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Abstract: The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast
development of effective vaccines reduced some of the impact. To prepare for future respiratory
virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the
period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist
polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral
state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we
observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate
immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When
CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto
Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the
lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had
a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral
prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to
be effective.

Keywords: liposomal adjuvant; virus prophylactic (treatment); type I IFN; influenza virus

1. Introduction

Since the beginning of the 21st century, the world has battled a series of major crises
caused by viral epidemics, including SARS-CoV-1 and influenza A H5N1, and pandemics
H1N1, MERS-CoV, Ebola virus, and the current SARS-CoV-2, which has underscored
how vulnerable we are to emerging viral threats. In a breakthrough for mRNA-based
vaccines, several vaccines were approved for human use in less than a year after a global
pandemic was declared, which is unprecedented and beyond the most optimistic initial
hopes [1]. These vaccines are very effective at preventing disease and death caused by the
current SARS-CoV-2 strains and are key components to control the pandemic. However,
the damage caused by SARS-CoV-2 in the period prior to vaccine approval in terms of
human and economic losses emphasizes the need for a ready-to-use tool for immediate
control of viral outbreaks.

Most pathogens capable of causing a pandemic have high mutation rates, which
results in evolution into different lineages characterized by variable levels of virulence
and transmissibility. This can also lead to the emergence of new variants and potentially
evasion from vaccine-induced immunity as well as disease-acquired protection [2]. Several
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mutations in the immunodominant SARS-CoV-2 Spike protein have been identified, which
cause continued concern for the efficacy of the currently licensed vaccines [2,3].

There is therefore an unmet global need for a strategy that can be implemented im-
mediately after an outbreak to reduce the risk of infection, improve disease outcomes,
and inhibit transmission to other people, without the use of large-scale quarantines, travel
restrictions, and social distancing. An optimal strategy would be pan-viral and its effi-
cacy should not be affected by virus homoplasticity. A pan-viral prophylactic strategy
against respiratory virus pandemic threats requires protection against a broad and largely
unforeseen spectrum of viruses. The innate immune system forms the body’s emergency
preparedness against pathogenic threats and has evolved to recognize and react instantly
to pathogenic fingerprints, such as viral double-stranded (ds)RNA [4]. For the last 20 years,
research has identified the mechanisms behind how the innate immune system reacts to
gain initial control of infections, until the adaptive immune system has had time to form a
specific immune response to eliminate the invading pathogen. The innate immune system
is therefore in most cases not sufficient to eliminate viral infections with, for example,
influenza viruses or coronaviruses, but it can mitigate damaging effects of the virus attack
and reduce disease symptoms if properly activated.

One of the key components of the early innate response against viruses is type I
interferons (IFN-I). The timing of initiation of an IFN-I response depends on viral and
host factors and is critical for the progression of a SARS-CoV-2 infection [5]. Thus, an
initial low viral load allows the rapid induction of a strong IFN-I response, which can
clear the infection, whereas an initial high viral load will suppress the IFN-I response and
cause disease progression [5]. Supporting this, in vitro models show that pretreatment
with IFN-α and IFN-β effectively prevents infection with SARS-CoV-2 upon challenge [6].
Furthermore, the IFN-I responses were impaired in SARS-CoV-2-infected patients with
severe and critical disease [7]. IFN-I are pleiotropic immunomodulatory cytokines that
can activate protective antiviral effects in several cell types, which in concert induce a
general antiviral state [8]. Danger signaling is initiated when viral RNA is detected by
pattern recognition receptors (PRRs), e.g., the RIG-I and TLR3, 7, and 8 receptors activating
IFN-I secretion. However, due to the effective antiviral effects induced by IFN-I, viruses
have developed several ways to circumvent an antiviral state, mainly through blocking the
expression of IFN-I-related genes [9].

Modern pharmaceutical design and engineering has made it possible to synthetically
design TLR agonists and, combined with novel delivery techniques, these can now be
safely delivered to mucosal surfaces, which permits clinical testing. In recent clinical tri-
als, intranasal delivery of the TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)], a
synthetic dsRNA structurally similar to virus dsRNA, stimulated IFN-I production and
significantly protected against Rhinovirus and Influenza virus infections in humans [10].
This immune prophylaxis was safe and well-tolerated. Infection was less severe, had a
shorter duration, and importantly, reduced the number of individuals with study-defined,
laboratory-confirmed illness, without compromising seroconversion induced by infection.
The novel vaccine adjuvant CAF®09b is formulated by electrostatically complexing the
TLR3 agonist poly(I:C) with a cationic liposomal delivery system comprising dimethyldioc-
tadecylammonium bromide (DDA) and C-type lectin receptor agonist monomycoloyl glyc-
erol (MMG), and was developed for vaccines against viral infections [11,12] and cancer [13].
CAF09b has thus been combined with numerous vaccine antigens and tested extensively as
a vaccine adjuvant preclinically and in humans (NCT03412786, NCT03715985) [14]. There
is a risk of adverse effects and toxicity in both humans and animal models when admin-
istering unformulated poly(I:C) [15,16]. However, when poly(I:C) is complexed within
cationic liposomes, the detrimental innate immune reactions are abrogated [16]. This is
because the cationic liposomes retain poly(I:C) at the injection site and thereby prevent
systemic distribution of the immunostimulator. The surface charge of CAF09b remains
highly cationic after complexation with poly(I:C), which facilitates interaction with and
uptake by target cells [13,17]. Therefore, we hypothesize that the cationic liposomes will
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facilitate local delivery of complexed poly(I:C) to IFN-I-production-capable APCs while
minimizing the systemic side effects.

