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Abstract
The MAXIMUM COVERING LOCATION PROBLEM (MCLP) is a well-studied prob-
lem in the field of operations research. Given a network with positive or negative
demands on the nodes, a positive integer k, the MCLP seeks to find k potential facility
centers in the network such that the neighborhood coverage is maximized. We study
the variant of MCLP where edges of the network are subject to random failures due
to some disruptive events. One of the popular models capturing the unreliable nature
of the facility location is the linear reliability ordering (LRO) model. In this model,
with every edge e of the network, we associate its survival probability 0 ≤ pe ≤ 1,
or equivalently, its failure probability 1 − pe. The failure correlation in LRO is the
following: If an edge e fails then every edge e′ with pe′ ≤ pe surely fails. The task
is to identify the positions of k facilities that maximize the expected coverage. We
refer to this problem as EXPECTED COVERAGE problem. We study the EXPECTED

COVERAGE problem from the parameterized complexity perspective and obtain the
following results. 1. For the parameter pathwidth, we show that the EXPECTED COV-
ERAGE problem is W[1]-hard. We find this result a bit surprising, because the variant
of the problem with non-negative demands is fixed-parameter tractable (FPT) param-
eterized by the treewidth of the input graph. 2. We complement the lower bound by
the proof that EXPECTED COVERAGE is FPT being parameterized by the treewidth
and the maximum vertex degree. We give an algorithm that solves the problem in
time 2O(tw log Δ)nO(1), where tw is the treewidth, Δ is the maximum vertex degree,
and n the number of vertices of the input graph. In particular, since Δ ≤ n, it means
the problem is solvable in time nO(tw), that is, is in XP parameterized by treewidth.
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1 Introduction

The MAXIMUM COVERING LOCATION PROBLEM (MCLP) is a well-studied prob-
lem in the field of operations research [8]. Given a network with demands on the
nodes, a positive integer budget k, the MCLP asks to find k potential facility centers
in the network such that the neighborhood coverage is maximized. We are interested
in investigating the unreliable nature of the MCLP. Unreliability is introduced by
associating survival probabilities on the edges of the input network. The notion of
unreliability is used in disaster management, surviving network design and influence
maximization. Assume that the network is subjected to a disaster event. During the
course of disaster, some link may become non-functional. This yields a structural
change in the underlying graph of the network. The resulting graph is an edge-
induced subgraph of the original graph. In certain cases, the resulting graph can have
multiple connected components. The real challenge is to place a limited number of
potential facility centers a priori such that the expected coverage after an event of
disaster is maximized. See [9, 13–15, 19, 32] for further references on unreliable
MCLP.

In this paper, we study the following model of the MCLP with edge failures. Let
G = (V , E, w) be a vertex weighted underlying graph of the MCLP. On each edge
e ∈ E, let pe > 0 be the survival probability associated with e such that the edge
e can survive in the network with probability pe. Under the assumption that edges
fail independently, the input graph can be rendered into one of 2m edge subgraphs
called realization, where m is number of edges in the graph. Each realization will
have a non-zero probability of occurrence. Since the number of realizations is expo-
nential and many of them occur with close to zero probability, Hassin et al. [26,
27] formulated a dependency model for edge failure in unreliable facility networks
called linear reliability ordering (LRO). In LRO model, for each pair of edges
e �= e′ ∈ E, p(e) �= p(e′), and for any pair of edges ei and ej with pei

> pej
, the

Pr[ej fails | ei fails ] = 1. More precisely, if an edge e fails then every edge e′ with
pe′ < pe surely fails. The LRO model is defined on graphs with distinct edge prob-
abilities. It is clear that, in this model, we have exactly m + 1 edge subgraphs. We
consider the LRO model with a relaxation that the edges can have the same proba-
bility. If the probabilities of two edges are the same, then either both or neither will
survive. In this case, the number of subgraph realization will be at most m + 1.

While in most articles dealing with maximum coverage problems the weights are
assumed to be positive, there are situations when the weights can be negative. Such
mixed-weight coverage problems are useful for modeling situations when some of
the demand nodes are obnoxious and their inclusion in the coverage area may be
detrimental [4, 5]. Nodes with a negative demand are nodes we do not wish to cover.
If a node has negative demand, then we wish to cover as little as possible. For exam-
ple, opening a new facility (grocery store) close to many positive weighted modes
(customers) seems as an excellent opportunity but the proximity of a big supermarket
(a neighbor with negative weight) could decrease the expected profit.
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Problem Statement Let G = (V , E) be a vertex-weighted undirected graph with a
weight function w : V → R and a probability function p : E → Q[0,1], and k be a
positive integer. Assume that the edges are ordered using p in descending order. That
is, p1 > p2 > · · · > pm. In the LRO model, let G0 � G1 � · · · � Gm be the linear
ordering of the realizations of G, that occur with probability P(Gi) for 0 ≤ i ≤ m.
The value of P(Gi) can be written as follows:

P(Gi) =

⎧
⎪⎨

⎪⎩

1 − p1 if i = 0,

pm if i = m,

pi − pi+1 otherwise.

