A workflow-integrated brain
tumor segmentation system
based on fastai and MONAI

Jostein Radmannsoy Digernes
Carsten Ditlev-Simonsen

Master’s thesis in Software Engineering at

Department of Computer Science, Electrical
Engineering and Mathematical Sciences,
Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

June 1, 2022

Western Norway
University of
Applied Sciences

Abstract

Artificial intelligence (AI) has achieved great results in medical imaging tasks
and has the potential to improve the experiences of clinicians and patients in
the future, but on the way toward Al integration in medicine, there are many
practical, technical, and societal challenges. In this thesis, we contribute to
the development of Al integration in Helse Vest and present a brain tumor
segmentation system integrated with their existing research PACS solution. We
investigate to which degree integration of machine learning models is currently
possible and if additional software development efforts are needed. The machine
learning model used is developed with a library combining the two python-
based deep learning libraries fastai and MONAI. This library is currently under
development by researchers at Mohn Medical Imaging and Visualization Centre
(MMIV), and we compare it with another state-of-the-art framework to quantify
its potential usefulness. Additionally, we deploy it in a simple interactive web
application. The thesis contains three studies that were conducted to discuss
and answer our research goals. All studies used medical data from a data set
coming out of the BraTS 2021 segmentation challenge, and our project is a part
of MMIV’s WIML project [1]. Our achieved results open the way for future
developers to continue workflow integrated machine learning in research PACS,
and we see many possible directions to take future research.

Acknowledgements

First and foremost, we would like to thank our supervisor Dr. Alexander
Selvikvag Lundervold for his excellent guidance and inspiration through both
his courses as a lecturer at Western Norway University of Applied Sciences and
as our supervisor. We also would like to thank our supervisor Sathiesh Kaliyu-
garasan for his great help and expertise throughout our master’s degree.

Furthermore, we would like to thank Zhanbolat Satybaldinov for his very helpful
work and contributions to our thesis. We also want to thank Hauke Bartsch for
supporting us with his great competence.

Thanks to Mohn Medical Imaging and Visualization Centre at Haukeland Uni-
versity Hospital for providing tools and offices to conduct our experiments.

Contents

1 Introduction 8
1.1 Research questions L. 10

2 Background 11
2.1 Image segmentation 11
2.1.1 Types of image segmentation 11

2.1.2 Medical image segmentation — an introduction 12

2.1.3 Traditional image segmentation 13

2.1.4 The machine learning approach 14

2.1.5 Evaluating machine learning models 15

2.2 Supervised deep learning 17
2.2.1 Fundamentals of deep learning 17

2.2.2 Convolutional neural networks 20

2.2.3 Convolutional neural networks for image segmentation . . 23

2.3 Deployment of machine learning models 25

2.3.1 Challenges with deployment of machine learning models . 25
2.3.2 Challenges with deployment of machine learning models

in health and medicine 28
3 Workflow-integrated machine learning in radiology 31
3.1 Medical image file formats oL 31

3.1.1 Digital Imaging and Communications in Medicine (DICOM) 32
3.1.2 The Neuroimaging Informatics Technology Initiative (NIfTT) 33

3.2 The WIML pipeline at Helse Vest RHF 33
3.2.1 Picture Archiving and Communication Systems (PACS) . 33
3.22 Research PACS 33

4 Experiments 36

4.1 BraT§S 2021: the data set used in our experiments 36

4.2 Deep learning libraries o0 38
4.2.1 fastai 38
4.2.2 MONAI e 39
4.2.3 Library extension combining fastai and MONAI 39
424 nnU-Net e 40

4.3 Experiment 1: Creating a simple and interactive web application 41
431 Method 42
4.3.2 Results L 43

4.4 Experiment 2: Research PACS integration 43
4.41 Method 44
442 Results e 45

4.5 Experiment 3: Comparing fastai and MONATI with nnU-Net . . . 51
4.5.1 Method 51
452 Results Lo 52

Discussion, conclusion, and further work 55

5.1 Discussion 55
5.1.1 Discussion experiment 1 95
5.1.2 Discussion experiment 2 56
5.1.3 Discussion experiment 3, 59

5.2 Conclusion e 60

5.3 Furtherwork oo 61

List of Figures

1.1

2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3

4.1
4.2

4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

Components of a real ML system 8
Types of image segmentation 12
Simple overview of traditional segmentation techniques 13

Difference between traditional programming and machine learning 14
Traditional image segmentation algorithms and ML-based image

segmentation algorithms 0oL 15
K-fold cross-validation 17
A simple artificial neural network. 18
Gradient descent. 19
Visualization of shapes and features discovered in a CNN. 21
A kernel doing a convolutional calculation. 22
The max pooling operation. 22
Building blocks of a convolutional neural network. 23
Visualization of dice, a performance measure in segmentation. . . 24
The U-Net architecture. 24
The ML engineering lifecycle 26
Concept drift and data drift oL 27
Ilustration of project’s application pipeline. 32
PACS . . 34
Research PACS 35
T1, T2, T1C and FLAIR scans from BraTS data set. 36
Simple illustration of a 3D image of the brain with the different

tumor sub-regions in the BraTS 2021 data set. 37
Learning rate schedulers 39
Figure illustrating advantages combining the MONAI framework

with the fastai library 40
Simple illustration of nnU-Net 41
Experiment 1 system infrastructure. 42
Screenshot of Voila application. 43
Illustration of project’s application pipeline inside WIML. 44
Screenshot of FIONA workflow page. 47
Screenshot of container successfully uploaded to FIONA. 48
Screenshot of jobs from the research PACS returned from a select

QUETY. o v v v e e e e e e e e e e e e e 48
The numerical output after running a deployed application. . . . 49

4.13

4.14
4.15

5.1

5.2
5.3
5.4

Screenshot from the Sectra research PACS. Shows image scans in
research PACS.
Screenshot of scans and predicted mask in the research PACS.
Ground truth and segmentation results.

Screenshot of a “squished” brain, caused by an error with how
ror loaded images. Lo o
Screenshot showing image duplicates in Sectra.
Application front-end and back-end
A human-in-the-loop cycle for deep learning-assisted image seg-
mentation. Lo Lo

List of Tables

4.1

4.2
4.3

Comparison of the fastai and MONAT library and nnU-Net’s train-

ingsetup Lo 52
Validation results for nnU-Net folds. 53
Validation results for fastai + MONAI folds. 53

Chapter 1

Introduction

Artificial intelligence (AI) has a lot of potential in the field of medicine, and
machine learning (ML) algorithms have achieved outstanding results on many
different tasks. Deep learning (DL), a sub-field of machine learning, has been
particularly impactful [2, 3, 4]. One example with great potential for improve-
ment in the effectiveness of treatment is the segmentation of organs. However,
there are still many hurdles left before machine learning-based tools are ma-
ture enough for clinical deployment [5]. Figure 1.1 illustrates some of the many
infrastructure-related components required for an actual ML system to be fully
functional.

Data

Verification Process

Management Tools
=l
OE -
=l

Feature Machine Resource

Analysis

Extraction Management
009000
IV k)
09 ==

Data

Collection Monitoring

Infrastructure

TS

Figure 1.1: In practice, an ML model (the black box) alone only amounts to a
small part of the whole picture in a real-world ML pipeline. The different boxes
represent the infrastructure needed for an ML system in production. Figure
modified from a figure in [6].

The thesis will present a deep learning-based system for fast and accurate brain
tumor segmentation based on the fastat and MONAI deep learning libraries.
These libraries are used to train a deep learning model that is then implemented

in a realistic medical environment. This developed model is trained and evalu-
ated on data from the BraTS 2021 data sets® [7]. It is then further implemented
in a proof-of-concept software application within Mohn Medical Imaging and Vi-
sualization Centre’s (MMIV) Workflow-Integrated Machine Learning (WIML)
project [1].

The project has two separate parts: First, constructing a deep learning model
using a library extending fastai and MONAI (described in the following para-
graphs), trained on the BraTS 2021 data set. Second, packaging this model in a
Docker container that is integrated into the WIML research PACS infrastructure
in Helse Vest RHF.

The medical AT research group at MMIV is currently developing an extension
of the powerful fastai deep learning library [8] to support tasks related to
three-dimensional imaging (classification, regression, segmentation), while also
incorporating elements from the MONAI framework [9].

Such a library combining the best parts from fastai and MONAT is helpful in a
wide variety of medical imaging settings, as it’s very common to work with 3D
imaging. For example, in magnetic resonance imaging (MRI) and computerized
tomography (CT). Researchers at the MMIV have already successfully used the
newly developed library in multiple projects: pulmonary nodule classification
in lung CT in relation to lung cancer [10], skull-stripping in 3D MRI [11], mea-
suring “brain age” directly from MR images [12], and segmentation of tumors
in cervical cancers from MRI [13].

This MSc project contributes to the development of this library by adapting it
to an important medical imaging challenge: brain tumor segmentation. Further,
it is interesting to see this kind of algorithm applied and implemented through
a realistic imaging platform: MMIV’s Workflow-Integrated Machine Learning
system. A fully functional proof of concept solution in this system can give
insight into the hurdles and complications faced when developing such solu-
tions. Figure 1.1 shows some of the many components in a general ML pipeline,
and our proposed research PACS proof of concept could act as a tool to unveil
these infrastructural challenges involved in medical ML deployment. Many of
these components are already established in the hospital, e.g., the serving in-
frastructure is likely local due to privacy, and the data collection component
is data from PACS. This motivates our proposed project of integrating an ML
model into research PACS, which could act as a tool for testing, and unveil-
ing these infrastructural challenges involved in medical ML deployment. It can
also provide a more complete, visual, and hands-on experience for radiologists
and healthcare professionals who ultimately could utilize the solution if ever
deployed in practice. The current implementation uses Docker to package a
containerized application [14] that can be integrated into the WIML research
PACS infrastructure.

The data in the BraTS 2021 data set is three-dimensional medical imaging
data. A challenge when working with medical images is the differences between
image formats. The DICOM and NIfTI formats are two image file formats
most relevant when working with neurological MRI. The DICOM format is
designed for more generalized use and contains more information than the NIfTT

Ihttps://www.med.upenn.edu/cbica/brats2021/

https://www.med.upenn.edu/cbica/brats2021/

format. Furthermore, a DICOM image achieves three-dimensionality by layering
multiple 2D image slices and saving them in different files as opposed to NIfTT,
which is a single file 3D image array [15]. These differences present a challenge
for conversion and for avoiding information loss [16].

1.1 Research questions

In this thesis, we wish to explore challenges and solutions for deploying a brain
tumor segmentation system. Before attempting to construct a comprehensive
system, we create a less complex proof-of-concept application. This approach
lets us identify some of the challenges we might encounter later, specifically
regarding training and exporting a model and how the model’s predictions might
be presented in an interface. Furthermore, this proof of concept application
could help in further developing the extension of fastai combining MONAI by
uncovering potential development directions of the library. Therefore, our first
research question relates to what challenges we can reveal when developing and
deploying a proof of concept application.

1. Is it possible to create and integrate a generic setup for easy model de-
ployment within the existing fastai and MONAI framework extension?

As mentioned, MMIV’s WIML and research PACS solution is the case we want
to look at for integrating the model into an existing platform. To investigate
how feasible this is in practice, we propose a research question related to the
possibilities and challenges faced in such integration efforts. We aim to make
a list of requirements to be incorporated into the current and future research
PACS developments.

2. How can we integrate our trained models directly with the existing re-
search PACS in Helse Vest? Are additional software development efforts
and hardware for the research PACS needed?

The research in this thesis will be done using the fastai and MONAI framework
extension, allowing us to investigate its usability and performance and test it in
a production-like environment.

This extension aims at combining the simplicity of fastai and 3D medical
imaging functionality of MONATI - two cutting-edge and exciting libraries solving
important problems in their respective domains. Changing our deployed model
from this extension to a model trained with a state-of-the-art model architecture
and framework would be straightforward in theory, so we want to examine how.
Comparing this extension with another framework will put it in context with
the current best and can quantify its performance and potential usefulness.

Therefore the following question is proposed:

3. How does fastai combined with MONAI compare to another cutting-edge
deep learning framework (nnU-net) regarding performance metrics?

By answering the research questions, the goal is to help the development of appli-
cations in WIML. Additionally, an indication of the usefulness of the frameworks
utilized is desired, as well as an exploration of the challenges and advantages
that lie in deployment.

10

Chapter 2

Background

2.1 Image segmentation

The field of image segmentation lies in the intersection between digital image
processing and computer vision, which can be described as processing digital
images through algorithms to gain a high-level understanding of the images.
For image segmentation, the understanding is gained by constructing a simpler
representation of the images that can be more meaningful to analyze. Image
segmentation can be defined as partitioning a digital image into different regions,
representing sets of pixels. Specifically, this means assigning labels to pixels with
homogeneity among properties. The resulting segmentations can be viewed as
nonempty subsets used to facilitate attribute extraction.

Image segmentation as a scientific field has a long history, dating back to the
1960s and 70s. In 1966, a professor named Seymour Papert at the Massachusetts
Institute of Technology’s Al lab launched a rather optimistic project called “the
summer vision project”, intending to solve “the machine vision problem” by the
end of that summer [17]. Some of the general goals are described as dividing
regions of a picture into “likely objects” and “likely background areas” (see
section 2.1.1). Unfortunately, the challenges of computer vision are still not
solved fifty years later. However, the project represents the birth of many
aspects of the field, including image segmentation.

2.1.1 Types of image segmentation

Image segmentation can in general be classified into three sub-categories based
on the information they output: instance segmentation (IS), panoptic segmen-
tation (PS), and semantic segmentation (SS).

The fundamental difference between instance segmentation and semantic seg-
mentation is that in IS, each segmentation map has a distinct identity regardless
of class. Le., all maps are treated as individual instances. In SS, however, each
segmented map of the same class is treated as one single instance. Panop-
tic segmentation combines both of these aforementioned concepts. Detailed by
Geremy Heitz and Daphne Koller [18], and later implemented as the basis for

11

segmentation categories in the famous Microsoft COCO data set [19, 20], let’s
distinguish categories of objects as being either things or stuff. Segmented things
correspond to IS and are segmentation maps that can be counted through their
distinct instance ID. It is usually an object with a well-defined shape, e.g., a
fish or a person. Segmented stuff, on the other hand, represents amorphous
categories that are harder to count, such as a background region (e.g. sky, sea,
grass, etc.), and corresponds to SS (see figure 2.1). Using these definitions, PS
utilizes some algorithm that enables it to distinguish between things and stuff.

Figure 2.1: Overview of segmentation types: a: raw image, b: semantic segmen-
tation, c¢: instance segmentation, and d: panoptic segmentation. To simplify,
only vehicles are viewed as instances. One could view e.g. trees as instances as
well, depending on the task at hand.

2.1.2 Medical image segmentation — an introduction

Image segmentation, in general, plays a vital role in medical image analysis,
specifically in the domain of identifying and segmenting organs, tumors, and
other regions of interest.

Assigning different sets of pixels in an image into individual segments can create
an accurate mapping between that image segment and any structure in the body,
e.g., tumors and organs. These segments are made to be internally homogeneous
according to at least one similarity metric (e.g., belonging to tumor or non-tumor
tissue).

