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EWAS of post‑COVID‑19 patients 
shows methylation differences 
in the immune‑response associated 
gene, IFI44L, three months 
after COVID‑19 infection
Yunsung Lee1,7, Espen Riskedal2,7, Karl Trygve Kalleberg2, Mette Istre3, Andreas Lind4, 
Fridtjof Lund‑Johansen5, Olaug Reiakvam3, Arne V. L. Søraas3, Jennifer R. Harris1, 
John Arne Dahl3, Cathrine L. Hadley2,8* & Astanand Jugessur1,6,8

Although substantial progress has been made in managing COVID‑19, it is still difficult to predict a 
patient’s prognosis. We explored the epigenetic signatures of COVID‑19 in peripheral blood using data 
from an ongoing prospective observational study of COVID‑19 called the Norwegian Corona Cohort 
Study. A series of EWASs were performed to compare the DNA methylation profiles between COVID‑
19 cases and controls three months post‑infection. We also investigated differences associated with 
severity and long‑COVID. Three CpGs—cg22399236, cg03607951, and cg09829636—were significantly 
hypomethylated (FDR < 0.05) in COVID‑19 positive individuals. cg03607951 is located in IFI44L 
which is involved in innate response to viral infection and several systemic autoimmune diseases. 
cg09829636 is located in ANKRD9, a gene implicated in a wide variety of cellular processes, including 
the degradation of IMPDH2. The link between ANKRD9 and IMPDH2 is striking given that IMPDHs 
are considered therapeutic targets for COVID‑19. Furthermore, gene ontology analyses revealed 
pathways involved in response to viruses. The lack of significant differences associated with severity 
and long‑COVID may be real or reflect limitations in sample size. Our findings support the involvement 
of interferon responsive genes in the pathophysiology of COVID‑19 and indicate a possible link to 
systemic autoimmune diseases.

Coronavirus disease 2019 (COVID-19) is caused by the highly contagious severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and is marked by a wide spectrum of symptoms. Although most patients with 
COVID-19 experience a mild disease course, up to 35% report long-term sequelae, including memory prob-
lems, depression, dyspnea, anosmia, ageusia, and fatigue lasting months after the initial  infection1,2. These are 
among the symptoms that characterize a syndrome referred to as Post-Acute Sequelae of SARS-CoV-2 infection 
(PASC) or “long-COVID”. The causes and persistence of long-COVID are not well understood, although several 
hypotheses have been proposed, including damage to the autonomic nerve system caused by  inflammation3, the 
formation of autoantibodies in susceptible  individuals4, and viral persistence. The lack of detectable antibodies 
in half of the patients presenting symptoms attributed to SARS-CoV-2 in another  study5 points to a possible 
confounding etiology such as pandemic stress.

Evidence points to subtle differences in the immunological profiles of individuals with long-COVID com-
pared to those who recover quickly. The syndrome seems to occur regardless of the development of long-term 
immunity, as antibody levels have been found to be similar four months after COVID-19 symptom onset to that 
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of  convalescents6. However, participants with long-COVID appear to have a rapidly waning number of inter-
feron gamma (IFN-γ) producing CD8+ cells four months after COVID-19 symptom  onset6. This is interesting, 
as cytotoxic lymphocytes, particularly CD8+ lymphocytes and Natural Killer (NK) cells, affect viral clearance 
directly or through the release of IFN-γ7. An improved understanding of the role of host factors in COVID-19 
is necessary to improve the diagnosis of long-COVID and develop efficient treatments.

DNA methylation (DNAm) is a stable epigenetic mark that regulates gene expression without altering the 
DNA sequence itself. It plays a pivotal role in normal biological processes as well as in the pathogenesis of 
 diseases8–10. An epigenome-wide association study (EWAS) entails studying DNAm differences associated with 
a phenotype at hundreds of thousands of cytosine-phosphate-guanine (CpG) sites across the epigenome. The 
human epigenome harbors an estimated 28 million CpG  sites11, of which 60–70% are located near transcrip-
tion start  sites12. Differentially methylated regions (DMRs) represent genomic regions with different DNAm 
levels between a case and a control group. The effect of methylation of a given CpG site depends on the genomic 
 context13. For instance, hypermethylation of CpG sites in a gene body is commonly associated with higher gene 
 expression14.

Genomic studies have revealed key susceptibility genes for COVID-1915–18, the most prominent of which is 
angiotensin-converting enzyme 2 (ACE2)19. Epigenetic investigations add another layer of omics analysis to the 
study of SARS-CoV-2 and reveal that methylation patterns are predictive of disease  severity20–22. Three major 
considerations in deciphering the link between epigenetic variation and infection are how the host responds to 
viral exposure, how the virus exploits the host’s epigenome to establish infection, and how innate susceptibility 
differs between individuals. It remains unknown whether the DNAm differences reported thus far in COVID-19 
reflect differences in susceptibility, temporary immune modulation, or more permanent changes.

To date, none of the published studies on long-COVID have investigated DNA methylation. Our aim was 
therefore to explore epigenetic signatures that are correlated with the severity of COVID-19 and the onset of 
long-COVID. To this end, we conducted a series of EWASs where we compared DNAm profiles in the peripheral 
blood of 109 Norwegians, eight to twelve weeks after SARS-CoV-2 infection, with the corresponding profiles 
of 73 controls.