The EXPECTED COVERAGE problem asks to find a k-sized vertex set S such that
the expected coverage by S on the distribution {Gi | 0 ≤ i ≤ m} is maximized. We
use the expected coverage function C defined by Narayanaswamy et al. [33]. Given a
pair of sets S, T ⊆ V , the expected coverage of T by S is

C(T , S) =
m∑

i=0

(
P(Gi)

∑

v∈NGi
[S]∩T

w(v)
)

.

Further, if S or T is a singleton set, we just write the element of the set instead of the
set notation. An instance of the optimization version of the EXPECTED COVERAGE

problem is denoted by the tuple (G, w, p, k). The decision version of the problem is
defined as follows.

An instance of the decision version of the EXPECTED COVERAGE problem is
denoted by the tuple (G, w, p, k, t).

Related Works The facility location problems can take many forms, depending on
the objective function. In the most facility location problems, the objective function
focuses on comforting the clients. For example, in the k-center problem, the goal
is minimizing the maximum distance of each client from its nearest facility cen-
ter [7]. The facility location problem has received a good deal of attention in the
parameterized perspective [1, 6, 20, 21].

The MCLP with edge failure is studied with various constraints. Eiselt et al. [19]
considered the problem with a single edge failure. In this case, exactly one edge
would have failed after a disaster and the objective is to place k facility centers such
that the expected weight of non-covered vertices is minimized. If the number of facil-
ity centers is k = 1, and the facility center can cover all the vertices in the connected
component, then the problem is studied as MOST RELIABLE SOURCE (MRS) prob-
lem. In this problem, the edges fail independently. The MRS problem has received
a good deal of attention in literature [9, 13, 15, 32]. Hassin et al. [26] studied the
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problem with edge failure follows LRO failure model. The problem is referred as
MAX-EXP-COVER-R problem. An additional input radius of coverage R is also given
such that any facility center can cover a vertex at distance at most R. The MAX-EXP-
COVER-R problem is shown to be NP-hard even when R = 1. When R = ∞ (it is
sufficient to say R > n), the problem is polynomial time solvable [26].

In the BUDGETED DOMINATING SET problem, we are given a graph G and a
positive integer k, and asked to find a set of at most k vertices S maximizing the
value w(N[S]) in G. Set theoretic version of the BDS problem is studied as bud-
geted maximum coverage in [28, 29]. The EXPECTED COVERAGE problem can be
viewed as a generalization of the BDS problem. When we have probability 1 on all
the edges, then both these problems are the same. The BDS problem generalizes
PARTIAL DOMINATING SET (PDS) problem, where one seeks a set of size at most k

vertices dominating at least t vertices [31]. Of course, all these problems also gener-
alize the fundamental DOMINATING SET problem, where the task is to find a set of
at most k vertices dominating all remaining vertices of the graph.

The DOMINATING SET problem parameterized by k (solution size) on general
graphs is W[2]-hard [16]. However, on planar graphs it is FPT [25]. Moreover, on
planar, and more generally on H -minor-free graphs it is solvable in sub-exponential
time [3, 11]. It also admits a linear kernel on planar graphs, H -minor-free graphs
and graphs of bounded expansion [2, 18, 23, 24, 34]. Sub-exponential parameterized
algorithm for the PDS problem on planar graphs, and more generally, apex-minor-
free graphs, was given in [22].

On graphs of bounded treewidth, the classical dynamic programming, see e.g.
[10], shows that the DOMINATING SET problem is FPT parameterized by the
treewidth of an input graph. The FPT algorithm for the DOMINATING SET prob-
lem can be adapted to solve the BDS problem in FPT time. Further, when we have
mixed vertex weights on the BDS problem, the above modified algorithm will work.
Narayanaswamy et al. [33] gave an FPT algorithm parameterized by treewidth of
the input graph to solve the EXPECTED COVERAGE problem with non-negative
weights.1

Our Results Since the EXPECTED COVERAGE problem (with mixed-weights) gen-
eralizes both the BDS problem and the EXPECTED COVERAGE problem with
non-negative weights, it is also natural to ask what algorithmic results for these
problems can be extended to the EXPECTED COVERAGE problem. We obtain the
following results.

1. For the parameter pathwidth, we show that the EXPECTED COVERAGE problem
is W[1]-hard. Moreover, the problem remains W[1]-hard for any combination
of parameters pathwidth pw, solution size k and value of coverage t . This is
interesting because as it was shown by Narayanaswamy et al. [33], the vari-
ant of the problem with only non-negative weight is FPT parameterized by
the treewidth. Thus the results for non-negative weights cannot be (unless
FPT=W[1]) extended to the mixed-weight model.

