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Abstract 

 

The growing prevalence of mental health problems is a global concern. Current 

psychological treatments are effective for a wide range of mental health problems. Yet, 

treatments today fall short with regards to scalability and struggle to meet the demand for 

help. To treat patients in a more cost-effective, accessible, and scalable manner, Internet-

Delivered Psychological Treatment (IDPT) has posed as a promising solution. Although, IDPT 

has shown encouraging results, the technology falls short in some regards. One such 

shortcoming is low user adherence. Adaptive IDPT that allow for personalizing treatment to 

patient needs may help solve the issue of high drop-out rates in IDPT as they are thought to 

aid in increasing user adherence. Yet, to adapt and personalize treatment there is a need of 

meaningful data about patients.  

In this thesis, we have created an artifact for the use of wearable data in IDPT. More 

specifically, our artifact can be split in two parts: (1) an extension of an IDPT framework that 

serves as a general component and allows for the utilization of wearable data to support 

Ecological Momentary Assessment (EMA) and (2) a demonstrative component that provides 

an example of how wearable data may be utilized in interventions to support adaptation. 

We have created an artifact, comprised of these two components, according to the design 

science research methodology. Through semi-structured interviews with domain experts of 

electrical engineering and psychology our artifact has been evaluated. As a result of this 

evaluation, we have learned that our artifact can serve as a basis for future research.  
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CHAPTER 1 
 

1 Introduction 
 

1.1 Motivation 
 

The number of mental health ailments is increasing at a concerning rate and is a major 

cause for global worry (WHO, 2014). In fact, mental health ailments globally make up the 

largest single source of economic burden (Mental Health Foundation, 2016) through its 

effect on productivity losses and heavy use of resources on treatment (Knapp & Wong, 

2020). However, there is limited accessibility to mental health care (Bucci et al., 2019). This 

is due to the current psychological treatments being costly with regards to resources and 

time, as well as a lack of trained clinicians (Jacobson et al., 2019). As a result, patients often 

have to wait for a prolonged amount of time before receiving treatment. This is 

unfortunate, due to early intervention being critical for a better prognosis (McGorry & Mei, 

2018). 

Utilizing digital technologies in mental health care shows great promise to help alleviate 

mental distress in a greater number of patients (Stroud et al., 2019). There is a wide variety 

of explored applications, including immersive virtual reality therapy (Freeman et al., 2017), 

Internet-Delivered Psychological Treatments (IDPT) (Andersson, 2016), and smartphones 

and wearables for monitoring, as well as providing alerts and information services 

(Balcombe & de Leo, 2021). A major benefit of using technologies such as smartphones, 

personal computers and wearables, is because of how prevalent and widely used they are. 

As such it is believed that they can be used to monitor, predict, identify, and treat mental 

health ailments in a more inexpensive, time-sensitive, and scalable manner compared to 

traditional treatment (Gutierrez et al., 2021).
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IDPT has been shown to be effective in treating mental health problems (Mukhiya et al., 

2020). Yet, current IDPT struggle with high drop-out rates (or low user adherence). It is 

believed that low user adherence is largely due to insufficient personalization of treatment 

(Fernández-Álvarez et al., 2017). Using wearable technology to monitor patients during 

interventions have the potential to provide additional data to assess patients (e.g., data on 

stress, activity levels and sleep), outside of clinical settings in a less invasive manner. Such 

assessment could instantiate a more personalized and hopefully more effective treatment.  

Even though there already are existing solutions that utilize wearable monitoring in IDPT, 

none have a publicly available code base (are open-source). An open-source IDPT 

framework that allow for the integration of wearable data in treatments could enable reuse 

and improvement of the framework, and ultimately facilitate further research.  

 

 

1.2 Problem Description 
 

Suresh Kumar Mukhiya, has for his doctorate developed a framework for creating adaptive 

IDPT systems (2022). The framework has had many contributors, including INTROMAT 

(INtroducing personalized TREeatment Of Mental health problems using Adaptive 

Technology). The framework is an open-source project with the aim of supporting user 

interaction and increasing user adherence. Through modularizing the project as a collection 

of plugins, the framework is intended to be useful in any area of mental health care. 

To enable adaptability there is a need of data regarding users (Mukhiya et al., 2020). There 

are several ways of gathering such data, e.g., through questionnaires. However, patients can 

become fatigued from answering too many questions and answers often vary depending on 

their state of mind. It is therefore believed that gathering data in a passive and less invasive 

manner, such as data gathered from wearables, can be advantageous (Griffin & Saunders, 

2020). With the prevalence of wearables today, there is an opportunity to access a 

previously untapped stream of a patient’s activities, moods, and behaviours (Griffin & 

Saunders, 2020). Furthermore, several types of data collected from these devices have been 

shown to be correlated with symptoms of mental health problems (Hickey et al., 2021; Lu et 

al., 2020; Zamkah et al., 2020). 
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We have created an artifact that is comprised of a general component and a demonstrative 

component. The general component serves as an extension of the IDPT framework 

described previously and enables the utilization of wearable data in IDPT. Whereas the 

demonstrative component serves as an example of how such wearable data can be utilized 

in interventions. More specifically, how stress measurements can be used to support 

adaptation in interventions.  

 

 

1.3 Research Questions 
 

In this thesis we will answer research questions regarding the use of wearable data in IDPT. 

More specifically, the following two research questions will be addressed: 

 

  

RQ1  How can an extension that allows for the use of wearable data be implemented to 

 support EMA in interventions? 

RQ2  How can such an extension be used to assist in adapting interventions? 

 

 

1.4 Research Methods 
 

For the research method of this thesis, we have decided to use design science. Design 

Science encompass iteratively designing, developing and evaluating an artifact to produce 

information for a knowledge base inside of a problem domain (Hevner et al., 2004). This 

artifact will serve as a means to answer the research questions. A further explanation of 

design science and our iterative process can be found in Chapter 3. 

 

 

 

 

 

 

 

 

 

 



4 
 

 

1.5 Terminology  
 

This section includes a brief explanation of the commonly used terminology of the thesis. 

 

 

Internet-Delivered Psychological Treatment (IDPT) is a term that covers all variations of 

 psychological treatment that are provided through the Internet (Andersson, 2016). 

 Whereas an IDPT system refer to a system of software that serves as the 

 technological foundation for IDPT. 

Ecological Momentary Assessment (EMA) denote the methodology of patients self-

 reporting in daily life (Doherty et al., 2020). Moreover, technology-based EMA refers 

 to the use of digital technologies as tools to foster assessment, usually involving 

 mobile or wearable devices (Colombo et al., 2019). 

Intervention is used throughout this thesis, as to specifically refer to mental health 

 interventions. Mental health intervention is a broader term, in comparison to mental 

 health treatment. Mental health interventions contain therapy, yet also assessment 

 of symptoms and psychoeducation (Benjenk & Chen, 2018). An IDPT is a form of a 

 mental health intervention administered through the internet.  

Wearable is a smart device worn on the body with the possibility of recording a range of 

 different data through various sensors. Although the term representative is of any 

 conveniently portable device that can gather data, the most common wearable 

 devices are smartphones, smartwatches and activity trackers (Guk et al., 2019).  
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1.6 Thesis Overview 
 

In this section we will biefly present the contents of each chapter of the thesis. As this thesis 

has been a collaboration between two authors, we want to proclaim the shared ownership 

of the content. Furthermore, the work put into this thesis in the form of research, 

implementation and evaluation has been split evenly between both authors.  

 

 

Chapter 1 is an introductary chapter where main concepts of the thesis are explained. This 

 includes the research questions, our motivation and research methods, to give the 

 reader  an overview of our problem domain and what the goals for this thesis are.  

Chapter 2 is a collection of background materials for the thesis. Here we explain core 

 concepts such as IDPT, EMA and wearables. In addition, we touch on subjects that 

 are assosciated with our demonstrative component. More specifically, stress and 

 measuring stress with wearables. Last, we will discuss some existing solutions. 

Chapter 3 explain our research method and what its guidelines entails. Furthermore, our 

 design process can also be found at the end of this chapter. 

Chapter 4 describe our development process from the first iteration to the final version of 

 our implementation. This description is split into two distinct parts. One regarding 

 our general component and one regarding our demonstrative component.  

Chapter 5 explain the evaluation process of our implementation. 

Chapter 6 present our findings. This chapter answers the research questions in detail and 

 touch on the limitations of our project. 

Chapter 7 includes our conclusion as well as future work. 
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CHAPTER 2 
 

2 Background 
 

This chapter details relevant subjects of our artifact. First, we will present topics associated 

with our general wearable component, such as internet-delivered psychological treatments, 

ecological momentary assessment, and wearables. Second, we will introduce topics that are 

associated with our demonstrative component of how stress measurements can be used to 

support adaptive interventions. These topics include stress and how to measure stress using 

wearables. Last, we will discuss some existing solutions that are similar with regards to our 

intended artifact.  

 

2.1 Internet-Delivered Psychological Treatment (IDPT) Systems 
 

IDPT is psychological treatment administered through the internet. The term was initially 

used by Andersson (2016). There are numerous other terms that are used in similar 

contexts, such as web-based treatment, Internet-delivered cognitive-behavioural therapy or 

e-therapy (Andersson, 2016). We distinguish between two types of IDPT, guided or 

unguided (Morgan et al., 2017). Guided IDPT involves a clinician aiding the patient through 

an intervention (e.g., in the form of emails or phone calls). Whereas unguided IDPT is carried 

out by patients themselves without the assistance of clinicians (Morgan et al., 2017). 
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To provide interventions for patients, a software platform is required. Such a platform is 

used to present treatment material, assessment materials such as questionnaires, exercises, 

and facilitate patient-clinician communication (Andersson et al., 2019). These platforms are 

known as IDPT systems and may include applications on the web and on mobile, or make 

use of augmented or virtual reality. 

IDPT propose a viable solution to the some of the problems that arise in traditional face-to-

face treatments, such as cognitive behavioural therapy. While traditional treatments are 

effective for a wide range of mental illnesses, they fall short with regards to accessibility 

(Morgan et al., 2017). As a result, a great number of people have difficulty accessing 

psychological treatment to aid with their mental health issues (Bucci et al., 2019). One 

important reason being, that there are not enough trained clinicians compared to the 

amount of people needing help.  

IDPT could play an important role in helping with the shortcomings of traditional 

treatments, as IDPT is highly scalable and can be accessed from anywhere with an internet 

connection. Furthermore, IDPT can be an option for people who do not attend treatment 

because of cost (Mukhiya et al., 2020), stigma (Bharadwaj et al., 2017) or anxiety (Langley et 

al., 2018). 

 

 

2.2 Adaptive IDPT Systems 
 

In traditional therapy, therapists adapt their practice with regards to their patients, with the 

goal of improving outcomes (Mukhiya et al., 2020). Dynamic treatment that changes in 

response to the development of the patient is important both to optimize treatment and 

ensure that patients do not drop out early from treatment (Gibbons et al., 2019). Adaptive 

IDPT systems expand on the concept of regular IDPT by further focusing on personalization 

(Mukhiya et al., 2020). A more personalized treatment is meant to increase usefulness and 

relevance, thus hopefully resulting in shorter treatment times and higher user adherence. 

Mukhiya et al. have proposed a model illustrating how entities in such a system should work 

together to achieve adaptability. 
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   Figure 2.1: Components of an adaptive IDPT system. From Mukhiya et al. (2020) 

 

 

The paper by Mukhiya et al. (2020) describes a model that presents IDPT systems as a 

function in an environment, which applies inputs and generate outputs, as seen in Figure 

2.1. The system measure performance of these outputs and use some feedback function to 

determine adaptive strategies. Finally, actors trigger the adaptation. Depending on what 

kind of actors (e.g., therapists or algorithms as part of the IDPT system) trigger adaptation, 

we differentiate between the following adaptive systems: 

 

(i) automatic systems that can self-adapt, 

 

(ii) semi-automatic systems where some the adaption happens automatically and 

some is instantiated by therapists, and  

 

(iii) manual systems, where all adaptation is facilitated by therapists.  

 

There’s a wide range of what can be personalized or tailored to patients during treatment. 

