
A Compiler and
Runtime Environment

for Execution of
Coloured Petri Net Models

Andreas Garvik

Master’s thesis in Software Engineering at

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

May 2022

1

Abstract

Reliance on software systems is ever increasing in our world. Alongside the
application of concurrent software systems that embody communication, syn-
chronization and resource sharing. Many problems in software engineering have
strict requirements regarding concurrency and correctness. Designing correct
concurrent software is challenging, and a range of formalisms and tools exists
that can help the development process. Coloured Petri nets are an extension
of the mathematical concept of Petri nets and a widely used language for spec-
ification and modelling concurrent systems. CPN Tools is a tool for editing,
simulating, and analyzing Coloured Petri nets models. A need has been iden-
tified to develop new software tools to execute Coloured Petri net models to
facilitate further development and increase portability. This thesis proposes a
compiler and a runtime environment for Coloured Petri nets using the F# pro-
gramming language and the .NET platform. The result is a CPN simulation
system consisting of a compiler that can parse a .cpn file and generate code and a
simulator that can use the code generated and execute the model. A state-space
exploration strongly supports the functional correctness of the system.

2

Acknowledgements

I would like to thank my supervisor Lars Michael Kristensen. It has indeed been
a pleasure and honour having you as my supervisor. Your knowledge and your
ability to present it so clearly are inspiring. You have given me great support
and explanations when needed, and I have always felt welcome at your office.

3

Contents

1 Introduction 6
1.1 Context and Motivation . 7
1.2 Research Questions and Expected Results 7
1.3 Related Work . 8
1.4 Outline . 9

2 Background 10
2.1 Two-phase commit protocol example 10
2.2 Coloured Petri nets . 11
2.3 CPN Tools . 12
2.4 Core concepts . 13

2.4.1 Multi-sets . 14
2.4.2 Marking . 14
2.4.3 Colour-sets and Variables 14
2.4.4 Bindings . 14
2.4.5 Enabling and Occurrence 15
2.4.6 Executing a CPN model 15

3 Compiler and Runtime Environment 16
3.1 Overview . 16
3.2 F# and the .NET Platform . 20

3.2.1 Discriminated Unions, Tuples and Records 20
3.2.2 Option type . 20
3.2.3 Pattern matching . 20
3.2.4 Code quotations and F# Compiler Service 21

3.3 Multi-set implementation in F# 22
3.4 F# as inscription language . 24

4 Parsing and Code Generation 26
4.1 Loader Component . 26

4.1.1 Declarations . 27
4.1.2 Places, Arcs and Transitions 31

4.2 Parser Component . 35
4.2.1 Arc expressions . 36
4.2.2 Marking . 37
4.2.3 AbstractTransitions and AbstractArcs 37
4.2.4 Finding the free variables 39

4

4.2.5 Simple types . 40
4.2.6 Pattern binding basis . 41
4.2.7 Enabling . 43
4.2.8 Occurrence . 43

4.3 Output Component . 43

5 Enabling and Occurrence 45
5.1 Overview . 45
5.2 Enabling of bindings . 46

5.2.1 Binding type . 46
5.2.2 Binding and partially binding functions 47
5.2.3 Enabling functions . 49

5.3 Occurrence of bindings . 50
5.3.1 Occurrence function . 51

6 Evaluation 52
6.1 Simulation . 53
6.2 State-Space Exploration . 54
6.3 Performance . 55
6.4 Examples . 56

6.4.1 Dining Philosophers . 56
6.4.2 Simple Protocol . 58
6.4.3 Resource Allocation . 59
6.4.4 Distributed Database . 60

7 Conclusion and Further Work 62
7.1 Conclusion . 62
7.2 Future work . 63

A Source code 64

B State Space Exploration in CPN Tools 65

5

Chapter 1

Introduction

Software engineering is about building trustworthy, reliable and correct soft-
ware systems. Today, many applications are distributed systems and can han-
dle concurrency, which may introduce subtle bugs that can be hard to identify
during development and in a running system. It might be of great help and
sometimes necessary to build a model of the system to be developed.

Modelling is a standard part of the development process in other engineering
disciplines. It can help test and validate the system built, verify its correctness,
substitute as an early prototype, and paint a bigger picture of the behaviour by
simulation. There is a range of different kinds of models to create, modelling
languages to use and tools that can be used for this purpose. Coloured Petri
nets [47] (CPN) is a modelling language that emphasizes correctness and builds
on a solid mathematical foundation.

The main goal of this master’s thesis is to implement a compiler and a run-
time environment for Coloured Petri net models, a CPN simulation system able
to parse, represent, simulate and execute CPN models. We chose to develop
this system in the F# programming language [1], originally designed and im-
plemented at Microsoft Research [2]. F# runs on the .NET platform [3] and is
an open-source, functional-first, general-purpose, strongly typed language that
appeared in 2005 [52].

6

1.1 Context and Motivation

Coloured Petri net is a graphical modelling language used by the industry in
many areas such as network architectures, healthcare, protocols and military
defence [49]. In [49], four different case studies have been selected to illustrate
how CPN can be used in various software development phases, design, validation
and implementation. CPN relies on a functional programming language that
emphasizes expressions and declarative programming.

Today, the primary tool used to create CPN models is CPN Tools [47]. How-
ever, there are difficulties associated with the further development of this tool.
Issues regarding the technologies used to build the tool, for instance, the Stan-
dard ML programming language [4], which today lacks current support. Another
issue is the amount of technical debt accumulated related to using the BETA
programming language [5] to implement the graphical user interface. Develop-
ing new tools with newer and more modern technologies such as F# and the
.NET platform will increase the portability and availability of CPN software
tools. Furthermore, it will better facilitate research and further development.

The general industry use of CPN is a valid argument for pursuance. There
will be much interest in software tools for working with and evaluating CPN
models, especially portability. The prevalence of the .NET platform will largely
strengthen portability. More examples of large-scale practical use of CPN are
available online [6]. In addition, there exists a large international Petri Nets
community [7] organizing conferences worldwide.

Modelling and verification of software can be fundamental in cases where the
code is not trivial to change at a later stage. An example is in the context of the
ongoing research project, SFI Smart Ocean [8]. CPN and the software developed
in this thesis can help develop devices to be submerged underwater, and the
overall software architecture of the application and development platform being
developed in the SFI Smart Ocean project.

1.2 Research Questions and Expected Results

This thesis is centered around the following research questions.

RQ1. How can F# be used as inscription language in CPN models?

RQ2. How can F# and the .NET platform be used to implement a compiler
that generates code representing CPN models?

RQ3. How can F# and the .NET platform be used to develop a runtime envi-
ronment for the simulation of CPN models?

7

The F# programming language shares a lot of language concepts, syntax and
features with Standard ML, the language used as both the inscription language
and implementation language in CPN Tools. Both emphasize functional prin-
ciples and have strong language support for pattern matching. Other similar
alternatives may include the Scala programming language [9], running on the
Java Virtual Machine, or the Haskell programming language [10], a purely func-
tional programming language. Nevertheless, F# was chosen based on its strong
support for pattern matching and support for expression-orientated program-
ming, which is essential when used as an inscription language for CPN models, as
we will later discuss. High-quality libraries and features for metaprogramming
are also valid arguments. In addition, the seamless interoperation between F#
code and C# code which could be used to develop a GUI makes F# a powerful
candidate technology.

Regarding RQ1, the expected result is that F# can be used as the inscription
language in CPN models due to its similarities with Standard ML. Regarding
RQ2 and RQ3, F# is a mature language with a massive amount of libraries
available from the .NET platform. Also, everything written in any language
for the .NET platform is callable from F#. The FSharp Compiler Service [11]
makes it possible to host the compiler or an interactive evaluation session in the
application, equipping it with the capabilities to parse and evaluate expressions.

1.3 Related Work

Kristensen and Christensen showed [50] how Standard ML could be used to
implement CPN. They relied heavily on the pattern matching capabilities of
the language and introduced two essential enabling inference algorithms. This
thesis draws much inspiration from the paper.

There exist many tools for Petri nets [12], but some might not still be avail-
able due to lack of current support. Many of them for working with high-level
Petri Nets developed using different programming languages for inscription and
implementation.

Renew - The Reference Net Workshop [13] is a multi-formalism editor and
simulator. It is written in Java and uses Java as inscription language, and it
takes a more object-oriented approach, supporting object-based modelling. The
use of Java has its benefits, such as running anywhere the Java virtual machine is
available, but the programming language limited support for pattern matching.

The Helena Petri net tool [14] is a tool for high-level Petri nets which can be
used for analysis and model checking. It has its own specification language and
can possibly interface with C code. It can perform a state-space exploration,
which will be discussed in later chapters.

ITS-tools [15] is a model-checker that supports a variety of formalisms. It
uses its own concrete formalism called GAL, which has a C-like syntax, but
offers import capabilities of Petri nets that will handle conversion to GAL.

8

Wolfgang [16] is a tool to create models, supporting, among others, Coloured
Petri nets as defined in the SEPA library [17].

Other existing tools for working with Place/Transition nets, sometimes called
just Petri nets, are mist [18], PTN [19], PN-Suite [20], Tina [21], TAPAAL
[22] and yasper [23]. CozyVerify [24] another software tool related to Petri
Nets, which uses its own defined inscription language, which may have some
limitations regarding the unfolding of models.

The difference between the mentioned alternative software tools and our sys-
tem developed in this thesis is mainly the technology and the programming
paradigm. We wanted to build the CPN simulator system with well established
and modern technologies and focused on the functional programming paradigm.
We also chose a path of compilation, where we produce code to be used to exe-
cute models. In contrast, other tools chose only to interpret the model and keep
everything in the environment. To the best of our knowledge, no compilers exist
that can translate CPN models created in CPN Tools to any other language or
platform or any run-time environment for CPN models using F# and the .NET
Platform.

1.4 Outline

In the rest of this thesis, the CPN simulation system developed will some-
times be referred to only as the system and the chapters are structured as
follows. Chapter 2 introduces CPN and CPN Tools using a two-phase commit
protocol as an example. Chapter 3 gives a high-level view of the compiler and
the run-time environment that has been implemented, its structure, and its
components. It also presents the key features of F# and .NET that the system
depends on. Chapter 4 takes a deeper dive into the parsing and the code gen-
eration part of the system, showing precisely how its implemented. Chapter 5
shows the role enabling and occurrences play in the simulation of a CPN model
and how the generated code is used. Chapter 6 discusses the overall system,
performance and correctness and shows how it works on some representative
examples. Finally, Chapter 7 concludes on research questions, presents some
limitations and proposes future work and improvements.

The thesis assumes the reader to be familiar with programming, but no prior
knowledge of Coloured Petri nets is assumed. The F# programming language
and the .NET platform will not be presented and explained in their entirety.
The reader can find more information about them in [25] and [26], respectively.

9

Chapter 2

Background

This chapter gives the reader the background information necessary to under-
stand the rest of this thesis. A two-phase commit protocol is introduced, which
will be used throughout this thesis to exemplify and explain the different con-
cepts of CPN and the CPN simulation system developed. A brief introduction
to Coloured Petri nets and CPN Tools is also given.

2.1 Two-phase commit protocol example

Database servers use the protocol to handle transactions that modify data on
multiple database servers [27]. Every transaction has a coordinator process and
one or more worker processes. A sequence diagram illustrating the interaction
and communication between the entities is shown in Figure 2.1. The coordinator
decides whether a transaction should be committed or aborted, and the role is
given to the current database server. It sends a prepare message to all the
workers. Each worker responds if it is ready to carry out the transaction with
a vote in the form of a yes/no message. The coordinator then collects the
responses and decides based on the votes. The decision message sent to the
participants are either an commit or abort message. If all workers vote yes, the
message is to commit and carry out the transaction. If some workers vote yes,
but others do not, the message is to abort the task. The abort message is only
sent to those workers that votes yes. In both cases, the workers voting yes send
an acknowledgement in return. If none of the workers voted yes, no message
needs to be sent and the protocol loops back to the start. Two worker processes
are used in this protocol example for the rest of the thesis.

10

Figure 2.1: Sequence diagram of the two-phase commit protocol

2.2 Coloured Petri nets

Coloured Petri net is, as mentioned in the introduction, a graphical language
for formal modelling and validation of concurrent systems. It is an extension of
Petri nets [51] and belongs to the class of high-level Petri nets [48]. This implies
that Petri nets are combined with a programming language. Petri nets provide
the formal foundation for modelling concurrency and synchronization, and the
programming language provides the primitives for modelling data manipulation
and creating compact and parameterizable models.

A CPN model consists of places, transitions and arcs. Jensen’s formal defi-
nition of CPN syntax and semantics can be found in [46]. In short, places may
hold tokens. A token is a value of a defined type. All the tokens present on
places constitute the model’s state, called a marking. A model is a bipartite
graph connecting transitions and places through arcs. Transitions may be en-
abled in a given marking, and enabled transitions may occur. A transition is
enabled if sufficient tokens exist on the places connected to it via input arcs.
The evaluation of the expressions on the input arcs determines the tokens re-
moved from the places. Evaluating the expressions on the output arcs connected
to a transition determines the tokens added to the places connected. When a
transition occurs, the removal and addition of tokens happen instantaneously.
An occurrence of a transition will result in a new marking of the system, called
a step in the execution of the model. When considering interleaving semantics,
only a single transition may occur in each step. Concurrent semantics is another
option, where it is possible to execute more than one transition concurrently,
but it is not considered in this thesis. A place may only contain the type of
tokens defined by its associated type (colour-set). The marking of a place is a
multi-set of token values. A multi-set may have multiple tokens with the same
value. Multi-sets will be explained in more depth later. For more details on
CPN, the reader is suggested to consult the article [47].

