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Abstract

The use of open source components in software development has been growing
at a rapid pace for a number of years. This increase in use of open source
software is accompanied by an increase in the risk of security vulnerabilities.
With an extensive amount of research and time spent towards the development
of tools to help mitigate security vulnerabilities in developers’ own code, the
issue of identifying vulnerabilities in the open source components they use has
been rather neglected by comparison. Public security source such as NVD,
CVE and CWE already contain an enormous amount of data on both security
vulnerabilities in general, as well as specific known instances of vulnerabilities in
software. The primary goal of this thesis is to develop a plugin for the Eclipse
development environment which seeks to connect developers to these public
security sources directly in their IDE. The plugin will specifically be targeted at
maven projects, and will help mitigate potential vulnerabilities by scanning the
dependencies of a project and finding any potential vulnerability data for them
registered in the NVD. The plugin will be evaluated by utilizing open source
dependencies and projects in various tests which seek to identify its performance
related to soundness and completeness, as well as runtime performance. The
results show a precision of 93%, a recall of 65% and an accuracy of 80%. The
runtime performance is shown to be moderate with a linear growth depending on
the number of dependencies being scanned. This thesis contributes to research
by shedding a light on an under-developed field of software security mitigation
and proposes a prototype plugin to help solve the issue.
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Chapter 1

Introduction

This project aims to improve security during code development by identify-
ing and linking source code artifacts (dependencies) to their closest knowledge
unit(s) in the public information repositories. Public security sources (PSS) [29]
can be defined as information sources that provide information regarding vul-
nerabilities, threats, attacks, risks, affected assets or available countermeasures
(based on ISO and Std, 2009).

The issue of improving code security has been approached from many different
angles. Several papers look at various approaches for scanning source code and
identifying security vulnerabilities using mainly machine learning or static anal-
ysis tools. Many of these static analysis tools and machine learning models have
proven themselves adept at analyzing the code and identifying vulnerabilities.
While they are useful for scanning your own code, they generally do not consider
the fact that a large portion of software consists of open source libraries and
frameworks.

Synopsys’ 2021 Open Source Security and Risk Analysis (OSSRA) report [39]
showed that apps in 2020 averaged 528 open source components - an increase
of 259% over the previous 5 years. They also found that as the use of open
source code increases, so does the amount of vulnerabilities - with 84% of code-
bases having at least one vulnerability and the average codebase having 158
vulnerabilities.

The National Vulnerability Database (NVD) [35] is a public security source run
by the United States government. Their website keeps track of vulnerability
data on all things software related. If a software component has been identi-
fied to contain a vulnerability, the NVD will have a dedicated page about the
specific vulnerability, containing any pertinent information to the issue. Among
several other categories, maven dependencies are an example of such a software
component.

In an attempt to address the security risks of the increasing number of vulnera-
bilities in open source code, this project will look at how the data from NVD can
be used to provide crucial vulnerability information to developers, directly in
their development environment. We will specifically look to create a plugin for
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the Eclipse Integrated Development Environment which will identify vulnerabil-
ities in maven dependencies, as maven is a commonly used project management
and build tool. This will result in developers being notified directly in Eclipse
of vulnerable open source components and will also provide them with relevant
information to help mitigate the issues.

Answering the following three research questions will demonstrate how the pro-
posed plugin contributes to improving security related to open source software
(OSS):

• RQ1: How can we integrate public security information to detect vulner-
able OSS libraries in the developer environment?

• RQ2: What is the performance of the OSS vulnerability detection tool in
terms of completeness and soundness?

• RQ3: What is the performance of the OSS vulnerability detection tool in
terms of runtime under different project sizes and dependencies?

The rest of the thesis is structured as follows: Chapter 2 provides background
on the central aspects this research is built upon. In chapter 3, the plan for
evaluating the resulting plugin is presented. Chapter 4 explains how the plugin
is designed and implemented. In chapter 5, the results of the tests run on the
plugin are provided as well as an evaluation of the results. In chapter 6, we
look at the project as a whole and discuss some of the challenges faced as well
as looking at how certain limitations could have been prevented. Chapter 7
provides information about prior research relating to the central aspects of this
thesis. Finally, in chapter 8, we conclude the project and detail some of the
future work that can be done related to this thesis.
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Chapter 2

Background

The thesis is built on three broad areas namely; detecting security vulnerabili-
ties, public information security sources and open source software. The following
sections will introduce the three categories as background to this study.

2.1 Detecting Security Vulnerabilities

The issue of finding and fixing security vulnerabilities in software is a well re-
searched topic. The consequences of vulnerable software are potentially enor-
mous, as demonstrated repeatedly by news headlines describing data leaks in big
corporations or services being unavailable due to attacks against them. Felderer
et al. discuss how important it is to apply the appropriate security testing tech-
niques and how these techniques are ”essential to perform effective and efficient
security testing” [15]. In this section, we are looking at how this issue is dealt
with throughout the software development life cycle (SDLC) (see figure 2.1).

It is important to consider security during all stages of the SDLC. If the design
of a product is inherently insecure, there is not much one can do to mitigate
design vulnerabilities in the later stages of the SDLC. This applies to the re-
quirements gathering phase of the product as well - it is necessary to consider
the security implications of any requirement in order to properly design and
implement secure solutions. While these are vital parts of creating secure prod-
ucts, this section will focus on the various methods and tools used throughout
the SDLC to discover security vulnerabilities in the code.

Figure 2.1: Security Testing Techniques in the Software Development Life Cycle
[15]
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2.1.1 Development Stage

A vast majority of research related to vulnerability detection is tied to the
implementation stage of the SDLC. This is the stage where developers can get
quick feedback on faults in their code before it causes issues in testing, or gets
deployed and becomes a vulnerability.

This is the stage where static code analysis (SCA) is run. SCA is a method
of analysing the source code of a program before it is run - i.e. checking the
text and syntax of the code [18]. There are different ways of performing this
check. The most common method is to compare the text to a set of predefined
coding rules. This can be effective in discovering issues such as information
flow vulnerabilities, weak cryptography and command injection to name a few.
Examples of tools implementing this method are Spotbugs [34], ESVD [28] and
SonarQube [33].

Another method for static analysis which has seen a steady increase in research
over the years is the use of machine learning (ML) [17]. The specific approach to
training a ML model differs a lot, and results in models with varying degrees of
precision and capabilities. The term ”static analysis” typically refers to the rules
checking method described above, but the use of ML follows the same principle
of analysing the code in its static form, before it is run. Whereas rule matching
has the benefit of its rules generally applying to every codebase on which it is
run, ML models are typically trained on a small number of codebases, giving
them better performance on the code it is trained on, than a completely new
codebase. Section 7 provides related studies about the use of machine learning
in research.

Both these methods give the advantages of speed and depth in that they heavily
outperform a human performing the same job, and that they check every nook
and cranny of the code, giving results that should cover the entire product. At
the same time, no one static code analyser has proven itself capable of detecting
every type of security vulnerability in the code and none can guarantee 100%
accuracy in its results. They will always be prone to false positives, meaning
that a reported vulnerability is a non-issue, and false negatives, meaning an
actual vulnerability is not reported by the tool [22].

Another important security testing technique in the development stage is the
testing phase of the SDLC. This involves the developer or a dedicated tester
either writing executable tests, or simply testing the results manually. This is
what’s referred to as dynamic code analysis (DCA). DCA does not have clearly
declared methods the same way SCA does. It is rather a loosely defined process
of testing the results of the code. There are multiple libraries made for writing
tests and emulating live application data such as JUnit [21], Mockito [24] and
Cucumber [14], but these do not perform any checks on behalf of the developer.
It is the developer who implements their desired tests to verify desired behavior.

2.1.2 Deployment stage

When code has been written and tested, it reaches the deployment stage where
depending on the development pipeline, a series of tools can perform various
checks on the code. Often times, tools used in the development and testing
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stages are also run during the deployment stage in order to ensure there is a
barrier of checks before code is deployed. In addition to this, you could set up a
plethora of other code-checking tools such as OWASPs Dependency-Check [16].
The deployment stage is also where user acceptance testing is done, but this is
often more focused on features, rather than finding security vulnerabilities.

2.1.3 Maintenance Stage

In the final stage of the SDLC, the product is deployed and needs to be main-
tained. This is generally a phase where bugs are found through use of the prod-
uct and these need to be addressed as is standard procedure for any product in
production.

Another security vulnerability detection method found at this stage is the use
of penetration testing. While this method belongs to both the testing and
deployment stages as well, I put it here as it is a vulnerability detection method
performed on the product as a whole. Penetration testing is simply put the
process of using white-hat hackers in an attempt to penetrate or exploit the
product. A white-hat hacker is someone with the skills of a hacker, capable of
doing harm to products and services - but is someone who uses those skills at
the request of the owners of the product, in a simulated environment where no
damage is inflicted. This results in potential vulnerabilities which could have
been exploited by malicious agents being found and thereafter addressed. This
is an important security vulnerability detection method, which when done well
and often, keeps you on top of any vulnerable situation.

