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Background and purpose: A fixed relative biological effectiveness (RBE) of 1.1 (RBE1.1) is used clinically in
proton therapy even though the RBE varies with properties such as dose level and linear energy transfer
(LET). We therefore investigated if symptomatic brainstem toxicity in pediatric brain tumor patients trea-
ted with proton therapy could be associated with a variable LET and RBE.
Materials and methods: 36 patients treated with passive scattering proton therapy were selected for a
case-control study from a cohort of 954 pediatric brain tumor patients. Nine children with symptomatic
brainstem toxicity were each matched to three controls based on age, diagnosis, adjuvant therapy, and
brainstem RBE1.1 dose characteristics. Differences across cases and controls related to the dose-
averaged LET (LETd) and variable RBE-weighted dose from two RBE models were analyzed in the high-
dose region.
Results: LETd metrics were marginally higher for cases vs. controls for the majority of dose levels and
brainstem substructures. Considering areas with doses above 54 Gy(RBE1.1), we found a moderate trend
of 13% higher median LETd in the brainstem for cases compared to controls (P =.08), while the difference
in the median variable RBE-weighted dose for the same structure was only 2% (P =.6).
Conclusion: Trends towards higher LETd for cases compared to controls were noticeable across structures
and LETd metrics for this patient cohort. While case-control differences were minor, an association with
the observed symptomatic brainstem toxicity cannot be ruled out.
� 2022 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 175 (2022) 47–55 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Proton therapy offers a reduction in dose to normal tissues
compared to conventional photon therapy. Since the majority
of pediatric cancer patients are expected to become long-term
survivors [1], children are often referred to proton therapy to
minimize radiation damage. While the overall incidence of
brainstem injury following cranial proton therapy is relatively
low [2–4], it is a very serious side effect that can lead to symp-
toms such as ataxia, dysphagia, respiratory difficulty, and in
worst case death [2].

Protons have a higher relative biological effectiveness (RBE)
compared to photons. Clinically, the RBE is set to a constant value
of 1.1, implying that protons are uniformly characterized as 10%
more biologically effective than photons. The RBE of 1.1 (RBE1.1)
was determined as a conservative value mainly based on animal
experiments conducted in the 1970s [5]. While a conservative
RBE increases the probability of ensuring tumor control, an under-
estimation of the RBE may lead to overdosage of healthy tissue. It is
also well known that the RBE is not constant but varies as a func-
tion of the linear energy transfer (LET). Considering that the LET
increases rapidly at the distal dose fall-off of the proton beam, ele-
vated RBE values are of particular concern for organs at risk located
in vicinity of the fall-off. Moreover, the RBE has also been shown to
increase for lower ða=bÞx ratios in the linear quadratic model as
well as for lower dose levels [6]. While these effects have been
quantified through both in vitro [5,7,8] and in vivo experiments
[9,10], the clinical consequences are less clear. In recent years, sev-
eral reports have emerged indicating a potential correlation
between toxicity and increased RBE [11–19]. Nevertheless, the evi-
dence for correlation is not decisive [20], in particular for symp-
tomatic toxicity, emphasizing the need for further study.
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LET, RBE and brainstem toxicity in pediatric proton therapy
For pediatric brain tumor patients, the RBE variability in proton
therapy may be particularly worrying for three reasons: (i) the
brainstem is associated with low ða=bÞx ratios [21,22], (ii) fraction
sizes are typically �2 Gy(RBE) [23], and (iii) the LET increases for
smaller modulation widths of the spread-out Bragg peak [5] which
is often the case when using smaller sized treatment fields com-
monly applied for children treated with proton therapy.

There is great emphasis on keeping brainstem doses below
established constraints. Furthermore, to reduce RBE and range
uncertainties associated with proton beams, a common approach
is to minimize the number of treatment fields ranging out within
the brainstem [2,4,6]. There are, however, still persistent concerns
about brainstem toxicity following cranial proton therapy, and
regional differences in radiosensitivity of this vital brain structure
have been indicated which might influence the incidence of toxic-
ity [21,24,25]. The purpose of this study was therefore to investi-
gate if symptomatic brainstem toxicity in pediatric brain tumor
patients treated with proton therapy can be associated with a vary-
ing LET and RBE, and whether this effect is specific to anatomic
subsites within the brainstem.
Materials and methods

