
A Web-based Data-Driven Security
Game for Teaching Software

Security

Cristoffer Brandhaug
Supervisor: Tosin Daniel Oyetoyan

Master’s thesis in Software Engineering at

Department of Computer science, Electrical

engineering and Mathematical sciences,

Western Norway University of Applied Sciences

Department of Informatics,

University of Bergen

June 2022

1

Abstract

Information security is becoming more and more important for developers.

New threats and attacks regularly show up, and developers need to stay on

top of these threats to protect software systems and applications. Because

of the rapid changes in threats, the curriculum can easily be outdated and

cumbersome to learn. Gamification has previously shown to be a success-

ful way of engaging and motivating users. Therefore, a quiz-based game is

hypothesized to motivate the adoption of teaching software security. Public

information security sources that are up-to-date are incorporated into ele-

ments that are introduced to the user in the game. Others have tried to

create security games to solve this problem, such as STIX and Stones, Pro-

tection Poker, and Elevation of Privilege, but they have had challenges with

the adoption of their games. This thesis will look at these games and other

serious games in an attempt to overcome some of the problems related to the

previous security games. To evaluate whether the game affects learning and

motivation for learning, a class of computer science students tested the game

and answered a user survey. The results show that the game has potential,

with many respondents being optimistic about the game’s use in learning

software security and motivation to learn using a quiz-based game. However,

the game is not perfect and would require further work to succeed. Results

show usability flaws and that more study is needed to conclude whether or

not the use of a quiz-based game improves learning software security. Sug-

gestions for further work are introduced to improve the game further, such

as stronger metrics to improve on already implemented elements.

2

Acknowledgements

I would like to express my gratitude to my supervisor, Tosin Daniel Oyetoyan,

for his guidance and help throughout the period of working on my thesis. I

would also like to thank his students that helped with testing the quiz-based

game and answering the user survey.

Finally, I would like to thank my family, friends, and girlfriend for their

continuous support.

3

Contents

Glossary 10

Acronyms 12

1 Introduction 14

1.1 Research Questions . 16

1.2 Method and Evaluation . 16

1.3 Contributions . 17

1.4 Outline . 18

2 Background 19

2.1 Public Information Security Repositories 19

2.1.1 CWE . 20

2.1.2 CAPEC . 22

2.1.3 CVE . 25

2.1.4 SEI CERT Oracle Coding Standard for Java 25

2.1.5 Stackoverflow . 26

2.2 Gamification . 27

2.2.1 Game Types . 28

3 Methodology 31

3.1 Process . 31

3.2 Prototype . 33

3.3 Evaluation . 36

3.3.1 Learnability, Usability, and Fun 36

4

3.3.2 How to Integrate Public Information Security Sources

to Answer Questions Automatically 42

3.3.3 Quiz Questions . 42

4 Design and Implementation 43

4.1 Architecture . 43

4.1.1 Spring Boot . 45

4.1.2 Spring JPA . 45

4.2 Conceptualization Stage . 46

4.3 Integration of Public Security Content 47

4.4 Quiz and Question Creator for Admin Users 51

5 Results and Discussion 54

5.1 Quiz Game . 55

5.2 Findings to Research Questions 58

5.2.1 Learnability (RQ2) . 59

5.2.2 Usability (RQ1) . 65

5.2.3 User Enjoyment/Fun (RQ1) 67

5.2.4 Ask the Audience (RQ3) 72

5.3 Discussion . 73

6 Literature Review 75

6.1 Serious Games . 75

6.1.1 STIX and Stones . 75

6.1.2 OWASP Cornucopia 77

6.1.3 Elevation of Privilege 78

6.1.4 Kahoot! . 79

7 Conclusion and Further Work 81

7.1 Suggestions to Further Work 82

A Source code and Link to Quiz-based Game 84

5

List of Tables

2.1 Examples of CWE records . 21

2.2 Examples of CAPEC records 24

3.1 Goal Question Metric example 38

3.2 Learning Software Security Metrics 40

3.3 Fun/Enjoyment Metrics . 41

3.4 Usability Metrics . 41

5.1 Table with results from ’Ask the audience’ lifeline tests. 72

6

List of Figures

2.1 Public information security repositories 20

2.2 Mechanisms of Attack . 23

2.3 Risk Assessment Summary for Rule 02. Expressions (EXP) . . 25

2.4 Non-compliant and compliant solution code examples for file

deletion. 26

2.5 Tower Defense King . 29

3.1 Weekly Planning . 31

3.2 Agile development process . 33

3.3 Menu prototype . 34

3.4 Quiz question - Play view created with Figma 35

3.5 Question 3 . 39

4.1 Simplified architectural overview 43

4.2 Simple life-cycle of Thymeleaf template 45

4.3 Ask the audience lifeline . 47

4.4 Call a friend lifeline - Search box with user input and selection

of ’friend’ . 49

4.5 Call a friend lifeline - CAPEC as selected friend and result page 50

4.6 Administrator menu . 51

4.7 Create question . 52

4.8 Create a quiz . 53

5.1 Search for a quiz by ID or name of the quiz and select what

quiz to play . 55

5.2 Quiz play . 55

7

5.3 Explanation and correct answer for previous question 56

5.4 Shield lifeline . 57

5.5 Submit your score page when quiz is done 57

5.6 Leaderboard of selected quiz 58

5.7 Results from round 1 of quiz play 59

5.8 Results from round 2 of quiz play 59

5.9 Results prior knowledge to topics presented in the quiz 60

5.10 Did knowledge on topics presented improve? 61

5.11 Was search feature helpful in answering questions? 61

5.12 Results when asked if explanation was helpful to understand-

ing the question . 62

5.13 Did explanations help improve answers? 62

5.14 Results - Did the quiz game make users learn more about

software security? . 63

5.15 Is the quiz game a good tool for learning software security? . . 63

5.16 Quiz compared to other methods of learning 64

5.17 Ask the audience - Did the lifeline help users quickly reason

about the answer? . 64

5.18 Results - Easy to understand the rules and play the game. . . 65

5.19 Results - Did the users understand the rules and how to play

from using the in-game help button? 65

5.20 Results - Easy to use the ’shield’ lifeline 66

5.21 Results - Easy to use the ’50/50’ lifeline 66

5.22 Results - Easy to use ’ask the audience’ lifeline 67

5.23 Results - Easy to use the ’call a friend’ lifeline 67

5.24 Results show that the majority of the students enjoyed playing

the quiz . 67

5.25 Results when asked to try again 68

5.26 Results for ’shield’ lifeline . 68

5.27 Results for ’50/50’ lifeline . 69

5.28 Results for ’Ask the audience’ lifeline 69

5.29 Results for ’Call a friend’ lifeline 70

5.30 Leaderboard motivated the players to score better 70

8

5.31 Score bar and levels motivated the users to try again 71

6.1 STIX and Stones gameplay . 76

6.2 OWASP Cornucopia card game 77

6.3 Kahoot! . 80

9

Glossary

Figma Figma is a web-based graphics editing and user interface design app..

GitHub GitHub is a code hosting platform for version control and collabo-

ration..

Likert A scale used to represent people’s attitudes to a topic..

product backlog The Product Backlog is an emergent, ordered list of what

is needed to improve the product..

product owner The Product Owner is the single point of contact for under-

standing customer requirements and expectations from the product..

Spring The Spring Framework (Spring) is an open-source application frame-

work that provides infrastructure support for developing Java applica-

tions..

Spring Boot Spring Boot is a tool that makes developing web application

and microservices with Spring Framework faster and easier..

sprint review The sprint review is one of the most important ceremonies in

Scrum where the team gathers to review completed work and determine

whether additional changes are needed..

sprints Sprints refer to short, repeating blocks of time in which key parts

of the project are completed..

10

Thymeleaf Thymeleaf is a modern server-side Java template engine for both

web and standalone environments..

URL The address of a web page..

user stories A user story is an informal, general explanation of a software

feature written from the perspective of the end user..

11

Acronyms

API Application programming interface.

CAPEC Common Attack Pattern Enumeration Classification.

CSS Cascading Style Sheet.

CVE Common Vulnerabilities and Exposures.

CWE Common Weakness Enumeration.

EoP Elevation of Privilege.

GQM Goal Question Metric.

HTML HyperText Markup Language.

IoT Internet of Things.

IT information technology.

JPA Java Persistence API.

JS JavaScript.

JSON JavaScript Object Notation.

OWASP Open Web Application Security Project.

12

PP Protection Poker.

SO Stack Overflow.

SQL Structured Query Language.

TD Tower Defense.

TF Term Frequency.

13

Chapter 1

Introduction

Cyber security is a central topic today because of its dependence on systems

that are interconnected with several other systems. Unfortunately, end-users

and developers are not adequately trained to mitigate threats from the cyber

world [1]. A user can be exposed to many security and privacy threats in cy-

berspace due to insecure applications. Examples exist for different platforms

such as web vulnerabilities, mobile, or Internet of Things (IoT) systems.

Open Web Application Security Project (OWASP) [2] Top-10 vulnerabilities

provide a list of the top-10 vulnerabilities that can be used as an awareness

document and starting point to secure coding. OWASP Top-10 can be ap-

plied to different use cases during software development, such as architecture

and design, coding, testing, configuration, and using the content for develop-

ing a training curriculum for developers. Examples of categories on OWASP

Top-10 are Broken Access Control, Cryptographic Failures, Injection, and

Insecure Design.

Unfortunately, security in applications/software is often not the primary con-

cern when developing a new application. Developers tend to think of every-

thing else first; How will the user interface work? What options will the user

have? and How will data be stored? A study done by Secure Code War-

rior on 1,200 active software engineers/developers from around the world in

14

April 2022 shows that software security is not a top priority when develop-

ing an application [3]. The study shows that only 14% of the respondents

listed application security as a top priority. Security is often overlooked as

functionality is prioritized.

Therefore, it is essential to incorporate security content into the curriculum

for software engineering. One of the challenges of teaching software security

is that the curriculum can quickly be outdated because of constant changes

in threats and new attacks. It is, therefore, necessary to provide software

developers and students with methods and tools that can keep them up to

date with all the latest threats. These tools and techniques of learning should

be attractive. The user should have the option to use them for self-study and

keep updated with information security content.

Gamification has become more popular and has proven to be an excellent

tool for educational purposes [4]. By using games as a tool for learning,

you engage the students, and they learn while getting the feeling of being

rewarded (with points, ranking, achievements, etc.) [5]. There are already

existing games that have tried to educate on the topic of security. Some ex-

amples include the Elevation of privilege game [6][7] and Protection Poker[8].

The challenges with these games are that some of them are card and manual-

based, they have been reported to be difficult to play, and they don’t seem to

be well adopted [7][6]. STIX and Stones [9] is another example of an online

security game incorporating data-driven security content. The game itself

appears exciting and enjoyable; however, it hasn’t been adopted and used

by many. It is hypothesized that using a quiz-based game that is integrated

with public security information databases can improve learning and provide

fun at the same time.

