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Abstract

Solidity is a smart contract programming language that is used
on the Ethereum blockchain. Because smart contracts are immutable
once deployed, bug fixes are impossible and authors need to ensure
bugs are caught before being published. In this thesis we analyze the
various language constructs in Solidity and compare them to other
programming languages and previous, similar analyzes.
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Introduction

In this thesis we will implement a fully specification compliant parser
and several analyzers for the smart contract language Solidity running
on the Ethereum blockchain. We will analyze and compare how different
language constructs are used and whether they are used in a similar or
different manner to other programming languages?

Smart contracts are, more often than not, smaller programs that are
written in niche programming languages targeting a very different runtime
from most other languages; once written and published, the contracts are
immutable and public. Once you have deployed your smart contract, there
is nothing you can do if there is a serious bug with the verification of who
can use it.

Because of this limitation — or advantage if you are so inclined —
ensuring that everything is correct when the smart contract is published
on the blockchain becomes very important. Any bug will exist forever,
unless you've included a kill-switch in the contract, but the inclusion of
one might scare away the users of it.

Blockchains are, depending on who you ask, either one of the biggest
innovations in recent years or an unregulated mess where new currencies
and scams are introduced and disappear with increasing frequency. The
underlying technology that powers blockchains is nothing out of the ordi-
nary, but its uses can and will have far-reaching consequences and pos-
sibilities.

These blockchains allow anyone to buy from and pay anyone; there
is no regulatory oversight, no red tape, and no security should you fall
for a scam. Where the “regular” finance sector is highly scrutinized and
has to accommodate hundreds of countries various rules and regulations,
cryptocurrencies work across any border as long as you have a wallet (an



address you can deposit coins into).

Due to the inherent volatility of these cryptocurrency markets, how
easy it is to create a new blockchain, and the propensity for market col-
lapses, it is easy to view the world of blockchains as something akin to
the American frontier of old: a large, unexplored, and lawless area of the
Internet where you can just as likely to become a millionaire overnight as
you are to lose your fortune.

It is therefore very important that the authors of smart contracts have
made no errors, or more realistically, no serious logic bugs in their code
to not lose all their money. The cases range from users who mistakenly
sent the incorrect cryptocurrency to a contract [1], sending to the wrong
address [2], to hackers who exploited a “stupid bug” in a smart contract
that allowed them to steal $34 million USD [3].

In this thesis, we will compare how Solidity is used relative to more
popular and mainstream languages like Java, C++, and others. We created
a parser for the language using Haskell and built several analyzers on top
of this parser to try to answer the question about complexity in Solidity
smart contracts to help understand how and where bugs might occur in
smart contracts.

Writing parsers for programming languages is a well-studied area of
computer science, and we delve into the details and theory behind the
grammars and parsers that are used to create meaning out of programs in
chapter 2. Before looking at Ethereum, we briefly explain how blockchains
and smart contracts work in chapter 3 and then look at Ethereum in more
detail as this is where Solidity runs in chapter 4 before diving into the
implementation of the parser and analyzers used in this thesis in chapter
5, and then concluding with the analysis in chapter 6.



727

Parsing and grammars

Before we dive into the technical aspects of blockchains and their smart
contract programming languages, we will first provide some background
on the theory, frameworks, and technology used in this master thesis.
We will start with information about context-free grammars in section 2.1
before moving on to more practical topics with how to parse languages in
section 2.2 and follow that up with our use of parser combinators for this
thesis in section 2.3.

2.1 CONTEXT-FREE GRAMMARS

As we are working with parsing a programming language defined in
EBNF notation, we start to touch on a class of languages (in the theory
of formal languages, not programming languages) called context-free
languages, languages that can be generated from context-free grammars;
see definition 2.1 from [4].

Definition 2.1 (Context-free grammar). A context-free grammar is a 4-
tuple G = (V, X, R, S) where
1. Vis a finite set of nonterminal characters often called the variables,
2. X is a finite set, disjoint from V, called the terminals,
3. Ris a finite set of productions, or rules, V x (V U £)*, and
4. S € Vis the start variable.

As mentioned in section 5.1, the grammar for Solidity is written in
ANTLR’s dialect of Extended Backus-Naur Form notation, which in most
cases can be converted to a regular BNF grammar, though it will be ex-
tremely verbose for most programming languages.



returnStatement: Return expression? Semicolon;
expression:

expression (Inc | Dec)
| expression (Equal | NotEqual) expression
| literal

Listing 2.1: A select subset of the ANTLR grammar for Solidity.

The conversion from the ANTLR grammar in listing 2.1 to a BNF
grammar can be seen in listing 2.2. From this select subset of all the
production rules of Solidity, one can construct the return statement. It can
be either an empty return statement with no value or some expression. A
construction following the rules in the BNF grammar can be seen in listing

2.3.

(syntax) = (return)
(return) := return (opt-expression) ;
(expression) := (expression)++ | (expression)—-— |

(expression)==(expression) |
(expression) ! =(expression) |
(literal)

(literal) ::= quoted string | number

Listing 2.2: ANTLR grammar in listing 2.1 converted to BNF.

One can either use these grammars to generate strings based on the
productions of the grammar or go the other way and use these productions
to parse some input string. All programming languages have rules and
need to be parsed into some intermediary representation that is more
suited for analysis, execution, or compilation. A parser creates a parse tree,
a tree showing the derivation of the grammar from the input. An example
parse tree for the last derivation in listing 2.3 can be seen in figure 2.1.

Context-free grammars can also contain what is called left-recursive
rules [5], productions where the leftmost symbol is the same as the pro-
duction itself. These can lead to troubles when writing recursive descent
parsers or parser combinators for a language because the parser will end-
lessly loop attempting to parse the same production over and over again.



(syntax) = (return)
= return (opt-expression) ;
= return ;

(syntax) = (return)
= return (opt-expression);

= return (expression) ! = (expression);
= return (literal) ! = (literal) ;
= return “hello” ! = 3.14;

Listing 2.3: Example derivations following the rules from listing 2.2.

As one might expect, right-recursive productions are also a prob-
lem one needs to be aware of when writing parsers, as these can often
lead to problems when attempting to parse expressions that contain left-
associative operators, such as plus or minus.

(syntax)

(return)

/\

(expression) | (expression)

(literal) (literal)
return “hello” != 3.14 ;
Figure 2.1: Parse tree for return ”"hello” != 3.14 from listing 2.2.

Both of these problems can be solved by rewriting the production
containing the left or right recursion, or by designing the parser in such a
way that it can do lookahead to figure out what the next rule is (see section
2.2 for more). In practice, most parsing libraries or frameworks contain
utilities to get around this, but it is still something that both beginners and



experts alike can accidentally introduce to their grammar by overlooking
or by being unaware of it.

In the case of the Solidity grammar, the expression grammar is a left-
recursive production. If one is not careful when writing the expression
parser, it can lead to infinite recursion.

Context-free grammars can also be ambiguous, which means that
there are multiple ways to generate a string. Examples of these grammars
abound, ranging from simple grammars for arithmetic where the string
2 4+ 1 x 3 can be derived in multiple different ways to the famous case of
dangling elses [6]. Both the C and ALGOL grammars have this problem of
undecidability where their grammar for if-statements and optional else-
statements is ambiguous when they are nested, the grammar is written
such that it cannot be decided which if-statement the else belongs to.

Definition 2.2 (Ambiguous grammars). A context-free grammar is am-
biguous if there exists a way to generate some string with more than one
leftmost derivation (or parse tree).

To round out context-free languages, a topic of discussion that often
comes up for students in computer science is whether programming lan-
guages are context-free. Many programming languages include a context-
free grammar used for writing a parser for the language in question, but
most programming languages are not purely syntactical languages, they
are also semantic languages.

What do we mean by this distinction? The language that the context-
free grammar recognizes can be semantically invalid; the parsed input is
well-formed based on the grammar but is not a valid, executable program.
Most programming languages are parsed in two steps, the first using some
grammar to describe the syntax of the language, and then the result is once
again parsed, and constraints are applied such that only valid programs
are fully parsed.

Definition 2.3 (Syntax). The syntax of a language is the grammar that
defines well-structured programs (or strings of that language).

Definition 2.4 (Semantics). The semantics of a language is the meaning
behind the program (or string).

This leads to a notion of the difference between syntax and language
semantics, even though a parser might parse some program does not mean
it is a valid program for that language. The example program in listing 2.4
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is a program that the parser will happily parse because it is syntactically
valid, but since we never define the variable one, it is not semantically
correct (the Solidity compiler will refuse to compile this program).

function sum () {
int ten = 10;
int total = ten + one;

Listing 2.4: Syntactically valid, but semantically invalid Solidity program.

Thus, in the case of most programming languages, the grammar for
the syntax of the language is often context-free, but for programs to be
executable, it is more often than not need for context to validate them.
Examples include, as above, that variables need to be declared before use,
or that blocks of the program need to be indented correctly, or how some
keywords are illegal in some places but not all (the break keyword can only
be used in looping constructs, for example).

2.2 PARSERS AND PARSING

Once we have a well-formed grammar with (or without) left-recursive
productions, one can move on to writing a parser for this grammar. Pars-
ing is one of the most studied areas of computer science, as it is funda-
mental to many areas of research, from natural language processing, to
programming languages, and more.

