participants wore a uniaxial accelerometer (ActiGraph GT1M 
[default filter setting; i.e., not the low-frequency extension setting], 
Pensacola, USA) on their right hip for seven consecutive days, except 
during water activities (e.g. swimming, showering) or while sleeping. 
Accelerometers were initialised to record data in 5 s resolution, with 
counts stored per epoch. Data was downloaded and the 5 s data was also 
collapsed to 60 s epochs prior to processing; we expressed movement 
intensity as counts-per-minute (cpm) for both 5 s and 60s time resolu-
tions. Non-wear time was defined as time segments with ≥90 min of 
continuous zero activity counts (Berkemeyer et al., 2016; Choi et al., 
2011). Participants with ≥4 days, each consisting of ≥10 h/day of valid 
wear time, were included. When daily wear time was ≥19 h (indicating 
monitor wear during sleep), wear time and time spent in the lowest 
intensity category (i.e. 0-12 cpm) were truncated to 19 h/day. 

The intensity spectrum was summarised as the time distribution 
(minutes/day) across m = 22 systematically spaced intensity intervals 
(bins), chosen a priori. As a greater proportion of time was spent at the 
lower end of the intensity spectrum, we used a gradually decreasing 
resolution (i.e., increasing bin size) with higher intensities (0–12, 13–24, 
25–49, 50–74, 75–99, 100–124, 125–149, 150–199, 200–299, 300–399, 
400–499, 500–799, 800–999, 1000–1499, 1500–1999, 2000–2499, 
2500–2999, 3000–3499, 3500–3999, 4000–4499, 4500–4999, ≥5000 
cpm) to capture relevant information in the best possible way. Typically 
used thresholds for ‘sedentary’, ‘light-intensity’ and ‘moderate-to- 
vigorous intensity’ activity are also displayed in Supplemental Fig. S6, 
for illustrative purposes. 

2.3. Continuous cardiometabolic risk 

Trained research staff measured height, weight and waist circum-
ference according to standardised procedures (Hayat et al., 2014). Sys-
tolic and diastolic blood pressure were measured in duplicate using an 
Accutorr sphygmomanometer (Datascore, UK) after three minutes of 
sitting, with the average taken. The non-fasting venous blood sample 
was examined for serum triglycerides (TG), total cholesterol (TC), and 
high-density lipoprotein cholesterol (HDL-C) using an RA1000 auto-
analyzer (Bayer Diagnostics, UK). Glycated haemoglobin (HbA1c) was 
measured using Diamat ion exchange HPLC (Bio-Rad Laboratories, UK). 
A continuously distributed CMR score was computed using continuous 
indicators of waist circumference; blood pressure (average of systolic 
and diastolic); TG; TC:HDL-C; and, HbA1c. After log-normalisation of 
TG, TC:HDL-C and HbA1c, all five cardiometabolic variables were 
standardised [z = (value-mean)/SD)] in sex-specific strata. The CMR 
score was then calculated by summing all sex-standardised scores and 
dividing this sum by five. A higher CMR score indicates higher car-
diometabolic disease risk. We confirmed face validity of this CMR score 
in the present population by examining its prospective association with 
incident cardiovascular disease, the risk of which was estimated to be 
47% higher per 1 unit in the CMR score in a linear manner (see Sup-
plemental Analysis S1). 

2.4. Potential confounding variables 

Age, gender, education level (none, General Certificate of Education 
(GCE) Ordinary Level, GCE Advanced Level, bachelor's degree, and 
above), smoking status (current, former and never), alcohol intake 
(units/week), baseline history of diabetes mellitus or anti-diabetic 
medications (yes, no), anti-hypertensive medication (yes, no), medica-
tion for dyslipidaemia (yes, no) were self-reported via a standardised 
health and lifestyle questionnaire. Habitual diet was assessed using a 
130-item semi-quantitative food frequency questionnaire which asked 
about participants' average intake of food items over the past year. 
Adherence to the Mediterranean diet pyramid was derived based on 15 
components on the pyramid for which continuous scores from 0 to 1 
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were assigned for each component. This Mediterranean diet score (range 
0–15) was used as an overall measure of diet quality, while accounting 
for absolute levels of dietary consumption (Tong et al., 2016; Bingham 
et al., 2001). Information on prevalent heart disease and stroke was 
collected up until the 3rd health assessment via either self-report or 
record linkage with hospital episode statistics. 