By integrating the game with information security content from security-

based online sources such as Common Attack Pattern Enumeration Classi-

fication (CAPEC) [10] through the game, the users can more easily stay up

to date with new information. The educational goal of the game is to create

a web-based gaming tool where it is possible to construct questions and play

quiz games in order to develop cybersecurity awareness and safe practices for

15

both developers and end-users.

1.1 Research Questions

The hypothesis for this thesis is that a quiz-based security game can motivate

adoption for teaching software security.

The thesis investigates three research questions:

• Research question 1: Does the use of a quiz-based data-driven game

motivate users to learn software security?

• Research question 2: Does the use of a quiz-based data-driven game

improve learning software security?

• Research question 3: How to integrate information security sources

to automatically answer questions in the quiz game?

1.2 Method and Evaluation

This thesis has used educational gamification, a technology-based method

[11] for increasing student engagement and motivation for learning, to create

a game prototype. Quantitative method is used to evaluate the game pro-

totype and answer the research questions. Specifically, the thesis has used

survey and questionnaire to collect data from players, that are students who

study to become software developers.

To collect quantitative data, surveys are done on a group of people, which

ask the same questions to the entire group. The questions are designed to

measure three key areas:

• Learnability

• Fun

• Usability

16

The questions are structured such that they can be measurable in a quanti-

tative manner.

1.3 Contributions

The following are the contributions of this thesis:

• A quiz-based security game for teaching software security.

• Integration of public security information content to automatically pro-

vide answers.

17

1.4 Outline

• Chapter 1 - Introduction

Describes the motivation for this thesis, presents the research questions,

research and evaluation method, and the contributions of this thesis.

• Chapter 2 - Background

Presents public information security sources and gamification as back-

ground to this study.

• Chapter 3 - Methodology

Presents the different methods used to answer the research questions

of this thesis, including research method, development methodology,

design process, and how the quiz questions for the user survey were

prepared.

• Chapter 4 - Design and Implementation

Briefly describe the tools and technology used to build the quiz-based

game, how the goals of learnability, fun, and usability are conceptual-

ized, how public information security repositories are integrated with

the quiz game, and how the admin part of the game works.

• Chapter 5 - Results and Discussion

Presents and discusses the quiz game and results from the user survey,

and answers to the research questions.

• Chapter 6 - Literature Review

Takes a look at other serious games, and compares similarities and

differences.

• Chapter 7 - Conclusion and Further Work

Concludes this thesis and presents suggestions for further work to im-

prove on the quiz game.

18

Chapter 2

Background

The thesis is built on two broad areas, namely, public information security

sources and gamification. The following sections will introduce the two cat-

egories as background to this study.

2.1 Public Information Security Repositories

This section will introduce Common Weakness Enumeration (CWE) [12],

CAPEC, Common Vulnerabilities and Exposures (CVE) [13], and SEI CERT

[14] secure coding repositories as relevant security information sources for this

thesis.

19

Figure 2.1: Public information security repositories

Source: https://capec.mitre.org/about/new to capec.html

Weaknesses are the root causes of vulnerability, as shown in CWE. How the

weaknesses can be exploited is described by CAPEC. Actual exploitation in

real software is demonstrated in CVE.

2.1.1 CWE

CWE is a community-developed list of weaknesses related to software and

hardware. ””Weaknesses” are flaws, faults, bugs, or other errors in software

or hardware implementation, code, design, or architecture that if left un-

addressed could result in systems, networks, or hardware being vulnerable

to attack” [12]. CWE’s main goal is to stop vulnerabilities by educating

IT practitioners on how to tackle common mistakes before product delivery.

CWE, like CAPEC, offers a few different lists categorized by how frequently

they are encountered from a specific point of view. The three main lists

are Software Development, Hardware Design, and Research Concepts. Some

examples of software weaknesses are: code evaluation and injection, authen-

tication errors, and user interface errors [12].

Some examples of weaknesses in hardware are: core and compute issues typ-

ically associated with CPUs, Graphics, Vision, AI, FPGA, and uControllers,

and power, clock, and reset concerns related to voltage, electrical current,

temperature, clock control, and state saving/restoring [12].

20

Table 2.1: Examples of CWE records

Source: [12]

ID Title Description

CWE-478 Missing Default

Case in Switch

Statement

The code does not have a default case

in a switch statement, which might lead

to complex logical errors and resultant

weaknesses.

CWE-681 Incorrect Con-

version between

Numeric Types

When converting from one data type to

another, such as long to integer, data

can be omitted or translated in a way

that produces unexpected values. If the

resulting values are used in a sensitive

context, then dangerous behaviors may

occur.

CWE-1323 Improper Man-

agement of

Sensitive Trace

Data

Trace data collected from several

sources on the System-on-Chip (SoC)

is stored in unprotected locations or

transported to untrusted agents.

Table 2.1 shows an example of a CWE entry, with ID, title, and description

of the weakness. In addition to this, a CWE record can contain: Relation-

ships, that are weaknesses related to the specific weakness. Related At-

tack Patterns, which are CAPEC attack pattern(s) related to the weakness.

Modes of Introduction; How and When the specific weakness may be in-

troduced. Applicable Platforms, possible areas where the weakness could

appear, i.e. specific programming languages. Common Consequences

associated with the weakness Likelihood of Exploit, Low, Medium, or

High. Demonstrative Examples, such as code examples for Software De-

velopment. Potential Mitigations to avoid the specific weakness, and Ob-

served Examples.

CAPEC and CWE are related in that a CAPEC entry lists related weaknesses

associated with the attack pattern. A CAPEC entry can contain multiple

21

weaknesses. Related weaknesses are identified with a CWE ID.

2.1.2 CAPEC

CAPEC [10] is a public website working as a repository with familiar cyber

attack patterns that users can use to better understand how weaknesses are

exploited and how to mitigate the risk of these exploits happening. Attack

patterns are descriptions of how to exploit known weaknesses in software.

Each attack pattern contains information on how the attacks work and how

to mitigate the attack’s effectiveness. This is helpful for a developer to un-

derstand better how to avoid allowing such weaknesses in their application or

software system. CAPEC entries are mainly listed in two lists: Mechanisms

of Attack (as seen in figure 2.2) and Domains of Attack. Mechanisms of At-

tack lists attack patterns that are often used when exploiting a vulnerability,

whereas Domains of Attack lists items by the target domains.

22

Figure 2.2: Mechanisms of Attack

Source: https://capec.mitre.org/data/definitions/1000.html

23

Table 2.2: Examples of CAPEC records

Source: [10]

ID Title Description

CAPEC-

25

Forced Deadlock The adversary triggers and exploits a

deadlock condition in the target soft-

ware to cause a denial of service. A

deadlock can occur when two or more

competing actions are waiting for each

other to finish, and thus neither ever

does. Deadlock conditions can be diffi-

cult to detect.

CAPEC-

115

Authentication

Bypass

An attacker gains access to applica-

tion, service, or device with the priv-

ileges of an authorized or privileged

user by evading or circumventing an au-

thentication mechanism. The attacker

is therefore able to access protected

data without authentication ever hav-

ing taken place.

CAPEC-

240

Resource Injec-

tion

An adversary exploits weaknesses in

input validation by manipulating re-

source identifiers enabling the unin-

tended modification or specification of

a resource.

Table 2.2 shows examples of CAPEC entries with the related ID, Title, and

Description. A CAPEC record also includes information on Related Weak-

ness(es) exploited by the attack pattern. Execution Flow, instructions on

how the attack is performed. Prerequisites for the attack to succeed, and

Mitigations, how to reduce the risk of a particular attack to happen/suc-

ceed.

24

2.1.3 CVE

CVE is a public repository for known cybersecurity vulnerabilities and ex-

posures [13]. A CVE record identifies one vulnerability in the catalog. Vul-

nerabilities are found and assigned before being published by organizations

partnered with the CVE program. A vulnerability is a weakness that the

attacker can take advantage of directly to perform unauthorized activities

as an authorized user. In contrast, exposure is a mistake that allows at-

tackers to break into a system. To ensure information technology (IT) and

cybersecurity experts are talking about the same vulnerability, they use CVE

records as they are identified with ids. CVE aims to make sharing informa-

tion on known vulnerabilities easy to stay updated on the latest cybersecurity

threats.

2.1.4 SEI CERT Oracle Coding Standard for Java

SEI CERT Oracle Coding Standard for Java consists of rules and recommen-

dations for programming with Java as a programming language [14]. The

rules give requirements to code, whereas recommendations work as a guide

that should improve the security, safety, and reliability of software systems

when followed. Rules come with a risk assessment summary with severity,

the likelihood, remediation cost, priority, and level.

Figure 2.3: Risk Assessment Summary for Rule 02. Expressions (EXP)

Source: https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88487704

25

The rules and recommendations come with useful example codes on weak

code and how to improve it to secure better code. An example of this is

seen in figure 2.4 where the non-compliant code doesn’t check if a file is

successfully deleted. The compliant solution shows how it can be fixed by

checking if the file has been successfully deleted. If not, a function to handle

the failure is called.

Figure 2.4: Non-compliant and compliant solution code examples for file deletion.

Source: https://wiki.sei.cmu.edu/confluence/display/java/EXP00-
J.+Do+not+ignore+values+returned+by+methods

2.1.5 Stackoverflow

Stack Overflow (SO) [15] is a Question-and-Answer (Q&A) website used by

programmers to share knowledge with each other. According to StackEx-

change [16], SO has close to 18 million registered users, 23 million questions,

and 33 million answers, with 70% of the questions being answered. SO en-

ables users to ask questions or post answers on specific topics related to

coding. It is easy to post code snippets, which is helpful to get assistance on

specific coding errors, as users can make reproducible examples to help find

26

a solution to the user posting’s question. SO has a voting system that lets

users upvote or downvote questions and answers. This voting system allows

good answers and questions to rise in popularity, making them more notice-

able, whereas bad ones are filtered out. Users can earn reputation points

and ’badges,’ which are gamification elements, for being a helpful contribu-

tor. Users with a high reputation can unlock privileges that let them flag,

vote, comment, and edit other people’s posts.

2.2 Gamification

A literature review done by Hamari et al. [17] on the effects of gamification

shows that gamification comes with positive results and benefits in most

cases. Gamification is when elements usually seen in games are added to other

environments outside games. Gamification used in lectures has proven to be

useful and can also lead to more students showing up to class and reading

the lecture notes [18]. There are mixed opinions on whether gamification

affects the student’s grades, where for one study, it did not seem to affect

student grades [19]. Another study was done on two groups of students [20].