11

2.3 CPN Tools

The two-phase commit protocol can be created as a CPN model using CPN
Tools [53]. The CPN model of the protocol is shown in Figure 2.2. The model
uses Standard ML as the inscription language, which the only supported. The
left part is the coordinator, and the right part is the workers.

CanCommit

Worker

Votes

WorkerxVote

Acknowledge

Worker

Decision

WorkerxDecision

Waiting
Votes

Waiting
Acknowledgements

Workers

Coordinator
Idle

() Worker
Idle

Worker

Worker.all ()

Waiting
Decision

Worker

Collected Votes

WorkerxVotes

[]

SendCanCommit

Receive
Acknowledgements

Receive
CanCommit

Receive
Decision

AllVotes
Collected

[All votes]

Collect
OneVote

workers

Worker.all ()

workers

w

if vote = Yes
then 1`w
else empty

w

w

if vote = No
then 1`w
else emptyw

(w,vote)

(w,decision)

w

votes

votes

[]

AddVote ((w,vote),votes)

YesWorkers votes
InformYesWorkers votes

(w,vote)

1 1`()

2
1`wrk(1)++
1`wrk(2)

1 1`[]

Figure 2.2: CPN model of the two-phase commit protocol in CPN Tools

A place is oval-shaped, a transition is a squared box, and arrows represent the
arcs connecting them. The green highlight around the SendCanCommit transition
(top left) means it is enabled and may occur. The green objects next to the
places are the tokens present on that particular place in the current marking.
The green circular number is the total amount of tokens on the place. The green
square is the multi-set. In the multi-set, the number before the apostrophe ’

is the number of appearances, and the value is after. The declarations defined
in the model are shown in Listing 2.1 below, written in Standard ML and the
CPN ML programming language defined in [48]. CPN ML is based on Stan-
dard ML and extends it with constructs for colour-set definitions and variable
declarations. The keywords from CPN ML are highlighted in purple color.

12

1 // Types
2 colset Worker = index wrk with 1..W;
3 colset Workers = list Worker;
4 colset Vote = with Yes | No;
5 colset WorkerxVote = product Worker * Vote;
6 colset WorkerxVotes = list WorkerxVote;
7 colset Decision = with abort | commit;
8 colset WorkerxDecision = product Worker * Decision;
9

10 // Variables
11 var w: Worker;
12 var workers : Workers;
13 var vote : Vote;
14 var votes : WorkerxVotes;
15 var decision : Decision;
16
17 // Values
18 val W =2;
19
20 // Functions
21 fun AddVote ((w,vote),votes) = (w,vote) :: votes;
22 fun yesVotes votes =
23 List filter
24 (fn (w,vote) => vote = Yes)
25 votes;
26 fun YesWorkers votes =
27 List.map (fn (w,_) => w) (yesVotes votes)
28 fun allYes votes = (List.length (yesVotes votes) = W);
29 fun InformYesWorkers votes =
30 let
31 val yesworkers = YesWorkers votes
32 val decision =
33 (if (List.length yesworkers = W) then commit else abort)
34 in
35 List.map (fn w => (w,decision)) yesworkers
36 end
37 fun All votes = (List.length votes = W)

Listing 2.1: Declarations defined in the two-phase commit protocol

Tokens are being removed and added according to the direction of the arrows.
The text on the arcs represents the expressions evaluated when transitions occur.
Empty arc expressions implicitly contain the unit value (). The unit value is the
only value of the type unit, which is often used to represent void in functional
programming languages. The AllVotesCollected transition also has a guard in
square brackets next to it, which is an additional condition to be satisfied for
the transition to be enabled.

2.4 Core concepts

Below are some core concepts that need to be explained more in-depth for
the reader to understand the later chapters better.

13

2.4.1 Multi-sets

A multi-set can be formally defined using the definition in [50] as follow, a
multi-set over a domain is a function from the domain into the set of natural
numbers. A multi-set may contain multiple tokens with the same value, indi-
cated by the number. Basic operations on multi-sets are addition ++, subtraction
-- and comparison <<=. The detailed semantics will be shown later. Shown be-
low is a representation of a multi-set from the example protocol. The number
before the carets is the natural number indicating the quantity, and the token
value is after. The operation is addition which means that similar values would
have been joined and indicated with an increase in the number of appearances.

1ˆ(Wrk 1, No) ++ 1ˆ(Wrk 2, Yes)

2.4.2 Marking

A marking consists of all the multi-sets of tokens on all the places in the
model. The first marking of a model is the initial marking and represents the
starting state. The marking shown in Figure 2.2 is the initial marking of the
two-phase commit protocol, where the tokens initially present on the places are
defined by the expression in the upper right next to the place.

2.4.3 Colour-sets and Variables

A colour-set is the same as a type. In Listing 2.1, types are defined with
the colset keyword from CPN ML. A variable is a declared identifier used in
arc expression to bind to a token value, declared with the var keyword from
CPN ML. As an example, the w present on the arc between CanCommit place
and the Receive CanCommit transition in Figure 2.2. The variable is declared
in the Listing 2.1 to be of type Worker, an index type, meaning a type with a
limited number of values indicated by the with operator. A variable declaration
is not a concept in the F# programming language, but the .NET platform has
support for it. Later chapters will show how this is handled. The lack of variable
declarations in F# is one reason why we kept the CPN ML constructs.

2.4.4 Bindings

Variables on arcs connected to a transition belong to the transition. We need
to create a binding between the variables and tokens on connected input places.
The binding is needed in order for tokens to be removed from an input place
and added to an output place, which happens through the occurrence of the
transition. For example, the w variable just mentioned belong to the Receive

CanCommit transition and needs to be bound to some token on the CanCommit

place. Each transition, arc and place combination makes up a binding type,
there as many binding types as there are transitions. A binding type contains
all the variables of a transition, meaning that some bindings may only cover a
subset of the variables of the transition, resulting in a partial binding. Partial
bindings need to be merged to create complete bindings. Partial bindings and
merging are formally defined in [50].

14

2.4.5 Enabling and Occurrence

As briefly mentioned, an enabled transition may occur. A transition is enabled
if sufficient tokens exist on the connected input places to create a complete
binding, and any guard is satisfied. When a transition occurs, the tokens from
the enabled binding are removed from the input places, and tokens are added
to the output place as defined by evaluating the corresponding arc expression.

2.4.6 Executing a CPN model

For steps of a CPN model to be executed, the mentioned enabled bindings for
the transitions need to be created. The challenges regarding this problem are
presented and discussed in [50], and a token-based inference mechanism based
on pattern matching is proposed, shown in Figure 2.3 below.

Figure 2.3: Pure arc expression based inference algorithm [50]

The algorithm first finds a pattern binding basis for a transition on line 1, the
minimum set of arcs with input arc expressions covering all the variables of a
transition. The input arc expressions must be patterns. Line 3 goes through
the arcs E in the pattern binding basis, p represents the connected place and t

the connected transition. Line 6 partially binds a field b’ of the binding type,
a variable in the transition, with a token value c present on the place in the
marking M. Line 7 checks if something got bound and, if so populates the partial
binding C’ with the bound field. Line 11 merges the partial bindings to create
complete bindings C. Line 14 and line 15 check the guard and verify that there
exist sufficient tokens on the input places, respectively.

15

Chapter 3

Compiler and
Runtime Environment

This chapter presents a high-level overview of the compiler and the runtime
environment, referred to as the system. It introduces the main features of the
F# programming language and the .NET platform used in the CPN simulation
system. It also shows how F# can be used as an inscription language for CPN
models.

3.1 Overview

Figure 3.1 below presents a high-level view of the different components in the
system developed in this thesis. The input is a .cpn file, and the output is a
F# .NET library. The stick figures represent user interaction, and the dotted
lines represent that the user needs to have the files. Square boxes are different
F# .NET projects in .NET solution. Boxes right next to each other symbolize
dependency. The Loader component used data structures from the Syntax com-
ponent, and the Parser component used data structures from the Semantic com-
ponent. The data structures in the Syntax and Semantic component are mainly
used to structure the information gathered about the CPN model through the
different parsing and analysis parts of the compiler found in the Loader and the
Parser components. The information passed between the different components
is written as text on the arrows. For instance, between the Loader component
and the Parser component, a value of type CpnModel is passed, which will be
presented in the next chapter. The arrow going out from the Output component,
reading Code, is supposed to represent the output of F# code into .fs files.

16

Figure 3.1: A high-level view of the compiler and runtime environment

The system works, as shown below, by having a user call the command line
interface component Cli and pass a reference to a .cpn file containing a CPN
model with functions, inscriptions, initial markings, and arc expressions written
in F#. For our example, the command will be as follows.

dotnet run --project src/compiler/Cli examples/TPC/model/tpc.cpn

This file reference is passed to the Loader component, which opens the file and
loads the information. The colour-set definitions are parsed, and equivalent type
definitions in F# are generated. In Listing 3.1 below are some of the definitions
with the CPN ML version in a comment above to compare. One reason why we
chose this approach was to be able to use the definitions from already existing
models created in CPN Tools.

1 // colset Worker = index wrk with 1..W;
2 type Worker =
3 | Wrk of int
4 static member all() = [for i in 1..W -> Wrk(i)]
5
6 // colset Vote = with Yes | No;
7 type Vote = |Yes |No

Listing 3.1: Examples of CPN ML definitions translated into F#

17

The variable declarations and their type information are also collected. The
functions and values definitions, written in F#, are appended to the type defi-
nitions and placed into a data structure called CpnModel, defined in the Syntax,
alongside the variable declarations. The Loader also collects the necessary in-
formation about the places, arcs and transitions. All this information is kept in
strings, as it is what comes from the .cpn file. Listing 3.2 shows the information
about one place, one arrow and one transition. This information is kept and
outputted to a separate file for development and debugging purposes and is not
directly used by the CPN simulation system. The id fields are used to connect
places, arcs and transitions.

1 // Place
2 { id = "ID1591819253"
3 name = "CoordinatorIdle"
4 colset = "UNIT"
5 initialMarking = Some "1ˆ()" }
6
7 // Arcs
8 { place = "ID1591819253"
9 transition = "ID1591819228"

10 expr = "1ˆ()"
11 direction = PT }
12
13 // Transition
14 { id = "ID1591819228"
15 name = "SendCanCommit"
16 guard = None; }

Listing 3.2: Information about a place, an arc and a transition

The Parser does several types and error checks to ensure that the generated
F# code is valid. The checks are listed below.

1. Type errors in inscriptions and declarations.

2. Type mismatch between place and initial marking.

3. Type mismatch between arc expressions and place.

4. Type error in guard, not a Boolean value.

5. F# syntax errors in inscriptions and declarations.

6. Use of undefined types on a place.

7. Verify that variables on output arc expressions are a subset of variables
on input arc expressions or simply typed.

For instance, if the arc expression (w,vote) on the arc between the transition
ReceiveCanCommit and the place Vote is changed to only w, the compiler would
respond with an error message shown below and abort the compilation.

w is not of type WorkerxVote
CPN model contains errors.

18

The Parser component uses the defined data structures in the Semantic com-
ponent to structure and format the different artefacts generated. It passes them
to the Output component once created. Depicted on the arrow between the
Parser and the Output components are the names of the different constructs
generated. Some of these are briefly explained below, and some will be ex-
plained in more detail in later chapters.

Declarations are type and function definitions similar to what is shown in
Figure 2.1 in the last chapter.

The Marking is the state of the model consisting of multi-sets of tokens. Each
place is represented with a field in the marking with the same name as the
place. Shown below in Listing 3.3 is the marking for the two-phase commit
protocol. The MultiSet type is shown later in this chapter, and how the marking
is generated is shown in the next chapter.

1 type Marking =
2 { CanCommit: Worker MultiSet
3 Votes: WorkerxVote MultiSet
4 Acknowledge: Worker MultiSet
5 Decision: WorkerxDecision MultiSet
6 WaitingVotes: UNIT MultiSet
7 WaitingAcknowledgements: Workers MultiSet
8 CoordinatorIdle: UNIT MultiSet
9 WorkerIdle: Worker MultiSet

10 WaitingDecision: Worker MultiSet
11 CollectedVotes: WorkerxVotes MultiSet }

Listing 3.3: The marking type of the two-phase commit protocol

The rest of the constructs are discussed later but briefly explained, Bindings
are types of bindings that bind token values to free variables. Binds/PartBinds

are functions used to partially bind free variables to a binding and find all the
possible bindings of variables. Enablings are functions that filter through all
bindings and return the enabled bindings in the current marking. Occurrences

is a function that handles the occurrence of a chosen binding and returns a
new marking. All these constructs are necessary to simulate the execution of a
model. The Output component is responsible for outputting the generated code
in F# files and creating a F# .NET library for the Simulator component.

19

3.2 F# and the .NET Platform

Some features and libraries from the F# programming language and the .NET
platform play a significant role in the CPN simulation system. These will be
presented and discussed below.