Such elements that can be tailored to patients is referred to as adaptive elements. An 

example of a typical adaptive element can be content presentation. More specifically, 

content presentation regards what type of content a patient receives and how it is 

represented. Notifications, alerts and reminders can also be adaptive elements. Another 

example of an adaptive element is feedback. Feedback are reflections of data collected from 

the IDPT displayed to the patients (e.g., a graph visualizing a patient’s stress progression 

over time). Such feedback can help demystify progress and allow patients to get a better 

understanding of themselves (Resnick et al., 2020).  
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To allow for adaptation, data regarding patients’ behaviour and symptom development are 

of great importance. Such data can be acquired from several sources. System interaction 

data can be used to gauge a patient’s engagement during treatment. Such data is regarded 

as behavioural data. Psychometric tests or questionnaires may also be used to assess 

patients. Additionally, wearable devices may be utilized to monitor valuable measures of 

sleep, activity and stress, or other similar measures (Griffin & Saunders, 2020). 

 

 

2.3 An Open-Source Adaptive IDPT Framework 
 

An adaptive open-source IDPT framework has been developed, based on the principles 

mentioned in Section 2.2. The framework was primarily built by Mukhiya (2022) in 

association with his PhD thesis. However, the framework has also had a collaborative effort, 

with contributions from various interested parties. The framework allows for the creation of 

interventions with treatment components such as cases, modules and tasks. A case is 

related to a specific mental health issue. Examples of cases can be depression or ADHD. 

Further, each case contains one or more modules that target a particular dimension of the 

case. E.g., a case for depression can contain modules on sleep issues and concentration 

issues. A module may be connected to several cases. Lastly, each module contains one or 

more tasks. Tasks can either be informative or interactive. 

Informative tasks, or learning materials, can either be text, video, or audio. Whereas 

interactive tasks encompass various exercises that require user participation. Such exercises 

can be, among other things, mindful exercises, or exercises regarding physical activity. Both 

informative and interactive tasks may record behavioural data of users.  
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Figure 2.2: A screenshot of the open-source adaptive IDPT framework, showing some examples of 

modules connected to a case named “My ADHD Program”. 

 

 

Our project consists of extending this framework. More specifically, our contribution will be 

adding an extension that allows for the integration and utilization of wearable sensor data, 

whereas this is something that currently does not exist. This extension is what comprise our 

general component. In addition, we will develop a demonstration of how wearable data can 

be utilized in interventions. More specifically our demonstrative component. More on the 

implementation of these two components in Section 4.2 and Section 4.3. 

     | The codebase of the framework can be viewed at https://github.com/sureshHARDIYA/idpt 

 

 

2.4 Ecological Momentary Assessment 
 

Ecological momentary assessment (EMA) refers to the methodology of patients’ self-

reporting in daily life, capturing “life as it is lived, moment to moment, hour to hour, day to 

day” (Shiffman et al., 2008). “Ecological” refers to the environment from where the data is 

collected, and “Momentary” refers to the assessment being close in time to the experiences 

of the patient. EMA allows for measure-based care, defined as “assessment in which 

patient-reported outcome measures are used to track progress in care as part of a clinical 

process”, which has been shown to be effective in treating psychological problems (Resnick 

et al., 2020). The method of EMA is closely related to developments in technology (Wilhelm 

& Perrez, 2013). Previously timed bleepers, personal digital assistants and now smartphones 

https://github.com/sureshHARDIYA/idpt
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and wearables have been used to improve reach, usability, and reliability of EMA (Doherty 

et al., 2020).  

Assessment in the context of psychological treatment has often been solely based on 

accounts of the patient. Such traditional clinical assessments are rooted in retrospective 

self-reports of the patient, where the patient summarizes symptoms and experiences of the 

past few weeks. However, the accuracy of such reports may vary. Self-reports are affected 

by biases such as recall bias (Colombo et al., 2019) and patients have been found to 

misjudge experiences of past events when retrospectively retrieving them (Ben-Zeev et al., 

2009). As such there is a need of ways to assess patients in a more objective manner during 

treatment. 

Self-assessment questionnaires such as Patient Health Questionnaires (PHQ-9), Generalized 

Anxiety Disorder scale (GAD-7), Kessler Psychological Distress Scale (K-10) and Perceived 

Stress Scale (PSS) are thought to be reliable measures of depression, anxiety, general 

distress, and stress. Although, the validity of some of these questionnaires have been found 

to require further evaluation (Lee, 2012; Plummer et al., 2016). Furthermore, time and 

effort required to fill out these questionnaires limits their use (Staples et al., 2019).  

The inability to monitor what happens in the daily-life of patients has been a shortcoming 

when assessing the effect of interventions (Griffin & Saunders, 2020). EMA emerged as an 

assessment strategy to better understand behaviour dynamics in patients’ daily life 

(Shiffman et al., 2008). The first studies used this approach with paper-and-pencil daily 

diaries, but found them not very efficacious, due to low compliance, discomfort, and 

backfilling (Stone et al., 2007). A growing body of research has begun to explore using digital 

technologies as potential tools for assessment. More specifically, technology-based EMA has 

been proposed as a viable strategy to evaluate patients in naturalistic settings (Colombo et 

al., 2019). Technological tools to assist in EMA, could enhance the ease of use, reduce cost 

and expand the methods capabilities (Stone et al., 2007). 

With the prevalence of wearables today, there is an opportunity to access a previously 

untapped stream of a patient’s activities, moods, and behaviours (Griffin & Saunders, 2020). 

The data collected from these devices are not subjective, in contrast to self-reports. Another 

major benefit is that the data is collected passively, not requiring patients to report 

themselves. Passive collection of data may place less of a burden on users and in turn make 

EMA less invasive, which ultimately can increase the methodology’s feasibility (Doherty et 

al., 2020).  
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2.5 Wearables 
 

Digital technologies have the possibility to provide high quality, passive, reliable and 

continuous data collection (Stroud et al., 2019). Wearable technologies with the ability to 

assist and monitor are becoming increasingly more prevalent (CCS Insight, 2022; Muzny et 

al., 2020). Wearables, as they are commonly called, are smart devices worn on the body 

with the possibility of recording data on vital signs, among various other types of data. This 

data may then be processed, visualised and in many cases transmitted to other devices in an 

Internet of Things (IoT) environment. A wearable is often in the form of a smartwatch or an 

activity tracker. Although the names are somewhat interchangeable, smartwatches tend to 

feature bigger screens, network connectivity and other software and sensors not necessarily 

related to activity or fitness (Rawassizadeh et al., 2015). 

In the domain of medical technology, wearables have a big potential to popularize 

personalized medicine. Personalized medicine is altering the treatment of a patient with 

regards to their needs in an effort to decrease the risk of disease, both during treatment of 

illness as well as a standardized health risk assessment to prevent common chronic diseases 

(Chan & Ginsburg, 2011). This differs from conventional medicine where the choice of best 

treatment is derived from a population average. There is a number of different wearables 

that may be utilized to assist in personalized medicine, ranging from the popular wrist-worn 

smartwatches to electronic patches placed on the skin (Yetisen et al., 2018). 

Furthermore, new ways of measuring and monitoring mental health may help to prevent 

the usually long wait times between onset of symptoms of illness and diagnosis, which is 

important because earlier intervention may lead to better outcomes (Berk et al., 2011; 

Marshall & Rathbone, 2011). As such, there is a need of easy-to-use, unobtrusive, and 

inexpensive devices that can gather objective information on symptoms that patients fail to 

report accurately (Glenn & Monteith, 2014). 

There is a wide range of different sensors found in wearables today. Of these sensors a 

diverse assortment of data that can be captured, and many of these types of data have 

correlations with symptoms of mental health illness (Sano et al., 2015; Zamkah et al., 2020). 

Examples of such sensor data are heart rate, heart rate variability, skin temperature and 

electrodermal activity. More about these types of data in Section 2.6.2.  
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2.5.1 Challenges Concerning Wearables 

 

Wearable technology is an emerging field and although wearable technology is showing 

promise in multiple fields, the use of such devices poses some challenges that must be taken 

into consideration. Some important challenges include, but are not limited to, usability, 

cost-effectiveness, privacy, and interoperability. The following list will briefly touch on some 

of these important topics but does in no way serve as an exhaustive list. 

 

Usability regards “the effectiveness, efficiency, and satisfaction with which specified users 

 achieve specified goals in particular environments” (Keogh et al., 2021). How a 

 patient experiences an intervention in which wearable technology is used, is in 

 many ways tied to the design of the device, and thus it may be regarded as a 

 deciding factor when it comes to the choice of wearable (Mathews et al., n.d.). The 

 device must be comfortable to wear over extended periods of time, regardless of the 

 physiology of the patient. It is important to note that the aesthetic appearance of a 

 wearable device may also have an impact on a patient’s opinion of the device. In 

 addition, any software the patient is interacting with must be easy to learn for a 

 wide range of users, taking into account mental or physical challenges they may 

 have. Battery life, user experience, quality of data recordings, functionality, price, 

 comfortability, and overall appearance are some of the most important concerns for 

 consumers when deciding on a wearable device (Wen et al., 2017). 

 

Interoperability describes how well separate systems or devices communicate with each 

 other. Even though, numerous wearable devices are being developed, such devices 

 have no guarantee of being interoperable with one another. Wearable 

 manufacturers do often have proprietary solutions regarding both collection and 

 transfer of data. Such proprietary solutions make it difficult for third parties to utilize 

 the device and its data. Within the wearable industry, there is often greater focus on 

 implementing new features rather than working towards establishing standards and 

 promoting interoperability (Muzny et al., 2020). For wearable technology to be truly 

 valuable for health care, improving interoperability is an important step. The most 

 crucial factors regarding interoperability is that the data collected must be in a 

 standardized data format, be easily accessible and generated from a reliable source     

 (Casselman et al., 2017). 
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Data standards can be described as “documented agreements on representation, format, 

 definition, structuring, tagging, transmission, manipulation, use, and management of 

 data” (EPA, 2022). To promote interoperability, exchangeability and safety in health 

 care, standardized formats data is vital (Schulz et al., 2018). This is just as important 

 with regards to wearable sensor data. There exist a lot of different wearable devices 

 from numerous manufacturers and there is no agreed upon data format. As a result, 

 a wide range of different data formats are used. Due to wearable manufacturers 

 having proprietary solutions and unique data formats, it makes it inherently difficult 

 to create applications that can work with multiple wearable devices. With 

 different data formats being used, data from different wearables needs to be 

 converted from one format to a common format if it is to be compatible. 

 Several attempts at standardizing data formats in health informatics have been 

 made. An example of such a standardization is Fast Healthcare Interoperability 

 Resources (FHIR) developed by Health Level Seven International (HL7), a not-for-

 profit, standards developing organization (HL7, 2022). FHIR introduces RESTful APIs 

 for information exchange as well as a standardization of components also known as 

 resources. The FHIR resources represent usual health care concepts such as 

 observations, patients and appointments. A literature survey performed by Ayaz et 

 al. (2021) concludes that “the FHIR standard is capable of providing an optimized 

 solution for medical data exchange between two systems and will  establish data-

 sharing trust among health care providers”. Yet, Ayaz et al. goes on to explain that 

 a challenge FHIR is faced with is a low adoption rate. 

 

Data quality concerns how useful data is for its intended purpose. To be able to utilize 

 collected data for analysis, a certain quality threshold must be met (Cai & Zhu, 2015). 

 Such a threshold changes depending upon the type of data, the amount of data 

 acquired and the intended use of the data. Wearables that can be used for non-

 clinical self-monitoring purposes without any issues could prove unfit for research 

 purposes (Degroote et al., 2018). According to a literary review done by Cho et al. 

 (2021) there are several factors that affect data quality collected from wearable 

 devices. They list some of the most common technical problems seen with the 

 devices, as user error and lack of standardization. An example of user errors is watch 

 placement, which could lead to a big loss of data quality (Kamdar & Wu, 2016). There 

 are also technical-related factors that affect data quality related to both hardware 

 and software, as is not surprising given the proprietary nature of wearables 

 (Ometov et al., 2021). 
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Security and privacy regard how wearable devices may compromise a user’s privacy or 

 security. Through numerous sensors, wearables have the possibility to record all 

 kinds of data, such as health data, data about a user’s geographic location and data 

 on general living habits (Wen et al., 2017). As these kinds of data can be very 

 sensitive, concerns regarding data ownership and security are important.  With 

 wearable data having various formats, being large scale and having many  mobile 

 links the data may have an increased risk of leakage or tampering (Guk et al., 

 2019). Because of this, strategies to ensure security and uphold privacy is important 

 to make wearable technology safe, in addition to gaining public trust 

  (Lu et al., 2020).  

