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Abstract: Brain segmentation in magnetic resonance imaging (MRI) images is the process of isolating
the brain from non-brain tissues to simplify the further analysis, such as detecting pathology or
calculating volumes. This paper proposes a Graph-based Unsupervised Brain Segmentation (GUBS)
that processes 3D MRI images and segments them into brain, non-brain tissues, and backgrounds.
GUBS first constructs an adjacency graph from a preprocessed MRI image, weights it by the difference
between voxel intensities, and computes its minimum spanning tree (MST). It then uses domain
knowledge about the different regions of MRIs to sample representative points from the brain, non-
brain, and background regions of the MRI image. The adjacency graph nodes corresponding to
sampled points in each region are identified and used as the terminal nodes for paths connecting
the regions in the MST. GUBS then computes a subgraph of the MST by first removing the longest
edge of the path connecting the terminal nodes in the brain and other regions, followed by removing
the longest edge of the path connecting non-brain and background regions. This process results
in three labeled, connected components, whose labels are used to segment the brain, non-brain
tissues, and the background. GUBS was tested by segmenting 3D T1 weighted MRI images from
three publicly available data sets. GUBS shows comparable results to the state-of-the-art methods in
terms of performance. However, many competing methods rely on having labeled data available for
training. Labeling is a time-intensive and costly process, and a big advantage of GUBS is that it does
not require labels.

Keywords: brain tissues; non-brain tissues; segmentation; minimum spanning tree

1. Introduction

The brain is a complex organ that makes the central nervous system together with the
spinal cord. It is divided into forebrain (sensory processing, higher reasoning), midbrain
(motor movement, audio/visual processing), and hindbrain (autonomic functions such as
sleep and respiratory rhythms). Over the past years, non-invasive imaging techniques have
gained momentum, in assessing brain injury and studying brain anatomy. In particular,
magnetic resonance technology is widely used in the diagnosis of brain diseases such as
brain tumors, multiple sclerosis, hematomas and to find the cause of conditions such as
epilepsy and headaches [1]. The technology produces magnetic resonance imaging (MRI)
data, which can be processed to produce 3D volumetric data with the intensity of voxels
varying according to the properties of different tissues. MRI images are most commonly
presented as a stack of two-dimensional slices. Analysis of such high quality complex MRI
data is a tedious process. Recent advances with computer aided-tools have overcome the
major pitfalls of manual MRI data analysis. Brain MRI segmentation is an important step
in image processing as it highly influences the outcome of the entire analysis, which is
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crucial in the case of surgical planning, delineating lesions and image-guided interventions.
To segment any target structure in the brain, it is common to perform a preprocessing step
to isolate the brain from non-brain tissues such as the skull, dura and scalp [2,3].

Methods for segmenting the brain from non-brain tissues can be classified as manual,
semi-automated, and fully automated [4,5]. Manual brain extraction gives high precision
but is labor-intensive [6]. Semi-automated methods involve a certain degree of user in-
tervention, whereas automated methods do not depend on any human interaction. Most
automated methods for brain extraction can be classified in categories, such as mathemati-
cal morphology-based, intensity-based, deformable surface-based, atlas-based, and hybrid
methods [2,7,8]. Machine learning techniques, including neural networks are also widely
used for skull stripping [9,10]. We review different skull stripping techniques before
describing GUBS.

Louis Lemieux et al. [11] proposed a fully automated method for segmenting the
whole brain in T1- weighted volume. It is fast and based on foreground thresholding and
morphological operations. It performs 3D connected component analysis at each level.
Furthermore, Brain Extraction Tool (BET) is an automated method for segmenting Magnetic
Resonance head images to separate brain and non-brain tissues. It uses a deformable model
that evolves to fit the brain’s surface by applying a set of locally adaptive model forces.
The method is robust, fast and it does not require any pre-registration or preprocessing [12].

FreeSurfer is an open-source software that implements various image processing tools
for both structural and functional MRI data sets. Skull stripping is one of the tasks that
FreeSurfer provides for processing MRI images. It performs automatic skull stripping from
intensity normalized images through a deformation of a tessellated ellipsoidal template
into the shape of the inner surface of the skull [13]. David W. Shattuck and Richard M.
Leahy [14] present an MRI analysis tool that produces cortical surface representations with
spherical topology from MR images of the human brain. One of the tools that include skull
stripping is a brain surface extractor (BSE). It breaks connections between the brain and
non-brain tissues by using a morphological erosion operation, and then it identifies the
brain using a connected component operation followed by a dilation operation to undo
the effects of the erosion [2]. The final step is closing small holes that may occur in the
brain surface.