3.2.1 Discriminated Unions, Tuples and Records

Discriminated unions [28] and Tuples [29], often called sum types and product
types, respectively, are defined data types in F#. They are called algebraic
data types in the world of functional programming [30]. F# also has records
[31]. We use these data types to carry and structure the information about the
CPN model through the different components of the system. In Listing 3.4 are
some types from the Semantic component representing a variable and an arc
expression. A star * is the constructor of a product type.

1 type Var =
2 { id: string
3 colset: string }
4
5 type ArcExpr =
6 | Expr of string * string * bool
7 | Pattern of string * string * bool

Listing 3.4: Examples of Discriminated Unions, Tuples and Records in F#

3.2.2 Option type

The Option type [32] is the way to handle null values in F#. It is a sum
type with two values, None represens no value and Some x carries some value,
symbolized by the x.

3.2.3 Pattern matching

The system relies heavily on the pattern matching capability of F#. Pattern
matching is a prevalent feature in functional programming languages, and F#
has strong support. The pattern matching is essential in the system when it
comes to matching the pattern on an arc to tokens residing on the connected
places. It is also a key feature when working with algebraic data types as the
data inside the type is extracted by matching its constructor, called destruc-
turing. For example, arc expressions that are patterns can be used in function
definitions to destructure the argument passed, as shown below in Listing 3.5.
It is not a function that takes two parameters, but one tuple of type WorkerVote

that is destructured. The Option type is also used in the code.

1 type WorkerxVote = Worker * Vote
2
3 fun (w,vote) ->
4 { u = Some ()
5 vote = Some vote
6 votes = None
7 w = Some w }

Listing 3.5: Example of the use of pattern matching

20

3.2.4 Code quotations and F# Compiler Service

Code quotations [33] is a language feature of F# supporting metaprogram-
ming. A code quotation can be explained as an unevaluated F# expression. It
is delimited so that it is compiled into an object that represents an F# expres-
sion. Below is an example of a code quotation. When this code is evaluated,
the expr is bound to the value <@ 2 + 2 @> and is of type Expr<int>, meaning
that when the expression is evaluated the result will be of type int.

let expr : Expr<int> = <@ 2 + 2 @>

The F# Compiler Service [34] is a collection of the compiler tools that are part
of the official F# compiler, made accessible to be used programmatically from
F# code. This includes the tokenizer, type-checker, parser of the compiler and
the possibility to host an interactive evaluation session. The last one is essential
in regards to our system. The .NET platform comes with an interactive F#
read-eval-print loop (REPL), which can be created in code as shown below in
Listing 3.6.

1 let fsiSession =
2 FsiEvaluationSession.Create(
3 FsiEvaluationSession.GetDefaultConfiguration(),
4 [| "fsi.exe"
5 "--noninteractive"
6 "--nologo"
7 "--gui-" |],
8 new StringReader(""),
9 new StringWriter(StringBuilder()),

10 new StringWriter(StringBuilder())
11)

Listing 3.6: How to create a hosted interactive evaluation session

Hosting this REPL in code is significant because it can evaluate F# expres-
sions or interactions (operations with side effects that are not valid F# expres-
sions, for instance, declarations or printing). The hosted interactive evaluation
session enables the system to evaluate strings as expressions. We can check if
an expression is valid. For instance, check if an arc expression is of the correct
type and/or whether it is a pattern.

Combining the quote quotations and the F# Compiler Services enables us
to translate, for instance, an arc expression from a string into a value of type
Expr, as shown below in in Listing 3.7. Type reflection [35] is used to convert
the result from an object the Expr type on line 7.

21

1 let evalExpr<’a> expr =
2 let result, =
3 fsiSession.EvalExpressionNonThrowing expr
4
5 match result with
6 | Choice1Of2 (Some value) ->
7 value.ReflectionValue |> unbox<’a>
8 | Choice1Of2 None ->
9 failwith "null or no result"

10 | Choice2Of2 (exn: exn) ->
11 failwith (sprintf "exception %s" exn.Message)
12
13 let expr = evalExpr<Expr> $"<@ {arcExpr} @>"

Listing 3.7: A use of the hosted interactive evaluation session

The result on line 2 can be one of three different types defined by the F#
Compiler Service creators. Choice1Of2 (Some value) means that the expression
was valid and correctly evaluated and contains a return value. Choice1Of2 None

means that the evaluation was valid and correctly evaluated, but the expression
did not have a return value. Choice2Of2 means that the expression was not
valid, and some error occurred. It is the first type we need to focus on, as
the expression is supposed to return a value of type Expr containing the arc
expression.

The value contained inside the Option returned from the function fsiSession.

EvalExpressionNonThrowing is of type object, meaning some simple unboxing [36]
is necessary to get it into the Expr type. The Expr type is passed as a generic
argument indicated to the right of the function name <’a>. The possibility this
enables is that expr, created in line 13, can be pattern matched on the structure
of the expression, similar to the traversal of an abstract syntax tree. We use
this to extract the free variables on the arc expressions, as shown in the next
chapter. The Expr type also has some useful methods to get type information.

3.3 Multi-set implementation in F#

The multi-set is a significant construct in the system used to manage the
tokens on places. A slight difference between the multi-set implementation used
in our project versus the one used in CPN Tools is the use of the caret ∧ symbol
to create multi-sets. This is because the apostrophe ’ is reserved for generic type
definitions in F#, as we just showed an example of in Listing 3.7 and the back-
quote ‘ is also reserved [37]. Shown below in Listing 3.8 is the implementation of
the multi-set using the F# Map [38]. The function listToMs is a helper function
used in arc expressions to convert a list to a multi-set, shown in the next section.
The last function msMap is also a helper function used in the process of finding
enabled bindings, as will be shown in later chapters.

22

1 type MultiSet<’a when ’a: comparison> =
2 { multiset: Map<’a, int> }
3
4 let empty = { multiset = Map.empty }
5
6 let isEmpty ms = Map.isEmpty ms.multiset
7
8 let (ˆ) x c = { multiset = (Map.add c x Map.empty) }
9

10 let (++) ams bms =
11 { multiset =
12 (Map.fold
13 (fun ms c x ->
14 match Map.tryFind c ms with
15 | Some x’ -> Map.add c (x + x’) ms
16 | None -> Map.add c x ms)
17 ams.multiset
18 bms.multiset) }
19
20 let (<<=) ams bms =
21 Map.forall
22 (fun c x ->
23 match Map.tryFind c bms.multiset with
24 | Some x’ -> x <= x’
25 | None -> false)
26 ams.multiset
27
28 let (--) ams bms =
29 if bms <<= ams then
30 { multiset =
31 (Map.fold
32 (fun ms c x ->
33 match Map.tryFind c ms with
34 | Some x’ ->
35 let n = x’ - x in
36 (match n with
37 | 0 -> Map.remove c ms
38 | -> Map.add c n ms)
39 | None -> Map.add c x ms)
40 ams.multiset
41 bms.multiset) }
42 else
43 invalidOp
44 "Cannot perform the operation with the given arguments"
45
46 let listToMs list =
47 list
48 |> List.fold (fun acc i -> acc ++ (1 ˆ i)) empty
49
50 let msMap (parbind: ’a -> ’b) tokens =
51 Map.fold (fun pb c -> parbind c :: pb) [] tokens.multiset

Listing 3.8: The multi-set implementation in F#

23

3.4 F# as inscription language

As mentioned earlier, F# shares many similarities with Standard ML, the
inscription language used in models created with CPN Tools. F#, as a func-
tional programming language, supports many expression constructs, meaning
constructs that return a value. Expression-orientated programming works per-
fectly in line with arc expressions. The changes needed to translate Standard
ML code into valid F# are small. It is sometimes just a matter of small syntac-
tical differences. Shown below in Figure 3.2 is the two-phase commit protocol
using F# as the inscription language. When comparing the two models, it is
easy to see that the change is quite small. One change is using the listToMs

function, shown in the previous section, in arc expressions. CPN Tools has a
layer in between the GUI and the simulator that automatically converts lists to
multi-sets. We have no such automatic conversion in our system. The creation
of multi-sets is also slightly changed, using the caret ∧ symbol, as discussed
in the previous section. Empty values needs to be typed, for instance, the arc
expression ([] : WorkerxVotes) from the AllVotes Collected transition to the
Collected Votes place. Furthermore, the functions use camelCase naming, as
is the convention in F# [39].

CanCommit

Worker

Votes

WorkerxVote

Acknowledge

Worker

Decision

WorkerxDecision

Waiting
Votes

Waiting
Acknowledgements

Workers

Coordinator
Idle

1^() Worker
Idle

Worker

Worker.all() |> listToMs

Waiting
Decision

Worker

Collected Votes

WorkerxVotes

1^[]

SendCanCommit

Receive
Acknowledgements

Receive
CanCommit

Receive
Decision

AllVotes
Collected

[all votes]

Collect
OneVote

1^()

1^()

1^()

workers

Worker.all() |> listToMs

workers |> listToMs

w

if vote = Yes
then 1^w
else empty

w

w

if vote = No
then 1^w
else emptyw

(w,vote)

(w,decision)

w

votes

votes

([] : WorkerxVotes)

addVote ((w,vote),votes)

yesWorkers votes

1^()

1^()

informYesWorkers votes |> listToMs

(w,vote)

Figure 3.2: The two-phase commit protocol using F# as inscription language

Shown below in Listing 3.9 are the values and function definitions for the two-
phase commit protocol translated into F#, the type and variable definitions are
the same as in 2.1, because the translation is handled by the Loader component,
as mentioned earlier.

24

1 // Values
2 let W = 2
3
4 // Functions
5 let addVote ((w, vote), votes) = (w, vote) :: votes
6 let yesVotes votes =
7 List.filter (fun (, vote) -> vote = Yes) votes
8 let yesWorkers votes =
9 List.map (fun (w,) -> w) (yesVotes votes)

10 let allYes votes = (List.length (yesVotes votes) = W)
11 let informYesWorkers votes =
12 let yesworkers = yesWorkers votes
13 let decision =
14 (if (List.length yesworkers = W) then
15 Commit
16 else
17 Abort) in
18 List.map (fun w -> (w, decision)) yesworkers
19 let all votes = (List.length votes = W)

Listing 3.9: Values and function declarations in F#

For comparison, shown again in Listing 3.10 are the values and function def-
initions in the two-phase commit protocol in Standard ML.

1 // Values
2 val W =2;
3
4 // Functions
5 fun AddVote ((w,vote),votes) = (w,vote) :: votes;
6 fun yesVotes votes =
7 List.filter (fn (w,vote) => vote = Yes) votes;
8 fun YesWorkers votes =
9 List.map (fn (w,_) => w) (yesVotes votes)

10 fun allYes votes = (List.length (yesVotes votes) = W);
11 fun InformYesWorkers votes =
12 let
13 val yesworkers = YesWorkers votes
14 val decision =
15 (if (List.length yesworkers = W)
16 then commit
17 else abort)
18 in
19 List.map (fn w => (w,decision)) yesworkers
20 end
21 fun All votes = (List.length votes = W)

Listing 3.10: Values and function declarations in Standard ML

We conclude that using F# as the inscription language in Coloured Petri net
models is relatively straightforward.

25

Chapter 4

Parsing and
Code Generation

This chapter goes into more detail about the Loader and the Parser compo-
nents introduced in the previous chapter. It shows how the parsing and code
generation are achieved by using the features and libraries from F# and the
.NET platform, also introduced in the previous chapter. The different constructs
and artefacts to be generated that is necessary to simulate a CPN model were
briefly presented in the previous chapter and will be presented and discussed in
more depth here.

4.1 Loader Component

The Loader component is loading the .cpn file, containing the two-phase com-
mit protocol model, passed to it using a library called FSharp.Data [40]. The
library includes F# Type Providers [41], which can dynamically create F# types
at compile time from external structured data to be used in a program. The
types are inferred based on the values inside the .cpn file provided. The Loader

component finds the declarations, including types (colour-sets), variables, values
and functions, places, arcs and transitions, as shown below.

26

4.1.1 Declarations

The types (colour-sets) from the two-phase commit protocol are represented
in the .cpn file as shown below in Listing 4.1. The listing only shows some of
the types in the model. In the case of the Enum type (enumeration), starting
on line 20, the id element on line 21 is the name of the type (Vote) and the id

elements on line 23 and 24 are the type values.

1 <workspaceElements>
2 <cpnet>
3 <globbox>
4 <block>
5 <id>Workers</id>
6 <color id="ID1429585792">
7 <id>Worker</id>
8 <index>
9 <ml>1</ml>

10 <ml>W</ml>
11 <id>wrk</id>
12 </index>
13 </color>
14 <color id="ID1429641807">
15 <id>Workers</id>
16 <list>
17 <id>Worker</id>
18 </list>
19 </color>
20 <color id="ID1429586016">
21 <id>Vote</id>
22 <enum>
23 <id>Yes</id>
24 <id>No</id>
25 </enum>
26 </color>
27 <color id="ID1429618174">
28 <id>WorkerxDecision</id>
29 <product>
30 <id>Worker</id>
31 <id>Decision</id>
32 </product>
33 </color>
34 ...
35 </block>
36 ...
37 </globbox>
38 </page>
39 </workspaceElements>

Listing 4.1: Example of type definitions in a .cpn file

With the help of the FSharpData library, it is possible to access children of an
XML element with the dot operator as, for instance, shown on line 2 in Listing
4.2 below. All the color elements from the .cpn file in Listing 4.1 above are
collected into a list accessible from the Colors field on the Blocks field (lines
4-35), as shown in line 3 below. These colour-sets are then translated into F#
type definitions. For instance, Enum on line 16 is translated into a F# sum type
definition. Keeping the CPN ML type definitions and translating, rather than
beforehand creating equivalent F# types, enables the reuse of existing type
(colour-set) definitions in existing models created in CPN Tools.