Patient material

An anonymized cohort selected from 954 pediatric patients
with brain tumors treated with double scattering proton therapy
at the University of Florida Health Proton Therapy Institute
(UFHPTI) between 2006 and 2017 were used in this institutional
review board-approved case-control study. Symptomatic brain-
stem toxicity was defined as new or progressive symptoms not
attributable to tumor progression, and further characterized as
grade 2+ response according to the Common Terminology Criteria
for Adverse Events (CTCAE) version 4.0. Overall, 16 cases of the 954
patients experienced symptomatic brainstem toxicity. Seven cases
were excluded either due the lack of appropriate controls in the
high dose region or due to intrinsic compromise of brainstem
integrity. Each of the nine resulting cases was closely matched to
three separate controls based on age (±1.5 years), diagnosis, adju-
vant therapy, and brainstem RBE1.1 dose parameters (D10% ± 2 Gy
(RBE), D0.1cc ± 2 Gy(RBE)). All patients had clinical target volumes
(CTVs) defined in addition to planning target volumes (PTVs)
Fig. 1. (a-b) Substructures of the brainstem projected onto a cropped
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(CTV plus a 3 mm isotropic margin). The brainstem, including
the brainstem core (brainstem cropped by 3 mm) and brainstem
surface (3 mm edge of the brainstem), were delineated for treat-
ment planning. For the purpose of this study, T1/T2 weighted mag-
netic resonance imaging (MRI) scans fused with computed
tomography (CT) scans were used to define the substructures of
the brainstem which included the midbrain, pons, and medulla
oblongata (Fig. 1).

The patients had been diagnosed with either craniopharyn-
gioma or ependymoma. The standard prescription doses ranged
between 54.0 and 59.4 Gy(RBE), delivered in fractions of 1.8 Gy
(RBE). An example of a dose distribution is shown in Fig. 1. The
planning objectives were based on UFHPTI clinical protocols,
where the CTV should be encompassed by the 99% isodose line
and the PTV should be encompassed by the 95% isodose line of
the prescribed dose. Clinically approved dosimetric constraints to
the brainstem and organs at risk [2,4] were used during treatment
planning in the Eclipse (Varian Medical Systems, Palo Alto, CA)
treatment planning system (TPS).
Monte Carlo simulations

To obtain LET and variable RBE-weighted doses, the CT images
as well as treatment plan information for the 36 patients were
imported into the FLUKA Monte Carlo (MC) code [26–28] version
2011.2x. We have previously developed a framework that allows
for recalculation of proton plans in FLUKA. This framework
includes translation of treatment plan information and semi-
automatic setup of the recalculation system, as well as methods
to obtain LET [29] and variable RBE-weighted doses from multiple
RBE models [30]. To allow for an accurate recalculation of the pro-
ton therapy plans, a detailed model of the double scattering treat-
ment nozzle at the UFHPTI was implemented and commissioned in
an earlier publication [31].

The number of treatment fields for each proton plan ranged
between two and five. Each field was simulated separately with
600 million primary protons, and scoring files were combined dur-
ing post-processing. We scored the physical dose, dose-averaged
LET (LETd), as well as the LET spectra on a voxel-by-voxel basis
using the same scoring grid specifications as in the clinical treat-
ment plans. Using proton stopping power ratios, the dose and
LET were converted to dose-to-water and LET-to-water,
CT image. (c-d) RBE1.1-weighted dose distribution for a patient.
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respectively (details found in [31]). The dose was calculated taking
all particles into consideration, while the LET calculations were
based on primary and secondary protons only. To maintain consis-
tency with the clinically calculated TPS dose, and not focus on dif-
ferences in dose calculation algorithms, the MC recalculated
physical dose distributions were in post-processing normalized
to the median CTV dose that was obtained during the initial treat-
ment planning, with normalization factors ranging between �3.2%
and 2.4%. The normalized dose distributions were used in the anal-
ysis of both RBE1.1 and variable RBE-weighted doses, while the
reported LET values were unaffected by the normalization.
RBE models