In the present study, we show that intranasal administration of CAF09b to mice caused
upregulation of several IFN-I-related genes, and pretreatment with CAF09b prevented
death upon lethal challenge with mouse-adapted influenza A A/Puerto Rico/8/1934
(H1N1) (PR8) virus. In contrast, no protective effect was observed when CAF09b treatment
was initiated after influenza challenge. Thus, the liposome-based CAF09b is a promising
tool for pan-viral prophylaxis against disease and death caused by respiratory viruses with
pandemic potential.

2. Results
2.1. Intranasal Delivery of CAF09b Upregulated IFN-I-Related Genes

The CAF09b liposomes were prepared by the thin-film method, first by formulating
the DDA and MMG liposomes by high-shear mixing at a temperature well above the
main phase transition temperature of approximately 41 ◦C [18]. Subsequently, poly(I:C)
was associated to the cationic liposomes by slow addition while maintaining the elevated
temperature and vigorous agitation. The poly(I:C) must be added as described to avoid
heavy aggregation of the liposomes and collapse of the formulation. The properly pre-
pared formulation is highly cationic with zeta potential above 40 mV and particle sizes of
150–200 nm [13,18].

The ability of the CAF09b liposomes to induce IFN-I-related genes was evaluated in
a mouse model. CAF09b was administered i.n. twice on days 0 and 3 as well as daily
(days 0, 1, 2, and 3). A naïve group was administered Tris-buffer on days 0, 1, and 3. The
induction of IFN-I-related genes in the lungs was analyzed by qPCR on day 4. Intranasal
administration of CAF09b upregulated several IFN-I-related genes (Figure 1A,B). Out of
the 84 IFN-I-related genes assayed, 33 and 42 genes were more than 2-fold upregulated
compared to naïve mice after administration of 2 and 4 doses of CAF09b, respectively. No
genes were downregulated more than 2-fold after administration of CAF09b compared to
naïve mice (Figure 1A and Supplementary Figure S2).

Poly(I:C) is a ligand for TLR3 in endosomes [19], and it is generally believed that
RIG-I is one of the primary receptors of cytoplasmic dsRNA [20]. TLR3 was significantly
upregulated in the group administered four doses of CAF09b compared to in the naïve
group, while RIG-I was significantly upregulated after administration of both two and
four doses of CAF09b compared to the naïve group (Figure 1C). STAT1 and STAT2 are
transcription factors of Interferon Stimulated Genes (ISGs) and key elements in the IFN-I
response. Both two and four doses of CAF09b significantly upregulated STAT1 and STAT2
transcription (Figure 1C).

2.2. Intranasal Administration of CAF09b Induced Influx of Several Innate Immune Cell Subsets

In addition to the induction of IFN-I observed in the lungs, we evaluated the influx of
different innate immune cell subsets into the lungs and nasal tissue, respectively, following
i.n. administration of two doses of CAF09b (Figure 1D). The total cell count in the lungs
was not significantly increased by administration of CAF09b, while a significant increase
in total cells was observed in the nasal tissue. However, an increase in innate immune
cell subsets was observed in both organs compared to naïve mice, although of different
magnitude. Thus, the levels of macrophage (F4/80+, CD11b+), neutrophil (Ly6G+), NK
cell (NK1.1+), monocyte (CD11b+, Ly6C+), and DC (MHCII+, CD11c+) subsets were all
increased in the lungs and nasal tissue of mice after two doses of CAF09b.
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Figure 1. Intranasal administration of CAF09b upregulated IFN-I-related genes and caused an
influx of innate immune cells. Mice (CB6F1, n = 6) were administered CAF09b 20 µL i.n. on days 0
and 3 (2× CAF09b), or days 0, 1, 2, and 3 (4× CAF09b), the naïve group was administered Tris-buffer
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20 µL i.n. on days 0, 1, and 3. (A–C) Lungs were collected at day 4 and expression of IFN-I related
genes were measured by qPCR. (A) Scatterplot of the 84 genes related to IFN-I responses. Naïve
mice were compared to 2× CAF09b-treated mice. The black line represents a 1-fold change, and
the grey lines represent a 2-fold change. Dots represent the average relative mRNA expression for
each of the genes. (B) Heatmap of an average of the relative mRNA expression for all 84 genes. The
three groups are compared against each other and represented by the z-score. (C) Plots of the relative
mRNA expression value for the four genes TLR3, RIG-I, STAT1, and STAT2. Each dot represents one
mouse, boxes denote mean ± S.D. One-way ANOVA followed by Dunnett’s multiple comparisons
test with a comparison to the naïve group, * p-value ≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001.
(D) The cellular composition in the lungs and nasal tissue was analyzed on day 4. The total amount
of cells in each tissue was counted, while macrophages (F4/80+, CD11b+), neutrophils (Ly6G+),
NK cells (NK1.1+), monocytes (CD11b+, Ly6C+), and DCs (MHCII+, CD11c+) were identified by
flow cytometry (Supplementary Figure S1). Box and whisker plots denoting mean and min./max.
value, dots represent individual mice. Two-tailed unpaired t-test, * p-value ≤ 0.05, ** p-value ≤ 0.01,
*** p-value ≤ 0.001, **** p-value ≤ 0.0001.