27

1 let declarations =
2 workspaceElements.Cpnet.Globbox.Blocks
3 |> Array.collect (fun b -> b.Colors)
4 |> Array.map (fun c ->
5 let colset =
6 match c.Index with
7 | Some t ->
8 let id = t.Id
9 $"\n | {id} of int\n

10 static member all() =
11 [for i in {t.Mls[0]}..{t.Mls[1]} -> {id}(i)]"
12 | None ->
13 match c.List with
14 | Some t -> $"{t.Id} list"
15 | None ->
16 match c.Enum with
17 | Some t ->
18 t.Ids
19 |> Array.map (fun i -> $"\n |{i}")
20 |> String.concat ""
21 match c.Product with
22 | Some t -> $"{t.Ids[0]} * {t.Ids[1]}"
23 | None -> failwith $"Unknown type of: {c.Id}"
24 ...
25 $"\n type {c.Id} = {colset}")

Listing 4.2: Finding types in the model

The translation of the index type is shown on lines 6-11. The index type gets
translated into a sum type with one named constructor and includes a member
function all() used to get all its values. The translation of the list type is
shown on lines 13-15. The list type simply gets translated into a F# list.
The translation of the enum type is shown on lines 16-20. The enum type gets
translated into a sum type with one named constructor that takes no arguments
for every value. The translation of the product type is shown on lines 21-23.
The product type gets translated into a F# Tuple. Line 25 creates a string
containing a valid F# type definitions, completing the map function starting at
line 4. The result is an array of strings, ready to be both outputted into an F#
file and evaluated in a hosted interactive evaluation session.

Shown below in Listing 4.3 are the resulting F# types. The CPN ML version
is placed in a comment above. Some examples were shown in the previous
chapter in Listing 3.1, but are shown again here for completeness.

28

1 // colset Worker = index wrk with 1..W;
2 type Worker =
3 | Wrk of int
4 static member all() = [for i in 1..W -> Wrk(i)]
5
6 // colset Workers = list Worker;
7 type Workers = Worker list
8
9 // colset Vote = with Yes | No;

10 type Vote = |Yes |No
11
12 //colset WorkerxVote = product Worker * Vote;
13 type WorkerxVote = Worker * Vote
14
15 // colset WorkerxVotes = list WorkerxVote;
16 type WorkerxVotes = WorkerxVote list
17
18 // colset Decision = with abort | commit;
19 type Decision = |Abort |Commit
20
21 // colset WorkerxDecision = product Worker * Decision;
22 type WorkerxDecision = Worker * Decision

Listing 4.3: Type definitions in the two-phase commit protocol translated into
F#

Listing 4.4 shows a variable declaration in the two-phase commit protocol in
the .cpn file. The id element on line 7 is the name of the type (Worker), and
the id element on line 9 is the identifier name of the variable (w).

1 <workspaceElements>
2 <cpnet>
3 <globbox>
4 <block>
5 <var id="ID1429585855">
6 <type>
7 <id>Worker</id>
8 </type>
9 <id>w</id>

10 </var>
11 ...
12 </block>
13 ...
14 </globbox>
15 </page>
16 </workspaceElements>

Listing 4.4: Example variable declarations in a .cpn file

29

Getting the global list of variables in the CPN model is relatively straightfor-
ward, as shown below in Listing 4.5.

1 let vars =
2 workspaceElements.Cpnet.Globbox.Blocks
3 |> Array.collect (fun b -> b.Vars)
4 |> Array.map
5 (fun v -> v.Ids |> Array.map (fun id -> id, v.Type.Id))
6 |> Array.concat
7 |> Array.append topLevelVars
8 |> Map.ofArray

Listing 4.5: Finding variables in the model

One thing to pay attention to is that CPN Tools allows declarations to be
placed inside both block element and inside the top-level globbox element.
Hence both places need to be searched and are so in a special order to not
refer to something not yet declared in other declarations. Line 7, in the listing
above, shows how the variables considered are appended to the existing list of
top-level variables topLevelVars.

The problem was more intricate regarding the function and values defini-
tion and was solved by choosing an evaluation order, we chose to evaluate the
declarations as follow; top-level functions and value definitions, top-level types
(colour-sets) definitions, types (colour-sets) definitions and functions and value
definitions. Shown below in Listing 4.6 is how the top-level declarations and
declarations inside block elements are found. On line 18, declarations is a list of
all the previous collected declarations, it is appended to the other declarations.

1 let topLevelDeclarations =
2 workspaceElements.Cpnet.Globbox.Mls
3 |> Array.map (fun ml ->
4 "\n " + ml.ToString().Trim()
5 |> WebUtility.HtmlDecode)
6
7 ...
8 // Finding top level type definitions
9 // Finding type definitions

10 ...
11
12 let declarations =
13 workspaceElements.Cpnet.Globbox.Blocks
14 |> Array.collect (fun b -> b.Mls)
15 |> Array.map (fun ml ->
16 "\n " + ml.ToString().Trim()
17 |> WebUtility.HtmlDecode)
18 |> Array.append declarations
19 |> Array.toList

Listing 4.6: Finding function and value definitions in the model

30

4.1.2 Places, Arcs and Transitions

The information that the .cpn file contains about the places, the arcs and the
transitions are structured in the types shown below, with the type CpnModel as
the top-level type, shown below in Listing 4.7.

1 type CpnModel =
2 { name: string
3 vars: Map<string, string>
4 declarations: string list
5 cpnModule: CpnModule }

Listing 4.7: The CpnModel type definition

The name field is taken from the name of the provided XML file. The vars

field represents the declared variables in the model, represented as a F# Map
where the identifier is the key, and the type is the value. The declarations field
is the types (colour-sets), values and functions. The declarations are kept as a
list of strings because it is valid F# code that will be outputted to a F# file and
put inside the hosted interactive evaluation session by the Parser component.
The cpnModule field contains the places, transitions and arcs shown below in
Listing 4.8. For now, our system only works with models contained inside a
single module.

1 type CpnModule =
2 { name: string
3 places: Place list
4 transitions: Transition list
5 arcs: Arc list }

Listing 4.8: The CpnModule type definition

The name field is the module’s name in CPN Tools. Every model needs to
reside in a module (page). The Place type is shown below in Listing 4.9.

1 type Place =
2 { id: string
3 name: string
4 colset: string
5 initialMarking: string option }

Listing 4.9: The Place type definition

The name field is the name of the place. The colset field describes the type
of tokens the place may hold. The initialMarking field describes the tokens on
this place in the initial marking. It is an option type because some places may
not have an initial marking. The Transition type is shown below in Listing
4.10.

1 type Transition =
2 { id: string
3 name: string
4 guard: string option }

Listing 4.10: The Transition type definition

31

The name field is the name of the transition. The guard field is a boolean
expression that needs to be satisfied for this transition to be enabled. It is
optional as indicated by the option. The Arc type and the Direction are shown
below in Listing 4.11.

1 type Direction = | PT | TP | DB
2 type Arc =
3 { place: string
4 transition: string
5 expr: string
6 direction: Direction }

Listing 4.11: The Arc and Direction type definitions

The place field is the identifier of the place the arc connects to. The transition
field is the identifier of the transition the arc connects to. The expr field is the
expression on the arc. The direction field is the direction of the arc, defined as
its own discriminated union type. PT is from a place to a transition, TP is from
a transition to a place, and DB represents a double arc in both directions.

A place in the .cpn file is represented as shown below in Listing 4.12. The
text element on line 5 is the place’s name, the text element on line 7 is the type
(colour-set) of the place and the text element on line 10 is the initial marking on
the place. The F# type provider also notices that the text element on line 10,
representing the initial marking, does not always contain something and infers
it to be an Option type.

1 <workspaceElements>
2 <cpnet>
3 <page>
4 <place id="ID1591819610">
5 <text>Worker Idle</text>
6 <type id="ID1591819611">
7 <text>Worker</text>
8 </type>
9 <initmark id="ID1591819612">

10 <text>Worker.all() |> listToMs</text>
11 </initmark>
12 </place>
13 ...
14 </page>
15 </workspaceElements>

Listing 4.12: A place in a .cpn file

32

Similarly, as above, access to the element is possible with the dot operator
as shown below in Listing 4.13. Some trimming of the strings needs to be done
because we will be using the values to name generated types and functions.

1 let places =
2 workspaceElements.Cpnet.Page.Places
3 |> Array.map (fun p ->
4 { id = p.Id
5 name = Regex.Replace(p.Text, @"\s+", "")
6 colset = p.Type.Text.ToString().Trim()
7 initialMarking =
8 Option.map
9 (fun im -> im.ToString().Trim())

10 p.Initmark.Text })
11 |> Array.toList

Listing 4.13: Finding places in the model

A transition in the .cpn file is represented as shown below in Listing 4.14. The
text element on line 5 is the name of the transition. The F# type provider also
notices that the text element on line 8, representing the guard, is not always
containing something and infers it to be an Option type.

1 <workspaceElements>
2 <cpnet>
3 <page>
4 <trans id="ID1591819598">
5 <text>Receive CanCommit</text>
6 </trans>
7 <cond id="ID1591819599">
8 <text/>
9 </cond>

10 ...
11 </page>
12 </workspaceElements>

Listing 4.14: A transition in a .cpn file

Similarly, as above, access to the element is possible with the dot operator as
shown below in Listing 4.15. Some trimming of the strings also needs to be done
here because we will be using the values to name generated types and functions.

1 let transitions =
2 workspaceElements.Cpnet.Page.Trans
3 |> Array.map (fun t ->
4 { id = t.Id
5 name = Regex.Replace(t.Text, @"\s+", "")
6 guard =
7 Option.map
8 (fun im -> im.ToString().Trim()) t.Cond.Text })
9 |> Array.toList

Listing 4.15: Finding transition in the model

33

An arc in the .cpn file is represented as shown below in Listing 4.16. The
idref attribute on the transend element on line 6 is the id of the transition the
arc connects to. The idref attribute on the placeend element on line 7 is the
id of the place the arc connects to, and the text element on line 9 is the arc
expression. Note how the idref attributes correspond to the id attributes on
the place and transition shown above.

1 <workspaceElements>
2 <cpnet>
3 <page>
4 <arc id="ID1591819632"
5 orientation="PtoT">
6 <transend idref="ID1591819598"/>
7 <placeend idref="ID1591819610"/>
8 <annot id="ID1591819633">
9 <text>w</text>

10 </annot>
11 </arc>
12 ...
13 </page>
14 </workspaceElements>

Listing 4.16: An arc in a .cpn file

Similarly, as above, access to the element is possible with the dot operator
as shown below in Listing 4.17. The Orientation field of the arc is found by
pattern matching. It represents the direction of the arc. A Direction type is
used and will be shown shortly.

1 let arcs =
2 workspaceElements.Cpnet.Page.Arcs
3 |> Array.map (fun a ->
4 let direction =
5 match a.Orientation with
6 | "PtoT" -> PT
7 | "TtoP" -> TP
8 | "BOTHDIR" -> DB
9 | -> failwith "Arc orientation not supported"

10
11 let expr =
12 a.Annot.Text.ToString().Trim().Replace(’\n’, ’ ’)
13
14 { place = a.Placeend.Idref
15 transition = a.Transend.Idref
16 expr = expr
17 direction = direction })
18 |> Array.toList

Listing 4.17: Finding arcs in the model

The listings above show how the model information is extracted from the pro-
vided .cpn file into string values. Most of them are already inferred as strings
by the F# type provider, be further parsed and evaluated by the Parser com-
ponent.

34

4.2 Parser Component

The Parser component is parsing the information it obtains from the Loader

component shown in the previous section. As discussed in the previous chapter,
it mainly uses the hosted interactive evaluation session and code quotations to
analyse the information. In order for the hosted interactive evaluator session
to properly evaluate the expression we pass, we first need to put the multi-set
implementation and all the declarations of the model in the environment. We do
this by simply having it evaluate the code, as shown below in Listing 4.18. We
also check and verify that the declarations are valid at this stage. The multi-set
implementations is put in an .fsx file, which is a script file [42], in the same
directory as the Parser component.

1 let checkIfValid msg code =
2 let result, = fsiSession.EvalInteractionNonThrowing code
3
4 match result with
5 | Choice1Of2 -> ()
6 | Choice2Of2 -> failwith msg
7
8 ...
9

10 fsiSession.EvalScript (SOURCE DIRECTORY + "/MultiSet.fsx")
11 fsiSession.EvalInteraction "open MultiSet"
12
13 cpnModel.declarations
14 |> List.iter
15 (fun decl ->
16 checkIfValid (sprintf "Declaration is not valid: %s" decl) decl)

Listing 4.18: Putting multi-set implementation and declarations in environment

The checkIfValid function shown above is a general function used to catch
errors in the model and put declarations in the environment, with its first pa-
rameter as the thrown error message if the second argument is not valid. In this
case, an error is thrown if the p.colset is not a defined type in the session. It
is also used to put variables in the environment in order for the arc expressions
to properly be evaluated. If this is not done, the hosted interactive evaluation
session will throw an error similar to the use of an undefined value or construc-
tor. The result value on line 2 in the listing above will be of type Choice2Of2.
The way this problem is solved is shown below.

let variableName = Unchecked.defaultof<typeName>

Here we make use of a module in FSharp.Core called Unchecked [43] which
includes a function to generate a default value for any type. Shown below in
Listing 4.19 is how this is used combined with the checkIfValid function to
populate the environment of the hosted interactive evaluation session with the
variables defined in the two-phase commit protocol model.

