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Objectives: Biofilm formation has been demonstrated in muscle and soft tissue
samples from patients with necrotizing soft tissue infection (NSTI) caused by
Streptococcus pyogenes, but the clinical importance of this observation is not clear.
Although M-protein has been shown to be important for in vitro biofilm formation in
S. pyogenes, the evidence for an association between emm type and biofilm forming
capacity is conflicting. Here we characterize the biofilm forming capacity in a collection
of S. pyogenes isolates causing NSTI, and relate this to emm type of the isolates and
clinical characteristics of the patients.

Methods: Bacterial isolates and clinical data were obtained from NSTI patients
enrolled in a multicenter prospective observational study. Biofilm forming capacity was
determined using a microtiter plate assay.

Results: Among 57 cases, the three most frequently encountered emm types were
emm1 (n = 22), emm3 (n = 13), and emm28 (n = 7). The distribution of biofilm
forming capacity in emm1 was qualitatively (narrow-ranged normal distribution) and
quantitatively (21/22 isolates in the intermediate range) different from other emm types
(wide ranged, multimodal distribution with 5/35 isolates in the same range as emm1).
There were no significant associations between biofilm forming capacity and clinical
characteristics of the patients.

Conclusions: The biofilm forming capacity of emm1 isolates was uniform and differed
significantly from other emm types. The impact of biofilm formation in NSTI caused by
S. pyogenes on clinical outcomes remains uncertain.

Keywords: Streptococcus pyogenes, necrotizing soft tissue infection (NSTI), biofilms, M-protein, emm1

INTRODUCTION

Streptococcus pyogenes causes a broad spectrum of disease manifestations ranging from mild,
superficial infections to life-threatening invasive diseases, as well as post-streptococcal sequelae.
This pathogen accounts for more than half a billion new cases and more than half a million deaths
annually on a global scale (World Health Organization, 2005). Invasive S. pyogenes infections
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have a reported annual incidence of around 3 per 100,000
persons in the Scandinavian countries (Darenberg et al., 2007;
Luca-Harari et al., 2008; Naseer et al., 2016). Necrotizing soft
tissue infections (NSTIs) are acute, life-threatening conditions
characterized by rapid and extensive destruction of the deep soft
tissue (Sartelli et al., 2018). S. pyogenes is the most common
pathogen in monomicrobial NSTIs (Skrede et al., 2020).

Biofilms are aggregates of microorganisms adhering to each
other and to a surface and embedded within an extracellular
matrix consisting of polysaccharides, proteins and nucleic acids.
Microorganisms growing within a biofilm are largely protected
against the host’s immune systems and the effect of antibiotics
(Kumar et al., 2017).

S. pyogenes biofilm like structures have been demonstrated
in vitro (Baldassarri et al., 2006; Lembke et al., 2006; Koller et al.,
2010) as well as in vivo (Siemens et al., 2016). M protein, encoded
by the emm gene, has an important role in S. pyogenes biofilm
formation (Cho and Caparon, 2005; Courtney et al., 2009).
However, there is conflicting evidence for a potential association
between emm type and biofilm formation (Baldassarri et al., 2006;
Koller et al., 2010; Ogawa et al., 2011; Wozniak et al., 2017). Other
surface associated molecules known to be involved in S. pyogenes
biofilm formation include pili (Manetti et al., 2007), streptococcal
collagen like protein 1 (Scl1) (Oliver-Kozup et al., 2011) and
hyaluronic acid capsule (Cho and Caparon, 2005). The clinical
relevance of the S. pyogenes biofilm phenotype in mild infections
of the upper respiratory tract and skin is recognized (Fiedler et al.,
2015). In a previous study, we documented biofilm formation
in vivo in NSTIs caused by S. pyogenes with biofilm demonstrated
in tissue biopsies in over 30% of the cases (Siemens et al., 2016).

The aim of this study was to characterize in vitro biofilm
forming capacity of S. pyogenes causing monomicrobial NSTI.
We also wanted to explore possible associations between biofilm
forming capacity and emm type of the isolates and clinical
characteristics, including outcome, of the patients.

MATERIALS AND METHODS

Study Population and Bacterial Isolates
Patients with confirmed monomicrobial NSTI caused by
S. pyogenes prospectively enrolled in the INFECT project
(ClinicalTrials.gov, NCT01790698), were included in this study.
Demographic and clinical data were obtained from the INFECT
trial database, described in detail elsewhere (Madsen et al., 2018).

