
Vol.:(0123456789)

Cryptography and Communications
https://doi.org/10.1007/s12095-022-00587-2

1 3

Triplicate functions

Lilya Budaghyan1 · Ivana Ivkovic1 · Nikolay Kaleyski1 

Received: 14 October 2021 / Accepted: 29 April 2022 
© The Author(s) 2022

Abstract
We define the class of triplicate functions as a generalization of 3-to-1 functions over �

2n
 for 

even values of n. We investigate the properties and behavior of triplicate functions, and of 
3-to-1 among triplicate functions, with particular attention to the conditions under which 
such functions can be APN. We compute the exact number of distinct differential sets of 
power APN functions and quadratic 3-to-1 functions; we show that, in this sense, quadratic 
3-to-1 functions are a generalization of quadratic power APN functions for even dimen-
sions, in the same way that quadratic APN permutations are generalizations of quadratic 
power APN functions for odd dimensions. We show that quadratic 3-to-1 APN functions 
cannot be CCZ-equivalent to permutations in the case of doubly-even dimensions. We 
compute a lower bound on the Hamming distance between any two quadratic 3-to-1 APN 
functions, and give an upper bound on the number of such functions over �

2n
 for any even 

n. We survey all known infinite families of APN functions with respect to the presence of 
3-to-1 functions among them, and conclude that for even n almost all of the known infi-
nite families contain functions that are quadratic 3-to-1 or are EA-equivalent to quadratic 
3-to-1 functions. We also give a simpler univariate representation in the case of singly-even 
dimensions of the family recently introduced by Göloglu than the ones currently available 
in the literature. We conduct a computational search for quadratic 3-to-1 functions in even 
dimensions n ≤ 12. We find six new APN instances for n = 10, and the first sporadic APN 
instance for n = 12 since 2006. We provide a list of all known 3-to-1 APN functions for n 
≤ 12.

1  Introduction 

An (n,m)-function, or vectorial Boolean function when the dimensions n and m are clear 
from the context, is any function from the vector space � n

2
 over the finite field �2 to the 

vector space �m
2

 . Intuitively, an (n,m)-function maps an input of n bits (zeros and ones) to 

 * Nikolay Kaleyski 
 nikolay.kaleyski@uib.no

 Lilya Budaghyan 
 lilya.budaghyan@uib.no

 Ivana Ivkovic 
 ivana.ivkovic@uib.no

1 Department of Informatics, University of Bergen, Bergen, Norway

http://orcid.org/0000-0002-9695-1454
http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-022-00587-2&domain=pdf


 Cryptography and Communications

1 3

an output of m bits; since any data can be encoded in binary, practically any operation on 
any kind of data can be modeled as a vectorial Boolean function. For this reason, (n,m)-
functions naturally occur in many different areas of mathematics, computer science, and 
engineering. In particular, they play an important role in symmetric cryptography: virtually 
all modern block ciphers incorporate cryptographically strong (n,m)-functions as essential 
parts of their design; typically, the non-linear part of the cipher is modeled as a vectorial 
Boolean function, and so the cryptographic security of the encryption directly depends on 
the properties of this vectorial Boolean function. A prime example is the well-known and 
near ubiquitously used cipher Rijndael [1, 2], which was selected as the Advanced Encryp-
tion Standard (AES) by the US National Institute of Standards and Technology (NIST), 
and is considered to be one of the most reliable block ciphers to date. A crucial part of its 
design is an (8,8)-function carefully selected for its cryptographic properties.

One of the most efficient known cryptanalytic attacks that can be used against block 
ciphers is differential cryptanalysis [3]. The differential uniformity δF of a vectorial 
Boolean function F measures how well it resists differential attacks; more precisely, the 
lower the value of δF, the more resilient it is to this type of cryptanalysis. In the case when 
n = m (so that the number of input bits is the same as the number of output bits, which 
is one of the most important cases in practice), we have δF ≥ 2 for any (n,n)-function F. 
The functions that attain this lower bound with equality are called almost perfect nonlinear 
(APN), and therefore provide the best possible resistance to differential cryptanalysis. The 
interest in studying these functions is not restricted to the practical needs of cryptography: 
APN functions have a natural combinatorial definition, and they correspond to optimal 
objects in many other areas of research, including algebra, sequence design, coding theory, 
combinatorial design theory, projective geometry, and others. Constructing new instances 
of such functions, and studying their properties therefore has a far-reaching significance 
having the potential to advance many other disciplines.

Unfortunately, APN functions tend to be very difficult to construct and analyze. This is 
partly due to the fact that they are cryptographically optimal objects, and as such do not 
have much structure or clear patterns. On the other hand, the number (2n)2n of (n,n)-func-
tions becomes prohibitively large even for relatively small values of n, and means that find-
ing APN functions by exhaustive search is completely out of the question; computational 
searches can only be performed on very specific subclasses of functions (where the number 
of functions is small enough to be processed on a computer within a reasonable amount 
of time), and even then, mathematical constructions and non-trivial techniques frequently 
have to be used in order to make the entire procedure feasible.

The vector space � n
2
 can be identified with the finite field �2n ; and APN (n,n)-functions 

are typically represented as univariate polynomials over �2n . To date, six infinite families 
of APN monomials, and 15 infinite families of APN polynomials have been constructed. 
Upon inspecting their polynomial representations in the case of even n, we can see that 
most of them are of a very special form: namely, all of their exponents are divisible by 3, 
which has the consequence that they are 3-to-1 functions (meaning that every element y≠ 0 
in the image set Im(F) of one of these functions F has precisely three preimages). Upon 
closer inspection, we can see that even many of the known APN functions whose expo-
nents are not all divisible by 3 are still 3-to-1 functions. This suggests that there is some 
connection between a function being 3-to-1 and being APN.

Functions that are 3-to-1 with all exponents divisible by 3 (which in this paper we 
call “canonical”) have previously been studied in [4]; that paper contains some inter-
esting results on the behavior and properties of such functions. In particular, it helps 
to explain why some of the known families of APN functions have a Gold-like Walsh 
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spectrum. Recently, 3-to-1 APN functions have been studied in more detail in [5], where 
some of the results from [4] are extended to the general case of 3-to-1 functions (in 
other words, 3-to-1 functions whose exponents are not necessarily divisible by 3). This 
interest in the behavior and properties of 3-to-1 APN functions is, in our opinion, well 
deserved, and warrants further investigation.

In this paper, we take several different approaches to investigate the properties of 
these functions and to facilitate their study. To begin with, we define a more general 
class of functions called triplicate functions that have the property that the sizes of all 
of their preimages are divisible by 3; in this way, a triplicate function will always map 
triples of inputs {x1,x2,x3} to the same output (so that F(x1) = F(x2) = F(x3)) but, unlike 
a 3-to-1 function, distinct triples may still map to the same output; in this way, every 
3-to-1 function is a triplicate function, but not every triplicate function is 3-to-1. We 
characterize triplicate functions by the values of their Walsh transform, and show that 
quadratic 3-to-1 functions can be considered as extremal objects (from several different 
points of view) among triplicate functions in a way very similar to how quadratic APN 
functions can be considered as extremal objects among all plateaued functions.

One of the aspects in which we see that 3-to-1 functions are extremal objects is with 
respect to their number of distinct differential sets (the differential sets of a function 
being the image sets of its derivatives). Besides deriving some results on the num-
ber of distinct differential sets of canonical quadratic triplicate functions, we compute 
the exact number of distinct differential sets of any power APN function (regardless 
of whether it is a triplicate or not). We show that if F is a power function on �2n and 
a, b ∈ �2n , then F(a) = F(b) if and only if HaF = HbF (with HaF being the differential set 
of F in direction a). In this way, 3-to-1 functions behave in the same way as power APN 
functions in the case of even n.

The paper is organized as follows. In Section 2, we recall most of the preliminaries and 
background knowledge needed for the rest of the text. In Section 3, we define the classes 
of triplicate functions and canonical triplicate functions (as well as the zero-sum property 
and triple summation property, which all known 3-to-1 APN functions have), and math-
ematically investigate their structural properties and behavior. In particular, we character-
ize triplicate functions and 3-to-1 among triplicate functions by their Walsh transform, and 
show that 3-to-1 among triplicate functions are extremal objects in some sense. In Sec-
tion 4 we also characterize, in the case of power APN functions and of quadratic canoni-
cal 3-to-1 functions, when two differential sets coincide, and compute the exact number 
of distinct differential sets of these two classes of functions. In Section  5 we show that 
a quadratic 3-to-1 function over �2n can never be CCZ-equivalent to a permutation if n is 
doubly-even. In Section 6, we describe an algorithm based on our theoretical observations 
that can be used to test whether a given function is EA-equivalent to a triplicate function. 
In Section 7, we survey the known infinite APN families, and conclude that the majority of 
them contain functions that are canonical 3-to-1 functions. In Section 8, we investigate the 
known sporadic instances of APN functions and observe that very few of them are 3-to-1 
(in contrast to the prominence of 3-to-1 functions among the known infinite APN families). 
Exploiting the fact that searching for 3-to-1 among triplicate functions is much faster than 
checking APN-ness from the definition, we conduct computational searches in dimensions 
8, 10, and 12, and we find new sporadic instances for both n = 10 and n = 12; we report on 
these computational results in detail in Section 9. In Section 10, we summarize the state 
of knowledge by listing all known 3-to-1 APN functions over �2n for n ≤ 12 (up to distinct 
differential spectra of their ortho-derivatives). Finally, in Section  11, we summarize our 
results, and indicate some directions for future work.



 Cryptography and Communications

1 3

2  Preliminaries

Throughout the paper, we denote the cardinality of a set S by #S, while |s| denotes the 
absolute value of s ∈ ℤ . The sumset of a set S is the set 2S = {s1 + s2 : s1,s2 ∈ S,s1≠s2}. A 
multiset is an unordered collection of elements, much like a set; unlike a set (which either 
contains or does not contain a certain element), a multiset can contain an element more 
than once. The number of times that an element occurs in a multiset is called the multi-
plicity of that element.1 We write multisets using square brackets to distinguish them from 
ordinary sets; for instance, [a,b,a,a,c] is a multiset that contains the elements a, b, and c, 
with multiplicities 3, 1, and 1, respectively. As shorthand, we will also write the number of 
occurrences of an element appearing more than once in the multiset as a superscript; for 
instance, we would write [a,b,a,a,c] as [a3,b,c], indicating that the element a occurs three 
times, while b and c occur only once. On rare occasions, we will indicate the multiplicities 
in under-braces and write them underneath the respective elements instead.

2.1  Vectorial Boolean functions and their representations

Let n be a natural number. We denote by �2 the finite field of two elements, by � n
2
 the vec-

tor space of dimension n over �2 , and by �2n the extension field of degree n over �2 . The 
multiplicative group of �2n is denoted by � ∗

2n
 . We note that the elements of � n

2
 can be identi-

fied with those of �2n , and we will use both representations interchangeably throughout the 
paper. For any two natural numbers m,n such that m∣n, we denote by Trn

m
∶ �2n → �2m the 

trace function from �2n onto �2m defined as Trn
m
(x) =

∑n∕m−1

i=0
x2

mi . When m = 1, Trn
1
 is called 

the absolute trace; in this case, we will denote it more succinctly by  Trn, or simply by Tr if 
the value of n is clear from the context.

Let n and m be natural numbers. Any mapping f from � n
2
 to �2 is called an n-dimensional 

Boolean function. Any mapping from � n
2
 to �m

2
 is called an (n,m)-function; in particu-

lar, Boolean functions are (n,1)-functions. When the dimensions are not important, or are 
understood from the context, we refer to (n,m)-functions as vectorial Boolean functions. 
The intuition behind the name is that any (n,m)-function F can be represented as a vec-
tor F = (f1, f2,… , fm) of m Boolean functions f1, f2,… , fm ∶ �

n
2
→ �2 of dimension n. The 

value fi(x) gives the i-th coordinate yi of the output y = F(x) = (y1, y2,… , ym) . For this rea-
son, the Boolean functions f1, f2,… , fn are called the coordinate functions of F. The non-
zero linear combinations of the coordinate functions are called the component functions 
of F; thus, every coordinate function of F is also a component function of F, but not vice-
versa. Since every component function of F corresponds to a non-zero linear combination 
of its n coordinate functions, every component function can be identified with a non-zero 
vector b ∈ �

n
2
 , or, equivalently, with an element b ∈ �

∗
2n

 ; we will denote this function by 
Fb. If the function F is represented as a polynomial over �2n (as we discuss in more detail 
below), its component function Fb can be given by Fb(x) = Tr(bF(x)). Some important 
properties of (n,m)-functions, including cryptographically significant parameters such as 
the nonlinearity, can be defined and analyzed in terms of their component functions.

1 Formally, a multiset would be defined as a pair (S,m), where S is some set of elements, and m ∶ S → ℕ 
is a mapping specifying the multiplicity of each element in the multiset. We consider that the idea behind 
multisets is intuitively clear by itself, and omit this formal definition in the text.
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The image set of an (n,m)-function F is the set Im(F) = {F(x) ∶ x ∈ �
n
2
} . For y ∈Im(F), 

we will call the set F−1(y) = {x ∈ �
n
2
∶ F(x) = y} the preimage set of y under F. If F(0) 

= 0 and #F− 1(y) = 3 for every 0≠y ∈Im(F), we will say that F is a 3-to-1 function. If n = m 
and # Im(F) =  2n, we will say that F is a permutation of � n

2
.

Vectorial Boolean functions can be represented in many different ways. The simplest 
representation involves writing down (or storing in memory, in the case of a computer 
implementation) the values F(x) of the (n,m)-function F for all possible inputs x ∈ �

n
2
 . This 

representation is referred to as the truth table (TT) or the look-up table (LUT) of F.2 
This representation can be quite efficient and convenient for computer implementations, 
since finding the value F(x) of the function F at some input x ∈ �

n
2
 amounts to simply 

indexing an array stored in memory; this makes the implementation of (n,m)-functions as 
truth tables both very simple and very fast in practice. The disadvantage is, of course, that 
the memory needed to store the truth table increases rapidly with the dimensions n and m. 
Another drawback of the TT representation is that it is very hard to observe any structure 
or properties of the function from it; as we shall see, the algebraic degree (among various 
other properties) of a function can be extracted almost immediately from any of its polyno-
mial representations, while in the case of the TT, this is not straightforward to do.

Any (n,m)-function can be represented as a polynomial in n variables over �m
2

 . More 
precisely, we can express an (n,m)-function F as F(x1, x2,… , xn) =

∑
I⊆{1,2,…,n}aI

∏
i∈Ixi , 

where aI ∈ �
m
2

 for all I ⊆ {1, 2,… , n} . This representation is called the algebraic normal 
form (ANF) of F; it always exists, and is uniquely defined. When the number of terms 
with non-zero coefficients in the ANF is small, the ANF can provide a much more compact 
representation than the TT. A disadvantage is that finding the value F(x) of F for some 
x ∈ �

n
2
 is no longer instantaneous, and involves performing some arithmetic operations; 

however, the smaller size of the representation typically far outweighs this loss in perfor-
mance. Another benefit of the ANF over the TT is that it allows i.a. the algebraic degree of 
F to be easily extracted. For some F ∶ �

n
2
→ �

m
2

 given in ANF, its algebraic degree is sim-
ply the degree of the ANF (as a multivariate polynomial), and is denoted by deg(F) . The 
algebraic degree has some cryptographic significance, as a higher algebraic degree indi-
cates good resistance to higher-order differential attacks [6, 7]. The algebraic degree also 
allows us to define some important classes of vectorial Boolean functions: for instance, 
we call an (n,m)-function Faffine if deg(F) ≤ 1 ; then, much as the name would suggest, 
we have F(x) + F(y) + F(z) = F(x + y + z) for any x, y, z ∈ �

n
2
 . If F is affine and F(0) = 0, 

so that F(x) + F(y) = F(x + y) for any x, y ∈ �
n
2
 , we say that F is linear. If deg(F) = 2 or 

deg(F) = 3 , we say that F is quadratic or cubic, respectively. The class of quadratic func-
tions, in particular, plays a central role in our study.

Perhaps the most frequently used representation of vectorial Boolean functions in the 
study of i.a. APN and AB functions is the univariate representation, in which a func-
tion is represented by a univariate polynomial. For this purpose, the domain � n

2
 and co-

domain �m
2

 of an (n,m)-function are identified with the finite fields �2n and �2m ; we further 
assume that m divides n, so that �2m is contained as a subfield in �2n . Then F can be seen 
as a function over �2n which can be represented by a polynomial F(x) =

∑2n−1

i=0
cix

i , where 
ci ∈ �2n for i = 1, 2,… , 2n − 1 . Such a polynomial always exists (and can be obtained by 

2 Some authors reserve the term “truth table” for Boolean functions, whose output values 0 and 1 can be 
interpreted as “false” and “true”, respectively, and call the more general manifestation of the same principle 
for (n,m)-functions with m > 1 (where the output can be any element of �m

2
 ) a look-up table. We will refer to 

this representation as a truth table in both cases.
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e.g. Lagrange interpolation from the TT representation of F). In general, such a representa-
tion is not unique, and some additional restrictions need to be introduced in order to ensure 
uniqueness. However, when n = m (so that the domain of F is the same as its co-domain), 
this representation is always unique. Since our study mostly concerns (n,n)-functions (as 
opposed to (n,m)-functions with n≠m), we do not go into further details.