35

1 cpnModel.vars
2 |> Map.iter (fun id colset ->
3 checkIfValid
4 (sprintf "Variable declaration is not valid:\n %s : %s" id

colset)
5 $"let {id} = Unchecked.defaultof<{colset}>")

Listing 4.19: Putting variable declarations in environment

4.2.1 Arc expressions

We need to analyse the arc expressions to determine if they are patterns
because those will be used to generate essential constructs later. In F#, only
valid patterns may be placed inside a match expression as shown below.

match expr with | pattern -> ()

We can use this approach to find which arc expressions are patterns because
if we try to replace the pattern above with the arc expression, we will know if
it is a pattern based on whether it is valid F# code or not. Shown below in
Listing 4.20 is how this is used.

1 let checkTypeAndIfPattern arcExpr colset =
2 let isMultiset = checkTypeAndIfMultiset arcExpr colset
3
4 let result, =
5 fsiSession.EvalInteractionNonThrowing
6 $"let fn expr = match expr with | {arcExpr} -> ()"
7
8 match result with
9 | Choice1Of2 -> Pattern(arcExpr, colset, isMultiset)

10 | Choice2Of2 -> Expr(arcExpr, colset, isMultiset)

Listing 4.20: Determining if arc expression is a pattern

If this interaction is valid, result on line 4 is of type Choice1Of2 and matches
that branch, and we have determined that it is indeed a pattern. Otherwise, it
is a regular F# expression because using the arc expression as a branch in the
F# match expression was not valid. The checkTypeAndIfMultiset function on
line 2 verifies that the arc expression is correctly typed if it is of the same type
as the place it is connected to. At the same time, it checks whether or not the
expression is a multi-set because arc expressions can be multi-set expressions.
The function is shown below in Listing 4.21.

36

1 let checkTypeAndIfMultiset expr t =
2 let result, =
3 fsiSession.EvalInteractionNonThrowing
4 $"fun () -> {expr} : MultiSet<{t}>"
5
6 match result with
7 | Choice1Of2 -> true
8 | Choice2Of2 ->
9 let result, =

10 fsiSession.EvalInteractionNonThrowing
11 $"fun () -> {expr} : {t}"
12
13 match result with
14 | Choice1Of2 -> false
15 | Choice2Of2 ->
16 sprintf "%s is not of type %s" expr t |> failwith

Listing 4.21: Checking the type of an arc expression and if it is a multi-set

4.2.2 Marking

We generate the marking type of the model as a record data structure, re-
sponsible for the representation of the state. A simple run through the defined
places as shown below in Listing 4.22 is sufficient, with a check if the defined
place has a valid and defined type as colour-set.

1 let marking =
2 cpnModel.cpnModule.places
3 |> List.map (fun p ->
4 checkIfValid
5 (sprintf "Type is not declared: %s" p.colset)
6 $"type t = | T of {p.colset}" (p.name, p.colset))
7 |> fun fields -> { places = fields }

Listing 4.22: How the marking type is generated

4.2.3 AbstractTransitions and AbstractArcs

In order to generate the code for bindings, binding functions and partially
binding functions, information from the model needs to be parsed and processed.
Types were created to define the necessary data and structure it during the
process. These are shown below in Listing 4.23.

1 type AbstractTransition =
2 { transition: Transition
3 vars: Set<Var>
4 inArcs: AbstractArc list
5 outArcs: AbstractArc list }

Listing 4.23: The AbstractTransition type

37

An AbstractTransition constitutes the information required for making a
binding type, the binding and partially binding functions. The transition field
is a reference to the transition. The last chapter showed the type. The vars

field is the set of variables associated with the transition, i.e. present in arc
expressions or guards of the transition. It constitutes fields in the binding
record type. The inArcs field is the arcs in which the direction points toward
the transition, and outArcs is the arcs in which the direction is pointing outward
the transition. Other types used to structure necessary data are the Var type,
the ArcExpr type and the AbstractArc type, shown below in Listing 4.24. The
reader can recognize the ArcExpr as the type returned in Listing 4.20.

1 type Var = { id: string; colset: string }
2
3 type ArcExpr =
4 | Expr of string * string * bool
5 | Pattern of string * string * bool
6
7 type AbstractArc =
8 { arcExpr: ArcExpr
9 freeVars: Var list

10 inPlace: Place option
11 outPlace: Place option }

Listing 4.24: The Var, ArcExpr and AbstractArc types

An AbstractArc constitutes information used by an AbstractTransition, in-
cluding the connected places, the free variables on the arcs, and the arc expres-
sion type. The arcExpr field represents the arc expression and is defined as a
sum type with two values; The Expr value is a F# expression, and the Pattern

value indicates that the arc expression is a pattern. The freeVars field contains
the arc expression variables that need to the bound to tokens. A Var type is
defined to keep track of the variable’s identifier and type. The inPlace option
and outPlace option fields contain a connected place if this arc is an input arc
to the transition or an output arc to the transition, respectively.

Transitions may optionally have guards, which need to be checked to verify
that they are Boolean expressions. The guards are placed in square brackets,
representing an array literal in F#, so the check is to test if the expression is
a list of Booleans. Listing 4.25 below showns how we check the guard and find
the free variables. The findFreeVars function is shown and discussed in the
following subsection.

1 let vars =
2 match t.guard with
3 | Some g ->
4 checkIfValid
5 (sprintf "%s is not of type bool" g)
6 $"fun () -> {g} : bool list"
7 let guardVars = findFreeVars g cpnModel.vars |> Set.ofList
8 Set.union arcVars guardVars
9 | None -> arcVars

Listing 4.25: Checking type and finding free variable on guards

38

4.2.4 Finding the free variables

Finding the free variables in an arc expression or a guard is shown below
in Listing 4.26. It is achieved by combining code quotations and the hosted
interactive evaluation session. The arc expression passed as an input parameter
called expr is placed inside a code quotation and evaluated in the session. The
expr is of type Expr and can be matched on its content. Some uninteresting
pattern matching constructs are not shown to save some space. The matching
is quite similar to visiting nodes in an abstract syntax tree and is the reason
for the recursive function findFreeVarsRec. Matching PropertyGet means a free
variable and stems from the fact that the defined variables of the model are
defined in the environment.

1 let findFreeVars expr (declVars: Map<string, string>) =
2 let expr = evalExpr<Expr> $"<@ {expr} @>"
3
4 let rec findFreeVarsRec expr declVars acc =
5 match expr with
6 ...
7 | Lambda (, expr) ->
8 findFreeVarsRec expr declVars acc
9 | Call (, , exprList) ->

10 (exprList
11 |> List.collect
12 (fun e -> findFreeVarsRec e declVars acc))
13 @ acc
14 | IfThenElse (expr1, expr2, expr3) ->
15 findFreeVarsRec expr1 declVars acc
16 @ findFreeVarsRec expr2 declVars acc
17 @ findFreeVarsRec expr3 declVars acc @ acc
18 | PropertyGet (, info,) ->
19 try
20 { id = info.Name
21 colset = Map.find info.Name declVars }
22 :: acc
23 with
24 | :? KeyNotFoundException -> acc
25 ...
26 findFreeVarsRec expr declVars List.Empty

Listing 4.26: Finding the free variables in an arc expression

39

4.2.5 Simple types

One important check to be made about the input and output variables on
input and output arcs, respectively, in a transition, is to verify that the output
variables are a subset of the input variables found in arc expressions categorized
as patterns. If this is not the case, the difference needs to be variables with
simple types. We want the variables to be of simple types because when we try
to find all possible enabled bindings for a transition, an unlimited number of
values means an unlimited number of enabled bindings, which is impossible to
calculate. Simple types is defined as types with a finite and small set of values,
Boolean or sum types with constrained fields. Shown below in Listing 4.27 are
the two simple types defined in the two-phase commit protocol. In this case,
they are sum types with named constructors that take no arguments.

1 type Vote =
2 | Yes
3 | No
4
5 type Decision =
6 | Abort
7 | Commit

Listing 4.27: Simple types defined in the two-phase commit protocol

Types of variables are checked using the hosted interactive evaluation session
and reflection. Shown below in Listing 4.28 is the code that determines if a
variable is simply typed. The input parameter is the variable’s identifier, or its
name, named as just id. The F# reflection namespace needs to be opened, and
beginning at line 6 is the interesting part. The expression passed to the hosted
interactive evaluation session. The if-branch checks whether the type is a sum
type (union), and if so, it checks if all its possible values are constrained by the
lack of fields in its union cases, the else branch is simply checking if the type is
Boolean.

1 let isSimplyTyped id =
2 fsiSession.EvalInteraction "open FSharp.Reflection"
3
4 let result, =
5 fsiSession.EvalExpressionNonThrowing
6 $"let t = (<@ {id} @>.Type)
7 in if FSharpType.IsUnion t
8 then FSharpType.GetUnionCases t
9 |> Array.forall

10 (fun i -> i.GetFields().Length = 0)
11 else t = typeof<bool>"
12
13 match result with
14 | Choice1Of2 (Some value) ->
15 value.ReflectionValue |> unbox<bool>
16 ...

Listing 4.28: Function to determine if a variable is simply typed

40

4.2.6 Pattern binding basis

To define the partially binding functions of transitions, we need to find the
pattern binding basis. The pattern binding basis of a transition is the smallest set
of input arcs, which arc expressions are patterns, that covers all the variables of
the transition. To cover means in this context, be responsible for the binding.
This pattern binding basis is used to create the partially binding functions
almost directly. Shown below in Listing 4.29 is the code to find it with an
abstract transition as input. It is a greedy algorithm. The arcs are sorted
based on the number of free variables in the arc expression. The ones with
the most variables are considered first. The sorting is not shown because it
is unimportant, but patArcs on line 3 contains the sorted list. The recursive
function defines a base case at line 12, if the variables to be covered are now
covered, we are finished, and the collected arcs in arcsInPbb are returned at line
13. If not, the list of arcs to consider is pattern matched to handle the case. If
it is empty at line 16, simple types are the only variables left to be added. If the
list contains more arcs at line 22, the arcs at the head of the list are considered
and are added to the pattern binding basis if their variables contribute to an
increase in the covering set check at line 25.

1 let findPatternBindingBasis (at: AbstractTransition) =
2 // Sorting the arcs with most variables first
3 let patArcs =
4 ...
5
6 let rec findPatternBindingBasisRec
7 (toCover: Set<Var>)
8 (covering: Set<Var>)
9 (patArcs: AbstractArc list)

10 arcsInPbb
11 =
12 if toCover = covering then
13 arcsInPbb
14 else
15 match patArcs with
16 | [] ->
17 let simpleTypeNotCovered =
18 Set.difference toCover covering
19 let aVars = Set.union covering simpleTypeNotCovered
20 findPatternBindingBasisRec
21 toCover aVars patArcs arcsInPbb
22 | head :: tail ->
23 let newCovering =
24 Set.union covering (head.freeVars |> Set.ofList)
25 if Set.count newCovering = Set.count covering
26 then
27 findPatternBindingBasisRec
28 toCover covering tail arcsInPbb
29 else
30 findPatternBindingBasisRec
31 toCover newCovering tail (head :: arcsInPbb)
32
33 findPatternBindingBasisRec
34 at.vars Set.empty patArcs List.Empty

Listing 4.29: Finding the pattern binding basis of a transition

41

To exemplify what is happening above, consider the case of the transition
ReceiveCanCommit, shown again in Listing 4.1. It has two input arcs and three
output arcs, and only the input arc expressions are considered when finding the
pattern binding basis.

CanCommit

Worker

Votes

WorkerxVote

Acknowledge

Worker

Decision

WorkerxDecision

Waiting
Votes

Waiting
Acknowledgements

Workers

Coordinator
Idle

1^() Worker
Idle

Worker

Worker.all() |> listToMs

Waiting
Decision

Worker

Collected Votes

WorkerxVotes

1^[]

SendCanCommit

Receive
Acknowledgements

Receive
CanCommit

Receive
Decision

AllVotes
Collected

[all votes]

Collect
OneVote

1^()

1^()

1^()

workers

Worker.all() |> listToMs

workers |> listToMs

w

if vote = Yes
then 1^w
else empty

w

w

if vote = No
then 1^w
else emptyw

(w,vote)

(w,decision)

w

votes

votes

([] : WorkerxVotes)

addVote ((w,vote),votes)

yesWorkers votes

1^()

1^()

informYesWorkers votes |> listToMs

(w,vote)

Figure 4.1: Part of the two-phase commit protocol CPN model

The transition has two free variables w and vote, and the first input arc that
is considered can, in this case, be either since both have an equal amount of
free variables, the one variable w. The algorithm starts by passing the variables
of the transition to be covered w and vote, an empty set of covered variables,
the two arcs and an empty list of arcs in the pattern binding basis to the
recursive function. In the first call, the arc connected to the WorkerIdle is at
the head of the patArcs list, simply because it is defined earlier in the .cpn file
and is considered. The arcs variables are added to newCovering and the arc to
arcsInPbb. There is still a variable vote to be covered on the next call. The
arc connected to the CanCommit is at the head of the patArcs list. However, it
will not result in an increase of newCovering, it is still the same as covering as
checked on line 25 in Listing 4.29. In the final call, patArcs list is empty, and
vote is added to the list of covered variables because it is simply typed.