In medical imaging, there is usually a particular region we are interested in
inspecting, called region of interest (ROI). To enable further analysis of these
regions, we need some way to separate this ROI from the rest of the image (back-
ground). After segmentation is performed, one can extract useful information
such as organs or tumors’ volume and surface area. This way of extracting and

12

analyzing quantitive images is called radiomics.

The process of manually sub-dividing tissue (i.e., by hand) in medical images by
a radiologist in the clinic can be quite time-consuming. It is well documented
that algorithmic solutions have shown great potential in making this procedure
more efficient by assisting human experts [21, 22, 23].

Segmentation by hand is done every day in the hospital, and it is used for
planning radiation therapy and surgery, as mentioned in [24]. Multiple image
modalities are used, including positron emission tomography (PET), CT, and
MRI. MRI is often used for tumor detection and clinical treatment. In this
thesis, our focus is on MRI. With the magnitude of how often this clinical pro-
cedure takes place combined with its influence on people’s lives, computational
tools that can yield significant time savings in clinical practice are immensely
useful. Integrating such practices into a radiologist’s routine could have great
value for both health care providers and patients.

2.1.3 Traditional image segmentation

Traditional image segmentation techniques originated from digital image pro-
cessing coupled with optimization algorithms. Some of these algorithms set up
regions in a picture by comparing neighboring pixel values. For example, region
growing takes local averages of features such as grayscale intensity, color, or
shape as the basis for pixel comparisons. Based on these comparisons related to
some specified threshold, the algorithm assigns pixels to specified regions until a
condition is met. This is one of many traditional image segmentation techniques
considered state-of-the-art at their time (see figure 2.2). For reviews of broad
sets of image segmentation techniques, see [25, 26, 27].

Classic
Image Segmentation

Methods

| | | | |
|

[Active Contour} [Clustering] [Edge-Based] [Region—Based] [Watershed

|
| | | | ——

Fuzzy Canny
Clustering

Means (FCM) -
[Balloon Model J { K Means J

Gradient Vector

[Thresholding]
Flow

{ Flooding Local} {Global}

Marker-Contr. | |\1ack | |otsu's
Flooding

Region Growing

Region
Split/Merge

Rain Falling {Huang} [Mean}

Geometric
Active Contours

Diffusion
Snakes

Fuzzy
- Knowledge-
Prewitt Based Seeded

Figure 2.2: Overview of common traditional image segmentation techniques,
and some of their respective implementations. These previous inventions illus-
trate years of effort that are still relevant even in the age of deep learning [28].

13

2.1.4 The machine learning approach

To understand the later concepts presented in this thesis, a basic familiarity
with machine learning (ML) and its differences from traditional programming
is essential. It is especially relevant to present this in the context of image
segmentation. It’s assumed that the reader has some basic knowledge of ML.
With that in mind, we will give a basic overview of how ML relates to both
traditional programming and image segmentation in this subsection.

Traditional programming and machine learning

In traditional programming, developers manually define and implement the use
case and logic within the program. This program, along with data, is then
executed on a machine, producing the resulting output. In machine learning,
however, results combined with data are used to formulate the logic within the
program (see figure 2.3). Note that this means that, in a sense, the data becomes
part of the program.

Traditional Programming Machine Learning
Data Data
Machine Output Machine
Program '— Output '—
(a) (b)

Figure 2.3: A simplified overview of traditional programming related to machine
learning.

Developing programs through traditional programming can be a complex task
requiring developers to manually maintain a large set of rules. E.g., in fraud
detection, this would involve maintaining a blacklist and banning certain words
and sentences.

More often than not, the logic of these rules needs to adapt at some point to keep
up with factors such as data drift or concept drift (discussed in section 2.3.1).
In addition, fraudsters will change their approach given enough time, and the
definition of fraud itself might also change. To keep up with this in traditional
programming, developers must manually adapt their fraud detection program.
This means reprogramming and maintaining the aforementioned large set of
rules as their tasks get increasingly complex.

In machine learning, one constructs programs that can learn from the under-
lying patterns it needs to solve the problem itself, such as detecting fraud or
performing image segmentation. Such an approach makes it possible to create
programs based on very subtle patterns in the data. Moreover, if modifications
to the program are needed, it is possible to learn through new data and update
parameters within the model. This is all made possible through a measure of

14

performance, often calculated by what are called loss functions (see figure 2.4
and Section 2.2.1).

Traditional Image Segmentation
Algorithm

Segmentation
technique

Mask
Predictions

Machine Learning Based Image
Segmentation Label
Model Actual
Mask

Mask
Predictions

Segmentation
technique

Performance

Parameters

Update (b)

Figure 2.4: This figure illustrates the difference between traditional image seg-
mentation techniques and those based on machine learning. In traditional image
segmentation, we have segmentation techniques created with traditional pro-
gramming. We can have different techniques, test all of them, and pick one
based on performance, but as explained in 2.1.5, they are hard to optimize. As
illustrated, the machine learning-based version automatically compares mask
predictions to what it optimally should have predicted (actual mask), called a
label. The relation between these two, called prediction and target, is used to
calculate the loss. This, which acts as the performance measure, updates pa-
rameters that are often randomly initialized, inducing step-wise improvement.
Thus, the way we calculate loss, through a loss function, is crucial to how our
machine learning model performs.

2.1.5 Evaluating machine learning models

The goal of a machine learning model is for it to generalize well, and uncover un-
derlying data patterns. This means that as the model is exposed to new, unseen
data, it adapts properly. ML models have been shown to lead to some of the
best results in a range of domains, but there are still limitations and challenges
that have to be taken into account. Initially, the model is built, or trained,
using training data. This is the data that is fed into the model training loop
to iteratively update the model parameters (see figure 2.4). This training loop

15

can progress too far, particularly in complex models, where models adapt, or fit
themselves too much based on the training data. This is called overfitting and
causes models to generalize poorly. On the other hand, a model can sometimes
not be complex enough or have too few iterations in the training loop causing
it to generalize poorly as well. This is called underfitting. The dichotomy of
balancing model complexity and optimizing generalization is commonly referred
to as the bias-variance tradeoff.

After training a model, we need some way to evaluate its performance. The
optimal way to achieve this is to test it on relevant, labeled data points that
are unseen to approximate how it would perform in a real-world scenario. By
this, we mean that to get an unbiased evaluation, it is important that this data
remain hidden from both the model itself and data scientists so no assumptions
are made based on it. This data set is called a test set.

After the test set is set aside for the final unbiased evaluation, it is common
practice to reserve another partition of the training data, called validation data.
The validation data set helps to evaluate how well a model reacts to unseen
data. This is useful as it prevents overfitting during training, and is used to
optimize hyperparameters. A hyperparameter is a different kind of parameter
that is not derived via training but by the data scientist themselves. These
control the learning process, how the model is structured and is defined before
the learning process begins.

The validation set is used to evaluate the performance of a model during train-
ing. This introduces another type of loss, not derived via training, but vali-
dation called wvalidation loss. Observing how hyperparameters affect validation
loss gives an estimate of the influence they have on a model’s ability to general-
ize well. Therefore, optimization, or the tuning of hyperparameters is measured
based on its effect on validation loss.

When tuning hyperparameters, we are specifically tailoring, or fitting our model
to this validation set. As tuning progresses, the model does not only acquire
a bias toward the test set but increasingly so toward the validation set. This
reiterates the importance of an unbiased test set, and it puts a restraint on how
much a data scientist should tailor the model to the validation set as well with
regard to the bias-variance tradeoff.

Finally, after a data scientist is satisfied with the hyperparameters, it is common
practice to train the model a few iterations after merging the validation and test
set. This is because, especially in cases with a limited amount of data, we want
to use all data available and not let any of the data points in the validation set
go to waste.

How we split our data set for training, validation, and testing serves as the basis
for how the model views the data, and it can greatly affect the performance of
the model. One composition of data might result in better performance than
another, and choosing the optimal split is a hard task. K-fold cross-validation
is a procedure used to optimize this composition on the cost of computational
resources. The procedure splits the data set into k equally sized subsets and
trains k models where each of the partitions gets to serve as the validation set
for each model trained. After this, it is common to compare the models, and, in
some cases ensemble them, meaning that they are jointly used to solve the same

16

problem. This way, we get more out of our data by ensuring all observations
get the chance to appear as both training and validation data.

o R R R N
sz (el —
S S S R N B 5
Fold 4 [‘ ’ ’ ‘ } -[Model 4k g
o s (N S S S

Training Set Validation Set

Figure 2.5: K-Fold Cross-Validation where K = 5. Fold 1 to 5 represents the
same data set, where it is split into 5 equally sized subsets. All folds contain
the same data, but the validation set is of equal size as the subsets, and distinct
for each fold. This means that each data point gets to serve as validation data.

2.2 Supervised deep learning

Deep learning is a sub-field of machine learning, forming state-of-the-art solu-
tions to a variety of problems, especially in computer vision and natural language
processing. This was particularly acknowledged when deep learning methods
started to outperform other methods in various image-analysis competitions like
the well-known ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
This yearly competition, which has now ended, was the benchmark challenge in
object detection and image classification. In 2012, a deep learning model of the
type convolutional neural network (CNN; see section 2.2.2), greatly reduced the
error rate to a point no one had seen before.

The various algorithms within machine learning, and its sub-category deep
learning, can be divided into three main types: supervised, unsupervised, and
reinforcement learning. In this thesis, our focus will be on supervised deep
learning. In supervised learning, a function is inferred based on labeled train-
ing data as ground truth, acting as a “supervisor”. The labeled data tells the
system whether it has learned correctly or not. Unsupervised learning learns
patterns in data without labels. Finally, in reinforcement learning, a model is
trained using trial and error, with rewards for the desired behavior and punish-
ment for undesired behavior dealt out by a reward function. This thesis deals
exclusively with supervision-based deep learning tasks, and we will not discuss
unsupervised learning or reinforcement learning further.

2.2.1 Fundamentals of deep learning

Artificial neural networks (ANNs) are computational systems loosely inspired by
neural networks in biological brains, such as the human brain. ANNs are built
up by layers of numerous nodes called neurons, with interconnections between

17

the layers of neurons. An ANN consists of three layers: an input layer, one
or more hidden layers, and an output layer (see figure 2.6). The input data is
in the form of a multidimensional vector, which is distributed into the neural
network through the input layer. The neurons in the hidden layers calculate the
dot product between the inputs and their weights and add a bias. Finally, the
results are passed through a nonlinear activation function which produces the
neuron’s output.

Input layer Hidden layer Hidden layer Output layer

Figure 2.6: An illustration of a simple artificial neural network (a simple feed-
forward, fully-connected neural network), showing the different types of layers
and a possible connectivity pattern. In practice, there would be many more
nodes and hidden layers, and the connectivity pattern would generally be more
complex.

Training a neural network

Before training a neural network, it is generally a good practice to apply pre-
processing techniques to data before feeding it to a neural network. In the case
of data points having varying scales, data normalization is a technique that is
applied to optimize and speed up the training process. For images, one way to
bring those values to the same scale is to subtract the mean and then divide by
the standard deviation pixel-wise (Z-Score normalization).

The performance of deep learning models are generally measured through a loss
function (see also figure 2.4). Loss functions measure the discrepancy between
the model output and a corresponding label. There are many ways to model this
difference, and which function to apply depends on the problem to solve. Some
examples of common loss functions are root mean squared error (RMSE), mean
squared error (MSE), and cross-entropy. A simple example usually utilized for
regression tasks, MSE assesses the average squared difference between labels
and predicted values. This means that the larger a discrepancy is, the more it
is penalized. The equation for MSE is as follows:

£1($i - Z/i)2

As detailed in figure 2.4, a machine learning model iteratively improves perfor-

mance metrics by updating parameters within the model based on a performance
measure, usually provided as loss from a loss function. Weights and biases within

18

hidden layers represent such parameters in neural networks. Gradient descent
is a widely used optimization algorithm used to update these parameters. The
algorithm seeks to find the minimum value of a function and takes the derivative
of the loss function as input. The goal is to find a particular combination of pa-
rameters where the loss value is at a minimum, such a point is called a minima.
A gradient is a vector that represents the direction where the function increases
the most, called the steepest ascent. This means that to approach a point with
minimal loss (a minima), one has to take a step in the opposite direction of
the gradient (the negative gradient). These steps define how it is possible to
iteratively minimize model prediction error by repeating this process.

There are three categories of gradient descent: batch gradient descent, mini-
batch gradient descent, and stochastic gradient descent. Stochastic gradient
descent utilizes a single random training sample to calculate a gradient per it-
eration. Batch gradient descent loads the entire data set to memory before
calculating the gradient per iteration, which is comparatively very computa-
tionally heavy. Mini-batch gradient descent utilizes randomly picked sub-sets
of fixed size to calculate the gradient for each iteration.

Figure 2.7: Tllustration of gradient descent. The red part implies a combination
of parameters where the loss is high. The arrow represents the stepwise traversal
of the optimization algorithms’ path toward the blue valley to find a minima.

Each input data point in the training set is propagated through the network to
make a prediction. For each input, the loss function provides the performance
error. This error is then propagated backward through the network to measure
how the current weights affected it. This is a fundamental process within neural
network training called backpropagation. An optimization method, such as a
variant of gradient descent, can then be used to update the weights and biases,
aimed at iteratively improving the network’s performance as it is exposed to
data.

19

The length of each step the optimization algorithm takes in the direction of
the gradient is a hyperparameter called a learning rate. It is hard to determine
the optimal learning rate before training a model. A large learning rate can
converge quickly, but it might also pass over a minima, while a small learning
rate converges slowly, and could get stuck. This leads to the need for ways of
determining good learning rates and establishing learning rate schedules adapted
to specific models, problems, and data sets.

2.2.2 Convolutional neural networks

Among the different architectures of artificial neural networks, the convolutional
neural networks have shown great performance in computer vision tasks such
as image classification and image segmentation. CNNs are a form of artificial
neural networks, but they have some key features that make them more suitable
for large inputs with a particular geometric structure, such as images. CNNs
make some geometrical assumptions about the input: if detecting a pattern is
important at some position in the input, it should also be important at other
positions. This assumption means that a specific pattern in an image can be
recognized even if its position is shifted. This is called translational invariance
and is realized in CNNs through weight sharing (sometimes called parameter
sharing). The layers that are most common in a CNN for classification are the
convolutional layer, pooling layer, and fully connected layer.

Convolutional layer

The convolutional layer is central to CNNs, as the name implies. A first con-
volutional layer in a CNN might locate edges, colors, or other basic features in
the image. Deeper into the CNN, the next convolutional layer could then find
more advanced shapes or features, visualized in figure 2.8.

The convolutional layer consists of trainable matrices called kernels, or filters,
which are smaller than the input matrix but share the same depth. The kernel
glides (or convolves) over the input matrix with a stride at a time and calculates
the convolution between the kernel and the receptive field (the region of input
values with the same size as the kernel, see figure 2.9). This convolution can be
thought of as weight sharing, as all neurons in a depth slice use the same fixed
kernel. The output matrix produced by the convolution is called a feature map
(or activation map). The feature map will have the same depth as the kernel,
and each layer of the map is the result of a convolutional operation between
the weight parameters within the kernel and the input data. The shape of the
feature map is determined by its input shape and the kernel’s shape and stride.