The univariate representation is important to our work, and to the study of APN and 
AB functions in general. Almost all known infinite constructions of APN functions are 
given in univariate form; and the class of canonical triplicate functions investigated in Sec-
tion 3 is defined in terms of the univariate representation. Since the algebraic degree also 
plays a prominent role in our study, we note that it can be recovered quite easily from the 
univariate representation of an (n,n)-function: indeed, the algebraic degree of F is the larg-
est binary weight of any exponent i with ci≠ 0 in the univariate representation (the binary 
weight, or 2-weight, of an integer i is the weight or, equivalently, number of non-zero bits, 
in its binary expansion).

Other representations of vectorial Boolean functions exist, and some of them can be 
quite useful. For instance, if F is a (2n,m)-function, it can be represented as a bivariate 
polynomial F(x,y) with x, y ∈ �

n
2
 . Some infinite constructions of APN functions are given 

in this bivariate representation. Representations of functions using tables, matrices, and 
algebraic structures have been considered in the literature, and some of them have been uti-
lized computationally to find many new instances of APN and AB functions, e.g. [8–11].

2.2  Derivatives of vectorial Boolean functions

The derivative of an (n,m)-function F in direction a ∈ �2n is the function DaF(x) = F(a + 
x) − F(x). Intuitively, DaF(x) expresses the difference between a pair of values of the func-
tion F when the difference between their corresponding inputs is equal to a. Since addition 
and subtraction represent the same operation over fields of even characteristic, we typically 
write DaF(x) = F(a + x) + F(x). An associated function is ΔaF(x) = F(x) + F(a + x) + 
F(a) + F(0); in the case when F is quadratic, this is sometimes referred to as a symplectic 
form. The functions DaF and ΔaF typically behave similarly with respect to the study of 
i.a. cryptographic properties of functions; the advantage of ΔaF is that it may sometimes 
be more convenient to work with due to it being symmetric in a and x, and since it has no 
constant term, i.e. ΔaF(0) = 0.

As remarked above, the value of DaF(x) intuitively represents the difference between 
two outputs of F for which their corresponding inputs are at distance a. From a crypto-
graphic point of view, it is desirable that there should be no strong correlation between 
the input difference and the output difference. In other words, the possible output differ-
ences for some fixed 0 ≠ a ∈ �

n
2
 should be distributed as closely to uniform as possible 

(throughout all choices of x ∈ �
n
2
 ). In particular, the number of inputs x ∈ �

n
2
 for which 

DaF(x) = b should be as low as possible for all choices of b ∈ �
m
2

 . In order to quantify 
this, we denote the number of solutions x ∈ �

n
2
 to the equation DaF(x) = b for some 

a ∈ �
n
2
, b ∈ �

m
2

 by δF(a,b); that is, �F(a, b) = #{x ∈ �
n
2
∶ DaF(x) = b} . Since we would like 

this number of solutions to be as low as possible throughout all choices of a,b, we define 
the differential uniformity of F as �F = max{�F(a, b) ∶ 0 ≠ a ∈ �

n
2
, b ∈ �

m
2
} . The multi-

set [�F(a, b) ∶ a, b ∈ �2n ] of all values of δF(a,b) is called the differential spectrum of F.
An (n,m)-function F is vulnerable to differential cryptanalysis [3] if δF is large. We 

can easily see that the numbers δF(a,b) are always even, since if x is a solution to DaF(x) 
= b for some choice of a and b, then so is a + x. Consequently, the optimal value of the 
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differential uniformity is precisely 2. We say that an (n,n)-function F is almost perfect 
nonlinear (APN) if δF = 2. Thus, the class of APN functions provides the best possible 
resistance to differential cryptanalysis.

While the notion of the derivative DaF as described above is fundamental to 
the definition and study of APN functions, we can introduce some related aux-
iliary notions for the sake of convenience. The differential set HaF of an (n,m)-
function F in direction a ∈ �

n
2
 is simply the image set of the derivative DaF, that is 

HaF = Im(DaF) = {DaF(x) ∶ x ∈ �
n
2
} . Since F ∶ �

n
2
→ �

n
2
 is APN if and only if all of its 

derivatives DaF for 0≠a are 2-to-1 functions, we can see that F is APN if and only if all 
of its differential sets HaF for 0≠a have cardinality  2n− 1.

An (n,m)-function closely related to the derivative DaF is 
Ds

a
(F) = F(x) + F(a + x) + F(a + s) = DaF(x) + F(a + s) , where s ∈ �

n
2
 . In [12], the 

function Ds
a
F is called a shifted derivative with shift s. If s = 0, and F(0) = 0, this coin-

cides with the notion of the symplectic form ΔaF(x) = F(x) + F(a + x) + F(a) + F(0). 
Clearly, DaF is 2-to-1 if and only if Ds

a
F is 2-to-1 for any 0 ≠ a ∈ �

n
2
, s ∈ �

n
2
 ; and so 

APN-ness (and, more generally, differential uniformity) can be equivalently character-
ized in terms of Ds

a
F.

Analogically to the differential sets HaF, we can define 
Hs

a
F = Im(Ds

a
F) = {Ds

a
F(x) ∶ x ∈ �

n
2
} for any (n,m)-function F and any a, s ∈ �

n
2
 . We 

will refer to these sets as differential sets as well (in fact, we will see that for any (n,n)-
triplicate function T, we have HaT = H0

a
T  for any a ∈ �2n , and so this should never cause 

any confusion).
The study of APN functions is an important area in the mathematical foundations 

of cryptography, and has been a topic of intense research at least since the 90’s when 
the notion of an APN function was first introduced [13]. Since then, a huge number of 
APN instances and several infinite constructions of APN functions have been found; a 
survey of these results is given in Section 2.5. As we shall see there, the vast majority of 
the known APN functions are quadratic (or CCZ-equivalent to quadratic functions). In 
fact, there is only a single known example of an APN function that is CCZ-equivalent to 
neither a monomial nor a quadratic function [14, 15], and finding more such instances is 
considered an important open problem.

One intuitive explanation for this abundance of quadratic functions among the known 
APN constructions and instances, is that checking and characterizing the APN-ness of 
quadratic functions is significantly easier than in the general case. The reason for this, in 
turn, is that the derivatives of any quadratic function are affine functions; and since the 
differential uniformity of a function (and the notion of being APN) is defined in terms 
of its derivatives, this means that in the quadratic case, characterizing APN functions 
involves studying the behavior of a set of affine functions. While by no means trivial, 
this is significantly more tractable than in the general case, where the derivatives may 
be of higher algebraic degree.

When the derivatives of F are affine, the differential sets HaF and Hs
a
F are affine sub-

spaces of �m
2

 . As can be easily seen, we always have D0
a
F(0) = 0 , and so D0

a
F is, in fact, 

a linear function for any a ∈ �
∗
2n

 when F is quadratic. Consequently, the image set H0
a
F is 

a linear subspace for any a ∈ �
∗
2n

.
Recall that a linear hyperplane of � n

2
 is any (n − 1)-dimensional linear subspace of 

�
n
2
 ; and that an affine hyperplane is any affine (n − 1)-dimensional subspace of � n

2
 (in 

other words, a linear hyperplane plus a constant). Any linear hyperplane of � n
2
 is a set of 

the form H(a) = {x ∈ �
n
2
∶ Tr(ax) = 0} for 0 ≠ a ∈ �

n
2
.
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By the above discussion, we can see that if F is a quadratic (n,n)-function, then it is 
APN if and only if all the differential sets HaF are affine hyperplanes (or, equivalently, if 
all the sets H0

a
F are linear hyperplanes) for a ∈ �

∗
2n

 . More generally, we say that an (n,n)-
function F is generalized crooked if all of its differential sets HaF for a ∈ �

∗
2n

 are affine 
hyperplanes [16]; in the particular case when all the differential sets HaF are complements 
of linear hyperplanes, we say that F is crooked. Clearly, any generalized crooked function 
is APN, and any quadratic APN function is generalized crooked; the existence of general-
ized crooked functions that are not quadratic is an open problem at the time of writing.

For any set S ⊆ �2n and any (n,n)-function F, we will denote by 
[S] = {a ∈ �2n ∶ HaF = S} the set of all derivative directions a for which the differential 
set HaF is equal to S (note that while we do not explicitly refer to it in the notation of [S], 
the function F should always be clear from context). In particular, we have a ∈ [HaF] for 
all a ∈ �2n.

The ortho-derivative πF [17] is an (n,n)-function associated with any generalized 
crooked (n,n)-function F. For any a ∈ �

∗
2n

 , the differential set H0
a
F of a 3-to-1 function is 

a linear hyperplane, and so can be written as H0
a
F = H(ca) for some ca ∈ �

∗
2n

 . We define 
the ortho-derivative πF by setting πF(a) = ca for every a ∈ �

∗
2n

 , and πF(0) = 0.3 The ortho-
derivatives of two EA-equivalent quadratic APN functions are EA-equivalent themselves 
[17] which allows EA-inequivalent functions to be distinguished with high accuracy by 
comparing the values of EA-invariants (such as the differential spectrum) of their ortho-
derivatives (equivalence relations between (n,n)-functions are discussed in more detail in 
Section 2.4).

2.3  The Walsh transform

The Walsh transform of an (n,m)-function F is the integer-valued function 
WF ∶ 𝔽

n
2
× 𝔽

m
2
→ ℤ defined by WF(a, b) =

∑
x∈� n

2

(−1)b⋅F(x)+a⋅x , where “⋅” is a scalar product 
on �m

2
 and � n

2
 , respectively (the dimension being understood from the context). A scalar 

product on � n
2
 is a symmetric bivariate function on � n

2
 such that x↦a ⋅ x is a non-zero linear 

form for any 0 ≠ a ∈ �
n
2
 . Using the identification of the vector space � n

2
 with the finite field 

�2n , this is typically defined as x ⋅ y = Tr(xy), with the product xy being computed in the 
finite field �2n , and then mapped to �2 via the absolute trace function. When n = m, the 
Walsh transform WF ∶ 𝔽

2
2n
→ ℤ of an (n,n)-function F can equivalently be written as 

WF(a, b) =
∑

x∈�2n
�(bF(x) + ax) , where � ∶ 𝔽2n → ℤ2 is the canonical additive character of 

�2n defined by χ(x) = (− 1)Tr(x). For convenience, for a ∈ �2n , we will also denote by χa the 
character χa(x) = χ(ax). The values of the Walsh transform WF are called the Walsh coeffi-
cients of F. The multiset of all Walsh coefficients is called the Walsh spectrum of F; and 
the multiset of their absolute values is called the extended Walsh spectrum of F and 
denoted by WF . The Walsh transform can be a useful theoretical tool for analyzing proper-
ties of vectorial Boolean functions, and it can be used to speed up some computations in 
practice.

3 More generally, the ortho-derivative of F can be defined as any (n,n)-function πF for which πF(a) lies in 
the orthogonal complement of H0

a
F , which is possible even when F is not generalized crooked (as long as 

its differential sets H0

a
F are linear subspaces). If F is not generalized crooked, however, the ortho-derivative 

is not uniquely defined, and so we restrict to the case when F is generalized crooked.
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There is a number of well-known characterizations of various properties of vecto-
rial Boolean functions in terms of the Walsh transform. For instance, we know that any 
(n,n)-function F satisfies 

∑
a,b∈�2n

W4
F
(a, b) ≥ 3 ⋅ 24n − 23n+1 , with equality if and only if F 

is APN [18]. Similarly, we know that any APN (n,n)-function F with F(0) = 0 satisfies ∑
a,b∈�2n

W3
F
(a, b) = 3 ⋅ 23n − 22n+1 , although, in general, this is only a necessary and not a 

sufficient condition for a function to be APN.
The Walsh transform allows for the definition of another important class of vectorial 

Boolean functions, viz. the plateaued functions, that have a close connection to APN func-
tions, and appear in the context of our investigations of triplicate functions as well. We say 
that an (n,m)-function F is plateaued if there exist integers �b ∈ ℤ for all non-zero b ∈ �

m
2

 
such that

 for all a ∈ �
n
2
 ; we then call λb the amplitude of the component function Fb. If the ampli-

tudes of all components are equal, i.e. for all non-zero b, b� ∈ �
m
2

 we have �b = �b� , we say 
that F is plateaued with single amplitude.

As in the case of the generalized crooked functions, the interest in the study of plateaued 
functions arises from the behavior of quadratic APN functions. More precisely, we know 
that any quadratic APN function is plateaued [19, 20], although there exist APN functions 
that are not plateaued, and plateaued functions that are not APN.

2.4  Equivalence relations

The number of (n,n)-functions is very large even for small values of n, and for this 
reason, they are typically only classified up to some notion of equivalence that pre-
serves the properties of interest. In the case of APN functions, the most general known 
equivalence relation that preserves the differential uniformity (and hence, the property 
of being APN) is the so-called CCZ-equivalence (or Carlet-Charpin-Zinoviev equiva-
lence) introduced in [21].

The graph ΓF of an (n,m)-function F is the set ΓF = {(x,F(x)) ∶ x ∈ �
n
2
} ⊆ �

n
2
× �

m
2

 . 
Note that the set of pairs ΓF can be seen as a set of elements from � n+m

2
 . If F and G are 

(n,m)-functions, we say that they are CCZ-equivalent if there exists an affine permutation 
A of � n+m

2
 mapping ΓF to ΓG, i.e. such that A(ΓF) = ΓG.

Another widely used equivalence relation is the so-called extended affine equivalence, 
or EA-equivalence for short. We say that F,G ∶ �

n
2
→ �

m
2

 are EA-equivalent if there exist 
affine permutations A1 and A2 of �m

2
 and � n

2
 , respectively, and an affine (n,m)-function A, 

such that

We know that if two functions are EA-equivalent, then they are also CCZ-equivalent. How-
ever, CCZ-equivalence is strictly more general than EA-equivalence and taking inverses of 
permutations [22]. Nonetheless, CCZ-equivalence coincides with EA-equivalence in the 
case of quadratic APN functions; more precisely, if F and G are quadratic APN (n,n)-func-
tions, then F and G are EA-equivalent if and only if they are CCZ-equivalent [23]. Since 
almost all of the known APN functions are quadratic, this means that in practice almost all 
tests for CCZ-equivalence can be reduced to tests for EA-equivalence.

WF(a, b) ∈ {0,±�b}

(1)A1◦F◦A2 + A = G.
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Some special cases of EA-equivalence can be obtained by applying additional con-
straints to the functions A1, A2, and A from (1). If A = 0, we say that F and G are affine 
equivalent; and if, in addition, A1(0) = A2(0) = 0 so that A1 and A2 are linear, we say that F 
and G are linear equivalent.

In general, deciding whether two given (n,n)-functions are equivalent is a difficult com-
putational problem. Both CCZ- and EA-equivalence can be tested by deciding the isomor-
phism of linear codes associated with the functions in question [24, 25]. Recently, algo-
rithms for deciding EA-equivalence in certain cases without going through coding theory 
have been developed in [26] and [17].

Classifying functions up to an equivalence relation can be facilitated by means of invari-
ants, i.e. properties that are constant within each equivalence class. For instance, the dif-
ferential uniformity is a CCZ-invariant. Clearly, the differential uniformity is not useful in 
classifying APN functions (which have a differential uniformity equal to 2 by definition) 
but there exist many other invariants under CCZ- and EA-equivalence that can simplify 
the classification process quite significantly. We refer the reader to the survey [27] for a 
detailed overview of various invariants and how they can be used to simplify the classi-
fication of APN functions. In this paper, we mostly consider the differential spectrum of 
the ortho-derivative, described in Section 2.2 above. The values that the ortho-derivative’s 
differential set can take are very discriminating, and have virtually the same distinguishing 
power as an actual EA-equivalence test in practice.

2.5  Known APN functions

Some of the earliest, and most fascinating in a number of ways, examples of APN func-
tions are given by monomials in their univariate polynomial representation. These func-
tions are referred to as power functions, or monomial functions. At present, we know of 
six infinite families of monomial APN functions. An exact list can be found in e.g. [28]. A 
conjecture of Dobbertin states that any APN monomial is CCZ-equivalent to an instance 
from one of these families.