To account for biological variation in the treated patients we
obtained variable RBE-weighted doses using the non-linear phe-
nomenological model by Rørvik et al. (ROR) [32] which requires
the full LET spectrum to estimate the RBE. Phenomenological mod-
els have a tissue dependency quantified by the ða=bÞx in the linear
quadratic model. An ða=bÞx of 2.1 Gy [21,22] was used for the
brainstem and brainstem substructures. Since phenomenological
RBE models and ða=bÞx ratios are associated with considerable
uncertainties, we also included the simpler LET-weighted dose
(LWD) where the RBE ¼ 1þ c � LETd. The c parameter is a scaling
factor used to quantify the biological response. It was set to
0.055 lm/keV, a value based on fits to in vitro data in order to min-
imize the biological variability, i.e., the range of biological response
for a given dose [33].
Data analysis and statistics

RBE-weighted doses from RBE1.1, as well as ROR and the LWD
were evaluated using volume histograms with dose and LETd met-
rics at the median volume (D50%/L50%), 10% volume (D10%/L10%) and
0.1 cc (D0.1cc/L0.1cc) in the brainstem as a primary analysis to inves-
tigate potential trends between cases and controls. Furthermore,
we also considered brainstem substructures to investigate possible
regional differences in the dosimetric parameters. High LETd alone
does not necessarily translate to a high biological effect since bio-
logical damage is also greatly dependent on the dose level. In order
to assess LETd metrics independently, but also in the context of bio-
logical damage, we applied multiple dose cutoff values for the LETd
evaluation. Hence, the LETd values were overwritten and set to zero
in voxels receiving doses below the applied cutoff. However, this
has consequences when calculating metrics based on relative vol-
umes as artificially set zero-values in structures will shift metrics
towards zero. Thus, LETd metrics for relative volumes such as
L50% and L10% were calculated only for the subvolume of the struc-
ture receiving dose above the cutoff. The cutoffs applied were 1, 20,
40, 50, 54 and 55 Gy(RBE) based on the RBE1.1 dose.

Conditional logistic regression, appropriate for case-control
groups matched on several criteria, was used to detect statistically
significant differences between metrics for cases and controls. An
advantage of conditional logistic regression over regular logistic
regression is its ability to minimize the confounding introduced
from the matching criteria [34]. Univariate conditional logistic
regression models were fitted to the dose and LETd metrics out-
lined by minimizing the negative log-likelihood of the function
with respect to the data points. P values were obtained by the
two-tailed area excluded by the normal distribution based on the
parameter associated with the given factor and the calculated stan-
dard error. The conditional logistic regression was done using the
conditional logit function from the Statsmodels Python package
[35]. The 95% confidence intervals (95% CIs) for cases and controls
were also obtained using a basic t-test from the standard error of
cases and controls, adjusted for sample size, with overlapping CIs
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between cases and controls also giving an indication of the statis-
tical significance of the results.
Results

In areas receiving doses of 54 Gy(RBE) or higher, the median
LETd, L10%, and L0.1cc showed trends towards higher average values
for the symptomatic brainstem necrosis cases compared to the
controls in the brainstem (Fig. 2), with cases having an average
median LETd of 2.7 keV/lm (95% CI: 2.5–2.9 keV/lm) compared
to controls with an average value of 2.4 keV/lm (95% CI: 2.2–
2.6 keV/lm) (P =.08). The trends became more obvious when smal-
ler volumes were considered with differences in case-control
means for L10% at 3.1 keV/lm (95% CI: 2.8–3.5 keV/lm) vs.
2.8 keV/lm (95% CI: 2.7–2.9) (P =.05) and L0.1cc at 3.4 keV/lm
(95% CI: 2.9–3.8 keV/lm) vs. 3.0 keV/lm (95% CI: 2.9–3.2 keV/lm)
(P =.06). The trend towards higher metrics for cases compared to
controls was less evident when applying a dose cutoff of only
1 Gy(RBE), where in the case of the median LETd in the brainstem
an average of 3.3 keV/lm (95% CI: 2.8–3.8 keV/lm) was found for
cases and 3.1 keV/lm (95% CI: 2.8–3.3 keV/lm) for controls (P =.3).
Similar slightly increased average values for cases compared to
controls were also observed for the majority of brainstem
substructures (Fig. 2) and explored dose cutoffs (Supplementary
Materials Fig. S1), but with very few differences showing statistical
significance with P values below 0.05 (Supplementary Materials
Tables S1–S3). LETd volume histograms for the brainstem did not
reveal any obvious trends regarding case-control differences
(Fig. 3). This was also evident for the brainstem substructures.