The work of [15] presents a skull-stripping algorithm based on a hybrid approach
(HWA). It combines watershed algorithms and deformable surface models. The method
uses a localized voxel in T1-weighted white matter to create a global minimum in the white
matter. The global minimum is created before applying the watershed algorithm with a pre-
flooding height. The Robust Brain Extraction (ROBEX) is another method for performing
skull stripping. It is a learning-based brain extraction system that combines discrimina-
tive and generative models. It is trained to detect brain boundaries using the random
forest approach and ensures that the result is plausible. To obtain the final segmentation,
the imperfect shape presented by the model is refined by using a graph cut [16]. The work
presented in [17] proposed an automatic skull stripping method based on deformable mod-
els and histogram analysis named Simplex Mesh and Histogram Analysis Skull Stripping
(SMHASS) method. It defines the starting point for deformation using a rough segmenta-
tion based on thresholds and morphological operators. The deformable model is based on
a simplex mesh, whereas its deformation is controlled by local gray levels of the image and
the information obtained on the gray level modeling of the rough-segmentation.

A simple skull stripping algorithm (S3) is proposed in [18]. The method is based on
brain anatomy and image intensity characteristics. It is a knowledge-based algorithm and
works by using adaptive intensity thresholding and then morphological operations. Oeslle
Lucena et al. [9] proposed a Convolutional Neuron Network (CNN) for brain extraction
in MRI trained with “silver standard” masks. The method generates silver standard
masks which are used as inputs by using the Simultaneous Truth and Performance Level
Estimation (STAPLE) algorithm and then implementing a tri-planar method using parallel
2D U-Net-based CNNs, named as CONSNet. Anam Fatima et al. [19] proposed a skull
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stripping method and evaluated it on a 2D slice-based multi-view U-Net (MVU-Net)
architecture. It performs as well as a 3D model while using fewer computational resources.
In [20], a Single-Input Multi-Output U-Net (SIMOU-Net) was developed for segmenting
foetal brain. Different from the original U-Net, the SIMOU-Net has a deeper architecture
and takes account of the features extracted from each side output. Furthermore, Ref. [6]
proposed a 3D-UNet for skull stripping to address the entire brain extraction problem
satisfactory for diverse datasets. The work in [21] proposed a graph-based method for skull
stripping, which uses intensity thresholding on the input image to obtain a preliminary
mask. Finally, the method removes narrow connections using graph cuts followed by post-
processing.

In this paper, we propose a graph-based approach that represents an MRI image
using a graph, before segmenting the brain. The method uses the minimum spanning tree
(MST) of the constructed adjacency graph to separate the brain, non-brain tissues, and the
background. The approach involves the following steps; preprocessing of the MRI image,
sampling points within and outside the brain, MST construction from the graph, isolating
brain, non-brain tissues, and the background, followed by post-processing. The general
idea of using a graph-based method for skull stripping relates to the ideas of [21]. We define
an image into adjacency graph in the same way, but our approach differs significantly
regarding the segmentation criteria. We perform skull stripping using the MST of the graph,
in which each vertex has a minimal number of connections instead of using the whole
graph. Different from our approach, the method presented by [21] depends on an estimate
of the region bounded by white matter obtained by region growth. We define edge weights
differently, and our approach does not depend on region growth. The method presented
by [21] uses an initial mask obtained by thresholding and uses a graph cut to disconnect
the narrow connections. GUBS depends on the MST constructed from the adjacency graph
and separates the brain, non-brain tissues, and the background by disconnecting paths
connecting these regions.

2. Materials and Methods
2.1. Materials

In this paper, we analyzed three different data sets. The first data set is from the Open
Access Series of Imaging Studies (OASIS). It consist of T1W images from 77 subjects with
an isotropic voxel resolution of 1.0 mm and a shape of 176× 208× 176 [22]. The ground
truth segmentation provided with this data set was created using a custom method based
on registration to an atlas and then revised by human experts. Twenty of the subjects in
this dataset suffered from Alzheimer’s disease, a degenerative disease characterized by the
loss of brain tissue [9,16].

The second data set consists of 20 simulated T1W MRI images mimicing healthy brains
collected from the BrainWeb (BW) database [23,24]. They are provided as .MINC format
anatomical models consisting of a set of 3D tissue membership volumes, one for each tissue
class. Each label at a voxel in the anatomical model represents the tissue that contributes the
most to that voxel. They have dimensions of 362× 434× 362 and have a 0.5 mm isotropic
voxel size.