2.2 Public Security Sources

Public security sources can be defined as information sources that provide infor-
mation regarding vulnerabilities, threats, attacks, risks, affected assets or avail-
able countermeasures (based on ISO and Std, 2009) [29]. In this thesis we will
focus on the three sources; Common Vulnerabilities and Exposures (CVE), Com-
mon Weakness Enumeration (CWE) and the National Vulnerability Database
(NVD).

2.2.1 Common Vulnerability Exposures (CVE)

”The mission of the CVE Program is to identify, define, and catalog publicly
disclosed cybersecurity vulnerabilities” [12]. This is done by registering a new
record for each vulnerability discovered by organizations that have partnered
with the CVE Program. Each record goes through a thorough process with
certain information requirements before it is published, as described in figure
2.2.

The current version of CVE offers limited information to developers as most
entries only have a unique id, a description and possibly other fields such as
references, as exemplified in table 2.1.

12



Figure 2.2: Registering a new CVE record

CVE-ID Description

CVE-2022-29817
In JetBrains IntelliJ IDEA before 2022.1 reflected XSS
via error messages in internal web server was possible

Table 2.1: Example of a CVE-record

2.2.2 Common Weakness Enumeration (CWE)

”CWE is a community-developed list of software and hardware weakness types.
It serves as a common language, a measuring stick for security tools, and as
a baseline for weakness identification, mitigation, and prevention efforts” [13].
Where CVE registers individual instances of vulnerabilities, CWE keeps track
of more general vulnerability data. Among the information you will find in a
CWE entry are the following:

• Exploitation likelihood

• Code examples

• Related CVE entries

• Potential mitigations

• Detection methods

• Common consequences

• Related attack patterns

CWE-ID Description

CWE-1173
The application does not use, or incorrectly uses, an in-
put validation framework that is provided by the source
language or an independent library.

Table 2.2: Example of CWE-record
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2.2.3 National Vulnerability Database (NVD)

NVD is essentially an extension of CVE. ”The NVD is the U.S. government
repository of standards based vulnerability management data.” [35]. On their
website they specify that they perform analysis on CVEs that have been pub-
lished to the CVE Dictionary. This analysis results in more detailed information
compared to the original CVE entries, including a severity score, references to
CWE-entries if applicable and references to specific software affected by the
issue, using Common Platform Enumeration (CPE).

”Common Platform Enumeration (CPE) is a standardized method of describing
and identifying classes of applications, operating systems, and hardware devices
present among an enterprise’s computing assets.” [9]. This in one of the most
important features of NVD relating to this thesis. CPEs contain a URI describ-
ing the affected software, which can easily be used for searching and matching
against dependencies. The following example (taken from Common Platform
Enumeration: Naming Specification Version 2.3, page 23) shows how a well
formed name (WFN) is translated to a URI:

Suppose one had created the WFN below to describe this product: Microsoft
Internet Explorer 8.0.6001 Beta (any edition):

wfn:[part=”a”,vendor=”microsoft”,product=”internet explorer”,
version=”80̇6̇001”,update=”beta”,edition=ANY]

This WFN binds to the following URI:

cpe:/a:microsoft:internet explorer:8.0.6001:beta

A particularly important feature of NVDs use of CPE is its clarity concerning
versions. Software is not a static concept where you are stuck with what you got
indefinitely. New versions of software are released constantly which generally
introduce a mix of new features and bug fixes. A product can thus not be labeled
”vulnerable” as a whole, as a vulnerability in one version is not necessarily
present in another version of the same product. In cases where a CVE entry
applies to multiple versions, NVD keeps track of which version introduced the
issue and which version fixed it if it has been fixed.

2.3 Open Source Software

Open source software (OSS) has been around since the 1980s when Richard
Stallman, who was sick of the increasing amount of necessary, proprietary soft-
ware, coined the term ”free software” [5]. The use of OSS has been consistently
growing for decades. Researchers have been talking about its increasing popu-
larity for more than 20 years, and recent reports such as Synopsys’ 2021 Open
Source Security and Risk Analysis (OSSRA) report [39] found that apps in 2020
averaged 528 open source components - an increase of 259% over the previous
5 years.

Open source is simply defined by many as software with source code that can be
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viewed and modified by anyone. There is however a more technical definition,
”The Open Source Definition” (OSD), overseen by the non-profit organization
the Open Source Initiative (OSI). OSD states ten criteria which must be com-
plied for a license for software to be considered open source (see figure 2.3).
These criteria ensure that developers can freely plug OSS into their own code
and is the big reason why the use of OSS continues to increase. Why write code
from scratch if someone has already made the feature available to you for reuse?

1. Free Redistribution: There shall be no restrictions on the redistribution of aggregate
software distributions with the OSS as a component.

2. Source Code: The source code of a product must be obtainable.

3. Derived Works: A modified or derived work of the product, must be allowed to be dis-
tributed under the same license.

4. Integrity of The Author’s Source Code: The license may restrict distribution of a
modified version of the product so long as it allows for distribution of patch-files, modifying
the program at build time.

5. No Discrimination Against Persons or Groups: Any person or group of persons must
be allowed to use the product.

6. No Discrimination Against Fields of Endeavor: The product must be allowed to be
used in any field.

7. Distribution of License: The license must extend the rights of the product to all redistri-
butions.

8. License Must Not Be Specific to a Product: The rights of the product must extend to
all software distributions.

9. License Must Not Restrict Other Software: The license is independent and cannot
restrict other programs.

10. License Must Be Technology-Neutral: The program must allow use with any technology.

Figure 2.3: The Open Source Definition

2.3.1 Use of Open Source Software

The reasons for using OSS are many. Perhaps the most obvious one being
convenience. With an ever growing pool of open source solutions available
to any developer - the odds of finding existing, appropriate solutions to your
problems are not slim. There is rarely a need to reinvent the wheel, so using
OSS makes sense from a developer’s perspective. This argument applies to
proprietary solutions as well, so it goes to show why existing solutions are used
in general. Looking at what separates open source from proprietary software,
the most common factors found amongst websites explaining the advantages of
OSS [6][38][47] can be found summarized in table 2.3.

Several reports have looked at the use of OSS in businesses and codebases in
recent years. OpenUKs ”State of Open: The UK in 2021” [25] ran a survey
which found that 89% of UK businesses run open source software. Synopsis’
2022 OSSRA report [40] showed that of almost 2500 codebases scanned, 97% of
them contained open source. Not only that, but as much as 78% of all codebases
were composed of open source. These findings show how prevalent OSS is in
both business and in software development.
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Factor Advantage

Security
Code is viewed and maintained by a large num-
ber of people ensuring fewer bugs and faster re-
sponses to fix those that make it through.

Customisability
The source code can be freely customized to bet-
ter suit the needs of the user.

Stability

Continued development of the software is not
dependant on a single person or group of peo-
ple. If the original creators stop maintaining the
software, others can step in.

Interoperability
OSS is generally developed to be as compatible
as possible.

Cost Minimal to no cost

Table 2.3: Advantages of Open Source Software

2.3.2 Open Source Example: Maven Dependency

An example relevant to this thesis of how OSS is used, is the use of dependencies
in maven projects. Maven is a popular build tool for java. A dependency in
this setting is some piece of software that your project depends on to function.
Dependencies are uploaded by their respective creators to the central maven
repository, which keeps track of all versions of the software. When a developer
wants to use a dependency, they add its descriptive parameters to their project’s
”pom.xml” file as demonstrated below:

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.13.2</version>

<scope>test</scope>

</dependency>

This tells maven to download version 4.13.2 of JUnit to your local maven repos-
itory and enables you to use the dependency’s API in your project. The source
code that produced the API is not visible locally in the developer’s environment,
so when using maven dependencies, developers rarely inspect the source code
itself.

2.3.3 Vulnerability in Open Source

Despite security being listed as one of the factors why people use OSS, security
will always be an issue in software development. The 2022 OSSRA report [40]
found that 81% of the codebases audited containted at least one open source
vulnerability.

The nature of open source is the fact that anyone can view the source code,
and this is an argument used by many to underline the claim of high security
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in OSS. In the case of the maven example in section 2.3.2 however, I mentioned
that the practical use of dependencies rarely involves inspecting the source code.
Without explicitly reviewing the code or scanning it for vulnerabilities by other
means, a developer essentially chooses to trust that dependency when it in
reality has the potential to introduce critical security vulnerabilities.

I also talked about how a security advantage to OSS is a generally faster response
time to releasing bug fixes. Given the ease of releasing new versions to the maven
repository, it’s fully possible a newer version of the software is available which
is not affected by an older vulnerability. While this should bode well for OSS
security, Synopsis found [40] that 85% of codebases ”contained open source that
was more than four years out-of-date” - showing the need for systems that check
your dependencies and inform you of their known vulnerabilities.
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Chapter 3

Methodology

This chapter describes how the three research questions related to developing a
tool that utilizes public security information to detect vulnerable OSS libraries
are addressed and evaluated. This will be done in three parts:

1. Developing a plugin for the Eclipse IDE which will identify vulnerable
dependencies and connect developers to relevant vulnerability data from
public security sources directly in their development environment.