Bacteria were isolated from sterile sites, including deep
tissue or blood, and stored as frozen stock cultures at
−80◦C. Identification was performed using matrix-assisted
laser desorption/ionization time-of-flight (MALDI-ToF) mass
spectrometry. emm-typing and multi-locus sequence-typing
(MLST) was done as described earlier (Bruun et al., 2020).
Phylogenetic analysis was performed using CSI Phylogeny 1.4
available at Center for Genomic Epidemiology website (Kaas
et al., 2014). The phylogenetic tree was edited in Geneious 9.1.7.1

Genomic sequences was retrieved from the European Nucleotide

1https://www.geneious.com

Archive (ENA database) under the BioProject PRJNA524111.
One of the isolates (from case 2006) was used as a reference and
included in every microtiter plate of the biofilm assay.

Definitions
Necrotizing soft tissue infection is defined as necrotic or
deliquescent soft tissue with widespread undermining of
surrounding tissue as observed perioperative by the surgeon
(Madsen et al., 2018).

Sepsis-related Organ Failure Assessment (SOFA) score is a tool
to evaluate morbidity in critical ill patients based on respiratory-,
circulatory-, renal-, coagulation-, hepatic-, and central nervous
system function (Vincent et al., 1996).

Generation of Biofilm Culture
Biofilms were formed according to a customization of a static
biofilm culture model (Kwasny and Opperman, 2010). In short,
portions of frozen stock cultures were first plated on sheep
blood agar (SBA) and incubated overnight. A single colony
from this first subculture was streaked on a fresh SBA plate
and incubated for 18 ± 1.5 h. Colonies from second cultures
were suspended in Tryptic Soy Broth containing 1% glucose
(TSBG). The suspension was adjusted to a turbidity equivalent to
a bacterial cell density of approximately 108 colony forming units
per ml (CFU/ml).

Wells of flat bottomed, 96 well, microtiter plates (Nunc
A/S, Roskilde, Denmark, catalog no. 167008) were inoculated
with 200 µl of a 10−1 dilution of this suspension. Inoculated
microtiter plates were covered by a lid and placed at 4◦C for
4 h (±20 min) in order to let the bacteria sediment without
significant multiplication. The plates were then incubated at 37◦C
in ambient air for 18 h (±25 min).

Details of the microtiter plate lay out are shown in
Supplementary Figure 1. In order to reduce evaporation from
inoculated wells, all wells at the edge of the microtiter plate were
filled with sterile TSBG. Six of these wells were used for blank
correction of optical density (OD) measurements.

Measurements of Biofilm Forming
Capacity
At the end of incubation, the growth medium was removed
by gentle aspiration. Bacteria loosely attached to the biofilms
were removed by careful addition and subsequent aspiration of
300 µl Phosphate-buffered saline (pH 7.2). This rinse procedure
was performed twice. Biofilms were heat fixed at 60◦C for at
least 90 min and thereafter stained using 0.06% crystal violet
solution (50 µl) for 5 min at room temperature. Unbound stain
was removed by gentle aspiration and the wells were rinsed five
times as described above. Biofilms were then dried by leaving
the plates without lid at room temperature for at least 60 min.
Stain bound to biofilm was eluted by incubating the biofilms with
200 µl 30% acetic acid for 5 min. One hundred µl of thoroughly
mixed eluate were transferred to a fresh microtiter plate and
optical density was measured at a wavelength of 600 nm (OD600)
using Synergy H1 microplate reader (BioTek, Winoosky, VT,
United States). The mean blank-corrected OD600-value of eluate
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from six wells from each isolate served as a measure of biofilm
forming capacity.

Viable bacterial density of the inocula was retrospectively
verified by quantitative culture. If inoculum density was outside
an acceptance range of 5.0× 106–1.5× 107 CFU/ml, the OD600-
result was discarded and the actual isolate was re-tested.