One of the groups participated in a gamified learning environment and the

other in a traditional learning environment, which shows that the students

in the gamified group performed better and achieved higher grades than the

other group following the conventional learning environment. However, both

studies agree that more research must be done to create a more robust and

thorough foundation for these findings.

Literature on gamification and serious games was investigated to find which

features/elements bring the most user engagement, fun, and motivation for

learning [4][17][18][21][22]. This is essential to see what elements can be used

for the software security quiz game. It is found that leaderboards, a scoring

system (points/coins), and achievements are the most popular elements used

in gamification [18][17][4][23]. A scoring system works so that the players are

rewarded with points when playing, for example, when answering the correct

answer in a quiz. Receiving points motivates the user to score better than

27

classmates to climb the leaderboard [22] and receive positive feedback [18].

Leaderboards create a competitive environment between classmates, where

they compete against each other to get the highest score or get their name

on the top-10 leaderboard. According to O’Donovan et al. [23], leaderboard

was the most motivating gamification element by far. Achievements are

badges the players achieve by completing different tasks in the game. This

is an effective motivator to keep the students engaged and motivated to

keep playing by having them work towards a goal/prize that gives positive

feedback when achieved [23][24].

2.2.1 Game Types

Laurie Williams et al. [8] introduced Protection Poker (PP), which is a soft-

ware security card game. PP is described as a collaborative and lightweight

game that can estimate software security risks and is particularly suited for

agile teams [7]. PP shows potential in that it leads to discussions about

software security within the team; however, the game has shown little to

no usage. Reasons for this may be that the game requires someone with

knowledge about software security to be a success and that it requires a lot

of effort and time to play [7]. Another challenge with PP is that it is not a

single-player game. The problem with this is that it can be cumbersome to

gather enough people to play.

STIX and Stones [9] is another security game. This Tower Defense (TD)

type of game integrates CAPEC to create entities for enemies and defensive

towers. TD is a strategy game where the goal is to defend against waves

of attacks that gradually become more and more difficult to defend against.

The enemies try to reach the player’s territory, and they have to be defeated

before they reach it to stay alive and eventually beat the game by defeating

all waves of attacks. To defend against the attacks, the player is given options

on defensive structures to build against each wave. These defensive structures

have strengths and weaknesses against different types of enemies.

28

Figure 2.5: Tower Defense King

Source: https : //www.researchgate.net/figure/Screenshot − of − a −
classic − Tower − Defense − game − Game − shown − Tower − Defense −
Kingf ig2339428392

Figure 2.5 shows how a typical TD game is built, with a path enemies have

to walk through and defensive structures built around this path defending

against the enemies. The challenges with this type of game can be that it is

not as familiar to most, and it can be too much information to focus on the

important part, learning software security.

The primary motivation for this study is thus to improve the adoption of

software security games by creating a quiz-based software security game that

can motivate learning and teaching this subject. There are multiple examples

of successfully using gamification in education, such as the popular game-

based learning platform Kahoot! [25].

This study incorporates some of the successful features investigated in pre-

viously mentioned games and articles in a quiz-based software security game

and fill in the missing gaps in previous software security games. By selecting

quiz as the game type, the obstacles of users being thrown off by the com-

plexity and initial information are removed. A quiz-based game is easy to

understand and can easily incorporate features such as leaderboards, scoring

systems, and other fun elements. Integrating public repositories revolving

29

around software security and secure coding into in-game features adds an

innovative and different approach to serious games about software security

that has not been done previously.

30

Chapter 3

Methodology

3.1 Process

The software engineering methodology used for this project is adapted from

agile development methodology [26]. The different project phases have been

divided into sprints with tasks/activities, similar to user stories per sprint,

to help keep track of what is done and what is next on the agenda. The

supervisor has been acting as a light version of a product owner, primarily

helping with prioritizing needs, defining a vision, and reviewing and giving

feedback on the work regularly.

Figure 3.1: Weekly Planning

Meetings have taken place every other week or every week. A plan made in

excel was used throughout the project, where weekly activities got updated

after meetings with the supervisor. The plan works similar to a product

backlog where activities are listed for all prior weeks and filled with activities

31

for the following weeks. The activities can vary, some examples of activities

are:

• Read and look into question-and-answer style for quiz-based games.

• Fix database so that it works with Heroku.

• Allow adding image as question.

• Change design of quiz creation page.

• Finish draft 4.

Comments have been used, mainly for help in finishing activities, remember-

ing valuable sources, and general comments for the activities. In the weekly

meetings, activities are discussed, what is done, what is not done, and what

is still in progress. A part of the meeting works as a sprint review, where

implemented features are reviewed and presented to the supervisor. This

helps look into what is working or not working and what needs to change

and further discuss approaches to the activities. Each activity is color-coded

as it is done, not done, or if done to an extent and still a work in process. If

an activity is done, it is left in the plan for the week it was done, with the

color code green to distinguish it from the other activities easily. If an activ-

ity is not done, it is discussed why, options to replace the activity, or whether

it is better not to continue the activity altogether. The plan is divided into

four different phases:

• Literature review/research phase.

• Implementation, design and creating prototype.

• Evaluation of prototype.

• User survey.

For phase 1, the main object was to gather resources, create research ques-

tions, do literature reviews, look into related work, and start working on

design documents for the prototype. Phase 2 focused on creating a workable

prototype of the quiz-based software security game, integrating the differ-

32

ent public repositories revolving around software security and secure coding

into the quiz game. Phase 3 focused on evaluating, testing, and continu-

ously improving the quiz game to meet the expectations. Phase 4 focused

on conducting user surveys on the correct target group of the quiz game and

evaluating the results gathered.

Figure 3.2: Agile development process

Source: Copied from [27]

Each timeline between meetings can be seen as a sprint, where each session

starts with a demo and feedback, followed by a requirement analysis for the

upcoming weeks of development work. During the demo, the supervisor is

presented with work that has been done since the last meeting. How new

features are working and what ideas are behind them. After a demo, the

supervisor gives overall feedback and further discussion on what needs to be

improved, implemented, and changed until the next meeting.

3.2 Prototype

To answer the research questions, a prototype is first developed. This thesis

uses educational gamification, which is a technology-based method [11], to

33

build a prototype where the quiz-based software security game is created as

a prototype from requirements and design documents.

Figma was used to visualize and design how the quiz game should look before

starting the development phase and how it should react to user inputs. Mak-

ing a prototype makes it easier to communicate ideas and picture how the

quiz should look and how each feature should look and work before having

a product or results to show.

Figure 3.3: Menu prototype

Figure 3.3 shows what the main menu was envisioned to look like before

beginning the project’s development phase.

34

Figure 3.4: Quiz question - Play view created with Figma

Figure 3.4 shows how the ’play’ part of the quiz was envisioned, with a

question and four answer options to answer the question, only one of them

being the correct answer. The idea behind the bar with a percentage score

of ’80%’ is a scoring system where the user would level up after answering

several correct answers. Leveling up would gradually increase the question’s

difficulty per level, continuously challenging the user once they got better

at the selected topic. As seen in the final prototype of the quiz game, the

design is very much like the sketches created early in Figma, as it is easier

to build something with helpful illustrations than to make it only on the go,

only from ideas and thoughts. Figma also has a prototype feature, which

allows for clickable and interactive demos directly inside the website where

the prototype is designed and conceptualized. This was helpful when sharing

early ideas with the supervisor that needed feedback or confirmation.

35

3.3 Evaluation

3.3.1 Learnability, Usability, and Fun

To answer RQ1 and RQ2, a user survey was done to collect quantitative data

by using the finished prototype of the quiz-based software security game. The

user surveys are essential to measure the three main categories critical for

the quiz game’s success in self-study of software security. The questionnaire’s

three categories focused on capturing fun, learnability, and usability. The

usability and fun goals address research question 1 (RQ1). The learnability

goal addresses RQ2. The user survey respondents are all students studying to

become software developers and are, therefore, a suitable user group and fit

the target group. Most of the respondents are students of the supervisor, who

teach a course on software security. Only five out of twenty-two respondents

to the user survey are classmates. They were asked to respond in order to

get some more respondents. Since most users are not classmates, the answers

will be less biased or affected by kindness and anxiety about hurting feelings.

The supervisor’s class is presented with the quiz game beforehand to collect

feedback and ensure enough respondents answered the user survey. The

presentation mainly introduced them to the game and its idea and let them

know what was required of them to answer the user survey. To not influence

the answers in the user survey, it was important not to give information

about how they should play the game but rather only give them an overview

of what to expect. After presenting the quiz, the class was asked to play

through a quiz of ten questions on a few different topics revolving around

software security. They were asked to play the quiz two times and record

their scores, as this data is of interest in the evaluation process and one of the

questions for the survey. After finishing playing the quiz, the class answered

the user survey.

Since capturing the three main categories: fun, learnability, and usability, is

of the highest importance, Goal Question Metric (GQM) [28] was used as

a method to design the questionnaire. GQM is a systematic approach used

for measuring software quality [29]. Following the GQM approach made

36

finding quantitatively measurable metrics easier. GQM has three levels: the

conceptual level, where specific goals are identified. The operational level,

where the questions for each goal are created to investigate how the goals

should be accomplished, and thirdly; the quantitative level, where metrics

are constructed to answer the questions related to their specific goal. The

three goals set are: How to capture fun, learnability, and usability for the quiz

game. The goals are set up individually in each column of an excel sheet, with

their related questions, followed by the metrics for each question. Questions

are constructed to capture the goals individually. An example is seen in table

3.1, where the goal of learnability is investigated, the questions to capture

learnability are made, and then the metrics to measure it quantitatively are

found. The same applies to the two other goals, usability and fun.

37

Table 3.1: Goal Question Metric example

Goal: Learning software security

Question: Metrics:

Did you learn more

about software se-

curity from playing

through a quiz?

Metric 1: I had prior knowledge

on the topic presented in the quiz.

Metric 2: My knowledge of the se-

curity topics presented in the quiz

improved by playing the quiz.

Did the lifeline ’call a

friend’ help you learn

more about software

security and where

to find information

about the topic?

Metric 1: The search feature pro-

vided me information that helped

me answer the question.

Metric 2: The search feature in-

troduced me to public software

security content that I previously

did not know about.

Did the ’Explanation

for previous question’

help you learn more

about software secu-

rity?

Metric 1: The explanation gave

me more information that helped

me better understand the answer

to the question.

Metric 2: The explanation helped

me to improve my answer in the

next round.

Do you consider the

quiz game to be a

good tool to learn

about software secu-

rity?

Metric 1: The quiz game made

me learn more about software se-

curity.

Metric 2: The quiz game is a good

tool for learning about software

security.

Metric 3: I learn more about soft-

ware security from playing the

quizzes than other methods of

learning.