42

4.2.7 Enabling

No further parsing or analysis is needed to define the enabling functions. The
information to generate the functions is the transition name used in typing, the
guard of a transition to verify the enabling, the set of variables in the binding to
destructure the input pattern, and the input arcs to get the correct field (place)
in the marking.

4.2.8 Occurrence

Similarly, the information needed to generate the occurrence function is al-
ready available in the abstract transition type. The information is the binding,
used to destructure input patterns created from the variables and input and out-
put places from the inArcs and outArcs, respectively, used to change the tokens
in the multi-sets on the different fields, representing places of the marking.

4.3 Output Component

The Output component is quite simple, having the Parser component doing
the heavy lifting. Its job is to create files and output the string content contain-
ing F# code created in the Parser component and the formatting job done in the
Semantic component. It uses the StringBuilder Class [44] from the System.Text
namespace in .NET. This completes the main idea of the CPN simulation sys-
tem as illustrated by the Figure 3.1 from the previous chapter. It is shown
again below in Figure 4.2. We take a .cpn file containing a CPN model with
inscriptions written in F# and produce a F# .NET project containing code
that a simulator can use to execute the CPN model.

Figure 4.2: A high level view of the compiler and runtime environment

43

One thing worth mentioning is the project layout, where the .cpn model file
needs to be placed and where the generated F# files end up. Shown below is
the project structure. Under the examples folder is a folder called TCP, which
stands for two-phase commit protocol. Under it again is a model folder, and
inside there should the .cpn file reside. The generated code ends up inside the
TPC folder next to the model folder. The Simulator is placed in the folder above,
inside the examples folder, and it opens the Examples.TPC namespace to access
the generated code.

cpn-simulator
examples

Other models...
TPC

model
.cpn file

The generated F# files end up here...
Simulator.fs
StateSpaceExploration.fs

src
compiler

Cli
Loader
Output
Parser
Semantic
Syntax

44

Chapter 5

Enabling and Occurrence

This chapter focuses on the generated code and explains why the different
constructs and artefacts are generated and necessary to execute CPN models.
The two key concepts are the enabling and occurrence of transitions and how
they change the marking of a CPN model.

5.1 Overview

Figure 5.1 shows the links between a marking, enabling and occurrence. A
circle is a data structure. A diamond square is a function. An arrow represents
the passing of data structures either as arguments or, in the case of new marking

is supposed to represent that the new marking will be used as the next marking.
The figure is supposed to illustrate how the state changes in a CPN model,
represented by markings, and give the reader a better understanding of the
connection between concepts.

Figure 5.1: The links between a marking, enabling and occurrence functions

45

5.2 Enabling of bindings

A few things need to exist to compute the enabling of a binding. Shown below
again in Figure 5.2, to increase readability for the subsequent discussions, is a
part of the two-phase commit protocol CPN model. We will again focus on the
ReceiveCanCommit transition.

CanCommit

Worker

Votes

WorkerxVote

Acknowledge

Worker

Decision

WorkerxDecision

Waiting
Votes

Waiting
Acknowledgements

Workers

Coordinator
Idle

1^() Worker
Idle

Worker

Worker.all() |> listToMs

Waiting
Decision

Worker

Collected Votes

WorkerxVotes

1^[]

SendCanCommit

Receive
Acknowledgements

Receive
CanCommit

Receive
Decision

AllVotes
Collected

[all votes]

Collect
OneVote

1^()

1^()

1^()

workers

Worker.all() |> listToMs

workers |> listToMs

w

if vote = Yes
then 1^w
else empty

w

w

if vote = No
then 1^w
else emptyw

(w,vote)

(w,decision)

w

votes

votes

([] : WorkerxVotes)

addVote ((w,vote),votes)

yesWorkers votes

1^()

1^()

informYesWorkers votes |> listToMs

(w,vote)

Figure 5.2: Part of the two-phase commit protocol CPN model

5.2.1 Binding type

The generated binding type is central in the process, and each transition has
its binding type, a record containing the variables of a transition as fields. Shown
below in Listing 5.1 is the generated binding type for the ReceiveCanCommit

transition. It is defined as a record, and note that every field is an option

type. We use the option type to handle partial bindings. A partial binding will
contain None values.

1 type ReceiveCanCommit Binding =
2 { u : unit option
3 vote : Vote option
4 w : Worker option }

Listing 5.1: Binding type for ReceiveCanCommit

46

Shown below in Listing 5.2 is the generated general binding for the two-phase
commit protocol. It is a sum type with a constructor for each transition in the
model. It is created to have a common type interface for bindings, for instance,
useful in lists.

1 type Binding =
2 | SendCanCommit of SendCanCommit Binding
3 | ReceiveAcknowledgements of ReceiveAcknowledgements Binding
4 | ReceiveCanCommit of ReceiveCanCommit Binding
5 | ReceiveDecision of ReceiveDecision Binding
6 | AllVotesCollected of AllVotesCollected Binding
7 | CollectOneVote of CollectOneVote Binding

Listing 5.2: General binding type

The _u : unit option field in the bindings above represents the unit token
that always will be a part of an enabling and occurrence and is a necessary
field to represent a binding without any variables. It is present on all binding
types to avoid special cases. For example, the SendCanCommit transition has no
variables, and the only field in the binding type will be _u : unit option.

5.2.2 Binding and partially binding functions

The first thing the enabling function calls when it needs to determine the
enabling bindings is the binding function called Bind. One binding function for
each transition is generated. The binding function’s overarching goal is to find
all the possible enabled bindings in a given marking. It uses a helper function
called PartBind, a partially binding function whose job is to partially bind the
tokens present in the marking into a binding type. It is called partially bind
because it might not be the case that only one arc expression is sufficient to
consider a fully populated binding value, a complete binding. In other words, a
partial binding has None values. It partially has its fields filled. A partial binding
might be created because the model might contain some arc expressions that
do not cover all variables of a transition, meaning that multiple arc expressions
need to be considered to create a complete binding. The first part of the rather
long generated Bind function and the corresponding PartBind function for the
ReceiveCanCommit transition are shown below in Listing 5.3.

47

1 let receiveCanCommit PartBind WorkerIdle
2 : Worker -> ReceiveCanCommit Binding =
3 fun w -> { u = Some ()
4 vote = None
5 w = Some w }
6
7 let receiveCanCommit Bind marking =
8 let pbs = [
9 [({ u = Some (); vote = None;w = None }

10 :ReceiveCanCommit Binding)]
11 [{ u = Some (); vote = Some No; w = None }
12 { u = Some (); vote = Some Yes; w = None }]
13 msMap receiveCanCommit PartBind WorkerIdle marking.WorkerIdle
14] |> List.concat
15 ...

Listing 5.3: PartBind and part of the Bind functions for ReceiveCanCommit

The code above, as mentioned, finds all the possible partial bindings for the
ReceiveCanCommit transition. Line 9 is a dummy partial binding, placed there to
avoid special cases. Note that partial bindings are generated with the possible
values for the vote field. It is an exhaustive list of all the values of the simple
type. It might be clearer to the reader why the variables not covered by input arc
expressions need to be simply typed. Otherwise, there would be as many partial
bindings as there were values of the type. Line 13 calls the only partial binding
function to the transition because, as we explained in the previous chapter, the
arc connected to the WorkerIdle place is the only arc in the pattern binding
basis to the ReceiveCanCommit transition. The partial binding function name is
made from the transition’s name and the place’s name. The field considered
in the marking passed to the partial binding function also matched the place’s
name. The resulting array pbs on line 8 collects all the partial bindings.

After finding all the partial bindings, the Bind function goes through them
and verifies that they are complete. When it considers a partial binding with
fields containing None values, it tries to complete the binding by creating a merge
between the partial binding and some other binding in the list that contains some
value on the specific field. It handles conflicts by ensuring that the bindings to
be merged do not have different values on other fields. The rest of the generated
function is shown below in Listing 5.4. The code might not follow too many
good coding principles, but it is one of the easier to generate.

48

1 ...
2 pbs
3 |> List.fold (fun bindings pb ->
4 let cbs = [pb]
5 let cbs =
6 cbs
7 |> List.map (fun pb ->
8 if pb.vote.IsNone
9 then pbs |> List.where

10 (fun pb’ ->
11 pb’.vote.IsSome &&
12 if pb’.w.IsSome
13 then pb’.w = pb.w
14 else true)
15 |> List.map (fun pb’ -> { pb with vote = pb’.vote })
16 else [pb])
17 |> List.concat
18 let cbs =
19 cbs
20 |> List.map (fun pb ->
21 if pb.w.IsNone
22 then pbs |> List.where
23 (fun pb’ ->
24 pb’.w.IsSome &&
25 if pb’.vote.IsSome
26 then pb’.vote = pb.vote
27 else true)
28 |> List.map (fun pb’ -> { pb with w = pb’.w })
29 else [pb])
30 |> List.concat
31
32 cbs
33 |> List.filter (fun pb -> pb.vote.IsSome && pb.w.IsSome)
34 |> List.fold
35 (fun bindings cb ->
36 if List.contains cb bindings
37 then bindings
38 else cb :: bindings)
39 bindings)
40 (pbs
41 |> List.filter (fun pb -> pb.vote.IsSome && pb.w.IsSome))

Listing 5.4: Rest of the Bind function for ReceiveCanCommit

5.2.3 Enabling functions

The enabling function, as mentioned, first passes the marking to all the bind-
ing functions of every transition, then secondly pass the bindings returned to
the enabling functions, again one each for every transition. The enabling func-
tions ensure sufficient tokens on all the connected input places to the specific
transition and check any guard to determine a binding as enabled. The en-
abling functions for the ReceiveCanCommit transition is shown below in Listing
5.5. Note how the binding type is destructed on line 3 to get its field.

49

1 let receiveCanCommit Enabling marking bindings =
2 bindings |> List.filter
3 (fun ({ u = Some (); vote = Some vote;w = Some w }
4 : ReceiveCanCommit Binding) ->
5 (1ˆw) <<= marking.WorkerIdle &&
6 (1ˆw) <<= marking.CanCommit)
7 |> List.map(fun b -> ReceiveCanCommit b)

Listing 5.5: The enabling function for ReceiveCanCommit

The checking of whether there exist sufficient tokens on the connected input
places is done on lines 5 and 6 in Listing 5.5. The transition has two input
places, and both need to be considered, and it is the final step in enabling a
binding. The global enabling function used by the simulator to collect all the
enabled bindings is shown below in Listing 5.6.

1 let enabling marking = [
2 sendCanCommit Bind marking
3 |> sendCanCommit Enabling marking
4 receiveAcknowledgements Bind marking
5 |> receiveAcknowledgements Enabling marking
6 receiveCanCommit Bind marking
7 |> receiveCanCommit Enabling marking
8 receiveDecision Bind marking
9 |> receiveDecision Enabling marking

10 allVotesCollected Bind marking
11 |> allVotesCollected Enabling marking
12 collectOneVote Bind marking
13 |> collectOneVote Enabling marking
14]
15 |> List.concat

Listing 5.6: Global enabling function

5.3 Occurrence of bindings

After all the enabled bindings are computed in a given marking, one must be
chosen to occur. Choosing the binding could be random or by specifying which
one to occur to the simulator. The chosen binding is, either way, passed to the
occurrence function along with the current marking.

50

5.3.1 Occurrence function

The occurrence function is simply a pattern matching the binding passed
as an argument identifying which binding to occur. The function is shown
partly below in Listing 5.7, showing the case for ReceiveCanCommit transition.
Essentially, the creation of a new marking with the addition of tokens on places
connected to a transition through output arcs and the subtraction of tokens
connected through input arcs. All connected places are considered, meaning that
some places might have tokens subtracted and added in the same occurrence.
This occurrence function completes executing a step in the CPN model.

1 let occurrence marking binding =
2 match binding with
3 ...
4 | ReceiveCanCommit b ->
5 { marking with
6 CanCommit = marking.CanCommit
7 -- (b |> fun ({ u = Some ()
8 vote = Some vote
9 w = Some w }

10 : ReceiveCanCommit Binding) ->
11 1 ˆ w)
12 Votes = marking.Votes
13 ++ (b |> fun ({ u = Some ()
14 vote = Some vote
15 w = Some w }
16 : ReceiveCanCommit Binding) ->
17 1 ˆ (w, vote))
18 WaitingDecision = marking.WaitingDecision
19 ++ (b |> fun ({ u = Some ()
20 vote = Some vote
21 w = Some w }
22 : ReceiveCanCommit Binding) ->
23 if vote = Yes then 1 ˆ w else empty)
24 WorkerIdle = marking.WorkerIdle
25 ++ (b |> fun ({ u = Some ()
26 vote = Some vote
27 w = Some w }
28 : ReceiveCanCommit Binding) ->
29 if vote = No then 1 ˆ w else empty)
30 -- (b |> fun ({ u = Some ()
31 vote = Some vote
32 w = Some w }
33 : ReceiveCanCommit Binding) ->
34 1 ˆ w)
35 }

Listing 5.7: Global occurrence function

51

Chapter 6

Evaluation

In the earlier chapters, we have only used one model, the two-phase commit
protocol, to exemplify and explain the different parts of the system and the code
generated. As part of the system’s evaluation, we have compiled and simulated
four different models to assess how the system handles them and ensure that it
is working. The five models in total are shown in the list below.