2. Measuring the precision and recall of our plugin by running it on open
source components.

3. Measuring the runtime of the plugin by running it on maven projects of
varying sizes.

The introduction of public security sources informing developers of vulnerabili-
ties in their dependencies should make developers either find different version-
s/dependencies which are not vulnerable, or have them mitigate the vulnerabil-
ities themselves if possible. This will result in fewer vulnerabilities in the code
and improved security. This assumption is discussed further in chapter 6.

The following requirements for the plugin were identified:

Requirement Type Related to

Plugin should link to nvd Functional RQ1

Plugin should provide developers with
information in development environment

Functional RQ1

Plugin should be able to detect vulnerable
libraries correctly

Functional RQ2

Plugin should have zero false positives and
false negatives

Functional RQ2

Plugin should scale on large projects Non-Functional RQ3

Table 3.1: Requirement table for plugin
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3.1 RQ1: Development of plugin

In order to connect developers and vulnerability data and answer RQ1; ”How
can we utilize public security information to detect vulnerable OSS libraries in
the developer environment?”, a plugin for the Eclipse IDE will be developed.
This plugin will facilitate simple and immediate access to relevant vulnerability
data from the three public security sources CVE, CWE and NVD mentioned in
section 2.2.

As discussed in the background, most codebases today consist of more open
source code than original code (i.e. code written specifically for a single prod-
uct). In spite of this, there is a much heavier research focus on tools and
techniques that implement static code analysis or other similar methods to
identify vulnerabilities in developers’ own code. This plugin will address the
neglected issue of vulnerabilities in open source components, by bringing a
much needed focus specifically to vulnerabilities in dependencies that are used
in maven projects.

The goals for the plugin are that it:

1. Identifies vulnerable dependencies and appropriately mark them as such.

2. Fetches and displays information relevant to developers in an easily acces-
sible manner.

3. Provides performance that makes it appealing for developers to use.

For this plugin to provide any significant value, it needs to be accurate. This
means that when developers execute a scan of one of their projects, they should
be confident that any vulnerability data from the public security sources, related
to any of their dependencies, will be found and that the vulnerable dependencies
will be clearly marked with an appropriate marker. If this is not achieved, it will
fall short of users’ expectations and will ultimately not be considered a viable
plugin to help improve security.

Next it is important that the plugin fetches data that is relevant to developers.
NVDs API provides a substantial amount of data (see appendix C) which con-
tains a lot of useful information, but also much that is irrelevant to developers.
The plugin should efficiently sort the data so that the developer is left with
enough information to guide a decision making process about a vulnerable de-
pendency, but not so much information that they are overwhelmed and unable
to use the results.

A key component in the success of the plugin is whether or not it is intuitive
to use. Eclipse is already packed with buttons, menus and views, so there is
no need to add more chaos. This plugin is meant to be a simple, but useful
addition to the workflow of a developer by helping mitigate vulnerabilities and
requiring little to no effort to do so. When performing a scan of a project, the
user should be informed of the progress and be presented with the results upon a
completed scan - without having to further interact with menu options or other
intrusive user interface elements. The results of the scan should be presented
in an easily comprehensible manner, where the user can interact with and view
the vulnerability data fetched from NVD.
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Finally, the plugin’s performance needs to meet the expectations of the users.
This point ties into how intuitive the plugin will be, as a long processing time
could result in developers thinking the scan has failed, or even making them
second guess whether or not the plugin is something they wish to continue
using. To help with performance, the results of each scan should be stored so
that they potentially could be re-used at a later stage.

Overall, the criteria mentioned in this section describe a product which should
provide good value to developers. If the plugin meets these criteria to an accept-
able level, users will have few reasons not to incorporate it into their workflow
and their routines during development. At that point it will be up to them to
address the concerns raised by the plugin in whatever way necessary to mitigate
security vulnerabilities in their products.

3.2 RQ2: Measuring performance of the plugin
in terms of completeness and soundness us-
ing open source dependencies

The approach to answering RQ2; ”What is the performance of the OSS vulner-
ability detection tool in terms of completeness and soundness?”, is to run a case
study where the plugin is tested by running it on open source components. By
having a good sample of vulnerable and non-vulnerable dependencies, as well
as various versions of them, the results will give a good indication of how well
the plugin performs.

3.2.1 Collecting test data

To build a ground truth dataset of vulnerable and non-vulnerable dependen-
cies, a total of 40 unique dependencies are collected, split equally between 20
vulnerable and 20 non-vulnerable. ”Unique” in this setting is defined to mean
that two different versions of a dependency are counted as one towards the to-
tal number of dependencies. Vulnerability is determined by there being CVE
entries registered on the dependency or not.

When finding a dependency for testing, there must be a thorough check into
whether or not it is vulnerable. Without the proper labels as a starting point,
the results will have little significance and will be easily scrutinized. With this
in mind, the following process for collecting the sample of dependencies is used.

The website ”mvnrepository.com” [1] (henceforth referred to as ”the maven
repository”) is used as a starting point. This site offers the ability to browse
through maven dependencies which have been sorted into a number of cate-
gories. Using this functionality, a diverse set of dependencies is collected, with
dependencies used for purposes such as ”Logging Frameworks” and ”I/O Utili-
ties”.

When a dependency is selected as a candidate, the next step is to label it. Each
dependency will be labeled as one of the following depending on the test case
being run:

• V = This dependency is vulnerable
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• NV = This dependency is not vulnerable

• FV = This is a version of a dependency where vulnerabilities of a previous
version have been fixed, but it still contains other vulnerabilities

• FNV = This is a fixed version of a previously vulnerable dependency, no
longer vulnerable

The initial batch of dependencies are labeled either V or NV. Once the baseline
test with the 40 dependencies has been run, the two labels FV and FNV are
introduced to describe different versions of the dependencies.

The maven repository contains detailed information about every dependency in
its registry. Among this data is a ”Vulnerabilities” field which lists CVE entries
associated with the dependency. As any information regarding the accuracy of
the vulnerabilities lists is not available, nor any information saying how often the
lists are updated, this information can not be dependend upon alone.Each CVE
entry listed by the maven repository is therefore checked before it is registered
to the dependency in the sample data.

The next step is to utilize the search functionality of CVE. Different variations of
the details of the dependency (i.e. artifactId, groupId, organization) will be used
as keywords, to cast as wide a net as possible for finding potentially relevant
CVE entries. From CVE, the built-in linking to its associated NVD entry is
followed in order to find the affected versions. These steps should provide well
vetted dependencies as the test sample.

For each dependency included in the sample, the CVE entries associated with
it and which versions each CVE entry applies to are noted. The date and time
when the dependency has been properly vetted is also registered. By doing this,
new CVE entries being registered every day and the fact that changes to the
vulnerability status of a dependency may occur between the time it is collected,
and the dependency being used in the tests of the plugin, is taken into account.

The collected dependencies are presented in table 3.2.

3.2.2 Testing the plugin

While the practical use of the OSS vulnerability detection tool will be to sepa-
rate vulnerable dependencies from non-vulnerable dependencies, the tool’s per-
formance in terms of completeness and soundness essentially boils down to being
able to find CVE entries. As this is the measuring stick, tests are run which
focus on all the CVE entries found, and not just on whether or not the plugin
identifies a dependency as vulnerable.

In order to get as accurate an assessment as possible, multiple tests are run
with different combinations of dependencies. As the plugin will only look at
dependencies and not the code of a project, these tests will be performed with
a shell of a project containing only the open source components being analyzed,
inside the project’s ”pom.xml” file. Therefore the first step is to create a new,
empty Maven project.

Each test will then involve the following steps:

1. Add the relevant selection of dependencies to the shell project
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GroupId ArtifactId Version Label
Number of

CVEs found

log4j log4j 1.2.17 V 6

commons-io commons-io 2.4 V 1

com.fasterxml.jackson.core jackson-databind 2.13.2 V 1

org.springframework spring-core 5.3.14 V 3

org.apache.derby derby 10.6.2.1 V 2

org.eclipse.jetty jetty-io 11.0.1 V 5

junit junit 4.13 V 1

com.google.code.gson gson 2.8.5 V 1

org.infinispan infinispan-core 11.0.5.Final V 1

com.puppycrawl.tools checkstyle 5.6 V 2

com.google.guava guava 18 V 2

com.h2database h2 1.4.200 V 3

org.jsoup jsoup 1.13.1 V 1

org.apache.httpcomponents httpclient 4.2 V 3

com.mchange c3p0 0.9.5.2 V 1

com.alibaba fastjson 1.2.7 V 1

org.codehaus.jackson jackson-mapper-asl 1.9.13 V 1

ch.qos.logback logback-classic 1.1.3 V 1

org.hibernate hibernate-core 5.4.2.Final V 1

org.mybatis mybatis 3.4.6 V 1

com.typesafe.akka akka-actor 2.13 2.6.14 NV 0

io.dropwizard.metrics metrics-core 4.2.3 NV 0

org.clojure tools.cli 0.3.5 NV 0

org.springframework.boot
spring-boot-

autoconfigure
2.6.6 NV 0

com.google.dagger dagger 2.41 NV 0

com.squareup.okhttp okhttp 2.7.5 NV 0

p6spy p6spy 3.9.1 NV 0

com.itextpdf itextpdf 5.5.13 NV 0

com.microsoft.azure azure-core 0.9.3 NV 0

com.googlecode.usc jdbcdslog 1.0.6.2 NV 0

com.github.scala-
incubator.io

scala-io-file 2.10.2 0.4.2 NV 0

org.hsqldb hsqldb 2.4.1 NV 0

org.mockito mockito-core 3.12.4 NV 0

joda-time joda-time 2.9.9 NV 0

com.sun.mail jakarta.mail 2.0.1 NV 0

org.ccil.cowan.tagsoup tagsoup 1.2.1 NV 0

com.github.ben-
manes.caffeine

caffeine 2.9.3 NV 0

io.micrometer micrometer-core 1.8.4 NV 0

jdepend jdepend 2.9.1 NV 0

com.andrewmcveigh cljs-time 0.5.2 NV 0

Table 3.2: Maven dependencies used for testing
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2. Execute a scan on the project