An important attribute of the convolutional layer is each neuron’s local connec-
tivity. Since the network is dealing with high dimensional inputs, connecting
all neurons between each layer like an ANN is impractical. The number of
weights between neurons increases exponentially with the size of the image in-
put. Full connectivity also treats distant pixels as importantly as local pixels.
Instead, each neuron is connected only to a small region of the input. The local
connectivity’s range is determined by the filter size, also called receptive field
size.

20

Layer 4 Layer 5

Figure 2.8: Visualization of shapes and features discovered in a CNN. Note
how the features in early layers find basic shapes and colors, while in layer 3
advanced features such as faces are picked up. Figure is from [29].

A convolutional layer is followed by an activation layer. The feature map out-
put of the convolutional layer is sent through a non-linear activation function,
typically a rectified linear unit (ReLU): f(x) = max(0,z). This is an important
step and needed for the model to approximate any non-linear function.

Pooling layer

The pooling layer’s objective is to reduce the size of the activation maps. When
the number of parameters in the activation map is reduced, the computational
complexity also lessens. Down-sampling also helps to control the model from
overfitting.

Similar to the convolutional layer, the operations in a pooling layer are done
with a kernel. However, instead of calculating the convolution, it performs a
pooling operation, usually mazx pooling or average pooling. In max pooling, the
kernel glides over the input and selects the largest value (see figure 2.10). The
size of the kernel is usually 2x2, with a stride of 2. A larger kernel window
causes more information loss. Average pooling is similar but finds the average
instead of the maximum.

Fully connected layer

In the fully connected layer, all neurons have connections to all neurons in the
two adjacent layers, much like the neurons in a regular neural network. This
layer is often added to the end of a CNN, where it performs the classification
task based on features from previous layers.

21

Input Kernel Feature map

1 2 0
1°0+
0 1 21:: 3
0*2
i 0 2 * = =
1 2
0 1 0
oo o
1 2 0
0 1 3 -4 3 4
1 0 2 * = =
00
1 2 2 i 2 3
0*2
0 1 0

Figure 2.9: Tllustration of a kernel calculating a convolution of some input. The
dimension gets reduced after the calculation, this can be mitigated by adding
padding. The kernel’s stride is the number of pixels the kernel moves over the
input at a time. The kernel in this figure has a stride of 1, and size of 2x2.

6 3 2 1 Max-Pool 6 1

Figure 2.10: Illustration of a max pooling operation. Size is 2x2 and stride is
2. Note the 75% information loss: 16 data values become 4. Although a lot
of information is lost by pooling, it improves efficiency and reduces the risk of
overfitting in the network.

The CNN architecture

A typical CNN for image classification often consists of these layers together
(see figure 2.11. When designing new CNN architectures, these layers are the
basic building blocks, but often more advanced structures and layers are added
on top of them, while some layers are dropped entirely as the pooling layer and
fully connected layers can both be replaced by convolutional layers.

Typically the convolutional layer is followed by pooling layers. It is also common
to follow a convolutional layer with another one before the pooling layer, en-
abling the convolutions to find more advanced patterns before down-sampling.
The alternating layer pattern of convolutional layers and pooling layers repeats
throughout the architecture. In a basic CNN for image classification, the last
layer(s) is often a fully connected layer.

22

s B\

Input Pooling Convolution Pooling Fully connected

Figure 2.11: Illustration of building blocks of a typical convolutional neural
network for classification. The layers listed below the figure are convolutional
layers, pooling layers, and fully connected layers. Note that every convolution
is also followed by a non-linear activation. Figure made using NN-SVG [30].

2.2.3 Convolutional neural networks for image
segmentation

CNNs have commonly been used for image classification tasks, but they have
also excelled at image segmentation, a more complex problem than classification.
Instead of the model’s output being a single prediction, it also includes the
prediction’s location within the image in the case of instance segmentation.
Alternatively, the model outputs a whole image classifying each pixel in the
case of semantic segmentation (see section 2.1.1).

Image segmentation tasks require a different architecture to classification tasks,
given the difference in output. In semantic segmentation adding a 1x1 convo-
lution at the end of the model changes the output to a feature mapping. This
feature mapping has the same size as the input and a depth set to equal the
number of label classes for the task. A CNN consisting of no fully connected
layers is called a fully convolutional network (FCN) [31]. FCNs have lately
gained attention in semantic segmentation tasks.

In addition to a different architecture, segmentation tasks require different func-
tions to measure performance. In section 2.2.1, mean squared error and cross-
entropy was mentioned as common loss functions. Segmentation tasks can be
evaluated with different loss functions, a common one is dice loss which has the
following formula:

. 2|AN B|
Dice loss =1 AT+ (B
The dice metric measures similarity between two sets (illustrated in figure 2.12)
and returns a value between 0 and 1 where 0 is no overlap and 1 is a perfectly
overlapping segmentation. Dice is used both as a loss function and as an eval-
uation metric, along with other metrics for segmentation such as Jaccard index
and Hausdorff distance. The latter calculates how close two subsets are to each
other, by measuring how close every point of one subset is to some point in the
other subset.

23

Figure 2.12: Visualization of dice coefficient, a performance measure in segmen-
tation.

The U-Net architecture

The U-Net architecture [32] is a type of fully convolutional network designed
specifically for doing medical image segmentation tasks. The network gets its
name from its symmetrical shape, one downwards contracting path and one
upwards expansive path, forming a “U” (see figure 2.13).

64 64
128 64 64 2
input
. output
image)
ge | > segmentation
tile sil gl gl =
S & 8 & map
| Of © (L(x| x| x|
5| 5| 2 gl g &8
2| | %
N| Of ©
Nels
[Toll Tol| MY
¥ 128
256 128
> >
SEIE
S RIE: SE IR
RS RSN
! 256 256 512 256 t
of [[Y | | |® =» conv 3x3, ReLU
SR - S (e
R = 4 copy and crop
512 512 1024 512
[l g [Bl] max pool 2x2
gD':\; = 4 e M ’
€ C¥ 04 | B 4 up conv 2x2
;(:y] L < L g I R

%
39

302

Figure 2.13: The U-Net architecture. The arrows denote the different opera-
tions. Figure from [32], with permission from the author.

The network has some additional operations in its architecture: up-convolutions
and skip connections. Up-convolution is a technique to upsample or expand
an image. In contrast to the downsampling max-pooling operation, the up-
convolution operation is trainable. The feature mapping is upsampled to a
higher dimension and to a shape that lets it concatenate with the previous
feature mapping from the corresponding layer in the contracting path. This

24

concatenation is done through a skip-connection. The concatenated feature
maps from the opposite layer are reused, recovering information from previous
layers before it was downsampled, allowing feature maps to be preserved even
in a deep network. This mitigates the problem of vanishing gradients caused by
backpropagation in deeper networks.

Many newer networks designed for segmentation tasks have used U-Net’s archi-
tecture as a base. See [33] for a review of its variants and their development.
A 3D U-Net architecture was introduced in [34], extending Ronneberger’s pre-
vious U-Net by replacing all 2D operations with their 3D counterparts, as in
3D convolutions, 3D max pooling, and 3D up-convolutions. U-Net architecture
has later implemented residual blocks within the encoding layers to improve
performance [35]. These blocks contain additional residual connections, which
are a type of skip-connections. Recent transformer-based variants of 3D U-Net
have also achieved good results, for instance UNETR in [36]. Transformers are
a type of neural network architecture that has seen a lot of success in ML tasks
based on language, and also more recently computer vision. In short, these are
based on a technique called attention, which weights different parts of the input
data differently, as well as divides the input into sequential image patches.

2.3 Deployment of machine learning models

Deep learning models have shown excellent results on a wide variety of problems,
but to apply the models to real-world tasks, they need to be deployed.

A well-performing deep learning model getting great results on a test set and
trained with a refined architecture can be powerful. But this model will be use-
less in practice if its domain is not fully understood and you don’t account for the
many challenges associated with model deployment. The challenges are many,
ranging from technical infrastructure challenges to questions related to societal
impact, including ethical implications relating to biases, privacy concerns with
data collection, gaining the trust of end users, model performance and robust-
ness in practice, and overall usefulness and effectiveness of the model. These
challenges get amplified when deploying to clinical settings, where consequences
for neglecting these issues are severe.

This chapter will present different challenges with machine learning deployment
in general, in the medical domain, and look at the current progress of Al in
health and medicine.

2.3.1 Challenges with deployment of machine learning
models

Before delving into the ethical issues of medical A, we will look at the basics of
model deployment and some of the typical problems that arise when deploying
all types of machine learning models.

What is deployment?

Model deployment is a process for publishing a model and making it available
to perform predictions in a production setting on real data. The model is made

25

available to an end user through a system. Deploying a machine learning model
and making it available for use does not mean it is complete, and a model
scoring well in metrics during development does not necessarily perform well
in production since there are many new factors to consider. Machine learning
development is a cycle and needs to be continually updated throughout the
application’s lifetime, as seen in figure 2.14, where deployment is an important
part.

Understand the
problem/”Big picture”

/ DEPLOYMENT \ DATA \

Monitor “business)
impact” Define data

.

[)

Get data
Monitor and update I
models and data
ML Engineering Explore data

Lifecycle I

Deploy Prepare data

Evaluate and validate. Fine-tune models
Analyze mistakes Construct ensembles

MODELING

Explore ML models

Figure 2.14: The machine learning engineering lifecycle. Model engineering is an
ever-developing cycle that does not stop after deployment but instead starts the
development process again. The three parts of the lifecycle are data, modeling,
and deployment. However, starting the development by first understanding the
big picture is a good practice. Examples of questions to ask at this stage are:
“What problem should be solved?”, “How is the problem solved today?”, and “Is
it feasible to solve this problem with machine learning?”. Additionally, metrics
to evaluate the model and the business impact should be defined early.

The modeling part of the machine learning engineering cycle is covered earlier
in section 2.2. However, deployment and monitoring are some of the most
challenging stages of the lifecycle, both from a technical, practical, and ethical
point of view.

Monitoring

Deploying a model and monitoring it is one of the most important and challeng-
ing parts of model engineering. The goal of monitoring is to track the health
and value of a deployed system, more precisely to mitigate model decay. Model

26

decay is when predictions of a model get less reliable over time. This typically
happens when the model is deployed in a highly dynamic environment, where
the model performance deteriorates over time. We will look at what causes
model decay and how one can mitigate it by monitoring, which is a crucial part
of the model engineering workflow for ensuring model value in practice.

If data and the data distribution in production differs from training data, model
predictions will falter. This difference between training and test data and pro-
duction data is called data drift and can happen if there is a significant time
delay between training the model and integrating the model [37]. Other factors
can affect data drift, such as errors relating to data collection or seasons. An
example is a data set meant for predicting human behavior collected before the
COVID-19 pandemic but deployed after. Concept drift is a different source of
model decay where it’s not the data that changes over time but instead our
underlying understanding of it. In a classification problem, the same data point
might change its class due to concept drift, even though it is still the same data
point. Figure 2.15 visualizes the difference between these.

(a) Original data (b) Concept drift (c) Data drift

A A A
O
O O
O O - o O o ©
o / O) o,/ O
@) / @ ®) 9,/f e O
/00 0 —~_ 00 o o7 0©
Q! o 0" 9o o/ O
| | @) O
| O O O O |
o © © O ‘x

Figure 2.15: Illustrating the difference between concept drift and data drift in
a classification problem. In concept drift the data doesn’t change, but rather
the problem context. Data drift is a shift in the data distribution, sometimes
called virtual concept drift or sampling shift.

Comprehensive live monitoring is important for the long-term reliability of a
system [6]. But detecting decay is not an easy task, as well as knowing what
to monitor. A typical solution is a dedicated monitoring approach, either auto-
matic, manual, or both [38]. Continuous evaluation in addition to well-defined
metrics is key for monitoring models in production. Input data can be tested
for consistency and distribution over time, while predictions can be monitored
by domain experts routinely examinating.

If a slight drop in model performance over time is detected, this is a sign of model
decay. Action is then needed to bring the model back to expected performance,
either by fine-tuning the model or building a new model from scratch. Expe-
riences gained from deployment and monitoring are valuable when redesigning
the model, and data collected while deployed should be used for re-training.
The extent of the re-training will depend on the situation, with some factors
being how much the model performance has drifted and how much new labeled
data is available.

27

In addition to the technical challenges with deploying machine learning models
to production as described above, there are also many practical challenges in-
volved. Similar to how model performance is monitored, the business impact
of a deployed system also needs to be monitored. The cost of developing and
running a well-performing model has trade-offs. A more complex model can
achieve better results, but it also might require more resources in both training
and serving, which would increase expenses. Finding the optimal balance for
the relevant use case is a challenge, how to best turn accuracy into revenue.

Increased model complexity can also affect the end user’s experience, by affecting
latency and throughput. Latency is the delay between the user performing an
action and observing its result, while throughput refers to how many requests a
system can handle and process over a set period. Finding the optimal balance
between these metrics will depend on the required service. Some systems might
need low latency to keep user engagement, while others require high throughput.
If a system requires both, it will likely come with a cost expense.

2.3.2 Challenges with deployment of machine learning
models in health and medicine

As mentioned earlier, Al has vast potential in medicine, and a plethora of re-
search has gone into developing high-performance deep learning algorithms. Im-
age algorithms have demonstrated the ability to detect diseases from images at
the level of experts [39, 40]. But research has not been as comprehensive in in-
tegrating these machine learning models with clinical practice due to the many
challenges and limitations associated with deep learning. The challenges are
both technical and ethical, in addition to the practical implications of adding
AT to clinical settings and changing already well-established workflows. An ex-
ample is a study from Google Health in 2020 [41]. They had developed an
algorithm that identified diabetic retinopathy at a specialist level accuracy, and
could potentially reduce waiting time from the eye screening process from weeks
to minutes. But when the algorithm was used in a real-world clinical setting it
sometimes failed to give a result at all, and occasionally caused frustration from
nurses and patients. The study shows that the benefits of Al can be large, but
real-world unexpected real-world situations need to be considered, and how a
model’s usefulness in practice needs to be monitored.

Further in this section, we want to cover some of the ethical challenges that are
slowing down the medical integration of Al

Trust

One of the biggest hurdles Al is facing before integration in medicine is building
trust with the end users. Several aspects are needed to gain this trust. Models
have to demonstrate robustness and reliability, not only in the lab on testing
data during the development process, but also in rigorous tests on heteroge-
neous incoming clinical data. Explainability is another factor that affects trust.
AT, in particular deep learning models, function essentially as black bozxes, with
no reliable way to explain how an algorithm lands on a certain prediction. The
weights and parameters in the hidden network layers do not provide intuitive ex-
planations on how it comes to a decision. Explainability is especially important

28

in health, as a medical doctor needs to be able to explain treatment decisions
to a patient [42]. The problem with explainability has led to the emergence of
a sub-field called explainable AT (XATI). Techniques exist that partially uncover
a model’s reasoning by highlighting the most important regions of an image
being used to come to a certain prediction. These highlights can be useful for
both end users as insights into the model prediction, and the developers when
optimizing model performance. However, these techniques still have limitations
that may reduce their reliability [43].