38

The Likert scale is used for most of the questions in the user survey to

measure the metrics quantitatively. The scale goes from one to five:

• 1: Strongly disagree

• 2: Disagree

• 3: Neither agree nor disagree

• 4: Agree

• 5: Strongly agree

Figure 3.5: Question 3

The metrics created using the GQM method are the same that the users

had to answer using the Likert scale in the user survey. Figure 3.5 shows

a question using the Likert scale from the user survey. All questions used

this scale as their answer, except for three questions where one was optional

feedback to get some qualitative feedback from users that were willing to

leave a comment with their opinions. The other two asked what they scored

in rounds one and two of the quiz.

The questions the users were asked to answer using the Likert scale in the

user survey, categorized by the goals they were to capture, are presented in

tables 3.2, 3.3, and 3.4 found below:

39

Table 3.2: Learning Software Security Metrics

Learning Software Security

I had prior knowledge on the topic presented in the quiz.

My knowledge of the security topics presented in the quiz

improved by playing the quiz.

The search feature provided me information that helped me

answer the question.

The explanation gave me more information that helped me

better understand the answer to the question.

The explanation helped me to improve my answer in the next

round.

The quiz game made me learn more about software security.

The quiz game is a good tool for learning about software se-

curity.

I learn more about software security from playing the quizzes

than other methods of learning.

The lifeline ’Ask the audience’ helped me quickly reason about

the answer.

40

Table 3.3: Fun/Enjoyment Metrics

Fun/Enjoyment

I enjoyed playing the quiz.

I would like to try it again, several times.

I liked using the ’shield’ lifeline.

I liked using the ’50/50’ lifeline.

I liked using the ’Ask the audience’ lifeline.

I liked using the ’Call a friend’ lifeline.

I got more motivated to score better because I wanted to place

better on the leaderboard.

The scorebar and levels motivated me to try again to score

better than last time.

Table 3.4: Usability Metrics

Usability

It was easy to understand the rules and play the game.

I understood the rules and how to play from using the in-game

help button.

It was easy to use the ’shield’ lifeline.

It was easy to use the ’50/50’ lifeline.

It was easy to use the ’Ask the audience’ lifeline.

It was easy to use the ’Call a friend’ lifeline.

41

3.3.2 How to Integrate Public Information Security

Sources to Answer Questions Automatically

To answer RQ3, the prototype incorporates the ’ask the audience’ lifeline

integrated with public information security sources and answer explanations.

Tests were done to evaluate how accurate the lifeline ’Ask the audience’ was

and how well it did in predicting the correct answer out of the four answer

options given per question in the quiz game. The quiz used for evaluating

the lifeline is the same as in the previously mentioned user survey done on

students. The lifeline was used for each question in a quiz of ten questions.

The lifeline was used for each question, and the answer with the highest

percentage score from the audience was picked as the submitted answer.

This was done to see how many times it predicted the correct answer out

of ten questions. When the audience scored more than one answer as the

highest, meaning two or more answers had the same percentage score, the

answer submitted was selected at random between these options. The results

for each question were recorded and can be seen in section 5.2.4.

3.3.3 Quiz Questions

The supervisor prepared the quiz questions and spread them across differ-

ent security topics such as secure coding and cryptography. Ten questions

allow the players to experience all the in-game features and learn how the

game works. Ten questions are considered a good enough number that the

participants can answer without overburdening them, and according to Jot-

form [30], a quiz typically has ten or fewer questions. Considering there are

four lifelines, ten questions seem appropriate for the learning outcome, as the

player has to answer 60% of the questions independently.

42

Chapter 4

Design and Implementation

4.1 Architecture

Figure 4.1: Simplified architectural overview

The application is built with Spring Boot as the backend framework and Java

as the programming language. Spring Boot framework allows fast develop-

ment and gets an application running quickly with few challenges. The web

application is deployed to Heroku [31] to make it more easily accessible for

the end-user. Heroku is a Platform as a Service (PaaS) that runs the appli-

43

cation on a cloud platform. Using Heroku allows the end-user to access the

application through a URL link, which simplifies the use compared to having

the end-user run the application locally. For automatic deployment of the

most recent web application version, GitHub automatically pushes code to

Heroku when new code gets pushed to the GitHub repository. Deploying it

means Heroku will build and deploy every web application version that gets

pushed to the specific GitHub branch. Structured Query Language (SQL)

databases are being used to store data, an H2 database locally, and a Heroku

extension called Heroku Postgres to store data when the web application is

accessed through the Heroku deployment. To manage, view, fetch, and edit

data inside the databases, Java Persistence API (JPA) repositories are used.

These have been very useful as it makes it possible to create queries in Java

language that is more compact and easily readable than SQL queries. For

the front-end it is mostly used HyperText Markup Language (HTML) and

vanilla Cascading Style Sheet (CSS), with some JavaScript (JS). Thymeleaf,

a Java library template engine, is used to pars and render data/objects pro-

duced by the application to template files. Using Thymeleaf allows for easy

rendering of data, collections of data, and binding data to objects.

44

Figure 4.2: Simple life-cycle of Thymeleaf template

4.1.1 Spring Boot

Spring Boot [32] allows the creation of Spring-based applications in an ’easy’

way that runs with minimal effort. The Spring initializer makes for an ef-

fortless start to any project by simply picking out dependencies according to

the type of project. Spring Boot does a lot of the configuration for the user

by being a framework built on top of the Spring framework, which enables

the user to quickly “bootstrap” a Spring application from scratch.

4.1.2 Spring JPA

Spring Data JPA [33] is provided by Spring to make it easier for developers

to implement the data access layer. While the developer focuses on program-

45

ming the project’s vision, Spring JPA will implement all necessary methods

for accessing all the data from repositories for the developer. The developer

only has to write the entities, repository interfaces, and custom finder meth-

ods, and Spring will automatically take care of the implementations. This

reduces a lot of boilerplate code required by JPA.

4.2 Conceptualization Stage

To conceptualize fun, a few different educational games [25][34] and other

quiz games [35] were investigated to gather inspiration for features that could

be used for the prototype quiz game. Some features that were considered

implementing consist of:

• Reward systems

• Lifelines

• Score

• Leaderboard

• Achievements

The end goal is to improve user engagement and motivation to continue

playing by implementing such features [36]. Leaving these elements out of

the game would leave the game bland and not any different from a multiple

choice test. The idea behind adding a leaderboard is to have the users come

back to play more, to either beat their previous score or their classmates.

This increases motivation to continue playing more than once. A scoring

system while answering the questions is a fun way for the users to keep track

of their correct and wrong answers. Lifelines work in a way that helps users

to continue playing; instead of being stuck and not knowing the answer, the

user can use a lifeline that will help them reason about the correct answer and

move on to the next question. Achievements could be used as a motivation

to come back and play more, for example, if the users got an achievement for

playing multiple days in a row, scoring better than 50% on a quiz, playing

46

ten quizzes, etc. All these elements help encourage the users to play, learn

and have fun at the same time.

The idea to conceptualize learning is to integrate public cyber security con-

tent in some of these elements, like ’call a friend’ and ’ask the audience’

lifelines. By incorporating these websites that cover software security and

secure coding with lifelines, the user is introduced to content that will help

them answer the quiz questions in a fun way. Because the lifelines are only

allowed to be used once per quiz, they will only work as help in need when

stuck. This forces the users to play the game and not only use the lifelines

forever but only whenever they are stuck.

4.3 Integration of Public Security Content

Integrating public repositories containing data on threats, mitigation strate-

gies, weaknesses, secure coding, and in general cyber security content has

been a big part of this thesis. It has previously been tried in previous soft-

ware security game STIX and Stones [9], but in a different way. The way the

public repositories are integrated into the quiz game created for this thesis

is innovative and has not been previously done. Using them in lifelines such

as ’Call a friend’ and ’Ask the audience,’ the users are introduced to them

through the game and can use them inside the game to search for answers

or reason about the correct answer.

Figure 4.3: Ask the audience lifeline

47

’Ask the audience’ is a lifeline where inspiration is taken from the game ’Who

Wants to Be a Millionaire.’ From the TV show, it works in a way where the

audience takes their votes on what answer option they believe to be the cor-

rect one, and the player of the game show is presented with a bar graph

with percentage scores given for each answer option. The player then has

to choose based on the results presented, usually picking the highest scored

option. The quiz game differs in that it doesn’t use actual humans to cast a

vote on the answer options they believe to be the correct; it uses Term Fre-

quency (TF) [37] and similarity measure. First a custom search JavaScript

Object Notation (JSON) Application programming interface (API) is used

to fetch data from a selection of public repositories that specialize in cyber

security and secure coding. The custom search is based on the question given

in the quiz game, and fed into the custom search JSON API which returns

data in JSON format. This data, with the explanation (as seen in figure

5.3) for the belonging question is fed into a TF function. TF is an infor-

mation retrieval metric for determining features in document classification

problems [37]. Term frequency is computed by tokenizing each document in

a document corpus and collecting the number of occurrences (frequency) of

the unique terms in the entire corpus. By removing stop words that doesn’t

help gather information from the document, processing time is saved and

there is more focus on the important information in the document. Cosine

similarity, which is a similarity measure, is used to measure the similarity

between two documents. It calculates the cosine of the angle between two

vectors projected in a multi-dimensional space. Given two documents with

vectors A and B, the cosine of the angle between them can be computed as:

cos(A,B) =
A ·B
|A| × |B|

The bigger the cosine value, the higher the similarity between the two doc-

uments. Two documents that have been vectorized using TF are compared

by computing their cosine similarity. This is done in the ’Ask the audience’

lifeline to see which of the four answer options has the highest similarity with

the search result using the custom search JSON API and the explanation to

48

the question given. The results are then presented to the user in a bar graph

that shows each answers percentage as to how high similarity they have. The

similarity score is converted to show percentage score compared to each other

answer option, meaning if only one of the answers has any similarity with the

search result and explanation, it gets 100% of the ’votes’ from the audience.

In figure 4.3, option A has received over 55% of the votes, C has over 40%,

and B and D have received 0%. It should be easier to answer the question

and reason around the correct answer with this information.

Figure 4.4: Call a friend lifeline - Search box with user input and selection of
’friend’

’Call a friend’ is a lifeline that also has taken inspiration from the game show

’Who Wants to Be a Millionaire’ and tweaked it to integrate public cyber

security content into the game. Instead of calling an actual human, public

repositories specializing in software security, secure coding, and coding, in

general, are used as ’friends.’ This is done using custom google search engines

for each website. When using this lifeline, the user has to type in their search

word and select their ’friend’ before being redirected to a search result page

where they can look through and open links. This way, the player can search

for up-to-date content from carriers specializing in cyber security to find the

answer to their in-game question. When the lifeline has been clicked, a timer

of two minutes will start counting down, and the counter will show up, as

49

seen in figure 4.4. Suppose no answer has been submitted before the time

runs out. The user will lose the opportunity to answer and be redirected to

the next question. If the life option is active for the particular quiz, the user

will lose a life when the time runs out. By adding a countdown timer of two

minutes and not allowing for more than one search, the user is prohibited

from continuing using the lifeline for other questions.