In addition to the six infinite monomial families, a number of infinite polynomial con-
structions have been discovered; these are summarized in Table 1. As we can observe from 
the table, the univariate polynomial form of these families can be quite varied; and yet, 
despite this, all of the functions listed in Table  1 are quadratic. Constructing an infinite 
family of APN functions CCZ-inequivalent to both monomials and quadratic functions 
would be a groundbreaking result. Furthermore, it is almost certain that the infinite mono-
mial families together with polynomial families from Table 1 constitute only a minuscule 
portion of the possible constructions; finding new infinite families of APN functions is an 
important ongoing problem.

We note that the families C14-1 and C14-2 have not been published yet, but univariate 
and bivariate representations can be found e.g. in the survey [29].

3  Triplicate functions

In this section, we introduce the class of triplicate functions as a generalization of 3-to-1 
functions, and conduct a theoretical study of their basic structural properties and their rela-
tion to APN functions. We derive several different characterizations of such functions, and 
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show that 3-to-1 functions among triplicate functions are extremal objects in a number of 
ways. We also recall, adapt, and generalize some known results on 3-to-1 functions.

The section is organized as follows. In Section 3.1, we introduce the classes of triplicate 
functions and canonical triplicate functions, and some other basic notions that we will use 
throughout the paper. We recall the most important known results on 3-to-1 functions from 
[4] and [5], and make some simple but fundamental structural observations on the behavior 
of triplicate and canonical triplicate functions.

In Section 3.2, we show how triplicate functions can be characterized using the Walsh 
transform. We then characterize 3-to-1 among the triplicate functions, show that they are 
extremal objects in some sense, and prove that some exponential sums involving the sec-
ond power moment of the Walsh transform are constant in the case of 3-to-1 functions.

In Section 3.4, we show that the image set of any quadratic 3-to-1 function is a partial 
difference set with prescribed parameters, generalizing a result from [4]. As a consequence 
of this fact, we compute the exact value of the multiset πF from [12] (which is a CCZ-
invariant for APN functions) for any quadratic 3-to-1 function, and use it to compute a 
lower bound on the Hamming distance between any two quadratic 3-to-1 functions, and to 
give an upper bound on the total number of such functions over �2n for any even n.

3.1  Basic notions

A number of the known APN functions have a univariate polynomial form in which all 
exponents are multiples of 3. The simplest example is the Gold function x3, which is known 
to be APN over �2n for any extension degree n; we also know that any APN power function 
xd over �2n must have gcd(d, n) = 3 for n even (see e.g. [40]); and so any power APN func-
tion over a finite field of even extension degree must be of this form. Furthermore, one can 
observe many such instances among the APN functions from the known infinite polyno-
mial families; for example, all the exponents of the binomials from family C1-C2 over �2n 
are divisible by 3 when n is even (we present a formal proof in Proposition 8). In Section 7, 
we survey the known infinite polynomial families of APN functions with respect to this 
property. Most of the known families contain functions of this form, and some of them, in 
fact, consist entirely of such functions.

When n is even, the finite field �22 is a subfield of �2n ; let β be a primitive element of 
�22 . Suppose that F is a function with no constant term (so that F(0) = 0) and that all of its 
exponents are divisible by 3. Since β3 = 1, we have F(x) = F(βx) = F(β2x) for any x ∈ �2n . 
Thus, multiplying the input of the function F by a non-zero element from �22 does not 
change its output. In particular, the non-zero inputs x ∈ �

∗
2n

 to F can be partitioned into 
triples {x,βx,β2x} such that F(x) = F(βx) = F(β2x). Note that, depending on the concrete 
function F, distinct triples may also map to the same image; if all the triples map to distinct 
images (in which case F is a 3-to-1 function), the image set of F will consist of precisely 
1 +  (2n − 1)/3 elements, including 0. Another way to look at this is to consider the pre-
images F−1(y) = {x ∈ �2n ∶ F(x) = y} of the non-zero elements y ∈ �

∗
2n

 ; then the cardinal-
ity of each pre-image F− 1(y) for y ∈ �

∗
2n

 is a multiple of 3; if all the triples map to distinct 
values, then the size of each pre-image is exactly 3, and so the image set of F consists of 
precisely 2

n−1

3
+ 1 elements, which is the minimum possible size of the image set of any 

APN function in even dimension [41]. We will call functions whose non-zero inputs can 
be partitioning into triples {x,y,z} mapping to the same value triplicate functions. Note that 
triplicate functions can only exist for even values of n, since 3 is a divisor of  2n − 1 if and 
only if n is even.
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The number of distinct triples of non-zero elements, viz.  (2n − 1)/3, will appear quite 
frequently throughout the following discussion; for the sake of simplicity, we will typi-
cally denote it by K =  (2n − 1)/3 when the dimension n is clear from the context. We 
also introduce the following notion to facilitate the discussion.

Definition 1 Let n be an even natural number and K =  (2n − 1)/3. We say that a sequence 
T = {Ti}

K
i=1

= {{ai, bi, ci}}
K
i=1

 of unordered triples of elements from � ∗
2n

 is a triple partition 
of �2n if:

1)  
⋃K

i=1
Ti = �

∗
2n

;
2) Ti ∩ Tj = ∅ for i≠j.

If F is a function over �2n with F(0) = 0, we say that T  corresponds to F if, for any 
{x, y, z} ∈ T  , we have F(x) = F(y) = F(z).

In the following definition, we consider the slightly more general case of (n,m)-func-
tions (allowing the dimensions m and n to be distinct). While we concentrate primarily on 
(n,n)-functions throughout the paper, the proof of Proposition 4 for (n,m)-functions pro-
ceeds by induction on m (with the proof for (n,n)-functions that we are actually interested 
in following from this general case by setting m = n), and so we need this more general 
context.

Definition 2 Let m,n be natural numbers with n even, and let F be an (n,m)-func-
tion with F(0) = 0. If � ∗

2n
 can be partitioned into disjoint triples Ti = {ai,bi,ci}i for 

i = 1, 2,… ,K = (2n − 1)∕3 such that F(ai) = F(bi) = F(ci) for i = 1, 2,… , (2n − 1)∕3 , then 
we say that F is a triplicate function. If Ti = {ai, bi, ci} ∈ T  corresponding to F, we will 
sometimes write F(Ti) as shorthand for F(ai) (or, equivalently, F(bi) or F(ci)).

While any (n,n)-function for even n with exponents divisible by 3 partitions the non-
zero inputs of �2n into triples, the converse implication is not true. Indeed, we can see 
that when the exponents of F are all divisible by 3, the triples Ti can systematically 
be taken in the form {x,βx,β2x} for x ∈ �

∗
2n

 . Partitioning � ∗
2n

 into triples and arbitrarily 
assigning output values to those triples so that e.g. 1 and β lie in triples mapping to 
distinct output values is enough to define a triplicate function whose exponents are not 
all divisible by 3. To differentiate between these two notions, we introduce the follow-
ing definition. Note that we only define it for (n,n)-functions (in contrast to Definition 2) 
since we use the univariate representation.

Definition 3 Let n be an even natural number, and F be an (n,n)-function with F(0) = 0. 
If every exponent i with a non-zero coefficient ai in the univariate polynomial form of F is 
divisible by 3, we say that F is a canonical triplicate function.

Thus, any canonical triplicate function is a triplicate function, but not vice-versa. 
We note that canonical 3-to-1 functions (as a special subclass of triplicate functions 
and canonical triplicate functions) and their relation to APN functions have been previ-
ously studied in [4]; canonical triplicate functions are also studied in [5] where they are 
called 3-divisible functions. In [4] the authors show that any quadratic canonical tripli-
cate function is APN if and only if it is 3-to-1, i.e. if all triples map to distinct values; 
and in [5], it is shown that any plateaued (and, in particular, quadratic) 3-to-1 function 
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is APN. Similarly, [4] shows that any quadratic canonical triplicate APN function has a 
Gold-like Walsh spectrum; and Theorem 11 of [5] extends this to the more general case 
of any plateaued triplicate function. We thus have the following noteworthy results.

Theorem 1 [4, 5] Let F be an (n,n)-triplicate function for some even natural number n. 
Then:

1) if F is APN, then F is 3-to-1;
2) if F is plateaued and 3-to-1, then F is APN.

We note that any quadratic function is, in particular, plateaued [19, 20]. Conse-
quently, the notions of 3-to-1-ness and APN-ness coincide in the case of quadratic trip-
licate functions.

Theorem 2 [4, 5] Let F be a plateaued 3-to-1 APN function over �2n with n even. Then

for any b ∈ �
∗
2n

 , where n = 2k, and so

 for any a ∈ �2n and any b ∈ �
∗
2n

 , i.e. F has a Gold-like Walsh spectrum.

Theorem 2 allows us to give an easy proof that the extended Walsh spectra of func-
tions belonging to a number of the known infinite APN families are Gold-like. Particu-
larly in the case of canonical triplicates, it can be quite easy to show that all the expo-
nents in the univariate representation of some families are divisible by 3; the exact form 
of the extended Walsh spectrum then follows immediately from Theorem 2. We will see 
examples of such computations in Section 7, where we study which of the known infi-
nite families of APN polynomials contain, or consist of, triplicate functions.

In particular, the Walsh spectrum of family C13 had not been previously computed; 
in Proposition 8, we show that all functions belonging to this family are canonical tripli-
cates, and thereby prove that they have a Gold-like Walsh spectrum.

Due to Theorem  1, we will mostly be interested in the properties and behavior of 
3-to-1 triplicate functions, whether canonical or not. We can observe that canonical 
3-to-1 functions have some useful properties that can be utilized in constructions and 
proofs; in particular, virtually all proofs related to canonical 3-to-1 functions rely on 
one of these properties rather than the functions being canonical triplicates per se. At 
the time of writing, all known 3-to-1 APN functions have these properties. Whether this 
is true for any 3-to-1 APN function and, indeed, whether any 3-to-1 APN function is 
linear-equivalent to a canonical one, we do not know at the moment. In order to make 
the subsequent proofs and arguments as general as possible, we formulate these proper-
ties independently of the notion of canonical triplicates.

Recall that the sumset of a set S is the set 2S = {s1 + s2 : s1,s2 ∈ S,s1≠s2}. As 
observed in [42], a necessary condition for an (n,n)-function F to be APN is that for 
any a,b ∈Im(F) with a≠b, the sumsets of F− 1(a) and F− 1(b) should be disjoint. Indeed, 
if x1,x2 ∈ F− 1(a) and y1,y2 ∈ F− 1(b) with x1 + x2 = y1 + y2, then DwF(x1) = DwF(y1) = 0 
for w = x1 + x2, which implies that F is not APN. For this reason, we will frequently 

(2)WF(0, b) ∈
{
(−1)k2k, (−1)k+12k+1

}

WF(a, b) ∈
{
0,±2k,±2k+1

}
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consider only triple partitions T  for which the sumsets of any two distinct triples Ti and 
Tj are disjoint. We formalize this as follows.

Definition 4 Let T = {Ti}
K
i=1

 be a triple partition of �2n for some even natural number n. 
We say that T  has disjoint sumsets if 2Ti ∩ 2Tj = ∅ for any i, j ∈ {1, 2,… ,K} with i≠j. If 
T  corresponds to an (n,n)-function F, then we will say that F has disjoint sumsets.

We can immediately see that any canonical 3-to-1 function has disjoint sumsets. In fact, 
this is implied by the stronger condition that the elements in any triple {x,βx,β2x} corre-
sponding to a canonical 3-to-1 function sum to 0.

Definition 5 Let T = {Ti}
K
i=1

= {{ai, bi.ci}}
K
i=1

 be a triple partition of �2n for some natural 
number n. We say that T  has the zero-sum property if ai + bi + ci = 0 for i = 1, 2,… ,K . 
If F corresponds to T  , then we say that F has the zero-sum property, or that F is a zero-
sum triplicate.

We can easily see that any canonical 3-to-1 function has the zero-sum property since 
its preimage sets are of the form {x,βx,β2x} for x ∈ �

∗
2n

 . We can also see that the zero-
sum property is preserved under linear equivalence. Indeed, suppose that L1 ∘ F1 ∘ L2 = F2 
for some (n,n)-functions F1,F2,L1,L2 with L1,L2 linear permutations. Suppose, furthermore, 
that F1 has the zero-sum property. Since L1 maps 0 to 0, it cannot possibly affect the zero-
sum property, and so we can assume that L1 is the identity and we have simply F1 ∘ L2 = F2. 
Now, consider some distinct x, y, z ∈ �2n such that F2(x) = F2(y) = F2(z). Then F1(L2(x)) = 
F1(L2(y)) = F1(L2(z)), and so L2(x) + L2(y) + L2(z) = 0 since F1 has the zero-sum property. 
By the linearity of L2, we get L2(x + y + z) = 0 and hence x + y + z = 0. Thus, F2 has the 
zero-sum property as well.

According to our computational results, all known 3-to-1 APN functions over �2n  n ≤ 14 
have the zero-sum property. We conjecture that this is true in general. Note that we only do 
so for the quadratic case. In fact, we suspect that it might hold for 3-to-1 APN functions 
of higher algebraic degree as well; but since at the time of writing we know very few non-
quadratic APN functions, we consider that we have sufficient empirical data to state such a 
conjecture only for the quadratic case.

Conjecture 1 Any quadratic 3-to-1 function (which is then necessarily APN) has the 
zero-sum property.

We can observe that the canonical 3-to-1 functions have another interesting property: 
if we consider two distinct preimage sets {x,βx,β2x} and {y,βy,β2y} for some x, y ∈ �2n , we 
can see that {x + y,βx + βy,β2x + β2y} is also a preimage set; and so is e.g. {x + βy,βx + 
β2y,β2x + y}. In this sense, the “sum” of two triples Ti and Tj from T  is also a triple Tk from 
T  . We note that two triples can be “summed” like this in 3! = 6 distinct ways, and precisely 
3 of them give triples from T  ; for instance, if we add x to y but βx to β2y, then {x + y,βx 
+ β2y,β2x + βy} is not a triple Tk for any k. We will refer to this as the triple summation 
property.

Definition 6 Let T = {Ti}
K
i=1

 be a triple partition of �2n for some even natural number n. 
We say that T  has the triple summation property if, for any two distinct triples of ele-
ments T = {a,b,c} and T � = {x, y, z} from T  , the following three conditions are satisfied:
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•  {a + x, b + y, c + z} ∈ T  , or {a + x, b + z, c + y} ∈ T  ; and
•  {a + y, b + z, c + x} ∈ T  , or {a + y, b + x, c + z} ∈ T  ; and
•  {a + z, b + y, c + x} ∈ T  , or {a + z, b + x, c + y} ∈ T .

Note that if e.g. {a + x, b + y, c + z} ∈ T  in the first condition above, then 
{a + y, b + x, c + z} ∉ T  and so necessarily {a + y, b + z, c + x} ∈ T  from the second con-
dition since c + z cannot belong to two distinct triples from T  . Following the same logic, 
we can equivalently say that T  has the triple summation property if

•  {a + x, b + y, c + z}, {a + y, b + z, c + x}, {a + z, b + x, c + y} ∈ T  ; or
•  {a + x, b + z, c + y}, {a + y, b + x, c + z}, {a + z, b + y, c + x} ∈ T .

If an (n,n)-function F corresponds to T  , then we also say that F has the triple summation 
property.

Just like the zero-sum property, the triple summation property is preserved under linear 
equivalence. Indeed, we can observe that if L1 ∘ F1 ∘ L2 = F2 as before, then L1 does not 
affect this property since it only changes the image set of the function (and not the way in 
which the elements of � ∗

2n
 combine into triples); we can thus assume that L1 is the identity, 

so that we have F1 ∘ L2 = F2. But since L2 is additive and maps triples from the triple parti-
tion corresponding to F1 to triples from the triple partition corresponding to F2, we can see 
that F1 has the triple summation property if and only if F2 does.

We can observe that any function with the triple summation property and disjoint sum-
sets has the zero-sum property.

Proposition 1 Let F be a 3-to-1 (n,n)-function with the triple summation property and 
disjoint sumsets. Then F has the zero-sum property.