There are many ways to build parsers, all with their different trade-offs
and strengths. A parser can be built as a multi-pass parser, where it needs
more than one pass over the input to fully build an abstract syntax tree, or
as single-pass parsers requiring only one pass. Parsers can work in two
stages with a lexer (or tokenizer/scanner) first building a list of tokens
that are then parsed into an abstract syntax tree, or by bypassing this step
and directly building the abstract syntax tree from the input.

Furthermore, parsers are often divided into two main algorithmic
groups; top-down parsers and bottom-up parsers. Although there exist
many techniques for writing parsers, most boil down to these two tech-
niques [7]. The top-down parser works, as one would expect from the
name, by beginning to parse from the top. Starting from the start pro-
duction, the parser builds the syntax tree by following the productions
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from left to right until it reaches the end of the string. A bottom-up parser
works, also as expected, by attempting to find the most basic productions
and then working its way up from there.

12 1
| |
11 2
/1[0\ /L\
4 8 5 9
| | | |
3 7 6 10
| | | |
1 2 5 6 9 3 7 8 11 12
((a)) Bottom-up parser ((b)) Top-down parser

Figure 2.2: Parse steps for parser based on figure 2.1.

Finally, one needs to distinguish parsers by the order in which they
build their derivations. A parser can generate either a leftmost derivation
or a rightmost derivation. In general, top-down parsers tend to generate
leftmost derivations, while bottom-up parsers tend to generate rightmost
derivations. For a bottom-up parser to generate a leftmost derivation, it
needs to keep track of the entire string and parse it from the right end
instead of recognizing smaller pieces of it, one at a time. An example of
the order of the two different techniques can be seen in figure 2.2.

The aforementioned kinds of parsers usually break down into two
groupings, LL parsers and recursive descent parsers in one and LR parsers
in the other. The names LL and LR might appear cryptic, but are quite ob-
vious in hindsight; LL parsers are Left-to-right, Leftmost derivation parsers
and LR parsers are then Left-to-right, Rightmost derivation parsers.

Both LL and LR parsers can use lookahead, in cases where the parser
needs to peek ahead a certain distance to determine how to parse its current
token. These parsers are occasionally denoted LL(k) and LR(k), with k
being the amount of lookahead it can do. Often in the cases where the



lookahead is one token (e.g. LL(1)), the amount is omitted, as one token
of lookahead is by far the most common value for k.

Recursive descent parsers and LL parsers share the property that both
can parse, perhaps unsurprisingly, because of their grouping, LL gram-
mars [8]. Recursive descent parsers are top-down parsers where the pro-
ductions of the grammar are their own functions or procedures, defined
mutually recursively. Often, one function is a production of the grammar,
which makes these parsers very easy to write and follow. Depending
on the grammar and implementation, the parser might backtrack. Back-
tracking occurs when a parser has followed a set of productions down a
path where it is unable to continue parsing the input. In this case, it might
backtrack, moving backwards up the parse tree, and attempt following a
different path instead. If the parser does not implement backtracking, it is
called a predictive parser.

When choosing the technique to use to write your parser, there are
many requirements, constraints, and trade-offs that must be taken into
account. Recursive descent parsers with backtracking are easy to write,
but if they backtrack excessively, the time to parse might be exponential, if
it even terminates. LR parsers require that the grammar be unambiguous,
something that an LL parser does not require. LL parsers are easier to
debug, since the programmer can follow the parser from the top using
their debugging tool of choice, while an LR parser is much harder to follow.

Finally, a restriction for LL and recursive descent parsers is that they
cannot parse languages that have left-recursive rules in them naively. How-
ever, by using techniques such as backtracking, lookahead, or memoization
[9], this can be worked around, although care must still be taken to avoid
blowing up the runtime.

Often, programmers will opt out of writing their own parser by hand
and instead lean on parser generators, such as ANTLR, LALR (lookahead,
LR parser) [7] or PEG (Parsing Expression Grammar) [10]. These tools
work by reading a grammar and generating a parser for that language.
Since they work from a defined grammar, they can, for example, warn the
programmer of syntax ambiguity at compile time instead of runtime, and
are often written in a domain-specific language quite similar to Backur-
Naur form.

Parsing is an enormous topic, and there is much more that could be
covered, like precedence parsing, recursive ascent parsers, shift-reduce
variations for LR parsers, Earley parsers, and much, much more. This
section should give the reader enough background to understand the next



topic needed for this thesis: parser combinators.

2.3 PARSER COMBINATORS

Parser combinators are a generalization of recursive descent parsers that
are often found in programming languages where functions are first-class
and thus support higher-order functions (functions that take functions as
arguments). The combinator part of the name comes from the fact that you
build your parser as a series and combination of parsers (or functions)
that when combined form a full parser for your language of choice. This
technique for parsing is often called combinatory parsing.

Due to the nature of composition of the parsers, it is mostly func-
tional programming languages where parser combinators see the most
popularity [11]. Haskell is a if not the prime language of choice for pro-
grammers looking to write parser combinators because it is a lazy, func-
tional, and strongly typed programming language. The most famous
monadic parser [12] library is called Parsec [13].

Being a kind of recursive descent parser, parser combinators also in-
herit some potential shortcomings of them, chief among them being per-
formance. It is very easy to write parsers that exhibit exponential time
usage by allowing excessive recursion and backtracking by not being care-
ful with the combination of parsers. When considering how the parser
will traverse the input, one can write efficient parser combinators, but
as Kurs, Vrany, Ghafari, et al. [14] shows, they still cannot compete with
efficient parser generators or optimized handwritten parsers.

type Parser a = Parsec ErrorType Text a

Listing 2.5: Parser combinator type definition.

As this thesis is written using Haskell, the rest of the thesis will talk
about parser combinators in the context of the features that Haskell pro-
vides; specifically monadic parsers that are polymorphic. Almost everyone
who learns Haskell at some point stumbles upon the word monad and
wonders what it is; many blog posts have been written attempting to an-
swer this question. Ranging from using burritos [15] as the metaphor
of choice to “a monad is a monoid in the category of endofunctors |...]”
[16]. A rough explanation is that a monad is some structure that wraps
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functions and their return values, allowing additional work to happen
behind the scenes or allowing effects to happen.

In the case of monadic parsers, the Parser type is a type synonym for
the Parsec monad transformer (which again is a type synonym for the
ParsecT monad transformer). In the specific case of monadic parsers, the
Parser monad transformer keeps all the state of the parser hidden away
from the functions, allowing the programmer to focus on the individual
parsers without the mental overhead of explicit error handling, handling
backtracking, the current position in the input, and more. The use of
monad transformer here simply means a type constructor that takes a
monad and returns a monad.

This allows for very terse and to the point parsers in the languages that
support these monadic parser combinators. In section 5.3 we will see how
this is implemented in practice.

11



737

Blockchains and smart contracts

3.1 BLOCKCHAINS

A blockchain (figure 3.1) is a series of data, blocks or records, where each
one is calculated by hashing a ledger of transactions and its predecessor us-
ing cryptographically secure hash functions to create a “chain” of records
[17]. Different blockchains will implement this with different hash func-
tions, transaction ledgers, etc., but this description is correct in the general
case.

Block 10 Block 11 Block 12
[ Prev_| Hash T|mestarnp Prev_| Hash Tlmestamp Prev_| Hash Tlmestamp]
[ Tx_Root ] [ Nonce [ Tx_Root ] [ Nonce Tx_Root ] [ Nonce ]

HashOl ] Hash23
Z 1 AN
[ Hash0 ] [ Hashl J [ Hash2 J [ Hash3 ]
i i t t
[ ™0 ] [ Tx1 ] [ Tx2 ] [ Tx3 ]

Figure 3.1: Example of a blockchain [18]

One can think of blockchains as a kind of state transition system, where
the currency in circulation moves from one account to another. Similarly
to how regular banks need a ledger to keep track of all transactions that
have passed through their systems, a blockchain needs this to keep track
of the state of the system in total. For most blockchains, the state of the
system is the coins (or currency), with transactions with denominations
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and an owner going to one or more addresses (or wallets, as they are often
called).

Figure 3.2: Example blockchain state transition

As a rough overview, one can imagine the transition function (see
algorithm 3.1) between states as a function that accepts the current state, a
transaction, and either transitions to a new state or returns an error if the
transition is illegal. Each state is reached when a transition is valid and
the network of nodes mining validates and reaches consensus on it.

The diagram in figure 3.2 and the corresponding pseudocode in al-
gorithm 3.1 describe in a very high level what occurs between each state
in the blockchain. These transitions are not the same as the blocks in the
blockchain; the individual transitions are a collection of transactions done
between users via smart contracts, direct payments, money transfers, etc.
Once a node on the blockchain correctly calculates the magic value that
is required to create a new block, all the transactions that have happened
between the previous block and this cut-off point are collected into a ledger
and forever immutably stored in the blockchain.