 

 

2.6 Stress 
 

In general stress defines the threats to our body’s balance, equilibrium or “homeostasis” 

(from Greek and translates to “steady state”) (Chrousos et al., 1988). In psychology, it is 

more specifically a term related to the negative emotional states such as anxiety, agitation, 

anger, unhappiness, and frustration (Giannakakis et al., 2019). The concept of “fight-or-

flight”, describes how the autonomic nervous system is activated when reacting to a 

stressful event (Fink, 2009), in an attempt to restore the body’s homeostasis (Chrousos et 

al., 1988). Such a response includes a change in sweat gland activity, skin temperature and 

cardiac activity (Seoane et al. 2014). Therefore, these psychological activities can give a 

good indication of autonomic nervous system activity and as such are considered to be good 

indicators of stress (Karthikeyan et al., 2013). 

Stress comes in two variants: acute and chronic stress. The line between acute and chronic 

stress is, however, not easy to discern. One of the problems with separating the two 

variants is how to conceptualize the difference between reoccurring acute stressors and 

chronic stress (Rohleder, 2019). Acute stress is meant to keep us away from harm (Fink, 

2009). Chronic stress on the other hand has no discernible benefits and is regarded as one 

of the most prevalent illnesses found in the world. The symptoms of chronic stress may 

manifest physically in the form of muscular tension and back pain, and psychologically in the 

form of overarousal and emotional distress (Can et al., 2019). Chronic stress is associated 

with an increase in perceived acute stress and significantly associated with the onset of 

major depressive episodes (Hammen et al., 2009). 
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It should be noted that the stress response is a natural response and not inherently bad. 

Neither too little stress (calm), nor too much stress (distress) but instead a moderate 

amount of stress (eustress) is considered optimal. This correlation is more famously known 

as the Hebb’s curve (Hebb, 1955) as shown in Figure 2.3. Still, most health researchers agree 

that stress plays an important role in human health. Stress is linked to mental well-being 

and stressful incidents often being precursors to various major psychiatric conditions (Cohen 

et al., 2007).  

 

 

 

Figure 2.3: Association of arousal level and human performance. From Giannakakis et al. (2022). 

 

 

However, stress can be difficult to objectively monitor. The psychological component of a 

stress response is inherently difficult to define and there may be a need to measure stress in 

multiple ways. There are different factors that contribute to the frequency in which 

individuals report stress when asked. Such factors can be how the individual defines stress, 

how the question is worded and even if it is a weekday or during a weekend (Zawadzki et 

al., 2019). Therefore, it seems advantageous to seek further information on how often and 

possibly how intense an individual experiences a moment of stress (MOS) through another 

source than reports from the individual itself. 
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2.6.1 The Stress Response 
 

In a review on psychological stress detection using biological signals by Giannakakis et al. 

(2019) they explain that the stress response can be split into three main components: 

psychological, behavioural, and physiological. As mentioned in Section 2.6, capturing a 

psychological response of stress requires subjective recollections of a patient. However, 

such recollections are often prone to biases and inaccuracies. Capturing the behavioural 

response of stress is also possible. Body gestures and facial expressions are closely related 

to a response in stress, but even these behavioural body patterns are subject to partial 

control or manipulation. For these reasons, focusing on the physiological component of a 

stress response for detecting stress seems to be favourable.  

The stress response ultimately occurs with the desired outcome to serve homeostasis, 

through regulating body functions such as heart activity, temperature, and respiration. All of 

which are functions, from an evolutionary standpoint, that are essential for survival. Other 

physical reactions to stressors are the production of sweat in sweat glands and a decrease in 

body temperature (Boucsein, 2012; Kataoka et al., 2002). 

 

 

2.6.2 Measuring Stress with Wearables 
 

To be able to easily monitor and detect stress and symptoms of mental ailments, 

researchers are trying to create compact and accurate devices (Hickey et al. 2021). 

Wearable devices are one example of such devices. These devices can hopefully reduce the 

economic burden on the healthcare system and reduce morbidity, e.g., by enabling 

intervening at an earlier stage (Steinhubl et al. 2015). There are currently numerous 

wearables that through an array of different sensors can measure stress. In the sections 

below we will outline some of the most common biological markers (biomarkers) derived 

from wearable sensors that may be used to measure stress.  
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Electrodermal activity (EDA), also known as galvanic skin response or skin conductance, is a 

 marker of autonomic nervous system activity (Christopoulos et al., 2019), and 

 commonly used for measuring emotional arousal. In events of high emotional 

 arousal, the secretion of sweat is greatly increased, which can be measured on both 

 hands and feet. In fact, unless the skin is fully saturated, there is a linear correlation 

 between of skin conductance and emotional arousal (Boucsein, 2012). EDA can be 

 further split up into an electrodermal response and an electrodermal level. The 

 electrodermal response denotes a change in skin conductance. While the 

 electrodermal level, also known as tonic skin conductance, is the base level of skin 

 conductance. This level usually changes over time, but at a much slower rate than 

 the electrodermal response. More on this in Section 4.3.1.  

 

Skin temperature (ST) usually varies in a range between 32 and 35°C. It may however show 

 an even greater variation because of factors such as fever, physical exertion, or 

 extreme environmental temperatures (Vinkers et al., 2013). Furthermore, 

 variations in ST are linked with conditions of stress and anxiety disorders (Kataoka et 

 al. 2002). It is indicated that ST variations as a result of stress occur differently in 

 different areas of the body (Giannakakis et al., 2019). A study by Vinkers et al. (2013) 

 showed that during induced stress from a Trier Social Stress Test, subjects 

 experienced a  significant decrease in temperature of the hand palm, finger base and 

 fingertips.  

 

Heart rate variability (HRV) is a marker that reflects activity of the autonomic nervous 

 system (Berntson et al., 1997). HRV is widely used for stress detection and is 

 recognized as a sensitive and accurate indication of stress  

 (Alberdi et al., 2016; Seoane et al., 2014). HRV can be derived from both 

 photoplethysmography and electrocardiography sensors. 

 

 

 

 

 

 

 

 



19 
 

2.7 Existing Solutions 
 

We have reviewed literature on IDPT using Google Scholar. Even though there were several 

IDPT systems described, there were very few that had an integration with wearable 

technology. The solutions we have described below are the ones we found that seemed 

most alike with our intended artifact. It should also be noted that none of the surveyed 

projects had their code base publicly available. Information regarding, e.g., the types of data 

formats used, would have been of great value. However, such details were not presented. 

As such, comparisons will consist of what is described and not how these projects are 

structured or designed. If possible, comparisons will be made regarding both components of 

our artifact. More specifically, a comparison regarding our general component and of our 

demonstrative component. 

 

 

2.7.1 The CareWear Project 
 

The CareWear Project is an online platform that is aimed at allowing mental healthcare 

professionals to use wearable data in their practice (Debard et al., 2020). The data collection 

is done by patients with the use of an Empatica E4. After patients have collected data, it can 

be uploaded onto the CareWear platform where the data will be transformed into 

interpretable indicators. This is typically done on a day-to-day basis. The indicators consist 

of moments of stress, number of steps, amount of physical exercise, as well as HR and HRV. 

A moment of stress is registered if patients verify the moment afterwards in the platform’s 

interface. Additional details of the data (descriptive metadata) may also be added on the 

platform.  
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Figure 2.4: Screenshot of the The Carewear Project’s platform viewing details of a patient’s day. 

From Debard et al. (2020) 

 

 

There is no available information regarding how the CareWear platform is structured or 

designed. As such, it is difficult to make any comparisons regarding our general component.  

However, the Carewear Project has a lot of similarities as to how we intend to implement 

our demonstrative component. First, the project uses the Empatica E4, the same device we 

intend to use, for the collection of sensor data from patients. Furthermore, the project 

analyses EDA data to classify acute moments of stress.  

The biggest difference between the project and our artifact is that the project functions as a 

tool to be used in addition to traditional treatment, rather than a part of a standalone 

online intervention. 
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2.7.2 The Innowell Platform 
 

The Innowell Platform is a web-based platform that serves to assist in the assessment, 

management and monitoring of mental health problems, as well as the maintenance of 

well-being (Davenport et al., 2019). It is a platform that is focused on aiding young people, 

even though it is designed for and used by all populations (Iorfino et al., 2019). Mental 

health information is collected, stored and scored, reported back to the patient and clinician 

to provide a more genuine collective care (Chewning et al., 2012). The platform does not 

deliver treatment but instead aims to guide and support. As such, the platform excludes 

diagnosing, medical advice or direct treatment. With use of an activity tracker the platform 

records physiological data regarding activity levels and sleep quality. This is done so both 

the patient and clinician can make more informed clinical decisions. 

 

 

 

 

Figure 2.5: Illustrative journey of a patient through care. From Iorfino et al. (2019) 

 

 

The Innowell Platform differs as it does not provide all parts of an intervention through the 

Internet. But rather, some parts of an intervention, such as treatment and diagnosing, is 

done through traditional face-to-face appointments. However, the platform utilizes 

measurement-based care, a term described in Section 2.4. Our intended artifact, too, will be 

developed with the goal of enabling measurement-based care.  



22 
 

However, there is no information on how the Innowell Platform is implemented to integrate 

wearable data, or documentation of how the platform is structured or designed. As such, no 

comparisons can be made regarding our general component. 

As for our demonstrative component, we are not aiming to collect the same biological 

markers and choose to focus on stress. Yet, our component is in many ways similar. The goal 

of our component is also to provide continued assessment, as to provide more personalized 

treatment.  

 

 

2.7.3 Youwell 

 

Youwell is a platform designed to help clinicians build and deploy their own guided or 

unguided digital interventions (Youwell, 2022). The aim is to help clinicians adapt treatments 

to their patients without necessarily having a background in informatics. The interventions 

can include a wide range of material. Such material may include educational content, 

questionnaires, exercises and patient-clinician communication (Youwell, 2022).  

The platform has been used as a foundation to create several online interventions. Some 

examples of interventions developed at INTROMAT with the use of Youwell’s platform are: 

 

• eMeistring, offers treatment for people with panic-disorders, social anxiety or 

depression above 18 years of age (eMeistring, 2022), 

 

• Stressmestring, is a stress management tool for patients to learn about mental 

reactions to stress and anxiety, and learn how to deal with such reactions (Youwell, 

2022), and 

 

• UngSpotlight, is a digital self-help tool for young people with presentation anxiety 

(UngSpotlight, 2022). 

 

 

According to Youwell, sensor data such as HR, sleep data and activity levels can be collected 

and used on the platform. However, there was no further explanation to as how this is 

carried out. After reaching out to Youwell they provided us a with a brief overview of how 

sensor data is integrated in the platform. They explained that the Youwell platform has an 

open API that can receive sensor data. As such, any wearable that exposes the collected 

sensor data through an API, can be integrated in interventions. What data is collected and 

how it is utilized is entirely up to those who are creating the intervention.  
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As for our general component, we also want to make it possible to use a range of different 

sensor data and various devices. However, we do not intend to fetch data from an API, as 

we believe this to be difficult with regards to interoperability, as mentioned in Section 2.5.1 

and as will be further elaborated on in Section 4.2. Furthermore, Youwell does not have any 

information of how the wearable data are structured or stored, so no comparisons can be 

made here. 

For our demonstrative component it is difficult to make any comparison, as there are no 

concrete interventions that we know of that has used the platform’s ability to utilize 

wearable data.  
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CHAPTER 3 
 

3 Research Method and Design 
Throughout this chapter, we will elaborate on our chosen research method. Further, we will 

explain how we have designed our artifact through several iterations.  

 

3.1 Research Method 
 

Design science is a research method first introduced by Hevner et al. in the paper Design 

Science in Information Systems (2004). Design science as a research method is highly 

popular and according to Google Scholar, Hevner et al.’s paper (2004), has been cited in 

over 16,000 works (2022). In the book An Introduction to Design Science, Paul Johannesson 

and Erik Perjons describe design science as “the scientific study and creation of artifacts as 

they are developed and used by people with the goal of solving practical problems of 

general interest” (Johannesson & Perjons, 2014).  

 

 

3.1.1 Guidelines of Design Science 
 

Described by Hevner et al. (2004), are seven guidelines for anyone who wish to conduct 

effective design science research. These guidelines are based on the fundamental principles 

of design science and should therefore be sufficient in describing what design science seeks 

to achieve.  
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Guideline 1: Design as an Artifact 

Guideline 1 emphasizes the development of an artifact, and that the artifact should be 

purposeful in the problem domain that intends to contribute to. Such an artifact may 

appear as:  

 

• constructs, which provide us with the language needed to solve or to present a 

solution to a problem, and are also crucial for creating models and methods in the 

problem domain, 

 

• models, which are ways of representing the problem domain itself,  

 

• methods, which are collections of useful ways or processes researchers may employ 

to solve their problem, and  

 

• instantiations, or implementation of artifacts, demonstrate a feasible solution in the 

problem domain.  