The third data set consists of T1W MRI images from 18 subjects provided to the Internet
Brain Segmentation Repository (IBSR) by the Center for Morphometric Analysis at Mas-
sachusetts General Hospital [25]. The images are stored in the NIfTI format. The shape of
the images is 256× 256× 128 and the voxel resolution is 0.94 mm × 0.94 mm × 1.5 mm [26].
The database contains a manual segmentation of the gray matter (GM), white matter (WM)
and cerebral spinal fluid (CSF), as well as skull stripped images.

Figure 1 shows coronal sections of brains sampled from a 3D MRI of a representative
subject from each of the three data sets.
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Figure 1. Sampled Slices: (a) Sampled slice coronal section from a 3D MRI volume OASIS data set,
(b) Sampled slice coronal section from a 3D MRI volume BW data set, (c) Sampled slice coronal
section from a 3D MRI volume IBSR data set. Notice the differences and the quality of data sets.

2.2. Methods

In this section, a graph-based method for brain segmentation using MST is presented.
An adjacency graph is constructed from a preprocessed 3D MRI and then its MST is applied
for separating the brain, non-brain tissues, and the background. The summarized steps for
brain segmentation are presented in Figure 2.

Figure 2. Schematic diagram: Flow diagram showing the steps for brain extraction. Step 1: Pre-
processing to remove noise, scale values in the range of 0 and 1 and reshape the 3D magnetic
resonance imaging (MRI) volume. Step 2: Sampling points within the brain, non-brain tissues, and the
background. Step 3: An adjacency graph weighted by absolute intensity differences is constructed
from the preprocessed 3D MRI volume. Then, nodes in the adjacency graph corresponding to the
sampled points in step 2 are collapsed in their respective regions to form a graph C. From the
modified graph C, a minimum spanning tree is constructed. Step 4: Brain segmentation. Nodes in C
representing each of the regions of interest are the terminal nodes for the paths to be disconnected
to separate the regions. First, the minimum spanning tree (MST) is modified by removing the edge
with highest edge weight in the path connecting the representative nodes to separate the brain and
non-brain subtrees. Again the MST is modified by removing the edge with highest edge weight in
the path connecting the representative nodes to separate the non-brain and background subtrees.
New labels are assigned and reshaped back to the shape of the 3D MRI.
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Let A be an MRI image with dimension M× N × L such that A(i,j,k) gives the intensity
value at position (i, j, k) for i = 0, 1, . . . , M− 1; j = 0, 1, . . . , N − 1 and k = 0, 1, . . . , L− 1.
Voxels at position (i, j, k) and (i′, j′, k′) are called adjacent if (i− i′)2 +(j− j′)2 +(k− k′)2 = 1.
We can mathematically define

A = [A(i,j,k)] ∈ RM×N×L (1)

and each point changes along the coordinate axes with respect to the position of the
adjacent voxels.

2.2.1. Preprocessing

We read all the image data sets using a NiBabel package that can read different common
medical images file formats [27] and then retrieve a 3D image using a nilearn package [28].
Finally, every MRI image is convert into .npy using a numpy package [29]. Each image was
resized to the size of 128 × 128 × 128. The intensities were scaled in the range of 0 to 1 using

Ascaled
(i,j,k) =

A(i,j,k) − Amin
(j,k)

Amax
(j,k) − Amin

(j,k)
, (2)

where Amin
(j,k) = mini∈{0,...,M−1}{A(i,j,k)} and Amax

(j,k) = maxi∈{0,...,M−1}{A(i,j,k)}. We adapt the
formula and its implementation from scikit-learn [28]. Since the implementation requires
only number of samples and number of features, the 3D MRI are reshaped into 2D before
scaling and then reshape back to 3D after scaling. Whenever Amax

(j,k) is approximately or

equal to Amin
(j,k) the situation is taken care by setting scales of near constant features to 1 to

avoid division by very small number or zero values.
We remove noise and make sure that there is no spot in the background (outside the

head) by removing small objects. Some data sets may need additional preprocessing steps
to accelerate the separation of the regions. Since the brain is connected to the rest of the
head by dark, thin segments [11], a small threshold may be applied to disconnect more the
brain from the non-brain tissues. This is done by setting all values less than the threshold
to 0. For IBSR and OASIS data sets, the values 0.25 and 0.32 were used in the preprocessing
step, respectively. For data sets with good contrast between the brain and non-brain tissues
such as BW, thresholding is unnecessary.