Algorithm 3.1: Example state transition function

Input: Current state, list of transactions
Output: Next state or error
for transaction in transactions do

if referenced coin not in state then
| return error

end

if signature not equal to owner of coin then
| return error

end
end

if sum of coins in transactions > sum of coins in state then
| return error

end
return New state with coins removed from owners, added to receivers

13



Bitcoin and its enigmatic creator Satoshi Nakamoto [19] is where the
popular usage of the term blockchain emerges and has since become a
household name. Blockchains see many uses around the world, but is
nowadays primarily centered around cryptocurrencies and smart con-
tracts. Other use cases where it has been proposed range from elections
[20] to supply chains [21] and more.

There are many proponents and opponents, with an equal amount of
arguments in favor and against using a blockchain technology for common
use cases. Although there have been multiple attempts at bringing this
technology to the mainstream, most attempts still remain niche or have
never materialized.

Let us examine blockchains in more detail, as previously mentioned,
and, as the name implies, there is a chain of blocks. The blocks themselves
are ledgers of transactions from the inception of the block until some
point in time, when some form of consensus was reached among all the
nodes partaking in this. The exact way to determine this cut-off point
varies between different implementations, for example, both Bitcoin and
Ethereum use proof-of-work [22] as their consensus algorithm.

What this means is that all the nodes in the blockchain network are all
working towards verifying some amount of work has occurred. All these
nodes read and verify all the transactions happening at once, ensuring
that everything is in order. However, this happens without any leader that
ensures consensus; the nodes themselves have to reach consensus.

The way this works for Ethereum specifically is that each block has a
nonce that the various miners (mining is what miners do to create new
blocks) have a race to find. As you can see in figure 3.1, each block contains
the hash of the previous block, a set of transactions, and a nonce that creates
a unique hash that every node in the network can easily verify to be correct.
The miners therefore has to continuously download the entire history of
all transactions on the blockchain, get the latest transactions not in a block
and attempt to find a nonce that together with the previous hash and a
difficulty (defines how many possible valid hashes there are) creates a
hash that is valid for a set of these constraints. Once a miner has found
a nonce that gives a correct hash, it is very easy for the other miners in
the blockchain to verify this value and once this happens and consensus
is reached, a new block is minted, and the miner that found the nonce is
rewarded for their work.

This process is very time and compute intensive, and has in recent times
been a large focus due to the environmental damage cryptocurrencies
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therefore cause. In terms of both the growing problems of electronic waste
[23] and also with how much electricity is consumed in total [24]. As
de Vries, Gallersdorfer, Klaaflen, et al. estimates, Bitcoin is responsible for
65.4 megatonnes of CO2 (MtCOz2) per year. More recent estimates show
that Bitcoin may use as much energy as Thailand does [25].

3.2 SMART CONTRACTS

Smart contracts are computer programs running on blockchains that allow
anyone with the ability to create contracts without the need for intermedi-
ate arbiters or agents to execute them faithfully.

These differ from smart legal contracts in which the contract is still
written in a normal language supplemented with terms written in machine
understandable code. In this case, one can use contract provers to verify
properties about the contents and terms, whereas this is near impossible
for smart contracts.

While blockchains entered the public mind with the release and pop-
ularization of Bitcoin, smart contracts came to fruition with later blockchain
technologies. Bitcoin is still the largest cryptocurrency around, and Ethereum
is the largest smart contract blockchain around. In fact, Ethereum has other
blockchains with their own cryptocurrencies and ecosystems running on
it.

According to Cryptorank [26] — a web application for crowd sourced
analysis of blockchains — there are several hundred blockchains running
on top of Ethereum.

A common kind of example used to illustrate how and why smart
contracts are useful is based on bets that are unfulfilled because one of
the members of said bet refuses to finalize what was previously agreed
on. Say two friends Bob and Alice bet on who can get the best grade for
a course, with Bob being utterly certain that there is no way for Alice to
outperform him. However, when the results are published, it turns out
that Alice did beat him. Bob refuses to honor their agreement, Alice must
have cheated to get a better grade.

In this example, the non-smart contract is never fulfilled even though
all requirements are met. Proponents of smart contracts would argue that
this would not happen for a smart contract, as you remove the need for
interpersonal trust between agents agreeing to the contract.

15



If, however, Bob and Alice instead codified this bet as a smart contract,
there is no way for either of them to back out once it is deployed to the
blockchain. Bob and Alice craft a smart contract that specifies that after
the date when grades are released, the contract will automatically pay
out to whoever has the best grade. In this specific example, unless the
contract itself can automatically fetch and compare their grades, they must
somehow send them to the contract. The example starts to break down
at this point, but the point is that bets or agreements can be automated,
predictable, and without worry of interference once deployed.

As a final example, consider an insurance company based on smart
contracts. Instead of having humans be the arbiters of when and how much
money will be paid out, users can instead sign contracts based on events
that are fully automatable and happen without human oversight. Say that
you want to protect your crops from pests, floods, or similar disasters. The
contract could work by querying the governments’ database of outbreaks
based on location and simply pay out an agreed-upon amount whenever
this happens.

Other advantages of smart contracts are that they are public, yet private.
Alice can verify that the contract exists, check that the contract matches
what was agreed upon by verifying its source, and track transactions to see
where money is moved to and from. The privacy of users is protected since
addresses are not tied to identities, and Ethereum is a pseudoanonymous
(everything is public, but there is no identity tied to anything) network,
so you can interact with these contracts without fear of others finding out
who is who.

16
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Ethereum and Solidity

4.1 ETHEREUM

Ethereum is one of many popular blockchains that have emerged in recent
years. Its popularity makes it the second most used cryptocurrency in the
world, after Bitcoin. Ethereum is formally defined in its “Yellow Paper”
[27], as opposed to the more common used white paper.

Ether is the cryptocurrency that is used on Ethereum, which can be
used as a regular cryptocurrency but can also interact with immutable
programs running on the blockchain; smart contracts. A smart contractisa
program written in a language that targets the Ethereum Virtual Machine
with which users of the blockchain can interact, using it to lend Ether,
purchase goods, and more without the need for intermediaries such as
brokerages and exchanges.

These smart contract applications running on the Ethereum Virtual
Machine allow for a runtime environment with enough opcodes that
makes it Turing complete, and these programs are distributed out onto
the blockchain on thousands of nodes executing the programs using trans-
actions.

The two most popular programming languages for Ethereum are So-
lidity and Vyper, the former a C-like, object-oriented statically typed pro-
gramming language and the latter is closer to Python but is still strongly
typed. Other languages exist but are far less popular, but as the virtual
machine is based on a limited number of opcodes and executes using a
tairly simple stack machine, it is not hard to create either new languages
or interpreters for the Ethereum Virtual Machine.

Smart contracts act as immutable applications stored in an immutable
ledger, where any user can interact with its public functions. A smart con-
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tract can be many things, from contracts between users, auctions between
unknown parties, voting systems, and more. Since the languages used
to write these programs are Turing complete, in theory, you could create
any program as a smart contract, but the ecosystem surrounding smart
contracts focuses mostly on transaction-based applications.

4.2 ETHEREUM AND OTHER BLOCKCHAINS

The world of cryptocurrencies and the number of available blockchains
have grown dramatically in the last few years. From what started with
essentially Bitcoin has grown into a large market of available options
for users. Ranging from cryptocurrencies created to mock others like
Dogecoin or Garlicoin, to stable coins like Tether or USDCoin to regular
currencies like Bitcoin or Ethereum. What separates these currencies?

The most obvious difference is popularity; Bitcoin and Ethereum are by
far the two most used, with the largest market caps and usage. Blockchain
is still the largest cryptocurrency on the market, with over 400 billion USD
in total market capitalization compared to Ethereum’s roughly 200 billion.

Stablecoins are another interesting kind of cryptocurrency, where the
value of the coin itself is not dependent on circulation and speculation,
but is instead pegged against some other asset as a reference. The most
common asset to use as a peg is the US dollar, and cryptocurrencies such as
Tether are pegged at a 1:1 valuation to it. The primary benefit is a currency
that is not as volatile as other currencies; Bitcoin has had periods of intense
swings in evaluation, which can be detrimental if you want to use the
currency to purchase something that doubles in price in the blink of an
eye.

Blockchains also have trade-offs that one needs to take into account
when evaluating them, some are popular but slow — like Bitcoin — while
others are not so popular but have a very high rate of transactions. Some
use expensive operations to create its blocks, often using a so-called proof-
of-work method to mint new coins. This leads to some cryptocurrencies
using enormous amounts of energy to essentially crack difficult math
equations, such as Bitcoin and Ethereum.

A more recent development in the cryptocurrency space is the market
for non-fungible tokens, mostly referred to as NFTs. These immutable
and unique tokens allow users to purchase a digital token to represent
ownership over some asset, whether it is a digital photograph or some
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physical object. Nearly all blockchains that allow for smart contracts also
allow for non-fungible tokens.

Ethereum finds itself in the sweet spot of being the second most popular
blockchain while also having smart contracts, something Bitcoin lacks.
This means that while many other cryptocurrencies make other trade-offs
compared to Ethereum, like not using proof-of-work to build its blocks or
peg their value against some other asset, it still finds itself with a thriving
community and developers.

4.3 SOLIDITY

Solidity is the primary programming language targeting the Ethereum
Virtual Machine, and is a statically typed, object-oriented programming
language in the C-family of languages.