2.3. Two Doses of CAF09b Protected against Influenza Disease

The ability of CAF09b to protect against disease and death caused by lethal influenza
challenge was evaluated in the murine model of influenza A H1N1 PR8 virus infection.
Two different dosing regimens were tested, and thus CAF09b was administered i.n. twice
(on days −6 and −3 prior to challenge) or four times (days −6, −5, −4, and −3). In the
mock group, the mice were administered Tris-buffer twice on days −6 and −3. Mice
were challenged with mouse-adapted PR8 influenza (150 EID50, 30 µL i.n.) on day 0 and
their survival was monitored for 7 days post-influenza challenge (p.i.c.) (Figure 2). All
mice administered two doses of CAF09b survived in the study, whereas 6/8 and 3/8 mice
survived in the groups administered four doses of CAF09b or Tris-buffer, respectively.
Thus, two doses of intranasal CAF09b protected against severe influenza disease and there
was no additional benefit on disease outcome from administering more CAF09b doses. It
was therefore decided to continue the studies with two CAF09b administrations.

2.4. CAF09b Was Only Effective When Administered before Influenza Challenge

In a pandemic scenario using CAF09b as viral prophylaxis, the exact period between
administration of the adjuvant and encountering the pathogen would be unknown. There-
fore, we evaluated the effect of CAF09b on preventing disease and death after influenza
challenge at different periods around CAF09b administration. Thus, two doses of CAF09b
were administered i.n. on days −11 and −8 before influenza challenge (b.i.c.), −5 and
−2 b.i.c., −2 b.i.c. and +1 p.i.c., and +1 and +4 p.i.c. A mock group was administered
Tris-buffer twice on days −5 and −2 b.i.c. (Figure 3A). The disease severity score, body
weight, and survival were evaluated over 7 days p.i.c. (Figure 3B,C). For the groups treated
with CAF09b prior to influenza challenge, disease symptoms were reduced but not com-
pletely prevented and the onset of disease, measured as an increase in disease severity score,
occurred later than for the mock group (Figure 3B,C). In contrast, the disease symptoms
and weight curves of the mice starting treatment after influenza challenge were similar to
the mock group.

The survival after influenza challenge correlated with the disease severity scores and
rate of weight loss. Thus, 6/6 or 5/6 mice survived the study when CAF09b treatment
was initiated prior to influenza challenge (Figure 3D). In contrast, 2/6 mice survived in
the mock group and 3/6 mice survived when CAF09b treatment started after influenza
challenge. CAF09b treatment should therefore be initiated prior to influenza virus infection
to alleviate disease and improve survival. The virus titers in mice at the termination of the
study were similar across the groups irrespective of CAF09b treatment, although there was
a tendency towards lower influenza titers in the day −5, −2 b.i.c. group (Figure 3E).
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Figure 2. CAF09b i.n. protected against influenza disease. Mice (CB6F1, n = 8) were administered
CAF09b 20 µL i.n. on days −6 and −3 (2× CAF09b), or days −6, −5, −4, and −3 (4× CAF09b), the
mock group was administered Tris-buffer 20 µL i.n. on days −6 and −3. The mice were challenged
with mouse-adapted influenza A PR8 H1N1 virus (150 EID50, 30 µL i.n.) on day 0. (A) Survival
curves, mice were euthanized when meeting humane endpoints. (B) The disease score was monitored
for 168 h after influenza challenge. Euthanized mice were assigned the value 4 for clarity. (C) The
body weight as a percentage of initial weight (measured on day −1) was measured for 168 h.
(B,C, individual mice): Open symbols: mice were euthanized prior to study termination, closed
symbols: mice were euthanized at study termination.
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Figure 3. The timing of CAF09b administrations affected protection against influenza virus challenge.
(A) Mice (CB6F1, n = 6) were administered CAF09b 20 µL i.n. twice on days −11 and −8, −5 and −2,
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−2 and +1, or +1 and +4, and PR8 influenza virus challenge (150 EID50, 30 µL i.n.) on day 0. Tris-
buffer 20 µL administered i.n. on days −5 and −2 was used as a negative control (mock). (B) The
disease score was monitored for 168 h after influenza challenge. Euthanized mice were assigned the
value 4 for clarity. (C) The body weight as a percentage of initial weight (measured on day −1) was
measured for 168 h. (D) Survival curves, mice were euthanized when meeting humane endpoints.
(E) The PR8 virus titer was determined in the lungs at the point of euthanization by qPCR, boxes
denote mean ± S.D., dots represent individual mice. One-way ANOVA followed by Tukey’s multiple
comparisons test, * p-value ≤ 0.05. (B,C,E, individual mice): Open symbols: mice were euthanized
prior to study termination, closed symbols: mice were euthanized at study termination. (A) was
created with Biorender.com (Toronto, ON, Canada).