Figure 4.5: Call a friend lifeline - CAPEC as selected friend and result page

Figure 4.5 shows how the lifeline can be used to find the correct answer. For

this example, a search with ’Types of XSS Software Security’ as the input was

done, and CAPEC was used as a ’friend.’ As seen in figure 4.5, DOM-based

XSS, Reflected XSS, and Stored XSS can be found in the relationships table

from CAPEC on Cross-Site Scripting (XSS). Therefore, the correct answer

to this quiz question should be XML-based XSS, which is true.

The 50/50 lifeline uses a randomization function to remove two of the wrong

answers, leaving only the correct answer and one wrong answer. This can be

useful if the player is unsure of the correct answer, leaving them with a 50%

chance of getting the correct answer if they were to guess between the two

answers.

50

4.4 Quiz and Question Creator for Admin

Users

This section will introduce the administrator part of the quiz-based game.

This is where the admin users can create and edit or delete quizzes and

questions.

Figure 4.6: Administrator menu

Figure 4.6 shows the administrator’s main menu. It presents the admin user

with a set of buttons that directs them to different views where it is possible

to play quizzes, create questions, create quizzes, or edit them. There is

also a header menu available from all the views. From the header menu,

it is possible to go to the regular users’ ’home,’ which is where they select

what quiz to play, the admin ’home,’ which is the menu from figure 4.6, and

lastly the leaderboard. The leaderboard view will direct the user to a table

presented with all the quizzes; Here, the user can search for quizzes by name

or ID and select which quiz leaderboard to see.

51

Figure 4.7: Create question

Figure 4.7 is where the admin user, preferably someone with knowledge of the

topic, can make questions by filling in the input fields. This view is presented

when clicking the ’Create questions’ button in the admin menu from figure

4.6. When creating a question, adding an image to complement the question

is possible. All fields except the tag need to be filled for the question to be

valid and not return an error message. Since the quiz game offers four answer

options per question, three wrong, and one correct answer has to be filled

for a complete question. The explanation field allows the question creator to

give the quiz players an explanation of the correct answer and the question

given. After answering a question, the explanation will be presented to the

user in the ’game’ part of the web application, as seen in figure 5.3. When

creating questions, three helpful links will direct them to different websites;

CAPEC, SEI CERT Oracle Coding Standard for Java, and CWE. If help

is needed when constructing questions, the ’Need help?’ button will offer a

pop-up window similar to the one in figure 5.3 but helpful for constructing

a question.

52

Figure 4.8: Create a quiz

When creating a quiz, it is possible to search for questions either by tag,

word(s) that the question contains, or both, and the questions matching the

search will show up in the question list. There are two ways to create a quiz,

either by selecting desired questions or randomly selecting a chosen number

of questions. For method one: check the check-boxes of the desired questions

to be added to the quiz, type chosen name for the quiz, and select the number

of errors that the quiz should contain, either infinite or from one to five. The

number of errors represents the amount of in-game ’lives’ a user is given when

playing the constructed quiz. Answering a question wrong will be penalized

by losing a ’life’ represented as hearts, as seen in figure 5.4. The quiz will

end when the user runs out of ’lives.’ For method two of creating a quiz by

random selection of questions: Type quiz name, select amount of errors as in

the previous method, and choose the number of questions wanted, from one

to ten. The questions will be randomly added from the question list, so if it

is desired only to have questions from one specific topic/tag, it can be done

by selecting the desired tag. ’Need help?’ works the same way as previously

mentioned in the question creation section, where a pop-up window with

helpful text will show up as shown in figure 5.3.

53

Chapter 5

Results and Discussion

The result of this research is a web-based quiz game integrated with public

software security content. By using gamification elements such as leader-

boards, score bars, and lifelines, the game has the potential to be an attrac-

tive tool for learning about software security. This chapter includes figures

from the quiz-based software security game’s finished prototype and explains

different features. The results from the evaluations are presented and dis-

cussed, and the research questions are answered.

54

5.1 Quiz Game

Figure 5.1: Search for a quiz by ID or name of the quiz and select what quiz to
play

The ’Start quiz’ button brings the user to a table listing all the quizzes

created. Search by ID or name to find the desired quiz. When hitting

search, the user is presented with a table containing only quizzes that match

the search word, or if the search is done by ID, only the quiz with the searched

ID will show up in the list. To play a quiz, simply click the name of it.

Figure 5.2: Quiz play

55

After selecting a quiz, a new window shows up, as shown in figure 5.2. This

is the game view where the user is presented with a question, four answer

options, A, B, C, and D, four lifelines, and a score bar. For each correct

answer the score bar will raise by 10 000 points. As seen in figure 5.2, some

of the scores are gold in color; they are plateaus that save the player from

dropping score. If the user were to lose on a non-golden score, they would

drop down to their previous achieved golden score. The player also starts

with four different lifelines that can help them throughout the quiz differently.

Each lifeline is only available for use once per quiz.

• Shield - Protects the player from losing a life if they were to answer

wrong while the shield lifeline is active.

• 50/50 - Removes two wrong answers

• Call a friend - Allow the player to ask a ’friend’ out of a selection of

public repositories specialized in software security and secure coding,

among other sites.

• Ask the audience - Asks the audience what they think is the correct

answer. A bar graph with percentage scores for what the audience has

’voted’ is the right answer will show up.

Figure 5.3: Explanation and correct answer for previous question

56

When an answer has been submitted, the next question will show up and

there will be an option to read the explanation and correct answer for the

previous question. The explanation will be shown in a pop-up window as

seen in figure 5.3.

Figure 5.4: Shield lifeline

The ’shield’ lifeline will activate a glowing effect to indicate the lifeline is

active. While the ’shield’ lifeline is active, it is impossible to lose a life if the

submitted answer is wrong.

Figure 5.5: Submit your score page when quiz is done

57

The quiz finishes either by losing all lives or answering all the questions.

When the quiz finishes, the user is redirected to the view in figure 5.5. The

user can submit their score to the leaderboard by entering a nickname and

clicking the ’Submit score’ button.

Figure 5.6: Leaderboard of selected quiz

There are leaderboards for all created quizzes, with the top ten scores listed

with their submitted nickname.

5.2 Findings to Research Questions

This section introduces the user survey results answering RQ1 and RQ2 and

the results from the evaluation done on the lifeline ’Ask the audience’ that

answers RQ3. The user survey is divided into three different categories:

learnability, usability, and user enjoyment/fun. The results should tell a lot

about the user experience based on these three categories, if they learned

anything, if the quiz game is fun, and if it is easy to use.

58

5.2.1 Learnability (RQ2)

Figure 5.7: Results from round 1 of quiz play

Figure 5.7 shows the scores that the survey users achieved the first time they

played the quiz game. The majority of the users (54,5%) scored 40 000 out

of 100 000 possible points, which is also the average score:

880000

22
= 40000

22,7% scored above average, and 22,7% scored below the average score. This

is a good beginning, as it is possible to see if any improvement is made for

round two.

Figure 5.8: Results from round 2 of quiz play

Results from round two (see figure 5.8) of the users quiz scores show that

there has been some improvement overall, where the majority of the users

scored 60 000, whereas in round one the majority scored 40 000. However,

59

the average score hasn’t changed much. The average score for round two is:

1020000

21
= 48600

Round two scores show that the scores have increased some overall, but

it is hard to tell if this slight increase in scores are because they learned

something or just memorized the correct answer and used the lifelines for

different questions than in round one. A proper experiment would be required

to evaluate this goal. This is work for future study.

Figure 5.9: Results prior knowledge to topics presented in the quiz

To check the users background knowledge on the topics presented in the

quiz, they were asked whether they had any prior knowledge on the topics

(see figure 5.9). The majority of the users answered ’neither agree nor dis-

agree’, which can be interpreted as they had some basic knowledge but is not

confident in their knowledge on the topics. The average is leaning towards

’disagree’, which can be interpreted that the average user did not have prior

knowledge to the topics presented.

60

Figure 5.10: Did knowledge on topics presented improve?

Looking at figure 5.10 shows that the users knowledge in the presented top-

ics improved after playing the quiz, at least for some of the users (45,4%).

31,8% of the users disagreed in that their knowledge in the presented topics

increased from playing the quiz, and 22,7% of the users neither agree nor

disagree. Seeing that almost 50% of the users did in fact learn from playing

the quiz is a positive sign and support the hypothesis in that the quiz game

can be used to motivate adoption for teaching software security.

Figure 5.11: Was search feature helpful in answering questions?

The ’call a friend’ lifeline had some mixed results, for some it helped them

answer the question, whereas for others it didn’t. During the session where

the users took the quiz, there was some feedback on this lifeline that could be

taken into account for further work. Some misunderstood the usage, meaning

it is not as user-friendly as it was intended to be.

61

Figure 5.12: Results when asked if explanation was helpful to understanding the
question

The explanation to the questions got positive feedback in that most (54,5%)

of the users understood the answer to the questions better after reading it.

Many (36%) of the users were indifferent to the explanation, whereas only

two of the users disagreed in that it helped them understand the answer to

the question better.

Figure 5.13: Did explanations help improve answers?

For some users (40,9%), the explanation helped them answer better in round

two of playing the quiz game (see figure 5.13). The same amount of the

users were indifferent, while two of the players disagreed, and two strongly

disagreed in that the explanation helped them improve their answer for the

next round.

62

Figure 5.14: Results - Did the quiz game make users learn more about software
security?

When asked if the quiz game made them learn more about software security

(see figure 5.14), the majority answered that they agreed (31,8%) or strongly

agreed (22,7%), whereas only two of the users (9%) disagreed or strongly

disagreed. This again supports the hypothesis.

Figure 5.15: Is the quiz game a good tool for learning software security?

When asked whether or not they think the quiz game is a good tool for

learning about software security (see figure 5.15), even more of the users

agreed or strongly agreed (68%) that yes, they think it is a good tool for

learning about software security. This result amplifies the support of the

hypothesis. Only three out of twenty-two users disagreed, whereas four were

indifferent. In fact, ’strongly agreed’ was the most selected answer, with

40,9% of the users strongly agreeing.

63

Figure 5.16: Quiz compared to other methods of learning

The results from figure 5.16 show that most users are indifferent when asked if

they learn more about software security from playing the quiz game compared

to other methods of learning. While some agree and some disagree, the results

favor that the users agree that they learn more from playing the quiz game

than other learning methods, with 40,9% of the users agreeing against 18,1%

disagreeing.

Figure 5.17: Ask the audience - Did the lifeline help users quickly reason about
the answer?

The lifeline ’ask the audience’ did not have much impact on how the users

reason about the answer. Still, the results slightly favor that the lifeline did

help them quickly reason about the answer, where about 36% of the users

agreed or strongly agreed. 22,7% of the users did not agree, whereas 40,9%

were indifferent.