LETd distributions, at a 50 Gy(RBE) dose threshold, for all cases
and controls along with corresponding median LETd and RBE-
weighted doses in the brainstem are shown in Fig. 4. LETd hotspots
were clearly visible for the majority of both cases and controls, fre-
quently located either within the brainstem, or ventral or caudal to
the brainstem.

The median RBE1.1 dose for the cases trended towards margin-
ally higher averages compared to the controls for the brainstem
with an increasing case-control dose difference when using ROR
or LWD to estimate the variable RBE-weighted dose (Fig. 5 and
Supplementary Materials Table S4). Such trends were also evident
when comparing cases and controls in each group individually, as
well as for D10% and D0.1cc but with negligible differences in abso-
lute values since these metrics were part of the matching criteria
(Supplementary Materials Figs. S2–S3 and Tables S5–S6). For the
brainstem substructures the average differences between cases
and controls in median dose using RBE1.1, ROR and LWD fluctuated
around zero (Fig. 5 and Supplemetary Materials Table S4), while
differences in D10% and D0.1cc were negligible (Supplementary
Materials Figs. S2–S3 and Tables S5-S6).

In all but three case-control groups, at least one control received
higher maximum ROR dose to the brainstem compared to the case,
not revealing any systematic case-control differences (Supplemen-
tary Materials Fig. S4). This was also similar for the brainstem
substructures as well as for the LWD.
Discussion

In this case-control study we investigated the impact of variable
RBE-weighted doses and LETd on brainstem toxicity for 36 pedi-
atric patients treated with proton therapy. The case-control differ-
ences were generally small for both RBE-weighted dose and LETd,
with high heterogeneity, wide confidence intervals and insignifi-
cant P values. Nevertheless, the average case typically trended
towards higher LETd to the brainstem for similar doses, as well as
for most brainstem substructures. There was also a minor trend



Fig. 2. Median LETd (a), LETd at 10% volume (L10%) (b), and LETd at 0.1 cc volume (L0.1cc) (c) with a 54 Gy(RBE) dose cutoff for cases (red circles) and controls (green squares) in
the brainstem and brainstem substructures. Horizontal lines show average values for cases (red solid lines) and controls (green dashed lines), while vertical error bars depict
95% confidence intervals. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).

LET, RBE and brainstem toxicity in pediatric proton therapy
towards increased RBE-weighted dose differences between cases
and controls when comparing variable RBE models to RBE1.1 doses.

Multiple published studies have found a correlation between
image changes, i.e., CTCAE grade 1 toxicity and LET/RBE
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[11,14,16–19], while others have been unable to identify a signifi-
cant correlation [36–38]. While the degree to which image changes
clinically impact patients is unclear [39], a potential advantage of
including patients with asymptomatic toxicity is that such patients



Fig. 3. LETd volume histograms for the brainstem for each matched group with cases (red solid lines) and controls (green dashed lines). No dose cutoff has been applied. The
x-axes vary between different patient groups. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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are more abundant compared to individuals diagnosed with symp-
tomatic toxicity. For example, the incidence of symptomatic brain-
stem toxicity for pediatric brain tumor patients following proton
have been reported to be approximately 2% [4]. While the low inci-
dence is fortunate, the serious nature of these side effects calls for
investigation. Nevertheless, clinically applied efforts to reduce LET
in vital organs [2,4,6] coupled with the low incidence of symp-
tomatic brainstem necrosis as well as the difficulty of distinguish-
ing between symptomatic toxicity and disease progression [22],
complicates the task of acquiring a sufficient amount of patients
to draw definitive conclusions regarding the clinical effects of the
RBE variability [40], particularly for this clinical endpoint. For
instance, in a recently published study, a power analysis was con-
ducted for head and neck cancer patients treated with intensity-
modulated proton therapy. The authors estimated that a data set
consisting of over 15,000 patients would be required to determine
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a definitive correlation between a variable RBE and toxicity for this
patient group [41]. Nonetheless, the trends observed in this study
coupled with previous evidence should warrant further investiga-
tion and clinical precautions with regard to LET.