Involving clinicians in the different steps of the development cycle (see fig-
ure 2.14) may also increase their trust in the system, as they can evaluate
and give feedback during development. However, even if the end user’s trust
is won, and they are interested in using prototype applications for medical Al,
there are still many hindrances in the executive parts of the clinic with strict
regulations and further ethical concerns.

Model fairness

The factors presented in the last section are not the only ones that cause un-
certainty towards Al, model fairness and learned biases are other examples. If
the data and labels are not carefully selected a model can learn discriminative
biases towards marginalized groups. It is a huge ethical problem in itself and
needs to be carefully checked before deploying any system into use [44].

Responsibility and accountability

The emergence of Al has also raised concerns regarding accountability. It is
currently uncertain who should be held accountable if a model makes mistakes,
even after being approved clinically [45], whether it is the developers, regulators,
vendors, or the clinician who is liable.

The questions regarding accountability and the uncertainty around the model’s
unknown biases both affect the end user’s trust, adding to the challenges that
need to be overcome before ML-workflow integration becomes routine practice.

Data

Large sets of training data are important for training a robust deep learning
model, as neural networks have large appetites for data. Lack of training data is
a common obstacle in medical image analysis. The bottleneck is however not the
amount of available imaging data in medical archives, which are filled with large
magnitudes of images. The challenge lies however in obtaining task-relevant
labels/ground truths for these images. Turning images from PACS-like systems
into suitable images with precise labels for a specific task will require domain
experts (e.g. radiologists). For example, in 3D brain tumor segmentation, each
slice of a three-dimensional image needs to be labeled, which is a time-consuming
process [46].

Perhaps even more important are the challenges related to privacy issues, infor-
mation protection, and data access. If the training data is not anonymized, it
is left vulnerable to privacy attacks. Therefore deep learning work on medical
images is most often done with data sets that have already been anonymized.

29

Anonymizing the data adds another step of data preparation. Other machine
learning techniques ensure better data privacy. For instance, in federated learn-
ing, an algorithm is trained across decentralized systems, using local data with-
out further sharing it.

30

Chapter 3

Workflow-integrated
machine learning in
radiology

This chapter presents the design of a system for integrating machine learning
models in the radiology workflow in Helse Vest and some of its key software
technologies. Figure 3.1 shows an abstract illustration of the project.

Radiology is a branch of medicine that uses medical imaging to diagnose and
treat diseases. Machine learning and deep learning can make a significant impact
in the field of radiology, as radiologists analyze large amounts of images every
day. This process could be sped up and otherwise assisted by using machine
learning-based tools. The treatment delay in image processing could decrease
when integrating deep learning tools with radiology (augmented radiology) and
would cause the medical costs to be greatly reduced [47].

The following sections will introduce some important technologies and infras-
tructure the project is working with for workflow-integration.

3.1 Medical image file formats

Image file formats standardize how image information is stored in a computer
file. Some well-known image file formats today are JPG, PNG, and GIF, how-
ever, these files do not contain enough necessary information to be used for
medical images. Medical image file formats need to describe how the image
data is organized and how it should be interpreted by software for loading and
visualizing [48]. The two most used file formats for medical scans in this project
have been DICOM and NIfTT.

31

Application

° HELSE BERGEN

Haukeland universitetssjukehus

Research

e

SIEMENS ..,
Healthineers -*

docker

Other industry
vendor systems

Figure 3.1: Illustration of the project’s application pipeline and design. The
main application performs an image segmentation on incoming DICOM images
using fastai and MONAI with a U-Net model [32] or similar. A Docker image
containing the application is then created, which can be integrated into research
PACS and other potentially other industry vendor systems.

3.1.1 Digital Imaging and Communications in Medicine
(DICOM)

DICOM is both a medical file format for images and a data exchange format
that allows systems to send and receive image data from other systems in the
hospital.

Tags in the DICOM file format are structured in groups. There are groups
describing the last transfer of a file, groups that describe the patient, and groups
that describe the parameters used in the data acquisition. The header is flexible
so that vendors can add their own private tags. Some subset of the tags is made
mandatory by the DICOM standard[49].

Each DICOM file is standalone, so you can identify it by itself. They are divided
into four information levels, patient, study, series, and instance. DICOM files
store one slice per file, so a single 3D scan may be hundreds of files, all with
unique instance IDs, but the same series ID.

32

3.1.2 The Neuroimaging Informatics Technology
Initiative (INIfTT)

NIfTI is based on an old volumetric file format (Analyze), and the newer NIfTI
file format is used to store a collection of DICOM images as a volume or time se-
ries. [50] Appending the individual images and reducing the header information
the file format is sufficient to store the image pixel information as well as the
volume element (voxel) size and the distance between consecutive slices. Some
tags present in the DICOM file format are removed when translating the files.
Due to its simplicity, the file format is used by many post-processing software
packages.

3.2 The WIML pipeline at Helse Vest RHF

WIML is an ongoing research project at Helse Vest RHF, funded by the Nor-
wegian Research Council!. WIML aims to address a missing part of the suc-
cessful integration of Al in clinical practice: integrating computational imaging
methods for research purposes with the existing imaging solutions in a hospital
setting. The primary objective of the research project is to create a function-
ing prototype system that can receive medical images from the clinical PACS
archive (discussed in Section 3.2.2 below), perform a pseudonymization of the
DICOM data, forward them to the Research PACS and perform a prediction
with a deep learning model, returning and storing the derived information (seg-
mentation, measurements, report) in the PACS archive ready for clinical reads
in the PACS viewer.

In this section different components of the image data analysis pipeline of WIML
are presented, as well as the software tools related to development and use.

3.2.1 Picture Archiving and Communication Systems
(PACS)

Picture Archiving and Communication Systems (or PACS) is a medical technol-
ogy that provides storage and transmission of different types of medical images
for healthcare institutions. The images in PACS can be of different types of
modalities such as CT, X-ray, ultrasound, or MRI, and they are typically stored
as DICOM image files in the system. PACS has replaced the need for hard
copy image storage in the clinic and, it allows instant access to data and remote
access for different clinicians to study the same data concurrently at different lo-
cations (see figure 3.2). The PACS system is usually integrated into the hospital
to receive study planning information, requests for specific imaging procedures,
and information on performed procedure steps.

3.2.2 Research PACS

This thesis project works with the research PACS system at Helse Vest RHF.
As the name implies, this system is purely for research purposes, in contrast
to the clinical system which concerns patient care and clinical workflow. Inside

Ihttps://prosjektbanken.forskningsradet.no/en/project/FORISS/309755

33

https://prosjektbanken.forskningsradet.no/en/project/FORISS/309755

MRI/CT/
other modalities

Clinical
— Workstations

DICOM

@ 8

PACS Archive

_ /

Figure 3.2: Illustration of the architecture of a clinical PACS system. DICOM
files from image scanners are sent to PACS and stored in the archive, where
clinicians can remotely and concurrently access it.

the research PACS, one has access to copies of the data from clinical PACS,
transferred and pseudonymized from hospital personnel. Importantly, similar
to the clinical PACS the Research PACS can also receive data directly from
hospital scanners. Additionally, the research PACS can import imaging data
from external third parties, such as online image repositories and PACS-to-
PACS connections across Norway.

The DICOM files of medical images typically store identifying information about
the patient in their file headers, such as the patient’s name, address, phone num-
ber, and other sensitive data. Crucially, all personal information is anonymized
as a privacy and security measure before the files are stored in research PACS. 2
This de-identification process is performed during the transfer process from clin-
ical PACS. Additionally, DICOM files can sometimes have sensitive information
burned directly onto the image data as pixel information. Aasen and Mathisen
investigated ways to detect and remove this type of data using deep learning
methods in a previous master thesis at Western Norway University of Applied
Sciences [51].

Research PACS is one of the components of the research information system
at Helse Vest. Research PACS is responsible for the storage and review of
imaging data, while another component called the research electronic record
system collects tabulated data such as questionnaires and diagnostic information
and saves it. These two components are connected by a Flash-based Input Output
Network Appliance (FIONA), a virtual machine acting as a gatekeeper and
quarantine station for data entering the research PACS, illustrated in figure 3.3.

2A complete list of the DICOM tags containing sensitive information
can be found here: https://github.com/mmiv-center/DICOMAnonymizer/blob/
£0762643caab3d84e522b99cdec4b8d271b12039/anonymize . cxx#L62. Only the tags marked
keep are unchanged before saving the data to research PACS, the rest are either removed,
pseudonymized, or similar.

34

https://github.com/mmiv-center/DICOMAnonymizer/blob/f0762643caab3d84e522b99cdec4b8d271b12039/anonymize.cxx#L62
https://github.com/mmiv-center/DICOMAnonymizer/blob/f0762643caab3d84e522b99cdec4b8d271b12039/anonymize.cxx#L62

External data

FIONA sources

Data processing
De-identification

Processed data Clinical Data

Research PACS |- Clinical PACS

Figure 3.3: An illustration of the Helse Vest research PACS. Data transfers
between the systems go through the FIONA gatekeeper.

FIONA is a web application acting as an edge system of research PACS re-
sponsible for all data transfers to research PACS, either from clinical PACS
or external data sources. FIONA is also responsible for performing the de-
identification process between clinical PACS and research PACS, as described
in the previous section. In addition to de-identification, and more important
to our project, FIONA supports uploading custom data processes called work-
flows. Uploaded workflows can perform predefined processing tasks, and when
uploaded they are connected to projects inside research PACS. The workflows
are triggered either explicitly or at the arrival of new data in the linked research
PACS projects. When uploading workflows to FIONA, the system expects the
application to come packaged in a Docker image. Docker images are files that
contain application code and all its dependencies and they act as a template to
create Docker containers, which are the actual environment that lets you run
the code. Docker makes it possible to easily deploy and run code in different
systems.

Section 4.4 describes the experiment regarding research PACS, going into detail
about procedures and methods used to integrate a new ML workflow into the
system.

35

Chapter 4

Experiments

In this chapter we document the three experiments done in our thesis:

1. Creating a simple and interactive web application for easy model deploy-
ment.

2. Integrating trained models with the existing research PACS at Helse Vest.

3. Comparing the fastai and MONATI deep learning libraries combined with
another cutting edge deep learning framework.

These three experiments are carried out to help answer our research questions
presented in section 1.1. The respective experiments correspond to the research
questions of the same numbers. Before describing the different experiments, we
need to first present the data set and deep learning libraries used in all studies.

4.1 BraTS 2021: the data set used in our exper-
iments

Figure 4.1: The different types of MRI sequences from the BraTS 2021 data
set used in all experiments. T1-weighted, T2-weighted, contrast-enhanced T1-
weighted, and T2-weighted FLAIR. The different images reveal unique details:
see how the tumor in the lower right of the brain differs between the sequences.

36

All experiments in the thesis are done using the BraT$S 2021 data set. [7, 52, 53]
The Brain Tumor Segmentation (BraTS) challenge is a yearly public challenge
that aims at evaluating state-of-the-art segmentation methods. The BraT$S
data set consists of 3D MRI brain scans with tumors, more specifically gliomas.
Gliomas are the most common and aggressive primary tumor of the brain. They
are intrinsically heterogeneous in appearance, size, and shape. Glioma tumors
are considered to be among the deadliest human cancers [54]. Early detection,
accurate segmentation, and volume estimation are vital for survival prediction,
treatment, and planning of surgery. As mentioned in section 2.1.2 segmentation
in practice is a tedious, manual, time-consuming process and requires close
supervision from an expert [55].

As mentioned, the image scans in the data set are all MRI scans. An MRI
scanner uses a strong magnetic field and radio waves to generate images of
organs inside the human body, in this case, the brain. The images are multi-
modal, meaning each image counsists of four image sequences (T1, T2, contrast-
enhanced T1, FLAIR). These different sequences are captured differently in the
scanner and reveal different details for different types of tissue, as shown in
figure 4.1.

The data labels are multi-label, meaning the goal of segmentation is not only to
detect the tumor but also its different sub-regions. The BraTS 2021 data set is
split into three sub-regions: GD-enhancing tumor (ET), peritumoral edematous
(ED), and necrotic tumor core (NCR). See figure 4.2. These three-dimensional
labels were manually segmented by raters based on the same protocols and
approved by experienced radiologists.

Figure 4.2: Simple illustration of two-dimensional image slices stacked, compos-
ing a three-dimensional image of the brain. The different sub-regions labeled
in the BraT$S 2021 data set are illustrated: GD-enhancing tumor (ET), peritu-
moral edematous (ED), and necrotic tumor core (NCR). The light blue section
is the healthy brain tissue.

The whole data set consists of 2000 studies, the most extensive data set for the
BraTS challenge since its start in 2012. It is a significant size upgrade from the
2020 data set, which was the previous largest BraTS challenge with 660 studies.
All image scans were pre-processed, which involved co-registering a template
shape, interpolating to voxel resolution (1x1x1 mm), and skull-stripping. The
scans and labels for the segmentation task were made available as NIfTT files

37

only.

This data set was chosen for our project for mainly two reasons. It is a crucial
topic and a serious, important medical problem by virtue of the glioma cancer’s
often grave prognosis. Secondly, it was chosen for our project because of its
high quality. All 2000 data points are co-registered multi-channel images and it
is one of the most extensive publically available data sets of its type, saving us
from the much pre-processing needed.

4.2 Deep learning libraries

All our experiments have been conducted using an existing extension combining
the two deep learning frameworks, fastai and MONAI. Both of these frameworks
are based on PyTorch, which is a commonly used open source DL framework
that acts as a continuation of the deprecated ML library Torch. PyTorch is
implemented in Python, while Torch again is written in the programming lan-
guages C and Lua.

4.2.1 fastai

Fastai is a deep learning library built on top of PyTorch that is organized
around two main goals: to be rapidly productive while being hackable and
configurable [56]. It enables a streamlined production of state-of-the-art per-
forming deep learning models. Additionally, by being structured around a lay-
ered API, fastai separates low-level components from data scientists, and pro-
duction is achieved in few lines of code compared to similar libraries. This
enables data scientists to build and test many different models fast in repro-
ducible, reusable code explainable from a theoretical standpoint. An example
of a powerful fastai method is learning rate schedulers, which implement the
two variants fit_one_cycle and fit_flat_cos (see figure 4.3). These make specific
changes to the learning rate during training, associated with the concept of
super-convergence [57]. Fastai encourages scientists to modify and intertwine
the library with added code to explore solutions to new domains. The extension
explained in 4.2.3 exemplifies such a library.

38

(a) fit (b) fit_one_cycle (c) fit_flat_cos

lterations Iterations lterations

Figure 4.3: Illustration of the learning rate schedulers fit_one_cycle with the
super-convergence phenomenon [57], and fit_flat_cos which is based on the
same theorem - except it is built for the ranger optimizer. In short, the paper
makes a case for varying the learning rate between two bound values in a cyclical
pattern in order to optimize the learning rates and prevent getting stuck at a
sub-optimal, local minima (see section 2.2.1).

4.2.2 MONAI

MONAI is a community-supported deep learning framework optimized for med-
ical imaging tasks. It originally began as a collaboration between Nvidia and
Kings College London [58] with the goal to accelerate the pace of research and
development for deep learning in medical imaging. Medical data formats such
as DICOM and NIfTI (see section 3.1) require specific support to be handled
properly along with their meta-data (e.g., voxel spacing, orientation). Data
augmentation, sample size limitations, and data formats are domain specific
relating to medical imaging and based on PyTorch, MONAI provides the func-
tionality and support methods needed to address these problems. Certain ANN
architectures are highly suitable for biomedical applications, and MONAI provides
a range of such architectures e.g. UNet [32], and variations of it.