Proof Let T = {Ti}
K
i=1

 be a triple partition corresponding to F, and let {a,b,c} and {x,y,z} 
be two distinct triples in T  . Since F has the triple summation property, then either {a + 
x,b + y,c + z} or {a + x,b + z,c + y} must also be a triple in T  . We will treat the case 
when {a + x, b + y, c + z} ∈ T  ; the other case is handled analogically. Again, since F has 
the triple summation property, one of {a + y,b + z,c + x} or {a + y,b + x,c + z} must be 
a triple in T  . But if both {a + x,b + y,c + z} and {a + y,b + x,c + z} are in T  , then they 
have the element c + z in common, and so {a + x,b + y,c + z} = {a + y,b + x,c + z} since 
all distinct triples in T  must be disjoint. If a + x = a + y, we get x = y which contradicts 
{x, y, z} ∈ T  ; and if a + x = b + x, we get a = b, which contradicts {a, b, c} ∈ T  . So we 
must have that {a + x,b + y,c + z} and {a + y,b + z,c + x} are triples in T  . If these two 
triples are not distinct, then we must have one of a + x = a + y, or a + x = b + z, or a + x 
= c + x. The first and third case imply x = y and a = c, respectively, and give an immedi-
ate contradiction; so we must have a + b + x + z = 0. In this case, however, the sumsets 
of {a,b,c} and {x,y,z} are not distinct, which contradicts the hypothesis. The triples {a + 
x,b + y,c + z} and {a + y,b + z,c + x} must therefore be distinct. Applying the triple sum-
mation property, we see that one of {x + y,y + z,x + z} and {x + y,b + c,b + c + x + y} 
must be in T  . In the first case, we see that the sumsets of {x + y,y + z,x + z} and {x,y,z} 
coincide, and so we must have {x,y,z} = {x + y,y + z,x + z} which implies x + y + z = 0. 
In the second case, the sumset of {x + y,b + c,b + c + x + y} intersects those of {x,y,z} 
and {a,b,c}, which cannot happen since we assume that {x,y,z} and {a,b,c} are distinct. We 
have thus shown that for any two distinct triples {x,y,z} and {a,b,c} in T  , we must have x 
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+ y + z = 0. Since this is true for any two distinct triples, we can conclude that F has the 
zero-sum property as claimed (the only case not handled by the above argument is when T  
contains a single triple, which is the case for n = 2; but then T  contains all non-zero ele-
ments of �22 , and so it has the zero-sum property in this case as well). □

We thus know that any canonical 3-to-1 function has the triple summation property, 
the zero-sum property, and disjoint sumsets; any 3-to-1 function with the triplicate sum-
mation property and disjoint sumsets has the zero-sum property; and any 3-to-1 APN 
function has disjoint sumsets. We leave open the question of whether these inclusions 
are strict. Since according to our computational data, all known quadratic 3-to-1 (and 
hence APN) functions do have the triple summation property, we can formulate the fol-
lowing stronger conjecture. Since any quadratic 3-to-1 function is APN by Theorem 1, 
we can see by Proposition 1 that Conjecture 2 implies Conjecture 1.

Conjecture 2 Any quadratic 3-to-1 APN function has the triple summation property.

We remark that Theorems 1 and 2 apply to any plateaued (and, in particular, quad-
ratic) 3-to-1 function, regardless of whether it has any of the above properties or not.

As pointed out above, a triplicate function can be constructed by arbitrarily partition-
ing the elements of � ∗

2n
 into triples, and assigning each triple an arbitrary output value; 

the polynomial form of such a function can then be recovered by e.g. Lagrange interpo-
lation. Since we are mostly interested in constructing APN functions, a natural question 
would be whether APN-ness might impose some additional restrictions on the way that 
�
∗
2n

 is partitioned into triples. As already discussed, the triple partition T  corresponding 
to an APN 3-to-1 function must have disjoint sumsets; and since the sumsets of T  form 
a triple partition themselves, this means that any element of � ∗

2n
 has a unique expression 

as the sum of two elements belonging to the same triple of T  . Since this is an important 
structural property of 3-to-1 APN functions, we state it as an observation.

Observation 1 Let F ∶ �2n → �2n with F(0) = 0 be a 3-to-1 APN function for some even 
natural number n, and let T = {Ti}

K
i=1

 be a triple partition of �2n corresponding to F. Then 
the sumsets 2Ti for i = 1, 2,… ,K partition � ∗

2n
 as well. Furthermore, the sum of each sum-

set 2Ti is equal to 0 (in fact, this is true for any sumset), and so {2Ti}Ki=1 is a triple partition 
with the zero-sum property; furthermore, {0}∪ 2Ti is a linear plane for i = 1, 2,… ,K.

Equivalently, any element v ∈ �
∗
2n

 can be uniquely expressed as a sum of two ele-
ments from the same triple Ti; that is, for every v ∈ �

∗
2n

 , there exists a unique index 
i ∈ {1, 2,… ,K} such that ai + bi = v, or ai + ci = v, or bi + ci = v; and precisely one of 
these possibilities occurs.

3.2  Characterization by the Walsh transform

In this section, we show that an (n,m)-function F is triplicate if and only if all of its 
Walsh coefficients of the form WF(0,b) for b ∈ �2n are congruent to 1 modulo 3. One of 
the implications is quite simple; namely, it is easy to see that if F is a triplicate function, 
then its Walsh coefficients WF(0,b) are constant modulo 3 as shown in the following 
proposition.
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Proposition 2 Suppose F is a triplicate (n,m)-function for some natural numbers m,n 
with n even. Then, for any b ∈ �2m , we have

Proof The Walsh coefficient WF(0,b) is

 Since the non-zero elements of �2n form triples {ai,bi,ci} for i = 1, 2,… ,K = (2n − 1)∕3 
that map to the same value, the above becomes

 and since F(0) = 0 by the definition of a triplicate function, the claim follows immediately. 
□

We thus have the following immediate corollary.

Corollary 1 All components of a triplicate function are unbalanced.

We note that the property of all components being unbalanced can be rather useful 
when studying certain properties of functions; in particular, plateaued functions with all 
components unbalanced have rather nice characterizations that do not hold for the general 
case of plateaued functions [43].

We now prove the converse statement to Proposition 2 for (n,m)-functions. The proof 
proceeds by induction on m; we first prove the base case, i.e. we show that any Boolean 
triplicate (n,1)-function f has Walsh coefficients that satisfy the divisibility property (3).

Proposition 3 Let f ∶ �2n → �2 be a Boolean function with f(0) = 0 for some even natu-
ral number n. Suppose that 3∣Wf(0) − 1. Then f is a triplicate function.

Proof Let Zf = {x ∈ �2n ∶ x ≠ 0, f (x) = 0} and Of = {x ∈ �2n ∶ f (x) = 1} be the pre-
images of 0 and 1, respectively, under f. Then f is triplicate if and only if #Zf and #Of are 
both multiples of 3. Since n must be even, we have 3∣2n − 1, and since #Zf + #Of =  2n − 1, it 
is enough to show that 3∣#Zf. By definition, the Walsh coefficient Wf(0) is

 Since #Of =  2n − 1 − #Zf, the above becomes

 By assumption, 3∣Wf(0) − 1, and so 3∣2#Zf −  (2n − 1). Since  2n − 1 itself is a multiple of 
three, this implies that 3∣#Zf, and thus f is a triplicate function. □

The following proposition then described the induction step, and allows us to show, in 
particular, that any (n,n)-triplicate function has the divisibility property (3).

(3)3 ∣ WF(0, b) − 1.

WF(0, b) =
∑
x∈�2n

(−1)b⋅F(x) = (−1)b⋅F(0) +
∑

0≠x∈�2n

(−1)b⋅F(x).

WF(0, b) = (−1)b⋅F(0) + 3

K∑
i=1

(−1)b⋅F(ai),

Wf (0) =
∑
x∈�2n

(−1)f (x) = (−1)f (0) +
∑

0≠x∈�2n

(−1)f (x) = 1 + #Zf − #Of .

Wf (0) = 2#Zf − (2n − 1) + 1.
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Proposition 4 Let F be an (n,m)-function with F(0) = 0 for some natural numbers n,m 
such that n is even and 3∣WF(0,b) − 1 for all b ∈ �2n . Then F is a triplicate function.

Proof From the previous proposition, we know that all component functions of F are trip-
licate functions. We prove the statement by induction on m. If m = 1, there is nothing to 
prove. If m = 2, let A, resp. B, resp. C, resp. D denote the number of pre-images among � ∗

2n
 

of 00, resp. 01, resp. 10, resp. 11 (note that here we make use of the vector space represen-
tation, and consider the elements of �m

2
= �

2
2
 as pairs of binary values). Since 00 and 01 

exhaust all possible outputs where the first coordinate is zero, and since the first coordinate 
function is a triplicate function, we must have 3∣A + B. Similarly, we have 3∣A + C, and 
hence 3∣B − C. On the other hand, 01 and 10 exhaust all possibilities where the sum of the 
two coordinate functions is equal to 1, and since all component functions are triplicates, 
we also have 3∣B + C. From this and 3∣B − C we get 3∣B and 3∣C. But since 3∣A + C, this 
implies 3∣A; it is then easy to obtain also 3∣D, so that we have 3∣A,B,C,D.

Now suppose that the statement holds for all dimensions of the co-domain up to m; we 
will show that it also holds for m + 2. Let A, resp. B, resp. C, resp. D denote the number 
of pre-images among � ∗

2n
 of all elements of the form 00x̄ , resp. 01x̄ , resp. 10x̄ , resp. 11x̄ , 

for some fixed m-bit vector x̄ ∈ �
m
2

 . Let G be the (n,m + 1)-function obtained from F by 
restricting its output to the last m + 1 coordinates; that is, if F = (f1, f2,… , fm+2) , then let 
G = (f2, f3,… , fm+2) . By the induction hypothesis, G is a triplicate function. Since A + C 
is the number of all elements of � ∗

2n
 whose last m + 1 coordinates are of the form 0x̄ , this 

implies that 3∣A + C; in the same way, 3∣B + D. By restricting F to all coordinates except 
f2, we also obtain 3∣A + B and 3∣C + D in the same way. From 3∣A + B and 3∣A + C, we 
have 3∣B − C. Consider now the function G′ obtained from F by summing its first two 
coordinates, i.e. G� = (f1 + f2, f3, f4,… , fm+2) . By the induction hypothesis, G′ is a tripli-
cate function, and so the number of pre-images of 1x̄ under G′ is a multiple of 3. But this 
number of pre-images is precisely B + C, and so 3∣B + C. Combining this with 3∣B − C, 
we have 3∣2B and hence 3∣B. It is then easy to get 3∣A, 3∣C, and 3∣D as well. If the same 
argument is repeated for all possible x̄ ∈ �2m , we see that the number of pre-images of any 
element in �2m+2 is a multiple of three, and thus F is a triplicate function. □

We thus obtain the following characterization of triplicate functions.

Theorem 3 Let F be an (n,m)-function with F(0) = 0 for some natural numbers n and m 
with n even. Then F is a triplicate function if and only if WF(0,b) ≡ 1 (mod 3) for every 
b ∈ �2n.

3.3  Characterization of 3‑to‑1 among triplicate functions

Since a triplicate function F always maps all elements from a triple Ti = {ai, bi, ci} ∈ T  
to the same value, for every i, we have six pairs (ai,bi), (ai,ci), (bi,ai), (bi,ci), (ci,ai), and 
(ci,bi) that map to the same value under F. Since we have K =  (2n − 1)/3 triples Ti, there 
are at least 6K +  2n ordered pairs (x, y) ∈ �

2
2n

 that map to the same value (the term  2n 
coming from pairs of the form (x,x) for x ∈ �2n ). As shown in the following proposition, 
3-to-1 triplicate functions are precisely those triplicate functions that attain this lower 
bound with equality; we justify this by observing that if we take some triplicate function 
F with triples Ti and Tj with F(Ti)≠F(Tj) and modify it by “merging” the output values 
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on Ti and Tj (so that we obtain a function G with G(Ti) = G(Tj) and G(Tk) = F(Tk) for 
k≠i,j), the number of pairs (x,y) for which F(x) = F(y) can only increase.

Proposition 5 Let F be a triplicate (n,n)-function for some even natural number n, and 
let DF = {(x, y) ∶ x, y ∈ �2n ,F(x) = F(y)} be the set of pairs of (not necessarily distinct) 
elements of �2n that map to the same value under F. Then

 Furthermore, equality occurs if and only if F is a 3-to-1 function.

Proof Let K =  (2n − 1)/3 be the number of distinct triples as before. Since F(0) = 0 for any 
triplicate function F, in the following we will consider only the values of F on � ∗

2n
 when dis-

cussing its image set. We know that a triplicate (n,n)-function can have at most K distinct 
elements in its image set. Let us consider all triplicate functions whose image set is a sub-
set of some set of elements {y1, y2,… , yK} . We are interested in how many triples Ti map 
to each yj for j = 1, 2,… ,K . In order to express this formally, we introduce the notion of a 
configuration of triples. More precisely, we call any ordered K-tuple (k1, k2,… , kK) of natu-
ral numbers with ki ≥ 0 such that 

∑K

i=1
ki = K a configuration of triples. The intuition is that 

ki counts the number of triples that map to yi. If F is 3-to-1, we have ki = 1 for all 1 ≤ i ≤ K. 
Observe that any configuration of triples can be obtained from (1, 1,… , 1) by an iterative 
sequence of steps in which we “transfer” some elements from ki to kj; more formally, such 
a step consists of taking some natural number Δ ≤ ki, and defining a new configuration 
(k�

i
)i of triples in which k�

i
= ki − Δ , k�

j
= kj + Δ , and k�

l
= kl for all l≠i,j. Furthermore, we 

can observe that any configuration of triples can be obtained from (1, 1,… , 1) by always 
“transferring” elements from ki to kj such that ki ≤ kj. It is thus sufficient to show that such 
an operation never decreases the number of pairs in DF. Furthermore, we can assume Δ 
= 1, since for larger values of Δ the transfer can be decomposed into several steps with Δ 
= 1 for each step.

Suppose (ki)i is some configuration of triples in which ki = A and kj = B. If we have a 
new configuration of triples (k�

i
)i as above with k�

i
= A − 1 , k�

j
= B + 1 , and k�

l
= kl for all 

l≠i,j (so that we have transferred one element from the image corresponding to ki to the 
image corresponding to kj), the number of unordered pairs {x,y} for which F(x) = F(y) 
with respect to (k�

i
)i increases by

as compared to the number of such pairs with respect to (ki)i. When A ≤ B, this always 
leads to a positive increase in the number of pairs since B − A + 1 > 0. Thus, the uniform 
configuration of triples (1, 1,… , 1) corresponds to the minimum number of such pairs. □

Remark 1 The above result immediately suggests a comparison with a known characteriza-
tion of APN functions among plateaued functions. We know from Theorem 6 in [43] that 
any plateaued (n,n)-function having all of its component functions unbalanced satisfies

#DF ≥ 2n+1 + 2n − 2.

(
3A − 3

2

)
+

(
3B + 3

2

)
−

(
3A

2

)
−

(
3B

2

)

=
(3A−3)(3A−4)+(3B+3)(3B+2)−3A(3A−1)−3B(3B−1)

2
= 9(B − A + 1)
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 with equality if and only if F is APN. Recall from Corollary 1 that the component func-
tions of any triplicate function are necessarily unbalanced. Note that this is almost the same 
characterization as the one that we have in Proposition 5; in fact, the two characteriza-
tions coincide in the case of plateaued (and, in particular, quadratic) functions. Despite this 
apparent similarity, the two characterizations concern different cases: Theorem 6 in [43] 
applies to any plateaued function (regardless of whether it is triplicate or not), while Propo-
sition 5 addresses the case of any triplicate function (regardless of whether it is plateaued 
or not). Furthermore, we know examples of triplicate APN functions that are not plateaued 
(for instance, the Dobbertin power function over �2n for even n), and so the two characteri-
zations do not coincide even in the APN case. In this sense, it is remarkable that 3-to-1 and 
triplicate functions behave in the same way as APN and plateaued ones with respect to the 
size of DF.

Since the number of elements that map to the same image can be expressed using 
the second powers of Walsh coefficients of the form WF(0,b), the characterization from 
Proposition 5 can be equivalently expressed in terms of the Walsh transform as follows.

Corollary 2 Let F be a triplicate (n,n)-function for some even natural number n. We have

 with equality if and only if F is 3-to-1.

Proof We have

 As observed in Proposition 5, the number of ordered pairs (x,y) with F(x) = F(y) is always 
at least  2n+ 1 +  2n − 2, and equality occurs if and only if F is 3-to-1. It then suffices to sub-
stitute this number in the above expression.

In fact, in the case when F is 3-to-1, we can explicitly evaluate the power moment ∑
b∈�2n

W2
F
(a, b) for any a ∈ �

∗
2n

 as well; it can only take two possible values, one of which 
is attained for a = 0, and the other is attained for any a ∈ �

∗
2n

 . This is another remarkable 
property of triplicate functions, as the values of these power moments can greatly vary 
in general (even in the case of quadratic APN functions).

Proposition 6 Let F be a 3-to-1 (and hence triplicate) (n,n)-function for some even posi-
tive natural number n. Then:

#
{
(a, b) ∈ �

2
2n
∶ F(a) = F(b)

}
≥ 2n+1 + 2n − 2,

∑
b∈�2n

W2
F
(0, b) ≥ 22n+1 + 22n − 2n+1,

∑
b∈�2n

W2
F
(0, b) =

∑
b,x,y∈�2n

�b(F(x) + F(y)) = 2n#
{
(x, y) ∈ �

2
2n
∶ F(x) = F(y)

}
.