 

In our thesis we aim to create an instantiation, namely an artifact implementation to extend 

the functionality of the IDPT framework. Our problem domain has pre-existing constructs 

and methods that provide a language and processes, respectively, for creating potentially 

useful artifacts. Therefore, we believe that an artifact instantiation would yield most value 

to the domain.  

 

Guideline 2: Problem Relevance 

The second guideline instructs that the artifact created will have to be relevant in reducing 

the difference between the goal state of a system and its current state of a system. The goal 

state is not necessarily a state where there are no more challenges to overcome in the 

system, but rather a satisfactory state. Design science aims to achieve this by creating an 

innovative artifact. 

 

Guideline 3: Design Evaluation 

The evaluation of the created artifact is an important part of the iterative process that is 

artifact design in design science. With frequent evaluation we may assist in finding a 

solution in the problem domain more aligned with the business environment’s criteria, and 

thus following Guideline 2 by being relevant. 
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We evaluated our artifact through a midway evaluation, where domain expert knowledge 

was incorporated into the feedback loop to enhance the value of the artifact. A further 

explanation regarding our evaluation process can be found in Chapter 5. 

 

Guideline 4: Research Contributions 

The fourth guideline explains that for design science research to be effective it must 

produce something of value in at least one of three areas. The first form of value is the 

artifact itself, which according to Hevner et al. (2004) is the most common contribution 

made by design science. We will summarize our own research contribution in Section 6.2. 

The artifact may be innovative itself, extending the knowledge base of the domain, or it may 

be an original use of the pre-existing information in the knowledge base that solves a 

problem without a previous solution. The second form of contribution is through explicit 

extension and improvement of the knowledge base. Examples of this are formalizations of 

pre-existing models and design algorithms. The third and final type of contribution is the 

development of methodologies. Methodologies include metrics for quantification, which are 

especially important for design science research due to a focus on progress the problem 

domain to the mentioned goal state. 

 

Guideline 5: Research Rigor 

Guideline 5 emphasizes the use of rigor while conducting research within design science. 

Rigor in the context of behavioural and design science is the effective application of the 

methods and foundations that originate from the knowledge base. 

Analysing the IDPT framework as an artifact within the domain of IDPT has given us an 

understanding of what technology is required as part of an IDPT system. Through discussion 

with one of the creators of the IDPT framework we have extended and evaluated our own 

knowledge to gain further insights. Through our interviews with domain experts, we have 

also supplied our knowledge of the relevant technologies with information about the 

domain and its actors. 

 

Guideline 6: Design as a Search Process 

When designing an artifact, according to Guideline 6, we should always try to find the 

optimal solution to our problem. However, the solution space when working on wicked 

problems, often encountered when designing information systems, is vast. Thus, formally 

listing the sets of methods, possible solutions and criteria and choosing the optimal solution 

is not feasible. As such, we are instead searching for a satisfactory solution to the problem. 
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When we are searching for these satisfactory solutions, attention must be paid as to how 

we set the threshold for a satisfactory solution. 

In the context of our thesis, the solution we are searching for lives in a domain of emerging 

technologies and thus, comparing our artifact to existing solutions as to measure the value 

of our artifact is challenging. However, through qualitative evaluation we were able to get a 

better understanding of the usefulness of our artifact. 

 

Guideline 7: Communication of Research 

The last guideline of design science concerns the proper communication of the nature of the 

artifact. More specifically, with regards to developers tasked with evaluating, implementing 

or extending the artifact, as well as a thorough documentation of its intended utilization. 

Furthermore, the artifact needs to be presented in such a way that the novelty of it is 

apparent to a management-oriented audience, such that it may find use as a solution to an 

appropriate problem.  

The IDPT framework, and the artifact we have created as an extension, are open-source. 

This should in-turn promote further evaluation and extension, by removing barriers related 

to the acquisition of source code which is a challenge in the field of IDPT systems. 

Furthermore, the presentation of our artifact within this thesis would hopefully detail its 

novelty in a clear manner, thus aiding in applying it to a relevant problem. 

 

 

3.2 Design Process 
 

This section is dedicated to illustrating the iterative process of our artifact development. 

Several shorter meetings were had with Mukhiya, the main contributor of the IDPT 

framework, throughout development. In addition to these meetings we also had a midway 

evaluation, presented in Section 5.1. These meetings were valuable for the design of our 

artifact, and how we ended up implementing the artifact. To present the design process in a 

clear manner, we will explain the process through three primary iterations. The iterations 

were focused on: 
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(i) designing a general wearable data model for the IDPT framework as our general 

component, 

 

(ii) using our general component to develop a demonstrative component, and 

 

(iii) improving upon our components by adding features based on the evaluation 

meeting. 

 

 

First Iteration 

The first iteration consisted of several attempts at conceptualizing the different components 

of our implementation. Initially we aimed to create an artifact that would allow the use of 

any type of sensor data from any device in an intervention. However, as later learned, this 

would prove to be challenging with regards interoperability. Thus, we decided to create a 

general data model for wearable data, rather than creating an interface for receiving 

wearable data from any device. 

The foundation required for using wearable data in interventions, is the construction of data 

models to be used in both front-end and back-end of the system. The initial model was one-

dimensional and based on the existing components of the IDPT framework, such as patients 

and tasks. We figured what attributes we thought be valuable for any type of wearable data 

and based our data model on these criteria.  

 

Second Iteration 

The second iteration started with the goal of creating an example of how our general 

component could be used in interventions, by implementing a demonstrative component. 

We decided on using stress as a measure to assess patients, due to the correlation of stress 

and mental health being well established. As such, we created a new data model, for types 

of scored data. The scored data concept was developed with the intention of being simple, 

and thus easy to visualize and represent. 

A new module was implemented in the back-end to analyse and detect stress. This module 

would take the wearable data from the first iteration as input and create scored data based 

on the frequency of detected stress as output. The module was first prototyped in Python 

and later translated into JavaScript, as the back-end of the IDPT uses JavaScript executed 

using the Node.js runtime environment. The demonstrative component developed in this 

iteration would be further improved upon in the third and final iteration. 
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Third Iteration 

Through the midway evaluation with Mukhiya, further explained in Section 5.1, several 

areas to improve with regards to both our components were illuminated. One such 

suggested improvement was the addition of a graph representation of scored data to better 

be able to interpret the data in a meaningful manner.  

Furthermore, through insights of the midway evaluation, we decided to redesign the data 

models we had created to conform to a standardized data format. There is no consensus on 

a universal data format in health informatics. However, the standard of HL7 FHIR has shown 

potential as to solve interoperability issues in health informatics, as mentioned in Section 

2.5.1.  
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CHAPTER 4 
 

4 Implementation 
 

When initially choosing a topic and a project to work on for our thesis, we decided that we 

wanted to contribute to the existing IDPT framework, as described in Section 2.3. Further, 

we had an interest in wearable technology and the possibility of these devices to assist 

within the domain of mental health care. Therefore, we started researching existing 

literature on wearable technology and IDPT. We found that wearables have the potential to 

monitor a wide range of physiological signals and that many of these have correlations to 

symptoms of mental health problems (Hickey et al., 2021; Lu et al., 2020; Zamkah et al., 

2020). We also learned that IDPT has issues regarding low user adherence, largely due to a 

lack of personalized treatment (Fernández-Álvarez et al. 2017). By using wearables to 

conduct EMA of patients during an IDPT, one could hopefully capture measures that give an 

indication of how a patient is progressing in treatment. In turn this knowledge could be used 

to facilitate IDPT’s adaptability to further personalize treatment. 

Our primary contribution is an extension of the IDPT framework, as mentioned in Section 

2.3, that allows for the utilization of wearable data. The intention behind making such an 

extension enable use of data that is captured outside of a clinical setting, through the use of 

EMA. Additionally, due to our contribution being open-source it would enable reuse and 

promote further research in this domain. Further, we also wanted to make a demonstrative 

to show an example of how wearable data can be utilized in IDPT. In our demonstrative 

component we look at biomarkers that can give an indication of a patient’s frequency of 

stress. The reason for wanting to monitor stress, is because how the amount of stress a 

person experiences is greatly correlated to their mental well-being (Cohen et al., 2007; 

Daviu et al., 2019; Hammen et al., 2009).  
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In following sections, we will detail the implementation of our artifact. First, we touch on 

the architecture of the IDPT framework and technologies used. Further, we elaborate on our 

general component. Last, we describe our demonstrative component.  

 

 

4.1 Technologies and Architecture of the IDPT Framework 
 

4.1.1 Technologies 

 

The following section will mention the most essential technologies of our artifact. As our 

artifact is an extension of an existing framework, the technologies were predetermined as 

we started development. For this reason, we will only briefly touch on the technologies 

used. 

 

MongoDB is a NoSQL document database that is used for storing the IDPT framework’s 

 data.  

Mongoose is an object data modelling (ODM) library for mapping objects in Node.js to 

 MongoDB in the IDPT framework. 

Node.js is an open-source runtime environment for JavaScript that is for the used for the 

 IDPT framework’s back-end logic.  

React is an open-source front-end JavaScript library for creating user interfaces made up by 

 components that is used for the IDPT framework’s user interface.  

GraphQL is an open-source query language that is used for communication between the 

 back-end and front-end within the IDPT framework. 

 

 

4.1.2 Architecture 
 

This section contains a description regarding the architecture of the IDPT framework. As 

mentioned in the previous section, our artifact is an extension of an existing framework and 

thus the architecture was implemented prior to the development of our artifact. As such, 

the breakdown of the architecture will be short. 
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The architecture of the back-end is comprised of back-end endpoints, services, repositories 

and the database. A repository performs operations of the database, such as storing and 

fetching, for an entity. Examples of entities in the framework are users, modules, and 

wearable data. Services similarly perform logic operations related to the entities. These 

operations are invoked by the back-end’s endpoint. To this endpoint, GraphQL operations 

can be sent from external sources, typically the IDPT’s front-end.  

 

 

 

Figure 4.1: Illustration of the IDPT framework. 

 

 

The structure of the front-end is alike that of the back-end. In the front-end too, each entity 

has a corresponding service in the modules component, as seen in Figure 4.1, that carries 

out logical operations on entities. Further, the front-end has a views component. Views is 

made up of React components which together makes up the user interface. 

Further, the IDPT framework handles privacy of data by assigning privileges to different 

kinds of users. E.g., users assigned as patients are much more limited with regards to what 

can be accessed, compared to clinicians. 
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4.2 General Component 
 

In this section, we will present the implementation of our general component. This 

component enables the use of wearable data in interventions, as an extension of the IDPT 

framework. The component is developed to be generic and reusable. There are obviously 

overlapping elements between our general component and demonstrative component as 

our demonstrative component is built using our general component. Still, elements 

regarding the user interface will be explained in Section 4.3 regarding our demonstrative 

component. 

 

 

 4.2.1 Additions to the Existing Architecture  
 

As mentioned in Section 4.1, the technologies and architecture were largely predetermined 

as we started development. Still, in implementing our general component we added two 

new entities to the existing architecture, that are similar in structure to that of previous 

entities (e.g., patients and cases), and data-flow logic related to these entities. More 

specifically, we have developed entities for wearable data and scored data. These entities 

and their implementation will be further elaborated on in Section 4.2.2. 

 

 

Figure 4.2: Wearable data integration in the architecture of the IDPT framework. The two arrows 

illustrate different scenarios of receiving wearable data. 
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Figure 4.2 illustrates how wearable data may be received in the IDPT framework. Or more 

specifically, which component may be responsible for receiving the data. The green arrow of 

the figure refers to the scenario of uploading wearable data to the framework through a 

user interface in the front-end, as is done in our demonstrative component. More on this in 

Section 4.3.5. 

The red arrow refers to the scenario of automatically uploading wearable data, as is 

currently supported by the API endpoint of the framework. Although, for such a scenario to 

be possible, the uploaded wearable data would need to be structured according to our 

model for wearable data. This model is later described in Section 4.2.2. Additionally, the 

wearable device utilized would need an API suitable for transmitting the data from the 

device to an endpoint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: A more detailed version of Figure 4.2, showing components and their content related to 

entities, of the IDPT framework. More specifically, this figure is showing additions to each 

component by scored data and wearable data. Note that there are other entities that have been 

excluded as to keep the figure uncluttered.   
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4.2.2 Implementing a Wearable Data Integration 

 

When referring to wearable data and scored data we are talking about unprocessed and 

processed or analysed sensor data from wearable devices, respectively. Scored data is a 

suggested way of formatting such processed wearable data. We designed this format with 

the intention of having a score that is easy to visualize and that emphasizes change or 

progression. However, the data format could easily be altered and structured otherwise if 

needed. More on scored data in relation to stress scores in Section 4.3.  