2.5. Statistical analyses 

Prior to running all analyses, the CMR score was residualized to 
adjust for important sources of variation and confounding (decided upon 
a priori) by regressing the CMR score on all covariates, then adding the 
residual value from each participant to the analytical sample mean of 
predicted values (Willett and Stampfer, 1986). Residualization of 
covariates was executed on two levels. Model 1 adjusted for age and sex 
only. Model 2 additionally adjusted for education level, smoking status, 
alcohol intake, baseline history of diabetes, anti-hypertensive and dys-
lipidaemia medications, and prevalent heart disease/stroke. 

Associations between the individual PA intensity variables (minutes/ 
day at each intensity bin in cpm) and CMR were separately examined 
using Spearman's rank correlation coefficients (rs). Partial least squares 
(PLS) regression analyses (Wold et al., 1984) were then used to deter-
mine the associations between the PA intensity variables and CMR, 
which included all PA intensity variables as exposures in the same model 
(Aadland et al., 2019b; Aadland et al., 2018a). PA variables were 
standardised prior to analyses to account for variation in bin widths and 
distributions. PLS regression handles the collinearity by decomposing 
the exposure variables into orthogonal linear combinations (PLS com-
ponents or latent variables) while maximising the covariance with the 
outcome variable. Models were validated using Monte-Carlo resampling 
(Kvalheim et al., 2018) with 100 repetitions to select the optimal 
number of PLS components, by randomly keeping 50% of participants as 
an external validation set. The number of components was determined 
as the model providing the lowest prediction error over the repeated 
runs, taking into account the confidence limit of the prediction and to 
balance the risk of over- or underfitting the model (Kvalheim et al., 
2018). 

To summarize the overall explained variance (R2) in each model 
from the combined PA intensity variables, a single predictive component 
was then calculated by means of target projection, expressing all the 
predictive variances in the PA variables related to the CMR response 
variable in a single vector (Rajalahti and Kvalheim, 2011). Next, selec-
tivity ratios were calculated for each PA intensity variable as its 
explained predictive variance on the target-projected component 
divided by the total variance (Rajalahti and Kvalheim, 2011; Aadland 
et al., 2019b; Rajalahti et al., 2009a; Rajalahti et al., 2009b). Thus, for 
example, a selectivity ratio of 0.50 and a total model R2 of 10% means 
the variable explains 5% of the actual outcome. Multivariate correlation 
coefficients (r) with 95% confidence intervals (CIs) were then calculated 
as: r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
selectivity ratio*explained variance in the outcome

√
. These 

multivariate r can be interpreted on a similar scale as Pearson correla-
tion coefficients or standardised regression coefficients, but in contrast 
to coefficients from standard multiple linear regression, these associa-
tions should not be interpreted as ‘independent’ contributions of each 
PA intensity variable to CMR (Aadland et al., 2019b). Given the strong 
correlations among PA intensity variables, focusing on each PA vari-
able's unique association with the outcome is not meaningful. Thus, the 
multivariate r provides the relative importance of each PA variable for 
the CMR outcome, given the total association pattern of the explanatory 
variables as predicted by the model (Aadland et al., 2019b; Aadland 
et al., 2020a). 