(4)
∑
b∈�2n

W2
F
(a, b) =

{
22n+1 + 22n − 2n+1 a = 0

2n(2n − 2) a ≠ 0.
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Proof The case for a = 0 is contained in the statement of Corollary 2. For any fixed 
0 ≠ a ∈ �2n , we have

where yx and zx are the two elements forming a triple Ti = {x,yx,zx} for some 1 ≤ i ≤ K 
and x ∈ �2n . Note that as x runs through all non-zero values x ∈ �

∗
2n

 , then so do x + yx and x 
+ zx; and so the above becomes

as claimed. □

Recall from [4] that an (n,n)-function F is called zero-difference δ-balanced if the 
equation DaF(x) = 0 has precisely δ solutions for every a ∈ �

∗
2n

 . Proposition 5 in [4] (when 
specialized to the case of δ = 2 and characteristic 2) states that a function F satisfies (4) if 
and only if F is zero-difference 2-balanced. It has already been observed in [4] that what 
we call canonical triplicates are zero-difference 2-balanced when they are 3-to-1. Proposi-
tion 6 allows us to generalize this to the case of triplicate functions that are not necessarily 
canonical. We thus have the following corollary.

Corollary 3 Any 3-to-1 function is zero-difference 2-balanced.

Remark 2 For comparison, the quadratic APN (6,6)-function α25x5 + x9 + α38x12 + α25x18 
+ α25x36 can take 9 distinct values of the power moment 

∑
bW

2
F
(a, b) depending on the 

value of a.

3.4  The image of a quadratic 3‑to‑1 function as a partial difference set

An important result of [4] is that the image set of any quadratic canonical 3-to-1 function 
is a partial difference set with prescribed parameters. This is a fascinating structural result 
having fundamental implications about the properties and behavior of such functions. In 
this section, we generalize this result to the case of any quadratic 3-to-1 function, and 
investigate some of its consequences.

We recall that a partial difference set of an additive group G with parameters (v,k,λ,μ) 
is a set D ⊆ G with #D = k such that every non-identity element in D can be represented 
as g − h for g,h ∈ D,g≠h in exactly λ ways; and each non-identity element in G ∖ D can be 
represented as g − h for g,h ∈ D,g≠h in exactly μ different ways.

In order to prove Theorem 4, we will need the following lemma from [44], which was 
also used in [4] in the proof of Theorem 2 (whose specialization to the case of 3-to-1 func-
tions over fields of even characteristic is essentially the special case of the following Theo-
rem 4 for canonical triplicate 3-to-1 functions).

∑
b∈�

2n
W2

F
(a, b) =

∑
b,x,y∈�

2n

�b(F(x) + F(y))�a(x + y) =
∑

x,y∈�
2n

�a(x + y)
∑

b∈�
2n

�b(F(x) + F(y))

= 2
n ∑
x∈�

2n

∑
y∈�

2n

F(x)=F(y)

�a(x + y) = 2
n[1 +

∑
0≠x∈�

2n

∑
y∈�

2n

F(x)=F(y)

�a(x + y)]

= 2
n

�
1 +

∑
0≠x∈�

2n

�a(x + x) + �a(x + yx) + �a(x + zx)

�
= 2

n

�
1 +

∑
0≠x∈�

2n

�a(0) + �a(x + yx) + �a(x + zx)

�
,

∑
b∈�2n

W2
F
(a, b) = 2n

�
1 + 2n − 1 + 2

∑
0≠x∈�2n

�a(x)

�
= 2n[2n − 2] = 22n − 2n+1
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Lemma 1 [44] Let G be a group and D be a set of elements in G with |D| = k. Then, if D = 
−D, then D is a (v,k,λ,μ) partial difference set if and only if, for any nonprincipal character 
χ of G we have

Since we know that any quadratic 3-to-1 function has a Gold-like Walsh spectrum by 
Theorem 2, and also that any such function has all components unbalanced by Theorem 3 
and that every differential set is a linear (as opposed to merely affine) hyperplane, we can 
now obtain the following.

Theorem 4 Let F be a 3-to-1 generalized crooked (n,n)-function for some natural num-
ber n = 2k. Then the set of non-zero elements D = Im(F) ∖{0} in its image set is a  (2n,(2n 
− 1)/3,λ,μ) partial difference set, where

 if k is odd, and

 if k is even.

Proof By Lemma 1, it is enough to show that χa(D) takes the value on the right-hand side 
of (5) for any a ∈ �

∗
2n

 . Observe that

since we know that F is 3-to-1. Thus, verifying that the hypothesis of Lemma 1 holds 
amounts to computing the values of WF(0,a) for all a ∈ �

∗
2n

 . Since F is crooked and hence 
plateaued, we know that WF(0,a) ∈{0,±λa}, where λa is the amplitude of Fa. On the other 
hand, we know that WF(0,a) is not zero by Theorem 3. From Theorem 2, we know that F 
has a Gold-like Walsh spectrum, and so λa ∈{2n/2,2n/2 + 1} for any a ∈ �

∗
2n

 . In order to finish 
the proof, it only remains to compute the value on the right-hand side of (5) and to com-
pare it with the two amplitudes. We treat the cases of k odd and k even separately. When k 
is odd, we have

Finally, the right-hand side of (5) becomes

(5)�(D) =
�
d∈D

�(d) =
(� − �) ±

√
(� − �)2 − 4(� − k)

2
.

(�,�) =
(
(2k + 4)(2k − 2)∕9, (2k + 1)(2k − 2)∕9

)

(�,�) =
(
(2k − 4)(2k + 2)∕9, (2k − 1)(2k + 2)∕9

)

(6)�a(D) =
∑
d∈D

�a(D) =
1

3

∑
x∈� ∗

2n

�a(F(x)) =
1

3

(
WF(0, a) − 1

)

� − � =
(2k+4)(2k−2)−(2k+1)(2k−2)

9
=

2k−2

3
;

� − k =
(2k+1)(2k−2)

9
−

22k−1

3
=

(2k+1)(2k−2)−3(2k+1)(2k−1)

9

=
(2k+1)(2k−2−3⋅2k+3)

9
=

(2k+1)(1−2k+1)

9
;

(� − �)2 − 4(� − k) =
(2k−2)2−4(2k+1)(1−2k+1)

9

=
22k−2k+2+4−4(2k−22k+1+1−2k+1)

9
=

22k−2k+2+4−4(1−2k−22k+1)

9

=
22k−2k+2+4−4+2k+2+22k+3

9
=

9⋅22k

9
= 22k.
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 When k is even, we similarly obtain that (5) becomes

 By (6), the values that we obtain above should be multiplied by 3 and incremented by 1; 
they should then match the value of WF(0,a). The values become  2k+ 1 and −  2k for k odd, 
and −  2k+ 1 and  2k for k even. Comparing these with the ones from (2) from Theorem 2, we 
can see that the values coincide. Consequently, D = Im(F) ∖{0} is a partial difference set 
with the prescribed parameters as claimed. □

From this, we can immediately get the following corollary, which counts the mul-
tiplicities of the elements in the multiset MF = [F(x) + F(x + y) + F(y) ∶ x, y ∈ �2n ] for 
some given (n,n)-function F.

Note that the quantities given in Theorem 4 are in terms of the number of non-zero 
elements of the image set of F that add up to a given value. The multiplicities in MF will 
be larger, since F is a 3-to-1 function, and thus every non-zero value from its image set 
can be obtained in 3 different ways. This means that the quantities given in the theorem 
have to be multiplied by 9 (since, if i1 + i2 = v for some v ∈ �2n and i1,i2 ∈Im(F), then 
i1 and i2 can both be obtained in 3 different ways). Furthermore, the quantities in Theo-
rem 4 only account for combinations involving non-zero elements of Im(F). If i1 + i2 = 
v with e.g. i1 = 0, then v must be in the image set of F itself; and there are three ways 
to do this. The same happens if i2 = 0, and so when computing the multiplicities of ele-
ments in MF belonging to the image of F, we have to add 6.

Corollary 4 Let F be a generalized crooked 3-to-1 function over �2n for some natural 
number n = 2k. Then all non-zero elements of MF =

[
F(x) + F(y) + F(x + y) ∶ x, y ∈ �2n

]
 

have multiplicity in MF either

 when k is odd, or

 when k is even. In both the odd and the even case, the number of elements having these 
two multiplicities is precisely  (2n − 1)/3 and 2(2n − 1)/3, respectively; and the  (2n − 1) ele-
ments having the first multiplicity are precisely the non-zero elements in the image set of 
F.

As a byproduct, Theorem 4 allows us to compute the multiset Π0
F
 for any generalized 

crooked (and, in particular, quadratic) 3-to-1 function F; in the case of quadratic F, we 
can also compute the exact form of the multiset πF. These multisets are defined in [12], 
where it is shown that πF is invariant under CCZ-equivalence for APN functions; that 
is, if F and G are APN and CCZ-equivalent, then πF = πG. According to Corollary 2 of 
[12], the minimum value of πF gives a lower bound on the Hamming distance dH(F,G) 
between a given APN function F and any other APN function G; more precisely, we 

(2k − 2)∕3 ± 2k

2
=

2k − 2 ± 3 ⋅ 2k

6
=

{
(2k+2 − 2)∕6

(−2k+1 − 2)∕6.

(−2k − 2)∕3 ± 2k

2
=

−2k − 2 ± 3 ⋅ 2k

6
=

{
(−2k+2 − 2)∕6

(2k+1 − 2)∕6.

(2k + 4)(2k − 2) + 6 or (2k + 1)(2k − 2)

(2k − 4)(2k + 2) + 6 or (2k − 1)(2k + 2)
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have dH(F,G) ≥⌈mF/3⌉ + 1, where mF = minΠF . Furthermore, in the case when F is 
quadratic, it is shown that it is enough to compute the multiset

 which can then be used to immediately recover πF. If F is APN, it is easy to see that the 
number of derivative directions a ∈ �2n for which b ∈ H0

a
F for some b ∈ �

∗
2n

 is equal to half 
the number of pairs (a, x) ∈ �

∗
2n
× �2n such that F(x) + F(a + x) + F(a) = b. Clearly, this 

is the multiplicity of b in MF. As we already have these multiplicities computed in Corol-
lary 4, it is straightforward to combine this with Corollary 2 of [12] in order to obtain the 
following.

Corollary 5 Let F be a quadratic 3-to-1 function over �2n for some natural number n = 2k. 
Then

 where the multiplicities of the elements in the multiset are given in under-braces; conse-
quently, for any APN function G over �2n distinct from F, we have

The same value was obtained in Proposition 6 of [12] for the particular case of the Gold 
function x3. We have thus generalized this to any quadratic 3-to-1 triplicate function. As 
observed in [12], all instances from the known APN polynomial (as opposed to mono-
mial) families take the same, Gold-like value of πF (although πF can take thousands of dis-
tinct values across the known sporadic APN instances). The preceding discussion explains 
this phenomenon for the case of those families that contain 3-to-1 functions (or functions 
equivalent to 3-to-1 functions) among their instances; we refer to Section 7 where we sur-
vey the functions from the known infinite APN families with respect to the property of 
their instances being triplicates.

Corollary 5 gives a lower bound on the distance between any quadratic 3-to-1 func-
tion F, and any other APN function. In particular, it gives a lower bound on the distance 
between any two quadratic 3-to-1 functions. We can apply the same approach as in [45] to 
obtain an upper bound on the number of quadratic 3-to-1 functions over �2n for any even 
natural number n. We can then see that the proportion of quadratic 3-to-1 functions over �2n 
goes to 0 as n approaches infinity; the same was shown for planar and AB functions in [45].

Π0
F
=
[
#
{
a ∈ �2n ∶ b ∈ H0

a
F
}
∶ b ∈ �2n

]
,

Π0
F
=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

(2k + 1)(2k − 2)

2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

×(2n−1)∕3

, (2k + 4)(2k − 2)∕2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

×2(2n−1)∕3

, 2n

⎤⎥⎥⎥⎥⎦
k odd

⎡⎢⎢⎢⎢⎣

(2k − 4)(2k + 2)

2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

×(2n−1)∕3

, (2k − 1)(2k + 2)∕2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

×2(2n−1)∕3

, 2n

⎤⎥⎥⎥⎥⎦
k even,

(7)dH(F,G) ≥

{
(2k+1)(2k−2)

6
+ 1 k odd

(2k−4)(2k+2)

6
+ 1 k even.
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Corollary 6 Let n be an even natural number. Then the number of quadratic 3-to-1 func-
tions over �2n is at most

 where d is the value of the lower bound in (7) from Corollary 5. Consequently, the pro-
portion of quadratic 3-to-1 functions over �2n to all (n,n)-functions converges to 0 as n 
approaches infinity.

Since the number of pairs (x,y) or triples (x,y,x + y) satisfying F(x) + F(y) = v or F(x) 
+ F(y) + F(x + y) = v, respectively, can be expressed using the Walsh transform, we can 
obtain the following equivalent form of Theorem 4.

Corollary 7 Let F be a quadratic 3-to-1 (n,n)-function for some even natural number n 
= 2k. Then

Expressions of this form can be quite difficult to compute, in general, and we expect 
that the above expressions might lead to even more insights about the structure of quadratic 
3-to-1 functions in the future. We note that we formulate the above results strictly for quad-
ratic 3-to-1 functions, and not for crooked functions as in some other cases; this is because 
we know that πF can be derived from the smaller multiset Π0

F
 only in the case of quadratic 

APN functions (Proposition 5 of [12]). The proof of this proposition uses the fact that the 
derivatives of a quadratic function are affine, and so it is not immediately clear whether this 
result can be generalized to crooked functions.

4  Number of distinct differential sets

As we have seen above, 3-to-1 functions among the triplicate functions (and, in particu-
lar, APN functions among the quadratic triplicate functions) can be interpreted as extremal 
objects in the sense that they minimize the number of pairs (x, y) ∈ �

2
2n

 such that F(x) = 
F(y). We note that a tight upper bound on the number of such pairs for APN functions is 
given in Lemma 2 of [5]. As we know from [46] and [5], 3-to-1 APN functions also attain 
the smallest possible size of the image set among all APN functions over finite fields of 
even extension degree. In this section, we show that 3-to-1 functions are extremal objects 
in yet another sense. More precisely, we study the number of differential sets of canoni-
cal triplicate functions, and observe that 3-to-1 functions among the quadratic canonical 
triplicate functions can also be characterized in terms of having the largest possible num-
ber of distinct differential sets. In the course of comparing this with the behavior of APN 

(2n)2
n

∑d−1

j=0

�
2n

j

�
(2n − 1)j

,

1

22n

�
a,b∈�2n

�b(v)W
3
F
(a, b) =

1

2n

�
b∈�2n

�b(v)W
2
F
(0, b) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2n+1 + 2n − 2 v = 0

(2k + 4)(2k − 2) + 6 v ∈ Im(F) ⧵ {0}, k odd

(2k − 4)(2k + 2) + 6 v ∈ Im(F) ⧵ {0}, k even

(2k + 1)(2k − 2) v ∉ Im(F), k odd

(2k − 1)(2k + 2) v ∉ Im(F), k even.
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functions in general, we compute the exact number of distinct differential sets of any APN 
power function (even over �2n for odd n); moreover, we show that for a power APN function 
F over �2n , we have HaF = HbF if and only if F(a) = F(b) for any a, b ∈ �2n.

In Section 4.1, we show that for any APN power function F(x) = xd, we have HaF = HbF 
if and only if F(a) = F(b), and use this to compute the exact number of distinct differen-
tial sets of F. In Section 4.2, we do the same for the case of quadratic canonical triplicate 
functions, and observe that they act as a generalization of power APN functions over fields 
of even extension degree in this sense. We note that the directions a ∈ �2n for which HaF 
is contained in a given hyperplane have been described for F(x) = x2

i+1 (not necessarily 
APN) in [16], while in our analysis we assume that F(x) = xd is APN but do not make any 
additional assumptions about the exponent d.

4.1  Differential sets of APN power functions

Recall that 3-to-1 APN functions behave like the power APN functions in a number of 
ways, e.g. with respect to having an image set of size precisely  (2n − 1)/3 + 1 elements 
in the case of even n. It is thus natural to begin our investigation by studying the behav-
iour of the differential sets of power functions. It is not difficult to see that if F(x) = F(y) 
for some power function F, then the differential sets HxF and HyF coincide.

Proposition 7 Let F(x) = xl be a power function over �2n . Let a, b ∈ �
∗
2n

 . If F(a) = F(b), 
then HaF = HbF.

Proof The derivative of F is simply DaF(x) = xl + (x + a)l, and for some given v = DaF(x), 
multiplying both sides by (b/a)l = 1 yields yl + (y + b)l = v with y = (xb/a). □

What is more surprising is that the converse implication also holds; that is, if HaF = 
HbF for some a, b ∈ �

∗
2n

 , then F(a) = F(b) for any power function F. Before proceeding 
to the proof, we need to make the following auxiliary observation.

Lemma 2 Let F(x) = xl be a power function over �2n . Then, if HaF = HbF for some 
a, b ∈ �

∗
2n

 , the maps x↦(b/a)lx and x↦(a/b)lx are permutations of �2n that fix HaF.