Results
Characteristics of the sample population. Figure 1 and Table 1 provide details of the sample selection 
and the study population according to COVID-19 status, sex, mean age, smoking history, presence of chronic 
diseases, and the average number of days from the time the RT-PCR test was performed to (i) the time of enrol-
ment (hereafter referred to as ‘baseline’), (ii) the blood draw, and (iii) the follow-up questionnaire. Note that the 
healthy controls did not undergo an RT-PCR test. Among the symptomatic controls with a negative RT-PCR test, 
four had a positive serology test and were therefore considered false negatives. As these four cases had reported 
both fever and dyspnea, they were reclassified as belonging to the severe COVID-19 category. The remaining 
32 symptomatic controls with a negative RT-PCR test had a confirmatory negative serology test and were thus 
grouped together with the 41 healthy controls in the control category (n = 73).

36% to 42% of the participants reported smoking in each of the three main categories. Additionally, 15% of 
the mild COVID-19 cases had at least one chronic disease; the corresponding proportion was 36% among the 
severe COVID-19 cases and 38% among the controls. At three months of follow-up, 52% of the severe COVID-
19 cases reported that their health was worse than a year ago; the corresponding proportion was 19% among 
the mild cases, 9% among the symptomatic controls, and none among the healthy controls. Among the severe 
cases, 31% reported fatigue and 23% dyspnea three months after the infection.

Comparison of DNAm profiles. We adopted the analytic strategy outlined in Fig.  2. Specifically, data 
from males and females were analyzed together for autosomal probes (Figs. 3 and 4, and Supplementary Fig. 1), 
and separately for sex-chromosome probes (Figs. 5 and 6, and Supplementary Fig. 2). The sex-stratified analyses 
were motivated by the presence of distinct sex differences in the distribution of mean methylation values on 
the sex chromosomes (Supplementary Fig. 3). Our primary objective was to compare the DNAm profiles of the 
following categories of study participants: 1) COVID-19 positive (n = 109) versus COVID-19 negative (n = 73), 
2) severe COVID-19 (n = 61) versus mild COVID-19 (n = 48), and 3) long-COVID (n = 41) versus remission 
(n = 63) (see Fig. 2 and “Methods” for details). We adjusted for the following variables in each EWAS: age, sex, 
smoking pack-years (estimated from the DNAm data), physical fitness, and estimates of white blood cell counts, 
i.e., CD8+ naïve and exhausted cytotoxic T cells, CD4+ naïve cells, NK cells, B cells, monocytes, and granulo-
cytes.

The severe COVID-19 group differed significantly from the other groups in terms of cell-type composition. 
Notably, the B-lymphocyte proportion was greater in the severe COVID-19 group than in the other groups. 
Additionally, this group differed with regards to the composition of CD8+ T cells, granulocytes, and NK cells 
(Supplementary Figs. 4 and 5). There were no significant differences in cell type composition between the long-
COVID group and the remission group. A comparison of epigenetic age acceleration (EAA) between the groups 
is presented in Supplementary Fig. 6. We did not find any significant differences in EAA between the groups 
when we used the DNAmAge clock.

Pooled analyses (males and females combined). The methylation levels at three CpGs differed 
significantly (false discovery rate (FDR) < 0.05) in the comparison between COVID-19 positive (n = 109) and 
COVID-19 negative (n = 73) (Fig. 3). All the CpGs were hypomethylated. The first CpG, cg22399236, is located 
on chromosome 18 and is not close to any known gene within at least 30 kb, according to a search in the UCSC 
Genome Browser using GRCh37/hg19. The second CpG, cg03607951, is in the gene ‘interferon induced pro-
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tein 44 like’ (IFI44L) on chromosome 1p31.1. Groupwise comparisons of differences in the methylation of this 
CpG is presented in Supplementary Fig. 7. The third CpG, cg09829636, is in the gene ‘ankyrin repeat domain 
9’ (ANKRD9) on chromosome 14q32.31. Among the 109 individuals with information on severity of COVID-
19 symptoms, we compared the DNAm levels between 61 cases with severe symptoms and 48 cases with mild 
symptoms. No statistically significant methylation differences were detected. Further, we compared the DNAm 
levels between 41 cases classified as having long-COVID and 63 cases in remission. No statistically significant 
methylation differences were detected.

To visualize the local correlation structure of the three significant CpGs, we generated regional co-methylation 
plots for each CpG using the coMET R package. cg03607951 and cg09829636 showed a moderate degree of 
correlation with neighboring CpGs (red patches in the heat map in Fig. 7), whereas cg22399236 showed weak 
correlations.

In addition, we queried the online mQTL  database23 to investigate whether methylation of these CpGs is 
influenced by common SNPs; in other words, we searched for methylation quantitative trait loci (mQTLs) associ-
ated with these CpGs. Both cg03607951 and cg09829636 were associated with several trans-acting mQTLs, but 
the search output did not show any entries for cg22399236 (Supplementary Table 1).

Sex‑stratified analyses. As males and females show distinctively different mean methylation values 
on the sex chromosomes (Supplementary Fig. 3), we performed sex-stratified analyses for probes on the sex 
chromosomes. No significant differences (FDR < 0.05) in methylation values of CpGs were detected in any 
of the analyses. However, it may be worth noting that the methylation levels at two CpGs on the X chromo-
some were slightly lower in the COVID-19 positive males than the COVID-19 negative males (Fig. 6). These 
were cg08118341 (P = 8.96e−06, chrX:48931823) near the gene ‘PRA1 domain family member 2’ (PRAF2), and 
cg24340926 (P = 1.19e−05, chrX:129305036) near the gene ‘RAB33A, member RAS oncogene family’ (RAB33A).