Main analyses focussed on the associations of m = 22 PA intensity 
variables with CMR and were conducted both in the overall sample 
(models 1 and 2) and stratified by sex (model 2 only). Since activity can 
be distributed differently across intensity bins depending on epoch 

resolution (Orme et al., 2014), we present 5 s and 60 s epoch data to 
allow comparison of overall intensity profiles with other studies. 
Sensitivity analyses were also conducted to examine the potential in-
fluence of using more PA intensity bins at more regularly spaced in-
tervals (i.e. (+33% increments; by generating m = 37 and m = 57 PA 
intensity bins). Further sensitivity analyses were also run separately 
with additional adjustment for diet quality, due to a larger amount of 
missing data for this variable (n = 290 missing, see Supplemental 
Table S1 for all missing data). 

Dataset/variable preparation and covariate adjustments were per-
formed using Stata v15.1 (StataCorp LLC, College Station, TX) and 
multivariate pattern analyses using Sirius v11.0 (Pattern Recognition 
Systems AS, Bergen, Norway). 

3. Results 

3.1. Descriptive characteristics of the sample 

As previously reported (Berkemeyer et al., 2016), participants with 
valid accelerometer data did not differ significantly from those who did 
not wear an accelerometer in terms of age, sex, BMI, education level and 
self-rated health. Socio-demographic attributes, health-related factors 

Table 1 
Sociodemographic characteristics, behavioural and health-related variables of 
the total sample and stratified by sex.   

Total sample 
(n = 3660) 

Males (n =
1634) 

Females (n 
= 2026) 

Age (years) 69 ± 8 70 ± 8 68 ± 7 
Education level, n (%)    

No formal qualification 922 (25.2) 326 (20.0) 596 (29.4) 
Secondary school qualification 
(~16 years) 

449 (12.3) 179 (11.0) 270 (13.3) 

Higher secondary or college 
qualification (~18 years) 

1641 (44.8) 807 (49.4) 834 (41.2) 

Bachelor's degree and above 648 (17.7) 322 (19.6) 326 (16.1) 
Cigarette smoking, n (%)    

Current 149 (4.1) 65 (4.0) 84 (4.0) 
Former 1658 (45.3) 926 (56.7) 732 (36.3) 
Never 1853 (50.6) 643 (39.3) 1210 (59.7) 

Alcohol intake (units/week), 
median (IQR) 

4.0 (0.0–8.0) 6.0 
(1.4–12.0) 

2.3 (0.0–7.0) 

Mediterranean diet score 
(0–15)* 8.7 ± 1.3 8.4 ± 1.3 9.0 ± 1.2 

History of diabetes or taking 
diabetes medications, n (%) 172 (4.7) 106 (6.5) 66 (3.3) 

History of heart disease/stroke, 
n (%) 

798 (21.8) 459 (28.1) 339 (16.7) 

Anti-hypertensive medication, n 
(%) 

1358 (37.1) 678 (41.5) 680 (33.6) 

Lipid-lowering medication, n 
(%) 848 (23.2) 471 (28.8) 377 (18.6) 

Total physical activity (average 
cpm/day) 258.2 ± 118.4 

257.6 ±
127.0 

258.7 ±
111.0 

Cardiometabolic risk variables    
Waist circumference (cm) 94.4 ± 12.0 100.6 ± 9.4 89.5 ± 11.6 
Body mass index (kg/m2) 26.7 ± 4.2 27.1 ± 3.6 26.5 ± 4.6 
Systolic blood pressure (mm hg) 136.2 ± 15.9 136.3 ± 14.9 136.2 ± 16.7 
Diastolic blood pressure (mm 
hg) 78.3 ± 9.3 79.7 ± 9.6 77.1 ± 8.9 
Triglycerides (mmol/L), 
median (IQR) 1.5 (1.0–2.0) 1.5 (1.1–2.1) 1.4 (1.0–2.0) 
Total/HDL-cholesterol (mmol/ 
L), median (IQR) 3.6 (3.0–4.3) 3.7 (3.1–4.5) 3.4 (2.9–4.1) 
HbA1c (%), median (IQR) 5.7 (5.5–6.0) 5.7 (5.5–6.0) 5.7 (5.5–6.0) 
Continuous cardiometabolic 
risk score − 0.01 ± 0.56 