Proof That e.g. x↦(b/a)lx is a permutation of �2n is clear; furthermore, for any value v ∈ 
HaF, i.e. for any v = xl + (a + x)l, we have (b/a)lv = yl + (b + y)l for y = (bx/a) so that the 
image of v lies in HbF = HaF. Thus, x↦(b/a)lx does indeed fix HbF = HaF. □

Then, to show that HaF = HbF necessarily implies F(a) = F(b), it suffices to prove 
that any element c defining a permutation x↦cx of �2n that fixes a given differential set 
must, in fact, be the neutral element of � ∗

2n
 . To this end, we first characterize the cardi-

nality of any set S that is left invariant under a map of the type x↦cx.

Lemma 3 Let c ∈ �
∗
2n

 and define � ∶ �2n → �2n by φ(x) = cx. Furthermore, let S ⊆ �
∗
2n

 be 
a non-empty subset of �2n such that φ(S) = S, i.e. {φ(s) : s ∈ S} = S. Then the cardinality 
of S can be written in the form #S =

∑k

i=1
ai ⋅ gi for some positive natural number k, where 

the numbers gi are the cardinalities of subgroups of � ∗
2n

 (i.e. divisors of  2n − 1) and ai are 
natural numbers (that may be zero). Furthermore, the order of c must be a common divisor 
of the numbers gi with i = 1, 2,… , k such that ai≠ 0.
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Proof Pick some arbitrary element s1 ∈ S; denote s2 = φ(s1), s3 = φ(s2), etc. After a finite 
number of such steps we must reach some element sk with φ(sk) = s1. From the definition 
of φ this can be written simply as cks1 = s1; since by assumption s1≠ 0, this implies ck = 1 
so that the order of c must be a multiple of k.

Denote R = {s1, s2,… , sk} . If R = S, then we are done; otherwise, take S� = S ⧵ R and 
repeat the same procedure for S′ , observing that S′ satisfies the hypothesis of the proposi-
tion as well since φ(S) = S and φ(R) = R immediately implies φ(S ∖ R) = (S ∖ R).

To summarize, #S can indeed be written as a sum of group orders, and c raised to the 
power of each such order must evaluate to 1; hence, the order of c must be a common divi-
sor of all these numbers. □

We thus obtain the following corollary.

Corollary 8 Let F be an APN function over �2n and let c ∈ �
∗
2n

 be such that the permuta-
tion φ(x) = cx fixes S = HaF for some a ∈ �

∗
2n

 ; then c = 1.

Proof Suppose that F is APN and S = HaF for some a ∈ �
∗
2n

 so that #S =  2n− 1. If φ(S) = S 
for some φ(x) = cx with #S = g1 + g2 +…+ gl and, denoting k = GCD(g1, g2,… , gk) , we 
have k∣2n− 1 or k∣(2n− 1 − 1) depending on whether 0 ∈ HaF (the first case corresponds to 
0∉HaF, while the second one corresponds to 0 ∈ HaF).

However, both cases are impossible for k≠ 1. Indeed, in the case #S =  2n− 1 only pow-
ers of two may divide #S, while  2n − 1 is an odd number and thus not divisible by two; in 
the case #S =  2n− 1 − 1, assuming ak =  2n− 1 − 1 and bk =  2n − 1 for some a, b ∈ ℤ leads to 
(b − a)k =  2n− 1 so that we once again get a contradiction if we assume k≠ 1 due to  2n− 1 
being divisible only by powers of two and the other two numbers involved being odd. Con-
sequently, the order of any c such that φ(x) = cx fixes HaF must be 1, i.e. c must be the 
neutral element. □

From this and from Lemma 2 we obtain the desired result.

Theorem 5 Let F be an APN power function over �2n . Then, for any a, b ∈ �
∗
2n

 we have 
HaF = HbF ⇔ F(a) = F(b).

Proof By Lemma 2, we have that if HaF = HbF, then x↦x(b/a)l is a permutation that fixes 
HaF = HbF. By Corollary 8, we see that (b/a)l = 1, and so bl = al, i.e. F(a) = F(b). The con-
verse implication was already observed in Proposition 7. □

This then immediately allows us to compute the number of distinct differential sets 
of the power APN functions.

Corollary 9 Let F be a power APN function over �2n . Then the number of dis-
tinct differential sets of F is equal to the cardinality of its image over �2n , i.e. 
#{HaF ∶ a ∈ �2n} = #{F(x) ∶ x ∈ �2n} . In particular, a power APN function has  2n distinct 
differential sets when n is odd, and  (2n − 1)/3 + 1 distinct differential sets when n is even.
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Note that Theorem 5 applies to any power APN function, which must then necessar-
ily be a canonical triplicate for an even dimension n; in particular, we do not assume 
anything about e.g. the algebraic degree. The condition that the power function is APN 
is, however, necessary: taking e.g. F(x) = x5 over �28 , we can see that F has an image 
set consisting of 52 elements, but only 18 distinct differential sets. In the general case 
of polynomials (as opposed to monomials), neither of the two implications HaF = HbF 
⇔ F(a) = F(b) holds (even for quadratic APN functions), and it is easy to find coun-
terexamples among the known polynomial APN instances; for instance, the so-called 
Kim function x3 + x10 + αx24 over �26 (where α is a primitive element of �26 ) serves as a 
simple counterexample to both implications.

4.2  Differential sets of canonical triplicate functions

We now proceed to the case of triplicate functions. In the case of a canonical triplicate 
(n,n)-function F, it is easy to observe that HaF = H�aF = H�2aF for any a ∈ �

∗
2n

 ; in this 
way, all elements belonging to a triple Ti not only map to the same output, but induce the 
same differential set as well. This is simply because for any a, x ∈ �2n we have

 In the particular case when F is a quadratic APN function so that its ortho-derivative πF is 
well-defined, this observation means that πF is itself a canonical triplicate function.

Observation 2 If F is a canonical triplicate (n,n)-function for some even natural number 
n, then HaF = H�aF = H�2aF for any a ∈ �

∗
2n

 . In particular, the ortho-derivative of a gener-
alized crooked canonical triplicate function is a canonical triplicate function.

We thus know that a canonical triplicate function can have at most  (2n − 1)/3 distinct 
non-trivial differential sets (by “non-trivial”, we mean that we exclude the differential set 
H0F = {0}). Since 3-to-1 triplicate functions are precisely those triplicate functions that 
maximize the size of the image set, one would intuitively expect that their differential sets 
might exhibit a similar behavior; that is, that 3-to-1 functions have precisely  (2n − 1)/3 dis-
tinct non-trivial differential sets. In the following, we prove that this is indeed so for the 
case of quadratic canonical triplicates.

Recall that [HbF] is the set of all a ∈ �2n for which HaF = HbF. Recall also the sym-
plectic form ΔaF(x) = F(x) + F(a + x) + F(a) + F(0), which in our case becomes sim-
ply ΔaF(x) = F(x) + F(a + x) + F(a) since any triplicate function F satisfies F(0) = 0 by 
definition.

Lemma 4 For any quadratic APN (n,n)-function F with F(0) = 0 and even n, we have 
W2

F
(0, �) = 2n(1 + #[H(�)]).

Proof We have

D�aF(�x) = F(�x) + F(�(x + a)) = F(x) + F(a + x) = DaF(x).
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where Δ∗
a
F is the adjoint operator4 of ΔaF. We thus need to find all roots of Δ∗

a
F(�) . 

Since Ker(L*) = Im(L)⊥ for any linear (n,n)-function L, we have that Δ∗
a
F(�) = 0 if and 

only if HaF = H(�) . The statement follows immediately, bearing in mind that 0 is a trivial 
root of Δ∗

a
F . □

We can now show that a canonical quadratic 3-to-1 function has precisely  (2n − 1)/3 
distinct non-trivial differential sets. We know that any generalized crooked function is also 
plateaued (see e.g. [40], p.278) which is a property that we need in the proof.

Theorem 6 Let F be a quadratic canonical triplicate (n,n)-function. Then F has at most 
 (2n − 1)/3 distinct non-trivial differential sets, with equality if and only if F is 3-to-1. In the 
latter case, the ortho-derivative πF is a canonical triplicate 3-to-1 function as well.

Proof From Observation 2, we already know that F has at most  (2n − 1)/3 distinct non-trivial 
differential sets. We now show that, in the crooked case, if F is 3-to-1, then all of the  (2n − 1)/3 
differential sets corresponding to distinct triples Ti are distinct. Since F is crooked, we know 
that it is plateaued [40]; let λb denote the amplitude of the component function Fb for b ∈ �

∗
2n

 . 
Since Fb is unbalanced by Corollary 1, we must have WF(0,b) ∈{±λb}, and thus W2

F
(0, b) = �2

b
 

for all b ∈ �
∗
2n

 . Since by Theorem 2 F has a Gold-like Walsh spectrum, we know that λb, and 
hence W2

F
(0, b) , takes precisely two values across all b ∈ �

∗
2n

 , viz.  2n and  2n+ 2. By Lemma 4 we 
then have that the hyperplane H(b) corresponds to 3 differential sets Ha if W2

F
(0, b) = 2n+2 ; 

and that it corresponds to no differential set if W2
F
(0, b) = 2n . Thus, HaF = HbF for some 

a, b ∈ �
∗
2n

 implies b ∈{a,βa,β2a}, and so πF is 3-to-1 as claimed. Conversely, if HaF = HbF for 
some b∉{a,βa,β2a}, then we must have W2

F
(0, b) ∉ {2n, 2n+2} by Lemma 4, and so F does not 

have a Gold-like Walsh spectrum. We thus obtain a contradiction to Theorem 2. □

Based on some limited computational experiments, we suspect that the same is true for 
triplicate functions that are not necessarily canonical and not necessarily quadratic; in other 
words, that a triplicate function has  (2n − 1)/3 + 1 distinct differential sets if and only if it is 
3-to-1. We leave this as an open question.

In light of the analogy that we make between 3-to-1 (n,n)-functions for even n and per-
mutations for odd n, we remark that an analogical result is known for quadratic APN per-
mutations over �2n with odd n [16]; in fact, Proposition 2 of that paper shows that any gen-
eralized crooked function in an odd number of variables has all differential sets distinct.

4.3  Other extremal properties of 3‑to‑1 functions

As we have seen above, 3-to-1 functions can be characterized among quadratic canonical 
triplicate functions by minimizing or maximizing the value of certain parameters (such as 

W2
F
(0, �) =

∑
x,a∈�2n

��(F(x) + F(x + a)) =
∑

x,a∈�2n

��(F(x) + F(x + a) + F(a) + F(a))

=
∑

x,a∈�2n

�(�ΔaF(x) + �F(a)) =
∑

x,a∈�2n

�(Δ∗
a
F(�)x + �F(a))

=
∑

a∈�2n

�(�F(a))
∑
x

�x(Δ
∗
a
F(�)) = 2n

∑
a∈�2n∶Δ

∗
a
F(�)=0

�(�F(a)),

4 The adjoint of a linear function L is the linear function L* satisfying Tr(xL(y)) = Tr(L*(x)y) for any 
x, y ∈ �

2n
.
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the size of the image set, or the number of distinct differential sets). In this section, we for-
mulate several more characterizations of this form and show, in particular, that 3-to-1 func-
tions can be characterized by their number of bent components, and their number of com-
ponents having non-zero linear structures. We recall that a Boolean function f ∶ �2n → �2 
is called bent if Wf(a) ∈{±  2n/2} for all a ∈ �2n.

1) Linear structures: Recall that a ∈ �
∗
2n

 is called a linear structure of f ∶ �2n → �2 
if Daf is constant. If F is an APN function all of whose differential sets are linear hyper-
planes, then we can observe that HaF = H(b) for some a, b ∈ �

∗
2n

 if and only if a is a linear 
structure of Fb. Indeed, if HaF = H(b) , then we have Tr(bDaF(x)) = 0 for all x ∈ �2n by 
the definition of H(b) ; but from the additivity of the trace function, we can write this as 
Tr(bDaF(x)) = Tr(bF(x) + bF(a + x)) = Fb(x) + Fb(a + x) = DaFb(x) = 0 for any x ∈ �2n . 
We thus know that some linear hyperplane H(b) corresponds to a differential set of F if 
and only if Fb has non-zero linear structures. The number of components with non-zero 
linear structures of a crooked triplicate function is thus equal to the number of distinct dif-
ferential sets. Theorem 6 can then be equivalently formulated as follows.

Corollary 10 Let F be a quadratic canonical triplicate (n,n)-function. Then F has at most 
 (2n − 1)/3 components having non-zero linear structures. Furthermore, this bound is met 
with equality if and only if F is 3-to-1.

2) Bent components Continuing from the above, we can see from Proposition 29 on page 
100 of [40] that the derivative Def of a Boolean function f ∶ �2n → �2 is equal to 0 if and only 
if the support Supp(Wf) of its Walsh transform is contained in {0, e}⊥ = H(e) ; we recall that 
the support of the Walsh transform is the set of all elements a for which Wf(a) is non-zero, i.e. 
Supp(Wf ) = {a ∈ �2n ∶ Wf (a) ≠ 0} . Applying this to the components of an (n,n)-function F, 
we see that e ∈ �2n is a linear structure of Fb for some b ∈ �

∗
2n

 if and only if He = H(b) if and 
only if Supp(WFb

) ⊆ H(e) . On the other hand, if �b is bent for some b ∈ �2n , then we have 
Supp(WFb

) = �2n , and so the hyperplane H(b) does not correspond to any differential set. 
Thus, the number of distinct differential sets of F is equal to the number of non-bent compo-
nents. From the preceding discussion, we know that this number is no greater than  (2n − 1)/3 
for any triplicate function, and is attained by the 3-to-1 functions; we thus obtain yet another 
alternative expression of Theorem 6. We remark that this is known from [47].

Corollary 11 Let F be a quadratic canonical triplicate (n,n)-function. Then F has at most 
 (2n − 1)/3 non-bent components. Furthermore, this bound is met with equality if and only 
if F is 3-to-1.

5  Inequivalence of quadratic 3‑to‑1 APN functions to permutations

One of the main motivations for searching for new instances of APN functions is the hope 
that some of them may be CCZ-equivalent to permutations, and help shed new light on the 
so-called “big APN problem”, i.e. the problem of the existence of APN permutations over 
finite fields of even extension degree greater than 6. This naturally raises the question of 
whether 3-to-1 APN functions can be CCZ-equivalent to permutations. In this section, we 
partially answer this question by showing that quadratic 3-to-1 APN functions over fields 
of doubly-even extension degree cannot be CCZ-equivalent to a permutation. In order to do 
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this, we use a necessary condition from [48] and generalize a proof from the same paper 
showing that the functions from family C4 are CCZ-inequivalent to permutations in the 
case of doubly-even extension degrees.

Let F be an (n,n)-function for some natural number n, and let NB(F) denote the set of non-
bent components of F, i.e. the set of all elements a ∈ �

∗
2n

 for which the component function 
Fa is not bent. The necessary condition derived in [48] states that if F is CCZ-equivalent to a 
permutation, then {0}∪NB(F) must contain a linear subspace of dimension n/2. This condi-
tion is used in [48] both computationally and theoretically to show that certain APN functions 
cannot be CCZ-equivalent to permutations. In the following, we will show that this necessary 
condition is violated by any quadratic 3-to-1 APN function over a field of doubly-even exten-
sion degree, and conclude that such functions cannot be CCZ-equivalent to permutations.

We begin by generalizing a classical result due to Carlitz [49] that gives the exact value 
of exponential sums of the form 

∑
x�(ax

3) ; Carlitz’s result is also given as Lemma 1 in 
[48], and is an integral part of the proof of the CCZ-inequivalence of C4 to permutations. 
In our generalization, we interpret the elements x3 as the images of the Gold function 
x↦x3, and replace x3 with F(x) in the exponential sum, where F is some quadratic 3-to-1 
APN function. The actual proof of the generalized statement is a simple corollary of our 
observations on the values of the Walsh transform of quadratic 3-to-1 functions.

Corollary 12 Let F ∶ �2n → �2n be a quadratic 3-to-1 APN function for some natural 
number n = 2m. Denoting q =  2m, we have

where NB(F) is the set of non-bent components of F.

Proof For any a ∈ �2n , the exponential sum 
∑

x�(aF(x)) is simply the Walsh coefficient 
WF(0,a). If a = 0, the result is obvious. From the discussion in Section 4.3, we know that 
the non-bent components of F are precisely those elements a ∈ �2n for which the hyper-
plane H(a) is a differential set of F; and from Lemma 4, we know that WF(0,a)2 =  2n if 
a∉NB(F) ∪{0} and WF(0,a)2 =  2n+ 2 if a ∈NB(F), whence we can derive the absolute value 
of WF(0,a). The signs can be inferred from Theorem 2. □

We also recall the following well-known observation (see e.g. Proposition 10 on pp. 
74-75 in [40] for a proof).