The expression of genes related to IFN-I responses was measured 7 days p.i.c. in
mice administered CAF09b at days −5 and −2 b.i.c., −2 b.i.c. and +1 p.i.c., and +1 and
+4 p.i.c., as well as the mock group and the naïve group (Figure 4). The influenza infection
highly influenced the expression of IFN-I-related genes. Out of the 84 IFN-I-related genes
measured, 53 genes were more than 2-fold up- or down-regulated when comparing the
naïve group to the mock group. Furthermore, 42 of these genes were only different in
the naïve group. When comparing the CAF09b-treated groups to the mock group, 10–14
genes were more than 2-fold up- or down-regulated (Figures 4A and S3). Focusing on the
15 highly up- or down-regulated genes, there was a similar expression profile among the
groups treated with CAF09b. CCL2, CCL5, CXCL10, IL10, IL6, and TLR9 gene expressions
were significantly higher in some of the CAF09b-treated groups compared to the mock
group. In contrast CAV1, MET, PRKCZ, and VEGFA gene expressions were lower in the
CAF09b-treated groups compared to the mock group (Figure 4B).
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Figure 4. Timing of CAF09b administration minimally affected infection-induced gene expression.
Mice (CB6F1, n = 3–6) were administered 20 µL CAF09b i.n. twice on days −5 and −2, −2 and +1,
and +1 and +4, and challenged with PR8 influenza virus (150 EID50, 30 µL i.n.) on day 0. A naïve and
a mock group were administered 20 µL Tris-buffer i.n. on days −5 and −2, and the mock group was
challenged with PR8 influenza virus (150 EID50, 30 µL i.n.) on day 0. Lungs were collected 7 days
post-virus challenge and 84 genes related to IFN-I responses were measured by qPCR (lungs were
taken at day −1 in the naïve group). (A) The Venn diagram shows the number of genes that are more
than 2-fold up- or down-regulated compared to the mock group for the four groups (CAF09b days
−5 and −2, CAF09b days −2 and +1, CAF09b days +1 and +4, naïve (Supplementary Figure S3)).
(B) Plots of the relative mRNA expression value of the genes where the mean value is more than
2-fold up- or down-regulated in (A). Each dot represents one mouse, boxes denote mean ± S.D.
One-way ANOVA followed by Tukey’s multiple comparisons test, * p-value ≤ 0.05, ** p-value ≤ 0.01,
*** p-value ≤ 0.001, **** p-value ≤ 0.0001.

2.5. Treatment with CAF09b Did Not Prevent Induction of an Influenza-Specific
Antibody Response

Induction of an adaptive pathogen-specific memory immune response after infection
is critical for protecting the individual from reinfection. To assess if CAF09b treatment
interfered with the induction of antibody responses, the levels of PR8 H1N1-specific total
IgG antibodies were determined in the blood of the mice at the termination of the study
or upon euthanization (Figure 5A,B). All mice in the study developed PR8 H1N1-specific
IgG antibodies, indicating that administration of CAF09b did not prevent the induction of
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adaptive immune responses, despite reducing disease severity. Furthermore, the HAI titers
were similar across the treatment groups, indicating that the induced antibody responses
were functional (Figure 5C).
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Figure 5. CAF09b did not interfere with induction of antibody responses. Mice (CB6F1, n = 6) were 
administered 20 µL CAF09b i.n. twice on days −11 and −8, −5 and −2, −2 and +1, and +1 and +4, and 
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point (open symbols) or at study termination 7 days after influenza challenge (closed symbols). (B) 