To promote interoperability, we decided on using the HL7 FHIR specification for our models. 

This was as one of our takeaways from the midway evaluation. As such, we are opting for 

the use of an established and standardized data format rather than developing a proprietary 

format. More on this in Section 5.1. As mentioned in Section 2.4.2, a lack of standards is a 

challenge when it comes to utilizing wearable technology. 

It should be noted that the scored data has, in addition to its FHIR specified model, a 

separate front-end data model similar to that of other entities, such as patients and tasks. 

As wearable data provides little value before it is processed and analysed there is no need 

for a front-end model for this entity. Therefore, we chose to separate scored data from 

wearable data as different entities, because their uses cases are different. To allow for the 

use of two separate models for scored data, we have implemented a module for 

transforming scored data between the FHIR specified model and the model used for 

representing scored data in the front-end, located within the modules component seen in 

Figure 4.3. 

The FHIR specification defines its components as resources. In compliance with the HL7 

FHIR’s Guide to Resources, we chose to utilize the observation resource to represent 

wearable and scored data (FHIR, 2022). Following is a brief explanation of resource and 

observation. 

 

Resource is a component of the FHIR data specification. Resources are hierarchical 

 components that often have several optional sub-components. The modularity of 

 the resources makes creating dynamic objects conforming to the standard easier. 

  

 

Observation is a type of resource that embody the concept of patient observations. The 

 observation comprises several required and optional fields for data and metadata. In 

 our case, observations specifically encapsule sensor data, either raw data or 

 analysed data.  
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We decided to omit some of the optional fields of the observation resource that we 

hypothesize will not be necessary for the IDPT, to reduce complexity. The same complexity 

reduction has been applied to child resources of the observation. 

We have created two variations of the observation resource. First, a variation for wearable 

data including an attribute named valueSampledData, containing a list of raw sensor data. 

This data can e.g., be one-dimensional EDA data in microsiemens (μS) or three-dimensional 

gyroscope data. We denote the data with the name of the device used for measurements, 

the name of measurement type and a short description of the measurement type. More 

metadata regarding the measured data can easily be added to this observation variation if it 

is believed to be useful. 

The other variation of the observation resource represents scored data. Such a score can 

easily be visualized and represented to a therapist or patient and may be used to facilitate 

adaptation (either manually or automatically). Scored data share most of its attributes with 

wearable data except for the valueSampledData attribute. Rather, the scored data has an 

attribute named valueString, which holds a single value representing the score. The scored 

data is used by the demonstrative component of our artifact and will be further elaborated 

on in Section 4.3. 

All top-level attributes included in wearable as well as scored data are described below:  

 

• resourceType describes the type of resource. 

In our case the type of resource is an observation. 

• status indicates if the observation is complete or undergoing. 

We have set status to be final by default.  

• code is a resource explaining what was observed. In the code resource we find 

metadata such as a systems code for a measurement (e.g., a number indicating a 

measurement of type ECG), a more readable representation of such a code and the 

system from where the code is defined. 

• subject is a resource representing the patient that is measured. 

• effectivePeriod indicates the timeframe where measurement has taken place. 

• device is a resource containing information about the measurement device. 

• valuedSampleData is a resource containing the measured data and related 

metadata (e.g., the frequency of samples and dimensions of the data array).  

This attribute is only found in wearable data. 
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• valueString is a value representing the result of analysed data. 

This attribute is only found in scored data and is represented as a numbered score.  

• derivedFrom is a list of references to the wearable data that has been processed. 

This attribute is only found in scored data. 

 

 

{ 

 resourceType 

 status 

 code  { 

  coding  { 

   system 

   display 

  } 

  text 

 } 

 subject  { 

  reference 

  type 

  display 

 } 

 effectivePeriod  { 

  start 

  end 

 } 

 device  { 

  display 

 } 

 valueString 

 derivedFrom  { 

  references 

 } 

} 

 

Listing 4.1: A representation of the structure of the model for scored data, complying with the FHIR 

specification. Levels of the hierarchy are uniquely coloured. 
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As we want to store both wearable data and scored data, we have corresponding Mongoose 

and GraphQL schemas for both wearable and scored data models. Schemas related to 

GraphQL are part of the API endpoints component, whereas Mongoose schemas are part of 

the repositories component. The Mongoose schemas and GraphQL schemas belonging to 

wearable and scored data contain an attribute named fhir which is an instance of the 

observation resource. Additional attributes found in these objects are id, createdAt and 

updatedAt, as seen in Listing 4.1. These were included to comply with the standard 

attributes that can be found in all main entities (e.g., patients and tasks) of the IDPT 

framework. In the future more of these entities and their attributes have the potential to be 

specified by the FHIR standard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Scored data as represented in MongoDB Compass, a graphical user interface for 

MongoDB databases. The IDs which are listed in the array under the derivedFrom attribute, are 

references to the wearable data database entries in Listing 4.2. 
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Figure 4.5: Wearable data for skin temperature and electrodermal activity. 
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Figure 4.6: The Mongoose schema for scored data with associated ObservationSchema as 

subdocument. 
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type WearableData { 

    id: String! 

    fhir: FhirObservation! 

    createdAt: DateTime 

    updatedAt: DateTime 

} 

Listing 4.2: GraphQL type for wearable data. 

 

Further, there are several GraphQL schemas associated with wearable data and scored data. 

An example of such a schema is the WearableData type as seen in Listing 4.4. This type sets 

restrictions for how wearable data is to be structured. Each WearableData must contain a 

FhirObservation type with metadata and data from a wearable measurement. Like for all 

other entities in the system, the FhirObservation maps directly to the Mongoose 

ObservationSchema. Due to the FhirObservation type being identical to the Mongoose 

ObservationSchema in structure, it is not included as a listing. The overlap in structure 

between GraphQL and Mongoose schemas leads to code redundancy in the IDPT 

framework. Moreover, this redundancy slows down implementation speed and allows for 

the risk of making inconsistencies between the corresponding structures, which may 

introduce bugs. Yet, as the structure of the framework was predetermined when we started 

development, our additions to the framework have followed the same structure. Such 

redundancy issues could be an area for future improvement. 

 

 

4.3 Demonstrative Component 
 

In this section we will detail the implementation of our demonstrative component. As 

mentioned in Section 4.2, there are obvious overlapping elements between this component 

and our general component. However, the topics included in this section we believe to be 

preferably explained in a practical setting, and therefore have been included here rather 

than in Section 4.2. 

We will first present a brief overview of our additions to the IDPT framework’s architecture 

regarding our demonstrative component. Next, we will elaborate on our algorithm for 

detecting moments of stress (MOS) and how we carried out an experiment to calibrate the 

algorithm.  Further, we will touch on the device chosen for collecting the necessary 

biomarkers. Last, we will show how the scored data can be viewed and interacted with in 

the front-end.  
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4.3.1 Additions to the Existing Architecture  
 

As mentioned in Section 4.2.2, we have added two entities and data-flow logic regarding 

these entities, to the existing architecture. Additionally, we have for our demonstrative 

component created a view for uploading wearable data, a view with a graph visualization for 

scored data and an analysis module related to stress detection. 

 

 

 

 

Figure 4.7: Additions of our demonstrative component to the existing architecture of the IDPT 

framework, highlighted in green.   
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The additions to the architecture by our demonstrative component revolve around the 

analysis of wearable data, and the creation and representation of scored data. Moreover, 

we have added a view for uploading wearable data, which can be seen in Figure 4.9. 

Further, we have implemented another view containing a graph for scored data, to visually 

emphasize the variations in scores over time. This view is later presented in Section 4.3.5 

and illustrated in Figure 4.11. 

Last, we have integrated a module for detecting stress using wearable data. More on this in 

Section 4.3.2. The module is utilized in the service component for wearable data, as seen in 

Figure 4.7. The analysis module receives wearable data as input and outputs scored data. 

The wearable and scored data entities have similar data-flows starting from their respective 

service components and ending up in the database, where they are stored. 

Users assigned the role of patient only have access to their own scored data, whereas 

clinicians may access each of their patients’ data. Besides these measures, our 

demonstrative component does not address any other concerns regarding privacy and 

security, as this is outside the scope of this thesis. Yet, such concerns are important and thus 

are mentioned as future work in Section 7.2. 

 

 

4.3.2 Detecting Moments of Stress (MOS) 
 

As we wanted to implement a demonstrative component to show how wearable data may 

be utilized in IDPT, we selected stress as a suitable measure to integrate. The reasoning for 

choosing this measure is due to its acknowledged correlation with mental health, as 

mentioned in Section 2.6.  

Due to time constraints and the fact that our demonstrative component is a proof-of-

concept, we decided to use an already established algorithm. In this way, we would be able 

to use an algorithm that has been evaluated, as we would not have the resources nor time 

to properly evaluate an algorithm ourselves.  

We searched for scholarly papers regarding the use of biomarkers for detecting stress. This 

is a relatively well researched topic. Still, when finding relevant papers, the papers rarely 

describe what kind of algorithm was used or include description regarding their 

implementation. When searching for papers we primarily used Google Scholar and 

employed relevant search terms and operators for stress detection and wearables.  
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There are various different types of sensor data that has been used to detect stress. Among 

the most common types of sensor data for stress detection are heart rate, heart rate 

variability, electrodermal activity (EDA) and skin temperature (ST) (Giannakakis et al., 2019), 

all of which has been shown to be possible candidates for detecting stress (Chandra et al., 

2021; Hui & Sherratt, 2018; Liew et al., 2016; Vinkers et al., 2013). 

However, among the search that resulted in numerous scientific papers, we decided to base 

our stress detection algorithm on a paper written by Kyriakou et al. (2019). The algorithm 

uses EDA and ST and has been evaluated through showing high accuracy (84% on average) 

in a mixed method approach in a real-life setting. Furthermore, the paper includes a 

description of how the algorithm is implemented, which most other papers lack. It should be 

noted that even though it may have been beneficial to include other types of sensor data, 

we have chosen to narrow our use to EDA and ST, as our demonstrative component serves 

as a proof-of-concept. More on the addition of other sensor data in future work, in Section 

7.2.  

 

Description of the Algorithm 

The algorithm from Kyriakou et al.’s paper (2019) is making use of sensors in an Empatica E4 

smartwatch (more on this device in Section 4.2.3) for continuously measuring electrodermal 

activity (EDA) and skin temperature (ST) for the detection of moments of stress (MOS). The 

algorithm is rule-based and uses weights to decide how much of an impact each rule should 

have. An advantage of rule-based algorithms is the low time and computational cost. Below 

is a detailed description of what the algorithm entails.  

 

Step 1 – Pre-processing In the first step we apply filtering and down-sampling to denoise 

 the data before applying the rules. The steps taken for pre-processing EDA data is 

 almost identical to that of the pre-processing for ST. The only difference being the 

 order and cut-off frequency of the filters for EDA and ST.  

 First, a low pass filter is applied. The low pass filter removes high frequency 

 changes in the measurements. These high frequency changes occur because of 

 sensor noise. Such rapid changes in skin conductance and skin temperature are 

 unrealistic (Schumm et al., 2008). 

 Next, the data is passed through a high pass filter. The high pass filter filters out slow 

 changes in the data that are not indications of MOS. Finally, we down-sample the 

 data from four hertz to one hertz. To prevent data loss the down-sampled data is 

 calculated by averaging every four data points from the original data. 
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Step 2 – Applying the rules Following is an explanation of the five rules that iteratively adds 

 a score for every second of data. Through summing these scores and comparing this 

 sum to a threshold, the algorithm determines whether a point in time is an MOS or 

 not. 

 

• Rule 1 – EDA Amplitude Increase 

An increase in amplitude of EDA ranging from two to five seconds after a stimulus 

that could indicate a MOS. This is due to the response from a stressful stimulus first 

having a short delay, followed by a short rise time. When the increase is between 

two to five seconds, the score of 1.0 is given. Furthermore, a longer increase in 

amplitude is indicative of a weaker response. Therefore, an increase longer than five 

seconds is less likely to be a MOS and is given a score of 0.5 points. 

 

• Rule 2 - Skin Temperature Decrease 

A drop in skin temperature is expected to take place three seconds after the onset of 

an EDA amplitude increase. If the decrease lasts for three seconds or longer, a score 

of 1.0 is given. A skin temperature decrease that lasts for three seconds or longer, 

within three to six seconds of an EDA amplitude increase results in a score of 0.5. 