Statistical Methods
Normally distributed continuous variables are presented as mean
[95% confidence interval (CI)] and compared using one-way
ANOVA, while categorical variables are presented as numbers
(percentages) and compared using Fisher’s exact test (two-tailed).
Statistical significance was assessed after controlling the false
discovery rate using the Benjamini-Hochberg procedure with a
false discovery rate of 0.1. Quartiles were determined using the
weighted average method. Between-run precision of the biofilm
assay was determined using blank-corrected mean OD600-values

of the reference isolate and expressed as coefficient of variation
(CV). Statistical analyses were performed using IBM SPSS
Statistics Version 24 (IBM Corp., Armonk, NY, United States).
Power analyses were performed using G∗Power 3.1.9.2.

RESULTS

Study Population and Bacterial Isolates
One-hundred-and-fourteen (28%) of 409 patients included in the
INFECT study had a monomicrobial infection with S. pyogenes.
When this study was conducted, bacterial isolates were available
from 59 cases. Of these, two cases were excluded because the
density of bacterial inocula was repeatedly below the lower
acceptance limit in the biofilm assay. Demographic and clinical
data of the 57 included cases, are summarized in Table 1. The
three most prevalent emm types, emm1, emm3, and emm28,

TABLE 1 | Biofilm forming capacity in relation to patient demographics, clinical variables and emm type.

Variables Total Biofilm forming capacity groupa p-valueb

Poor Intermediate Good

Age in years, mean (95% CI), n = 57 58 (54–61) 54 (46–61) 59 (53–65) 58 (51–66) 0.49

Gender, n (%) 0.69

Female 30 (53) 7 (50) 17 (59) 6 (43)

Male 27 (47) 7 (50) 12 (41) 8 (57)

Comorbiditiesc, n (%) 1.00

Yes 31 (54) 7 (50) 16 (55) 8 (57)

No 26 (46) 7 (50) 13 (45) 6 (43)

Body part affected, n (%) 0.03

Upper extremities including thoracic involvement 26 (46) 5 (36) 18 (62) 3 (21)

Lower extremities 19 (33) 7 (50) 4 (14) 8 (57)

Head/neck, including intrathoracic space 8 (14) 2 (14) 4 (14) 2 (14)

Abdomen and ano-genital area 4 (7) 0 (0) 3 (10) 1 (7)

SOFA score day 1, mean (95% CI) (n = 55)d 9.4 (8.4–10.4) 9.0 (6.5–11.5) 9.2 (7.7–10.8) 10.1 (8.2–12.1) 0.70

Dead day 30, n (%)e 0.55

Yes 4 (7) 1 (7) 1 (4) 2 (14)

No 52 (93) 13 (93) 27 (96) 12 (86)

Amputation, n (%)f 0.90

Yes 9 (20) 3 (25) 4 (19) 2 (18)

No 35 (80) 9 (75) 17 (81) 9 (82)

emm type, n (%)g 0.000003*

emm1 22 (52) 0 (0) 21 (91) 1 (13)

emm3 13 (31) 6 (55) 2 (9) 5 (63)

emm28 7 (17) 5 (45) 0 (0) 2 (25)

aPoor: isolates with OD600-values below the first quartile. Intermediate: isolates with OD600-values above the first and below the third quartile. Good: isolates with OD600-
values above the third quartile.
bAn asterisk (*) after the p-value denotes a statistic significant result after correction for multiple comparison using the Benjamini-Hochberg procedure with a false
discovery rate of 0.10.
cComorbidities: chronic obstructive pulmonary disease, cardiovascular disease, diabetes type I or II, chronic kidney disease, chronic liver disease, peripheral vascular
disease, rheumatoid disease, chronic wound or other skin disease, varicella infection, active malignancy, metastatic carcinoma, hematologic cancer, HIV positive, other
immunodeficiency.
dTwo missing values for “SOFA-score day 1”: Poor biofilm forming capacity group: n = 13, Intermediate biofilm forming capacity group: n = 28 and Good biofilm forming
capacity group: n = 14.
eMissing data for one case (n = 56).
f Only cases with limb affection (n = 44).
gOnly the three most frequently encountered emm types are shown (n = 42).
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TABLE 2 | Distribution of emm types.

emm type Frequency (n) Percent Cumulative percent

emm1 22 38.6 38.6

emm3 13 22.8 61.4

emm28 7 12.3 73.7

emm12 3 5.3 78.9

emm22 2 3.5 82.5

emm77 2 3.5 86.0

emm87 2 3.5 89.5

emm89 2 3.5 93.0

emm4 1 1.8 94.7

emm25 1 1.8 96.5

emm58.5 1 1.8 98.2

emm180.1 1 1.8 100.0

57 100

comprised nearly three quarters of all isolates (Table 2). All
emm1 isolates belonged to sequence type (ST) 28 and all emm28
isolates belonged to ST 52. The emm3 isolates were either
ST 15 (n = 8) or ST 315 (n = 5), which differ from each
other with a single base-pair in a single locus. With a few
exceptions, the isolates within each emm type clustered close
together (Figure 1).