4.2.3 Library extension combining fastai and MONAI

At MMIV, there exists an in-house library combining the MONAI framework
(section 4.2.2) with the fastai library (section 4.2.1). The aim is to provide
the advantages of fastai with functionality supporting biomedical applications
(see figure 4.4). In short, the library utilizes multiple state-of-the-art techniques
in the area of 3D medical image analysis like the powerful fastai functions
learning rate finder, learning rate schedulers, and the benefit of low code through
a layered API. This is then combined with the functionality required to tackle
challenges in the domain of medical imaging.

A paper is scheduled to be released detailing this exciting library later this year.

39

fastai and MONAT library extension

i . MONA(

fast.ai : _ _
: Handling medical data formats
Callbacks :

Data loading .
Learning rate schedulers Metrics
{ ‘ ‘ Medical imaging focused
Layered API Data augmentation
Low code Support for 3D images
Intuitive code Suitable model architectures
Reusabilit : HI S—
Learning rate finder y : !) HI}
: H #H
Reproducibility B — E e

- > —

Figure 4.4: Overview of the main components that has motivated creatition of
the library used in all three experiments that extends fastai and MONAI. It is
important to note that highlighted components are case-specific. E.g., fastai
provides great functionality for data loading and data augmentation, but not in
the case of 3D medical images. Figure of U-Net is from [34], with permission
from the author.

4.2.4 nnU-Net

nnU-Net (short for "no-new-net”) is a segmentation framework intended for
the medical domain that dynamically adapts itself to generalize on any given
data set, and is used solely in experiment three for comparison with the fastai
and MONAI library. It builds on the original U-Net architecture, claiming that
”vanilla” U-Nets consistently underperform on benchmarks due to sub-optimal
design choices and that a fully optimized U-Net can still yield the best result.
Since its release and dominating display regarding performance at the Medical
Segmentation Decathlon challenge in 2018, the nnU-Net framework has im-
proved and continues to demonstrate its robustness. The framework won the
test phase of the BraTS2020 competition, and a slightly modified version of
nnU-Net also won the same competition in 2021. A general overview of nnU-
Net’s automated configuration is provided in figure 4.5.

40

nnU-Net

. : Test
Data

Parameter Training Post-Processing
Configuration (Cross-Validation) and ensembling —
Training -o0— = (’)
> k)
= Pe {5 -

Prediction

Figure 4.5: Simplified figure inspired by figure from Isensee et al. [59], illustrat-
ing the basic components of the nnU-Net framework. During parameter config-
uration, some blueprint parameters are initially set, these are data-independent
design choices including the loss function, architecture template and some basic
data augmentation. Then, another set of parameters gets inferred automati-
cally based on the provided data set, called data-dependant hyperparameters.
This includes network architecture configuration and batch size. After this,
three different type of architectures (one 2D, two 3D) are trained in five-fold
cross-validation (see figure 2.5). Finally, the best performing model ensemble
is selected, and a check to observe if post-processing provides increased perfor-
mance is run.

4.3 Experiment 1: Creating a simple and
interactive web application

The focus of our first experiment was on putting the framework extension to
use and testing it in a simple deployed application, eliminating much of the
complexity related to ML infrastructure (shown in figure 1.1). Figure 4.6 illus-
trates the simplification of this experiment’s system design and the elimination
of specific infrastructural components. In software development terms, the first
experiment is comparable to a component test, while the second experiment (de-
scribed later in section 4.4) is comparable to an integration test. Additionally,
experiments such as this let developers become more familiar with development
processes in medical imaging. By utilizing the library combination from 4.2
in complement with other deployment-related frameworks described below, we
hoped to answer research question 1 in section 1.1.

Another secondary point of interest was to see how a segmentation model trained
with the fastai and MONAI framework would run on a CPU. When a model
is deployed, it is often limited to running on the CPU instead of a GPU based
on the target system’s available resources (as was the case in this experiment).
Limited computational power as a consequence of running on the CPU can
increase latency, which affects a clinician’s user experience and may reduce the
usefulness of the application.

41

Data
Analysis Verification Process
Tools Management Tools

=

Feature Machine Resource

ML Model Extraction Management
00000
A e
09 ==

Data
Collection

Serving Monitoring
Infrastructure

| 7S

Figure 4.6: The same illustration as figure 1.1 in the introduction, but here
showing the simplification of experiment 1’s ML application. Only the colored
boxes and the model are left in the system. Data collection represents data
uploaded through a widget, analysis tools reflect the user interacting with the
application, and serving infrastructure stands for Voila.

4.3.1 Method

The result was a proof-of-concept application, which could be used to facilitate
communication among people interested in practical brain tumor applications.

This experiment used the python library Voila, which is built on Jupyter Note-
books and IPython widgets as technologies to create an application for easy
model deployment. Jupyter Notebook is a web-based environment for creat-
ing Notebooks, which are essentially lists of cells that can contain code (most
commonly python), text, or interactive media. Jupyter’s purpose is to “sup-
port interactive data science and scientific computing across all programming
languages” [60], and it is used by large companies like Netflix for working with
data [61].

Voila

Voila is a library that converts Jupyter Notebooks with widgets (see next sec-
tion about ipywidgets) into an interactive, stand-alone application. Voila also
allows deployment of these applications, and can further be hosted on a cloud
service provider such as Binder' or Heroku?, making the application easy to
share and test.

ipywidgets

Ipywidgets are HTML-based widgets for Jupyter Notebooks, making the Note-
books interactive. The core widgets include sliders, buttons, text fields, and
progress bars.

Thttps://mybinder.org/
2https://www.heroku.com/

42

https://mybinder.org/
https://www.heroku.com/

4.3.2 Results

As explained in section 4.2, all experiments, including this one worked with the
fastai and MONAI combination library. A brain tumor segmentation algorithm
was trained with this library and the resulting model was exported.

The interactive application was based on a Jupyter Notebook that handled load-
ing data, calling the trained model for prediction and visualizing the predicted
mask on top of the brain.

Figure 4.7 shows the proof-of-concept application. As a prototype, the user
is prompted with an upload button. The user chooses a directory containing
four image sequences, which the model needs to predict and produce the mask
output. When the user clicks the button labeled Predict, the application locates
these files within the directory and feeds them as input to the deep learning
model.

When finished predicting, the application produces a visualization of the input
brain with the predicted mask overlayed. Since it was a three-dimensional image,
a slider was added to browse through the image.

Initially, the application only showed the axial slice, but after feedback from
researchers looking at the application, we added the coronal and sagittal slices.

[158]: VBox([widgets.Label(''), fc, btn_run, outputl) #Segment spine data

Change /homerjosteinfastMONAldata/MICCAI_BraTS2020_TiainingData

/BraTS20_Training_004

Predict
Colormap: = <matplotlib.colors.ListedColor v

Auial Slice: 78
Coranal Sli... 160

Sagittal Slice: 173

sagittal

Figure 4.7: Screenshot of deployed Voila application. Above the displayed brain
scans and segmented mask are the Notebook widgets: Buttons for uploading
and predicting, and sliders to look through the displayed 3D image.

4.4 Experiment 2: Research PACS integration

Our experiment regarding machine learning deployment in research PACS is
the most important experiment of our thesis, aimed at providing major con-
tributions to the development of the workflow-integrated machine learning in-
frastructure in Helse Vest. Our approach for this experiment is to integrate a

43

deep learning segmentation model into the existing research PACS platform at
Helse Vest, hoping to uncover its limits and possibilities. The focus was not
on developing the most robust deep learning algorithm but on deploying the
algorithm and testing the infrastructure.

The research PACS system, described in section 3.2.2, is the target environ-
ment for the segmentation application (figure 4.8 shows how the application
fits into research PACS). Research PACS is currently used by researchers at
Helse Vest RHF, parallel to being further developed and tested. By deploying
the application in this system, we wanted to help the testing of the research
PACS-machine learning pipeline. As a pilot project inside WIML, the project
hopes to find what works, what does not work, and if any necessary features
are missing. The deployment let us build a list of requirements, as the aim of
research question 3 previously described in section 1.1.

Research PACS

.
JSON

,,,,,,,,,,,,,,,,,, | <Y { } REDCap

Segmented tumor
mask (.dcm)

KIONA - Web application \

that acts as a gateway for / N \
communication. P .
“ Segmentation

docker application

Specific PACS
project

PACS
Project

— S/ —] MoNAf

H 1
- H FH -
u i wad +

s fastai) Algorithm
Brain scan \ /
\\ (.dem)

Figure 4.8: Visualization of how the project’s segmentation application (the
green box) fits into the WIML image data analysis pipeline. FIONA acts as
a gateway for data query and processing. DICOM files of brain scans from
a specific project within research PACS are fetched and sent to the deployed
application. The resulting output after executing is a segmented tumor mask
and a JSON file information related to the task. These are stored back into
research PACS and REDCap respectively.

.dcms

The task of brain tumor segmentation is a real problem and thus a good case
for testing the system. Additionally, the fact that the data is multimodal and
multilabel introduces extra factors that make them not as easy to handle.

4.4.1 Method

Like the other experiments this experiment used the fastai and MONATI libraries
described in section 4.2 to train the segmentation model. However, in this
experiment, the model performance was not the focus. The model was trained

44

for just a single epoch, but the importance was that it acted as a placeholder
for a better model trained in the same framework. This unoptimized model was
exported with fastai and saved just like how a more optimized model would
be.

For the experiment, some image files had to be uploaded to the research PACS
through FIONA for testing, and this system required these to be DICOM files.
The DICOM files were generated from NIfTI-files of the BraTS 2021 data set,
the same data the model was trained on. The conversion from NIfTT to DICOM
was done using a medical image conversion toolkit called XMedCon [62]. By
generating files using the data from the training set, the data would be in
the expected form for the model and therefore could perform predictions on
the incoming it without doing image registration. The data conversion step is
specific to the data sharing format used in the BraTS 2021 data set and is not
a step usually required during the application of machine learning models on
medical images, which are always accessible in DICOM format.

4.4.2 Results
Using the ror tool

For turning the segmentation application into a workflow suitable for research
PACS, we used a software development tool called ror, created by Hauke Bartsch.3
This tool is designed for developing workflow applications fit for research PACS,
written in Go [63]. It provides several features for creating and integrating ap-
plications as workflows in the research system, made available through these
commands:

e ror init: Initializing workflow application structure.
e ror config: Find suitable local data.

e ror trigger: Triggering and running the workflow. This is simulating
how arrival of new data triggers the workflow to run in research PACS.

e ror build: Build a container with the application and its dependencies.

We used ror to initialize the project with a python template for project structure.
We added a script that imports our segmentation model to this template. For
the application to work with our DICOM data, we used ror config --data to
specify from which directory to fetch them. Additionally, we used ror config
to write a request in the research system’s select query language. The select
language is a domain-specific, SQL-like query language designed in-house for
the research PACS system, and it can filter data based on various DICOM
tags. A typical use case is to select a DICOM series based on an identifier
or select all series of the same modality. In our case, we need a somewhat
complex select string that returns the four different image sequences together
and separates them from any other image sequence in the same DICOM study.
In the data generated for this experiment, each image sequence is identifiable
by its SeriesDescription DICOM tag. This select string is shown in the code
below, using the SeriesDescription tag.

3The tool is documented in this GitHub repository: https://github.com/mmiv-center/
Research-Information-System/tree/master/components/Workflow-Image-AI.

45

https://github.com/mmiv-center/Research-Information-System/tree/master/components/Workflow-Image-AI
https://github.com/mmiv-center/Research-Information-System/tree/master/components/Workflow-Image-AI

Select study
from patient
where series named "T1w" has

SeriesDescription = "T1w"

also
where series named "T2w" has
SeriesDescription = "T2uw"

also

where series named "FLAIR" has
SeriesDescription = "FLAIR"

also
where series named "T1wCE" has
SeriesDescription = "T1wCE"

Above is the ror select string used for querying a study of four image series by
their SeriesDescription. The sequences are returned together.

Deploying into the research PACS

Uploading the containerized application was done through FIONAs existing web
interface for workflows, see figure 4.9. This page lets developers at Helse Vest
RHF interact with FIONA by uploading containerized applications made with
ror and running them with data from a specific research PACS project. To gain
access for uploading, the user needs to generate a token connected to a research
PACS project, which lets them query data from the specific project.

We uploaded the container successfully through this page (shown in figure 4.10).
Using the same select string from the code snippet earlier, we queried for data
in the research PACS project and ran the workflow on returned data. The
segmentation output from the application was sent back to the research PACS
ready for evaluation (shown in figure 4.14). A JSON file with values related
to the tumor volume was also outputted, and sent for storage to REDCap, the
electronic medical record software [64] (see figure 4.12).

46

O | - HelseBergentc x | B GoogleTiansis x | B Workows x| (D SwvePojecty x | D Workdows x| [} jaManual(@ev x | & WorkfouWivi x | B Assign x| B Asout x|+ a

<« G @ O nips//fonainelsenet/applicati

Workflows with access to project data

Currently there is only a single workflow allowed per user per project. Start by creating a token for your project on your user page. This system needs a copy of the project data. Use the hamburger
menu and "Reload" to get a copy of the data. Upload your docker image (menu item) and specify which series should be called (select statement below).

Your image will be called given two arguments to the /root/work sh program. One input folder based on the select statement and one output folder. We expect your program to return one JSON
(outputjson) file in the output folder. The job list towards the end of this page shows the computed data.

Enter token (linked to WorkflowWIMLTestProject). Generated here.

e1b6684139ef6e699391ad737ae566213c34eac8119dedad09df0ac0eabfc 123
Data pull done (2022-05-03 13:42:35.482680) with 0 participants

Uploaded container for this token is workflow_br

Select statement for data (help on select)

mor-seg:latest.

Seriespescription
Seriesdescription

SeriesDescription -

Number of identified jobs:

Job list
The job list populates after a successful select statement has been provided. Based on the level (projectlparticipant/studylseries) a processing job might receive more or less data. The buttons allow a

job to be scheduled. Processing is done in order of scheduling based on the compute resources allocated to the user

At the beginning of the next section distributions for all detected output measures are displayed using luminance and opacity to indicate bins with many values. In order to be able to rank the datasets
based on the normality of the calculated measures a numeric value and a color code is assigned to each job. Under certain restrictions this rank can be used to identify possibly problematic cases for
manual review.

> Job #0 with 16 series

Figure 4.9: Screenshot of FIONA’s main web page for uploading and using
workflows. Before uploading a container, the user needs to be authenticated,
so for first-time use, a token is requested and generated, as explained on the
page. This token needs to be entered in the input section every time before
getting access to the system. Once logged in you can upload a new workflow (a
Docker image). We uploaded it through the ”Upload Container”-button, which
prompts with a new interface (see figure 4.10).

47

File was succefully uploaded!

Container upload X

Any image uploaded will overwrite similar named images already present on the server.