In listing 4.1 we create an example contract that allows the creator of
the contract to deposit coins into the contract and see how much is stored
in the contract. This is a contrived example, as only the creator can deposit
and nobody can withdraw the coins, only view who owns the contract
and how much is stored in it.

pragma solidity >=0.4.16 <0.9.0;
contract SimpleStorage {
address public owner;
uint storedData;

constructor () { owner = msg.sender; }

function set (uint x) public {

require (msg.sender == Owner) ;
storedData = x;

}

function get () public view returns (uint) {

return storedData;

}

Listing 4.1: Example Solidity contract

Via language pragmas, a way to provide the compiler with addi-
tional information such as compiler versions, language extensions, or
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experimental features, Solidity also enables developers to target specific
versions of the language to ensure compatibility with the compiler and
runtime, but also to enable experimental features. As of this writing, there
is also an intermediate language called Yul that one can use with the same
compiler as Solidity, but it is targeted at advanced users who require or
want more optimizations for their programs.

Solidity has no official specification such as C++ [28] or Scheme [29];
by this, we mean documentation that lays out how other users can im-
plement the language for themselves; the grammar, runtime behavior, its
standard library, and so on. Solidity has extensive end-user documentation
for how it works and how to use it, and has an actual specification for the
contract ABI (Application Binary Interface) to define how to interact with
contracts and an EBNF grammar. Many modern languages like Python
and Rust also do not have an official specification but instead rely on what
is called a reference implementation; there exists a single implementation
of the programming language that is the authoritative source on gram-
mar and behavior, and if other users want to implement the language
themselves, they have to feature-for-feature and bug-for-bug follow this
implementation.

As far as programming language features go, Solidity is superficially
quite similar to other object-oriented languages like Java. It has support for
defining interfaces to which contracts must adhere should they choose to
implement them, and it supports abstract contracts similar to how abstract
classes exist in similar languages.

Unlike most mainstream programming languages, Solidity has no
repository of user-submitted third-party libraries that can easily be down-
loaded and imported (in contrast to Maven for JVM languages, Crates for
Rust, RubyGems for Ruby, and so on). Instead, Solidity has a language
construct called libraries.

Libraries are very similar to contracts in that they can define functions,
structs, and most things like contracts, but they have no state. Instead,
contracts can call libraries and their associated functions, and the library
acts as if it is a part of the contract itself, allowing the state from the contract
to be changed via the library.

Libraries can be embedded alongside the contract or called externally
if the library contains public functions. In this case, the contract needs
to know the address of this library so that it can know where to call it.
This is the only mechanism that enables code reuse, where you can call
third-party code without including it. However, due to the immutability
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of programs deployed to Ethereum, bugs are forever, and therefore most
libraries are downloaded and compiled together with the contract. Many
contracts, for example, include OpenZeppelin [30] libraries, as these are
battle tested, open source and easy to install, allowing developers to easily
add overflow-safe arithmetic or role-based permissions.

While there are many superficial similarities between Solidity and
object-oriented languages, one must keep in mind that Solidity is closer to a
specialized embedded programming language than a general higher-level
language. Generics is an example of a feature that most modern popular
languages support which Solidity neither has nor plans on supporting.

4.4 THE ETHEREUM VIRTUAL MACHINE

The fact that Ethereum is a blockchain that allows users to publish and
deploy smart contracts is all well and good; but how do these programs
written by users that are deployed to a decentralized network of inde-
pendent computers and nodes work?

As an analogy, instead of thinking of Ethereum as a distributed ledger
of transactions, but as we illustrated in section 3.1 as a distributed state
machine. Compared to blockchain which is solely a distributed ledger
as it has no concept such as smart contracts, Ethereum needs not only to
move currencies between accounts, but also execute programs.

On Ethereum, the state of the network and the blocks in its chain is not
only the transactions; but also the state of all the programs and how they
have changed between blocks. This happens via the virtual machine that
underpins all smart contracts: the Ethereum Virtual Machine (or EVM for
short). From one block to the other, the states of all the programs on the
blockchain are updated according to the rules of this machine. A way to
think of how this works is to imagine that the entire state of the blockchain
is one gigantic, distributed finite-state machine.

The simplified state function in figure 3.2 and algorithm 3.1is in essence
the virtual machine. This machine is responsible for maintaining the
immutable state of all accounts and smart contracts and defines the rules
that move the network from one block to another. The actual state function
for Ethereum does need to do a lot more bookkeeping to ensure both
consensus and correctness, but works roughly the same. The entire state
of the Ethereum blockchain is called the world state and maps between
all the addresses in the network and their associated account states.
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To be able to track all this state efficiently, Ethereum uses a Merkle
tree variant called Patricia Merkle Tree [31]. This tree is used to store four
different states per block in tries, (1) state (2) storage (3) transactions
(4) receipts. The primary reason for the use of this Merkle tree is efficiency
and to be a cryptographically secure way to store data. The implementation
in Ethereum manages to get O(log n) insertion, deletion and lookup.

A Merkle Tree — or a binary hash tree as it is also called - is, as the
name suggests, a tree data structure that allows for secure and efficient
storage of large amounts of data. As blockchains handle thousands upon
thousands of transactions between many accounts, efficient storage of this
data is of utmost importance. They also allow blockchains to validate the
integrity of the data and can be transmitted across the network in small
chunks instead, which means that users do not need the entire transaction
tree, for example, to make a small transfer between accounts.

.

stack memory

program
counter (PC)

operations

gas
available g

Figure 4.1: Illustration of EVM execution [32].

Before being executed, smart contracts need to be compiled to some-
thing the Ethereum Virtual Machine understands, a series of opcodes.
These opcodes are what tells the virtual machine whether to add two num-
bers together or perform specific operations for use cases on the blockchain.
These opcodes are not free; they require a certain amount of gas to execute.

Gas in Ethereum is very similar to the fuel required to power a vehicle;
it is a way to specify how expensive an operation is. When executing a
smart contract, each operation accrues a cost, along with other operations,
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such as transactions. Gas in Ethereum is paid in the cryptocurrency ether,
using a unit called gwei (a gwei is 10~ ether). This gas is a way to pay
miners for their work; you can even include a tip on your transactions if
you want miners to prioritize yours over others.

The EVM is designed as a stack machine, a fairly simple design to
reduce the number of required registers required where the machine
works by pushing values and operations onto a stack and popping them
as required. In the case of Ethereum, the depth of the stack is 1024 items,
where each item is a 256 bit word, for ease of use with 256 bit cryptography.

When a smart contract is being executed, it has a short-lived temporary
memory allocated while it is running, but this is deleted as soon as the
transaction is finished. This is not to say that contracts cannot store data;
as mentioned above, contracts are able to store data in the storage trie.
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757

Implementation of thesis

5.1 THE SOLIDITY GRAMMAR

To parse the Solidity programming language, we implemented a tokenizer
and parser in Haskell, written using parser combinators, a way to write
efficient and easy-to-develop recursive descent parsers. Solidity has com-
prehensive grammar documentation, both as a ANTLR [33] grammar
[34] and syntax diagrams (railroad diagrams, see figure 5.1) [35]. This
thesis targets the 0.8 release of the Solidity language (version 0.8.12 as of
this writing).

rule function-type-name

° parameter-list }L@U

visibility

state-mutability

e

r

“ parameter-Tist }_%
\_ |

Figure 5.1: Railroad diagram for the function name type rule.

The grammar for the language before the move to an ANTLR-based
parser generator was based on a simple grammar . txt file, where the
grammar was very informally specified in what appears to be an attempt
at something akin to what a Backus normal form grammar ought to look
like. Fortunately, the ANTLR grammar that replaced it is more robust and
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has been kept up-to-date with the language as it has evolved. ANTLR is a
parser generator (tools that generate parser from grammar) that reads an
Extended Backus-Naur Form (EBNF) grammar and creates a parser from
it, and it can generate parser for several languages, such as Java, C++ and
more.

This allows for easy use of the grammar in other projects by generating
a parser from the official grammar, so that one can ensure that the parser is
the same as the compiler itself. This makes it easy to build tools on top of
the generated parser, such as static analyzers, control flow visualizations,
and more.

functionTypeName
[boolean visibilitySet = false, boolean mutabilitySet =

Function LParen (arguments=parameterList)? RParen

(

)*

{!SvisibilitySet}? visibility {SvisibilitySet = true;}

{!SmutabilitySet}? stateMutability {SmutabilitySet = true;}

(Returns LParen returnParameters=parameterList RParen)??;

false]

Listing 5.1: ANTLR grammar used to generate figure 5.1.

The railroad diagrams generated from the grammar make it easy to
follow the parser around, if a node is a parsing rule, one can click on it to
move to that rule to see how to parse it. This enables one to quickly build
an intuition for the parsing of the language, and if needed, one can dive
into the actual grammar if the diagram is ambiguous about how to parse
something.

The code in listing 5.1 is what generates the diagram in figure 5.1, with
some modifiers attached that are not visible in the diagram itself. For
example, to create a parser for function type names, one can either use the
railroad diagram in figure 5.1 or the grammar in listing 5.1, the resulting
parser to parses it in the following way:

(1) Read the keyword function
(2) An optional parameter list contained by parenthesis
(3) Parse function modifiers

(a) Optionally parse function visibility
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(b) Optionally parse state mutability
(4) Optionally, parse what the function returns

(a) Read the keyword returns

(b) A required parameter list contained by parenthesis

(5) The rule ends without any terminals, the semicolon in listing 5.1 is
the end of the grammar rule and not the literal itself.