Biofilm Forming Capacity
Between-run CV for the biofilm forming capacity assay was
12.2% (data not shown). Biofilm forming capacity had a wide
range (OD600-values from 0.01 to 1.31) and a multimodal
distribution (Figure 2). However, all emm1 isolates (n = 22)
clustered closely within a narrow range (OD600-values from
0.32 to 0.65) and had a normally distributed biofilm forming
capacity. Isolates other than emm1 showed great variations in
biofilm forming capacity, and only 14% (5/35) of these had
biofilm forming capacity within the same range as the emm1
isolates (Figure 3).

For comparative statistical analyses, isolates were classified
according to their biofilm forming capacity: isolates with OD600-
values below the first quartile (OD600 = 0.19), between the first
and third quartile (OD600 = 0.65) and above the third quartile
were categorized as poor, intermediate and good biofilm formers
respectively (Table 1). The only emm1 isolate categorized as a
good biofilm former, clustered together with the other emm1
isolates, but had an OD600 value slightly above the third quartile
(Figure 3). While the emm3 isolates were distributed across the
whole range of biofilm forming capacity, the emm28 isolates were
either poor or good biofilm formers (Table 1 and Figure 3). For
the remaining emm types there were too few observations to
deduce a pattern (Figure 3).

Eight of the bacterial strains included in the present study
are isolated from clinical biopsies thoroughly characterized with
regard to in vivo biofilm formation by Siemens et al. (2016). The
results from our in vitro model corresponded well to the presence
of biofilm in vivo, as assessed by confocal laser scan microscopy
and scanning electron microscopy (Figure 4).

FIGURE 1 | Single nucleotide polymorphism (SNP) based Phylogeny using
CSI Phylogeny 1.4, including the three most common emm types in the study
and reference strains [NCTC8198 (GenBank accession LN831034.1), NIH34
(GenBank accession AP023387.1) and NIH35 (GenBank accession
AP023388.1)]. The color indicates emm- and ST type, including dark blue:
emm1 (ST 28); purple: emm3 (ST 15); orange: emm3 (ST 315) and green:
emm28 (ST 52).

FIGURE 2 | Frequency distribution of biofilm forming capacity.

DISCUSSION

The biofilm forming capacity of emm1 isolates was uniform
and differed significantly from other emm types. However, the

Frontiers in Microbiology | www.frontiersin.org 4 February 2022 | Volume 13 | Article 822243

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-822243 February 14, 2022 Time: 15:52 # 5

Skutlaberg et al. Biofilm Formation in Streptococcus pyogenes

FIGURE 3 | emm type and biofilm forming capacity. Horizontal lines indicate the first (OD600 = 0.19) and third (OD600 = 0.65) quartiles. Isolates with OD600-values
below the first quartile, between the first and third quartile and above the third quartile are categorized as poor, intermediate and good biofilm formers, respectively.

associations between biofilm forming capacity and the different
clinical variables were all non-significant.

The distribution of emm types in the present study fits
well with results from previous prevalence reports of invasive
streptococcal infections in the Scandinavian countries (Gherardi
et al., 2018). Both the close relationship between emm type and
sequence type (MLST) as well as the genomic stability among
emm1 isolates are in accordance with other reports (Enright et al.,
2001; Barnett et al., 2018; Coppens et al., 2019; Li et al., 2020).
Our finding that most emm1 isolates are better biofilm formers
than the majority of emm28 isolates, is consistent with previous
studies (Baldassarri et al., 2006; Koller et al., 2010; Ogawa et al.,
2011). The only study among these with a sufficient number
of emm3 isolates, found a more homogenous distribution of
biofilm forming capacity within this emm type compared to
our data (Baldassarri et al., 2006). Other studies addressing the
relationship between emm type and biofilm formation includes
no or just a few emm1, emm3, and/or emm28 isolates (Lembke
et al., 2006; Thenmozhi et al., 2011; Wozniak et al., 2017), making
a comparison to our results unreliable.