Create with

docker save image_id:image_tag > docker_image.tar

image-2022-04-08.tar Browse

100%

Figure 4.10: Screenshot of the ”Container upload” prompt. Shown is a suc-
cessful upload of our Docker image, made by compressing it into a .tar-file and
saving it with Docker save before being uploaded to FIONA as a workflow. The
next step in testing the deployed application is to retrieve data from research
PACS to be processed. See figure 4.11.

Data pull done (2022-05-10 16:52:58.725697) with 0 participants,

Uploaded container for this token is work

Activate this container

Select statement for data (help on select)

tumor-seg-latest.

Number of identified jobs: 1

Job list
The job list populates after a successful select statement has been provided. Based on the level (project|participantlstudylseries) a processing job might receive more or less data. The buttons allow a job to be scheduled.
Processing is done in order of scheduling based on the compute resources allocated to the user.

At the beginning of the next section distributions for all detected output measures are displayed using luminance and opacity to indicate bins with many values. In order to be able to rank the datasets based on the
normality of the calculated measures a numeric value and a color code is assigned to each job. Under certain restrictions this rank can be used to identify possibly problematic cases for manual review.

dere

“Job #
os/2072
1est13" "FLAIR" 155 MR images (series #4)
. i

5 MR images (series #1)

Figure 4.11: Screenshot of returned jobs to be processed in FIONA. For FIONA
to know which data to retrieve, a select query is entered (see code snippet earlier
in section 4.4.2 for our multi-modal select query). It is compiled and run by
clicking the green ” Compile” button. This screenshot shows the returned data
matching the select query string, retrieved from the research PACS project
linked to this workflow. The workflow is executed on the fetched data when
clicking the "output” button.

48

C @ O nps/fonainelsencyappications/Workfows/indexphp A @

Generated output x

All values willimport into REDCap - but the values need to exist
for the right event. The import wil fail otherwise.

Figure 4.12: The user is prompted with some numerical values, which FIONA
expects as output from a workflow. These are sent to REDCap and stored there.
As shown in the screenshot, our application outputs the tumor volume of the
predicted mask, calculated in cubic millimeters. This information is valuable
for a radiologist, as tumor volume plays a part in diagnostics (as mentioned in
section 2.1.2).

Figure 4.13: Screenshot of scans in the Sectra research PACS software, the same
software as clinical PACS uses. Sectra is a secure medical software program, and
due to its closed API, FIONA is needed to communicate with research PACS.
The different image scans are: a) contrast-enhancing T1, b) T2, ¢) T1, and d)
FLAIR.

49

Figure 4.14: Screenshot of scans in the Sectra research PACS software, after
the deployed application had been executed through FIONA. You can see the
predicted tumor mask next to the original brain scans. a) Is contrast-enhancing
T1, b) is T2, ¢) is FLAIR, and d) is the predicted mask. (This is the same brain
scan as in figure 4.13, but a different axial slice). This screenshot shows the
result of a fully functional machine learning workflow integrated with a PACS
system.

Generating valid DICOM files

The task of creating valid DICOM files from NIfTT files is not as trivial as implied
in the introduction of this experiment. Research PACS and FIONA have several
metadata requirements for what information needs to be stored in the DICOM
tags. The information in our NIfTT files is not sufficient to automatically create
DICOM files with all required tags. As described in section 3.1 about medical
image formats, NIfTT files, more specifically NIfTI headers, do not contain the
same volume of information as DICOM files do. When generating DICOM
files from NIfTT with XMedCon, it has to somehow come up with values for
the DICOM tags which aren’t present in the NIfTT files. It does an OK job
at coming up with these values, but we found that it was not enough for the
generated files to be compatible with research PACS.

This meant that additional information needed to be added to the generated
files. To modify the generated DICOM files, we used the python library pydi-
com [65].

Below are some examples of modified tags:

e StudyInstanceUID: The four sequences from the same scan needed the

50

same study ID, preferably following DICOM standards for ID.
e SeriesInstanceUID: Each series needed a unique series 1D.

e SOPInstanceUID: Each slice in a series needed a unique ID.
MediaStorageSOPInstanceUID also needed to be changed to match it.

e StudyDate and StudyTime: These tags were missing, which caused an
error within research PACS.

e SeriesDescription: There was no way to identify the sequence type of
each image series. This was added in the series description tag.

After adding these tags, the DICOM files were fit for upload to research PACS.
The above additions are mostly required because the four image series were
treated by XMedCon as individual image series. For the target workflow, they
needed to be added to a single DICOM study.

4.5 Experiment 3: Comparing fastai and
MONAI with nnU-Net

The focus of our third experiment was to compare the soon-to-be-published
library extending fastai and MONAI with an existing framework like nnU-Net,
already established as state-of-the-art.

By developing this segmentation model, we wanted to illustrate something on
par with what is considered the best to date, especially in the context of having
such a deployable model in the research PACS system, as described in section
3.2.2.

Our approach to this experiment was to utilize the same composition of training
and validation data for comparison across both frameworks. Although we did
not expect our fastai and MONAI model to outperform the one that just won
BraTS2021 (see section 4.1) at that particular data set, we hoped to see a
comparable model. If the model, especially with less training compared to the
computationally heavy nnU-Net, is comparable, the outcome would serve as
a motivating factor for the result itself and the possibilities of the potential
usefulness regarding the fastai and MONAT library moving forward.

Brain tumor segmentation makes a particularly good case for comparison. The
reason for this is that in addition to being a complex, real problem, there is a
vast amount of available, high-quality labeled data.

4.5.1 Method

As an extension of this experiment, the library combining fastai and MONAI
has been applied in all experiments, however, here the focus is solely on the use
of this library, and its comparison to the nnU-Net framework.

In this experiment, we used the BraTS 2021 data set (see section 4.1), Python
within the Jupyter Notebook environment for development (see 4.3.1), the
library combining fastai and MONAI and the powerful nnU-Net framework
(see 4.2.4).

o1

Network architecture

Following the nnU-Net paper’s strong case for ”taking away superfluous bells
and whistles of many proposed network designs” by fully focusing on optimizing
a "vanilla” U-Net, we used the simple MONAI UNet architecture. Similar to the
nnU-Net architecture, it is close to a ”standard” U-Net with slight modifications,
such as implemented residual units (see section 2.2.3).

Experimental settings

Table 4.1: Comparison of fastai and MONAI library combination’s and nnU-
Net’s training setup

fastai+MONAI nnU-Net
Epochs 100 1000
Model Architecture MONAI U-Net ;r;E-Net Generic U-
Layers 5 Layers 2 Layers
Activation function Parametric ReLU Leaky ReLU

Data augmentation

Optimizer
Postprocessing
Batch size
GPU

random flip, random
zoom, random affine

Ranger

None

2

Nvidia Tesla V100

random scaling, rota-
tion, gamma, mirror,
elastic transform

SGD with momentum
None

2

Nvidia Tesla V100

4.5.2 Results

For training, we used k-fold cross-validation with k set to five (see figure 2.5).
Although the BraTS2021 dataset contains comparatively many labeled data
point, there is still only 2000 case studies, of which 1251 are reserved for training
purposes. Therefore, it is crucial to get the most out of the available data, and k-
fold cross-validation is a technique assisting that. Moreover, within the nnU-Net
framework, five-fold cross-validation is a hard-coded feature making it necessary
to implement it for comparison as well.

During training, when the model has completed an iteration through all training
elements, we say that it has run through one epoch. As shown in table 4.1, our
nnU-Net model was trained with 1000 epochs, compared to our fastai+MONAI
model trained with 100.

Fabian Isensee et al. [59] use an optimized learning rate tailored for 1000 epochs
in nnU-Net, something hard to match in our case of training with 100 epochs
because it requires quite extensive research in itself to find such a learning rate.
Usually, one does not already have access to an optimized learning rate before
training, this is why, as a replacement, we utilized fastai’s learning rate finder.

After using the suggested learning rate from fastai, the model was trained
using the state-of-the-art deep learning optimizer ranger, on top of fastai’s

52

learning rate scheduler fit_flat_cos (see figure 4.3) based on Leslie Smiths
paper on super convergence [57].

Table 4.2: Validation results for nnU-Net folds. Dice score

NCR ED ET
nnU-Net folds
Fold 0 0.8127 0.8598 0.8673

Fold 1 0.8119 0.8763 0.8733
Fold 2 0.7948 0.8808 0.8867
Fold 3 0.7792 0.8710 0.8887
Fold 4 0.7713 0.8740 0.8606

Ensemble 0.7940 0.8724 0.8753

Table 4.3: Validation results for fastai + MONAI folds. Dice score

NCR ED ET
fastai + MONATI folds
Fold 0 0.7932 0.8325 0.8600
Fold 1 0.8041 0.8534 0.8782
Fold 2 0.7760 0.8575 0.8701
Fold 3 0.7702 0.8486 0.8772
Fold 4 0.7426 0.8490 0.8687

Ensemble 0.7772 0.8482 0.8708

We have evaluated the models based on the common segmentation metric dice
score (see section 2.2.3). As seen in table 4.3 and 4.2, the nnU-Net models does
outperform the fastai and MONAI model slightly. Our evaluation behind the
discrepancy in performance is that it lies mainly in the difference between the
number of epochs (with an optimized learning rate), and perhaps data augmen-
tation methods. Figure 4.15 shows some visual examples of the segmentation
results from both models compared with the ground truth.

The time spent training these models differed greatly from the total training
time for the nnU-Net model clocking 225 hours (45 per fold) as opposed to 90
hours (18 per fold) for fastai+MONAI.

53

Ground truth fastai+MONAI

Figure 4.15: Ground truth and segmentation results from the nnU-Net model
and the fastai-+MONAI model for training subjects. The nnU-Net performed
better at a) and b), while c) is an example where the fastai+MONAI performed
best. Both models failed at predicting d) correctly. As shown in the section
above, nnU-Net performed best overall. (Subject numbers in BraTS 2021 are:
a) 00477, b) 00026, c¢) 01397, d) 01530).

54

Chapter 5

Discussion, conclusion, and
further work

5.1 Discussion

This chapter consists of sections discussing the research questions established
in section 1.1 and their corresponding experiments.

5.1.1 Discussion experiment 1

Research question 1 from section 1.1 was: “Is it possible to create and integrate
a generic setup for easy model deployment within the existing fastai and MONAT
framework extension?”.

In this study, we demonstrated our development of a simple application, based
on Jupyter Notebooks, ipywidgets, and the Python library Voila. We trained a
model with the library combining fastai and MONAI, exported it with fastai’s
built-in methods, before integrating it in a Notebook with ipywidgets. We
found the chosen deployment method to be a fairly uncomplicated process and
the resulting application was simple, fast, and practical.

The first experiment regarding Voila and model deployment gave us as devel-
opers practical insight into working with medical images and our selected tech-
nologies. The development also gave us a frame of reference for how a machine
learning model might fit into an actual application.

We presented the Voila application to an interdisciplinary group of researchers
with expertise in the fields of machine learning, medical imaging, and medicine,
among others. We felt that the application generated enthusiasm, both for us
having realized the concept and for potential additions to it. Although it was
not a focus of our research, the reactions from the presentation brought back
some points from section 2.3.2 about trust. Building trust between clinicians
and developers is crucial to a successful partnership between the two. For that
to happen, clinicians and developers must establish a healthy and open way
of communicating when introducing new Al tools. Our experience was that a

55

simple, intuitive application meant as a helping tool for radiologists sparked
positivity among members of our group. This feedback may indicate the im-
portance of a continuous and productive dialog in the context of ML-workflow
integration in medicine, and a generic environment for model deployment as an
arena where developers can gain trust from radiologists.

5.1.2 Discussion experiment 2

Research question 2 from section 1.1 was: “How can we integrate our trained
models directly with the existing research PACS in Helse Vest? Are additional
software development efforts and hardware for the research PACS needed?”.

In this study, we have also demonstrated our development process and integra-
tion of an ML model in a clinical-like system: the research PACS infrastruc-
ture. Looking back to the research question, we wanted to investigate how to
implement a model and if there were any further software development efforts
required. Our results showed that it was possible to integrate it as a con-
tainerized application without much additional work needed to research PACS.
The application executed a prediction while saving the results back to research

PACS.

Using the ror-tool in development proved valuable for local testing and saved
us time by checking the application for errors before deployment. A few bugs
related to ror were discovered at this stage, some of them regarding the im-
age data being multi-modal instead of a single channel. One of these bugs was
related to the select query, which was meant for grabbing images by SeriesDe-
scription. At the start, querying ignored the SeriesDescription tag and seemed
to fetch images in an arbitrary order. This was a problem for our model, as it
required the different image scans to come in a fixed channel order. Another
bug caused errors in the loading of images, as only some of the slices in the
DICOM image were loaded, causing the model to fail due to the 3D brain scan
being incomplete (see figure 5.1). These are some examples of errors that were
fixed before the system was functional and ready for testing.

56

Figure 5.1: Screenshot of the original brain to the left and the “squished” brain
to the right. This error occurred after ror loaded the image into our appli-
cation, but this bug was fixed after we discovered it. Image visualized with
ITK-snap [66]

Some bugs appeared first after the application was deployed for testing in
FIONA. One of these bugs was related to how FIONA handled storage and
cache when data was re-uploaded. The select query would not fetch the ex-
pected data from research PACS, due to the cache containing old versions of
the same data. The cache would not update when re-uploading data. Af-
ter this was fixed, a new bug related to the cache appeared. The cache did
not get cleared when new data was uploaded, causing image duplicates in the
archive (see figure 5.2), which again caused unexpected query results in FIONA.
While discovering and fixing bugs, it became apparent that FIONA’s software
architecture made it hard to maintain. Modernizing its architecture and mak-
ing improvements regarding software architecture and technology choice could
make the system more maintainable for future additions.

57

File Edit E [Parkere Help
Cx
Inform Chat Thumbnails Electronic... eCRF (RE...

B
Event name: EfehtName Event name: EventNam¢ Evenraamg EvenitName

Segmentation Segmentation

155 Series: 1001 155 155 Series: 1001 155 Series: 4
23.09.2022 23. 23.09.2022 23.09.2022
00:00 00:00

00:00 00:
Event name: EfShtName | Event name: EventNams Event name: EventName | Event name: EventNam
Segmentation Segmentation Segmentation

Series: 3 Series: 2 55 @ ies: 155 Series: 1 155 Series: 1001
04.11.2022 04.11. 22 04.11.2022 04.11.2022
00:00 00:00 00:00 00:00

Event name: EventName | Event name: EfghtNam¢ Event name: EfShtName | Event name: EventName Event name: EfehtName
v

Segmentation Segmentation Segmentation

Series: 4

Thumbrail size: S————

Figure 5.2: Screenshot showing image duplicates appearing in the research
PACS’ Sectra front-end. These image duplicates also caused unexpected query
results in FIONA when triggering the workflow.

In addition to fixing bugs, new features were added to the workflow pipeline. In
FIONA, saving DICOM images back to research PACS was not yet implemented
as a feature. Our application segments the mask and creates a new DICOM file
containing this mask. FIONA was adjusted so it could store images back.

By testing the research PACS pipeline and deploying a multi-modal deep learn-
ing algorithm specifically, we clear the way for future projects that want to
deploy a model inside research PACS with not only similarly composite multi-
modal data but also with single modality data. Our project makes progress
toward clinicians using ML-based tools, but this pilot project also facilitates
future developers to upload and use their ML models in PACS.