64

5.2.2 Usability (RQ1)

Figure 5.18: Results - Easy to understand the rules and play the game.

Looking at the results for usability, it is clear that almost all users (81,8%)

agreed or strongly agreed in that it was easy to play the game and understand

the rules (see figure 5.18). Only one out of twenty-two users disagreed, while

three were indifferent.

Figure 5.19: Results - Did the users understand the rules and how to play from
using the in-game help button?

The results are indifferent whether or not the users understood the rules on

how to play the game from the in-game help (5.19).

65

Figure 5.20: Results - Easy to use the ’shield’ lifeline

When asked if the lifelines were easy to use, most users agreed or strongly

agreed that the lifelines were easy to use (see figures 5.20, 5.21, and 5.22).

However, the results were different for the ’call a friend’ lifeline (see figure

5.23). Five (22,7%) of the users were indifferent, while eight (36%) strongly

disagreed or disagreed, and nine (40,9%) agreed or strongly agreed that ’Call

a friend’ was easy to use.

Figure 5.21: Results - Easy to use the ’50/50’ lifeline

66

Figure 5.22: Results - Easy to use ’ask the audience’ lifeline

Figure 5.23: Results - Easy to use the ’call a friend’ lifeline

5.2.3 User Enjoyment/Fun (RQ1)

Figure 5.24: Results show that the majority of the students enjoyed playing the
quiz

When looking at the results for user enjoyment/fun, only one out of twenty-

two users disagreed (strongly) in that they enjoyed playing the quiz game (see

67

figure 5.24). Three of the users were indifferent, whereas eighteen (81,8%)

of the users agreed or strongly agreed in that they enjoyed playing the quiz

game.

Figure 5.25: Results when asked to try again

When asked if they would like to try it again several times, most users neither

agreed nor disagreed (see figure 5.25). However, more people (40,9%) agreed

or strongly agreed than people disagreed (18%) in that they would like to

try it again.

Figure 5.26: Results for ’shield’ lifeline

Only four respondents agreed or strongly agreed that they liked using the

’shield’ lifeline. This lifeline only has any use if the quiz played has ’lives’

active, as it protects the player from losing a life when answering a question

incorrectly. For the particular quiz played by the users answering the user

survey, this was not relevant as they had an unlimited number of ’lives.’ This

can have impacted the results for this metric.

68

Figure 5.27: Results for ’50/50’ lifeline

The majority of the respondents liked using the ’50/50’ lifeline, as the results

show in figure 5.27. Only one out of twenty-two strongly disagreed, and five

out of twenty-two were indifferent. 50% of the users strongly agreed in that

they liked using this lifeline, and 22,7% agreed.

Figure 5.28: Results for ’Ask the audience’ lifeline

’Ask the audience’ lifeline got some mixed results from the respondents when

asked if they liked using this lifeline (see figure 5.28). 54,5% of the users

agreed or strongly agreed in that they liked using it, 22,7% were indifferent,

and 22,7% disagreed or strongly disagreed.

69

Figure 5.29: Results for ’Call a friend’ lifeline

’Call a friend’ received results indicating the users were indifferent about the

lifeline. About 27% of the users disagreed or strongly disagreed in that they

liked using the lifeline, 40,9% were indifferent, and 31,8% agreed or strongly

agreed.

Figure 5.30: Leaderboard motivated the players to score better

Looking at figure 5.30, the results show that most of the users participating

in the user survey got more motivated to score better because they wanted

their name on the leaderboard. Only three participants disagreed or strongly

disagreed with this statement, 59,1% agreed or strongly agreed, and 27,3%

neither agreed nor disagreed.

70

Figure 5.31: Score bar and levels motivated the users to try again

38,1% of the students strongly agreed in that the score bar and levels mo-

tivated them to try again to score better than last time, and 14,3% agreed.

Four of the students (19%) did not agree or strongly disagreed, whereas 28,6%

of the students were indifferent.

Answers from the optional feedback question presented in the user survey:

• ”Timer on call lifeline should not start before you post the search so

you have a little time to read/look for the answer.”

• ”It was a bit uneventful when i got answers right, i had to look at the

score to find out, but thats a first world problem, nice webquiz!”

• ”I must have missed explanation when answering wrong, maybe more

pop-out/dominant before next round if wrong?”

• ”It would be nice to be able to review all the explanations, at least

after finishing the quiz.”

• ”It has the potential to be good, though this iteration feels very incom-

plete.”

• ”I think it’s a great game!”

• ”Very cool”

• ”Fun, good game!”

71

5.2.4 Ask the Audience (RQ3)

Previously mentioned in 3.3.2 it was talked about how the lifeline ’Ask the

audience’ was evaluated. This section will display the results collected from

doing these tests and show how well the lifeline did in predicting the correct

answers. Table 5.1 shows every result from the testing. Green indicates the

correct answer, while the percentages colored red are instances where the

lifeline was wrong. The rows where it only shows one green cell and no red

cell indicate that the correct answer is the one the lifeline predicted it to be.

After using the lifeline on ten questions, the recorded results were that the

lifeline got six out of ten (6/10) answers correct and four out of ten (4/10)

wrong. When looking at the instances where the lifeline was incorrect, three

out of four (3/4) times the percentage score differed by only two (2%), three

(3%) and six (6%) percent to the correct answer. In contrast, in one case,

it was off by thirty-three percent (33%) and also the lowest scored answer,

with zero percent (0%) of the votes. Out of the four incorrect guesses made

by the audience, the correct answer had the lowest percent score in two of

the cases.

Table 5.1: Table with results from ’Ask the audience’ lifeline tests.

Question n A B C D

1 30% 20% 32% 18%

2 30% 23% 20% 27%

3 0% 0% 100% 0%

4 0% 57% 0% 43%

5 23% 27% 22% 28%

6 0% 100% 0% 0%

7 33.33% 0% 33.33% 33.33%

8 27% 22% 25% 26%

9 22% 28% 25% 25%

10 23% 23% 31% 23%

72

5.3 Discussion

This section will discuss the results of the research questions.

RQ1: Does the use of a quiz-based data-driven game motivate users to learn

software security?

The results indicate that the game was easy to play, and the students partici-

pating in the user survey understood the rules. The in-game help button did

not seem to affect this. It is hard to interpret the results as if they understood

the rules from prior knowledge of the game type. Whether it is intuitive and

they just understood how to play, or that the in-game help button was not

informative enough to make them understand the rules and how to play the

game. With a few exceptions, most of the players found it easy to use the

lifelines, except for the ’call a friend’ lifeline. This lifeline needs further work

to improve usability to be a successful feature in the game. Except for four

out of twenty-two respondents, most users strongly agreed that they enjoyed

playing the quiz. However, when asked if they would like to try it again

several times, the results were not as positive, but still somewhat positive

as about 40% agreed or strongly agreed that they would try it again several

times. Most users found that the leaderboard and score bar motivated them

to score better. All in all, the results indicate that the use of the game can

motivate users to learn software security. By polishing the game, adding new

fun features such as achievements, and improving on already implemented

elements, the game can further motivate users to learn software security.

RQ2: Does the use of a quiz-based data-driven game improve learning soft-

ware security?

When looking at the results from the user survey on learnability, most are

optimistic that the game is a good tool for learning software security, and

most users agree or strongly agree that the quiz game made them learn more

about software security. However, the results also show that seven out of

twenty-two of the users strongly disagreed or disagreed in that their knowl-

edge of the topics presented in the quiz improved by playing, whereas ten out

of twenty-two of the users agreed or strongly agreed. This indicates that the

answer to RQ2 is that the game can potentially improve learning software

73

security. Still, more testing is needed to conclude whether or not the game

can improve learning software security.

RQ3: How to integrate information security sources to automatically answer

questions in the quiz game?

When evaluating the ’Ask the audience’ lifeline, the results showed that the

lifeline predicted the correct answer six out of ten times. The lifeline au-

tomatically answers questions with the help of information security sources,

but not as accurate as was hoped. The lifeline does answer RQ3 by present-

ing a way of integrating websites such as CAPEC and CWE into the game.

A stronger metric should be used to improve the accuracy of the predictions

the lifeline makes.

The optional feedback shows there is still room for improvement to make

the quiz more user-friendly and eventful and make learning more attractive.

Overall, the results are positive and show that a quiz-based game can be an

attractive way of learning software security, but more testing must be done

before concluding this.

74

Chapter 6

Literature Review

This literature review investigates gamification and serious games used to

teach developers about software security. Previous research has shown that

gamification effectively increases user engagement and motivation to learn

through serious games [17]. The aim is to find why previous games have not

succeeded in being used for learning software security. What gamification

elements are used in successful serious games, and what is lacking/missing to

increase the use of teaching software security through a serious game. Seri-

ous games are games with a goal to educate, and not only for entertainment.

There have been earlier studies on the topic of gamification in software se-

curity. Some examples of these types of games are STIX and Stones [9] and

Protection Poker [8].

6.1 Serious Games

6.1.1 STIX and Stones

STIX and Stones is a single-player, data-driven TD educational game to teach

software engineering students about information security knowledge. The

game’s goal is to pick the most suitable mitigation strategy to defend against

various attack patterns. Having a data-driven game eliminates the obstacles

75

of manually adding and editing rules, threats, and mitigations to stay up to

date with the rapid evolution of software security. The game automatically

fetches security information from CAPEC, which stay updated on common

attack patterns. The game does seem like it could offer a lot of fun, especially

with the exciting pick of tower defense as the game type. However, it has not

been successful in being used for teaching software security or being played.

Figure 6.1: STIX and Stones gameplay

Source: Copied from [9]

When looking at the results section from the thesis written on STIX and

Stones [9], some reasons why the game has not been successful in being used

for teaching information security can be:

• Too much initial information in the game for the user to easily ”plug

and play.” The users are missing a gradual introduction (tutorial) to

how to play the game.

• The game is too slow-paced, with too much waiting in between rounds.

• Too much randomness, little learning value.

STIX and Stones is similar to this project’s quiz-based game in that they

76

both integrate public information security repositories with the intention

of learning software security. They both use gamification elements such as

leaderboards and score. However, the game types differ a lot where STIX

and Stones is a TD game, whereas this project’s game is quiz-based.

6.1.2 OWASP Cornucopia

OWASP Cornucopia is a card game whose idea is to assist, mainly Agile,

development teams in identifying application security requirements and de-

veloping user stories that focus on security [38]. OWASP recommends playing

it with a mix of roles but suggests including someone with knowledge of in-

formation security. The game recommends 1.5 to 2.0 hours play time for 4-6

people.