Several dose cutoffs for the LETd were applied in order to
explore the isolated clinical effect of the LET, while maintaining
the context of biological damage which requires a certain dose
level. As a result, metrics based on relative volumes for the LETd
were only calculated for voxels with doses above the applied cut-
off, and not for the full structure. It should therefore be kept in
mind that the reported LETd metrics at 50% (median) and 10% vol-
umes are only considering the subvolume of voxels above the dose
cutoff, hence leading to decreased absolute volumes. A conse-
quence was therefore a higher L50% and/or L10% compared to L0.1cc
for certain high dose cutoffs (Fig. 2 and Supplementary Fig. S1),
due to the relative volumes reaching below an absolute value of



Fig. 4. LETd distributions for all patients in voxels with RBE1.1 doses of 50 Gy(RBE) or above. Boxes in the bottom right corners list median LETd, as well as median doses from
RBE1.1, ROR, and LWD in the brainstem. Midbrain, pons, and medulla oblongata (from top to bottom) are delineated in red. The sagittal plane is centred in the pons and
cropped window sizes have been normalized for all patients.
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Fig. 5. Median doses from RBE1.1 (a), LWD (b) and ROR (c) for cases (red circles) and controls (green squares) in the brainstem and brainstem substructures. Horizontal lines
show average values for cases (red solid lines) and controls (green dashed lines), while vertical error bars depict 95% confidence intervals. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article).
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0.1 cc. Nevertheless, the trend of higher average LETd metrics for
cases vs. controls was generally consistent regardless of the
applied dose cutoff, evaluated metric or structure. It is also impor-
tant to note that the LETd was scored using only primary and sec-
ondary protons, in agreement with the majority of previously
published papers on LETd in proton therapy [42]. Including heavier
particles would increase the calculated LETd [43,44], in particular
in the entrance region of the proton beam [45]. Nevertheless, until
there is a consensus in the scientific community regarding which
particles to include for LETd calculation or which LET-averaging
method to use [46], the most important measure is to precisely
report the method of LET calculation [42].

The substructures were separately evaluated in order to identify
any trends in LETd or RBE-weighted dose to specific sections of the
brainstem. While there was a certain variance in both LETd and
RBE-weighted dose to the substructures, no obvious trends were
identified, with the uncertainty in the origin of the brainstem
necrosis also contributing towards the inconclusiveness of the sub-
structure analysis. As the necrosis for a case should hypothetically
originate from a single substructure, regarding all patients with
symptomatic brainstem toxicity as cases for all substructures could
introduce ambiguity. This could have been resolved if the precise
location of the origin of the necrosis were known with certainty.

In our study, suitable follow-up MRI images were not available,
therefore only dosimetric trends related to symptomatic brainstem
toxicity as an endpoint could have been discovered through this
analysis. Identifying regional differences in radiosensitivity within
the brainstem could have been merged with such follow-up MRI
images and potential image changes related to toxicity could have
been analyzed in relation to the specific substructures. It should,
however, be emphasized that image changesare associatedwith sig-
nificant uncertainties, especially regarding the origin of necrosis
[19,38]. Hence, a study of grade 2+ brainstem necrosis focusesmore
on the general organ volume of the patientwhere a voxel-wise anal-
ysis of image changes (grade 1) might take away from this focus on
symptomatic disease, which additionally is of increased clinical rel-
evance due to their severity and potential lethality compared to the
asymptomatic nature of image changes. Furthermore, all structures
were evaluated based on the same ða=bÞx value of 2.1. If a significant
regional difference in radiosensitivitywithin the brainstemexists, it
would have to be reflected through different ða=bÞx values for each
substructure, which further would have affected the doses calcu-
lated by the phenomenological ROR model.

In conclusion, we identified very minor trends towards
increased RBE-weighted dose to cases compared to controls.
Case-control trends were more apparent when considering LETd
as the average case received higher LETd than the average control
for nearly all dose levels and brainstem substructures. There was,
however, a substantial interpatient variability leading to wide con-
fidence intervals and case-control differences that generally could
not be considered statistically significant. Nevertheless, due to
trends observed in this study we believe that individual assess-
ment of LET in clinics should be explored further and successful
application may provide safer delivery of proton therapy for
patients at risk of brainstem toxicity.
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