2.2.2. Edge Surface Detection

The edge surfaces in 3D images are defined as the structural boundaries of objects
in the image. However, the true edge-surfaces of 3D images are continuous surfaces
rather than discrete 3D edges like points which are detected by edge detectors [30]. These
are points sampled at the surface that form the boundary between the object and the
background. In this context the surface of the object is represented by intensity changes in
the data volume [31]. The changes will be detected between edges.

The edges are detected by highlighting the local variation between the adjacent voxels.
Example of the two adjacent voxels (i, j, k) and (i′, j′, k′) located on the opposite side of an
edge. We use the finite difference method (particularly forward difference) to compute the
change between two adjacent voxels from the binary image. We define B to be the binary
image of A. The change is computed by

ε = B(i′ ,j′ ,k′) − B(i,j,k). (3)

For a 3D binary image the edge is detected when the changes between two neighboring
voxels are

ε =

{
+1 i f B(i′ ,j′ ,k′) = 1 and B(i,j,k) = 0
−1 i f B(i′ ,j′ ,k′) = 0 and B(i,j,k) = 1

(4)
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So, when ε is +1 or −1 the forward difference method asserts the presence of an
edge. The edge surfaces of the 3D image consist of all points satisfying the changes in
Equation (4) along a given axis. Then, the discrete 3D edge-like points represents the set
of the edge points detected from 3D binary image B by satisfying the condition ε for the
neighboring voxels.

In the implementation we perform two steps to obtain the discrete 3D edge-like points.
Image A is binarized to obtain image B by either setting voxels to 1 if the gray value is
greater than zero or setting to 0 elsewhere. We fill all possible holes in the binary image B
by using a function for binary closing from Scipy package [32]. Then, we use a diff function
from numpy package [29] to compute the discrete difference of the binary image by using
the forward difference formula. Then, the points satisfying condition ε are discrete 3D
edge-like points distributed at the surface of the head. These points are very useful in the
next subsection when sampling points within the brain and non-brain tissues.

2.2.3. Sampling Points within the Brain, Non-Brain Tissues and Background

Let T be the set of points in the MRI image A, i.e.,

T = {(i, j, k) : 0 ≤ i ≤ M− 1, 0 ≤ j ≤ N − 1, 0 ≤ k ≤ L− 1}. (5)

Next, we will sample points TB, TNB and TBG in the brain, non-brain tissues and
background, respectively. We define, TB ⊂ T, TNB ⊂ T and TBG ⊂ T such that TB, TNB and
TBG are mutually exclusive but not exhaustive. That is,

TB ∩ TNB = TNB ∩ TBG = TB ∩ TBG = ∅ (6)

and
TB ∪ TNB ∪ TBG ( T. (7)

We do the following things to obtain points in TB: From the discrete 3D edge-like
points distributed at the surface of the head we take points above the selection line which
is obtained by visual inspection (see Figure 3). Then, pull these points from the surface of
the head to the brain by a certain distance δ1 ∈ N. Then, compute the mean point of the
pulled points. For each pulled point a distance is computed from the mean point and get
the maximum distance. Then, the maximum value times 0.75 is the a distance threshold
value for removing the points with the distance above the threshold value. This last step is
performed to restrict the pulled points to lie within the brain and remove points close to
the skull.

Figure 3. Sampling points TB within the brain: (a) Sampled slice coronal section showing the
selection line and points sampled within the brain, (b) Sampled slice sagittal section section showing
the selection line and points sampled within the brain.
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To obtain points TNB in the non-brain tissues we use all the discrete 3D edge-like
points distributed at the surface of the head and pull them inside towards the non-brain
tissue by δ2 ∈ N. The pulled points are rechecked if there is any point with the intensity
value of zero it is removed. See Figures 4 and 5.

Figure 4. Sampled Points: 2D visualization of the representative coronal section from MRI image of
a single subject (OASIS data) showing the sampled points within the brain, within the non-brain,
and in the background region. δ1 and δ2 values were set to 15 and 3, respectively.

Figure 5. Sampled Points: 2D visualization of the representative coronal section from MRI image of
a single subject (IBSR data) showing the sampled points within the brain region, within non-brain
tissues, and in the background. δ1 and δ2 values were set to 15 and 3, respectively. Notice the removed
part of the skull and the brain from some slices.

To obtain points TBG sampled in the background we use the binary image after closing
all the possible holes (this is the same binary image described in the last paragraph of
Section 2.2.2).