Figure 1.  Overview of the sampling scheme. 184 of the 200 participants who agreed to a blood draw showed 
up for their appointment and completed the baseline questionnaire. Two participants lacked data and were 
excluded from the study, bringing the final number of participants to 182. Four participants with a negative 
SARS-CoV-2 RT-PCR test and who reported symptoms of severe COVID-19 had a positive serology test. They 
were considered false negatives and reclassified as severe COVID-19. Ten participants were treated as ‘lost to 
follow-up’, as they did not return the three-month follow-up questionnaire despite reminders. The control group 
was not included in the long-COVID EWAS analysis.
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Location of significant CpGs. We searched for the location of the three significant CpGs using the 
Ensembl  browser24. cg03607951 is located on chromosome 1 (Chr1:79085586–79085635) and cg09829636 on 
chromosome 14 (Chr14:102976856–102976905). cg03607951 and cg09829636 are both located in gene pro-
moter regions (of IFI44F and ANKRD9, respectively), which is not surprising given that most of the CpGs on the 
Illumina 450 K array that were migrated over to the more recent Illumina EPIC array are predominantly located 

Table 1.  Characteristics of the study population according to COVID-19 status. Numbers enclosed in 
parentheses indicate the percentages, except when referring to the interquartile range (IQR). NA Not 
applicable. † Of the severe cases, seven were hospitalized. ‡ Those reporting worse health compared to one 
year ago at follow-up were defined as PASC, while the remainder was defined as the remission group. *The 
control group consisted of 41 healthy controls and 32 symptomatic controls with other upper respiratory 
tract infection (URTI). Note that the 41 healthy controls did not undergo any RT-PCR testing. The three 
participants in the control group who reported dyspnea, fatigue and worse self-reported health compared to 
one year ago at the three-month follow-up were all among the symptomatic controls.

Characteristics

COVID-19 (n = 109)

Controls (n = 73)Severe COVID-19† (n = 61) Mild COVID-19 (n = 48)

Female 39 (64) 27 (56) 50 (68)

Age median (IQR) 45 (34–54) 55 (45–65) 49 (38–55)

Chronic disease 22 (36) 14 (29) 28 (38)

Smoking history 22 (36) 19 (40) 31 (42)

Asymptomatic 0 (0) 5 (10) 41 (56)

Long-COVID‡ 32 (52) 9 (19) NA NA

Self-reported health compared to one year ago

Much worse now than one year ago 7 (11) 0 (0) 0 (0)

Somewhat worse now than one year ago 25 (41) 9 (19) 3 (4)

About the same 20 (33) 35 (73) 52 (71)

Somewhat better now than one year ago 6 (10) 2 (4) 9 (12)

Much better now than one year ago 0 (0) 0 (0) 4 (5)

Missing 3 (5) 2 (4) 5 (7)

Self-reported dyspnea at follow-up 14 (23) 2 (4) 2 (3)

Self-reported fatigue at follow-up 19 (31) 10 (21) 12 (16)

Self-reported change in smell or taste at follow-up 10 (16) 3 (6) 0 (0)

Median days from RT-PCR to baseline (IQR) 9 (5–20) 15 (10–19) 12* (6–18)

Median days from RT-PCR to blood draw (IQR) 67 (62–75) 67 (63–76) 70* (68–71)

Median days from RT-PCR to follow-up questionnaire 
(IQR) 105 (105–120) 111 (101–120) 109* (108–117)
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Males and females

Sex-stra�fied
Males only

Sex-stra�fied
Females only

EWAS
Posi�ve vs Nega�ve

EWAS
Severe vs Mild

EWAS
Long vs Remission
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Males and females

Sex-stra�fied
Males only

Sex-stra�fied
Females only

Func�onal
Normaliza�on

EWASWW
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Severe vs Mild
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Long vs Remission

limma package

Figure 2.  Overview of the analytic pipeline. An EWAS was performed for each of the following comparisons: 
(i) COVID-19 positive vs COVID-19 negative, (ii) severe COVID-19 vs mild COVID-19, and (iii) long-
COVID vs the remission group (labeled ‘Remission’ in the figure). Additional comparisons are provided in 
Supplementary Figs. 8 and 9. We applied the R package  limma63 on functional normalized M-values in each 
EWAS. In total, we conducted nine separate EWASs.
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within gene promoters and promoter-flanking regions. Ensembl did not return any output for cg22399236, which 
is probably because this CpG was not present on the former Illumina 450 K platform on which the Ensembl 
entries are based. The Infinium MethylationEPIC Manifest  File25 indicates that this CpG is located on chromo-
some 18 (nucleotide position 20651395 based on GRch37) and corresponds to the SNP rs576870425. According 
to the ‘Functional annotation of the mammalian genome 5’ (FANTOM5)  database26 and the Illumina Manifest 
File for the EPIC array, this CpG overlaps with one regulatory feature, ENSR00001016303, which is an enhancer 
region. Moreover, the Ensembl Regulatory Build indicates that this CpG is located within a promoter-flanking 
region. Thus, even though cg22399236 is located in a ‘gene desert’ on chromosome 18, it may have regulatory 
(enhancer) functions in genes located nearby.

Figure 3.  Manhattan plots for the EWASs. The Manhattan plots display the association statistics at each of 
the 776,892 autosomal probes between (a) COVID-19 positive (n = 109) and COVID-19 negative (n = 73), (b) 
severe COVID-19 (n = 61) and mild COVID-19 (n = 48), and (c) long-COVID (n = 41) and remission (n = 63). 
The dotted horizontal line is the Bonferroni threshold (0.05/776,892 CpG sites), and the labeled dots are the 
significant CpGs at FDR < 0.05.