Lack of association between biofilm formation and clinical
characteristics of patients with S. pyogenes NSTI is in accordance
with earlier findings from our group (Siemens et al., 2016). Both
studies use material from the INFECT project (Madsen et al.,
2018), but whereas the previous study was based on assessment of
biofilms in tissue biopsies (Siemens et al., 2016), the present study
focuses on biofilm formation in an in vitro model. In addition,
our study includes more cases (n = 57) than the previous study
(n = 31). We are not aware of any other studies addressing

the clinical significance of biofilm formation by S. pyogenes
in NSTIs.

The main strengths of the present study are the prospective
inclusion of cases, strict inclusion criteria and standardized
collection of clinical data and bacterial isolates. As far as we
know, this is the largest collection of S. pyogenes isolated from
prospectively enrolled NSTI patients. Still the sample size is too
small to conclude on a relationship between biofilm forming
capacity and clinical characteristics of the patients, and this is a
limitation in our study. Post-hoc power analyses of the different
clinical variables, estimates powers of < 0.1, given a small effect
size (Cohen’s w = 0.1), a significance level of p = 0.05 and
the actual sample size (n = 57). Further, the categorization
of bacterial isolates into biofilm forming groups may lead to
misclassifications due to analytical inaccuracy. An examination
of OD600-values close to the cut-off values, taking the between-
run CV into account, reveals seven isolates (including four
emm1 and one emm28 isolate) where analytical imprecision
could have influenced categorization. However, these possible
misclassifications will not affect the conclusion on an association
between emm type and biofilm formation. Other limitations
of our study is the in vitro design, disregarding the influence
of host factors on biofilm formation, as well as the narrow
spectrum of conditions used in the biofilm model. However,
concordance between the in vitro biofilm forming capacity of
selected isolates in this study and the presence of biofilm in vivo
in corresponding biopsies (Siemens et al., 2016), indicates the
usefulness of the in vitro model to predict biofilm formation in
infected tissue (Figure 4).
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FIGURE 4 | Relationship between biofilm in vivo (Siemens et al., 2016) and
in vitro biofilm forming capacity of bacterial isolates from the same biopsies
(this study).

Clonal relationship is a possible explanation of the uniform
biofilm formation capacity demonstrated among emm1 isolates
in this study. In contrast, emm3 isolates, display great variations
in biofilm formation capacity despite close genetic relatedness
within this emm type.

Some genetic variants are under positive selection in subsets of
isolates (Lefebure and Stanhope, 2007; Carroll et al., 2011; Oliver-
Kozup et al., 2011; Shea et al., 2011; Olsen et al., 2012), implying a
beneficial effect in specific ecological niches. Importantly, genetic
variants affecting the expression of virulence factors known to
be involved in biofilm formation, may be unevenly distributed
between isolates with the same emm type. Examples of this
are surface associated structures like pili (Manetti et al., 2007;
Koller et al., 2010), Streptococcal collagen like protein 1 (Scl1)
(Oliver-Kozup et al., 2011) and hyaluronic acid capsule (Cho
and Caparon, 2005; Shea et al., 2011), as well as the secreted
streptococcal cysteine proteinase B (SpeB) (Carroll et al., 2011;
Olsen et al., 2012).

Future research based on genomics may reveal the virulence
factors’ contribution to the variations in biofilm forming
capacity observed in the present study. However, genes may
be variably expressed under different conditions or due to
mutations in regulatory parts of the genome. Great differences
between transcriptomes and proteomes at different time points of
S. pyogenes biofilm formation, suggesting a substantial regulation
by non-transcriptional mechanisms, underscores the importance

of assessment at both the RNA and protein levels (Freiberg et al.,
2016). Comparison of qualitative and quantitative expression of
different genes, as well as detection of post-translational variants
of proteins expressed during biofilm formation, could reveal
components hitherto unknown to be important in streptococcal
biofilm formation.

In summary, we have described the biofilm forming capacity
in a collection of S. pyogenes isolated from patients with NSTI. We
have demonstrated that invasive emm1 isolates have a distinctive
biofilm forming capacity compared to other invasive emm types,
but were unable to detect associations of biofilm formation in
NSTI to clinical outcomes.
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