First, we compute all points in the binary image whose points have an intensity values
of 0. We also find points at the six surfaces of the 3D cube of the binary image whose points
have an intensity values of 0. We combine these points to increase the chance of getting
representative points from all the sides. We then sample 20,000 of these points uniformly at
random to get the TBG points.

2.2.4. Graph

Let (V, E) be the voxel adjacency graph constructed from A such that V is the set of
nodes and E represents a set of weighted edges. Each node represents a voxel at location
(i, j, k) in A, and each edge connects two adjacent voxels. The edge’s weight is the absolute
value of the difference between the intensity values of the voxels it connects.

2.2.5. Collapsing Nodes

Given a graph G and a subset H of the nodes in G we construct a graph where all the
nodes in H have been collapsed to a single node. In order to ease the construction of this
graph we represent the single collapsed node by a node h ∈ H.

The graph Gh
H where all nodes in H have been collapsed to a single node h in H is

constructed as follows:
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1. For every edge e in G, if both end nodes of e appear in H the edge e is discarded.
2. For every remaining edge e, if a node v in H appears in e, the edge e is modified by

replacing v by h.
3. Remove all the nodes in H except the node h from the modified graph to obtain the

graph Gh
H .

2.2.6. Segmentation Criteria

The central problem addressed by GUBS is to segment an image using samples of
nodes from the regions of interest. From the voxels adjacency graph, we construct a new
graph by successively collapsing the nodes sampled from each of the regions. The main idea
of GUBS is to use the minimum spanning tree of this new graph instead of the minimum
spanning tree of the voxels adjacency graph.

Given an MRI image of the brain, we want to separate the voxel adjacency graph into
three regions representing the brain, non-brain tissues, and background.

Let VB ⊂ V, VNB ⊂ V and VBG ⊂ V be sets of nodes in a graph G corresponding to
sets of coordinate points TB, TNB and TBG sampled from brain, non-brain tissues, and back-
ground, respectively. We construct the graphs GB, GNB and GBG so that the nodes VB, VNB
and VBG are in GB, GNB and GBG, respectively.

Let vB ∈ VB, vNB ∈ VNB and vBG ∈ VBG be randomly sampled nodes. Let A = GvB
VB

,
B = AvNB

VNB
, C = BvBG

VBG
. In the modified graph C each of the sets VB, VNB and VBG have been

collapsed to a single node.
The minimum spanning tree (MST) of the graph C is the spanning tree with the least

total edge weight among all possible spanning trees of the adjacency graph [33].
A path P in MST is a sequence of nodes in which each pair of consecutive nodes are

connected by an edge. Note that since MST is a tree every pair of nodes is connected by a
unique path.

The MST is constructed from the modified graph C and the components representing
brain, non-brain tissues and the background are extracted as follows: First, we modify the
MST by removing the edge with highest edge weight in the path connecting the nodes vB
and vNB to separate the brain (GB) and non-brain (GNB) subtrees. Next, we separate the
non-brain region and the background by removing the edge with highest edge weight in
the path connecting the nodes vNB and vBG. This gives us the connected components of
the tree with three different labels. Finally, the labels are reshaped back to the shape of the
input MRI image.

3. Results

For visualization purposes, we perform a padding of background slices on the MRI
image. The visualization of the results in this paper are performed using Matplotlib [34] and
Seaborn [35]. The segmented 3D brain from OASIS, BW and IBSR data sets are visualized
in Figures 6–8, respectively.

Figures 6–8 represent visual comparison of the extracted 3D brain using the GUBS
approach to the gold standard segmented brain. The general quality of the predicted
brain is sufficient, except for small variation in finer details. The small variation can be
attributed to different reasons such as the quality of the data (see Figure 1), differences
when preparing the gold standard segmentation, the patients conditions, such as disease or
aging, and possibly parameter tuning for certain data.
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Figure 6. Segmented Brain (OASIS data): One representative subject representing (a) 3D brain
segmented using GUBS approach (predicted), (b) 3D brain (ground truth). The masks were segmented
using a custom method based on registration to an atlas, and then revised by human experts.

Figure 7. Segmented Brain (BW data): One representative subject representing (a) 3D brain segmented
using GUBS approach (predicted), (b) 3D brain (ground truth). The ground truth was obtained from
the labels representing cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM).