Figure 6.2: OWASP Cornucopia card game

Thompson and Takabi investigated OWASP Cornucopia’s effect on teaching

threat modeling for secure web application developments [39]. They per-

formed an experiment where students undergoing a software security course

77

were split into two groups, where one played the Cornucopia card game,

whereas the other group did not. There were run quizzes before and after

the activity to evaluate the effectiveness. They also issued a survey to mea-

sure the students’ experiment viewpoint. The results showed that the card

game was somewhat effective; however, it was not easy to understand, and

they needed more time to know how to play the game.

OWASP Cornucopia is different from this project’s quiz-based software se-

curity game in that it is a card game, which requires more effort to keep

up-to-date. Cornucopia is more cumbersome to start playing, as the users

have to download and print out the playing cards. It is recommended to

play with a mix of roles, and more than one player, which requires people

to be available simultaneously, whereas the quiz-based game only requires

one player and can be played anywhere. Cornucopia generally requires more

effort than the quiz-based software security game. They are similar in that

they both aim to teach information security.

6.1.3 Elevation of Privilege

Elevation of Privilege (EoP) [40] is another card game focused on teaching

developers about threat modeling. Threat modeling is the process of identi-

fying threats and mitigations to protect an application or software system.

EoP is designed for 3-6 players. Before starting the game, a diagram of the

system to be threat modeled should be available for all players. A card deck

is shuffled and dealt to the players. A round of EoP is played by having

each player read their card, announce the threat and write it down. The

highest card played in the suit that was led wins, unless it is trumped by

an EoP card. Then it is the highest value EoP card played that wins. A

case study done by Tøndel et al. [6] investigated the challenges with adop-

tion of EoP. Some viewpoints from this study are that the game seems to

be too advanced for beginners to play. It requires previous knowledge of the

topic or someone who’s an expert on the matter. The game lacks the ’fun’

part. Some students feel like they are ”playing a random card game while

discussing security issues,” [6] and others dislike the gamification aspect and

78

suggest dropping it altogether. EoP is probably best suited for experienced

software developers and not students, as too much preparation is needed to

play and understand the game entirely. The game does have some positive

effects related to learning about software security. However, it seems to be

too much work to play. This projects quiz-based game is different in that it

doesn’t require more than one player. It is more straightforward in that it

doesn’t require much preparation other than having a computer to open the

website. The rules are simple and intuitive. Both EoP and the quiz-based

game provide learning on information security.

6.1.4 Kahoot!

Kahoot! [25] is a gamified learning platform that engages the students to

actively learn by introducing a scoring system where you compete against

other co-students in a fun and educational way. Kahoot! is commonly used in

classroom sessions to measure the students’ knowledge of a particular subject.

This is done by creating quizzes where each answer has four answer options.

The players are scored by how fast they submit the correct answer before the

time runs out. In between questions, a leaderboard is shown to the players

where it is possible to see who is leading. This motivates players to score

better to have their names displayed on the leaderboard [22]. Competing

against classmates engages the players to focus on scoring better. When each

question has been answered by the end of the quiz, a top-3 leaderboard is

shown. Research shows that Kahoot! mostly has positive effects on learning

in various fields/topics, including technical and engineering fields [41].

79

Figure 6.3: Kahoot!

Source: https://uk.pcmag.com/education/132563/kahoot

Kahoot! and this projects quiz-based game is similar in that they both are

quiz games with four answer options and incorporate gamification elements

such as leaderboards and score. They are different in that the quiz-based

game is focused on teaching software security. It doesn’t require players

to play simultaneously and has implemented other gamification elements to

engage further and motivate the players.

80

Chapter 7

Conclusion and Further Work

The main goal of this thesis has been to create a quiz-based game for teaching

information security in a fun and motivating way. Gamification has been

studied to find elements that increase motivation and engagement. Previous

successful games have been looked into to discover why they are successful

and find inspiration on features to add to the quiz-based software security

game. Existing security games have attempted to teach software security

but have struggled with being adopted to teach the subject. Information

security is a topic with rapid changes as new threats and attacks against

software appear regularly. Therefore, it is essential to incorporate up-to-date

public repositories on the latest weaknesses and attack patterns that threaten

software systems and applications. This is done by introducing them through

in-game features such as the lifelines ’call a friend’ and ’ask the audience.’

RQ3 is answered with the lifeline ’ask the audience,’ which shows one way

of integrating information security sources to answer questions inside the

quiz game automatically. A group of students studying to become software

developers tested the quiz-based game and answered a user survey with its

primary goal of capturing three goals; learnability, usability, and fun, to

answer RQ1 and RQ2. The response from the user survey showed that the

participants gained some knowledge on the topic of software security, and

they believe it can be a good tool for learning this topic. The game showed

81

some weak points when it came to usability, as some users overlooked features

that are meant to increase the learning outcome or didn’t understand how to

use them. Results capturing fun showed that the users enjoyed playing the

quiz game, but not as many were optimistic about playing it again several

times. More elements will need to be implemented to encourage users to

come back to play the game more than a few times. Therefore, the answer

to RQ1 is: Yes, a quiz-based data-driven game can motivate users to learn

software security. However, some work needs to be done for this quiz-based

game to achieve that more successfully. The answer to RQ2 is that more

testing needs to be done. The results are not enough to conclude whether or

not the quiz-based game can be used to improve knowledge on the topic of

information security. However, it has shown the potential that it can become

an attractive tool for learning this subject with a bit of polishing and further

work.

7.1 Suggestions to Further Work

This section will suggest different ideas for further development of the quiz

game that improves the usability of lifelines, usability in general, stronger

functions to enhance existing lifelines, and improvements to increase moti-

vation for users to play the game more.

First of all, general usability improvements are suggested. This includes

highlighting essential features for better learning outcomes, such as the ’ex-

planation’ feature. Feedback shows that some of the users did not even see

this feature and that it should be more visible. An idea could be to high-

light the explanation when a user submits the wrong answer to a question.

Another concept that was given through optional feedback was to provide

the user with an option to review all explanations after finishing the quiz.

All these suggestions are doable with minimal effort and can increase the

learning outcome of the game.

The general design of the quiz could be worked on, as it only works for

desktop computers at the moment. By making the game mobile-friendly,

82

more users can play it whenever, whether they are on the bus or somewhere

they do not have access to a computer.

Gamification elements that can motivate users to continue playing, such as

future rewards in the form of achievements, will help boost motivation for

the user to keep coming back to play more quizzes [4]. Achievements/badges

are a way to reward the users when they have achieved an in-game goal, for

example, when completing five quizzes with a score higher than 60%. The

achievements can motivate learning in a fun way by rewarding good scores.

Achievements/badges work as positive feedback that keeps users continuing

to play to work towards future goals.

The lifeline ’call a friend’ can be worked on to improve usability as feedback

from the user survey implied that the lifeline had challenges in this area.

One idea could be to automatically fetch the quiz question and insert it into

the search field, making it easier for the user. Some users also struggled to

understand that they had to insert a search before selecting their ’friend’ for

the lifeline. This could be improved upon to increase ease of use and remove

any doubts about how the lifeline work. Feedback from users also suggested

making the timer start counting after the user has selected their friend. This

is a good idea and should be an easy fix to improve the lifeline.

Ask the audience is an important feature that incorporates websites revolv-

ing around software security to answer questions given in the quiz automati-

cally. Therefore it should be worked on to improve the accuracy of how well

it predicts the correct answers. This can be done using a stronger metric

to measure how relevant a word is to a document. Term Frequency-Inverse

Document Frequency [42] (TF-IDF) is an example of such a statistical mea-

sure. TF-IDF is a combination of TF and IDF, where they are multiplied.

TF is used to find how many times a word appears in a document, whereas

IDF measures how common a word is in the document set. By multiplying

these, it is possible to find the relevance of a word in a document.

83

Appendix A

Source code and Link to

Quiz-based Game

The source code for the Quiz-based game is available at: https://github.

com/crissb3/soft-sec-prototype.

The quiz-based game can be played using this link: https://soft-sec-prototype.

herokuapp.com/

84

https://github.com/crissb3/soft-sec-prototype
https://github.com/crissb3/soft-sec-prototype
https://soft-sec-prototype.herokuapp.com/
https://soft-sec-prototype.herokuapp.com/

Literature and References

[1] Tosin Daniel Oyetoyan, Daniela Soares Cruzes, and Martin Gilje Gilje

Jaatun. “An Empirical Study on the Relationship between Software

Security Skills, Usage and Training Needs in Agile Settings.” In: 2016

11th International Conference on Availability, Reliability and Security

(ARES) (2016), pp. 548–555.

[2] Open Web Application Security Project. OWASP. url: https : / /

owasp.org/..

[3] Secure Code Warrior. Where does secure code sit on the list of develop-

ment team priorities? url: https://www.securecodewarrior.com/

blog/where-is-secure-code-in-development-team-priorities.

[4] Fiona Fui-Hoon Nah et al. “Gamification of Education: A Review

of Literature.” In: HCI in Business - First International Conference,

HCIB 2014, Held as Part of HCI International 2014, Heraklion, Crete,

Greece, June 22-27, 2014. Proceedings. Ed. by Fiona Fui-Hoon Nah.

Vol. 8527. Lecture Notes in Computer Science. Springer, 2014, pp. 401–

409. doi: 10.1007/978-3-319-07293-7_39. url: https://doi.

org/10.1007/978-3-319-07293-7%5C_39.

[5] Fiona Fui-Hoon Nah et al. “Flow in gaming: literature synthesis and

framework development.” In: Int. J. Information Systems and Man-

agement. Vol. Vol. 1. 2014, pp. 83–124.

[6] Inger Anne Tøndel et al. “Understanding Challenges to Adoption of

the Microsoft Elevation of Privilege Game.” In: Proceedings of the 5th

Annual Symposium and Bootcamp on Hot Topics in the Science of Se-

curity. HoTSoS ’18. Raleigh, North Carolina: Association for Comput-

85

https://owasp.org/.
https://owasp.org/.
https://www.securecodewarrior.com/blog/where-is-secure-code-in-development-team-priorities
https://www.securecodewarrior.com/blog/where-is-secure-code-in-development-team-priorities
https://doi.org/10.1007/978-3-319-07293-7_39
https://doi.org/10.1007/978-3-319-07293-7%5C_39
https://doi.org/10.1007/978-3-319-07293-7%5C_39

ing Machinery, 2018. isbn: 9781450364553. doi: 10.1145/3190619.

3190633. url: https://doi.org/10.1145/3190619.3190633.

[7] Inger Anne Tøndel et al. “Understanding Challenges to Adoption of the

Protection Poker Software Security Game.” In: Computer Security. Ed.

by Sokratis K. Katsikas et al. Cham: Springer International Publishing,

2019, pp. 153–172. isbn: 978-3-030-12786-2.

[8] Laurie Williams, Andrew Meneely, and Grant Shipley. “Protection Poker:

The New Software Security ”Game”;” in: IEEE Security Privacy 8.3

(2010), pp. 14–20. doi: 10.1109/MSP.2010.58.