Figure 4.  Volcano plots for the pooled sample of males and females in the analysis of autosomal probes. The 
plots display the estimated beta coefficients against −log10 of the P-values. (a) COVID-19 positive (n = 109) 
versus COVID-19 negative (n = 73), (b) severe COVID-19 (n = 61) versus mild COVID-19 (n = 48), and (c) 
long-COVID (n = 41) versus remission (n = 63). The dotted horizontal line refers to the Bonferroni threshold 
(0.05/776,892 CpG sites), and the orange-colored dots are the significant CpGs at FDR < 0.05.
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Figure 5.  Manhattan plots for the sex-stratified EWASs of probes on the sex chromosomes. The plots display 
the association statistics at each of the 17,183 X-chromosome probes and 51 Y-chromosome probes (indicated 
by blue dots). The upper panels (a) to (c) are for males only (including the Y-chromosome probes), and the 
lower panels (d) to (f) are for females only (X-chromosome probes only). Panels (a) and (d) display the result 
of the comparison between COVID-19 positive and COVID-19 negative. Panels (b) and (e) show the results 
of the comparison between severe COVID-19 and mild COVID-19. Panels (c) and (f) show the results of 
the comparison between long-COVID and remission. The dotted line indicates the Bonferroni threshold 
(0.05/17,183 CpG sites).

Figure 6.  Volcano plots for the sex-stratified analyses targeting sex-chromosome probes. The plots display the 
estimated beta coefficients against -log10 of the P-values. Panels (a) to (c) are for males only and panels (d) to (f) 
are for females only. Panels (a) and (d) show the results of the COVID-19 positive (n = 109) versus COVID-19 
negative (n = 73) comparison. Panels (b) and (e) show the results of the severe COVID-19 (n = 61) versus mild 
COVID-19 (n = 48) comparison. Panels (c) and (f) show the results of the long-COVID (n = 41) versus remission 
(n = 63) comparison. The dotted horizontal line indicates the Bonferroni threshold (0.05/17,183 CpG sites for 
males and 0.05/17,128 CpG sites for females).
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Differentially methylated regions. We identified 168 differentially methylated regions (DMRs) from the 
nine sets of comparisons (Supplementary File 3). An example of a significant DMR with a low P-value was the 
genomic region chr6:33245490–33246043, containing 19 CpG sites and located near the gene ‘beta-1,3-galacto-
syltransferase 4’ (B3GALT4). This DMR was less methylated in the COVID-19 positive group (males and females 
combined) than the COVID-19 negative group (P = 1.24e−15, Bonferroni-corrected P = 1.04e−09). Another 
example of a significant DMR was the region on chr3:21792248–21792991, containing nine CpGs and located 
near ‘Zinc Finger Protein 385D’ (ZNF385D). This DMR was differentially methylated in the severe COVID-
19 group compared to the mild COVID-19 group (P = 4.82e−14, Bonferroni-corrected P = 4.00e−14). Lastly, 
two highly significant DMRs were detected in the long-COVID versus remission comparison (chr6:32121225–
32121555 near ‘palmitoyl-protein thioesterase 2’ (PPT2) and chr14:63671314–63671737 near ‘ras homolog fam-
ily member J’ (RHOJ)).

Gene‑set enrichment analysis. Table 2 shows the summary statistics for the top 20 gene ontology (GO) 
enrichment results. Although we did not detect any statistically significant (FDR < 0.05) gene-set enrichment in 
the GO or “Kyoto Encyclopedia of Genes and Genomes” (KEGG) pathways, the results of the top 20 GO path-
ways were enriched for several terms related to defense against viral infection. These enrichments were all related 
to cg03607951 in IFI44L. By contrast, the results of the KEGG analysis did not identify any pathways.

Discussion
The primary objective of this study was to determine whether the DNAm profiles of different groups of COVID-
19 patients (severe and mild) differed from those of control individuals eight to twelve weeks after infection with 
SARS-CoV-2. A secondary objective was to investigate whether the DNAm profiles of individuals with long-
COVID differed from those in remission. Overall, only the comparison between the COVID-19 positive and 
COVID-19 negative individuals revealed differentially methylated CpGs at FDR < 0.05 (specifically, cg22399236, 
cg03607951, and cg09829636). The analyses of COVID-19 severity and long-COVID did not identify any CpGs 
with significantly different methylation levels.

The comparison between the COVID-19 positive and COVID-19 negative individuals revealed three dif-
ferentially methylated CpGs at FDR < 0.05 (cg22399236, cg03607951, and cg09829636). A search of these CpGs 
in the EWAS  atlas27 showed multiple entries linking hypomethylation of cg03607951 in IFI44L to systemic 
lupus erythematosus (SLE)28, primary Sjögren’s  syndrome29, mixed connective tissue  disease30, and multiple 
other autoimmune  disorders31. By contrast, there were no entries for cg22399236 and cg09829636 in the EWAS 
atlas. Further, a search in the online mQTL database showed several trans mQTLs associated with cg03607951 
and cg09829636, but no cis or trans mQTLs associated with cg22399236. Trans mQTLs are known to be more 
polygenic than cis mQTLs and to explain less of the trait variance than cis  mQTLs32. More studies are needed to 
elucidate how these trans mQTLs affect methylation levels at the two CpGs in relation to COVID-19.