Figure 8. Segmented Brain (IBSR data): One representative subject representing (a) 3D brain seg-
mented using GUBS approach (predicted), (b) 3D brain (ground truth). The ground truth was
obtained by manual-guided expert segmentation.
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Figures 9 and 10 present examples of a visual comparison of 2D slices segmented from
two different subjects from IBSR and OASIS data sets, respectively. Notice that for Figure 9,
the original sagittal sections show that some parts of the 3D head were cut. Figure 10 also
present representative sagittal sections from a single subject. Since the proposed approach
depends on sampling points within different regions, tuning the parameters for extracting
the brain from the two compared MRI volumes (Figures 9 and 10) can differ significantly.

Figure 9. Selected MRI slices (IBSR data set): Sagittal MRI plane segmented brain. Row one: Input
images, Row two: Predicted brain and Row three: Ground truth brain.

Figure 10. Selected MRI slices (OASIS data set): Sagittal MRI plane segmented brain. Row one: Input
images, Row two: Predicted brain and Row three: Ground truth brain.

3.1. Performance Analysis

In this subsection, we present a quantitative analysis using Jaccard Index (J I), Dice
Similarity Coefficient (DSC), sensitivity, specificity, accuracy and precision to assess the
performance of GUBS. We evaluate the performance by computing the listed measures of
similarity between the predicted and the ground truth of the MRI image of the binary labels.

The voxels in the binary labels that are correctly classified as brain are represented as
true positive (TP). The voxels that are incorrectly classified as brain are represented as false
positive (FP). The voxels that are correctly classified as non-brain tissues are represented
by true negative (TN). The voxels that are in the brain region but incorrectly classified
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as non-brain tissues are represented by false negative (FN). The Jaccard Index and Dice
Similarity Coefficient are computed by

J I =
TP

TP + FP + FN
, DSC =

2TP
2TP + FP + FN

. (8)

The sensitivity and specificity which show the percentage of brain and non-brain
voxels are computed by

Sensitivity =
TP

TP + FN
, Speci f icity =

TN
TN + FP

. (9)

The precision gives the ratio of the correctly positive identified labels against all the
labels, whereas accuracy gives the ratio of the correctly identified.

Precion =
TP

TP + FP
, Accuracy =

TP + TN
TP + FP + FN + TN

(10)

The values for the measures of similarity are presented in the range of 0 to 1. A measure
of similarity with 0 value shows that there is no overlap between the predicted brain and
the ground truth. The measure of similarity with 1 indicates that there is a perfect overlap
between ground truth and the predicted brain segmentation.

The quantitative evaluation of GUBS compared to the state of the art method is
presented in Tables 1–3 for OASIS, BW and IBSR data sets, respectively. The general
performance of GUBS is satisfactory. For some data sets GUBS does not outperform other
state of the art methods, but the results obtained by GUBS is consistent with previous
results. Looking at the performance from the individual data sets GUBS does not perform
well on sensitivity for OASIS and IBSR, but it performs well on specificity from all the three
data sets.

Table 1. Performance analysis of GUBS compared to STAPLE and CONSNet [9] methods based on
the OASIS data set by presenting the average in each measure of similarity.

JI (mean ± sd) DSC (mean ± sd) Sensitivity (mean ± sd) Specificity (mean ± sd)

STAPLE - 0.960960 ± 0.0070 0.989830 ± 0.0060 0.951880 ± 0.0200
CONSNet - 0.955480 ± 0.0100 0.990550 ± 0.0060 0.939800 ± 0.0280

GUBS 0.872633 ± 0.0148 0.931918 ± 0.0084 0.937179 ± 0.0256 0.974223 ± 0.0101

Table 2. Performance analysis of GUBS compared to BSE, HWA and SMHASS [17] methods based on
the BW data by presenting the average in each measure of similarity.

JI (mean ± sd) DSC (mean ± sd) Sensitivity (mean ± sd) Specificity (mean ± sd)

BSE 0.875000 ± 0.0490 0.932000 ± 0.0310 0.991000 ± 0.0040 0.979000 ± 0.0120
HWA 0.685000 ± 0.0170 0.813000 ± 0.0120 1.000000 ± 0.0010 0.928000 ± 0.0050

SMHASS 0.904000 ± 0.0110 0.950000 ± 0.0060 0.990000 ± 0.0030 0.985000 ± 0.0020
GUBS 0.982396 ± 0.0271 0.990927 ± 0.0141 0.984012 ± 0.0268 0.999356 ± 0.0005

Table 3. Performance analysis of GUBS compared to HWA, SMHASS [17] and multi-view U-Net
(MVU-Net) [19] methods based on the IBSR data set by presenting the average in each measure
of similarity.