− 0.02 ±
0.55 

− 0.01 ±
0.58 

Data are means ± SD, unless otherwise indicated (i.e. n (%), or median (IQR). 
* n = 3370 with valid data in included sample; the diet score variable was 

calculated based on the Mediterranean dietary pyramid (range 0–15), adjusted 
to a 2000 kcal/day (8.37 MJ/day) diet using the residuals method to assess diet 
quality independent of diet quantity. 
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and CMR variables for the analytical sample are shown in Table 1. The 
mean (±SD) age of the participants was 69 ± 8 years and 55% were 
women. Women tended to have a more favourable CMR profile and took 
fewer medications than men. Compared with eligible participants 
included in the analytical sample, eligible participants who were 
excluded due to missing covariate/outcome data (n = 391) took more 
blood pressure and lipid-lowering medications, had lowed physical ac-
tivity, and had slightly poorer CMR profiles overall (see Supplemental 
Table S1). 

3.2. Physical activity intensity distributions 

Fig. 1 displays the PA intensity distributions using m = 22 intensity 
bins (overall, sex-stratified, and by 5 s and 60 s epoch length), with 
accumulated time (min/day) estimates normalised to 12.5 cpm bin 
width (the smallest used) to allow for relative comparison across the 
different PA intensities (more detail provided in Figure footnotes). 
Supplemental Fig. S1 displays the equivalent non-normalised distribu-
tions across these same PA intensity bins. The mean (±SD) accelerom-
eter wear time of the analytical sample was 867 ± 61 min/day. 

The profile of time spent in each PA intensity bin varied by epoch 
duration (Fig. 1; panels a and b vs. c and d), with more activity accu-
mulated in the lower intensity ranges for 5 s epoch. Sex-stratified ac-
tivity intensity distribution profiles were mostly similar (Fig. 1; panels b 
and d), but women appeared to spend slightly more time in PA at in-
tensities ≥13 cpm and slightly less time at very low intensity (i.e. <13 
cpm). 

3.3. Bivariate correlations between PA intensity and cardiometabolic 
health 

The Spearman rank correlation coefficients, showing the relationship 
between each of the PA intensity categories with CMR, were positive 
(detrimental) for 0-12 cpm (rs = 0.09 and 0.14 for 5 s and 60 s epoch, m 
= 22 intensity bins, respectively) and negative (beneficial) correlations 
for the remaining PA intensity categories (rs range = − 0.1 to − 0.19 and 
− 0.08 to − 0.18 for 5 s and 60 s epoch, m = 22 intensity bins, respec-
tively; Supplementary Fig. S2, plot 1). These trends were also evident 
when using m = 37 and m = 57 intensity bins (Supplementary Fig. S2; 
plots 2–3). 

3.4. Multivariate association profiles between PA intensity and 
cardiometabolic health 

The strength of the association between each of the PA intensity 
variables (using m = 22 PA intensity bins), relative to time spent in other 
bins in the multivariate space, and the CMR score is shown in Fig. 2. 
Similar to the Spearman rank correlation coefficients, there was a pos-
itive (detrimental) correlation with CMR for 0-12 cpm and a negative 
(favourable) correlation for all intensity bins ≥13 cpm. This was evident 
across all models (whole sample and sex-stratified, age/sex and 
confounder adjusted, 5 s and 60 s epochs). 

In the whole sample 5 s epoch models, the magnitude of the corre-
lation coefficients was slightly higher in the 13–200 and 2000-5000 cpm 
ranges (r = 0.13–0.14) than the 200-2000 cpm range (r = 0.09–0.11). In 
the 60 s epoch models, the association for 0-12 cpm and CMR was 
stronger than for 5 s (confounder adjusted r = 0.13 and 0.08, respec-
tively) and the associations were also slightly weaker in the 13-200 cpm 
range (r = 0.07–0.08). Additional adjustment for potential confounders 
(model 2) attenuated the associations slightly, more so at the middle-to- 
upper end (≥800 cpm) and lowest end (0-12 cpm) of the intensity 
spectrum, with slightly more deviation in the magnitude of the corre-
lation coefficients between models 1 and 2 in the 5 s epoch data. 