3. Export the results for analysis

4. Note the CVEs found for each dependency

5. Mark each CVE entry found as TP or FP (see table 3.3)

6. Note the number of CVE entries not found by the plugin = FN

We start with a baseline test of all of the 40 dependencies in the same project.
The results will then be compared to the data found during the dependency
sample collection process. A number of the vulnerable dependencies will have
several CVE entries associated with them, while others may have only one. The
next step in testing will then be to look at alternate versions of the dependencies.
These alternate versions will be labeled either FV or FNV and have a different
set of CVE entries than the previously tested version. The purpose of this step
is to test how well the plugin takes versions into account. Running these tests
will cover the various use cases (as suggested by the labels) of the plugin using
representative data.

Actual

Positive Negative

P
re

d
ic

te
d

Positive TP FP

Negative FN TN

Table 3.3: Confusion matrix of vulnerability labels

Once all tests have been run, the performance in terms of completeness and
soundness is evaluated based on the precision and recall of the plugin. This is
explained further in section 5 where we look at the results.

3.3 RQ3: Measuring performance of the plu-
gin in terms of runtime using open source
maven projects

Another important aspect of any successful software development tool is asked in
the third research question; ”What is the performance of the OSS vulnerability
detection tool in terms of runtime under different project sizes and dependen-
cies?”, with runtime being the key. While accuracy and value of the information
gained from the plugin are the most vital parts, runtime performance plays an
important part in establishing the plugin as a viable option for any developer
to use. It is also important to establish that the plugin functions properly
regardless of the size of project on which it is run.

The runtime performance of this plugin will be tested by collecting three open
source maven projects from GitHub, and running the plugin on them. These
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projects will be of varying sizes, ranging from small independently developed
projects to large scale enterprise software. In addition, they will each be injected
with a number of extra dependencies. This will provide a good coverage of
different combinations of project sizes and numbers of dependencies.

3.3.1 Collecting test data

For the test projects, the main criteria is for a project to represent a project size
on the mentioned range from small to large, which is not already represented.
As the plugin doesn’t concern itself with the code, the contents of the projects
are irrelevant, only their size will be a factor in these tests.

GitHub does not display information such as lines of code (LOC) or number
of files, so in order to fetch this, the command line interface ”cloc” (short for
”count lines of code”) is used.

In addition to the projects, a number of dependencies are needed which will be
injected into the projects. Rather than finding new dependencies specifically
for these tests, the dependencies from the first case study are re-used.

Project Number of files Lines of code Memory size

OSS-Maven 35 2457 217 kB

Log4j 2 3429 252 148 55 MB

BioJava 1619 902 697 118 MB

Table 3.4: Projects used for testing

3.3.2 Testing the plugin

There are many scenarios we wish to discover the runtime performance of. We
will start by looking into the impact of project size on the plugin. This will
be done by taking the three projects of different sizes and running the plugin
a total of three times each, with the same set of forty dependencies used every
scan.

Next we want to test how well the plugin scales related to runtime performance.
This test will be performed by scanning four different amounts of dependencies.
For the first scan, the project will have a total of ten dependencies. For the
second, this number is increased to twenty, before the third scan utilizes the
forty dependencies collected for RQ2. For each of these tests, an equal amount
of vulnerable- and non-vulnerable dependencies will be used. By using the same
ratio of vulnerable to non-vulnerable dependencies for each test, the results will
be comparable to help determine any trends for the first three sets. The fourth
set of dependencies will consist of the 121 dependencies used in the log4j project.
This set will have a different composition to the previous three sets, but will offer
insight into runtime performance after a significant increase in dependencies.

In addition to the tests mentioned above, we want to discover how the plugin
will be in a more practical setting. To simulate the natural progression of de-
velopment, one of the projects is selected and the same tests are performed,
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starting at ten dependencies and progressing through twenty, up to forty de-
pendencies. The difference between the two sets of tests will be that this time
the tests are performed without deleting the results of the previous scans. This
will demonstrate the impact of implementing a storage solution and leave two
sets of results which can be compared where the only differentiating factor is
the use of storage.

Finally we want to test the difference in performance between scanning vulner-
able dependencies versus scanning non-vulnerable dependencies. This will be
done by scanning each of the two sets of 20 dependencies separately. Similarly
to the previous tests, this will also be done incrementally with an increasing
number of dependencies for each scan.

Through the tests described in this section, we should learn the following:

• What impact does project size have on runtime performance?

• How well does the plugin handle an increasing amount of dependencies -
is there a linear time difference depending on the number of projects?

• What impact does storing the results of the previous scans have on runtime
performance

• What is the difference in runtime between scanning a project filled with
vulnerable dependencies versus scanning a project with no vulnerable de-
pendencies
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Chapter 4

Design and Implementation

In this chapter, we will take a closer look at how the vulnerability detection
plugin is designed and implemented. We’ll start by getting an overview of the
architecture and what the plugin is built upon. Next we will look in more detail
how it is implemented by looking at the various components that enable this
plugin to connect developers to relevant information from the public security
sources. The components will be presented in a chronological manner from the
perspective of executing a scan on a project.

4.1 Architecture

This plugin in its entirety has been developed for Eclipse using Eclipse’s Plug-
in Development Environment (PDE). This environment provided all the tools
needed to develop, test and deploy the plugin. The PDE API Tools were fre-
quently used to work with the components of Eclipse needed to implement com-
ponents such as actions triggered by menu items, interaction with the workspace
and projects, and the generation of custom views to the user interface, to name
a few. Examples of the packages in the API can be seen in table 4.1.

Package Description

org.eclipse.core.runtime
Provides core support for plug-ins and the
plug-in registry

org.eclipse.core.resources
Provides basic support for managing a
workspace and its resources.

org.eclipse.jface.action
Provides support for shared UI resources
such as menus, tool bars, and status lines.

Table 4.1: Examples of Eclipse PDE API packages

When we look at the responsibilities of this plugin, we can see that it needs to
interact with the data it fetches in a number of ways. To accommodate this,
four models which are connected with one another were made.
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Figure 4.1: Simple data model for the plug-in

The data this plugin will be dealing with are dependencies, and potentially
vulnerability data associated with them. In order to distinguish dependencies
from one another their identifying attributes are stored. Information specific
to a dependency is also kept track of, which will be needed throughout the
scanning process. This will be explained in the following sections.

In section 4.3, we look at the structure of the data fetched from NVD. The two
models ”CveItem” and ”CpeMatch” were implemented to accommodate this
structure and nest relations between data in a logical manner.

The following sections describe the components as presented by figure 4.2.

Figure 4.2: Simple sequence chart of scanning process

4.2 Extracting dependencies

This plugin is implemented to work with maven projects. While there are
several other types of projects that would benefit from a vulnerable dependency
checking tool like this, the focus was narrowed down in order to create a proof
of concept plugin which demonstrates the potential of improving security by
checking dependencies. Selecting maven as the target building tool facilitates
easy access to a project’s dependencies, as the dependencies are conveniently
imported in a standardized manner as demonstrated in figure 4.3.
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Figure 4.3: Example of dependency added to pom.xml

When a scan is initiated, the first step is for the plugin to create a reference to
the ”pom.xml” file. This file is then parsed by a custom XML-reader. This
is done so that the line number of each dependency is stored for later use
when markers are registered. Every XML-node from the ”pom.xml” file start-
ing with ”<dependency>” is then passed to a Dependency-object constructor
which stores its groupId, artifactId, version, line number, the project it belongs
to and a timestamp of when it was fetched.

Next, the plugin checks if a scan has been run for the project previously, as
the scans are stored for later use. If there is previous data available, the plugin
will cross-check its newly fetched list of dependencies from the project, with the
ones fetched from storage. Details about how and what is stored are in section
4.7. When cross-checking, the plugin separates dependencies that already have
valid data from storage, from those that do not.

4.3 Retrieving data from NVD

All the dependencies which do not already have valid data from storage, are
passed on so that the plugin can attempt to fetch vulnerability data for each of
them. In cases where a scan is being run for the very first time on a project,
or all the previous data is no longer valid, every dependency is checked in this
step. What constitutes ”valid” is explained in section 4.8.