As we can see, the rule for a function type must declare itself as a
function and include its parameters, but steps (3) and (4) are optional,
and the parser must therefore account for the possibility that they may be
missing. By combining these rules, our parser takes shape by following
the possible paths starting from the source root until the parser completes,
successfully or not.

The parser builds a complete abstract syntax tree from its input, based
on the grammar from Solidity. The grammar in many ways defines a hi-
erarchy of units that can be parsed, starting with zero or more SourceUnits,
each of which contains zero or more Statements which in turn has zero
or Expressions and so on.

5.2 ABSTRACT SYNTAX TREES

As mentioned previously, for this thesis a complete parser was written
for Solidity, and we therefore need to be able to accurately express the
parsed program. In our case, the parser emits an abstract syntax tree
directly without any intermediate representations like concrete syntax
trees (or parse trees as they are sometimes called). This means that while
it can be used to create most tools for a programming language such as an
interpreter or compiler or an analyzer and so on, it would be a poor fit for
a formatter, for example, because it has no information about whitespace
or comments in the syntax tree, and therefore cannot transform the parsed
tree back to its text representation without loss of information.

Haskell was specifically chosen as the implementation language for the
parser due to its long history of being used to write parsers in and because
of its many great features, like the very advanced type system alongside
an ecosystem of tooling for building parsers. Because of features like
algebraic data types, pattern matching, and monads, one can effortlessly
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create type safe and easily composable abstractions for representation and
usability.

In listing 5.2, we can see a subset of the full representation of the syntax
tree as a sum type SourceUnit being the highest unit in the syntax tree,
where each SourceUnit has a record (a Haskell type similar to structs or
simple classes in other languages) containing the required metadata about
its representation.

data ContractDefinition = ContractDefinition
{ abstract :: Bool,
name :: Identifier,
inheritance :: Maybe Text,
body :: [SourceUnit]
}

data SourceUnit
= Pragma PragmaDefinition

| Contract ContractDefinition

| Library LibraryDefinition

Listing 5.2: Haskell source unit type definitions.

By repeatedly combining these sum types, one can easily build trees
or any large structure. And in our case, abstract syntax trees. In the above
listing, each possible top-level unit is represented in the SourceUnit sum
type: pragmas, contracts, imports, etc. These, in turn, can contain other
units, such as the statements in listing 5.3 that are contained in the bodies
of functions, constructors, and so on. For example, the body of a contract
contains a subset of source units, such as inline structs or functions, that
then contain struct members or statements.

One can easily see that these definitions themselves build a tree from
their constituent parts, for example: a Solidity file is zero or more contracts
that can contain zero or more functions, which themselves contain zero or
more statements that contain zero or more expressions.... At the end of
parsing the file, we have a syntax tree.

On a very simple contract for Solidity, see listing 5.4, you get a simplified
abstract syntax tree like in listing 5.5. For the full abstract syntax tree, see
appendix A.1.
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data IfStatement = IfStatement
{ trueStmt :: [Statement],
elseStmt :: Maybe [Statement]
}

data Statement
= While WhileStatement

| If IfStatement

Listing 5.3: Haskell statement type definitions.

// SPDX-License—-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.9.0;

contract SimpleStorage {
uint storedData;

function set (uint x) public {
storedData = x;

}

/* This 1s a comment */
function get () public view returns (uint) {
return storedData;

}

Listing 5.4: Example Solidity program

Pragma [solidity >=0.4.16 <0.9.0]
Contract [SimpleStorage]
uint storedData =
Function [set]
storedData = x
Function [get]
return storedData

Listing 5.5: Abstract syntax tree
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5.3 THE MONADIC PARSER COMBINATOR

As was mentioned in the introduction, the parser was implemented in
the Haskell programming language, using a monadic parser combinator
library called Megaparsec — a fork of the Parsec parsing library — to
create our parser. Megaparsec has been used to build parsers for many
programming languages, such as Dhall and Idris [ 36]. The main difference
between Megaparsec and Parsec is in how it handles error messages, an
area where parser combinators historically have been rather poor.

The parser itself clocks in at about 900 lines, while all the type defini-
tions required for the full language of Solidity is about 500, plus another
100 for the type definitions for Yul. The ANTLR grammar files from the
Solidity compiler uses about 350 lines for the lexer and nearly 600 for the
parser. Omitting the type definitions, the total lines of code for the parser
and the grammar are surprisingly close, both at just about 900 lines of
code. As mentioned in section 2.3, parser combinators allow one to write
a single function per production, and in our case the total line count is
nearly the same as the grammar.

As a final comparison between the handwritten parser for this thesis
and one generated by a tool like ANTLR — especially when using Haskell
— is the flexibility, power, and control one has of the parser and its output.
The parser is defined in the same language as the type definitions; one
does not have to learn to use a different tooling ecosystem, new grammar
and language, and remember to update the generated files whenever you
want to change something.

Let us then continue by giving an example of how one can build parsers
using parser combinators, consider the parser in listing 5.6 for parsing a
contract definition. As mentioned previously, the Parser type is generic
and we can use it here to return a single type ContractDefinition that is
used in the sum type SourceUnit.

To explain without getting bogged down by syntax and Haskell terms,
we will go line-by-line through the function and talk about what each line
does at a high level. The first two lines are the declaration, telling us it is a
parser for a contract definition, and the start of the function.

(3) Parse and set the optional abstract property based on if it was
successfully parsed

(4) Parse but discard the contract keyword
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parseContract :: Parser ContractDefinition
parseContract = do
abstract <- isJust <$> (optional (try $ keyword “abstract”) <?> "abstract”)

void (keyword

"contract”) <?> ”"contract”

name <— parseldentifier <?> “name”

inheritance

<- try

optional $ keyword ”7is” *> sepEndBy parselnheritance comma

body <- braces parseContractBody
pure $ ContractDefinition {abstract, name, inheritance, body}

Listing 5.6: A Haskell parser for function visibility

(5) Parse the identifier for the contract

(6) Optionally parse what the contract inherits

(7) Parse the contract body contained inside curly braces

(8) Return the parsed contract

The largest contract in the corpus is about 6500 lines of code in total,

called TrustedNotifierManager. As a quick benchmark to measure per-
formance, this file was run through the parser approximately 200 times
using a tool called hyperfine [37] to give a very rough estimate of how well
the parser performs. On the benchmark machine without background
programs running, with an Intel i5-9400H processor with 16GB of RAM,
the average running time was about 11ms to parse the entire file.

The smart contract file used in this benchmark weighs in at 240KiB.

The performance of the parsers is often calculated by converting the speed
to megabits per second (Mb/s), or by converting it to number of lines per
second.

240KiB
11ms

Perf = = 178.7Mb/s

This could potentially be slightly misleading as the file is very small,
so to give the parser more work to do we concatenated the benchmarking
tile together 100 times, resulting in a file that is 671000 lines long and is
49MiB in size. On this file, the parser uses on average 328ms to parse the
entire file.

= 8ms 156.6Mb/s
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The parser performance in lines per second then clocks out to around
200000 lines per second, which ought to be more than enough for most
applications of this parser as very few files in any programming language
will ever reach sizes of several hundred thousand lines and are instead
split up into smaller files. Concrete numbers for other parsers are hard to
come by, little comparative research has been done with most benchmark
passing as word of mouth through blogs and websites.

Finally, parsing is just a very small part of what interpreters, compilers
and analyzers does. Comparisons can be done by running formatters for
different languages against one another, but here the dominating factor
wouldn’t be the parsing but the analysis and calculations required to
format the code.

5.4 ANALYZING SOLIDITY CONTRACTS

For the analysis part of the program, we can again leverage Haskell’s type
system and pattern matching while recursing down the abstract syntax
tree to reach the data that we want. In other languages that lack such a
rich and powerful level of abstraction one often has to resort to using other
kinds of patterns to traverse trees. In Java for example the most common
way to traverse graphs or trees is the visitor pattern [38].

Ten analyzers were written in Haskell, for a total of 650 lines of code,
plus one manual analysis done by hand. Each of these parsers traverse
the abstract syntax tree generated by the parser, allowing us to ask and
answer questions about smart contracts written in Solidity. One could also
leverage the parser to build other tools, like code formatters, linting tools
or control flow visualizations and more

For example, a simple program to count all the functions (see 6.2 for
results) in a parsed Solidity file and its corresponding abstract syntax tree
can be implemented as in listing 5.7.

As we can see from this listing, the program is written in a very straight
forward and intuitive way. Instead of having some abstract interface that
we iteratively call to get nodes from a tree, we simply pattern match against
the required constructs and recursively walk the syntax tree.