JI (mean ± sd) DSC (mean ± sd) Sensitivity (mean ± sd) Specificity (mean ± sd)

HWA 0.814000 ± 0.0360 0.897000 ± 0.0220 1.000000 ± 0.0000 0.966000 ± 0.0120
SMHASS 0.905000 ± 0.0300 0.950000 ± 0.0170 0.992000 ± 0.0100 0.985000 ± 0.0090
MVU-Net - 0.908100 0.941400 0.989400

GUBS 0.859300 ±0.0176 0.924229 ± 0.0102 0.918936 ± 0.0334 0.980869 ± 0.0104
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Consistency Analysis of the GUBS across Different Data Sets

We have segmented three different data sets from OASIS, BW, and IBSR. They are
significantly different in terms of quality and quantity. The OASIS data sets were collected
from participants of different age groups, healthy and unhelthy subjects suffering from
dementia. The data sets from BW are normal simulated brains whereas the IBSR data
sets were collected from healthy subjects. To better understand the performance of the
GUBS for differences in brain shapes across ages, possibly diseased and non-diseased
brains, we combined all the results to explore the relationship between different measures
of similarity. Figure 11 presents plots in matrix format showing the relationship between
different measures of similarity on the three data sets. The diagonal subplots show the
distributions for a specific measure of similarity in the individual data sets.

From Figure 11, the distribution in the diagonal show that the accuracy, DSC, and sen-
sitivity from the OASIS data set have a lower deviation from the mean value compared to
BW and IBSR data sets. It also indicates that specificity and precision from BW data have a
lower deviation from the mean compared to the specificity and precision from OASIS and
IBSR. Furthermore, Figure 11 shows that BW has the highest mean values for all measures
of similarity compared to OASIS and IBSR data sets. Measures of similarity from IBSR show
a higher deviation from the mean values compared to the measures from other data sets.

The pair plots show that the DSC are positively correlated with the accuracies obtained
from all the data sets. The sensitivity obtained from BW and IBSR is positively correlated
with accuracy and DSC. Specificity and precision obtained from BW show that they are
not correlated with other measures of similarity whereas specificity and precision obtained
from IBSR and OASIS are negatively correlated with sensitivity obtained from these data
sets. For all data sets the obtained precision is positively correlated with the specificity.

Figure 11. Pair plots for the measures of similarity (Combined data sets): Pair plots showing the
pairwise relationship between different measures of similarity for the results obtained using GUBS
across the combined data sets. DSC = Dice Similarity coefficients, Sens = Sensitivity, Spec = Specificity.

Figure 12d shows a separation between the measures with and without outliers after
combining the results from the three data sets. JI shows many outliers compared to accuracy
and DSC. Based on the results presented in Tables 1–3 it is possible that the noted outliers
come from BW results. Furthermore, we note that sensitivity, specificity, and precision
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do not have outliers even though specificity shows high performance for all the data sets
compared to sensitivity and precision.

Looking at the size of the box plots we note that the measures of accuracy, DSCs,
and specificity in their distribution show that the lower and upper quartile are close to each
other compared to other measures.

Figure 12. Boxplot for the measures of similarity (Combined Data sets): Boxplot showing variability
for the measures of similarity for the results obtained using GUBS method across the combined data
sets. JI = Jaccard Indices, DSC = Dice Similarity coefficients, Sens = Sensitivity, Spec = Specificity.

3.2. Parameter Selection

Due to high variation within and across image data sets, it is challenging to get a single
set of parameters that works to produce the best possible segmentation results for different
image data sets. In this work, parameter tuning was initially done on trial and error bases to
obtain a value that could achieve good results. For each data set, the GUBS is run by testing
different parameter values and choosing the parameters which lead to the separation of the
tree into the separated components. Figures 13 and 14 show experimentation for different
threshold parameters with same nodes sample size of 20,000, where Figures 15 and 16 show
experimentation for different nodes sample sizes and same threshold. Note that BW data
(see Figure 16) does not need threshold.

Figure 13. A representative coronal section from 3D MRI showing the separation of components
for different thresholds: MRI from a single subject (IBSR data set) experimented using different
thresholds and nodes sample size is 20,000. GUBS is run on 3D and for visualization we take 2D at
the same location for all experiments.
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Figure 14. A representative coronal section from 3D MRI showing the separation of components
for different thresholds: MRI from a single subject (OASIS data set) experimented using different
thresholds and the nodes sample size is 20,000. GUBS is run on 3D and for visualization we take 2D
at the same location for all experiments.