In sex-stratified results, the proportion of variance explained by the 
models were R2 = 7.0/7.4% for women and R2 = 1.9/2.3% for men. The 
strongest favourable associations for men were evident in the 50-800 

cpm range (r = 0.10–0.12) and the weakest associations in the highest 
intensity categories, while the strongest favourable associations for 
women were at higher intensities (r = 0.18–0.20 for bins >2500 cpm). 
These patterns were also evident in the 60 s epoch data. 

Sensitivity analyses that additionally adjusted for diet quality had 
minimal impact on association patterns in the overall sample for model 2 
(n = 3370; Supplemental Fig. S4.1–3; panels a and c). The total 
explained variances for the overall (R2 range = 4.3–5.4%) and sex- 
specific models (men R2 range = 1.9–2.3%; women R2 range =
7.0–7.4%) were not materially different when the data were modelled 
using higher (m = 37 and 57) PA intensity resolutions (Supplemental 
Fig. S3.1–2). The shape and interpretation of the overall intensity profile 
associations with CMR were also similar. 

Finally, unstandardised multivariate correlation coefficients for the 
associations between CMR and PA intensity expressed per minute/day of 
PA were relatively stronger at the higher intensities, particularly for 
women (Supplemental Fig. S5.1–3). These results should be considered 
alongside the intensity bin distributions shown in Fig. S1 and their 
variance, as for example 1 min of PA is much less frequently undertaken 
at the higher end of the intensity spectrum than the lower end. The 
magnitude and stability of these unstandardised coefficients is also 
influenced by the different PA intensity bin widths used for the different 
resolutions (i.e. m = 22, m = 37 and m = 57). 

4. Discussion 

In this large population-based cohort of UK middle-aged to older men 
and women, we observed that most of the PA intensity spectrum was 
beneficially associated with CMR, even at intensities much lower than 
what has traditionally been considered “sedentary” or “light-intensity” 
activity. Some variations in PA intensity association patterns were also 
observed between men and women, particularly at the highest 
intensities. 