1. Two-phase commit protocol

• A protocol used by database servers to handle transactions that mod-
ifies data on multiple database servers.

2. Dining Philosophers

• A classic problem used to illustrate issues when working with shared
resources and concurrency.

3. Simple Protocol

• A transmit protocol that sends packets and handles the loss and
resend of packets.

4. Resource Allocation

• A system consisting of a set of processes that in cyclic manner re-
quests, allocates, and releases different types of resources.

5. Distributed Database

• A system where a set of database managers coordinates access to a
database that updates are consistent.

We want the system to be able to catch errors and not produce any code
of a faulty model, as discussed in previous chapters. We verified that this was
the case by giving the system various errors to handle. In addition to the
experiments with the five models, we made a state-space exploration to ensure
that all the model states are possible to reach in the simulation. A correct
state-space exploration is a concrete validation of the correctness of the system.

52

6.1 Simulation

When the compiler has generated code and placed it in an F# .NET library,
the simulator can access all the constructs once the namespace is opened. The
simulator is an interactive command-line interface and is quite simple, support-
ing only three commands. The three commands are next step enter, multiple
next steps jump and to quit exit. When a next step command enter is ex-
ecuted, the user may specify the enabled binding to occur. Otherwise, it is
chosen randomly.

Figure 6.1 shows the simulator running. It shows the last occurred binding at
the top, under the current marking, and under that is the enabled bindings in
the current marking.

Figure 6.1: CPN Interactive Simulator running two-phase commit protocol

A part of the code of the simulator is shown below in Listing 6.1, more specif-
ically, the code of the jump command, which executes the number of specified
steps.

1 let steps = input.Split " " |> Seq.last |> int
2
3 let marking =
4 List.init steps (fun x -> x)
5 |> List.fold
6 (fun marking ->
7 enabling marking
8 |> chooseRandom
9 |> occurrence marking)

10 marking

Listing 6.1: The jump command of the simulator

53

The current marking is the first argument to the List.fold function. The
second argument is a list of steps only used to control the number of steps
taken in the model. The function passed to the List.fold is what is significant,
and its input parameter is the current marking functioning as the state. The
body calls the enabling function, which takes the marking as an argument and
returns a list of all the enabled bindings. The list is passed to a chooseRandom

function using the pipeline operator |> Its only job is to choose one of the
enabled bindings randomly. The chosen binding is, in turn, piped as the last
argument to the occurrence function, which also has the current marking as
the first argument. What is returned from the occurrence function is the new
marking.

6.2 State-Space Exploration

In a state-space, the possible states are nodes connected with arcs to create
possible paths in a graph. Each node has as many arcs as the following possible
states from itself to another node. A state-space exploration is a graph explo-
ration of all nodes visiting the states. The traversal is done by accumulating
all explored nodes in a set and putting unvisited nodes in a queue. The result
is the number of possible states and the number of paths to those states. The
result of running the state-space exploration of our five examples are shown be-
low in Table 6.1. Our results of the state-space explorations match the results
of the state-space exploration in CPN Tools given the same models, included
in Appendix B, in regards to the number of nodes and arcs. The CPU time is
the time it takes to calculate in milliseconds. The testing was done using a 16”
MacBook Pro laptop with M1 Max and 64 GB ram from 2022.

Model Nodes Arcs CPU time

Two-phase commit with 2 workers 43 64 31
Two-phase commit with 3 workers 281 512 38
Two-phase commit with 4 workers 2323 4774 99
Dining Philosophers with 5 philosophers 11 30 22
Dining Philosophers with 10 philosophers 123 680 28
Dining Philosophers with 15 philosophers 1364 11310 155
Simple Protocol 428 1130 44
Resource Allocation 13 20 26
Distributed Database with 3 databases 28 42 27
Distributed Database with 6 databases 1459 4872 114
Distributed Database with 9 databases 59050 314946 12685

Table 6.1: State-space exploration of our five example models

54

6.3 Performance

The system is not optimized regarding performance and was rather developed
with correctness in mind. For instance, the system calculates the enabled bind-
ings for every transition in every marking, even though sometimes only neigh-
bour transitions to the last occurred transition might change enabling status.
The loading and creation of files affect the performance, but that is unavoidable
in this system. The compilation takes roughly some seconds to finish. Running
the simulator is fast. Figure 6.2 below shows the times it takes to execute a
number of steps in the two-phase commit protocol with different amounts of
workers. Using two workers in blue, three workers in green and four workers in
red. The testing was done using a 16” MacBook Pro laptop with M1 Max and
64 GB ram from 2022.

0 0.5 1 1.5 2 2.5 3

·106

0

5

10

15

20

25

30

35

Number of steps in million

S
ec
o
n
d
s

Figure 6.2: Executing number of steps in two-phase commit protocol

55

6.4 Examples

Below, we provide details on the additional four example models considered
in the evaluation.

6.4.1 Dining Philosophers

Shown below in Figure 6.3 is the model of the Dining Philosophers problem
[45] created in CPN Tools using F# as the inscription language. Listing 6.2
shows the declarations defined in the model, written in F# and the CPN ML
programming language. Dining Philosophers is captioning problems that might
arise when multiple entities use the same resources, it may lead to a deadlock.
It is often used to illustrate the concept of concurrency.

Eat

PH

Think

PH

PH.all() |> listToMs

Unused
Chopsticks

CS

CS.all() |> listToMs

Take
Chopsticks

Put Down
Chopsticks

p

p

Chopsticks(p)

p

Chopsticks(p)

p

Figure 6.3: Dining Philosophers with F# as inscription language

1 let n = 5
2 colset PH = index ph with 1..n
3 colset CS = index cs with 1..n
4 var p: PH
5 let Chopsticks (Ph i)
6 = (1ˆCs(i)) ++ (1ˆCs(if i = n then 1 else i + 1))

Listing 6.2: Declarations defined in Dining Philosophers

56

Shown below in Figure 6.4 is the simulator performance for the Dining Philoso-
phers model. Using five philosophers in blue, ten philosophers in green and
fifteen philosophers in red.

0 0.5 1 1.5 2 2.5 3

·106

0

10

20

30

40

50

Number of steps in million

S
ec
o
n
d
s

Figure 6.4: Executing number of steps in Dining Philosophers

57

6.4.2 Simple Protocol

Shown below in Figure 6.5 is the model of a simple protocol created in CPN
Tools using F# as the inscription language. Listing 6.3 shows the declarations
defined in the model, written in F# and the CPN ML programming language.
The Simple Protocol is a transmission protocol that illustrates the sending of
packets, loss of packets and sending retries, similar to network protocols.

A

INTxDATA

D

INT

B

INTxDATA

NextSend

INT

1^(1 : INT)

Send

INTxDATA

(1 ^ (1, "Modellin")) ++ (1 ^ (2, "g and An")) ++ (1 ^ (3, "alysis##")) ++ (1 ^ (4, "########"))

Received

DATA

1^("" : DATA)

NextRec

INT

1^(1:INT)

C

INT

Limit

E

2^E

Send
Packet

Receive
Acknowlegdement

Transmit
Packet

Receive
Packet

Transmit
Acknowlegdement

(n,p)

n n

kn

n

(n,p) (n,p)

if ok
then 1^(n,p)
else empty

n

if ok
then 1^n
else empty

(n,p)

k

if n=k
then k+1
else k

if n=k
then k+1
else k

str

if n=k && p<>stop
then str+p
else str

if ok
then empty
else 1^E

E

E
if ok
then empty
else 1^E

Figure 6.5: Simple Protocol with F# as inscription language

1 colset INT = int
2 colset DATA = string
3 colset INTxDATA = product INT * DATA
4 var n,k: INT
5 var p, str: DATA
6 let stop = "########"
7 colset TenO = int with 0..10
8 colset Ten1 = int with 1..10
9 var s: TenO

10 var r: Ten1
11 colset BOOL = bool
12 var ok: BOOL
13 colset E = with E

Listing 6.3: Declarations defined in Simple Protocol

We did not do any simulator performance testing of the Simple Protocol
model because the protocol does not run in a loop. It has a finite small number
of steps before it reaches the terminating state.

58

6.4.3 Resource Allocation

Shown below in Figure 6.6 is the model of a resource allocation algorithm cre-
ated in CPN Tools using F# as the inscription language. Listing 6.4 shows the
declarations defined in the model, written in F# and the CPN ML programming
language.

DU

CU

AU

3^Q

B

U

2^P

R

E

1^E

S

E

3^E

T

E

2^E

EU

T3

T4

T5

T2

T1 [x=Q]

x

x

x

x

x

x

x

x

x

E

match x with
| Q -> 1^E
| _ -> empty

E

match x with
| P -> 2^E
| Q -> 1^E

2^E

match x with
| P -> 1^E
| _ -> empty

E

match x with
| P -> 2^E
| Q -> 1^E

match x with
| P -> 1^P
| _ -> empty

match x with
| Q -> 1^Q
| _ -> empty

Figure 6.6: Resource Allocation with F# as inscription language

1 colset U = with P | Q
2 colset E = with E
3 var x: U

Listing 6.4: Declarations defined in Resource Allocation

We did not do any simulator performance testing of the Resource Allocation
model because the protocol is not easily parameterizable.

59

6.4.4 Distributed Database

Shown below in Figure 6.7 is the model of a distributed database created
in CPN Tools using F# as the inscription language. Listing 6.5 shows the
declarations defined in the model, written in F# and the CPN ML programming
language.

Sent

MES

Performing

DBM

Received

MES

Inactive

DBM

DBM.all() |> listToMs

Active

E

Waiting

DBM

Acknowledged

MES

Unused

MES

allMES

Passive

E

1^E

Send
Mes

Rec
Mes

Send
Ack

Rec
Ack

(s,r)

(s,r)

mes s

s
r

E

E

r

r

rs

E

E

s

mes s

mes s

(s,r)

(s,r)mes s

s

Figure 6.7: Distributed Database with F# as inscription language

1 let n = 3
2 colset DBM = index d with 1..n
3 colset MES = product DBM * DBM
4 colset E = with E
5 var s, r: DBM
6 let mes s =
7 List.allPairs
8 (DBM.all()) (DBM.all())
9 |> List.filter(fun (x,y) -> x<>y && x=s)

10 |> List.map(fun x -> x : MES)
11 |> listToMs
12 let allMES =
13 List.allPairs
14 (DBM.all()) (DBM.all())
15 |> List.filter(fun (x,y) -> x<>y)
16 |> List.map(fun x -> x : MES)
17 |> listToMs

Listing 6.5: Declarations defined in Distributed Database

60

Shown below in Figure 6.8 is the simulator performance for the Distributed
Database. Using three databases in blue, six databases in green and nine
databases in red.

0 0.5 1 1.5 2 2.5 3

·106

0

10

20

30

40

50

60

Number of steps in million

S
ec
o
n
d
s

Figure 6.8: Executing number of steps in Distributed Database

61

Chapter 7

Conclusion and
Further Work

7.1 Conclusion

We conclude the project and deem it successful with the evidence shown and
discussed throughout this thesis. The technologies used to develop the CPN
simulation system have been capable, sufficient and well-suited. The research
questions we sought to answer are repeated below.

RQ1. How can F# be used as inscription language in CPN models?

RQ2. How can F# and the .NET platform be used to implement a compiler
that generates code representing CPN models?

RQ3. How can F# and the .NET platform be used to develop a runtime envi-
ronment for the simulation of CPN models?

The F# programming language is a good fit as an inscription language for
CPN models. It is similar to Standard ML in many aspects. It has excellent
support for pattern matching and supports expression-oriented programming
well. Small changes were needed to translate the inscriptions of existing models
from Standard ML to F#, answering RQ1.

The F# programming language supports many constructs to work efficiently
and with metaprogramming. Code quotations were a crucial feature in our sys-
tem. Combined with the hosted interactive evaluation session from F# Compiler
Service, we had a powerful way to analyse, error check and find the necessary
information about the model needed to generate the code. The F# type system
and its pattern matching capabilities, such as destructuring of records and sum
types, helped significantly in the development process. It supports the claim
that F# is a good choice.

62

F# has robust libraries such as FSharp.Data which made it easy to parse the
provided .cpn file. The .NET platform also has rich libraries for working with
strings and files. Using all the things mentioned above, we showed how F# and
the .NET platform could be used to implement a compiler that generates code
to represent CPN models, answering RQ2.

We also showed how F# and the .NET platform could be used to develop a
runtime environment that simulates CPN models by creating a simulator that
used the generated code and handled the execution of steps in the model. The
simulator is working with the five provided examples, answering RQ3.

The state-space exploration offers strong proof of the correctness of our CPN
simulator system. We tested our system with the five examples, and it success-
fully generated code that the simulator could use to execute the models.

7.2 Future work

The model to be compiled must be a flat model. Flat means non-hierarchical,
every construct is on the same level, and the .cpn file contains only one page.
It is possible to create hierarchical nets consisting of multiple pages in CPN
Tools. This project did not consider such models, as all hierarchical models can
be made flat.

CPN models may also include timing information [48] which can evaluate
the efficiency and real-time systems. We did not consider models with timing
information in our system.