Figure 15. A representative coronal section from 3D MRI showing the separation of components
for different sample size: MRI from a single subject (IBSR data set) experimented using threshold
T = 0.27 and different size of the sampled nodes. GUBS is run on 3D and for visualization we take
2D at the same location for all experiments.

Figure 16. A representative axial section from 3D MRI showing the separation of components for
different sample size: MRI from a single subject (BW data set) experimented without threshold,
different size of the sampled nodes. GUBS is run on 3D and for visualization we take 2D at the same
location for all experiments.

The selection line, δ1 and δ2 can highly vary based on the size of the images. The selec-
tion of parameters for the selection line depends on the visual inspection because the 3D
MRI undergo different preprocessing steps after acquisition of the signals. For OASIS, IBSR
and BW data sets the selection line values used were 60, 65 and 35, respectively. For all the
three data sets δ1 = 15. For IBSR and OASIS δ2 = 1, for BW δ2 = 3.

Figures 9 and 10 show experimental result of one subject from IBSR and OASIS,
respectively. The challenging part is to sample within the non-brain tissues because some
parts of the brain and non-brain tissues have been removed (see row one in Figure 9). Some
points sampled from the non-brain tissues are likely to be taken from the brain when δ2 is
applied. For Figures 9 and 10, δ1 = 15 and δ2 = 1.

3.3. Experimental Timing

The time complexity analysis for implementing GUBS is divided into three parts.
These include adjacency graph construction, MST construction, and the time is taken for
disconnecting the MST into different connected components. The adjacency graph size
is defined by the number of voxels in the MRI image, corresponding to vertices in the
adjacency graph. The experimental timing for the adjacency graph and MST construction
is efficient and presented in [36]. For the adjacency graph constructed from MRI image
134 × 134 × 134 (with 2,406,104 nodes in the adjacency graph), we update the MST twice
to disconnect a path connecting the brain and the non-brain tissues as well as disconnect
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the path connecting non-brain tissues and the background. The experimental time ranges
between 12 and 25 s for disconnecting a path. The time spent on separating the tree into
different connected components depends on the length of the path between the terminal
nodes. The implementation was done by writing scripts in the python programming
language, and it was run on a PC processor (Core i7-8650UCPU @ 1.90GHz×8).

4. Discussion

We extended the segmentation criteria used in the paper [36] by collapsing subgraphs
of the voxels adjacency graph before constructing the MST and presented the GUBS method
for segmenting the brain from MRI images. GUBS works by representing MRI volume
into an adjacency graph, followed by collapsing representative nodes sampled from the
brain, no-brain, and background regions, respectively. Then, the MST is constructed from
the modified graph. The collapsed nodes are used as terminal nodes for disconnecting the
paths in the MST to separate the brain, non-brain tissues, and background.

The approach was tested by segmenting the brain from three different MRI data sets.
The results are compared to the ground truth to assess the performance of GUBS. The ex-
perimental results show that GUBS successfully segments brain with high performance
from different data sets regardless of the differences of these data sets. Moreover, the results
obtained using GUBS are compared to the results obtained using different state of the
art methods. GUBS gives competitive results in terms of performance. However, unlike
different state of the art methods which require labeled images for training, GUBS does not
require labels. In most cases the labeled images are obtained manually by highly qualified
individuals. This task is labour intensive and time consuming. That is one of strength
of GUBS.

The evaluation of the results obtained using the GUBS approach from the three data
sets indicates that the quality of the data highly influences the results. The results obtained
from the BrainWeb data set indicate that GUBS outperforms different state of the art
methods, whereas results obtained from the OASIS data set provide competitive results
compared to the ones obtained previously using neural network approaches. In some cases,
the specificity obtained by the GUBS approach outperforms other methods. Similar to
other methods, GUBS get good results from IBSR data set. Since the approach depends
on sampling points within different regions, the quality of the data might have influenced
the IBSR results because some parts of the MRI images were removed. It is likely that
nodes sampled in the wrong region will be collapsed together with nodes in a wrong
region. Thus, the GUBS approach will be limited in the setting of incomplete 3D brain
MRIs. An extension of GUBS to a semi-automated method, in which experts can sample
points with high control before running the approach would alleviate this problem.

5. Conclusions

We developed a graph-based method that uses a minimum spanning tree (MST) to
segment 3D brain from MRI images. The proposed method was tested by segmenting three
different data sets. It is efficient and competes the state-of-the-art methods in terms of
performance. The proposed method is simple to adapt and apply on different data sets.
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