IFI44L plays an important role in interferon-induced innate viral response and protection against disease. It 
has targeted antiviral specificity to several viral  species33. Such a function is not surprising given that IFI44L is a 
paralog of IFI44, a key gene involved in the induction of type I and type III interferon  signaling34,35. However, a 
recent study showed that inhibition of IFI44L impairs the replication of several viruses, while the expression of 
IFI44L impairs antiviral  response34. Based on these findings, it is interesting to note that a recent transcriptomics 
study concluded that asymptomatic SARS-CoV-2 infection might be due to decreased expression of six genes, one 
of which was IFI44L36. Another transcriptomics study of myocardial tissue from SARS-CoV-2-positive autopsy 
cases revealed an upregulation of two interferon-related genes (IFIT3 and IFI44L) among those with cardiac 

Figure 7.  Visualization of the three differentially methylated CpGs identified in the COVID-19 positive versus 
COVID-19 negative comparison. (a) cg22399236 (chr18:20651637) (b) cg03607951 (chr1:79085586) in IFI44L 
(c) cg09829636 (chr14:102976856) in ANKRD9. The correlation map underneath each plot represents pairwise 
correlations between any two probes (red for high correlation and blue for low correlation). The plot was 
generated using the coMET R  package71.
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 involvement37. Transcriptome data from human bronchial epithelial cells during SARS-CoV-2 infection have 
also identified IFI44L as one of the top genes upregulated in severe COVID-1938,39.

Collectively, the above studies indicate that downregulation of IFI44L early in the disease course may be a 
beneficial physiologic response to control SARS-CoV-2 infection and that it may be associated with a positive 
outcome. We did not find any methylation differences between severe and mild COVID-19 three months after 
the infection. However, this may be because both the mild and severe group in our study consisted of outpa-
tients who all survived. Although nonsignificant, the severe COVID-19 group in our study did show a higher 
expression of IFI44L.

The observed hypomethylation of IFI44L three months after infection in our study could reflect that it takes 
time to reverse the immune responses induced by infection. However, it could also reflect a physiological response 
to control the infection, as complete viral clearance may take months to achieve in some  individuals40,41. Another 
explanation is that it could indicate a possible link between COVID-19 and systemic autoimmune diseases. 
Notably, Zhao et al.42 proposed that hypomethylation of the IFI44L promoter might be a reliable biomarker for 
the diagnosis of SLE. Furthermore, SARS-CoV-2 has been shown to induce autoantibodies (e.g., antiphospholipid 
antibodies and transient lupus  anticoagulant43,44) and trigger autoimmune responses such as hemolytic anemia, 
thrombocytopenia, and  myocarditis44. There are recent reports of SARS-CoV-2 infection preceding various 
autoimmune diseases, including  SLE45,46. Therefore, longitudinal data allowing an evaluation of the duration of 
the methylation changes post infection might enhance our understanding of possible long-term effects.

Besides cg03607951 in IFI44L, the comparison between COVID-19 positive and COVID-19 negative individ-
uals identified a statistically significant CpG (cg09829636) in ‘ankyrin repeat domain 9’ (ANKRD9). ANKRD9 is a 
highly conserved protein that modulates the intracellular properties of the cytosolic enzyme inosine monophos-
phate dehydrogenase 2 (IMPDH2) and facilitates its  degradation47. The link between ANKRD9 and IMPDH2 
is compelling in light of the role of IMPDHs as therapeutic targets for COVID-19. Specifically, the IMPDH 
inhibitor, Ribavirin (aka tribavirin), is an antiviral medication used for the treatment of COVID-1948. Thus, 
hypomethylation of ANKRD9 in COVID-19 patients might reflect a physiologic response to control the infection.

The top GO pathways identified in our analyses, although nonsignificant at FDR < 0.05, suggest that IFI44L 
has a central role in viral response. Indeed, cg03607951 in IFI44L seemed to be the sole contributor of the three 
significant CpGs in the GO pathways related to viral response. Our top GO pathway (GO:0051607) “Defense 
response to virus” has also been reported in two other transcriptomic studies of COVID-19-infected humans 
and  mammals49,50.

Our analysis comparing the long-COVID group to the remission group did not identify any significant 
methylation differences. The lack of significant findings may be real or reflect the small sample size available for 
this comparison. The proportion of patients evaluated to have long-term symptoms was similar to the numbers 
reported in previous studies (38% vs 33% and 40%)1,2,51.

To our knowledge, the current study is the only EWAS of post-COVID-19 and long-COVID patients. Other 
EWASs of COVID-19 in the literature include those by Castro de Moura et al.20, Balnis et al.22, Zhou et al.52 and 

Table 2.  The top 20 most enriched gene ontology (GO) pathways for the comparison between COVID-19 
positive and COVID-19 negative individuals. ‘BP’ stands for biological process, ‘MF’ for molecular function, 
‘N’ for number of genes in the GO term, ‘DE’ for number of genes found to be differentially methylated, ‘P.DE’ 
for P-value for over-representation of the GO term, and ‘FDR’ for false discovery rate.