 

• Rule 3 – EDA Response Rising Time 

The rising time of the EDA response is relevant for a potential MOS. A mentioned in 

Rule 1, a longer rise time is correlated with a weaker response. Thus, if the rise time 

from a local minimum to a local maximum is less than or equal to five seconds, we 

give a score of 1.0. Rise times that are longer but no longer than 10 seconds are 

given a score of 0.5 points. 

 

• Rule 4 – EDA Response Slope 

The slope of the EDA response is correlated with the intensity of a stressful event. An 

angle greater than 10° gives the score of 1.0. An angle between 8° and 10° results in 

a score of 0.5, as this was also measured where MOS were induced in test subjects. 
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• Rule 5 – MOS Duration 

Kyriakou et al. argues that a moment of stress may only occur once every 10 

seconds. This is based on the typical durations of EDA latency (1-5 seconds), rise time 

(1-5 seconds) and recovery time (1-10 seconds). Recovery time is the duration from 

the peak value of an EDA response until it has recovered to 50% of the amplitude 

before the response. 

We implemented this rule by first finding a target score, which starts out as the 

highest score. Further, we remove all potential MOS with a lower score than the 

target score, in the following 10 seconds. Then the process repeats with the target 

score iteratively being decremented in steps of 0.5. The process ends when the 

target score is less than the threshold. 

 

Step 3 – Scaling rules using weights The rules are weighted such that the maximum 

 summed score is 100.0. As neither the threshold nor the weights Kyriakou et al. used 

 to scale their rules are described in their paper, we had to calibrate these based on 

 an experiment performed ourselves. More on this in Section 4.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Graph showcasing the different time windows for each of the rules. A hypothetical stress 

event occurs at t = 0. 
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Stress Score 

As mentioned in Section 4.2.1, we want to represent the frequency of perceived stress as a 

single number, namely a score. This score is calculated by dividing the number of moments 

of stress detected by the algorithm by the duration of the recorded data, in hours. The 

stress score indicates the frequency of MOS’ a patient experiences in a day. It should be 

noted that the amount of stress a person experiences is highly individual and differ among 

people (Schabracq & Cooper, 2003). There is no conclusive research that defines a “healthy 

frequency of stress events” a person should experience in a day. Neither does a person who 

encounter a higher number of stress events per day necessarily face greater health 

problems. On the contrary, a person who experiences a far below average number of stress 

events, might show signs of disease, as mentioned in Section 2.6. Thus, we chose to 

emphasize the change of stress over time, rather than specific values.  

 

 

4.3.3 The Empatica E4 Smartwatch 
 

As we decided to use the algorithm by Kyriakou et al. (2019), we needed a device that was 

able to both record EDA and ST. We initially wanted to use a Fitbit Sense smartwatch, since 

it had both the sensors we needed and is a cheaper alternative compared to other devices. 

However, after doing some research we became aware of the fact that the Fitbit’s API was 

very limited with regards to what kind of data could be exported. Specifically, the API did 

not allow for exporting EDA data. As such, the Empatica E4 proved to be only the viable 

alternative.  

Still, the Empatica E4 is superior in the fact that it records EDA continuously while worn on 

the wrist, compared to the Fitbit Sense that requires its user to place their opposing hand 

on the bezel around the watch face to record EDA. Yet, it should be noted that the Empatica 

is considerably more expensive than other wearables on the market and that its design may 

be somewhat less appealing. The price of the Empatica E4 is 1,690 USD as of the time of 

writing (Empatica, 2022) and a study regarding The CareWear project concluded that 

participants found the device to be rather large and wished the device had a screen to 

provide direct feedback (Debard et al., 2020).  
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Figure 4.9: Picture of the Empatica E4 and some of its functionalities. From Empatica (2022) 

 

 

The Empatica E4 is a medical-grade wearable device that offers real-time data acquisition. 

The device is equipped with a range of different sensors, including a photoplethysmography 

sensor, an infrared thermometer, and an EDA sensor. The data collected from the Empatica 

is typically accessed from Empatica Connect, which is a web portal for managing and 

downloading collected sensor data. The data is pushed to the servers from the Empatica E4 

either via a smartphone connected using Bluetooth or by using a USB connected to a 

computer. The sensor data is downloaded from the web portal as a compressed folder 

containing several comma-separated values (CSV) files. Unfortunately, the Empatica 

platform is missing a public data endpoint, and thus data is not able to be automatically 

retrieved.  
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4.3.4 Laboratory Experiment to Calibrate the Algorithm 
 

In this section we will cover an experiment we conducted as part of calibrating the MOS 

detection algorithm. Presented is the experiment in theory, our motivation, the process of 

conducting it and the results garnered from the experiment. 

The algorithm described by Kyriakaou et al. (2019) did not include information regarding a 

threshold nor information regarding weights given to each rule. Therefore, we wanted to 

gather some data in a controlled experiment that hopefully induce distinct MOS, such that 

we could tweak the threshold and weights of our algorithm. In addition, we wanted to 

gather information regarding the subjects’ stress levels through self-assessment 

questionnaires to see if this information would in any way be correlated to the subjects’ 

recordings. However, it should be noted that this is in no way a conclusive experiment and 

does not serve as an evaluation of the algorithm. Rather the experiment served primarily to 

calibrate our algorithm. 

We chose to induce stress in the subjects through auditory stressors, as has been carried 

out before (Grundlehner et al., 2009; Wijsman et al., 2013). In this way, we would know at 

which specific times of recorded EDA and ST data we should expect to see a response 

indicative of a MOS. 

 

The Process  

 

The subjects consisted of five students. Prior to the experiment the subjects filled out a 

Perceived Stress Scale (PSS) questionnaire. The questionnaire is “designed to measure the 

degree to which situations in one’s life are appraised as stressful” (Cohen et al., 1983). The 

PSS questionnaire is among the most used self-reporting questionnaires for stress, is 

believed to provide acceptable accuracy of a subjects perceived stress, and is fairly easy to 

use (Lee, 2012). 

The subjects were seated in a room by themselves wearing an Empatica E4. The device was 

placed on their non-dominant hand and the subjects were told to keep that hand still 

throughout the experiment, in order to collect data with the least noise as possible (as 

touched on in Section 2.5.2). The subjects were told to sit still and relax for ten minutes, 

with no distractions. For the first five minutes nothing happened, and we used this recorded 

data to measure a subject’s baseline of ST and EDA. However, after five minutes we started 

playing abrupt and loud sounds at planned intervals from a speaker hidden in the subject’s 

room. As the subjects were not aware of the sounds on beforehand, the sounds would 

startle the subjects and serve as auditory stressors. In the span of the last five minutes, a 

total of five auditory stressors were played at seemingly random intervals. 
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Immediately after the experiment, the participants were asked to answer the following 

three questions: 

 

(Q1) How stressed did you feel as the experiment began? (0/10), 

 

(Q2) How stressed did you feel upon hearing the first sound? (0/10), 

 

(Q3) Did you experience the sounds as less stressful after multiple sounds were 

played? (Yes/No). 

 

 

Acknowledgements 

 

There are several factors that may lessen the integrity of the results from an experiment like 

this. We were made aware from roughly half of the participants that they were familiar with 

our thesis being related stress and wearables. In turn, we were told, this led to the 

participants expecting to be subjected to a stressor during the experiment.  

Another factor that may have affected our results is physical strain. The experiment was 

carried out on the second floor, which meant most participants had to walk up a flight of 

stairs before the experiment. Some participants were also arriving at the premise on foot, 

meaning their core temperatures where likely higher than usual, and likely their skin 

conductance too. We tried to mitigate this by letting the subjects rest for the first five 

minutes of the experiment, before the auditory stressors started playing. 

Important to mention is that, for privacy concerns, all recorded data of subjects are not 

linked to the subjects’ identity. Each set of recorded data associated from a subject was 

given a number and only identified by this number after recorded. Further, these sets of 

data are not to be published, but rather their results are presented in this thesis.  

 

Results 

 

In the PSS questionnaire subjects scored 6, 10, 13, 16 and 23. For the post experiment 

questionnaire, the average of all subjects’ answers on Q1, Q2, was 1.6, 4.8, respectively. As 

for Q3 all subjects answered “Yes”.  
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Figure 4.10: Example of a subjects EDA response to two auditory stressors (indicated by the two 

peaks with the highest amplitude) 

 

 

As for the recorded data from the Empatica E4, we often saw what we thought to be clear 

correlations between the data and expected moments of stress, as seen in Figure 4.5. 

However, our algorithm did not perform as well as anticipated. Even though the algorithm 

usually indicated a moment of stress at an expected moment of time, the algorithm also 

found many more moments of stress that we believe to be false positives. Even after 

tweaking both weights and threshold, we did not get the algorithm to perform as we had 

hoped. Because of this, we could not draw any meaningful correlations between the 

questionnaires results and the wearable data either. 

The exact reason for why the algorithm did not perform as expected we have not been able 

to conclude. It may be due do not finding the best set of weights or the correct threshold, as 

done by Kyriakaou et al. Alternatively, the false positives might be a product of erroneous 

data. EDA measurement especially, is sensitive and variables such as varying pressure on the 

EDA electrodes or motion artifacts have been found to distort data, which in turn may lead 

to false readings (Hickey et al., 2021).  
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4.3.5 Interacting with Scored Data  
 

Through the front-end’s user interface scored data can be viewed and manipulated, as seen 

in Figure 4.8. Wearable data is however only stored in the database in the back-end, 

analysed and not visualized for the users of the web application. User interactions with the 

scored data include operations for viewing and manipulating, searching for or filtering data 

e.g., by type, score, or patient. The data can also be exported or imported as Microsoft Excel 

files. Audit logs, that contain a log regarding the creation and deletion of data, can also be 

viewed. 

 

 

Figure 4.11: User interface for interacting with analysed wearable data in the IDPT system. 

 

 

An upload button (labelled “Upload data” in Figure 4.8) is brings the user to page where 

wearable data can be uploaded (EDA and ST). This is seen in Figure 4.9. After the data is 

uploaded it is automatically stored in the database, analysed, and lastly displayed as scored 

data on the front-end. The uploading of data is only included as a part of our demonstrative 

component and not our general component. This is due to the fact that different wearable 

devices and types of sensor data have proprietary data formats which makes it inherently 

difficult to create a generic solution for uploading of data (as mentioned in Section 2.4.2). 
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Figure 4.12: User interface for uploading wearable data to the IDPT system. 

 

 

Beyond the table of analysed data as seen in Figure 4.8, we wanted a better visualization of 

how a patient’s stress progressed over time. This was also suggested by Mukhiya in one of 

our unstructured midway evaluations. More on this in Section 5.1. By clicking a button 

(labelled “Graphs”) the user is brought to a page where a patient can be selected, either by 

searching or from a drop-down menu, and a graph of the following patient’s stress scores 

are displayed. 
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Figure 4.13: User interface for finding a patient’s graph illustrating stress scores over time. 

 

 

The graph representation of a patient’s stress scores, presents the stress scores (on the y-

axis) of the patient in chronological order (along the x-axis). The labels on the ticks of the x-

axis are minimal, showing only the date when collection of data for the adjoining score 

started. This is done intentionally, as we wanted to keep the graph simple and easy to 

understand. We also wanted to emphasize overall progression rather than details regarding 

each score. As mentioned in Section 4.1, the values of the stress scores are of less 

importance, compared to the change between scores. When hovering over a data point in 

the graph a more detailed start and end time for the collected data (within minute 

precision) will be presented. 

The stress scores of a patient are not directly connected to adaptive features of the IDPT 

framework, such that adaptation can be triggered automatically. More on this in Section 

7.2. However, the scores may still be used to facilitate adaptation by serving as a measure 

for therapists to manually adapt the IDPT, as mentioned in Section 2.2. Additionally, the 

scores may serve as feedback for patients to help them get a better understanding of 

themselves and their progress.   
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Figure 4.14: A graph showing a patient’s hypothetical stress scores, based on synthetic data, over 

time, accompanied by an info box giving more details regarding the sixth data point.  

 

 

It should be noted that even though the user interface that has been described in this 

section is explained in terms of being related to our demonstrative component and 

specifically scores of stress, it is just as much related to our general component and would 

work similarly with other types of scored data as well, as mentioned in Section 4.2.2.  
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CHAPTER 5 
 

5 Research Evaluation 
 

This chapter contains an explanation of the evaluation process of our artifact and the 

feedback received from domain experts. All throughout development we had several brief 

meetings with Mukhiya. However, as these meetings were short and educational in nature, 

they were not regarded as evaluation. Thus, we conducted an unstructured midway 

evaluation in the middle of our project’s timeline. Towards the end of our project, we 

carried out two semi-structured interviews with domain experts.  