Epidemiological studies using multivariate pattern analysis to 
examine PA intensity profiles have so far only been applied in children. 
These studies suggest that associations with CMR are strongest for time 
spent at the ‘vigorous’ end of the intensity spectrum, with weaker as-
sociations for ‘moderate’ intensities, and more trivial associations for 
time spent in ‘light’ intensity or ‘sedentary’ activities (Aadland et al., 
2018a; Aadland et al., 2020a; Aadland et al., 2018b; Aadland et al., 
2019c). The current findings in middle-aged to older adults are consis-
tent with recent guidelines (Dempsey et al., 2020; Bull and Willumsen, 
2020; UK Chief Medical Officers' Physical Activity Guidelines, 2019; 
Piercy et al., 2018), and previous research using more traditional 
analytical approaches, and support the potential benefits to car-
diometabolic health of encouraging both light and moderate-to-vigorous 
intensity PA (Whitaker et al., 2019; Swindell et al., 2018; Powell et al., 
2018; LaMonte et al., 2017; Healy et al., 2007). Notably, the analytical 
approach used here allowed us to model relationships with CMR across 
the full PA intensity spectrum in more detail than has previously been 
done in adults, without the implications associated with only using a few 
pre-defined PA intensity categories covering wide ranges (Rowlands, 
2018; Troiano et al., 2014; Aadland et al., 2019a). Indeed, the ‘switch’ in 
CMR associations from positive to negative for intensities between 0 and 
12 and 13-24 cpm illustrates how wider intensity categories (e.g. <100 
cpm typically used for ‘sedentary’ time; see Supplemental Fig. S6 for 
illustration) for waist-worn accelerometry could be missing relevant 
information or behaviors (e.g. standing or sit-to-stand transitions) that 
may be distinctly related to cardiometabolic health (Aguilar-Farías 
et al., 2014; Jain et al., 2021). Future research utilising this method, 
alongside thigh-worn devices or algorithms (e.g. deep learning) better 
equipped to distinguish posture (Aguilar-Farías et al., 2014; Jain et al., 
2021; Nakandala et al., 2021), or the use of raw acceleration measure-
ment coupled with low-frequency extension filtering for greater sensi-
tivity to low-intensity activities of older-aged sub-groups (Cain et al., 
2013), could help interrogate these aspects further. 
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Fig. 1. Relative distribution of accelerometer-derived movement intensity variables for the whole sample (panels a and c) and by sex (panels b and d). Physical activity variables are shown for 5 s (panels a and b) and 60 
s (panels c and d) epoch resolutions. Data for each PA variable are displayed as median and interquartile range (IQR), with whiskers from the 1st to 99th percentiles. Note: intensity variables with a bin width > 12 cpm 
were normalised to a 12 cpm bin width (e.g. 150-199 cpm width = 49/12 = 4.08; so divide the time in this bin by 4.08 to ‘normalise’ it) to allow for relative comparisons across all intensity variables. The equivalent 
non-normalised/raw PA variables are displayed in Supplemental Fig. S1. 
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Fig. 2. Multivariate PA intensity profile associated with the CMR score. Multivariate correlation coefficients with 95% CIs from the multivariate model including m = 22 PA intensity variables are displayed for the 
whole sample (panels a and c) and by sex (panels b and d). Physical activity variables are shown for 5 s (panels a and b) and 60 s (panels c and d) epoch resolution. Model 1 adjusted for age and sex. Model 2 additionally 
adjusted for potential confounders (education level, smoking status, alcohol intake, baseline history of diabetes, anti-hypertensive and dyslipidaemia medications, and prevalent heart disease/stroke). Sex-specific 
models are based on model 2 (with no adjustment for sex). The number of PLS components and total explained variance (R2) for each model are also displayed. A negative bar implies a more favourable associa-
tion with the CMR score. Note: equivalent plots are displayed for higher intensity resolutions (m = 37 and 57 PA variables) in Supplemental Fig. S3.1–2, and for illustration only in m = 3 PA variables (Supplemen-
tary Fig. S6). 
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The reason for some variations in the PA intensity association pat-
terns with CMR in sex-specific models is not entirely clear. It is plausible 
that these association patterns reflect differences in the underlying ac-
tivity patterns not adequately characterised by waist-worn accel-
erometry alone or captured differentially by sex, such as potential 
differences in relative intensity or movement patterns, walking pace, or 
activities of daily living at the lower or higher intensities within the PA 
intensity spectrum (e.g. gardening, housework, cycling) (Strain et al., 
2016; Dyrstad et al., 2014). Alternatively, differences could be related to 
age or sex-specific factors such as differences in body composition, 
hormonal responses or menopausal status (although most women in this 
sample were likely post-menopausal), or underlying variations in un-
measured variables or residual confounding. It is also possible that 
women's activity patterns are more stable than men's, meaning that a 1- 
week snapshot captures a higher proportion of variance in habitual 
(latent) activity; this would result in less regression dilution bias, 
compared to that observed in men. Future research should seek to 
confirm and further interrogate potential sex differences in association 
patterns in different cohorts to determine the extent to which any dif-
ferences are behaviorally or biologically plausible, or perhaps spurious. 
Indeed, the sex-stratified results presented in this paper are descriptive, 
and interactions not formally tested. Thus, these results should be 
interpreted with caution. 