Figure 5. CAF09b did not interfere with induction of antibody responses. Mice (CB6F1, n = 6) were
administered 20 µL CAF09b i.n. twice on days −11 and −8, −5 and −2, −2 and +1, and +1 and
+4, and challenged with influenza A PR8 H1N1 virus (150 EID50, 30 µL i.n.) on day 0. Tris-buffer
20 µL administered i.n. on days −5 and −2 was used as a control (mock). (A) The PR8-specific total
IgG antibodies in serum were determined by ELISA upon euthanization when reaching a humane
endpoint (open symbols) or at study termination 7 days after influenza challenge (closed symbols).
(B) The sum of absorbance for the individual mice. Only mice which were euthanized upon study
termination are included. Box and whisker plots denoting mean and min./max. value, dots represent
individual mice. (C) HAI titer for individual mice. Only mice which were euthanized upon study
termination are included. Box and whisker plots denoting mean and min./max. value, dots represent
individual mice.

3. Discussion

Pan-viral prophylaxis could be an effective first-line measure to prevent or reduce
the impact of a potential viral epidemic or pandemic by providing a readily available,
pathogen-nonspecific treatment. Early after identification of a novel virus with epidemic
potential, stimulators of innate immunity which effectively induce antiviral responses could
be applied to front-line healthcare workers or close contacts, such as household members
of infected individuals. We demonstrated here that CAF09b liposomes could be used to
alleviate and prevent influenza-induced disease and death.

Airway administration of CAF09b recruited innate immune cells and robustly upregu-
lated IFN-I-associated genes in the lungs, which together may contribute to the reduction
in disease symptoms and prevention of death upon a subsequent influenza infection. The
influx of innate immune cells is likely due to the cationic charge of CAF09b, as very similar
influx patterns have been observed following intraperitoneal administration of CAF09b and
CAF04, a similar adjuvant without poly(I:C) (unpublished data, manuscript in preparation).
The cationic nature of the liposomes causes a local inflammatory response [21], which in
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turn recruits innate immune cells. The inflammatory response and innate cell recruitment
induced by CAF09b may be due to similar mechanisms as observed for other cationic
particles, which induce necrosis of target cells by interaction with Na+/K+-ATPase and
thereby danger-associated molecular pattern (DAMP) signaling [21]. The cell populations
recruited to the nose and lungs after CAF09b administration may have both beneficial and
detrimental effects on the antiviral response. Thus, neutrophils may exert antiviral effects,
e.g., by secreting antiviral agents such as reactive oxygen species and α-defensins, but may
also have damaging effects by promoting a prolonged inflammatory response at the site of
infection [22]. The role of NK cells in viral infections is not fully understood, but they are
recruited in large numbers by different viruses and may contribute to protection both via
direct cytotoxicity and via inducing an antiviral state [23]. However, the cationic charge
of DDA-based liposomes, such as the CAFs, does not only exert their adjuvant effect by
inducing inflammatory responses. The liposomes are preferentially endocytosed by APCs
at the injection site and in the spleen in an energy-dependent manner [17,18]. DDA-based
liposomes were further shown to enhance the cellular uptake of associated antigen [17],
and it is expected that the cellular uptake of poly(I:C) delivered in CAF09b is similarly
enhanced. Since DCs and macrophages are the main producers of IFN-Is, CAF09b was
hypothesized to be a good candidate for delivering poly(I:C) to the optimal cell subsets.

Early IFN-I responses are critical to prevent disease due to virus infections and prophy-
lactic or therapeutic antiviral strategies aiming to induce IFN-I after intranasal administra-
tion have been evaluated in clinical trials. Two PrEP-001 human clinical trials administering
powdered poly(I:C) i.n. twice, 48 and 24 h prior to challenge with either rhinovirus or
influenza A virus, showed reduced development of clinical illness and symptoms [10]. In
another study, IFN-β-1a was i.n. dosed once daily up to 14 days to patients hospitalized
with COVID-19 symptoms, which was well-tolerated and resulted in greater chances of
recovery compared to a placebo group [24]. Supporting these findings, a similar clinical
study administering IFN-α-2b i.n. to patients admitted to hospital with COVID-19 reduced
pro-inflammatory cytokine levels and improved the recovery rate compared to treatment
with the antiviral agent arbidol hydrochloride [25]. However, the timing of direct IFN-I
(-α or –β) administration has to be considered, as there is a concern of exacerbation of
the cytokine storm observed in later stages of severe disease [24]. Indeed, abrogation of
IFN-I responses in Ifnar−/− Balb/c mice resulted in milder disease after SARS-CoV infec-
tion compared to wildtype Balb/c mice [26]. Furthermore, disease-delayed IFN-I caused
inflammation and abrogated the antigen-specific T-cell responses [26].