The function countFns is our entry point, and already here we see
some of the power of pattern matching; if the body of a Solidity program
is empty, we simply return an empty list, no need to check inside the
function body when we can match at the function call level.
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countFns :: Solidity -> [ (SourceUnit, Int) ]

countFns (Solidity []) = []

countFns (Solidity xs) = mapMaybe recurse xs

recurse :: SourceUnit -> Maybe (SourceUnit, Int)

recurse (Contract def) = Just (Contract, foldl' (\acc e ->
-~ acc + count e) 0 (def ~. #body))

recurse (Interface def) = Just (Interface, foldl' (\acc e
- => acc + count e) 0 (def . #body))

recurse (Library def) = Just (Library, foldl' (\acc e ->
-~ acc + count e) 0 (def ~. #body))

recurse _ = Nothing

count :: ContractBodyElement -> Int

count (Constructor ) =1

count (CFunction _) =1

count (CFallbackFunction _) = 1

count (CReceiveFunction _) =1

count =0

Listing 5.7: Haskell program to count functions

Next, we leverage the Maybe type — a way to signal to the reader
and program that the return value can have some value (Just) or be
empty (Nothing) — to ignore any element in a source file that is not a
contract, interface or library implementation. The mapMaybe function ( (a
-> Maybe b) -> [a] -> [b]) maps a function that returns an optional
value onto a list of some type and returns the Just values.

We can expand on the simple implementation in listing 5.7 to build
more sophisticated analyzers, but they all in essence work the same.

32



— 6 —

Analysis

Perhaps the biggest cause of underlying issues and bugs in software is the
ever-increasing complexity of the software being written. By evaluating
the complexity of individual programs, we can empirically say something
about the underlying complexity of the program.

One could argue that simply parsing programs and assigning nu-
merical values for their inherent complexity might not accurately represent
the actual complexity. Complexity comes in many forms and shapes, rang-
ing from programming languages like APL [39], where a single line might
have more complexity than the same function in Python due to its use of
glyphs over conventional words, to working with inherently complex fields,
such as attempting to program software for the Large Hadron Collider.

Where more popular and often-used languages like C++ and Java
have had studies done about their inherent complexity, less so has been
done on smart contract and Solidity in particular.

6.1 GETTING CONTRACTS

As Solidity is a compiled language, the source code for published contracts
exists only as bytecode on the blockchain, which, while useful, is not the
best target to analyze the code on. However, authors can upload the
source for published contracts to Etherscan [40], a website for exploring
and analyzing Ethereum, where the bytecode is compared to the newly
compiled bytecode that enables the verification of contracts. This means
that users who want to interact with contracts know that the contract
at a specific address matches the source provided by the author of said
contract, and they can therefore make sure everything is in order and not
have to take the author at face value.

33



Verified contracts

600

500

400

300

200

100

2015-01-31 |

2015-07-30 |

| | | | | | | | | | | |
Ne) < @) o Tl < o o)) Lo o ) 0
§ ¢ ¢ T oo¢ & ¥ 2 2 o O o«
o o NS = D~ = D~ o D~ a Nl
e 5 F ¢ 8 g8 ¢ % g T 3
Ne} [N N ] N o ) —
= £z £ § g 5z £ & § 8§ &
o) )
N N Y o 3 o o q Y 8 A o
Date

Figure 6.1: Number of verified contracts per day on Etherscan.

We will compare and verify the results that Hegediis [41] reported,
as well as some new metrics. However, between this thesis and the latter
paper, it seems that Etherscan has changed their API as it is now impossible
to find all verified contracts. One can either download all verified contracts
with a valid open-source license or scrape the latest 500 verified contracts.
The former yields 4678 contracts that can be downloaded, while the latter
obviously restricts us to 500.

Files Lines Code Comments Blanks

11884 5288673 2628995 1888483 771195

Table 6.1: Statistics on downloaded contracts

A Python script was developed that reads the CSV file that is available
from Etherscan and attempts to download all these contracts and extract
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them to their own files without conflicts and errors. Although about 4500
contracts yield a significant amount of files, it might not be an accurate
representation of all contracts, as these are the ones where the author ex-
plicitly allows reuse and distribution via a license choice. It is nonetheless
the best option for downloading a large corpus of contracts.

After running the Python script and expanding all files, we end up
with the data in table 6.1. Of these 11884, 11555 were parseable by our
developed parser, the files that were not parseable were nearly all files that
were written in older versions of Solidity where the syntax grammar was
slightly different from the version we targeted.

6.2 THE AVERAGE SOLIDITY FILE

Based on the data from table 6.3 and 6.1, we get the averages seen in table
6.2. The average Solidity file that was downloaded is 445 lines long, and
based on the number from table 6.1, contains about 220 lines of code, 160
lines of comments, and 65 blank lines.

Type Average per file Average per file from [41]

Contract 2.01 4.44
Interface 1.64 0.04
Library 0.81 0.13

Table 6.2: Statistics on downloaded contracts

As an initial analysis of the programs downloaded from Etherscan,
we will look at the top-level defined items in the source files. This in-
cludes things like contracts, interfaces, errors, and more. From 11555
successfully parsed files containing 97482 defined top-level elements we
get the following data in table 6.3.

As one would expect, the vast majority of defined top-level elements
are contracts, interfaces, and libraries with pragmas slightly behind. In-
terestingly, there is a large decrease in the number of contracts per file, but
instead a large increase in interfaces and libraries. This might come from
the growing ecosystem, where users are able to import or copy existing
code that performs dangerous operations or are often misused features
over coding these themselves.
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Element

Count Percentage

Pragma
Contract
Interface
Import
Library
Error
ConstVar
Struct
Enum
Function
UserDefinedType

31068 31.87%
23137 23.73%
18925 19.41%
10142 10.40%

9356 9.60%
4320 4.43%
341 0.35%
173 0.18%
14 0.01%

6 0.01%

0 0%

Table 6.3: Counted top-level elements

UserDefinedType | 0%
Function {1 -1072%
Enum |1-1072%
Struct | 0.18%
ConstVar | 0.35%
Error | 14.43%

Library | 19.6%
Import | 1 10.4%
Interface | 1 19.41%
Contract | | 23.73%
Pragma |

1 31.87%

0% 5% 10% 15% 20% 25% 30% 35%

Figure 6.2: Histogram of top level element occurrence
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6.3 LICENSES

Another soft requirement, similar to the pragmas in section 6.4, all Solidity
programs should include a header comment denoting the license used
for the smart contract. Of the 11884 downloaded files, 11070 contains a
license.

Name Count Percentage
MIT License 8662 78.62%
None 887 8.05%
GNU General Public License v3.0 only 544 4.94%
GNU Affero General Public License v3.0 only 330 3.00%
GNU General Public License v3.0 or later 175 1.59%
Apache License 2.0 120 1.09%
GNU Affero General Public License v3.0 or later 117 1.06%
The Unlicense 70 0.64%
GNU General Public License v2.0 or later 36 0.33%
GNU Lesser General Public License v3.0 or later 31 0.28%
Do What The F*ck You Want To Public License =~ 21 0.19%
GNU General Public License v2.0 only 13 0.12%
Simple Public License 2.0 11 0.10%

Table 6.4: Double digit licenses

6.4 PRAGMAS

Solidity has language pragmas used to specify compiler version targets and
optionally the ABI (Application Binary Interface) encoder and decoder
as well as a few select experimental features. In some ways, it is slightly
similar to how language pragmas work in Haskell, where one can use
them to enable language features on a per file/project basis, which works
the same in Solidity. Files can specify different requirements for pragmas,
even when importing files that use a different one.

The version ranges in Solidity follow the very popular Semantic Ver-
sioning specification [42]. Without going into too much detail about it,
essentially it means that versions with a * can be compiled with any ver-
sion starting from the one specified up to, but not including, the next
minor or major version (thatis, #0. 8.0 means any version from 0.8.0
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Pragma Count Percentage

solidity 70.8.0 22553 72.59%
solidity 70.8.4 946 3.04%
solidity 70.8.1 791 2.54%
solidity >=0.7.0 <0.9.0 700 2.25%
solidity >=0.6.0 <0.8.0 415 1.33%
solidity 0.8.9 353 1.13%
solidity 70.8.9 345 1.11%
solidity 0.6.12 301 0.97%
experimental ABIEncoderVZ2 299 0.96%
solidity 70.8.7 291 0.94%

Table 6.5: Top 10 language pragmas

t0 0.9.0, exclusive). Versions without any kind of range symbol must be
compiled with the specific version.

As we can see from table 6.5, the vast majority of contracts that we
were able to download are targeting the 0.8 release of Solidity, released in
December 2020. Of 160 unique version ranges, in the top ten almost 84%
of the files are compiled against the latest Solidity release.

6.5 STATEMENT AND EXPRESSION FREQUENCY ANALYSIS

Another way to analyze programming languages and their usage is to look
at how users use the language. In [43], the authors analyze the frequency
of statements for Java, C++, and C which allows us to compare usage
between different languages.

It is mostly impossible to compare languages directly, as there are
subtle differences not just in semantics, but also in available features, how
the source code is expressed, and whether the languages allow for both
expressions and statements or have just one or the other. In our case, the
parser and syntax for Solidity separate statements and expressions, which
means that some data points will not map directly to, for example, Java.

Statement and expression data

In table 6.6 and its corresponding histogram 6.3, you can see the total and
percentage usage for all statements in our corpus. Similarly, in table 6.7
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and its corresponding histogram 6.4, the data for total and percentage
usage for all expressions in our corpus are shown.