The check is done by querying NVD’s API. The API allows retrieval of collec-
tions of CVE entries and offers a wide range of optional parameters to limit or
filter the results. It offers the same data which can be found by utilizing the
search functionality on the NVD website. The API is open to anyone, but has
a limited amount of queries in a given time window, unless the user requests an
API key. Responses from the API are provided in JSON format.

For this plugin, the ”cpeMatchString” parameter from the API is utilized in
order to find applicable CVE entries. This parameter allows to find all CVE
entries associated with the given CPE. As mentioned in section 2.2.3, all CPEs
follow a naming standard called well formed name (WFN). In NVD’s documen-
tation of how the various attributes that make up a WFN are formed, they state
that the product attribute ”... SHOULD describe or identify the most common
and recognizable title or name of the product.” [10].

With this information, and after checking a number of maven dependencies,
the ”artifactId” attribute of a maven dependency was found to correspond to
the ”product” attribute of a CPE in all the dependencies checked. The job
of querying NVD for each dependency was then a simple matter of using the
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Figure 4.4: Example showing part of JSON response from NVD API

dependency’s ”artifactId” as part of the query parameters.
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4.4 Filtering NVD results

The results from querying NVD are passed on to a custom parser. This parser
takes each set of dependencies and their results and constructs the appropriate
java objects of the classes CveItem and CpeMatch (as can be seen in section
4.1).

CPE matches are formatted in a variety of ways. The two most important
parameters are the CPE-uri and the versions which the CVE entry applies to.
Sometimes the version is mentioned directly in the uri, which means the en-
try only applies to that specific version. Most often however, the response will
include up to four of the possible elements; versionEndExcluding, versionStart-
Including, versionEndIncluding, vesionStartExcluding.

Figure 4.5: Example of CPE result from NVD API

Because of the many different possibilities in how affected versions are presented
in the NVD response, there is a need to account for a wide range of combinations
when we are filtering the results.

The result of the custom parser is a single DependencyCveMap java object. This
object contains mappings from the dependencies that have just been checked
to all their corresponding CveItems. Each CveItem contains the information
deemed the most relevant from a CVE entry. Not all the information available
is included as this would be far too much data to present to developers in a
small view.

Each CveItem also contains a list of all its affected CPEs as CpeMatch ob-
jects. These objects contain the CPE-uri which functions as a description of the
product, in addition to the aforementioned version descriptors and are used to
identify whether or not the CveItem applies to a dependency.

4.5 Marking vulnerable dependencies

When vulnerability data has been fetched for all the dependencies in the ”pom.xml”
file, those which are considered vulnerable are identified and markers are cre-
ated for them. When identifying the vulnerable dependencies, the plugin runs
through the data of each one to see whether there are CveItems linked with
them in the vulnerability map, and whether those CveItems apply to the spe-
cific version used in the project.

A new marker type was created in the plugin’s ”plugin.xml” file (see figure 4.6).
This custom marker type ensures that the vulnerable dependency markers are
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sorted in a category of its own in Eclipse’s marker view, making them easier to
find and inspect.

<extension

id="vulnerableDependency"

name="Vulnerable Dependency"

point="org.eclipse.core.resources.markers">

<super type="org.eclipse.core.resources.problemmarker"/>

<attribute name="artifactId" />

<attribute name="groupId" />

<attribute name="version" />

<persistent value="true" />

</extension>

Figure 4.6: Custom Eclipse marker

Creating a new marker type also allowed to add the attributes used to identify
and compare dependencies. This was necessary to being able to delete the
marker associated with a dependency, should the developer choose to remove a
dependency from the results of a scan.

Figure 4.7: Marker view in Eclipse

4.6 Viewing results

Upon a completed scan of a project when vulnerable dependencies are identi-
fied and appropriate markers are created, the plugin automatically opens the
detailed results of the scan in a new tab in the Eclipse environment. The chal-
lenge of this tab is to give an overview of the vulnerable dependencies, without
overwhelming the developer with too much information.

To avoid this issue, the vulnerability information is sorted into stages of im-
portance. The first stage and the one deemed the most important, is a general
overview of all the dependencies which were identified to be vulnerable. This
can be seen in figure 4.8. If the developer finds one of the vulnerable labeled
dependencies to not be of any concern, or to be falsely labeled, they can simply
remove it from the results via a right-click option. This also triggers the removal
of that dependency’s marker, as discussed in the previous section.

The next stage of information is the basic vulnerability information gathered
from associated CVE entries. As mentioned in section 4.3, the NVD API pro-
vides a lot of information - not all of which is as important as the rest. This view
is generated in a split view next to the list of vulnerable dependencies when the
developer selects an item from the list. The detailed view of the CVE entries
contains the ID of the CVE, its description as displayed on the NVD website,
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Figure 4.8: Results tab, dependency list

the severity of the issue and finally a link to a CWE-id if this is present in the
data.

Figure 4.9: Results tab, CVE details

With these two steps, it is assumed that developers are provided with enough
information to either act upon, or to encourage them to look up more details
which can easily be done by using the provided CVE- and CWE IDs.

In addition to the results tab automatically opening, the developer has the
option to open the most recent scan results of a project by right clicking the
project in the project view. If the developer wants to export the results, or
simply view the vulnerability data for all the dependencies in a single page,
they also have an option to open the results in an html page. This action
dynamically generates html using a DependencyCveMap as input, stores the file
on the computer and proceeds to open the generated html-file in the developer’s
default program for handling the file type.

4.7 Storage

Storage has been mentioned a couple of times throughout this chapter. This
was implemented as part of the process in order to provide better performance
and to enable the option to view old results without having to run a new scan.

Data is stored by utilizing the project’s workspace. For every workspace in
Eclipse, there is a sub-directory called ”.metadata” which already contains sub-
directories for every plugin you have. By working with this directory, we set
up a structure that allows to store data for each project individually, as can be
seen in figure 4.10.
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This structure was chosen as opposed to storing all dependency data in one large
file, because it provides better performance when fetching and storing data.
Having a single storage of data would require filtering, removal and merging
of new and old data every time a scan is run. Every dependency also contains
project-specific data such as line number which would not translate to any other
project. While there is an argument that could be made for a central storage
solution, where vulnerability data from a scan could be used in multiple projects,
it was decided that the vulnerability data of a project could follow that project’s
life cycle. The addition of a new dependency in a project should warrant a new
check of it either way.

$Workspace_directory

-> .metadata

-> .plugins

-> dependency-scanner

-> $Workspace_name

-> $Project_name

-> data.txt

Figure 4.10: Storage structure

The data is stored to a ”.txt” file using Java’s ObjectOutputStream and Ob-
jectInputStream classes. These allow to simply provide an object of the class
”DependencyCveMap” as a parameter and store it as an object, rather than
having to parse it and perform a more manual process involving splitting the
data into several files. Similarly, when fetching the stored data, providing the
path of the file returns the data as a ”DependencyCveMap” object.

4.8 Preferences

”Valid data” has been mentioned a couple of times throughout this chapter. As
data is being stored, there is a need to set a limit for how long the plugin can rely
on that data before it could be considered outdated. This limit should not be
hard coded and final, as projects do not necessarily have the same requirements.
It was therefore decided to provide this as a preference option to the developer.

Figure 4.11: Plugin preference page
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Chapter 5

Evaluation

This chapter presents the results of evaluating the open source vulnerability
tool by reviewing the results from the various tests described in chapter 3. This
evaluation looks at each of chapter 3’s sections individually before taking a look
at the results as a whole.

5.1 RQ2: Measuring performance of the plugin
in terms of completeness and soundness us-
ing open source dependencies

Through the process described in chapter 3 40 unique dependencies have been
identified to be used in the testing of this plugin. Each dependency has been
thoroughly examined for any available vulnerability data in NVD. While there
are some vendors who are more prevalent in the public security sources, such as
Apache with their long lineup of products, an emphasis was put on having as
diverse test data as possible. This resulted in 18 unique vendors for each of the
vulnerable, and non-vulnerable dependencies respectively.

5.1.1 Soundness and Completeness

Determining the soundness and completeness of the plugin consisted of a simple
test to see how many vulnerable dependencies it could correctly identify. This
was done by adding all 20 vulnerable and 20 non-vulnerable dependencies (40
total) to a maven project’s ”pom.xml” file and performing a scan.

Table 5.1 shows how the 40 dependencies from the initial test were identified.
Using this data the precision, recall and accuracy of the plugin is calculated.

As can be seen in tables 5.1 and 5.2, the plugin produced varying results. A pre-
cision of 0.929 shows a relatively high confidence in that dependencies marked as
vulnerable by the plugin, are in fact vulnerable. While precision is important to
avoid a situation where developers need to constantly verify that a dependency
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Actual

Vulnerable Non-vulnerable
P

re
d

ic
te

d

Vulnerable TP = 13 FP = 1

Non-vulnerable FN = 7 TN = 19

Table 5.1: Dependency vulnerability labels

Metric Formula Result

Precision TP
TP+FP 0.929

Recall TP
TP+FN 0.650

Accuracy TP+TN
TP+FP+FN+TN 0.800

Table 5.2: Precision, Recall and Accuracy for dependency labels

is vulnerable, the recall metric is far from good enough. With a score of 0.650,
this shows that many vulnerable dependencies are not picked up by the plugin.