The importance of an early IFN-I response was demonstrated in studies with the
SARS-CoV-1 virus. Here, animal studies showed that even in complete absence of T- and
B-cells, animals were able to control the infection if the innate immune system was alert
and able to instantly produce IFN-I after infection [27,28]. These studies also showed
that the early innate immune responses could facilitate stronger adaptive immunity to
infection. In support of this, both prophylactic and post-exposure strategies involving
specific innate immune stimulation, especially via TLR3, have been shown to be able to
prevent or eliminate a range of viral infections [29,30].

Importantly, we showed that CAF09b liposomes had to be administered prior to in-
fluenza challenge to be effective at preventing symptomatic disease and improving survival.
This is in accordance with a study using the poly(I:C) analogue Hiltonol® [poly(ICLC)]
as i.n. prophylaxis prior to challenge with mouse-adapted SARS-CoV in Balb/c mice,
where treatment had to be initiated within 8 h after virus challenge to prevent disease
and death [31]. The requirement for pretreatment with CAF09b indicates that the antiviral
environment in the nasal tissue and lungs induced by i.n. administration of CAF09b lipo-
somes must be present at the time of infection. Possibly, virus-induced inhibition of IFN-I
responses may hamper the effect of CAF09b when administered post-challenge during, for
example, influenza and coronavirus infections, where the innate response is corrupted by
the virus [26,32], whereby initial virus growth is allowed without immune pressure. This
leads to a delayed immune reaction to the infection and more severe disease.
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Elevated levels of several proinflammatory cytokines have been correlated with disease
severity across different respiratory virus infections [33,34]. Two identified cytokines, IL-6
and IL-10, were shown to be significantly elevated in mice administered CAF09b after
influenza infection (Figure 4B). The cytokines have both beneficial and detrimental effects
on the immune responses, which in turn affect disease severity depending on the virus
infection (influenza, respiratory syncytial virus, or SARS-CoV-2) [33]. As mentioned earlier,
the timing of CAF09b treatment to virus infection may not be known in a clinical setting,
and it is therefore necessary to further elucidate any possible exacerbation of existing virus-
induced disease caused by CAF09b administration. This may help to determine whether
high-risk groups in the human population should be excluded from CAF09b treatment in a
clinical setting.

The presented approach may offer a means to tackle the ever-present threat of emerg-
ing respiratory viruses with pandemic potential, by offering a strategy to delay virus
spread or reduce the negative impact in society until vaccine roll-out can be initiated.
Future studies will aim at testing the longevity of protection against different viruses.

4. Materials and Methods

4.1. Preparation of CAF®09b

Dimethyldioctadecylammonium bromide (DDA) and monomycoloyl glycerol [16]
were obtained from NCK A/S (Farum, Denmark) and polyinosinic:polycytidylic acid was
bought from Dalton Pharma Services (North York, ON, Canada). The liposomal adjuvant
CAF09b was essentially prepared as described elsewhere [13]. Briefly, weighed amounts of
DDA and MMG were dissolved in EtOH, 96%. A lipid film was formed by evaporating
the EtOH under a gentle N2 stream for 2 h followed by air-drying overnight. The lipid
film was rehydrated in Tris-buffer (10 mM, pH 7.0) with 2% w/v glycerol by high-shear
mixing by using a Heidolph Silent Crusher equipped with a 6F shearing tool (Heidolph
Instruments GmbH, Schwabach, Germany) at 26,000 rpm and 60 ◦C for 15 min. Poly(I:C)
was added continuously during high-shear mixing using a peristaltic pump (Pharmacia
Biotech, Stockholm, Sweden) over 30 min. The final CAF09b dose was 250/50/12.5 µg
DDA/MMG/poly(I:C) in 20 µL.

4.2. In Vivo Studies

The induction of innate immune cell responses and prevention of influenza dis-
ease after intranasal administration of CAF09b was evaluated in vivo in CB6F1 mice
(BALB/c × C57BL/6, Envigo, Horst, The Netherlands). The animal experiments were
conducted in accordance with EU directive 2010/63/EU and regulations set forth by
the Danish National Committee for the Protection of Animals used for Scientific Purposes.
The mice were randomized in the study groups (n = 6 or 8) and allowed free access to food,
water, and recreational stimuli.