Statement Count Percentage
ExpressionStatement 432884 50.19%
Return 162303 18.82%
VariableStatement 123884 14.36%
If 72565 8.41%
Emit 33709 3.91%
For 11571 1.34%
Revert 8117 0.94%
While 7386 0.86%
Assembly 6911 0.80%
Try 2257 0.26%
Break 485 0.06%
Continue 174 0.02%
DoWhile 171 0.02%

Table 6.6: Counted statements

As can be seen in the data for statements, expressions are the most used
kind of statements. This should not come as a surprise, as expressions are
where a lot of the heavy lifting is done; to do any operation on variables
and parameters, one needs to use expressions. We will look at these in
more detail in the next part of this section.

The next two most commonly used statements are the return keyword
and declarations of variables. Interestingly, as we look further down the
statement data, we see that the usage of continue and break is very low.

Looking at table 6.7 — for expressions — we see that there is a dominating
item: identifier expressions. These are the expressions for looking up
variables in the scope of a function, method, constructor, etc. Without this
one could not do much in any language, and as such it makes sense that
it is very frequently used. The next item is the function call expression,
which, as the name suggests, is any and all cases of calling a function like
foo (1, 2).

The next most commonly used afterward are binary expressions; these
are all expressions in which we perform a binary operation on two items,
summing them, comparing them, and so on. An expression literal is the
usage of literals in the language; these are numbers, strings, and booleans.
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DoWhile {2 -1072%
Continue |2-1072%
Break {6-1072%
Try 10.26%
Assembly [] 0.8%
While {] 0.86%
Revert {] 0.94%
For []1.34%
Emit [13.91%

If | 8.41%
VariableStatement | 14.36%
Return | 18.82%
ExpressionStatement | 50.19%
0% 10% 20% 30% 40% 50%

Figure 6.3: Histogram of statement occurrence

Expression Count Percentage
IdentifierExpression 2064345 46.42%
FunctionCall 698499 15.71%
BinaryExpression 499075 11.22%
ExpressionLiteral 448926 10.09%
MemberAccess 290447 6.53%
IndexExpression 181386 4.08%
ElementaryTypeExpression 132095 2.97%
UnaryExpression 43658 0.98%
TupleExpression 32646 0.73%
NewType 28989 0.65%
FunctionCallOptions 8938 0.20%
MetaType 8809 0.20%
ConditionalExpression 4907 0.11%
PayableConversion 4681 0.11%
InlineArrayExpression 74 0.00%

Table 6.7: Counted expressions
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Member access and index expressions are used to look up identifiers
associated with a class or to index into arrays. The final thing we will
mention here is the elementary type expression, used to specify the types
of variables, arrays, and such; it includes the literal bool, bytes32, uint,

and so on.

InlineArrayExpression -{ 0%

PayableConversion | 0.11%
ConditionalExpression -{ 0.11%

etalype | 0.2%

FunctionCallOptions | 0.2%
NewType [] 0.65%
TupleExpression -{] 0.73%
UnaryExpression {] 0.98%

ElementaryTypeExpression | "] 2.97%
ndexExpression ] 4.08%
MemberAccess | 16.53%
ExpressionLiteral 10.09%
BinaryExpression 11.22%

FunctionCall | 115.71%
IdentifierExpression

| 46.42%

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

0%

Figure 6.4: Histogram of expression occurrence

Frequency analysis

In [43], the authors calculate the frequency of statements on a per-line ba-
sis, meaning that the frequency of, say, function calls is how many function
calls there are per line of the source file. This way of calculating frequencies
is different from what we have done, as the parser implemented for this
thesis omits this information from its AST. However, trends and similarities
will still be apparent.

In table 6.9, we see that there is a difference between solidity and the
other languages compared to it. While the other follow the same order for
the top four most used statements, Solidity differs quite a bit. It is worth
noting, however, that the most used expression in Solidity is a function
call, so one could argue that it is the most used, but it is not a statement
alone in Solidity.

Interestingly, as we can see in the data in table 6.8, Solidity uses return
much more than the other languages and assigns and creates variables
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Statement Solidity Java (median) C++ (median) C (median)
FunctionCall ~ 7.88% 0.39 0.40 0.22
Variable 14.36% 0.19 0.17 0.19
If 8.41% 0.014 0.013 0.013
Continue 0.02% 0.0009 0.0008 0.0012
Break 0.06% 0.004 0.007 0.001
Return 18.82% 0.058 0.045 0.037
Switch 0% 0.0008 0.0014 0.0021
Try 0.26% 0.0072 0 N/A

Table 6.8: Frequencies of statements with data from [43]

Order Solidity Java C++ C

1 Expression FunctionCall Functioncall FunctionCall
2 Return Variable Variable Variable

3 Variable If If If

4 If Return Return Return

Table 6.9: Four most used statements with data from [43]

more frequently than them. Although it is difficult to analyze the data
when comparing percentages with median values that are also calculated
differently, we can use the data from [44] in table 6.10 to get a more direct

comparison.

Statement Solidity Java
Break 0.06% 0.2212%
Continue 0.02% 0.0430%
DoWhile 0.02% 0.0115%
For 1.34% 0.2583%
If 8.41% 2.6462%
Return 18.82% 2.8310%
Switch 0% 0.0677%
Try 0.26% 0.3645%
Variable 14.36% 3.7576%
While 0.86% 0.1077%

Table 6.10: Usage of statements with data from [44]
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As we can see in this table, where similar constructs exist, some have
very different usage percentages. The break keyword is used much more
frequently in Java than in Solidity, while a for loop is much more common
in Solidity compared to Java.

However, the two biggest outliers are the return keyword and the
variable declarations. For the first one, one might surmise that this is
because in object-oriented programming, a lot of the structure of the
programs is around internal mutation of variables declared with classes;
thus not as many functions or methods return values. Another reason
might be that Solidity leans more on smaller functions that one chains
together to build functionality since it is lacking in constructs like classes.

For the difference in the variable declaration, a probable reason is
differences in how the variable declarations are represented in the Java
syntax. Looking at table 3 in [44], we see that there is also a variable
declaration expression, something that Solidity does not have.

Expression Solidity Java
Array access 2.48% 0.7587%
Conditional expression ~ 0.06% 0.1718%
Field access 3.27% 1.1060%
Binary expression 5.62% 4.9584%
Unary expression 0.49% 1.09%

Table 6.11: Usage of expressions with data from [44]

Next, we have the usage of expressions. Where Zhu, Whitehead ]Jr.,
Sadowski, et al. only looked at statements in Java, C++ and C, Qiu, Li, Barr,
et al. also looked at expression usage. However, most of the expressions
in Java have no direct mapping to a similar construct in Solidity, so we
took the ones with which we had a direct comparison. Of note here is
that we combined the prefix and postfix expressions into a single unary
expression row, as Solidity does not separate these at a syntax level.

Interestingly, the usage of binary expressions does not differ dramatically
as others. This means that, even though the two languages have very dif-
terent applications, the number of binary expressions in both languages
should be about the same for a given source file in either language. In-
terestingly, array accessing is much more common in Solidity compared
to Java.
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Declaration Solidity (total) Java (per file)

Class/contract declaration 23.73% 87.5%
Enum declaration 0.01% 2.7%
Import declaration 10.40% 86.4%
Interface declaration 19.41% 11.6%

Table 6.12: Usage of top-level declarations with data from [44 ]

And finally, a quick look at top-level declarations in Java and Solidity.
The numbers here mean slightly different things, as in the Solidity case
it is the percentage of a construct in total, while Java is how many files
contain the given construct. As such, we cannot meaningfully compare the
numbers directly, but it gives a view of the frequency of top-level usage.

Other comparisons to Java

Function arity

In [45], Grechanik, McMillan, DeFerrari, et al. find that the average Java
method (since Java does not have freestanding functions, we can compare
them directly) takes 1.5 arguments with a median of 1 with the largest
arity of a method they found was 30. For comparison, we found that in
Solidity the average function accepts 1.45 parameters, has a median of 1.3
and a maximum arity of 10. Hegediis does a similar analysis and found
that the average function in Solidity has 1.5 parameters with a median of
1.5. The largest arity found in their case was 12.

Functions per class or similar construct

Grechanik, McMillan, DeFerrari, et al. find that the average class has 3.5
methods with a median of 4. For interfaces, they have an average of 3.4
methods with a median of 3. When we compare this with Solidity, we
find that the average contract (the most similar construct to a class) has on
average 9.1 functions contained in it with a median of 5. For an interface,
the average is 5.2 with a median of 3 while a library has an average of 8.3
with a median of 6.

In [41], the author makes this comparison, but does not look at indi-
vidual constructs, but rather at files as a whole. In it they find that the
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average contract/interface/library has 4.94 functions in it with a median
of 3.

The class with the largest number of methods found in [45] contained
1175 methods. Conversely, the largest contract in Solidity had 93 functions.
For interfaces, the largest one found had 68 methods, while in Solidity it
had 380. The library with the most functions in Solidity had 380. And in
[41], the construct with the must functions has 127 functions in it.

The difference between an interface and a library in Solidity is that an
interface is a contract that specifies functions that must be implemented,
while a library is a free-standing construct that one can import and use
functions from. It is most commonly used to provide common or security-
related functionality that users do not want to write themselves, allowing
users to import functionality at will.