GO ID ONTOLOGY TERM N DE P.DE FDR

GO:0051607 BP Defense response to virus 254 1 0.024 1

GO:0009615 BP Response to virus 344 1 0.033 1

GO:0005525 MF GTP binding 366 1 0.039 1

GO:0043687 BP Post-translational protein modification 360 1 0.039 1

GO:0032550 MF Purine ribonucleoside binding 370 1 0.040 1

GO:0032549 MF Ribonucleoside binding 373 1 0.040 1

GO:0001883 MF Purine nucleoside binding 373 1 0.040 1

GO:0001882 MF Nucleoside binding 379 1 0.041 1

GO:0019001 MF Guanyl nucleotide binding 387 1 0.041 1

GO:0032561 MF Guanyl ribonucleotide binding 387 1 0.041 1

GO:0098542 BP Defense response to other organisms 1080 1 0.103 1

GO:0002252 BP Immune effector process 1180 1 0.114 1

GO:0051707 BP Response to other organisms 1432 1 0.134 1

GO:0043207 BP Response to external biotic stimulus 1434 1 0.134 1

GO:0009607 BP Response to biotic stimulus 1466 1 0.137 1

GO:0006952 BP Defense response 1685 1 0.152 1

GO:0035639 MF Purine ribonucleoside triphosphate binding 1789 1 0.158 1

GO:0032555 MF Purine ribonucleotide binding 1854 1 0.164 1

GO:0032553 MF Ribonucleotide binding 1871 1 0.165 1

GO:0017076 MF Purine nucleotide binding 1868 1 0.165 1
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a multi-omics study by Bernardes et al.53. These studies examined DNAm changes early in the disease course, 
i.e., during the ongoing infection when the immune system is highly activated and found distinct patterns cor-
relating with disease severity. Castro de Moura et al. included data on mild and severe COVID-19 cases without 
underlying conditions, and their DNAm data were also generated on the Illumina EPIC platform. Consistent with 
our findings, Castro de Moura et al. also found hypomethylation of IFI44L among their top ten genes associated 
with severe COVID-19 early in the disease course. They concluded that the methylation changes were likely 
due to innate susceptibility rather than changes induced by the virus itself. Apart from IFI44L, we had no other 
overlapping findings with the study by Castro de Moura et al. This may be due to differences in study popula-
tions (we only had seven patients in need of ventilator support). It could also be that the methylation signals at 
the other loci were transient and were reversed three months after infection.

Balnis et al.22 also had data on COVID-19 positive and COVID-19 negative individuals, and like the above-
mentioned study by Castro de Moura et al.20, their DNAm data were also generated on the Illumina EPIC plat-
form. Despite these similarities, Balnis et al. did not detect any global mean methylation differences between the 
two groups of participants. Again, this could be due to differences in the study populations (the controls in Balnis 
et al. were an intensive care population). The authors did, however, detect DMRs in another interferon-induced 
gene, ‘interferon alpha inducible protein 27’ (IFI27), as well as in ‘2′-5′-oligoadenylate synthetase 2’ (OAS2) which 
is a member of the 2–5 A synthetase family known to be involved in the innate immune response to viral infec-
tion. The results of their gene ontology and pathway enrichment analysis were also congruent with ours, pointing 
to host-defense responses and terms such as ‘response to type I interferon’ and ‘response to virus’, among others.

Despite limited sample sizes (n = 21 and n = 13), the studies by Zhou et al.52 and Bernardes et al.53 reported 
significant methylation changes between mild and severe COVID-19. Zhou et al. reported the downregulation 
of four genes, in particular “G Protein Subunit Gamma 7” (GNG7) and “Guanine nucleotide binding protein” 
(GNAS), among patients with severe disease. Likewise, the longitudinally combined transcriptomic and meth-
ylation analysis by Bernardes et al. revealed the downregulation of GNG7 and GNAS2 in severe COVID-19. 
However, neither study detected methylation changes related to IFI44L or ANKRD9. The epigenome-wide inves-
tigations described above collectively point to innate response to viral infection via interferon-inducible proteins 
as a possible mechanism for COVID-19 disease progression. In support, our gene-enrichment pathway analysis 
revealed enrichment of GO terms that were specific for defense responses to viral infection.

Although we did not collect peripheral blood mononuclear cells (PBMCs), Su et al. did not find any link to 
IFI44L when examining RNA expression in samples taken three months after SARS-CoV-2 infection in subjects 
with long-COVID54.

Although there have been reports of EAA in severe COVID-1921, we did not find any differences in EAA in 
our study. Interestingly, Cao et al.55 found a dynamic increasing EAA in the initial phases of COVID-19, while this 
increase was partly reversed in the convalescent phase, indicating that the infection might accelerate epigenetic 
aging. Another study by Mongelli et al.56 reported increased EAA in younger but not older COVID-19 survivors. 
More studies are needed to determine the association between EAA and SARS-CoV-2 infection.

Strengths and limitations of the study. Only a few studies have reported blood-based DNAm in 
COVID-19, and, to our knowledge, there are no prior reports comparing differentially methylated CpGs three 
months after SARS-CoV-2 infection. Our study also includes data from confirmatory serology tests performed 
on all participants, including those with long-COVID, which helps to minimize false positives/negatives. Our 
study is also based on prospective follow-up questionnaires with high response rates, enabling detailed longitu-
dinal assessments.

Our study also has a few limitations. The evaluation of disease severity was based on self-reported symp-
toms, and not on an objective assessment. It is difficult to gauge the extent to which recall bias and other types 
of misclassifications might have influenced the results presented here. The evaluation of long-COVID using the 
RAND 36-item health survey questionnaire is known to have high sensitivity; however, specificity may be low. 
Notably, 12% of the Norwegian population reported that their health had, in general, worsened compared to the 
preceding year. At the same time, the population included in the current study was apparently healthier than the 
general population. For instance, in the first wave of the pandemic, the COVID-19 positive individuals reported 
higher physical fitness and socioeconomic status, which is also reflected in our control group where only 4% of 
the participants reported worse health compared to a year before. Additionally, the evaluation of long-COVID 
versus remission was likely affected by the small sample size.

In addition, we were unable to explore the expression of IFI44L and ANRKD9 in PBMCs, as extracting 
these cells from whole blood after freezing is not feasible. The study setup we had at the time of recruitment 
did not allow for repeated measurements on the same patients both in the acute phase of infection and after 
three months, which would have provided relevant longitudinal information rather than a single “snapshot” of 
disease progression.