The mice were treated with 20 µL of CAF09b i.n. or Tris-buffer (10 mM, pH 7.0)
as a negative control at different time points prior to termination (the day after the last
treatment) or to challenge with 30 µL of influenza A Mouse-adapted influenza virus strain
A/Puerto Rico/8/1934 virus (5 × 103 EID50/mL administered as 15 µL/nostril). The virus
was propagated in the allantoic cavity of 10-day-old embryonate hen’s eggs. Allantoic fluid
was harvested, clarified, and frozen at −80 ◦C until use. In the influenza virus challenge
studies, the mice were followed for 7 days after challenge and monitored for changes in
weight and disease score. The disease score was assessed by trained animal caretakers using
an in-house standard protocol (score 0: not affected—normal behavior; score 1: slightly
affected—slower movements and maybe slight piloerection; score 2: affected—sitting
still but moving when cage is agitated, maybe piloerection, slightly changed respiration,
slightly squinting, arching abdomen, hunchback; score 3: clearly affected—move only
when prodded, maybe piloerection, labored respiration, half-closed eyes, arching abdomen,
hunchbacked; score 4: very affected—slight movement only when prodded, maybe pi-
loerection, labored respiration, closed eyes, cool). The mice were euthanized during the
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course of the study if they met the predefined humane endpoints: weight loss exceeding
20% of initial weight, and a disease severity score of 2 for more than 48 h or 3 for more
than 12 h. At termination, one lung was removed into RNAlater (Thermo Fisher Scientific,
Waltham, MA, USA) for evaluation of induction of IFN-I, and the other lung was removed
into RPMI 1640 (Gibco, Invitrogen, Carlsbad, CA, USA) for assaying the infectious in-
fluenza virus titer. Blood was collected for evaluation of PR8 H1N1-specific antibody titers.
In the study terminated prior to influenza virus challenge, the mice were administered
anti-CD45:FITC intravenously 3 min prior to euthanization for staining of blood leukocytes.
After euthanization, the nasal tissue (upper jaw and nose in front of the eyes) and lungs
were removed into RPMI 1640 for identification of the innate cell responses.

4.3. Innate Immune Cell Characterization by Flow Cytometry

For evaluation of the innate cell response in the lungs and noses after treatment
with CAF09b, the lungs and noses were processed to obtain single-cell suspensions. Each
lung was immersed in 2.5 mL of cRPMI (RPMI 1640 supplemented with 5 × 10−6 M 2-
mercaptoethanol, 1% pyruvate, 1% HEPES, 1% (v/v) premixed penicillin-streptomycin
solution (Invitrogen Life Technologies, Invitrogen, Carlsbad, CA, USA), 1 mM glutamine,
and 10% (v/v) fetal calf serum (FCS)) with 1.6 mg collagenase (Sigma-Aldrich, St. Louis,
MO, USA) and processed twice on a GentleMacs using the lung program (Miltenyi Biotec,
Köln, Germany), with 30 min incubation at 37 ◦C in between. The homogenate was then
passed through a 100 µm nylon mesh cell strainer (Corning Inc., Corning, NY, USA) and
washed twice in cold PBS (Gibco). The noses were cut into smaller pieces prior to incubation
with 1.6 mg of collagenase in 2.5 mL of cRPMI+10% FCS for 30 min at 37 ◦C with agitation.
The detached cells were then passed through a cell strainer and washed twice in cold PBS.

The single-cell suspensions were placed in 96-well V-bottomed plates at 106 cells/well,
treated with Fc-block, and stained with live-dead cell marker:AF488, CD19:FITC, Ly6G:PE,
CD49d:PerCP-Cy5.5, CD11b:PE-Cy7, F4/80:APC, Ly6C:APC-Cy7, NK1.1:BV421,
CD11c:BV510, and MHC II (IA-IE):BV605 (eBiosciences, San Diego, CA, USA or BD Bio-
sciences, San Jose, CA, USA). The cells were analyzed using a LSRFortessa with FACS-
Diva software (BD Biosciences, San Jose, CA, USA) and the data were analyzed using
FlowJo (BD Biosciences, San Jose, CA, USA). Cells were identified as macrophages (F4/80+,
CD11b+), neutrophils (Ly6G+), natural killer (NK) cells (NK1.1+), monocytes (CD11b+,
Ly6C+), and dendritic cells (DC) (MHCII+, CD11c+), and the gating strategy is shown in
Supplementary Figure S1.

4.4. Type I IFN Induction by qPCR

Lungs were removed into RNAlater, where they were kept at 4 ◦C for a minimum
of 24 h and then stored at −20 ◦C. RNA was isolated using the RNeasy mini kit (Qiagen,
Hilden, Germany), and lung tissue was homogenized by gentleMACS using the RNA_01
program (Miltenyi Biotec). Genomic DNA was removed by on-column DNase digestion
using the RNase-Free DNase set (Qiagen). The quality of the RNA was determined by
NanoDrop™ 2000/2000c Spectrophotometers (Thermo Fisher Scientific, Waltham, MA,
USA) and the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). All samples
had a RIN value > 8. The cDNA was synthesized by the RT2 First Strand Kit (Qiagen).
Quantitative real-time PCR (qRT-PCR) was performed on a LightCycler® 480 (Roche,
Basel, Switzerland) using AbsQuant 2nd Derivative Max for obtaining the Ct value. PCR
conditions were 10 min at 95 ◦C followed by 45 two-step cycles of 15 s at 95 ◦C and 1 min
at 60 ◦C. For RNA profiling, the RT2 Profiler Array “Type I Interferon Response” (Cat.
No. 330231 PAMM-016ZA) (Qiagen) was used together with RT2 SYBR® Green Mastermix
(Qiagen,). The relative mRNA amount was obtained by the ∆∆Ct method [35], with the
use of the three housekeeping genes GAPDH, GUSB, and HSP90AB1.4.5
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4.5. Virus Titer Determination by qPCR