Lemma 5 Let W ⊆ �2n be a subspace of �2n (using the identification of �2n with � n
2
 ) for 

some natural number n. Then for any a ∈ �2n , we have

where W⊥ is the orthogonal complement of W.

We are now ready to prove the following theorem.

(8)
�
x∈�2n

�(aF(x)) =

⎧⎪⎨⎪⎩

q2 a = 0

(−1)m+12q a ∈ NB(F)

(−1)mq a ∈ �
∗
2n
⧵ NB(F),

(9)
∑
w∈W

𝜒(aw) =

{
0 a ∉ W⊥

#W a ∈ W⊥,
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Theorem 7 Let F be a quadratic 3-to-1 (and hence APN) (n,n)-function for some natural 
number n = 2m = 4k. Let NB(F) be the set of non-bent components of F, and let W be any 
linear subspace contained in NB(F) ∪{0}. Then the dimension of W is at most m − 1. In 
particular, F is not CCZ-equivalent to a permutation.

Proof Denote q =  2m. Following the proof of Lemma 3 in [48], we evaluate the sum

in two ways.
First, we apply (9) to (10), and obtain

 The second identity follows from the fact that any non-zero element in the image of F 
has precisely 3 preimages, while 0 has precisely one preimage, viz. 0 itself. Note that 
(W⊥∩Im(F)) does not contain 0.

On the other hand, applying (8) to (10), we get

 since W ⊆ {0} ∪ NB(F) by assumption.
Under the assumption that m is even, and denoting X = #(W⊥∩Im(F)), we now have

 which becomes

 that is,

Let us assume that the dimension of W is at least m − 1 (otherwise there is nothing to 
prove). The number of elements in W is thus  2m− 1 + c = q/2 + c for some natural number c 
(possibly equal to zero). Substituting q/2 + c for #W in the above equation, we get

 The quotient (4c + 2qc)/(3/2q + 3c) is clearly non-negative for any choice of c, and so we 
get X ≤ 1. Since X must be a natural number, we have X ∈{0,1}. If X = 0, then we must 
have 4c+2qc

3∕2q+3c
= 1 , that is, 2c + 4qc − 3q = 0, which leads to c = 3q

2+4q
=

3⋅2m

2+2m+2
 . This expres-

sion is clearly less than 1 for any choice of m, and since c must be a natural number, we 
obtain a contradiction to X = 0. Thus, we must have X = 1.

If X = 1, then we must have 4c+2qc
3∕2q+3c

= 0 . Since the denominator is positive (due to both q 
and c being natural numbers, and q =  2m being non-zero), the above fraction is equal to 
zero if and only if 4c + 2qc = 0, i.e. 2c(2 + q) = 0, which is only possible if c = 0. Thus, the 
size of W is precisely q/2 =  2m− 1, and the dimension of W is precisely m − 1. Since this was 

(10)
∑
w∈W

∑
x∈�2n

�(wF(x))

∑
w∈W

∑
x∈�2n

𝜒(wF(x)) = #W#
{
x ∶ F(x) ∈ W⊥

}
= #W

(
3#(W⊥ ∩ Im(F)) + 1

)
.

∑
w∈W

∑
x∈�2n

�(wF(x)) = q2 + (#W − 1)(−1)m+12q

#W(3X + 1) = q2 − 2q(#W − 1),

3#WX + #W = q2 − 2#Wq + 2q,

X =
(
q2 − 2#Wq + 2q − #W

)
∕(3#W).

X =
(
q
2 − q

2 − 2qc + 2q − q∕2 − c

)
∕(3∕2q + 3c) = (3∕2q − 2qc − c)∕(3∕2q + 3c) = 1 − (4c + 2qc)∕(3∕2q + 3c).
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done under the assumption that the dimension of W is at least m − 1, we can conclude that 
the dimension of any linear subspace W contained in NB(F) ∪{0} is at most m − 1. The 
CCZ-inequivalence to permutations then follows immediately by Corollary 1 of [48]. □

We note that Theorem 7 significantly simplifies the proof of the CCZ-inequivalence 
of C4 to permutations from [48], and generalizes it to any quadratic 3-to-1 APN func-
tion. The question remains open of whether quadratic 3-to-1 functions can be equiva-
lent to permutations in the case of singly-even dimensions. In this regard, we recall 
that the Kim function over �26 is not equivalent to a 3-to-1 function.

6  Equivalence to triplicate functions

In Sections 7 and 8 we survey the known infinite families and sporadic APN instances, 
respectively, for triplicate functions. Clearly, it is possible that some APN (n,n)-function 
F is not a triplicate (or, equivalently, 3-to-1) function per se, but is EA-equivalent to a 
triplicate function. As one can easily see, compositions with linear permutations L1 and 
L2 of �2n of the form L1 ∘ F ∘ L2 do not change the property of being a triplicate (or 3-to-
1) function. Thus, to decide whether F is EA-equivalent to a triplicate function, it suf-
fices to check whether there exists a linear (n,n)-function L such that F + L is a triplicate 
function. The following observation is instrumental to our approach.

Observation 3 Let F,G,L be (n,n)-functions for some natural number n such that L is 
linear and F = G + L + c for some c ∈ �2n . Then

for any a, b ∈ �2n , where L* is the adjoint operator of L.

Proof From the definition of the Walsh transform, we have

which completes the proof. □

We can combine the characterization of triplicate functions by their Walsh coeffi-
cients from Theorem 3 with Observation 3 above to obtain the following condition.

Observation 4 Let T be a triplicate (n,n)-function for some natural number n, and let F 
= T + L + c for some linear (n,n)-function L and some c ∈ �2n . Let L* be the adjoint opera-
tor of L. If L*(b) = a for some a, b ∈ �2n , then χ(bc)WF(a,b) ≡ 1 (mod 3).

Proof Since T is a triplicate function, we have WT(0,b) ≡ 1 (mod 3) for any b ∈ �2n by 
Theorem 3. If L*(b) = a for some a, b ∈ �2n , then WF(a,b) = WT(a + L*(b),b) = WT(0,b) by 
(11), and the claim follows. □

(11)WF(a, b) = �(bc)WG(a + L∗(b), b)

WF(a, b) =
∑

x∈�2n

�(bF(x) + ax) =
∑

x∈�2n

�(bG(x) + bL(x) + bc + ax)

=
∑

x∈�2n

�(bG(x) + L∗(b)x + bc + ax)

= �(bc)
∑

x∈�2n

�(bG(x) + (L∗(b) + a)x) = �(bc)WG(a + L∗(b), b),
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This now allows for a conceptually simple algorithm that, for a given (n,n)-function F, 
tries to guess the values of L* on a basis B = {b1, b2,… , bn} of �2n such that F + L is a 
triplicate function. Essentially, having guessed the values of L* on b1, b2,… , bK for some K 
≤ n, we also know the values of L* on the linear span of {b1, b2,… , bK} , and we can check 
whether any of these values violates the condition from Observation 4. If so, we can imme-
diately backtrack; and if not, then we can proceed to guessing the value of bK+ 1 (if K < n); if 
we have already reached K = n and no contradictions have occurred, then we have found an 
L* satisfying Observation 4 from which we can, of course, immediately reconstruct L.

A pseudocode description of this search procedure is given under Algorithm 1.
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To see how well this performs in practice, we test it on some of the known APN func-
tions F over �2n for n ∈{6,8,10} as follows: we take a random linear function L, add it 
to F to obtain G = F + L, and then run a C implementation of Algorithm 1 to check for 
equivalence to triplicates. We do this both for APN functions F that are, or are equivalent 
to, triplicates, and for ones that are not. For each tested function F, we repeat the experi-
ment 10 times, and report the average running time of the trials. We discuss the variant of 
Algorithm 1 which terminates upon finding the first linear L for which F + L is a triplicate 
function; and so we report separately on the average running times for functions equivalent 
to triplicates, and for ones that are not equivalent to triplicates. For n = 6, resp. n = 8, resp. 
n = 10, the average time is 0.006, resp. 1.035, resp. 1432 seconds in the positive case. In 
the negative case, the search takes about 0.008 seconds for n = 6, and about 12 seconds for 
n = 8 on average; in the case of n = 10, the running time in the negative case was too long 
and we aborted the search.

Despite the fact that the running times increase rapidly with the dimension n, this pro-
cedure is still efficient enough to allow us to check whether known sporadic instances, and 
instances from the know APN families are EA-equivalent to triplicates for n ≤ 8. Our com-
putational results are summarized in Sections 7 and 8.

7  Triplicates in the infinite families

In this section, we demonstrate that triplicate and canonical triplicate functions are heavily 
represented among the instances of the known infinite APN families. More precisely, we 
observe the following. Note that in all cases we consider even dimensions n.

(i) all power APN functions are canonical triplicates;
(ii) family C1-C2 consists entirely of canonical triplicates;
(iii) the functions of family C3 are not canonical triplicates (as observed in [5]); however, 

we can computationally verify that they are linear-equivalent to canonical 3-to-1 func-
tions for dimensions up to 12;

(iv) families C4, C5, C6 consist entirely of canonical triplicates;
(v) the only canonical triplicates in C7-C9 are the ones that intersect C1-C2; the remaining 

functions from C7-C9 are not triplicates;
(vi) the functions from C10 are not triplicates;
(vii) some of the functions in families C10 and C12 are non-canonical triplicates, and the 

remaining ones are not triplicates;
(viii) family C13 consists entirely of canonical triplicates;
(ix) family C14 consists entirely of canonical triplicates when n/2 is odd [5];
(x) family C15 consists entirely of canonical triplicates.

Proposition 8 All functions belonging to families C1-C2, C4, C5, C6, C13, C14, or C15, 
as well as any monomial APN function over �2n for even n, is a canonical triplicate. The 
only functions from family C7-C9 that are canonical triplicates are the ones that intersect 
C1-C2.

Proof The functions from family C1-C2 have the polynomial form
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 so that the exponents in their univariate form are  2s + 1 and  2ik +  2mk+s. One of the condi-
tions for such functions to be APN is gcd(s, 3k) = gcd(s, n) = 1 , and since n is even, we 
must have that s is odd. Hence  2s + 1 is a multiple of 3. When considering the other expo-
nent, we consider the cases p = 3 and p = 4 separately. In both cases, we have m = p − i, 
i.e. m + i = p. In the case when p = 3, this means that we have either (i,m) = (1,2), or (i,m) 
= (2,1). In the first case, the exponent becomes  2k +  22k+s =  2k(1 +  2k+s), which is divisible 
by 3 if and only if 3∣1 +  2k+s, which is true if and only if k + s is odd; since we know that s 
must be odd, this means that the second exponent is a multiple of 3 if and only if k is even. 
Similarly, if (i,m) = (2,1), the second exponent becomes  22k +  2k+s =  22k(1 +  2s−k), which 
is divisible by 3 if and only if 3∣(1 +  2s−k) which, in turn, occurs if and only if s − k is odd; 
as before, we know that s is odd; we thus conclude that when p = 3, the second exponent is 
divisible by 3 if and only if k is even. On the other hand, we have n = pk = 3k, and since n 
is even by assumption, k must necessarily be even as well. Thus, all functions from C1-C2 
for p = 3 are canonical triplicates. When p = 4, we have three possibilities for the values of 
(i,m), viz. (1,3), (2,2), and (3,1). The second exponent,  2ik +  2mk+s, then becomes  2k +  23k+s 
=  2k(1 +  22k+s) in the first case;  22k +  22k+s =  22k(1 +  2s) in the second case; and  23k +  2k+s 
=  2k+s(22k−s + 1) in the third case. Since s is odd, we can immediately see that this exponent 
is divisible by 3 in all three cases, and so the functions from C1-C2 are canonical tripli-
cates when p = 4 as well.

To see that the functions from C3 are canonical 3-to-1 functions when n = 2m = 4k, we 
refer to the bivariate representation of these functions given in [50], viz.

where w ∈ �2n ⧵ �2m , q =  2m, and c, s ∈ �2n satisfy the conditions given in Table 1. The 
sum of the last two terms in the above expression, i.e. (w + wq)xy + s(w2i + w2iq)(xy)2

i , is 
linear, and can be ignored up to EA-equivalence. If n = 4k, so that m is even, then we have 
that i must be odd thanks to the condition gcd(i,m) = 1 . Consequently, we can see that in 
all of the terms x2i+1 , xy2i , x2i y , and y2i+1 , the total degree is always a multiple of 3, and 
so (x,y), (βx,β2y), and (β2x,βy) always map to the same output for any x, y ∈ �2m . Conse-
quently, the functions are triplicates, and thanks to Theorem 1, they are 3-to-1. Clearly, the 
elements of �2n represented by the pairs e.g. (x,y) and (βx,β2y) from � 2

2m
 are not multiples of 

β, and so these functions are not canonical.
The functions from families C4, C5, and C6 are obviously canonical triplicates since 

the composition L ∘ C of a canonical (n,n)-triplicate C with any linear function L (and, in 
particular, any trace function Trn

m
 for m∣n) is a canonical triplicate as well.

Similarly, as we know from e.g. [40], any power APN function xe over a field of even 
extension degree n must satisfy gcd(e, 2n − 1) = 3 and, in particular, e must be a multiple 
of 3.

The functions from family C13 are of the form x3 + a
(
x2

i+1
)2k

+ bx3⋅2
m

+ c
(
x2

i+m+2m
)2k

 , 
and we can clearly ignore the value of k since e is divisible by 3 if and only if e ⋅  2k is divis-
ible by 3 for any natural numbers e and k. For the same reason, 3 ⋅  2m is always a multiple 
of 3, and  2i+m +  2m is a multiple of 3 if and only if the same is true for  2i + 1. We thus only 
have to consider the exponent  2i + 1. According to the conditions for family C13, we must 
have i ∈{m − 2,m,2m − 1,(m − 2)− 1 mod n}, and m must be odd. We then immediately see 

x2
s+1 + u2

k−1x2
ik+2mk+s ,

F(x, y) = (c + cq)x2
i+1 +

(
w2i + w2iq + cw2iq + cqw2i

)
xy2

i

+ (w + wq + cw + cqwq)x2
i

y

+
(
w2i+1 + w(2i+1)q + cw2iq+1 + cqw2i+q

)
y2

i+1 + (w + wq)xy + s
(
w2i + w2iq

)
(xy)2

i

,
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that  2i + 1 is a multiple of 3 in all cases, and so all functions from family C13 are indeed 
canonical triplicates.

A proof of the fact that the functions from C14 are 3-to-1 is given in [5].
The functions from family C15 have the univariate representation 

aTrn
m
(bx3) + aqTrn

m
(b3x9) , and, as remarked above, the property of a function being a 

canonical triplicate is invariant under composition with linear functions; it is thus obvious 
that C15 consists of canonical 3-to-1 functions.

The functions from family C3 are not canonical 3-to-1 functions as observed already 
in [5]; however, we computationally confirm that they are linearly-equivalent to canonical 
functions for n ≤ 12, and believe that this is the case in general.

The functions from family C7-C9 have the univariate form 
ux2

s+1 + u2
k

x2
−k+2k+s + vx2

−k+1 + wu2
k+1x2

s+2k+s . We can observe that  2−k + 1 =  22k + 1 is 
never a multiple of 3, and so we must have v = 0. Furthermore, if 3∣2s +  2k+s =  2s(1 +  2k), 
then k must be odd; and 3∣2s + 1 implies that s is odd as well so that s − k is even. But then 
 2−k +  2k+s =  22k +  2k+s =  22k(1 +  2s−k) cannot be a multiple of 3, and so we must have w = 0 
if the function is a canonical triplicate. When v = w = 0, all functions from C7-C9 are, in 
fact, contained in C1-C2.

The functions from C10 have a univariate representation of the form 
(x + x

2
m

)2
k+1 + u

�(ux + u
2
m

x
2
m

)(2
k+1)2i + u(x + x

2
m

)(ux + u
2
m

x
2
m

) . One of the conditions for these functions to 
be APN states that u should be a primitive element of �2n , and so in particular u≠ 0. The 
last term from the above expression expands to u(ux2 + (u2

m

+ u)x2
m+1 + x2

m+1

) , and so these 
functions are clearly not canonical triplicates. □

Remark 3 As demonstrated in [5], the functions from families C14-1 and C14-2 as given 
by the bivariate representation from Table 1 are canonical triplicate functions. This sug-
gests that it may be possible to find a simple canonical form for these functions directly 
from their bivariate form. On the other hand, it is easy to see that the univariate represen-
tation of these functions found in e.g. [29] does not correspond to a canonical triplicate 
function. In the case of n = 2m with m odd, we can easily obtain such a representation 
for C14-1 and C14-2 by writing every element X ∈ �2n as X = x + βy for x, y ∈ �2m where 
x, y ∈ �2m and β is primitive in �4 . This is possible only when m is odd due to � ∉ �2m . The 
advantage in this case is that we have βk ∈{1,β,β2} for any natural number k, which greatly 
simplifies the resulting univariate translation. Denoting x = x2

m , we obtain:

• for m odd and i odd, the functions from C14-1 take the univariate form 
x2

i+1 + �2x
2i+1

+ �x2
2i

x + xx
22i;

• for m odd and i even, they take the form xx2
i

+ �2x2
i

x + �x2
2i

x + xx
22i;

• for i odd, the functions from C14-2 take the univariate form 
x2

i+1 + �2
(
x
2i+1

+ x2
3i+1 + x

23i+1
)
;

• for i even, they take the form xx2
i

+ �2
(
x2

i

x + x2
3i

x + xx
23i
)
.