Set of dependencies
Actual number of
associated CVEs

Number of
found CVEs

Vulnerable dependencies 38 24

Non-vulnerable dependencies 0 2

Correctly labeled vulnerable 25 24

Incorrectly labeled
non-vulnerable

13 0

Table 5.3: Number of actual vs found CVEs

In table 5.3, we look at the plugin’s proficiency at finding CVE entries associated
with a dependency. This table shows the relation between sets of dependencies
and how many CVE entries the plugin found for them. If we look specifically
at the set of correctly labeled vulnerable dependencies, we see that 24 out of
25 CVE entries were found. This suggests that given that the plugin labels a
dependency as vulnerable, the developer can be confident in the CVE entries
they are presented with.
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5.1.2 Version handling

Another important aspect of the plugin’s ability to detect vulnerable depen-
dencies is its version handling. In order to test this, all true positives from the
previous test were used as the test data. The false negatives were not included
as these would not offer any comparison. All dependencies in this test had their
versions updated to fit one of two categories:

• FV = This is a version where some CVE entries from the inital test has
been fixed, but the version still contains vulnerabilities.

• FNV = This is a version where all CVE entries from the initial test has
been fixed. The version is no longer vulnerable.

The versions were updated and resulted in five dependencies in category FV
and eight dependencies in category FNV.

Actual

Vulnerable Non-vulnerable

P
re

d
ic

te
d

Vulnerable TP = 5 FP = 0

Non-vulnerable FN = 0 TN = 8

Table 5.4: Updated version vulnerability labels

Table 5.4 shows how the 13 previously vulnerable dependencies were identified
after their versions were updated. The performance metrics are once again
calculated.

Metric Formula Result

Precision TP
TP+FP 1.000

Recall TP
TP+FN 1.000

Accuracy TP+TN
TP+FP+FN+TN 1.000

Table 5.5: Precision, Recall and Accuracy for updated version test

The versions of the dependencies used in the initial test contained a total of 25
CVE entries. The updated versions used for this test contained a total of 9 CVE
entries. As a result of the new versions being introduced, 17 CVE entries were
correctly filtered out, and 1 new CVE entry was found which did not apply in
the inital test. While this test covers a small sample, tables 5.4 and 5.5 tell us
that the plugin handles versions perfectly well.
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5.1.3 Summary of results for RQ2

The results from this test show that seven dependencies were mistakenly labeled
as non-vulnerable and as a consequence thirteen CVE entries were not found. It
also shows that one CVE entry was not found among the correctly labeled vul-
nerable dependencies. Finally, one non-vulnerable dependency was mistakenly
labeled as vulnerable.

ArtifactId of dependency Product name in NVD/CPE

commons-io commons io

spring-core spring framework

jetty-io jetty

junit junit4

infinispan-core infinispan

logback-classic logback

hibernate-core hibernate orm

httpclient httpclient, commons-httpclient

Table 5.6: Naming mismatch between artifactId and NVD product name

All the shortcomings of these two tests share the same cause. The dependency’s
maven artifactId does not always correspond to its product name registered in
NVD as can be seen in table 5.6. This suggests that relying on artifactId as
being the most recognizable name of the product is insufficient. With a more
sophisticated method of acquiring the correct product name used by NVD, the
plugin would perform significantly better as it has shown that it is capable of
finding the correct CVE entries given a correct vulnerability label.

5.2 RQ3: Measuring performance of the plu-
gin in terms of runtime using open source
maven projects

In testing the runtime performance of the plugin, a plethora of experiments
to check various possible factors were run. For every experiment described in
this section, all tests at all levels were run three times. In places where all are
not presented, the average was used. Runtime was recorded by wrapping the
scanning process of the plugin with the following code:

long startTime = System.nanoTime();

...execute scanning process here

long endTime = System.nanoTime();

The nanosecond result of *startTime - endTime* was printed to the screen in
an information box after each scan, where it was copied and inserted into a
spreadsheet.
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5.2.1 Testing impact of project size on runtime

For this experiment, three projects of varying sizes were found to determine
whether or not the size of a project has any impact on the plugin’s runtime.
The projects are presented in table 3.4

To determine what, if any, impact the project size has on runtime, the number of
variables is limited by using the exact same set of dependencies for each project.

Project Dependencies 1st scan 2nd scan 3rd scan Average

OSS-Maven 40 40.67 40.79 41.19 40.88

Log4j 2 40 41.79 42.70 38.01 40.83

BioJava 40 38.47 42.76 39.60 40.28

Table 5.7: Project runtimes

As clearly showed in table 5.7, the size of the project has no impact on the
runtime of the plugin performing a scan.

5.2.2 Testing performance on vulnerable vs non-vulnerable
dependencies

This experiment is testing if there as a difference in runtime performance be-
tween vulnerable and non-vulnerable dependencies. As this is an experiment
related to runtime and not soundness or completeness, metrics such as precision
and recall are irrelevant in this case. Vulnerable and non-vulnerable depen-
dencies are separated based on what the plugin labels them. With only 13
dependencies labeled vulnerable from the test data used in section 5.1, more
test data was added from the results of various tests run during development.

Vulnerable Dependencies 1st scan 2nd scan 3rd scan Average

No 15 13.61 15.23 13.53 14.12

Yes 15 19.92 21.99 20.31 20.74

Table 5.8: Vulnerable vs non-vulnerable runtimes

Table 5.8 shows a difference in performance between scanning vulnerable vs
non-vulnerable dependencies. With more computing and filtering needed for
non-vulnerable dependencies, this is expected. The average difference of 6.62
seconds suggests that vulnerable dependencies take nearly 50% longer to scan.
This is however not as dramatic a difference as it might seem due to the fact
that the scan of vulnerable and non-vulnerable dependencies average around
1.38 and 0.94 seconds respectively.
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5.2.3 Testing scalability of plugin as number of dependen-
cies grows

An important feature of any plugin is that it can easily scale. In the case of
this plugin, that translates to having dependable and predictable performance
as the number of dependencies being scanned increases. For this experiment,
four sets of increasing amounts of dependencies was tested.

Dependencies Composition 1st scan 2nd scan 3rd scan Average

10 4 V, 6 NV 10.78 10.30 10.75 10.61

20 8 V, 12 NV 22.35 20.80 23.37 22.17

40 16 V, 24 NV 42.63 39.18 40.74 40.85

121 8 V, 113 NV 105.58 102.12 110.04 105.91

Table 5.9: Runtimes of various number of dependencies

The sets of 10, 20 and 40 dependencies all have the same ratio of vulnerable and
non-vulnerable dependencies as this has a noticeable impact on performance as
shown in section 5.2.2.

Figure 5.1: Line graph of runtimes of various number of dependencies

As mentioned in chapter 3.3.2, the set of 121 dependencies has a different com-
position of vulnerable and non-vulnerable dependencies compared to the other
three sets. This is reflected in the average runtime being lower per dependency
as a result of a larger share of non-vulnerable dependencies. Whereas the sets
of 10, 20 and 40 dependencies roughly average a runtime of one second per
dependency, the largest set of 121 has an average runtime of 0.87 seconds per
dependency. With a similar composition, it is reasonable to assume this set
would also average one second per dependency. This experiment shows that
there is a linear increase in runtime as the number of dependencies increases, as
demonstrated in figure 5.1.
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5.2.4 Testing impact of storage solution on runtime

The final experiment into the runtime performance of the plugin is to investigate
the impact the implemented storage solution has. The previous experiment
looking at scalability consisted of deleting the results between each scan as this
is an automatically enabled feature. For this experiment, the same tests are
performed using the exact same dependencies. The difference is that only after
having scanned the set of 40 dependencies, are the scan results deleted, and the
tests repeated two more times to get average runtimes.

Dependencies Composition
1st

iteration
2nd

iteration
3rd

iteration
Average

10 4 V, 6 NV 10.89 10.55 11.22 10.86

20 8 V, 12 NV 13.08 15.16 14.64 14.29

40 16 V, 24 NV 20.91 21.51 21.74 21.38

Table 5.10: Runtimes of various number of dependencies with storage

Figure 5.2: Bar chart comparing runtimes with and without storage

The figure above depicts the runtime of each step in a process of scanning 10,
20 and 40 dependencies in order. The solution without storage is fetching data
from NVD for all dependencies at each step, whereas the solution with storage
is simply building on top of the previous scan.

Figure 5.2 demonstrates that the use of saving and persistently storing the re-
sults of a scan gives significantly better performance. Rather than querying
NVD for data, the plugin simply fetches the data it already has from the devel-
oper’s file system. The runtime addition of interacting with the file system is
insignificant.

5.2.5 Summary of results of RQ3

Throughout section 5.2 we have seen that this plugin provides predictable and
moderately scalable performance in all experiments. Neither the number of
files, the number of lines of code, nor the memory size of a project has any
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impact on runtime. Vulnerable dependencies are shown to take almost 50%
longer to scan than non-vulnerable dependencies, but the importance of this is
downplayed given the small units of time that are compared. A consistent linear
runtime performance is proven to correlate with the number of dependencies
being scanned. Finally the impact the storage solution has on the runtime
is demonstrated when projects are scanned incrementally over time as more
dependencies are added to a project.