As anticipated, PA intensity association patterns were influenced by 
epoch length, but only to a small degree in this older population. Slightly 
stronger associations with CMR were observed for 5 s compared to 60 s 
epoch duration for intensity ranges ≥13 cpm, while slightly weaker 
associations were observed for <13 cpm. The impact on model total 
explained variance between epoch durations was minimal. This parallels 
somewhat with previous studies in children, where short bursts of ac-
tivity (albeit particularly at more vigorous intensities for children) seem 
to be of greater importance to cardiometabolic health (Aadland et al., 
2018b; Aadland et al., 2020b). Additionally, the impact of lowering PA 
intensity resolution in ±33% increments (i.e. reducing and widening the 
number of intensity bins from m = 57 to 37 to 22) on total model 
explained variance, and on overall association patterns with CMR, was 
minimal for standardised coefficients. This indicates simpler models 
may be sufficient in future research (Aadland et al., 2020b), although it 
should be noted that our simplest model still uses 5 times more intensity 
bins than what is typically used (e.g. Supplemental Fig. S6 for 
illustration). 

The use of accelerometer-based PA monitoring in a highly compliant, 
well-characterised, and large population-based cohort is a strength of 
this work, allowing for more detailed evaluation of different methodo-
logical choices, as well as examination of potential confounding struc-
tures and sex-specific association patterns. However, there are also 
several limitations to this work. Although we have shown that our 
specific CMR score is strongly associated with future CVD, associations 
with PA may be subject to reverse-causality bias due to the cross- 
sectional design. The use of uniaxial accelerometry could lead to loss 
of information compared to triaxial accelerometry or multi-sensor ar-
rays (Aadland et al., 2018b; Aadland et al., 2019c). Associations with 
CMR should also be interpreted with caution given some limitations of 
uniaxial waist-worn accelerometry (and associated algorithms) to clas-
sify non-wear, different postures and activity types (e.g. standing/ 
sitting/cycling) as previously mentioned, including activity at very high 
intensities (Troiano et al., 2014; Migueles et al., 2017). Further con-
founding may also exist from unmeasured factors and included variables 
measured with substantial error, for example diet quality and other 
factors that may influence the non-fasted triglycerides measurements. 
Additionally, the sample was not population representative and there 
may be some selection biases. In particular, the analysis focused on a 
healthier sample within the third wave of a cohort that, like many 

others, had some loss to follow-up and there were some differences 
between participants included and those excluded due to missing 
outcome data, with potential consequences both to internal and external 
validity. 

Some limitations of the multivariate pattern analysis approach 
should also be mentioned. This data-driven approach is more hypothesis 
generating in terms of identifying predictive association patterns and 
specific intensity regions of importance for health. However, it could be 
combined with specific replication analyses of identified PA intensity 
regions in independent samples or experimental studies. This approach 
may also facilitate the translation of the intensity profile findings into 
public heath action, since dose-response relationships are not immedi-
ately discernible from the pattern analysis presented herin. In addition, 
we also only consider the intensity profiling in the time-domain, but 
applying the approach in other domains (e.g. activity energy expendi-
ture) may also yield new insights. Analysis of formal group*PA in-
teractions with CMR and time-to-event outcomes (e.g. survival analysis) 
are also a promising areas for future research, but are not possible at 
present using this specific approach. 

5. Conclusions 

We examined the PA intensity profile associated with car-
diometabolic disease risk in a large, population-based cohort of UK 
middle-aged to older men and women. Most of the PA intensity spectrum 
was beneficially associated with CMR in middle-aged to older adults, 
even at intensities much lower than what has traditionally been 
considered “sedentary” or “light-intensity” activity. This reiterates cur-
rent PA guidelines on the potential benefits to cardiometabolic health of 
encouraging PA of all intensities (i.e. “every move counts”). Some dif-
ferences in association pattern were observed between men and women, 
but further investigation is required to better understand potential sex 
differences; including potential interactions between accelerometer in-
tensity and measurement (i.e. type/epoch) resolutions. In future work, 
multivariate pattern analysis could be applied to activity data generated 
by other wearable sensors, alongside other analytical approaches/ 
techniques and study designs to examine longitudinal associations. 
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