6.6 COMPLEXITY ANALYSIS

Halstead complexity measures

Halstead complexity measures were introduced by Halstead [46] as a way
of quantifying and identifying software properties. By traversing the AST
and analyzing the operators and operands used in these programs, we can
calculate a set of measurements such as how difficult it is to understand
the code.

What is defined as an operand and an operator? In the case of most
programming languages, and indeed in our case too, the operands are
the identifiers, constants and type names used in a program, while op-
erators are more or less the rest of the program. Anything that operates
on operands are counted as operators. This means that functions, key-
words (return), operators (!=, ++), control flow operators, and so on are
counted among these.

Halstead defines a few different measures, from program vocabulary
to estimated program length, and from difficulty to an estimation of the
number of delivered bugs. Although this has been used to analyze com-
plexity [47], the accuracy of the metrics may not be as accurate as originally
depicted [48]. We chose to focus on the difficulty and estimated bugs
delivered.

When traversing the code, we collect these operands and operators into
their distinct and total counts and use these to calculate our results. By
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parsing our corpus, we find that the average Solidity file has 106 operands
and 182 operators on average. The file with the largest number of operands
contained 3176 of them, while for operators it contained 4765.

The formula to obtain the difficulty of a program is as seen in 6.1, while
the formula for bugs is in 6.2.

distinct operators  total operands
D= X —— (6.1)
2 distinct operands

n = total operators + total operands

N = distinct operators + distinct operands

V =nxlog,N (6.2)
2
E=DxV
2
E3
B_3OOO

From these equations, we find that the average difficulty of a Solidity
program is 21.6, the least difficult program being 1.5 and the most difficult
one being 142 4. For bugs, the average is 0.43 with the least buggy program
getting 1.7 x 1073 and the most buggy gets 7.62. Sadly, we could not find
any similar analysis of other programming languages on a scale similar to
our experiment, a small evaluation [ 49] of using Halstead complexity mea-
sures for Python, Java, and C++ was performed, but is not representative
of real-world program analysis.

McCabe’s Cyclomatic Complexity

Cyclomatic complexity is a measure that is used to calculate the complexity
of programs by analyzing their control flow. Normally, this is done by cre-
ating a control flow graph from the analyzed program and then traversing
this graph and calculating the complexity based on the branching within
this graph.

However, Hegedytis [41] has done this analysis previously but did it
differently simply by calculating the sum of control flow statements in a
program, so for comparison, we will do the same. Their analysis was done
in 2018 while ours was done in 2022, so we can do comparisons across
two points in time for the Solidity ecosystem.
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Paper Min Avg Med Max

Hegediis 0 1.15 1 43
Ours 0 116 1 153

Table 6.13: Results of cyclomatic complexity.

As can be seen in table 6.13, the only major difference is that in our
corpus there is no function nearly as complex as the most complex function
found in theirs. In [41] a comparison is made between object-oriented
languages and Solidity based on the collected metrics, and based on this
we find that the cyclomatic complexity for Solidity is still low compared
to languages like Java or C++.

In [50], an analysis was performed on a large corpus of Java and C
programs: nearly two million Java files and almost five hundred thousand
C programs. From this we get table 6.14 as a comparison between Solidity,
Java and C.

Language Min Avg Med Max

Java 1 233 1 4377
C 1 5098 3 18320
Solidity 0 1.16 1 153

Table 6.14: Results of cyclomatic complexity.

Nesting

Another way to analyze complexity in programs is to see how much nest-
ing happens in the codebase. While Halstead and McCabe attempt to
quantify complexity based on control flow or formula, nesting is much
more straightforward and intuitive.

A program with deep nesting would be considered by many developers
to be a code smell. High indentation means that you have nested control
flow and iteration deeply without extracting it to auxiliary helper functions
and methods to be able to give them names, comments, etc.

From table 6.15, we can see that again the only major difference between
us and Hegediis is that the maximum found in [41] is much larger than
any found in our corpus.
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Paper Min Avg Med Max

Hegedyiis 0 0.14 0 17.86
Ours 0 013 0 9

Table 6.15: Results of nesting analysis.

Unfortunately, no similar analysis was found for other languages. Al-
though Hegediis claims that these values are low compared to object-
oriented languages, we have not found data to support this. In our opinion,
this claim is likely true, but it needs data to be verified.

6.7 SMALLER ANALYZES

Finally, we will look at some smaller data points and analyzes that do not
have any direct comparisons, but were done out of interest of the author.

Operator analysis

A full analysis of all the programs was done to find and count the usage of
all the operators in our corpus. The closest comparison the author could
find to this data was in [45], where the authors found 25523 occurrences
of the increment operator and 2005 occurrences of the decrement operator.
In comparison, we found 17229 occurrences of the increment operator and
1937 occurrences of the decrement operator.

Element visibility

As a final analysis, we looked at the visibility of constructs in contracts.
This was primarily to show how the frequency and usage of the visibility
modifiers, but also because they can inadvertently become a security
concern. Public statue variables can be a large concern, though we luckily
found none. Interestingly, the community has landed on always explicitly
defining a visibility modifier on state variables, but our analysis found
quite a lot missing this.
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Name Operator Count Percentage

Assignment = 151877 27.98%
Equal == 57548 10.60%
NotEqual '= 52098 9.60%
GreaterThan > 28303 5.21%
Add + 25388 4.68%
Mul * 21123 3.89%
And 20288 3.74%
Not ' 19297 3.56%
LessThan < 19254 3.55%
GreaterEqual >= 18487 3.41%

Table 6.16: Ten most frequently used operators

Construct Public Internal External Private None
Functions 98885 49947 28486 21807 6
Constructors 631 189 0 0 11487
State variables 0 51507 39037 4552 3653

Table 6.17: Construct visibility count
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Conclusion

In this thesis, we created a fully compliant parser of the Solidity smart
contract programming language for Ethereum. Using this parser, we
fetched a large corpus of publicly available smart contracts and analyzed
their structure for similarities to other popular programming languages.

We found that the most used version of Solidity across all downloaded
smart contracts was version 0.8 and above, having above 75% usage, show-
ing that nearly all users of the language are on a very recent version of the
compiler for it.

Based on statement and expression analysis, we found and compared
similar constructs to Java, C++, and C and found that while there are
similarities, certain statements and expressions are used with very different
frequencies across these languages. While Java, C++, and C have the same
four most used statements, Solidity differs in having a separate expression
type but also using the return keyword and variable assignments a lot
more frequently than them.

When comparing function arity, the averages were very close between
Java and Solidity. We compared the number of methods/functions in
classes, contracts, and interfaces and found that Solidity contracts have
on average double the number of methods compared to a Java class. For
interfaces, the difference is not as large, but Solidity interfaces on average
contain two more methods than a Java interface.

Finally, we performed an assortment of complexity analyzes on our
corpus using three different metrics. We first analyzed the programs
using Halstead’s complexity measure and followed it up with McCabe’s
cyclomatic complexity analysis before ending with a quick look at the
average nesting of statements. We found that the average cyclomatic
complexity for Solidity was much lower than C and more than half that of
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Java.

Through our analyses, we show that while there are similarities be-
tween object-oriented languages like Java and Solidity, the language and its
use case means that it does not have the same average complexity. Where
Java is used to build large programs with many users, Solidity is meant to
create digital contracts between entities on the Ethereum blockchain.

Based on the analysis performed in this thesis, we can draw some
conclusions about the intended usage of Solidity compared to more main-
stream programming languages. In the cases where we have direct com-
parisons, we find that Solidity is less complex than Java on average with a
much lower maximum complexity.

It would be interesting to answer the question if Solidity is a better lan-
guage for writing smart contracts than other general purpose languages,
though this would require more data and a different set of analyzes; and
would likely be much harder to answer as one would need to quantify
question like “how is a language better suited than another”, “how many
bugs happen due to language constructs and not programmer error” and
others.
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A

Appendix

A SOLIDITY EXAMPLE AST

[ Pragma
( PragmaDefinition
{ pragma = “solidity >=0.4.16 <0.9.0” }

)
Contract
( ContractDefinition
{ abstract = False
, hame = Identifier "SimpleStorage”
, inheritance = Nothing
, body =
[ CStateVariableDec
( StateVariableDec
{ kind = ElementaryType (
< UnsignedInteger Nothing )
modifiers = Just []
ident = Identifier ”“storedData”

expr = Nothing

!

!
!

!

}
)
CFunction
( FunctionDefinition
{ name = Identifier "set”

!

params =
[ Parameter
{ kind = ElementaryType (

!

< UnsignedInteger Nothing )
, location = Nothing

ident = Just
( Identifier ”"x” )

!

}
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]
, restrictions = [ FuncVisibility
< FuncPublic ]
, returns = Nothing
, body = BlockStatement
[ ExpressionStatement
( BinaryExpression Assign
( IdentifierExpression
( Identifier
- “storedData” )
)

( IdentifierExpression
( Identifier "x” )

)
, CFunction
( FunctionDefinition
{ name = Identifier "get”
, params = []
, restrictions =
[ FuncVisibility FuncPublic
, FuncMutability View
]
, returns = Just
[ Parameter
{ kind = ElementaryType (
- UnsignedInteger Nothing )
, location = Nothing
, 1ldent = Nothing
}
]
, body = BlockStatement
[ Return
( Just
( IdentifierExpression

( Identifier
- 7storedData” )
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