In conclusion, our study adds to the growing knowledgebase regarding epigenetic contributions to COVID-
19. It confirmed previously reported associations with IFI44L and the involvement of interferon-responsive 
genes in the underlying pathophysiology of COVID-19 and showed that such signals can be identified months 
after the infection. We identified a novel link to ANKRD9, which is noteworthy given that IMPDH inhibitors 
are used in the treatment of COVID-19. This and the other genes identified here would need to be replicated in 
other EWASs before being dismissed as false positives. We have thus provided all the results of our main EWASs, 
so that other researchers would be able to easily compare their results to ours.
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Methods
Study design. The study was designed as a retrospective case–control study nested within the Norwegian 
Corona Cohort Study (ClinicalTrials.gov Identifier: NCT04320732), which is an ongoing prospective observa-
tional study established in March 2020 during the first wave of the COVID-19 pandemic. The cohort consists of 
two subgroups: (i) adults with a conclusive SARS-CoV-2 RT-PCR test (n = 23,948) invited through four labora-
tories in the greater Oslo area (Oslo University Hospital, Akershus University Hospital, Vestre Viken hospital, 
and Fürst Medical Laboratory), and (ii) adults signing up to the study through a media campaign (n = 92,730). 
All the participants completed an online baseline questionnaire upon enrollment and were invited to follow-up 
questionnaires at three and six months into the study. Whole blood and serum samples from 110 confirmed 
COVID-19 cases and 74 controls were retrospectively collected on the 27th and 28th of May 2020 at the Oslo 
University Hospital.

Inclusion/exclusion criteria. Participants who were enrolled in the Norwegian Corona Cohort Study and 
who lived in the greater Oslo area were invited to participate in the current study. They were categorized into 
three groups based on the following criteria:

• Severe COVID-19 Participants with a positive SARS-CoV-2 RT-PCR test who had either been hospitalized 
because of COVID-19 or reported all of the following symptoms: fever > 38 °C, dyspnea, cough, and fatigue.

• Mild COVID-19 Participants with a positive SARS-CoV-2 RT-PCR test not requiring hospitalization and 
who reported neither fever > 38 °C nor dyspnea.

• Controls This group consisted of both symptomatic and healthy controls. The symptomatic control group, 
designed similarly to the severe COVID-19 group, were those who had a negative SARS-CoV-2 RT-PCR test 
and who reported all of the following symptoms at the time of testing: fever > 38 °C, dyspnea, cough, and 
fatigue. The healthy control group reported none of the following symptoms during the three weeks preced-
ing inclusion into the study: temperature > 38 °C, dyspnea, cough, fatigue, altered sense of smell and taste, 
sore throat, nasal symptoms, or headache, and no infections during the past six months. For this reason, the 
healthy controls had not undergone any SARS-CoV-2 RT-PCR testing.

Eligible participants from each group were randomly invited to donate a blood sample at the Oslo Univer-
sity Hospital. Of those who consented, a list of 318 randomly selected potential participants was prepared. The 
study staff called and invited participants into the substudy until approximately 200 appointments were made. 
To minimize sampling bias, all the participants were given the opportunity to choose their own time slot for 
the blood draw.

Data collection. The evaluation of disease severity was based on self-reported information from the base-
line questionnaire, which covered previous medical history, symptoms, disease duration, hospitalization, and 
remission. SARS-CoV-2 RT-PCR test results were obtained from the following four laboratories in the greater 
Oslo area: Fürst Medical laboratory, Oslo University Hospital, Akershus University Hospital, and Vestre Viken 
Hospital. A SARS-CoV-2 serology test was performed on all participants.

Evaluation of long-COVID was performed through an electronic follow-up questionnaire distributed three 
months after the blood draw. Reminders were sent to non-responders via email and SMS. Long-COVID was 
defined as a worsening in self-reported health from a year ago, assessed by a single-item, five-level question 
from the RAND 36-item health survey  questionnaire57. This definition is considered to have high sensitivity for 
long-COVID. However, 12% of Norwegians reported a worsening in health in a general population survey based 
on this  questionnaire58. Therefore, the specificity in the study population is estimated to be approximately 70%.

Sampling scheme. Figure 1 provides a schematic overview of the sampling scheme used to assign the par-
ticipants into distinct categories (i.e., severe COVID-19, mild COVID-19 and controls, and long-COVID and 
remission) according to the inclusion/exclusion criteria. Of the approximately 200 individuals who consented to 
a blood draw, 184 showed up for their appointment and completed the baseline questionnaire. Two of the par-
ticipants failed the data file transfer, bringing the final number of participants included in the current analyses to 
182. Of these, 48 were categorized as mild COVID-19, 61 as severe COVID-19, and 73 as controls. Based on the 
participants’ answers in the follow-up questionnaire three months after inclusion, we were able to reclassify four 
subjects from the mild and severe COVID-19 categories as belonging to the long-COVID category.

Laboratory methods. The serum tubes were centrifuged, aliquoted, and frozen within four hours of the 
blood draw. The EDTA tubes with whole-blood samples were kept on ice, aliquoted, and frozen at − 80 °C within 
two hours of the blood draw. Confirmatory serology was performed based on the detection of anti-SARS-CoV-2 
antibody against nucleocapsid, as measured by the Roche Cobas e601 module (Roche Diagnostics GmbH, Man-
nheim, Germany).