The program in its current state still lacks features that need to be properly
implemented before it is production-ready. One of these missing features is pre-
processing of new incoming data. The difference between how the data looks in

58

the experiment and how it will look in practice is contrasting. As described in
section 4.4.2 we used the NIfTT files from the BraTS data set to generate the data
used for our experiment. These files are already co-registered, interpolated to
the same voxel resolution, and skull-stripped, saving our pipeline from needing
these steps. However, when running on local data directly from the hospital
scanner, our model would require pre-processing of the data for the input to be
of the expected format. Although a pre-processing step would be necessary for
a production environment, we chose to avoid this since our focus was to get the
system up and running. Using the already processed data let us focus on the
FIONA pipeline.

In conclusion, the deployment of our application uncovered a few bugs of differ-
ent sizes, and a new feature involving sending back image DICOM files to the
research PACS system was added.

5.1.3 Discussion experiment 3

Research question 3 from section 1.1 was: “How does fastai combined with
MONAI compare to another cutting-edge deep learning framework (nnU-Net)
regarding performance metrics?”.

In this experiment, we have presented a segmentation algorithm based on a
state-of-the-art architecture [32] with comparable results to the nnU-Net frame-
work [59]. This was done by training a network with the locally developed, soon
to be published library extending fastai and MONAI (see section 4.2.3).

Experiment 3 demonstrates that although nnU-Net is shown to slightly outper-
form the fastai+MONAI library regarding dice score, the metrics are compara-
ble. As a part of a production-grade ML integration, although outside the scope
of this thesis, further investigation into the fastai+MONAT library is required
to get a clear picture of its potential in the clinic. We expect our dice score to
increase with improved techniques regarding data augmentation, model archi-
tecture optimization, and possibly more epochs. We further believe that evalu-
ating the models through different metrics such as Hausdorff distance, which is
also used to evaluate BraTS 2021 submissions alongside dice score, would give
more insight into the performance evaluation.!

Bugs were encountered within the fastai+MONAI library during model training.
One of these bugs was related to printing metrics where the result regarding
one entire tumor class was printed as NaN-values across all epochs. Some other
bugs were caused by incompatibility issues due to ongoing refactoring within
the library. We contributed to the development of the library by addressing
these bugs through open discussion and cooperation with the library’s author.

Setting metrics aside, the fastai+MONAI library is much easier to integrate new
models in due to the layered API structure. The layered API enables intuitive
low code with the possibility of advanced customization in deeper layers. In
the context of experiments 1 and 2, we have demonstrated implementations
of this promising library in addition to the comparisons made in experiment

1Note that by using metrics we can rank which algorithms perform better than others, but
new research claims that some of the most common metrics used in training machine learning
models might cause errors after deployment [67].

59

3. Conclusively, it has demonstrated the production and the result of a state-
of-the-art comparable model intended for clinical-like systems. The resulting
segmentation from the clinical PACS in experiment 2 highlights what such a
model is capable of bringing to such a system.

5.2 Conclusion

In this thesis, we have integrated a model comparable to the state-of-the-art
into Helse Vest’s research PACS. Figure 5.3 illustrates the result and the system
behind the integration. Our work opens up possibilities for future developers to
continue workflow integration machine learning in PACS. We also found that
the model is comparable, although not outperforming the state-of-the-art model
made with nnU-Net in performance. However, the fastai and MONAI library
combination we used trained faster and is more flexible for fine-tuning.

However, there are still many hurdles left before our deployed application is
ready for practical use. It does not handle the pre-processing necessary for pre-
dicting raw clinical data. Furthermore, even after these technical hindrances are
surmounted, there is still a lot of validation to be done before such applications
could see clinical use. Additionally, one would have to consider various ethical
challenges.

Additionally, our project found it to be possible to easily construct a simple
application based on a fastai and MONAI model with the Python framework
Voila.

Our project cleared the way for future work with research PACS, and we see a
lot of possible ideas for future work, discussed below.

60

docker application

MONA[
B | |

\ fast.aj)

Algorithm

FRONT-END BACK-END

Figure 5.3: Figure showing the our application front-end results (from fig-
ure 4.14) and back-end structure (from figure 4.8). The figure summarizes the
results of our work regarding research PACS integration.

5.3 Further work

Human-in-the-loop: A logical next step for the application is to create a human-
in-the-loop system. When a radiologist uses the designed application, they could
use the predicted mask. But if they disagree with the computer’s prediction,
they need to be able to redraw the mask or parts of the mask. In the current
integration, this is not possible, but it is an idea for future work. If this feature
is added, the new redrawn mask could be used for updating and retraining the
model as in online machine learning and active learning. Figure 5.4 shows a
possible human-in-the-loop cycle for workflow-integrated machine learning. An-
other point is the pre-processing and co-registering as mentioned earlier in 5.1.2.
This is a requirement for loading and predicting new data. Possible solutions
to solve registration could use FSL [68] or BraTS Toolkit [69].

Having first integrated a model into research PACS, the step to substitute this
model for a better performing model, like one trained with nnU-Net, is not
difficult. More work can be put into making the deployed model as robust as
possible when facing new, unusual data.

61

Furthermore, since the application is in a Docker container, it comes with the
advantage of being runnable in different environments. We think our application
could be run in different vendor systems without much change needed. During
our work, we have had some contact with the Healthineers group from Siemens
and their syngo.via Frontier system can run Docker containers as prototype
healthcare applications. This could be a possible next step for our work.

MONALI Deploy App SDK is another framework for designing and developing
Al-driven applications in healthcare. It is an interesting project by MONAI
under development and would support the deployment of our model trained
with MONAI. This was a route we started working with, but due to MONAI
Deploy App SDK still being in development and a few issues we met along the
way, we did not continue down this path.

Raw data

Training data / \

Training model Deploying model
Trained model is
deployed to predict

) ‘ | ‘ } labels on raw data

HH HH

oo ———

l

Deployed model
Predict most likely labels

Annotation
Expert refinement or
corrections

Active learning \
Select data based on
uncertainty sampling
(e.g. least confidence,
entropy-based, etc)

\ Data with predicted labels /

Figure 5.4: Illustrating a human-in-the-loop cycle, showing how a segmentation
application could work in the future. After a model is deployed, it predicts on
new raw data. An expert using the application would correct the predictions
the model had the least confidence on. This new corrected data would be saved
and used to retrain a model which is deployed. (Figure of training model is
from [34], used with permission from the author).

62

Bibliography

MMIV. Workflow-integrated machine learning. https://mmiv.no/wiml/.
Accessed: 2021-09-01. 2021.

Alexander Selvikvag Lundervold and Arvid Lundervold. “An overview of
deep learning in medical imaging focusing on MRI.” en. In: Zeitschrift fiir
Medizinische Physik. Special Issue: Deep Learning in Medical Physics 29.2
(May 2019), pp. 102-127. 1sSN: 0939-3889. DOIL: 10.1016/j . zemedi.2018.
11.002. URL: https://www.sciencedirect.com/science/article/
pii/S0939388918301181 (visited on Mar. 23, 2022).

David Ben-Israel et al. “The impact of machine learning on patient care:
A systematic review.” en. In: Artificial Intelligence in Medicine 103 (Mar.
2020), p. 101785. 15sN: 0933-3657. DOI: 10.1016/j.artmed.2019.101785.
URL: https://www . sciencedirect . com/ science /article/pii/
S0933365719303951 (visited on Apr. 7, 2022).

Pranav Rajpurkar et al. “Al in health and medicine.” In: Nature Medicine
28.1 (Jan. 2022), pp. 31-38. 1SSN: 1546-170X. DOI: 10.1038/s41591-021~
01614-0.

Jack Wilkinson et al. “Time to reality check the promises of machine
learning-powered precision medicine.” en. In: The Lancet Digital Health
2.12 (Dec. 2020), e677-€680. 1SSN: 2589-7500. DOI: 10 . 1016 / S2589 -
7500(20) 30200-4. URL: https://www.sciencedirect.com/science/
article/pii/S2589750020302004 (visited on Apr. 7, 2022).

D. Sculley et al. “Hidden Technical Debt in Machine Learning Systems.”
In: 28 (2015). Ed. by C. Cortes et al. URL: https : //proceedings .
neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-
Paper.pdf.

Ujjwal Baid et al. “The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on
Brain Tumor Segmentation and Radiogenomic Classification.” In: CoRR
abs/2107.02314 (2021). arXiv: 2107 .02314. URL: https://arxiv.org/
abs/2107.02314.

fast.ai. fast.ai. Making neural nets uncool again. https://www.fast.ai/.
Accessed: 2021-09-01. 2021.

63

https://mmiv.no/wiml/
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.1016/j.zemedi.2018.11.002
https://www.sciencedirect.com/science/article/pii/S0939388918301181
https://www.sciencedirect.com/science/article/pii/S0939388918301181
https://doi.org/10.1016/j.artmed.2019.101785
https://www.sciencedirect.com/science/article/pii/S0933365719303951
https://www.sciencedirect.com/science/article/pii/S0933365719303951
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1016/S2589-7500(20)30200-4
https://doi.org/10.1016/S2589-7500(20)30200-4
https://www.sciencedirect.com/science/article/pii/S2589750020302004
https://www.sciencedirect.com/science/article/pii/S2589750020302004
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://arxiv.org/abs/2107.02314
https://arxiv.org/abs/2107.02314
https://arxiv.org/abs/2107.02314
https://www.fast.ai/

[12]

[13]

[14]

[15]

[17]

[18]

MONALI Project MONAI. Medical Open Network For Al https://www.
monai.io/. Accessed: 2021-09-01. 2021.

Sathiesh Kumar Kaliyugarasan, Arvid Lundervold, and Alexander Selvikvag
Lundervold. “Pulmonary Nodule Classification in Lung Cancer from 3D
Thoracic CT Scans Using fastai and MONAL” In: IJIMAT (2021).

Satheshkumar Kaliyugarasan et al. “2D and 3D U-Nets for skull stripping
in a large and heterogeneous set of head MRI using fastai.” In: NIK2020
(2020).

S. Kaliyugarasan et al. “Brain Age versus Chronological Age: A Large
Scale MRI and Deep Learning Investigation.” In: ECR2020. 2020.

Erlend Hodneland et al. “Fully Automatic Whole-Volume Tumor Segmen-
tation in Cervical Cancer.” In: Cancers 14.10 (2022). 1SSN: 2072-6694.
DOI: 10.3390/cancers14102372. URL: https://www.mdpi.com/2072-
6694/14/10/2372.

docker. Docker overview. https://docs . docker . com/get-started/
overview/. Accessed: 2021-09-21. Oct. 2021.

Michele Larobina and Loredana Murino. “Medical Image File Formats.”
In: Journal of Digital Imaging 27.2 (Dec. 2013), pp. 200-206. DOI: 10.
1007/s10278-013-9657-9.

Xiangrui Li et al. “The first step for neuroimaging data analysis: DICOM
to NIfTI conversion.” In: Journal of neuroscience methods 264 (2016),
pp. 47-56.

Seymour A. Papert. The Summer Vision Project. en_.US. MIT AI Lab.
July 1966. URL: https://dspace.mit.edu/handle/1721.1/6125.

Geremy Heitz and Daphne Koller. “Learning spatial context: Using stuff
to find things.” In: Furopean conference on computer vision. 2008, pp. 30—
43.

Tsung-Yi Lin et al. “Microsoft coco: Common objects in context.” In:
European conference on computer vision. Springer. 2014, pp. 740-755. DOI:
10.48550/arXiv.1405.0312.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. “Coco-stuff: Thing
and stuff classes in context.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 1209-1218.

Yogesh Kumar et al. “Artificial intelligence in disease diagnosis: a system-
atic literature review, synthesizing framework and future research agenda.”
en. In: Journal of Ambient Intelligence and Humanized Computing (Jan.
2022). 18SN: 1868-5137, 1868-5145. DOI: 10.1007/512652-021-03612-z.
(Visited on May 26, 2022).

64

https://www.monai.io/
https://www.monai.io/
https://doi.org/10.3390/cancers14102372
https://www.mdpi.com/2072-6694/14/10/2372
https://www.mdpi.com/2072-6694/14/10/2372
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://doi.org/10.1007/s10278-013-9657-9
https://doi.org/10.1007/s10278-013-9657-9
https://dspace.mit.edu/handle/1721.1/6125
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1007/s12652-021-03612-z

[22]

[25]

[26]

[28]

[30]

[31]

Abhimanyu S. Ahuja. “The impact of artificial intelligence in medicine
on the future role of the physician.” en. In: PeerJ 7 (Oct. 2019), e7702.
ISSN: 2167-8359. DOI: 10.7717/peerj.7702. URL: https://peerj.com/
articles/7702.

Bo Wang et al. “Al-assisted CT imaging analysis for COVID-19 screening;:
Building and deploying a medical Al system.” In: Applied Soft Computing
98 (Jan. 2021), p. 106897. DOI: 10.1016/j.asoc.2020.106897.

Gregory Sharp et al. “Vision 20/20: Perspectives on automated image
segmentation for radiotherapy.” In: Medical Physics 41.5 (May 2014),
p- 050902. 1SSN: 0094-2405. DOI: 10 .1118/1 . 4871620. URL: https :
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4000389/.

Nikhil R. Pal and Sankar K. Pal. “A review on image segmentation tech-
niques.” In: Pattern Recognition 26.9 (1993), pp. 1277-1294. 1SsN: 0031-
3203. DOIL: https ://doi.org/10.1016 /0031 -3203(93) 90135 - J.
URL: https ://www . sciencedirect . com/ science /article /pii/
003132039390135J.

K.K.D. Ramesh et al. “A Review of Medical Image Segmentation Algo-
rithms.” en. In: EAI Endorsed Transactions on Pervasive Health and Tech-
nology (July 2018), p. 169184. 1SsN: 2411-7145. DOI: 10.4108/eai.12-4~
2021.169184. (Visited on Feb. 15, 2022).

Salwa Abdulateef and Mohanad Salman. “A Comprehensive Review of
Image Segmentation Techniques.” en. In: Iragi Journal for Electrical and
Electronic Engineering 17.2 (Dec. 2021), pp. 166-175. 1sSN: 2078-6069,
1814-5892. DOI: 10.37917/ijeee.17.2.18. URL: http://ijeee.edu.iq/
Papers/Vol17-Issue2/1570757842.pdf (visited on May 5, 2022).

Niall O’Mahony et al. “Deep Learning vs. Traditional Computer Vision.”
In: Advances in Computer Vision. Ed. by Kohei Arai and Supriya Kapoor.
Cham: Springer International Publishing, 2020, pp. 128-144. 1SBN: 978-3-
030-17795-9.

Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Con-
volutional Networks.” en. In: Computer Vision — ECCV 2014. Ed. by
David Fleet et al. Cham: Springer International Publishing, 2014, pp. 818—
833. 1SBN: 978-3-319-10590-1. DOI: 10.1007/978-3-319-10590-1_53.

Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Archi-
tecture Schematics.” In: Journal of Open Source Software 4.33 (2019),
p. 747. DOI: 10.21105/joss.00747.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation.” In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2015, pp. 3431-3440.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convo-
lutional Networks for Biomedical Image Segmentation.” In: Medical Im-

65

https://doi.org/10.7717/peerj.7702
https://peerj.com/articles/7702
https://peerj.com/articles/7702
https://doi.org/10.1016/j.asoc.2020.106897
https://doi.org/10.1118/1.4871620
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000389/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000389/
https://doi.org/https://doi.org/10.1016/0031-3203(93)90135-J
https://www.sciencedirect.com/science/article/pii/003132039390135J
https://www.sciencedirect.com/science/article/pii/003132039390135J
https://doi.org/10.4108/eai.12-4-2021.169184
https://doi.org/10.4108/eai.12-4-2021.169184
https://doi.org/10.37917/ijeee.17.2.18
http://ijeee.edu.iq/Papers/Vol17-Issue2/1570757842.pdf
http://ijeee.edu.iq/Papers/Vol17-Issue2/1570757842.pdf
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.21105/joss.00747

[33]

[34]

[40]

age Computing and Computer-Assisted Intervention — MICCAI 2015. Ed.
by Nassir Navab et al. Cham: Springer International Publishing, 2015,
pp. 234-241. ISBN: 978-3-319-24574-4.

Nahian Siddique et al. “U-Net and Its Variants for Medical Image Seg-
mentation: A Review of Theory and Applications.” In: IEEE Access 9
(2021), pp. 82031-82057. DOI: 10.1109/ACCESS. 2021 .3086020.

Ozgfm Cigek et al. “3D U-Net: Learning Dense Volumetric Segmentation
from Sparse Annotation.” In: Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2016. Ed. by Sebastien Ourselin et al.
Cham: Springer International Publishing, 2016, pp. 424-432. 1SBN: 978-3-
319-46723-8.

Eric Kerfoot et al. “Left-ventricle quantification using residual U-Net.” In:
International Workshop on Statistical Atlases and Computational Models
of the Heart. Springer. 2018, pp. 371-380.

Ali Hatamizadeh et al. “UNETR: Transformers for 3D Medical Image
Segmentation.” In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACYV). Jan. 2022, pp. 574-584.

Alexey Tsymbal. “The problem of concept drift: definitions and related
work.” In: Computer Science Department, Trinity College Dublin 106.2
(2004), p. 58.

Lucas Baier, Fabian Johren, and Stefan Seebacher. “Challenges in the
Deployment and Operation of Machine Learning in Practice.” In: ECIS.
2019.

Andre Esteva et al. “Dermatologist—level classification of skin cancer with
deep neural networks.” In: Nature 542.7639 (Feb. 2017), pp. 115-118. 1SSN:
0028-0836. DOI: 10.1038/nature21056. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC8382232/ (visited on May 10, 2022).

Awni Y. Hannun et al. “Cardiologist-Level Arrhythmia Detection and
Classification in Ambulatory Electrocardiograms Using a Deep Neural
Network.” In: Nature medicine 25.1 (Jan. 2019), pp. 65-69. 1SsN: 1078-
8956. DOI: 10.1038/s41591-018-0268-3. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC6784839/ (visited on May 10, 2022).

Emma Beede et al. “A human-centered evaluation of a deep learning sys-
tem deployed in clinics for the detection of diabetic retinopathy.” In: Pro-
ceedings of the 2020 CHI conference on human factors in computing sys-
tems. 2020, pp. 1-12.

Wojciech Samek, Thomas Wiegand, and Klaus-Robert Miiller. “Explain-
able artificial intelligence: Understanding, visualizing and interpreting deep
learning models.” In: arXiv preprint arXiv:1708.08296 (2017).

66

https://doi.org/10.1109/ACCESS.2021.3086020
https://doi.org/10.1038/nature21056
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382232/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382232/
https://doi.org/10.1038/s41591-018-0268-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784839/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784839/

[43]

[44]

[45]

[47]

[50]

[51]

Adriel Saporta et al. “Deep learning saliency maps do not accurately high-
light diagnostically relevant regions for medical image interpretation.” In:
medRziv (Oct. 2021). DOI: 10.1101/2021.02.28.21252634.

Danton S. Char, Nigam H. Shah, and David Magnus. “Implementing Ma-
chine Learning in Health Care — Addressing Ethical Challenges.” In: The
New England journal of medicine 378.11 (Mar. 2018), pp. 981-983. ISSN:
0028-4793. DOI: 10.1056/NEJMp1714229. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC5962261/.

W. Nicholson Price II, Sara Gerke, and I. Glenn Cohen. “Potential Lia~
bility for Physicians Using Artificial Intelligence.” In: JAMA 322.18 (Nov.
2019), pp. 1765-1766. 1SSN: 0098-7484. DOI: 10.1001/jama.2019.15064.
URL: https://doi.org/10.1001/jama.2019.15064 (visited on May 23,
2022).

Geert Litjens et al. “A survey on deep learning in medical image anal-
ysis.” en. In: Medical Image Analysis 42 (Dec. 2017), pp. 60-88. ISSN:
1361-8415. pOI: 10.1016/j .media.2017.07.005. URL: https://www.
sciencedirect.com/science/article/pii/S1361841517301135 (vis-
ited on Mar. 23, 2022).

Luca Saba et al. “The present and future of deep learning in radiology.”
In: European Journal of Radiology 114 (2019), pp. 14-24. 1sSN: 0720-048X.
DOI: https://doi.org/10.1016/j.ejrad.2019.02.038. URL: https://
www.sciencedirect.com/science/article/pii/S0720048X19300919.

Michele Larobina and Loredana Murino. “Medical Image File Formats.”
In: Journal of Digital Imaging 27.2 (Apr. 2014), pp. 200-206. 1SSN: 0897-
1889. poI: 10.1007/s10278-013-9657-9. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3948928/ (visited on May 18, 2022).

Peter Mildenberger, Marco Eichelberg, and Eric Martin. “Introduction
to the DICOM standard.” en. In: European Radiology 12.4 (Apr. 2002),
pp. 920-927. 1sSN: 1432-1084. DOI: 10.1007/s003300101100. (Visited on
May 16, 2022).

R.W. Cox et al. A (sort of) new image data format standard: NiF'TI-1.
Presented at the 10th Annual Meeting of the Organization for Human
Brain Mapping. Jan. 2004.

Malik Aasen and Fredrik Fidjestgl Mathisen. “De-identification of medical
images using object-detection models, generative adversarial networks and
perceptual loss.” eng. MA thesis. The University of Bergen, June 2021.
URL: https://bora.uib.no/bora-xmlui/handle/11250/2770435.

Bjoern H. Menze et al. “The Multimodal Brain Tumor Image Segmenta-
tion Benchmark (BRATS).” eng. In: IEEE transactions on medical imag-
ing 34.10 (Oct. 2015), pp. 1993-2024. 1SSN: 1558-254X. DOL: 10.1109/
TMI.2014.2377694.

67

https://doi.org/10.1101/2021.02.28.21252634
https://doi.org/10.1056/NEJMp1714229
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962261/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962261/
https://doi.org/10.1001/jama.2019.15064
https://doi.org/10.1001/jama.2019.15064
https://doi.org/10.1016/j.media.2017.07.005
https://www.sciencedirect.com/science/article/pii/S1361841517301135
https://www.sciencedirect.com/science/article/pii/S1361841517301135
https://doi.org/https://doi.org/10.1016/j.ejrad.2019.02.038
https://www.sciencedirect.com/science/article/pii/S0720048X19300919
https://www.sciencedirect.com/science/article/pii/S0720048X19300919
https://doi.org/10.1007/s10278-013-9657-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948928/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948928/
https://doi.org/10.1007/s003300101100
https://bora.uib.no/bora-xmlui/handle/11250/2770435
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1109/TMI.2014.2377694

[53]

[54]

[55]

[60]

[61]

[62]

[63]

[64]

Spyridon Bakas et al. “Advancing The Cancer Genome Atlas glioma MRI
collections with expert segmentation labels and radiomic features.” eng.
In: Scientific Data 4 (Sept. 2017), p. 170117. 1SSN: 2052-4463. DOT: 10.
1038/sdata.2017.117.

Elizabeth A Maher et al. “Malignant glioma: genetics and biology of a
grave matter.” In: Genes & development 15.11 (2001), pp. 1311-1333. Dol
10.1101/gad.891601. URL: http://genesdev.cshlp.org/content/15/
11/1311.

Mobarakol Islam, V Jose, and Hongliang Ren. “Glioma prognosis: Seg-
mentation of the tumor and survival prediction using shape, geometric
and clinical information.” In: International MICCAI Brainlesion Work-
shop. Springer. 2018, pp. 142-153. por: 10.1007/978-3-030-11726~-
9_13.

Jeremy Howard and Sylvain Gugger. “Fastai: a layered API for deep learn-
ing.” In: Information 11.2 (2020), p. 108. DOI: 10.3390/inf011020108.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training
of neural networks using large learning rates. International Society for
Optics and Photonics, 2019. DOI: 10.1117/12.2520589.

NVIDIA Blogs: MONAI Open Source Al Framework for Healthcare Re-
search. en-US. Apr. 2020. URL: https://blogs.nvidia.com/blog/2020/
04/21/monai-open-source-framework-ai-healthcare/ (visited on
May 24, 2022).

Fabian Isensee et al. “nnU-Net: a self-configuring method for deep learning-
based biomedical image segmentation.” In: Nature methods 18.2 (2021),
pp. 203-211. pot1: 10.1038/541592-020-01008~z.

Project Jupyter. Project Jupyter — about us. en. URL: https://jupyter.
org (visited on May 27, 2022).

Ufford M. et al. Beyond Interactive: Notebook Innovation at Netfliz. en.
Feb. 2019. URL: https://netflixtechblog.com/notebook-innovation-
591ee3221233 (visited on May 27, 2022).

E Nolf et al. “XMedCon: an open-source medical image conversion toolkit.”
In: 2003 European Association of Nuclear Medicine annual congress. Vol. 30.
suppl. 2. 2003, S246-5246.

The Go Programming Language. en. URL: https://go.dev/ (visited on
May 23, 2022).

Paul A. Harris et al. “Research electronic data capture (REDCap)—A
metadata-driven methodology and workflow process for providing trans-
lational research informatics support.” en. In: Journal of Biomedical In-
formatics 42.2 (Apr. 2009), pp. 377-381. 1SSN: 1532-0464. por: 10.1016/

68

https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1101/gad.891601
http://genesdev.cshlp.org/content/15/11/1311
http://genesdev.cshlp.org/content/15/11/1311
https://doi.org/10.1007/978-3-030-11726-9_13
https://doi.org/10.1007/978-3-030-11726-9_13
https://doi.org/10.3390/info11020108
https://doi.org/10.1117/12.2520589
https://blogs.nvidia.com/blog/2020/04/21/monai-open-source-framework-ai-healthcare/
https://blogs.nvidia.com/blog/2020/04/21/monai-open-source-framework-ai-healthcare/
https://doi.org/10.1038/s41592-020-01008-z
https://jupyter.org
https://jupyter.org
https://netflixtechblog.com/notebook-innovation-591ee3221233
https://netflixtechblog.com/notebook-innovation-591ee3221233
https://go.dev/
https://doi.org/10.1016/j.jbi.2008.08.010
https://doi.org/10.1016/j.jbi.2008.08.010

j.jbi.2008.08.010. URL: https://www.sciencedirect.com/science/
article/pii/S1532046408001226 (visited on May 16, 2022).

pydicom. Pydicom. URL: https : //pydicom . github . io/ (visited on
May 4, 2022).

Paul A. Yushkevich et al. “User-Guided 3D Active Contour Segmentation
of Anatomical Structures: Significantly Improved Efficiency and Reliabil-
ity.” In: Neuroimage 31.3 (2006), pp. 1116-1128.

Kjetil Dyrland, Alexander Selvikvag Lundervold, and PierGianLuca Porta
Mana. “Does the evaluation stand up to evaluation?: A first-principle
approach to the evaluation of classifiers.” en-us. type: article. May 2022.
URL: https://osf.io/7rz8t/ (visited on May 27, 2022).

Stephen M. Smith et al. “Advances in functional and structural MR image
analysis and implementation as FSL.” In: Neurolmage 23 (2004). Math-
ematics in Brain Imaging, S208-5S219. 1ssN: 1053-8119. DOI: https://
doi.org/10.1016/j.neuroimage.2004.07.051. URL: https://www.
sciencedirect.com/science/article/pii/S1053811904003933.

Florian Kofler et al. “BraTS Toolkit: Translating BraTS Brain Tumor
Segmentation Algorithms Into Clinical and Scientific Practice.” In: Fron-
tiers in Neuroscience 14 (2020). 1SSN: 1662-453X. DOI: 10.3389/fnins.
2020.00125.

Credits

Icons used in Figure 1.1 were made by Dmytro Vyshnevskyi, Elias Bikbulatov, twen-
tyfour, orvipixel, phatplus, Smartline, Becris, lakonicon, and kmg design from www.
flaticon.com.

Icons used in Figure 2.1 were made by Freepik, and kornkun from www.flaticon.com.

Icons used in Figure 3.2 were made by Smashicons, RaftelDesign, and FBJan from
www.flaticon.com.

Icons used in Figure 4.5 were made by twentyfour, orvipixel, and lakonicon from
www.flaticon.com.

69

https://doi.org/10.1016/j.jbi.2008.08.010
https://doi.org/10.1016/j.jbi.2008.08.010
https://www.sciencedirect.com/science/article/pii/S1532046408001226
https://www.sciencedirect.com/science/article/pii/S1532046408001226
https://pydicom.github.io/
https://osf.io/7rz8t/
https://doi.org/https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/https://doi.org/10.1016/j.neuroimage.2004.07.051
https://www.sciencedirect.com/science/article/pii/S1053811904003933
https://www.sciencedirect.com/science/article/pii/S1053811904003933
https://doi.org/10.3389/fnins.2020.00125
https://doi.org/10.3389/fnins.2020.00125
www.flaticon.com
www.flaticon.com
www.flaticon.com
www.flaticon.com
www.flaticon.com

	Introduction
	Research questions

	Background
	Image segmentation
	Types of image segmentation
	Medical image segmentation – an introduction
	Traditional image segmentation
	The machine learning approach
	Evaluating machine learning models

	Supervised deep learning
	Fundamentals of deep learning
	Convolutional neural networks
	Convolutional neural networks for image segmentation

	Deployment of machine learning models
	Challenges with deployment of machine learning models
	Challenges with deployment of machine learning models in health and medicine

	Workflow-integrated machine learning in radiology
	Medical image file formats
	Digital Imaging and Communications in Medicine (DICOM)
	The Neuroimaging Informatics Technology Initiative (NIfTI)

	The WIML pipeline at Helse Vest RHF
	Picture Archiving and Communication Systems (PACS)
	Research PACS

	Experiments
	BraTS 2021: the data set used in our experiments
	Deep learning libraries
	fastai
	MONAI
	Library extension combining fastai and MONAI
	nnU-Net

	Experiment 1: Creating a simple and interactive web application
	Method
	Results

	Experiment 2: Research PACS integration
	Method
	Results

	Experiment 3: Comparing fastai and MONAI with nnU-Net
	Method
	Results

	Discussion, conclusion, and further work
	Discussion
	Discussion experiment 1
	Discussion experiment 2
	Discussion experiment 3

	Conclusion
	Further work