The virus titers were determined on lung supernatants from infected mice. The lungs
were removed into RPMI and homogenized by gentleMACS using the RNA_01 program
(Miltenyi Biotec). The lung supernatant was stored at −80 ◦C, and the RNA was isolated by
the Quick-RNA Viral Kit (Zymo Research, Tustin, CA, USA). The quality of the RNA was
determined using a NanoDrop™ 2000/2000c Spectrophotometer (Thermo Fisher Scientific).
The titers were determined by the virotype Influenza A RT-PCR Kit (Indical Bioscience,
Leipzig, Germany), using 70 ng of RNA. The qRT-PCR was performed on a LightCycler®

480 (Roche)using AbsQuant 2nd Derivative Max for obtaining the Ct value. PCR conditions
were 10 min at 45 ◦C, 10 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C and 1 min at
60 ◦C. The relative mRNA amount was obtained by the ∆∆Ct method [35], using β-actin
as a housekeeping gene.

4.6. PR8 H1N1 Hemagglutinin Protein-Specific Antibody ELISA

Serum was obtained after centrifugation of the blood for 10 min at 10,000× g and stored
at −20 ◦C until further use. The PR8 H1N1 antigen-specific IgG antibody responses induced
by influenza PR8 challenge were evaluated by ELISA. PR8 H1N1 hemagglutinin protein
(Sino Biological Inc., Beijing, China), 1 µg/mL, was coated onto MaxiSorp plates (Nunc,
Hillerød, Denmark) overnight at 4 ◦C. Serum was added at 10-fold serial dilutions and
incubated for 2 h at room temperature (rt), followed by incubation with HRP-conjugated
anti-mouse total IgG antibodies (AH diagnostics, Tilst, Denmark) for 1 h at rt. The signal
was detected by TMB (Kem-En-Tec, Taastrup, Denmark) and the reaction stopped with
0.2 M of H2SO4, followed by analysis on a TECAN Sunrise™ ELISA reader (Tecan Trading
AG, Männedorf, Switzerland) at 450 nm with 620 nm correction.

4.7. PR8 H1N1 Hemagglutinin Inhibition Assay

The hemagglutinin inhibition (HAI) assay was performed on fresh guinea pig red
blood cells (RBC). The PR8 virus titer at four times the lowest titer causing hemagglutination
was used in the assay. The serum was treated with receptor-destroying enzyme overnight
at 37 ◦C followed by inactivation at 56 ◦C for 30 min. The serum was then incubated with
RBCs at 4 ◦C for 1 h followed by centrifugation at 500× g for 10 min and collection of the
supernatant. The treated serum was 2-fold serial diluted starting with a 10-fold dilution,
and diluted PR8 virus was subsequently added and the samples were incubated at rt for
15 min. RBCs at 0.65% were added to all wells and the plate was incubated at rt for 1
h. The HAI titer was determined as the highest serum dilution retaining a RBC pellet
after incubation.

4.8. Statistical Analysis

Statistical analyses were performed using either GraphPad Prism software version
8.3.0 for Windows (GraphPad Software, La Jolla, CA, USA) or R (version 4.0.2). Statistical
significance between multiple groups was determined by one-way ANOVA followed by
either Dunnett’s multiple comparisons test (if all groups are compared to the naïve) or
Tukey’s multiple comparisons test (if all groups are compared to each other). Statistical
significance between two groups was determined by the two-tailed unpaired t-test. Two-
fold up/downregulated genes were determined in R and plotted in a scatterplot (car
package). The difference in relative mRNA expression for each gene was calculated by the
z-score and illustrated in a heatmap (pheatmap package).

5. Conclusions

These encouraging early preclinical data using the liposome-based vaccine adjuvant
CAF09b suggest a possible potential for a prophylaxis strategy against respiratory viral
disease involving activation of innate immunity, especially IFN-I responses to establish
anti-viral innate immunity against pandemic viruses. While CAF09b does not prevent
influenza infection, it may reduce the severity of disease and death caused by the virus.
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Furthermore, it will have the potential to afford the immune system time to form the
necessary adaptive immunity to protect against recurrent infections or even accelerate the
development of adaptive immunity among infected individuals.

6. Patents

Patent application No. WO 2021/209562, named “Liposomal composition for prevent-
ing or early treatment of pathogenic infection”, resulted from the work reported in this
manuscript. F.F. and D.C. are co-inventors on the mentioned patent application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23031850/s1.
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