Type inference might be another possible extension of our system. For in-
stance, the compiler could figure out the type of the place based on the type
of the arc expression. A CPN type not considered and consequently not tried
translated into F# is the subset type. It is a way to define a type that is a subset
of another type with a predicate dictating what values are possible within the
type. It is rarely used in practice and can be translated into the same type it is
supposed to be a subset of. Therefore it was not spent time on.

A possible future extension is to make the system handle type parameterizable
models similar to generics in programming languages. Such models would allow
a lot more reuse and make it possible to generalize parts of a model.

Other work can be done regarding handling hierarchical nets, performance
increase by only calculating possible enabled bindings, developing a new editor
to create models using F# as the inscription language, and automating the
opening of the namespace of the generated code in the simulator.

63

Appendix A

Source code

The full source code for CPN simulator system is available here:
https://github.com/smartoceanplatform/cpn-simulator.
The repository is currently private, but access can be requested by contact-
ing the supervisor.

64

https://github.com/smartoceanplatform/cpn-simulator

Appendix B

State Space Exploration
in CPN Tools

CPN Tools state space report for:
TwoPhaseCommitProtocolWith2Workers.cpn

Statistics

State Space
Nodes: 43
Arcs: 64
Secs: 0
Status: Full

CPN Tools state space report for:
TwoPhaseCommitProtocolWith3Workers.cpn

Statistics

State Space
Nodes: 281
Arcs: 512
Secs: 0
Status: Full

CPN Tools state space report for:
TwoPhaseCommitProtocolWith4Workers.cpn

Statistics

State Space
Nodes: 2323
Arcs: 4774
Secs: 0
Status: Full

65

CPN Tools state space report for:
DiningPhilosophersWith5Philosophers.cpn

Statistics

State Space
Nodes: 11
Arcs: 30
Secs: 0
Status: Full

CPN Tools state space report for:
DiningPhilosophersWith10Philosophers.cpn

Statistics

State Space
Nodes: 123
Arcs: 680
Secs: 0
Status: Full

CPN Tools state space report for:
DiningPhilosophersWith15Philosophers.cpn

Statistics

State Space
Nodes: 1364
Arcs: 11310
Secs: 1
Status: Full

CPN Tools state space report for:
SimpleProtocol.cpn

Statistics

State Space
Nodes: 428
Arcs: 1130
Secs: 0
Status: Full

66

CPN Tools state space report for:
ResourceAllocationl.cpn

Statistics

State Space
Nodes: 13
Arcs: 20
Secs: 0
Status: Full

CPN Tools state space report for:
DistributedDataBaseWith3Databases.cpn

Statistics

State Space
Nodes: 28
Arcs: 42
Secs: 0
Status: Full

CPN Tools state space report for:
DistributedDataBaseWith6Databases.cpn

Statistics

State Space
Nodes: 1459
Arcs: 4872
Secs: 1
Status: Full

CPN Tools state space report for:
DistributedDataBaseWith9Databases.cpn

Statistics

State Space
Nodes: 59050
Arcs: 314946
Secs: 1272
Status: Full

67

Bibliography

[1] url: https://fsharp.org (visited on Apr. 28, 2022).
[2] url: https://www.microsoft.com/en-us/research/project/

f-at-microsoft-research (visited on Apr. 27, 2022).
[3] url: https://dotnet.microsoft.com (visited on Apr. 28, 2022).
[4] url: https://www.smlnj.org/index.html (visited on Apr. 27,

2022).
[5] url: https://beta.cs.au.dk (visited on Apr. 27, 2022).
[6] url: https://cs.au.dk/cpnets/industrial-use (visited on

Mar. 30, 2022).
[7] url: https://www.informatik.uni-hamburg.de/TGI/PetriNets/

index.php (visited on Mar. 30, 2022).
[8] url: https://sfismartocean.no (visited on Apr. 27, 2022).
[9] url: https://www.scala-lang.org/ (visited on Apr. 27, 2022).
[10] url: https://www.haskell.org/ (visited on Apr. 27, 2022).
[11] url: https://fsharp.github.io/fsharp- compiler- docs

(visited on Feb. 17, 2022).
[12] url: https://www.informatik.uni-hamburg.de/TGI/PetriNets/

tools/db.html (visited on May 27, 2022).
[13] url: http://renew.de (visited on Feb. 17, 2022).
[14] url: https://lipn.univ-paris13.fr/˜evangelista/helena/

(visited on May 27, 2022).
[15] url: https://lip6.github.io/ITSTools-web/index.html

(visited on May 27, 2022).
[16] url: https://github.com/iig-uni-freiburg/WOLFGANG (vis-

ited on May 27, 2022).
[17] url: https://github.com/iig-uni-freiburg/SEPIA (visited on

May 27, 2022).
[18] url: https://github.com/pierreganty/mist (visited on May 27,

2022).
[19] url: https://github.com/vldtecno/PTN-Engine (visited on

May 27, 2022).
[20] url: https://github.com/tamarit/pn_suite (visited on May 27,

2022).
[21] url: https://projects.laas.fr/tina/index.php (visited on

May 27, 2022).
[22] url: https://www.tapaal.net/ (visited on May 27, 2022).
[23] url: https://www.yasper.org/ (visited on May 27, 2022).
[24] url: https://www.cosyverif.org (visited on Feb. 17, 2022).

68

https://fsharp.org
https://www.microsoft.com/en-us/research/project/f-at-microsoft-research
https://www.microsoft.com/en-us/research/project/f-at-microsoft-research
https://dotnet.microsoft.com
https://www.smlnj.org/index.html
https://beta.cs.au.dk
https://cs.au.dk/cpnets/industrial-use
https://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php
https://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php
https://sfismartocean.no
https://www.scala-lang.org/
https://www.haskell.org/
https://fsharp.github.io/fsharp-compiler-docs
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://renew.de
https://lipn.univ-paris13.fr/~evangelista/helena/
https://lip6.github.io/ITSTools-web/index.html
https://github.com/iig-uni-freiburg/WOLFGANG
https://github.com/iig-uni-freiburg/SEPIA
https://github.com/pierreganty/mist
https://github.com/vldtecno/PTN-Engine
https://github.com/tamarit/pn_suite
https://projects.laas.fr/tina/index.php
https://www.tapaal.net/
https://www.yasper.org/
https://www.cosyverif.org

[25] url: https://fsharp.org/learn (visited on Apr. 28, 2022).
[26] url: https://dotnet.microsoft.com/learn (visited on Apr. 28,

2022).
[27] url: https://www.ibm.com/docs/en/informix- servers/

14.10?topic=protocol-when-two-phase-commit-is-used
(visited on May 1, 2022).

[28] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/discriminated-unions (visited on Apr. 7,
2022).

[29] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/tuples (visited on May 6, 2022).

[30] url: https://jrsinclair.com/articles/2019/algebraic-
data-types-what-i-wish-someone-had-explained-about-
functional-programming (visited on Apr. 7, 2022).

[31] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/records (visited on Apr. 7, 2022).

[32] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/options (visited on Apr. 7, 2022).

[33] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/code-quotations (visited on Apr. 7, 2022).

[34] url: https://fsharp.github.io/fsharp- compiler- docs
(visited on Apr. 7, 2022).

[35] url: https://docs.microsoft.com/en-us/dotnet/framework/
reflection-and-codedom/reflection (visited on May 6, 2022).

[36] url: https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/types/boxing-and-unboxing (visited on
May 6, 2022).

[37] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/symbol-and-operator-reference/ (vis-
ited on May 7, 2022).

[38] url: https://fsharp.github.io/fsharp-core-docs/reference/
fsharp-collections-mapmodule.html (visited on May 3, 2022).

[39] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
style-guide/formatting (visited on May 7, 2022).

[40] url: https://fsprojects.github.io/FSharp.Data (visited on
Apr. 4, 2022).

[41] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
tutorials/type-providers (visited on Apr. 4, 2022).

[42] url: https://docs.microsoft.com/en-us/dotnet/fsharp/
tools/fsharp- interactive/#scripting- with- f (visited on
May 8, 2022).

[43] url: https://fsharp.github.io/fsharp-core-docs/reference/
fsharp-core-operators-unchecked.html (visited on May 18,
2022).

[44] url: https://docs.microsoft.com/en- us/dotnet/api/
system.text.stringbuilder?view=net-6.0 (visited on Apr. 11,
2022).

[45] C.A.R Hoare. “Communicating Sequential Processes.” eng. In: The Queen’s
University Belfast, Northern Ireland 21, Number 8 (1978), pp. 666–677.

69

https://fsharp.org/learn
https://dotnet.microsoft.com/learn
https://www.ibm.com/docs/en/informix-servers/14.10?topic=protocol-when-two-phase-commit-is-used
https://www.ibm.com/docs/en/informix-servers/14.10?topic=protocol-when-two-phase-commit-is-used
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/tuples
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/tuples
https://jrsinclair.com/articles/2019/algebraic-data-types-what-i-wish-someone-had-explained-about-functional-programming
https://jrsinclair.com/articles/2019/algebraic-data-types-what-i-wish-someone-had-explained-about-functional-programming
https://jrsinclair.com/articles/2019/algebraic-data-types-what-i-wish-someone-had-explained-about-functional-programming
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/records
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/records
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/code-quotations
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/code-quotations
https://fsharp.github.io/fsharp-compiler-docs
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-and-operator-reference/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-and-operator-reference/
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-mapmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-mapmodule.html
https://docs.microsoft.com/en-us/dotnet/fsharp/style-guide/formatting
https://docs.microsoft.com/en-us/dotnet/fsharp/style-guide/formatting
https://fsprojects.github.io/FSharp.Data
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers
https://docs.microsoft.com/en-us/dotnet/fsharp/tools/fsharp-interactive/#scripting-with-f
https://docs.microsoft.com/en-us/dotnet/fsharp/tools/fsharp-interactive/#scripting-with-f
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators-unchecked.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators-unchecked.html
https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder?view=net-6.0

[46] Kurt Jensen. Coloured Petri nets: Basic concepts, analysis methods, and
practical use. eng. 1st ed. Springer-Verlag, 1992. isbn: 978-3540555971.

[47] Lars M. Kristensen Kurt Jensen. Colored Petri Nets: A Graphical Lan-
guage For Formal Modeling and Validation of Concurrent Systems. 2015.
url: https://cacm.acm.org/magazines/2015/6/187324-
colored-petri-nets/fulltext (visited on Dec. 11, 2021).

[48] Lars M. Kristensen Kurt Jensen. Coloured Petri Nets, Modelling and Vali-
dation of Concurrent Systems. eng. 2009th edition. Springer-Verlag, 2009.
isbn: 978-3-642-00283-0.

[49] Kurt Jensen Lars M. Kristensen Jens Bæk Jørgensen. “Application of
Coloured Petri Nets in System Development.” eng. In: J. Desel, W. Reisig
and G. Rozenberg (Eds.): ACPN 2003 LNCS 3098 (2004), pp. 626–685.

[50] Søren Christensen Lars M. Kristensen. “Implementing Coloured Petri nets
Using a Functional Programming Language.” eng. In: Higher-Order and
Symbolic Computation 17 (2004), pp. 207–243.

[51] Carl Adam Petri. “Kommunikation mit Automaten.” PhD thesis. Institut
für Instrumentelle Mathematik, Bonn, 1962.

[52] Don Syme. The Early History of F#. 2020. url: https://fsharp.
org/history/hopl-final/hopl-fsharp.pdf (visited on Apr. 27,
2021).

[53] Michael Westergaard and H.M.W. (Eric) Verbeek. CPNTools. 2021. url:
http://cpntools.org/ (visited on Dec. 3, 2021).

70

https://cacm.acm.org/magazines/2015/6/187324-colored-petri-nets/fulltext
https://cacm.acm.org/magazines/2015/6/187324-colored-petri-nets/fulltext
https://fsharp.org/history/hopl-final/hopl-fsharp.pdf
https://fsharp.org/history/hopl-final/hopl-fsharp.pdf
http://cpntools.org/

	Introduction
	Context and Motivation
	Research Questions and Expected Results
	Related Work
	Outline

	Background
	Two-phase commit protocol example
	Coloured Petri nets
	CPN Tools
	Core concepts
	Multi-sets
	Marking
	Colour-sets and Variables
	Bindings
	Enabling and Occurrence
	Executing a CPN model

	Compiler and Runtime Environment
	Overview
	F# and the .NET Platform
	Discriminated Unions, Tuples and Records
	Option type
	Pattern matching
	Code quotations and F# Compiler Service

	Multi-set implementation in F#
	F# as inscription language

	Parsing and Code Generation
	Loader Component
	Declarations
	Places, Arcs and Transitions

	Parser Component
	Arc expressions
	Marking
	AbstractTransitions and AbstractArcs
	Finding the free variables
	Simple types
	Pattern binding basis
	Enabling
	Occurrence

	Output Component

	Enabling and Occurrence
	Overview
	Enabling of bindings
	Binding type
	Binding and partially binding functions
	Enabling functions

	Occurrence of bindings
	Occurrence function

	Evaluation
	Simulation
	State-Space Exploration
	Performance
	Examples
	Dining Philosophers
	Simple Protocol
	Resource Allocation
	Distributed Database

	Conclusion and Further Work
	Conclusion
	Future work

	Source code
	State Space Exploration in CPN Tools