 

5.1 An Unstructured Midway Evaluation 
 

To discuss the design of our artifact we had a meeting with Suresh Mukhiya, the main 

contributor to the IDPT framework. This meeting consisted of us presenting our work so far 

and discussed how we should continue our development. As Mukhiya has a great deal of 

knowledge in the domain of IDPT and especially regarding the framework we were 

extending, we thought his feedback would be insightful.  

Because of time constraints, we did not get to complete a structured or semi-structured 

interview. Instead, the meeting was in the format of an unstructured interview. Looking 

back, it might have been beneficial to perform several interviews with greater structure. We 

learned from this and carried out two semi-structured interviews towards the end of the 

project, as described in Section 5.2. However, we still received valuable feedback on 

changes we could make to our artifact.  
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The main takeaways from our unstructured midway evaluation were: 

 

i) utilize a standardized data format, 

 

ii) provide patients with the ability to upload data themselves, and 

                                       

iii) visualize the progression of scored data for patients. 

 

Previously, we had developed a proprietary format for wearable data and scored data that 

we thought fit and would work for a wide range of applications and solutions. However, 

after our meeting with Mukhiya we figured that using an established and standardized data 

format was favorable, as this would promote interoperability and reusability. Thus, we 

settled on implementing the HL7 FHIR standard as part of our general component, as 

mentioned in Section 4.2.1. 

In our demonstrative component, it was previously only possible for clinicians to upload 

data on behalf of patients. This was an oversight from our part, and it made sense for 

patients to be able to upload their own data. In our final version of the artifact, users 

granted patient privileges will still have the option to upload wearable data in the user 

interface. 

As for the representation of scored data this was previously only done in a table as seen in 

Figure 4.7 and made it difficult to get a picture of a patient’s score progression. However, 

after the feedback from Mukhiya we implemented a way of selecting a patient and 

displaying the patient’s scored data over time in a graph as seen with stress scores in Figure 

4.8. 

 

 

5.2 Semi-Structured Interviews with Domain Experts 
 

As to evaluate our artifact we performed two semi-structured interviews with domain 

experts. One interviewee was a domain expert of psychology, whereas the other was a 

domain expert of electrical engineering. The domain expert of psychology is part of the 

research project INROMAT and had prior experience with IDTP systems. The domain expert 

of electrical engineering, however, did not. Rather, the expert had experience regarding 

monitoring patients with the use of wearables.  

As software development and research tend to have qualitative features, qualitative 

evaluation is often well suited for such research (Hove & Anda, 2005). For this reason, we 
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chose to perform semi-structured interviews as they can produce qualitative data. More 

specifically, such qualitative data can be produced through asking a set of already defined 

questions, while simultaneously allowing for unexpected types of information (Seaman, 

1999). 

Our interviewing process can be split in two distinct parts. First, a part where we presented 

our artifact to the domain experts. This part included a verbal description, as well as 

showing figures related to both components of our artifact. Last, a part where we asked the 

domain experts our already defined questions, including a few spontaneous follow-up 

questions.  

As our interview was of a less structured format, feedback and questioning throughout the 

interview process was both allowed and encouraged.  

A list of all questions and summarized answers from each of the domain experts can be 

found in Appendix A.  

 

 

5.2.1 Interview Results 
 

The domain experts’ overall perception of our artifact was positive. Yet, they also provided 

some scepticism and raised a few topics of concern. 

Both the domain experts expressed fondness for our artifact and sees the evaluation of 

patients outside of clinical settings to be important. Expert 1 elaborated that assessment in 

clinical settings is often too brief, primarily done with questionnaires, and such an 

assessment may give an incomplete picture of a patient. However, both experts noted that 

using wearable based EMA may provide a more holistic picture of patients. Expert 2 further 

explained that EMA could be useful with regards to predicting intervention outcomes at an 

earlier stage, and as such be able to adapt interventions or cut an intervention short for a 

patient showing little benefit. The expert briefly mentioned that the use of wearables for 

assessment has the potential to be less invasive. Moreover, they expressed that patients 

who feel responsible for their own progress are more likely to experience a better outcome. 

Thus, it could be beneficial for patients, in addition to clinicians, to be able to view their own 

EMA data and monitor their own progress. 

Still, they noted that there are challenges regarding using wearable technology for EMA and 

that wearable-based EMA is a field that requires further research. Data collected by 

wearables are rather prone to errors and can be of varying quality. Further, Expert 2 has had 

prior experience with an excess amount of false positives in patient assessment, resulting in 

overburdening patients with assessment-based notifications. Both experts mention that it 

may be necessary to supplement quantitative data from wearables with qualitative data. 
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The experts further elaborated that supplementing with qualitative data might be especially 

important for complex measures, such as stress. Expert 1 noted that an example of how 

qualitative data could be helpful, is with the use of annotated data. Annotated data could 

provide more value to measures such as stress, by both increasing accuracy through 

weeding out false positives and providing a more detailed view of a patient’s overall stress. 

Such annotation would require patients to label and detail data after it has been uploaded 

and analysed. The expert further noted, that even just a simple timeline of a patient’s day, 

could help increase the value of a measure such as stress.  

Expert 2 expressed that if the mentioned challenges are resolved, stress can be an especially 

useful measure to facilitate intervention adaptation for patients with anxiety disorders, as 

stress is a primary symptom of anxiety. Whereas for other diagnoses, there are likely other 

measures that are more beneficial. To represent the data, both experts agreed that both a 

table and a graph representation of the scored data are helpful. Expert 2 elaborated that a 

crucial factor of data representation is for clinicians to be able to interpret the data in an 

effortless manner. 

Other concerns raised by both domain experts were the issues of data security and privacy 

regarding ownership of data. Among many other challenges, Expert 2 noted that correctly 

managing permissions to patient data is a challenge. In addition, Expert 1 mentioned that 

ownership of data might especially be a problem regarding commercial wearable devices. 

The overall concern of interoperability of wearables is raised, as there is no consensus on 

standards. For the technology to achieve its potential there is a need of interdisciplinary 

cooperation between manufacturers and health care.  

The interviews resulted in valuable feedback and insights of how our artifact might be 

helpful in interventions. In general, the experts thought our artifact served as a suitable 

starting point for further research. However, further testing and improvement is needed. 

More on future work in Section 7.2. 
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CHAPTER 6 
 

6 Discussion 
This chapter contains discussions of our project. This includes the development of our 

artifact, findings attained of the design process and research evaluation. First, we will 

answer the research questions posed in Section 1.3. Second, a presentation of our 

contribution to the problem domain. Third, a reflection on the use of design science, 

qualitative techniques and principles, and our artifact. Last, a walkthrough of the limitations 

put on our project and the impact it has had on our results. 

 

6.1 Answering the Research Questions 
 

Following are the research questions posed in Section 1.3, and associated answers.  

 

RQ1: How can an extension that allows for the use of wearable data be implemented to 

support EMA in interventions? 

This research question has been largely answered in Section 4.2 and touched on in Section 

5.1 and Section 5.2.1. The IDPT framework, as described in Section 2.3, did previously not 

have any way of integrating wearable data in interventions. As mentioned in Section 2.4, it 

is possible to conduct EMA in interventions without the utilization of wearable technology 

and this has been carried out before. However, with the use of wearables there is an 

opportunity to access a previously untapped stream of a patient’s activities, moods, and 

behaviours. Moreover, wearables have the potential to place less of a burden on patients 

compared to traditional ways of assessment such as with questionnaires and enable EMA to 

be less invasive, as expressed the semi-structured interview in Section 5.2.1, which in turn 



61 
 

could make EMA more feasible to use in interventions. Or if not less invasive, also 

mentioned in the interview, wearable data can help to provide a more holistic picture of 

patients. 

As explained in Section 3.2, we started by creating an extension that enabled the use of 

generic wearable data in the framework. There are obviously different ways of 

implementing such an extension. Yet, there is little information that is publicly available 

regarding how current solutions are implemented. More on this in 6.4. However, after 

conducting the midway evaluation, as presented in Section 5.1, we gained the insight that 

using a standardized data format is favourable in many regards, such as to promote 

interoperability and reusability. Thus, this resulted in us utilizing the HL7 FHIR standard as a 

part of our general component. Yet, we opted to create a general structure as to fit a wide 

range of sensor data from many different wearable devices. This is described in Section 

4.2.1. As such we have implemented an extension that allows for the use of wearable data 

in interventions, and that ultimately support EMA. 

 

RQ2: How can such an extension be used to assist in adapting interventions? 

This research question is addressed in Section 4.3, Section 5.1, and Section 5.2.1. As to 

demonstrate how such an extension explained in RQ1 could be used to assist in adapting 

interventions, we created a demonstrative component, as described in Section 4.3. There 

are numerous types of data recorded from wearables that could be used to assess patients. 

Which types of data are most useful with regards to assisting in adapting interventions, 

needs further research. However, as a demonstration, in our demonstrative component we 

record EDA and ST with an Empatica E4, to detect MOS and derive a stress score. The stress 

scores serve as an illustration of how one may assess patients during an intervention in 

every-day life. 

Data gathered through EMA, could be helpful in adapting interventions and personalizing 

treatment, as was concluded in the interviews from Section 5.2.1. As of now, there is no link 

between the stress scores and adaptive features of the IDPT system. Still, the scores could 

be used to instantiate manual adaptation, as described in Section 2.2. As mentioned in 

Section 5.2.1, stress could be a valuable measure to adapt interventions for patients with 

anxiety disorders. Whereas for other diagnoses, there are probably other measures that are 

more suitable. Yet, there is an issue of false positives. More on this in Section 6.4. As such, 

our demonstrative component needs to be extensively tested and evaluated. Yet, our 

component stands a demonstration of how our extension can be used to assist in adapting 

interventions. 
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6.2 Research Contributions 
 

As part of the design science methodology and a part of Hevner et al.’s (2004) fourth 

guideline, our contributions should yield value to the problem domain in the form of an 

artifact, as described in Section 3.1.1. In our case the problem domain regards IDPT. The 

answers to our research questions from Section 6.1 should yield an overview of our 

artifact’s contribution. Still, a brief summary of our contributions is described below. 

We set out to implement an extension to the adaptive IDPT framework as to enable the use 

of wearable data in interventions, to support EMA. Our goal for creating such an extension, 

was to create an open-source solution, that would promote reuse and further research. 

Results from semi-structured interviews presented in Section 5.2.1 suggest that our 

problem domain requires further research, and that our artifact may prove valuable in this 

regard. We have laid a foundation that will allow the use of various sensor data from various 

wearable devices. Using an established data standard, more specifically HL7 FHIR, we are 

additionally encouraging interoperability, as suggested in our midway evaluation described 

in Section 5.1.  

The extension of the IDPT framework, namely our general component described in Section 

4.2, serves as a large part of our research contribution. Furthermore, our demonstrative 

component described in Section 4.3, serves as an example of how our extension may be 

used to assist towards adaptive interventions. The two components comprise our artifact 

and together contribute to the knowledge base. Still, our artifact remains a hypothesis at 

this stage and remains to be empirically tested.  

 

 

6.3 Reflections 
 

In this section we are going to present some important discoveries we have made during the 

reflective process of our project. In addition to reflections on the choice of research method 

and the resulting artifact, we also made discoveries regarding our design process. One such 

discovery being that incorporating a frequent evaluation in the iterative process would be 

beneficial for reaching the desired result by iteratively evaluating the design, as mentioned 

in Section 5.1. Another discovery we made was to conceptualize the goal for the project 

early as to reduce the time consumed by prototyping and increasing the value of meetings 

throughout development. 
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6.3.1 Research and Evaluation Methods 

 

Design science has proven helpful throughout our project, both for development and 

evaluation. Artifact creation derived from design science fit appropriately with our 

contribution to the IDPT framework. The guidelines developed by Hevner et al. (2004) set 

comprehensible criteria for the project and acted as a guide for conducting research. With 

comprehensible criteria in place, it became clear how to design an artifact of value. 

Although, due to the value of an artifact being challenging to measure, we combined design 

science with a qualitative evaluation method. 

In addition to the midway evaluation with Mukhiya, described in Section 5.1, we also had 

semi-structured interviews with two domain experts, as described in Section 5.2. Even 

though these were held later in the project’s lifecycle, they provided us with several good 

insights. First and foremost, as a means to evaluate our artifact, but also as suggestions for 

future work. 