DNAm measurement. DNA was extracted from 200 µl of EDTA-anticoagulated whole blood using the 
QIAsymphony DSP DNA Mini Kit (QIAGEN, catalog number 937236) at the Oslo University Hospital. The 
tubes were initially placed in random order but were not formally randomized before bisulfite conversion using 
the Zymo EZ-96DNA Methylation-Lightning MagPrep kit (Zymo Research, Irvine, USA). DNAm was measured 
using the Illumina Infinium MethylationEPIC BeadChip (Illumina, San Diego, USA) at Life & Brain GmbH, 
Bonn, Germany.
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The raw signal intensity data were extracted from the IDAT files using a standard pipeline powered by the R 
packages minfi and  DMRcate59. We applied the multiple sample/probe exclusion criteria prior to background 
correction and normalization. The detectionP function was used to exclude samples with a mean detec-
tion p-value greater than 0.01 and probes with a detection p-value greater than 0.01. Cross-reactive probes and 
probes within two base-pairs from a single-nucleotide polymorphism (SNP) with a minor allele frequency (MAF) 
greater than 0.05 were removed using the rmSNPandCH function in DMRcate. In addition, cross-hybridizing 
probes specific to the EPIC array, as previously reported by McCartney and co-workers60, were also excluded. 
In addition, the output of the minfi qcReport and plotQC were visually inspected for inconsistencies. Finally, 
the data were background corrected and normalized using the default settings of the preprocessFunnorm 
function in minfi.

Following the above QC steps, DNAm data on 182 individuals (109 individuals in the COVID-19 group and 
73 in the non-COVID-19 group) and 794,075 probes remained for the current EWASs.

Statistical analyses. EWAS. We stratified the methylation data into the following three subsets: (1) the 
combined sample of males and females and 776,892 autosomal probes, (2) males only and 17,183 sex chromo-
some probes (17,128 X-linked and 55 Y-linked), and (3) females only and 17,128 X-linked probes. In each 
subset, we compared the mean methylation levels, i.e., the M-values61, in the following group comparisons: (a) 
COVID-19 positive (n = 109) versus COVID-19 negative (n = 73), (b) severe COVID-19 (n = 61) versus mild 
COVID-19 (n = 48), and (c) long-COVID (n = 41) versus remission (n = 63). This analytic strategy is outlined in 
Fig. 2. The results from additional group comparisons can be found in Supplementary Figs. 8 and 9.

We fit linear regressions of the M-values on the COVID-19 variables, with adjustment for age, sex, imputed 
smoking pack-years, physical fitness, imputed white blood cell counts (CD8 + naïve and exhausted cytotoxic T 
cell, CD4 + naïve cells, natural killer cells, B cells, monocytes, and granulocytes), and plate. The imputed smok-
ing pack-years and white blood cell counts were derived using Horvath’s online  calculator62. Next, we derived 
empirical Bayes moderated t-statistics and the corresponding P-values using the limma R  package63.

The entire EWAS summary statistics can be found in Supplementary Files 1 and 2, respectively. All analyses 
were performed in the statistical programming language R, version 4.0.5.

Additional post-processing analyses. To identify differentially methylated regions (DMRs), we applied the dmrff 
function from the dmrff R  package64 to the EWAS summary statistics. We chose dmrff because it was reported 
to be the most powerful method in a comparison involving four other popular methods for DMR detection 
(DMRcate, comb-p, seqlm, and GlobalP)65. The maximum distance between consecutive probes was set to 500 
base-pairs (the default value). We defined a DMR as being statistically significant if it had a Bonferroni-corrected 
P-value less than 0.05.

Next, we performed a gene-set enrichment analysis of the significant CpGs detected by the EWASs to test for 
potential enrichment in biological pathways. We used the gometh function implemented in the missMethyl 
R  package66, which queries Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways.

We used the Illumina Infinium MethylationEPIC manifest file (v1.0 B5)25 to define and analyze the target 
genes. This file contains detailed information on whether a given CpG is located within specific regions of interest 
(e.g., gene-promoter region, promoter-flanking region, gene-body, CpG island, shelf, shore, and open sea), and 
whether the CpG is associated with specific regulatory features, such as DNase hypersensitive regions, chromatin 
regions, and enhancers (as defined by FANTOM5 annotations), etc.

Cell-type composition was estimated using the function estimateCellCounts in the minfi R  package67.

Epigenetic age acceleration. Epigenetic age was estimated using the DNA methylation based age predictors 
 DNAmAge68 and  Hannum69 using the University of California Los Angeles (UCLA) web-based  service70 that 
adjusts for blood cell composition. We used the (linear regression) residuals between estimated epigenetic age 
and true chronological age as the measurement of epigenetic age acceleration (EAA), as recommended by the 
authors of these epigenetic clocks. A positive EAA indicates that the epigenetic age is higher than the chrono-
logical age.

Ethics. The study was approved by the Regional Committees for Medical and Health Research Ethics (REK) 
in Norway (Reference Number 2021/8504) and conducted in accordance with the Declaration of Helsinki. All 
participants in the Norwegian Corona Cohort Study provided written informed consent.

Data availability
To enhance data sharing and enable other researchers to compare their results with ours, we have provided the 
entire EWAS summary statistics for the joint analysis of males and females on 776,892 autosomal probes in 
Supplementary File 1. The corresponding EWAS summary statistics for the sex-stratified analyses of probes on 
the sex chromosomes (males and female separately on 17,183 sex-chromosome probes) are provided in Sup-
plementary File 2. Due to written consent and ethical issues, the datasets in the current study are not publicly 
available. However, researchers may obtain a de-identified dataset upon reasonable request to the study authors 
and after approval from the study board. Data requests may be subjected to further review by the national register 
authority and the national ethics committee.
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