5.3 Evaluating plugin requirements

To summarize the evaluation, we revisit the requirements table from chapter 3 to
see how the plugin turned out compared to its expectations. Each requirement
is given a degree of completeness (DOC) rating on a scale from 1 to 5; with 1
being not completed and 5 being fully completed.

Requirement Type Related to DOC

Plugin should link to nvd Functional RQ1 5

Plugin should provide developers
with information in development

environment
Functional RQ1 5

Plugin should be able to detect
vulnerable libraries correctly

Functional RQ2 3

Plugin should have zero false
positives and false negatives

Functional RQ2 4

Plugin should scale on large projects Non-Functional RQ3 3

Table 5.11: Evaluation of requirements
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Chapter 6

Discussion

In this chapter we take a step back and look at the thesis as a whole. Some
challenges encountered during development is discussed which significantly im-
pacted the final product. Next the major limitations of this thesis are addressed
and how these limitations could have been prevented.

6.1 Challenges

This thesis has had its fair share of challenges as any research is bound to have.
Looking back at the last year, the majority of the challenges encountered can
be split into two main categories; the scope of the thesis, and the development
of the eclipse plugin.

6.1.1 Thesis scope

This is perhaps the most natural challenge of any master’s thesis research, and
one that is expected and anticipated by both the student as well as the supervi-
sor. Nonetheless its impact on the final product cannot by underestimated. The
main goal of the thesis of wanting to improve security during development by
integrating public security sources has remained intact throughout the project.

At the start of the project, we envisioned a plugin which looked at the source
code at a file level and identified vulnerabilities in developers’ own code using
machine learning. The information regarding the identified vulnerability would
then be linked to relevant information from public security sources. In order
to accomplish this, the arduous task of creating a data set for training and
evaluating a model was started.

This approach was abandoned in the middle of the project as the scope proved
to be larger than expected and due to the fact that we identified a more specific
need for vulnerability detection tools for open source components. With more
time to work towards the goal we ended up setting for the thesis, it is believed
the plugin could have covered a larger pool of project types (currently only
supports maven projects) and be used to scan different kinds of open source
components.
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6.1.2 Eclipse plugin development

The second major challenge of this project was the development of the plugin
itself - specifically working with the Eclipse Plug-in Development Environment
(PDE). While most mature software libraries and frameworks have been used
extensively by developers across the world, and also provide detailed documen-
tations for their users, this unfortunately cannot be said about the Eclipse PDE.

When developing a plugin for Eclipse which should interact with their UI and
runtime, you need to utilize their API. Having to navigate their documentation
online was a large obstacle standing in the way of swift development. Unlike
most libraries used in a development environment, packages from the Eclipse
PDE did not provide any javadoc legible in the IDE. A very small sample of
third party assisting resources such as tutorials and forum posts made for a
large portion of time spent trying to understand the framework - time which
could have been spent improving the plugin.

During the final stages of development when it came time to deploy and test
the plugin, we encountered severe difficulties installing it to our Eclipse environ-
ments. This resulted in several days being spent troubleshooting the issue. Only
after installing fresh versions of Eclipse, were we able to install the plugin and
test it. As these issues were replicated by both student and supervisor, without
managing to discover a logical cause for the issue, we were forced to abandon a
planned testing phase of the plugin involving distributing it to selected students
and professional developers.

6.2 Limitations

This thesis and its associated product, the open source vulnerability detection
tool has two main limitations. The moderate recall results identified during
testing shows that the plugin does not fulfill the expectations we set for it.
Second, the plugin has not been tested to the extent we would have liked. This
has resulted in assumptions being made which are discussed in this section.

6.2.1 Recall results

As shown in the evaluation of this plugin and as mentioned multiple times in
the thesis, the plugin does not adequately fulfill the functional requirements of
being able to detect vulnerable libraries correctly, and having zero false positives
and negatives. When exploring the false predictions made by the plugin, it was
evident that they were all caused by the artifactId of the maven dependency
not correlating with the product name used by NVD to identify the product.

The assumption that this connection would be sufficient was made when a sam-
ple of dependencies from the maven repository was used to compare the two. In
the limited sample, the two properties correlated for all the dependencies. The
assumption was reinforced by NVDs description of how they choose the names
of CPEs - stating that the product attribute ”SHOULD describe or identify the
most common and recognizable title or name of the product”. Tests run during
development also returned results suggesting this was a good solution.

43



In hindsight, it is apparent that too little time was spent testing this assumption.
Had it been discovered earlier that our requirements for this plugin called for
a more sophisticated method of connecting dependencies to their associated
CPE, we could have taken steps to explore other options. Given enough time,
this would more than likely have resulted in far better performance regarding
soundness and completeness.

6.2.2 Lack of testing

As mentioned briefly in section 6.1.2, we had originally planned to test the
plugin by having students and professional developers use the plugin in their
own projects. This would have involved the participants receiving the plugin
via direct communication and having them provide feedback in the form of a
questionnaire. Through this questionnaire, we wanted to receive qualitative
data on how the use of the plugin would be perceived by developers in general
and to either prove or disprove our assumption that this plugin can help improve
security during development.

Without the qualitative data on these topics, we are left having to assume,
as mentioned in chapter 3 that developers being informed of vulnerabilities in
their dependencies will make them either find different versions/dependencies
which are not vulnerable, or have them mitigate the vulnerabilities themselves
if possible. This is not an unreasonable assumption to make, but for research
purposes it is not sufficient in order to prove the value this plugin can offer.
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Chapter 7

Related work

At the start of this research, we conducted a research review to discover what
aspects of the thesis have been thoroughly investigated, and to uncover what our
research can offer to the pool of knowledge. We used the snowballing methodol-
ogy for discovering research as described by Wohlin [45]. We found articles that
provide a good coverage of the relevant research within the following topics; vul-
nerability detection and classification, use of information sources and developer
assistance during development.

7.1 Vulnerability detection and classification

The issue of identifying vulnerable software has been approached from a multi-
tude of angles. Shin and Williams [31] look at how the complexity of software is
related to software security and how this can be used to predict vulnerabilities.
Bosu and Carver [7] investigate the efficiency of peer reviews and how well they
function to find security vulnerabilities.

There are many static analysis tools which attempt to find bugs and vulnera-
bilities by analysing software at various levels of abstraction. Albreiki et al. [4]
found in 2014 that these tools are successful to some extent, but are not enough
to uncover all weaknesses. Examples of these tools are OWASP’s dependency-
check [16] and Snyk [32]. Dependency-check is a CLI-tool which can also be
integrated in build processes. Much like this thesis, it identifies vulnerable open
source components using public security sources, but it is not integrated in the
development environment. Snyk offers a multitude of tools for detecting vulner-
abilities in both your own code, as well as open source components, but these
tools are not available for free.

Another approach showing promising results is the use of machine learning.
Scandariato et al. [30] and Hovsepyan et al. [20] share a similar approach as
they try to identify components of a software containing vulnerabilities by using
the source code text itself as features for various machine learning algorithms.
Sultana et al. [36] and Medeiros et al. [23] attempt to gather various combina-
tions of software metrics and use these as the features for training models. In a
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different study, Sultana et al. [37] do a comparison of the use of software met-
rics and nano-patterns as features for a number of models. Similarly, Walden
et al. [41] compare the uses of software metrics and text mining to identify
vulnerabilities.

7.2 Use and impact of information sources

In a 2016 study, Acar et al. [3] looked at the impact of information sources on
code security. They surveyed android developers with varying levels of experi-
ence to see which sources they frequently used to solve problems and found that
the sources had very different impacts on code security. In a follow up study in
2017, Acar et al. [2] performed a survey to try to understand the ecosystem of
security advice software developers are using. Similarly in a 2009 paper, Brandt
et al. [8] performed a study where they looked at how developers interleave web
foraging, learning and writing code in their routines.

Wijayasekara et al. [44][43] attempted during their two studies in 2012 and 2014
to identify hidden impact bugs (HIBs), bugs identified as vulnerabilities long
after they are made public, by text mining bug databases. In 2018, Sauerwein et
al. [29] performed an analysis of how public security sources are used in research
and practice. In this analysis they identified 68 different PSS and classified them
based on their selected dimensions. Using PSS, Salen [27] attempted in 2021
to classify discussion forum posts as security or not-security related. She also
showed how PSS can provide an additional layer of context for the forum posts.

7.3 Developer assistance during development

One of the more researched areas of helping developers with their coding during
development, is the concept of connecting various aspects of the development
environment to online resources. In 2014, Ponzanelli et al. [26] developed a
plug-in for the Eclipse IDE which sought to offer developers knowledge relevant
to their work, directly in the development environment. The plug-in used text-
mining to find pertinent discussions from Stack Overflow so that the developer
wouldn’t have to spend time on formulating their problems as queries. Before
this, Cordeiro et al. [11] performed an almost identical study in 2012 where they
used exception stacks from Eclipse to retrieve helpful resources from the web and
presented this data directly in Eclipse. Prior to this even, Goldman and Miller
[19] developed a system which connected Eclipse and Firefox so that the two
platforms could benefit from each others’ information such as editing history in
Eclipse and recent browsing in Firefox. The system used the link to develop a
number of tools such as having the web browser focus on the developer’s current
context from the IDE.