For the sake of completeness, we show how to derive the univariate form for C14-2 and 
i odd; the remaining three cases are handled in the same way. Recall that any X ∈ �2n 
can be written as X = x + βy with x, y ∈ �2m . Raising both sides to the power  2m, we 
obtain X = x + �2y , and so y = X + X and hence x = �2X + �X . Observe that for i odd, 
we have �2i = �2 and �2i+1 = 1 . In the bivariate expression of C14-2, viz.
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 we can first express the left-hand side as

Similarly, we get

Combining the two, we get

 it then suffices to divide by β2 in order to obtain the univariate representation above.
In the case where m is even, we have to decompose X ∈ �2n as X = x + wy with x, y ∈ �2m 

for some w ∈ �2n ⧵ �2m . We then get x = (wX + wX)∕(w + w) and y = (X + X)∕(w + w) . By 
substituting this into the bivariate representation of C14-1, we can obtain a univariate expres-
sion by following the same strategy as above. However, since the order of w will be greater than 
3, this expression will not be as compact in general as the one that we give above for m odd.

Remark 4 For functions from C3 in doubly even dimensions n = 2m = 4k, we see in the proof 
above that the elements (x,y), (βx,β2y), and (β2x,βy) map to the same output for any x, y ∈ �2m . 
Such functions are clearly not canonical triplicates, but could potentially be used to define a 
variation of the notion of a canonical triplicate for functions in bivariate representation. Namely, 
we could say that a function F(x,y) for x, y ∈ �2m with 2∣m is “bivariate canonical” if the total 
degree of every term in its bivariate representation is a multiple of 3; that is, if for every xiyj, we 
have 3∣i + j. This is equivalent to saying that F(x,y) = F(βx,β2y) = F(β2x,βy) for all x, y ∈ �2m . 
Note that a canonical triplicate function also satisfies this condition (except that for canonical 
triplicates, not only the total degree, but the individual degrees of x and y must be multiples of 
3 for each term) but not vice-versa. We leave the investigation of triplicate functions in bivariate 
form as a problem for future work. We also conduct an ad-hoc computational search, in which 
we take functions from C3 for n = 8, and attempt to compose them with linear permutations on 
the right in order to obtain canonical 3-to-1 functions. According to our computations, all such 
“bivariate canonical” functions for n = 8 are linear-equivalent to canonical ones.

Remark 5 By Theorem 2, we now obtain a very simple proof that many families have a 
Gold-like Walsh spectrum. Computing the Walsh spectra of the infinite families from first 
principles can be quite technical; one can find proofs that the known infinite families have 
a Gold-like Walsh spectrum in [51] (for C1-C2), [52] (for C7-C9), [53] (for the Gold func-
tions), [54] (for C10), [55] (for C4, C5, C6).

In particular, we obtain the first (to the best of our knowledge) proof of the fact that fami-
lies C13, C14, and C15 have a Gold-like Walsh spectrum. We formulate this as a corollary.

F(x, y) = (F1(x, y),F2(x, y)) =
(
x2

i+1 + xy2
i

+ y2
i+1, x2

3i

y + x2
3i
)
,

F1(x, y) = (�2X + �X)2
i+1 + (�2X + �X)(X + X)2

i

+ (X + X)2
i+1

= X2i+1 + �2X2iX + �XX
2i

+ X
2i+1

+ �2X2i+1 + �2XX
2i

+�X2iX + �X
2i+1

+ X2i+1 + X2iX + XX
2i

+ X
2i+1

= �2X2i+1 + �X
2i+1

.

F2(x, y) = (�2X + �X)2
3i

(X + X) + (�2X + �X)(X + X)2
3i

= �X23i+1 + �X23iX + �2XX23i + �2X
23i+1

+ �2X23i+1 + �2XX
23i

+ �X23iX + �X
23i+1

= X23i+1 + X
23i

.

F(x, y) = F1(x, y) + �F2(x, y) = �2X2i+1 + �X
2i+1

+ �X23i+1 + �X
23i+1

;
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Corollary 13 All functions from families C13 and C15 in Table 1 have a Gold-like Walsh 
spectrum.

With the help of Algorithm  1, we can see (for n ∈{6,8}) that the functions from 
C7-C9 and C10-C12 that are not triplicates, are not EA-equivalent to triplicates either.

8  Triplicates among the sporadic APN instances

With triplicate functions being so widely represented among the known infinite families 
of APN functions, it is natural to expect that we will find many triplicate functions among 
the known sporadic APN instances as well, especially in the case of n = 8 where we know 
thousands of CCZ-inequivalent sporadic APN instances. Surprisingly, it turns out that this 
is not so, and only a very small number of the known sporadic instances are 3-to-1 func-
tions; moreover, with the help of Algorithm 1, we can verify that the functions in ques-
tion are not EA-equivalent to 3-to-1 functions either. This suggests that 3-to-1 among APN 
functions are quite special, in some sense, and that the majority of the known infinite con-
structions seem to exploit some intrinsic property of these functions.

More precisely, we have applied Algorithm 1 (along with a simple program for checking 
whether a given function already is 3-to-1) to all known sporadic APN functions over �2n 
with n = 6 (as given in [14]) and n = 8 (as given in [10, 15, 56, 57] and [9]).

In the case of n = 6, the only two APN functions equivalent to triplicates are the Gold 
function x3, and the trinomial x3 + α11x6 + αx9 (where α is a primitive element of �26 ). In 
particular, we note that neither the Kim function (which is CCZ-equivalent to an APN per-
mutation [58]) nor the only known APN function that is CCZ-inequivalent to monomials 
and quadratic functions [15] is EA-equivalent to a 3-to-1 function. In the case of the Kim 
function (which is quadratic), we can conclude that there is no quadratic triplicate func-
tion in its CCZ-equivalence class at all (due to EA- and CCZ-equivalence coinciding for 
quadratic functions as discussed in Section 2.4). In the case of the non-quadratic function, 
we cannot rule out the possibility that it is CCZ-equivalent to a triplicate function, and can 
only state that it does not contain any triplicate functions in its EA-equivalence class.

In the case of n = 8, with the exception of APN functions originating from the known 
infinite families, the only functions that are EA-equivalent to triplicates are those obtained 
by Edel and Pott using the so-called switching construction [15]. An overview of all known 
quadratic 3-to-1 functions over �28 is given in Table 3.

In the case of n = 10, the running time of Algorithm 1 is unfortunately too long for us 
to go check whether the known sporadic instances from [56] are EA-equivalent to 3-to-1 
functions. We can, however, confirm, that they are not 3-to-1 functions themselves.

9  Expansion searches for canonical triplicates

A natural way to search for new e.g. APN functions is to perform an exhaustive search over 
all polynomials with a short univariate representation. One would thus perform an exhaus-
tive search over all monomials, binomials, trinomials, etc. of a given form, and check all of 
them for APN-ness. A variation of this technique is to “expand” a given function F by add-
ing a small number of terms to it; in other words, one would traverse all functions of the 
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form F + G, where G runs through all possible monomials, binomials, trinomials, etc. We 
remark that some of the earliest known instances of APN functions have been found in this 
way [24]; and that computational searches of this form have provided sufficient data for the 
construction of infinite families of APN functions in the past [38].

We can see that searching for quadratic canonical triplicate APN functions like this 
is particularly promising since, for one thing, by restricting the exponents of all terms 
to multiples of 3, we can guarantee that the examined functions will be canonical trip-
licates; and, for another thing, the complexity of testing whether a quadratic triplicate 
function is APN amounts to checking whether it is 3-to-1, which is a linear operation in 
the size of the finite field (in general, testing whether a given function is APN is a quad-
ratic operation). These considerations significantly reduce the time needed to perform an 
exhaustive search, and allow us to search for APN functions over finite fields of larger 
dimensions than previously possible. Thanks to the differential spectrum and extended 
Walsh spectrum of the ortho-derivatives [17], we can quickly partition the functions 
obtained in this way into smaller sets of functions; in the case of n = 8 and n = 10, we can 
use the linear-code equivalence test to classify the functions up to CCZ-equivalence.

9.1  Dimension 8

The running times are within a few hours in all cases; in fact, the memory needed for stor-
ing the truth tables of the obtained APN functions is a bigger issue than the computation 
time. We are able to express a total of 18 distinct CCZ-classes of functions in this way. All 
of them end up being CCZ-equivalent to known representatives.

9.2  Dimension 10

The running times are within a day in all cases. We obtain six previously unknown (up to CCZ-
equivalence) APN instances. Polynomial representations of these new classes, along with the 
differential spectra of their ortho-derivatives are given in Table 2. To be more precise, we can 
obtain previously unknown classes of APN functions by adding 5, 6, or 7 terms with coeffi-
cients in �22 to x3, x9 or x33. Using SboxU [59], we can verify that none of these functions is 
CCZ-equivalent to a permutation. In Table 2, we give the shortest possible polynomial repre-
sentations of these new classes. We note that all six classes can be obtained by expanding either 
of the three monomials x3, x9, or x33; in Table 2 we list representatives obtained by expanding 

Table 2  New APN instances over �210

ID F Ortho-derivative differential spectrum

1 x3 + x33 + β2x36 + βx66 + βx96 + x129  
[
0634041, 2320166, 478420, 613020, 81830, 1060, 1215

]
 

2 x3 + βx9 + βx36 + x96 + β2x129 + x768  
[
0636306, 2315018, 482335, 611715, 82145, 2233

]
 

3 x3 + x6 + β2x24 + βx48 + βx72 + x132 + x288  
[
0631911, 2323421, 478495, 611775, 81725, 10210, 1215

]
 

4 x3 + x9 + β2x12 + x36 + x48 + βx264 + βx516  
[
0632286, 2322566, 478540, 612675, 81320, 10165

]
 

5 x3 + x18 + β2x24 + β2x36 + x48 + x72 + β2x288  
[
0634746, 2318081, 479920, 613485, 81215, 1090, 1215

]
 

6 x3 + x9 + βx24 + x33 + x66 + βx72 + βx258  
[
0636591, 2316371, 478720, 613740, 81935, 10165, 1230

]
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x3. Furthermore, we note that the first two classes from the table can be expressed as hexanomi-
als, while the shortest representation of the remaining four classes that we know contains seven 
terms. Classes 1 and 2 can also be represented as heptanomials; and all six classes can be repre-
sented as octanomials; in particular, all the new APN functions that we find by adding 7 terms 
to a Gold function are EA-equivalent to the six classes represented in Table 2.

9.3  Dimension 12

Although the linear code equivalence test cannot be used in �212 due to the excessive mem-
ory requirements, we can still compute the ortho-derivatives of any functions that we find 
in this dimension, and compare their differential spectrum to that of the ortho-derivatives 
of instances from the known infinite families. To the best of our knowledge, there are no 
sporadic APN instances currently known in this dimension, and so finding a differential 
spectrum of the ortho-derivative that is distinct from those of the infinite families is enough 
to justify that a function is new. In this way, we find at least one new APN instance over �212 
(that is, we find several functions with a new differential spectrum of the ortho-derivative; 
since we are not able to test the functions for equivalence among themselves, it is possible 
that they represent more than one CCZ-equivalence class).

Most of the functions that we find have the same differential spectrum of the ortho-
derivative as known APN instances; however, we do find functions whose ortho-deriva-
tive’s differential spectrum is new, e.g. the quadrinomial

where δ is a primitive element of �26 . This quadrinomial has an ortho-derivative with the 
differential spectrum

 which is distinct from that of any known APN function over �212 . We can thus conclude 
that the above function is indeed new. To the best of our knowledge, this is the first spo-
radic APN instance over �212 since 2006 [60], and the only APN instance in that dimension 
that has not been classified into an infinite family at the time of writing.

10  The known quadratic 3‑to‑1 functions up to dimension 12

As mentioned above, for n = 6, the only known 3-to-1 APN functions are x3 and x3 
+ α11x6 + αx9. Tables 3,  4, and 5 summarize the known 3-to-1 APN functions for n 
= 8,10,12, including the new instances found in the present paper. The labels “sc” in 
Table 3 refer to the switching classes given in [15]; for instance, “sc 4” means that the 
function corresponds to switching class number 4. The classes are enumerated in the 
same order that they are given in Table 9 of [15]. Similarly, the label “ao” refers to the 
list of functions for dimension 8 given in [9], i.e. “ao 9” refers to function number 9 in 
Table 6 of [9].

(12)x3 + �42x66 + �21x129 + �14x1536,

[
010231011, 25093109, 41162917, 6228501, 842462, 102268, 126615, 161134, 203969, 221134

]
,
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11  Conclusion and future work

We have introduced the classes of triplicate functions and canonical triplicate functions, 
and expressed 3-to-1 functions as extremal objects among them in several ways. We have 
investigated the properties of such functions, with a particular focus on quadratic 3-to-1 
APN functions. We have computed the exact number of distinct differential sets of power 
APN functions, and of quadratic canonical 3-to-1 functions. We have also conducted com-
putational searches over �2n with n ∈{8,10,12}, and have found new quadratic 3-to-1 APN 
functions for n = 10 and n = 12, including the first sporadic APN instance for n = 12 since 
2006.

The topic of triplicate functions, 3-to-1 functions, and their relation to APN-ness 
appears to be very deep and quite promising, and there are many avenues for future 
research remaining to be investigated. For one thing, all of the currently known quadratic 
3-to-1 functions are canonical, or linear-equivalent to canonical. It would be very interest-
ing to find examples of quadratic 3-to-1 APN functions linear-inequivalent to canonical 
ones, or to show that such functions do not exist. In the former case, we will obtain a 3-to-1 
APN instance behaving in a completely different way than all the known ones. In the same 
vein, it would be useful to resolve the inclusions between the classes of 3-to-1 functions 
having the zero-sum property and the triple summation property.

Another interesting question would be to try to find non-quadratic 3-to-1 APN functions 
CCZ-inequivalent to monomials, or to show that such functions do not exist. Regardless of 
whether the answer is positive or negative, this would be a step towards resolving the prob-
lem of finding APN functions CCZ-inequivalent to quadratic functions and monomials.

Many of the properties derived in our investigation are proved for the case of quadratic 
3-to-1 functions, or for canonical 3-to-1 functions. We suspect that many of them also hold 
for 3-to-1 functions of higher algebraic degree, but were not able to prove or disprove this. 
For instance, we have proved that any quadratic canonical 3-to-1 function over �2n has pre-
cisely  (2n − 1)/3 distinct differential sets. We suspect that this is true for 3-to-1 triplicate 
functions in general, but it is not clear to us at the moment how one could prove this.

We have shown that 3-to-1 quadratic APN functions over �2n cannot be CCZ-equivalent 
to permutations when n is doubly-even. It would be very interesting to see if this is true for 

Table 4  Classification of all known quadratic 3-to-1 functions over �210 up to EA-equivalence

Families Representative Ortho-derivative differential spectrum

Gold x3 0595386,  2416361,  635805 
Gold x9 0713031,  2211761,  492070,  615345,  85115,  1210230 
C3 x33 + x72 + α31x258 0628401,  2329871,  475330,  612555,  81395 
C3 x6 + x33 + α31x192 0629331,  2330336,  472540,  613020,  82325 
C4 x3 + Tr(x9) 0633636,  2322701,  475045,  613980,  81905,  10285 
C4 x3 + α− 1Tr(α3x9) 0630216,  2327081,  476215,  612150,  81665,  10195,  1230 
C13 x3 + α341x36 0636306,  2315018,  482335,  611715,  82145,  2233 
C13, C14-1 x3 + x36 + α682x96 + α341x129 0626541,  2330336,  479515,  610230,  8930 
C13, C14-1 x3 + α341x9 + α682x96 + x288 0637701,  2313131,  480910,  614415,  81395 
C14-2  x3 + �682

(
x9 + x96 + x288

)
 0624216,  2334986,  476725,  611160,  8465 

C14-2 x3 + x36 + x96 + βx129 0640491,  2304296,  489280,  613020,  8465 
sporadic see Table 2
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singly-even dimensions as well, since in that case it would mean that constructing APN 
permutations by traversing the equivalence classes of quadratic 3-to-1 functions is impos-
sible. Finding APN permutations over finite fields of even extension degree is arguably the 
most important open problem in the area, and this would therefore be a significant non-
existence result.
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