[9] Dag Erik Homdrum Løvgren. “Data-driven Security Game-STIX and

Stones.” MA thesis. NTNU, 2018.

[10] Common Attack Pattern Enumeration and Classification. CAPEC. url:

https://capec.mitre.org.

[11] Kristie Cameron and Lewis A. Bizo. “Use of the game-based learning

platform KAHOOT! to facilitate learner engagement in Animal Science

students.” In: (2019).

[12] Common Weakness Enumeration. CWE. url: https://cwe.mitre.

org/.

[13] Common Vulnerabilities and Exposures. CVE. url: https://cve.

mitre.org/.

[14] Software Engineering Institute Carnegie Mellon University. SEI CERT

Oracle Coding Standard for Java. url: https://wiki.sei.cmu.edu/

confluence/display/java/SEI+CERT+Oracle+Coding+Standard+

for+Java.

[15] StackOverflow. url: https://stackoverflow.com/.

[16] StackExchange. url: https://stackexchange.com/.

[17] Juho Hamari, Jonna Koivisto, and Harri Sarsa. “Does Gamification

Work? – A Literature Review of Empirical Studies on Gamification.”

In: 2014 47th Hawaii International Conference on System Sciences.

2014, pp. 3025–3034. doi: 10.1109/HICSS.2014.377.

[18] Gabriel Barata et al. “Engaging Engineering Students with Gamifica-

tion.” In: 2013 5th International Conference on Games and Virtual

86

https://doi.org/10.1145/3190619.3190633
https://doi.org/10.1145/3190619.3190633
https://doi.org/10.1145/3190619.3190633
https://doi.org/10.1109/MSP.2010.58
https://capec.mitre.org
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://stackoverflow.com/
https://stackexchange.com/
https://doi.org/10.1109/HICSS.2014.377

Worlds for Serious Applications (VS-GAMES). 2013, pp. 1–8. doi:

10.1109/VS-GAMES.2013.6624228.

[19] Gabriel Barata et al. “Improving Participation and Learning with Gam-

ification.” In: Proceedings of the First International Conference on

Gameful Design, Research, and Applications. Gamification ’13. Toronto,

Ontario, Canada: Association for Computing Machinery, 2013, pp. 10–

17. isbn: 9781450328159. doi: 10.1145/2583008.2583010. url: https:

//doi.org/10.1145/2583008.2583010.

[20] Vı́ctor Arufe Giráldez et al. “Can Gamification Influence the Academic

Performance of Students?” In: Sustainability 14.9 (2022). issn: 2071-

1050. doi: 10.3390/su14095115. url: https://www.mdpi.com/2071-

1050/14/9/5115.

[21] G. Ivanova, V. Kozov, and P. Zlatarov. “Gamification in Software En-

gineering Education.” In: 2019 42nd International Convention on In-

formation and Communication Technology, Electronics and Microelec-

tronics (MIPRO). 2019, pp. 1445–1450. doi: 10.23919/MIPRO.2019.

8757200.

[22] S.A. Licorish, H.E. Owen, and Daniel B. et al. “Students’ perception of

Kahoot!’s influence on teaching and learning.” In: (2018). url: https:

//doi.org/10.1186/s41039-018-0078-8.

[23] Siobhan O’Donovan, James Gain, and Patrick Marais. “A Case Study

in the Gamification of a University-Level Games Development Course.”

In: Proceedings of the South African Institute for Computer Scientists

and Information Technologists Conference. SAICSIT ’13. East London,

South Africa: Association for Computing Machinery, 2013, pp. 242–

251. isbn: 9781450321129. doi: 10 . 1145 / 2513456 . 2513469. url:

https://doi.org/10.1145/2513456.2513469.

[24] Carlos Santos et al. “Students’ Perspectives on Badges in Educational

Social Media Platforms: The Case of SAPO Campus Tutorial Badges.”

In: 2013 IEEE 13th International Conference on Advanced Learning

Technologies. 2013, pp. 351–353. doi: 10.1109/ICALT.2013.108.

[25] J. Brand A. I. Wang M. Versvik and J. Brooker. Kahoot! url: https:

//kahoot.it/.

87

https://doi.org/10.1109/VS-GAMES.2013.6624228
https://doi.org/10.1145/2583008.2583010
https://doi.org/10.1145/2583008.2583010
https://doi.org/10.1145/2583008.2583010
https://doi.org/10.3390/su14095115
https://www.mdpi.com/2071-1050/14/9/5115
https://www.mdpi.com/2071-1050/14/9/5115
https://doi.org/10.23919/MIPRO.2019.8757200
https://doi.org/10.23919/MIPRO.2019.8757200
https://doi.org/10.1186/s41039-018-0078-8
https://doi.org/10.1186/s41039-018-0078-8
https://doi.org/10.1145/2513456.2513469
https://doi.org/10.1145/2513456.2513469
https://doi.org/10.1109/ICALT.2013.108
https://kahoot.it/
https://kahoot.it/

[26] Henrik Kniberg. Scrum and XP from the Trenches: Enterprise Software

Development. Lulu.com, 2007. isbn: 1430322640.

[27] chercher tech. agile methodology. url: https://chercher.tech/jira/

agile-methodology.

[28] Rini Solingen et al. “Goal Question Metric (GQM) Approach.” In: Jan.

2002. isbn: 9780471028956. doi: 10.1002/0471028959.sof142.

[29] Nooralisa Mohd Tuah and Gary B. Wills. “Measuring the Applica-

tion of Anthropomorphic Gamification for Transitional Care; A Goal-

Question-Metric Approach.” In: Computational Science and Technol-

ogy. Ed. by Rayner Alfred et al. Singapore: Springer Singapore, 2020,

pp. 553–564.

[30] Jotform. url: https://www.jotform.com/blog/quiz-vs-test/.

[31] Heroku. url: https://www.heroku.com.

[32] Spring Boot. url: https://spring.io/projects/spring- boot#

overview.

[33] Spring Data JPA. url: https://spring.io/projects/spring-

data-jpa.

[34] Severin Hacker Luis von Ahn. Duolingo.

[35] Sony Pictures Television. Who Wants to Be a Millionaire?

[36] Adam Atkins, Vanissa Wanick, and Gary Wills. “Metrics Feedback

Cycle: measuring and improving user engagement in gamified eLearn-

ing systems.” In: International Journal of Serious Games 4.4 (Dec.

2017). doi: 10.17083/ijsg.v4i4.192. url: https://journal.

seriousgamessociety.org/index.php/IJSG/article/view/192.

[37] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.

“Introduction to Informational Retrieval.” In: (2008), pp. 100–123.

[38] OWASP. OWASP Cornucopia. url: https://owasp.org/www-project-

cornucopia/.

[39] Mark Thompson and Hassan Takabi. “EFFECTIVENESS OF USING

CARD GAMES TO TEACH THREAT MODELING FOR SECURE

WEB APPLICATION DEVELOPMENTS.” In: Issues in Information

Systems 17.3 (2016).

88

https://chercher.tech/jira/agile-methodology
https://chercher.tech/jira/agile-methodology
https://doi.org/10.1002/0471028959.sof142
https://www.jotform.com/blog/quiz-vs-test/
https://www.heroku.com
https://spring.io/projects/spring-boot#overview
https://spring.io/projects/spring-boot#overview
https://spring.io/projects/spring-data-jpa
https://spring.io/projects/spring-data-jpa
https://doi.org/10.17083/ijsg.v4i4.192
https://journal.seriousgamessociety.org/index.php/IJSG/article/view/192
https://journal.seriousgamessociety.org/index.php/IJSG/article/view/192
https://owasp.org/www-project-cornucopia/
https://owasp.org/www-project-cornucopia/

[40] Adam Shostack. “Elevation of privilege: Drawing developers into threat

modeling.” In: 2014 USENIX Summit on Gaming, Games, and Gam-

ification in Security Education (3GSE 14). 2014.

[41] Alf Inge Wang and Rabail Tahir. “The effect of using Kahoot! for learn-

ing – A literature review.” In: Computers and Education 149 (2020),

p. 103818. issn: 0360-1315. doi: https://doi.org/10.1016/j.

compedu.2020.103818. url: https://www.sciencedirect.com/

science/article/pii/S0360131520300208.

[42] Fayola Peters et al. “Text Filtering and Ranking for Security Bug Re-

port Prediction.” In: IEEE Transactions on Software Engineering 45.6

(2019), pp. 615–631. doi: 10.1109/TSE.2017.2787653.

[43] Common Configuration Enumeration. CCE. url: https://cce.mitre.

org/about/index.html.

[44] Cyber Observable eXpression Archive Website. CybOXTM. url: https:

//cyboxproject.github.io/.

[45] Malware Attribute Enumeration and Characterization. MAECTM. url:

https://maecproject.github.io/about-maec/.

[46] Open Source Vulnerability Database. OSVDB. url: https://cve.

mitre.org/data/refs/refmap/source-OSVDB.html.

89

https://doi.org/https://doi.org/10.1016/j.compedu.2020.103818
https://doi.org/https://doi.org/10.1016/j.compedu.2020.103818
https://www.sciencedirect.com/science/article/pii/S0360131520300208
https://www.sciencedirect.com/science/article/pii/S0360131520300208
https://doi.org/10.1109/TSE.2017.2787653
https://cce.mitre.org/about/index.html
https://cce.mitre.org/about/index.html
https://cyboxproject.github.io/
https://cyboxproject.github.io/
https://maecproject.github.io/about-maec/
https://cve.mitre.org/data/refs/refmap/source-OSVDB.html
https://cve.mitre.org/data/refs/refmap/source-OSVDB.html

	Glossary
	Acronyms
	Introduction
	Research Questions
	Method and Evaluation
	Contributions
	Outline

	Background
	Public Information Security Repositories
	CWE
	CAPEC
	CVE
	SEI CERT Oracle Coding Standard for Java
	Stackoverflow

	Gamification
	Game Types

	Methodology
	Process
	Prototype
	Evaluation
	Learnability, Usability, and Fun
	How to Integrate Public Information Security Sources to Answer Questions Automatically
	Quiz Questions

	Design and Implementation
	Architecture
	Spring Boot
	Spring JPA

	Conceptualization Stage
	Integration of Public Security Content
	Quiz and Question Creator for Admin Users

	Results and Discussion
	Quiz Game
	Findings to Research Questions
	Learnability (RQ2)
	Usability (RQ1)
	User Enjoyment/Fun (RQ1)
	Ask the Audience (RQ3)

	Discussion

	Literature Review
	Serious Games
	STIX and Stones
	OWASP Cornucopia
	Elevation of Privilege
	Kahoot!

	Conclusion and Further Work
	Suggestions to Further Work

	Source code and Link to Quiz-based Game