Another development assistance approach is to help the developer by providing
more general knowledge which many might not always remember. Xie et al.
[46] developed a proof-of-concept plug-in for Eclipse in 2011, which reminded
developers of secure programming practices directly inside the IDE. A similar
approach was used by Whitney et al. [42] in 2015 when they made an IDE tool
which would integrate secure coding education to provide learning opportuni-
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ties.
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Chapter 8

Conclusion

There is a need for more tools to help developers mitigate the ever growing
amount of security vulnerabilities that follow the use of open source components.
This approach focuses on bringing certified good resources and developers closer
together at a stage in the development where it can have the most significant
impact in preventing security vulnerabilities.

The thesis has developed a prototype plugin for the Eclipse development en-
vironment, which has a lot of potential given some further development. The
results of various evaluations show a recall of 65%, a precision of 93% and an
accuracy of 80%. The plugin has a well functioning connection to NVD, a vul-
nerability database for open source libraries. We have data structures which
facilitate fast and simple handling of the abundance of information returned
with each CVE entry. If more data is desired in the views presented to develop-
ers, the models can easily be expanded upon to hold more relevant information.

A storage solution has been implemented which considers how developers work
differently from one another. Developers working with security-critical compo-
nents might want to check for new data every time they perform a scan, while
other might want slightly faster performance by only updating data they con-
sider to be outdated. This option is available to them through the properties of
the plugin, which as almost all other parts of this plugin, is easily expandable if
we wanted to offer developers more customization options. Finally, we are left
with a plugin which has proven to be moderately scalable with large projects -
ensuring that it is attractive to developers regardless of the size of their projects.

The future work for this plugin and the research surrounding it needed to elevate
the value of both, is centered around improving the performance of the plugin
and performing more tests to validate its usefulness. As mentioned in chapter 6,
we would have liked to perform a qualitative test by having real world developers
trying the plugin and providing useful feedback. Before potentially reaching that
point, we need to make sure that they can be confident in the results produced
by the plugin. Utilizing more search features, and expanding upon the method
for acquiring the most recognizable name for a product would better connect
the dependencies of a project to the growing amount of data offered by NVD.
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This thesis is contributing to shed more light on an area of software security
which certainly needs more tools and research looking into it than it currently
has. The extent of how much the use of open source components in software de-
velopment is growing has been mentioned, and also how prevalent vulnerabilities
in these components are. The plugin produced helps raise a valid argument that
developers need more tools at their disposal during the development stages, and
specifically targeted at the parts of their software that they are not responsible
for creating themselves.
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Appendix A

Source code

The source code for the plugin can be found at the following link:

https://github.com/sivertlunde/MasterThesis.git
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Appendix B

Plugin documents

This links to a google drive folder containing the plugin as an installable .jar
file in a zipped format, installation instructions and a user guide:

https://drive.google.com/drive/folders/1fZmO1CciKRZV6NkamvaXWu6gIlALaMZz?usp=sharing
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Appendix C

NVD API JSON response
schema

{

"$schema": "http://json-schema.org/draft-04/schema#",

"title": "JSON Schema for NVD Vulnerability Data Feed version 1.1",

"id": "https://scap.nist.gov/schema/nvd/feed/1.1/nvd_cve_feed_json_1.1.schema",

"definitions": {

"def_cpe_name": {

"description": "CPE name",

"type": "object",

"properties": {

"cpe22Uri": {

"type": "string"

},

"cpe23Uri": {

"type": "string"

},

"lastModifiedDate": {

"type": "string"

}

},

"required": [

"cpe23Uri"

]

},

"def_cpe_match": {

"description": "CPE match string or range",

"type": "object",

"properties": {

"vulnerable": {

"type": "boolean"

},

"cpe22Uri": {
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"type": "string"

},

"cpe23Uri": {

"type": "string"

},

"versionStartExcluding": {

"type": "string"

},

"versionStartIncluding": {

"type": "string"

},

"versionEndExcluding": {

"type": "string"

},

"versionEndIncluding": {

"type": "string"

},

"cpe_name": {

"type": "array",

"items": {

"$ref": "#/definitions/def_cpe_name"

}

}

},

"required": [

"vulnerable",

"cpe23Uri"

]

},

"def_node": {

"description": "Defines a node or sub-node in an NVD applicability statement.",

"properties": {

"operator": {"type": "string"},

"negate": {"type": "boolean"},

"children": {

"type": "array",

"items": {"$ref": "#/definitions/def_node"}

},

"cpe_match": {

"type": "array",

"items": {"$ref": "#/definitions/def_cpe_match"}

}

}

},

"def_configurations": {

"description": "Defines the set of product configurations for a NVD applicability statement.",

"properties": {

"CVE_data_version": {"type": "string"},

"nodes": {

"type": "array",
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"items": {"$ref": "#/definitions/def_node"}

}

},

"required": [

"CVE_data_version"

]

},

"def_subscore": {

"description": "CVSS subscore.",

"type": "number",

"minimum": 0,

"maximum": 10

},

"def_impact": {

"description": "Impact scores for a vulnerability as found on NVD.",

"type": "object",

"properties": {

"baseMetricV3": {

"description": "CVSS V3.x score.",

"type": "object",

"properties": {

"cvssV3": {"$ref": "cvss-v3.x.json"},

"exploitabilityScore": {"$ref": "#/definitions/def_subscore"},

"impactScore": {"$ref": "#/definitions/def_subscore"}

}

},

"baseMetricV2": {

"description": "CVSS V2.0 score.",

"type": "object",

"properties": {

"cvssV2": {"$ref": "cvss-v2.0.json"},

"severity": {"type": "string"},

"exploitabilityScore": {"$ref": "#/definitions/def_subscore"},

"impactScore": {"$ref": "#/definitions/def_subscore"},

"acInsufInfo": {"type": "boolean"},

"obtainAllPrivilege": {"type": "boolean"},

"obtainUserPrivilege": {"type": "boolean"},

"obtainOtherPrivilege": {"type": "boolean"},

"userInteractionRequired": {"type": "boolean"}

}

}

}

},

"def_cve_item": {

"description": "Defines a vulnerability in the NVD data feed.",

"properties": {

"cve": {"$ref": "CVE_JSON_4.0_min_1.1.schema"},

"configurations": {"$ref": "#/definitions/def_configurations"},

"impact": {"$ref": "#/definitions/def_impact"},

"publishedDate": {"type": "string"},
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"lastModifiedDate": {"type": "string"}

},

"required": ["cve"]

}

},

"type": "object",

"properties": {

"CVE_data_type": {"type": "string"},

"CVE_data_format": {"type": "string"},

"CVE_data_version": {"type": "string"},

"CVE_data_numberOfCVEs": {

"description": "NVD adds number of CVE in this feed",

"type": "string"

},

"CVE_data_timestamp": {

"description": "NVD adds feed date timestamp",

"type": "string"

},

"CVE_Items": {

"description": "NVD feed array of CVE",

"type": "array",

"items": {"$ref": "#/definitions/def_cve_item"}

}

},

"required": [

"CVE_data_type",

"CVE_data_format",

"CVE_data_version",

"CVE_Items"

]

}

60


	Introduction
	Background
	Detecting Security Vulnerabilities
	Development Stage
	Deployment stage
	Maintenance Stage

	Public Security Sources
	Common Vulnerability Exposures (CVE)
	Common Weakness Enumeration (CWE)
	National Vulnerability Database (NVD)

	Open Source Software
	Use of Open Source Software
	Open Source Example: Maven Dependency
	Vulnerability in Open Source


	Methodology
	RQ1: Development of plugin
	RQ2: Measuring performance of the plugin in terms of completeness and soundness using open source dependencies
	Collecting test data
	Testing the plugin

	RQ3: Measuring performance of the plugin in terms of runtime using open source maven projects
	Collecting test data
	Testing the plugin


	Design and Implementation
	Architecture
	Extracting dependencies
	Retrieving data from NVD
	Filtering NVD results
	Marking vulnerable dependencies
	Viewing results
	Storage
	Preferences

	Evaluation
	RQ2: Measuring performance of the plugin in terms of completeness and soundness using open source dependencies
	Soundness and Completeness
	Version handling
	Summary of results for RQ2

	RQ3: Measuring performance of the plugin in terms of runtime using open source maven projects
	Testing impact of project size on runtime
	Testing performance on vulnerable vs non-vulnerable dependencies
	Testing scalability of plugin as number of dependencies grows
	Testing impact of storage solution on runtime
	Summary of results of RQ3

	Evaluating plugin requirements

	Discussion
	Challenges
	Thesis scope
	Eclipse plugin development

	Limitations
	Recall results
	Lack of testing


	Related work
	Vulnerability detection and classification
	Use and impact of information sources
	Developer assistance during development

	Conclusion
	Appendices
	Source code
	Plugin documents
	NVD API JSON response schema