We believe that a greater number qualitative evaluations earlier in the implementation 

process would have been favorable in terms of garnering feedback and aiding in our 

development. Further, a midway evaluation in the form of interviews with several domain 

experts would have been beneficial, with regards to further improving the value of our 

artifact. 

 

 

6.3.2 Reflection on our Artifact 
 

As mentioned in Section 2.6, we were not able to review how existing solutions had 

implemented their integration of wearable data in IDPT. We have contributed to an open-

source framework, and thus our implementation is publicly available. As such we hope our 

work can promote further research in this domain.  

Furthermore, due to the project being open-source it enables our implementation to be 

used in other solutions. We designed our artifact to be well structured and inherently easy 

to grasp, used a recognized data standard and developed to fit various sensor data. Thus, 

we envision that our work can be reused in other solutions. More on this in Section 7.2. 
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6.4 Project Limitations 
 

Throughout development, we encountered several limitations.  

First, after researching existing solutions regarding IDPT with a wearable integration or 

stress detection using wearables, we found that there were very few that had an overview 

of how the solutions were implemented or had any source code available to the public. As 

such, we could not evaluate our artifact through comparison of similar solutions. If 

implementations of existing solutions were available, it would have aided in the 

development of our artifact.  

Furthermore, we were limited by time constraints. Unfortunately, the shortage of time and 

a lack of information regarding implementation, culminated in us not being able to resolve 

the issue of false positives for our stress algorithm. Further, we could not include all 

features to the extent we may have wanted. An example of this is how the implementation 

of data models for wearable and scored data required manually creating several schemas 

for sub-components that make up a FHIR resource. We believe that an optimal solution for 

this would be to have the components be automatically generated and evaluated based on 

the FHIR specification. Additionally, we wanted to connect the stress scores to adaptive 

features of the IDPT framework as to enable automatic adaptation, even though the scores 

may still be used to actuate manual adaptation without such a connection.  

Last, in order to best evaluate our artifact throughout development, we would ideally have 

interviewed a greater number of domain professionals. This would have provided us with 

valuable feedback to aid in the design of our artifact. 
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CHAPTER 7 
 

7 Conclusion 
 

Throughout this thesis, we have explored the use of wearable technology to enable EMA in 

interventions. Our work serves as a basis for further research in this field.  

 

7.1 Summary 
 

We have developed an artifact consisting of a general component that allows for integrating 

wearable data in IDPT, along with a demonstrative component suggesting how the general 

component could be used to assist in adapting interventions. The general component of the 

artifact serves as an extension of the IDPT framework. The demonstrative component 

exemplifies how analyzed sensor data may be utilized to assess patients’ stress in day-to-

day life, with the goal of adapting interventions. Our artifact, comprised of these two 

components, can facilitate further development and research in the domain of IDPT. 

  

 

7.2 Future Work 
 

Further research is needed to investigate the usefulness of utilizing wearable technology for 

EMA in IDPT. 

Regarding our general component, and as mentioned in Section 6.4, we believe that the 

schemas for sub-components of a FHIR resource should be automatically generated and 
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evaluated based on the FHIR specification. Further, as mentioned in Section 5.2.1, our 

interviews with the domain experts illuminated the value of supplementing quantitative 

data with qualitative data. Future work on our general component could make a bridge to 

link these two types of data more easily, as to further increase the value of EMA. 

The work we believe to be most important for increasing the value of our demonstrative 

component, is solving the issue of false positives, as mentioned in Section 6.4. If this issue is 

to be solved, connecting the stress scores to automatically instantiate adaptive features of 

an intervention could be valuable. Beyond this, including other types of sensor data is an 

obvious addition. Including a wider range of sensor data, may aid in providing a more 

holistic assessment of patients. However, with adding other sensor data and from different 

wearable devices, challenges regarding interoperability will need to be solved. As brought 

up in the semi-structured interviews with domain experts, data privacy and security are 

important topics that needs attention as well. 

Finally, our artifact needs extensive empirical testing before we can conclude its usefulness. 

The artifact stands largely as a hypothesis at this stage. 
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Acronyms 
 

 

ADHD  Attention Deficit Hyperactivity Disorder 

API  Application Programming Interface 

CSV  Comma Separated Values 

ECG  Electrocardiography 

EDA  Electrodermal Activity 

EMA  Ecological Momentary Assessment 

FHIR  Fast Healthcare Interoperability Resources 

GAD-7  General Anxiety Disorder-7 

HL7  Health Level Seven 

HR  Heart Rate 

HRV  Heart Rate Variability 

INTROMAT  INTROducing Mental health through Adaptive Technology 

K-10  Kessler Psychological Distress Scale  

MOS  Moment Of Stress 

ODM  Object Data Modelling 

PHQ-9  Patient Health Questionnaire-9 

PSS  Perceived Stress Scale 

REST  Representational State Transfer   

ST  Skin Temperature  
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Appendix A 
 

Answers to the Semi-Structured Interviews  

 

Below are the questions from the semi-structured interviews and the answers received from 

the domain-experts.   

 

Q1: What kind of experience do you have with Internet-Delivered Psychological 

Treatment (IDPT)? 

Domain expert 1 

• None 

 

Domain expert 2 

• As a psychologist 

• Treated adults with anxiety and depression with IDPT’s 

o Cognitive behaviour therapy with IDPT 

• Helped develop 4-5 interventions in IDPT for various psychological ailments 

o E.g., MinADHD 

o Often combination of face-to-face and IDPT 

• Helped create content, not implemented the technicalities of interventions 

 

Q2 (follow-up question to Q1): Would a general IDPT framework be beneficial for creating 

such interventions? 

Domain expert 2 

• Anxiety and depression e.g., could be developed through a shared framework 

o A lot of similarities between these two diagnoses 

o E.g., modules for sleep would be shared for both diagnoses 

• Not so much for IDPT treating adults with ADHD 

o The needs of an ADHD patient do not have as much overlap as e.g. anxiety 

has with depression 

o Needs different ways of presenting information to the patient 

• Would be greatly beneficial with regards to timesaving 
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Q3: What types of measurement methods have you typically used to assess patients 

during an intervention? 

Domain expert 1 

• HRV calculated from ECG sensor data 

• Uses Polar chest strap as monitoring device 

• Assessing stress in patients with PTSD due to loss of sight in adulthood 

• Chronic stress is often overlooked in patients 

• Evaluating stress in patients by having patients perform a stress inducing task 

• Comparing results of stress detection with an interview conducted by a psychologist 

with patients afterwards 

 

Domain expert 2 

• With IDPT: only questionnaires 

o Both pre and post intervention 

• Traditional intervention: less questionnaires 

o More face-to-face interview (using questionnaires as a basis) 

o Questionnaires with pen and paper 

 

 

Q4: Are there any other forms of measurements that could be useful to clinicians for 

improving the effectiveness of an intervention that are typically not used? 

Domain expert 1 

• EEG to measure electric activity in the brain 

• MRI for pictures of the brain 

• However, these measurements may be impractical due to their invasiveness 

 

Domain expert 2 

• EMA, as it is typically not used 

o Could predict treatment outcome earlier 

▪ If there is little to no progress – change treatment 
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▪ Today, patients who don’t benefit from treatment, still finish them. 

This has little value for the patient 

o Sensor data like sleep etc. can be useful  

o Benefit of therapists not having to ask e.g. depressed patient questions, as 

this can be burdening to patients, but rather get information directly 

o Get full picture of patients 

o Especially useful regarding recall bias of depressed patients 

▪ Depressed patients tend to have a negative bias 

 

Q5: Can you think of benefits to ecological momentary assessment (EMA)? 

Domain expert 1 

• Overall important to measure patients outside of clinical settings 

• Assessment in clinical settings is too brief 

• A too brief assessment may result in misdiagnosis 

• EMA could be useful to get a more holistic picture of patients 

 

Domain expert 2 

• For most diagnoses there will be benefits 

• E.g., for drug abusers 

o If patient is in radius of place where drugs can be bought, someone is alerted 

 

Q6: Are you familiar with any existing methods of performing EMA during interventions? 

Domain expert 1 

• No 

 

Domain expert 2 

• Virtual reality: ungSpotlight (fear of public speaking) 

o Monitoring stress and eye movement 

o Exposure therapy with data to track progress 

• Young people with schizophrenia 

o Measure stress 
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• Anxiety with augmented reality and stress measurements 

o E.g., exposure therapy for fear of spiders 

 

Q7 (follow-up question to Q6): If so, are there any challenges associated with these 

methods? 

Domain expert 1 

Even though the domain expert were not familiar with any existing methods of EMA in 

interventions as asked in Q5, they still had some thought regarding general challenges of 

EMA. 

• Privacy regarding ownership of data, as this is a big concern for public health 

systems. Especially a problem with commercial devices. 

• Data security is another important issue. 

 

Domain expert 2 

• Must be accurate enough 

o “I’m not stressed now”  

o Patients tired of receiving notifications with false positives 

• Privacy and security concerns regarding patient data  

• Don’t want to overburden patients 

• How are the measurements really correlated with the diagnosis? 

o And not e.g., a random moment of stress? 

• Easier for some diagnosis 

o E.g., anxiety is strongly correlated with stress 

 

Q8: What are your thoughts on using wearable technology for EMA in IDPT? 

Domain expert 1 

• Valuable for assessing patients. 

• However, quantitative measures will likely need to be supplied with qualitative 

measures. 

• Needs more research. 

 

Domain expert 2 

• If done right, it would be greatly beneficial 
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• Therapy can be burdensome for patients 

o Lots of information, therapy and practice in between 

• Can be useful to nudge patients in right direction 

o “Now you’re stressed” – try this mindful activity 

o Support patients and make treatment more manageable  

• Potential to be less invasive 

• Needs further research  

o EMA can be difficult to perform accurately  

o E.g., they tried to record tone of voice to detect manism in a research project  

▪ But turned out to be very difficult  

• Need to combine several types of data to get the “big picture” and increase accuracy 

o More sensor data types 

o And maybe qualitative data as well  

 

 

Q9: Do you see any specific use cases where the use of wearables in intervention would 

be particularly useful? 

Domain expert 1 

• Support of handicapped patient in interventions.  

• Could be used to quantify efficacy rehabilitation. 

 

Domain expert 2 

• Anxiety patients 

o As part of exposure therapy 

o Very useful 

o For panic, social anxiety, claustrophobia 

• EMA + intervention  

• For general well-being to 

o Don’t have to be tied to a diagnosis 

o Reduce stress, improve sleep, work out more 

• Schizophrenia  

 

 

Q10: Do you have any experience with a lack of data standards in interventions? 

Domain expert 1 
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• With sensor data in general there’s a lack of data standards 

• This is an issue that needs to be cooperated on between health care and 

manufacturers 

 

Domain expert 2 

• Only regarding the use of smartwatches for sensor data collection 

o The application only worked for Android phones, not iPhone  

 

Q11: Do you have any experience with HL7 FHIR? 

Domain expert 1 

• No 

 

Domain expert 2 

• No 

 

Q12: Do you think stress measurements can be useful to facilitate the adaptiveness of 

IDPT? 

Domain expert 1 

• Yes 

• Could serve as a preventive measure 

 

Domain expert 2 

• For anxiety patients 

• More useful for diagnoses where stress is part of symptoms  

• Other variables (types of sensor data) for other diagnosis 

 

Q13: How do you think clinicians would benefit the most from having stress scores 

represented? “ 

Domain expert 1 

• Tables and graphs are good representations 

• However, it could be more useful if data was annotated  
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• E.g., by clicking on a stress measurement in the graph, more data is presented 

• Information regarding what a patient’s day entails could make stress more valuable  

• As mentioned in Q7, stress measurements would likely need to be supplied with 

qualitative measurements (e.g., questionnaires) 

• When a patient feels that themselves are responsible for improvement, outcomes 

are generally better 

o As such patients should be able to view progress themselves as well 

o However, displaying negative progress to patients can have the opposite 

effect 

 

Domain expert 2 

• Finding the best representation of the data is a challenge 

• The data needs to be easy to understand at first glance 

• In graphs: the change over time is valuable 

• If something is over a “threshold” it should be easy to observe by a clinician 

o E.g., receive an alert of some sort 

• Valuable to compare patients to a baseline 

 

Q14: Are there any other particular measurements from wearables you think would be 

valuable in an intervention? 

Domain expert 1 

• Derivatives of ECG sensor data 

 

Domain expert 2 

• Sleep and activity  

• Difference regarding it is for the purpose of prevention or for treatment 

• For depression: less social before entering depression 

o Could measure the number of other phones in close proximity 

o Look at GPS data 

• Sleep is a universal useful measurement for most diagnoses 

 