1Narayanaswamy et al. [33] called this problem MAX-EXP-COVER-1-LRO.
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2. We complement the lower bound by the proof that EXPECTED COVERAGE is
FPT being parameterized by the treewidth and the maximum vertex degree. We
give an algorithm that solves the problem in time 2O(tw log Δ)nO(1), where tw is
the treewidth, Δ is the maximum vertex degree, and n the number of vertices of
the input graph. In particular, since Δ ≤ n, it means the problem is solvable in
time nO(tw), that is, is in XP parameterized by treewidth.

2 Preliminaries

We recall in this section some notations and definitions used throughout this article.
For a positive integer x, by [x] we mean the set {1, . . . , x}. Let Q[0,1] denote the set
of all rational numbers between 0 and 1. Let G = (V , E) be a simple and undirected
graph with vertex set V and edge set E. Let |V | = n and |E| = m. For any set
S ⊆ V , by G[S] we mean the subgraph of G induced by S, and by G − S we mean
G[V \ S]. For each vertex u ∈ V , let deg(u) denote the degree of u in G. For each
vertex u ∈ V , let N(u) denote the open neighborhood of u. For any set S ⊆ V , open
neighborhood of the set S in G is denoted by N(S), that is, N(S) = ∪u∈SN(u) \ S.
Similarly, for a vertex u ∈ V let N[u] denote the closed neighborhood of u. For any
set S ⊆ V , N[S] = ∪u∈SN[u]. Other than this, we follow standard graph theoretic
notations based on Diestel [12].

A tree decomposition of an undirected graph G = (V , E) is a pair (T, X) where T
is a tree whose vertices are called nodes and X = {Xi ⊆ V | i ∈ V (T)} such that

1. for each vertex u ∈ V , there is a node i ∈ V (T) such that u ∈ Xi,
2. for each edge uv ∈ E, there is a node i ∈ V (T) such that u, v ∈ Xi, and
3. for each vertex v ∈ V , the set {i ∈ V (T) | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition (T, X) equals maxi∈V (T)|Xi| − 1. The treewidth
of a graph G is the minimum width over all tree decompositions of G. For a node
i ∈ V (T), let Ti be the subtree rooted at i and Xi

+ = ∪j∈V (Ti){Xj}. The graph induced
by the vertices Xi

+ is G[Xi
+] and it is denoted by Gi. A tree decomposition (T, X)

is said to be a path decomposition if T is a path. The pathwidth of a graph G is
minimum width over all possible path decompositions of G. Let pw(G) and tw(G)

denote the pathwidth and treewidth of the graph G, respectively.
We give a dynamic programming algorithm working on a so-called nice tree

decomposition of the input graph G. A tree decomposition (T, X) is a nice tree
decomposition if T is rooted by a node r with Xr = ∅ and every node in T is either
an insert node, forget node, join node or leaf node. Thereby, a node i ∈ V (T) is an
insert node if i has exactly one child j such that Xi = Xj ∪ {v} for some v /∈ Xj; it is
a forget node if i has exactly one child j such that Xi = Xj \ {v} for some v ∈ Xj; it
is a join node if i has exactly two children j and h such that Xi = Xj = Xh; and it is
a leaf node if Xi = ∅. Given a tree decomposition of width tw, a nice tree decompo-
sition of width tw can be obtained in linear time [30]. For a node i ∈ V (T), let Ti be
a subtree rooted at i and Xi

+ = ∪j∈V (Ti){Xj}.
We will also use the parameters vertex cover, feedback vertex set and distance to

star forest of a graph G. For a graph G, by vc(G) we mean the size of minimum
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vertex set whose deletion leaves the graph edgeless, and by fvs(G) we mean the size
of the minimum vertex set whose deletion leaves the graph acyclic. In this article,
we consider that the trivial graph structure is a forest that consists of only star trees.
Then, for a graph G, by dsf(G) we mean the size of the minimum vertex set whose
deletion leaves the graph disjoint union of star trees (a forest of stars). For all these
structural properties, we will omit G if it is clear from the context.

We refer to the recent books of Cygan et al. [10] and Downey and Fellows [17]
for detailed introductions to parameterized complexity.

3 Parameterized Intractability: The EXPECTED COVERAGE problem is
W[1]-hard for the Parameter Pathwidth

In this section, we show that the EXPECTED COVERAGE problem is W[1]-hard
parameterized by the pathwidth. We reduce from the MULTI-COLORED CLIQUE

problem which is defined as follows. Given a k-partite graph G = (V , E) where
V = (V1, V2, . . . , Vk), and a positive integer k, the MULTI-COLORED CLIQUE prob-
lem seeks to decide whether there exists a k-clique with exactly one vertex from each
part.

Theorem 1 (Cygan at al. [10]) The MULTI-COLORED CLIQUE problem is W[1]-
complete for the parameter k.

For each 1 ≤ i < j ≤ k, let Ei,j ⊆ E be the set of all edges where one end vertex
is in Vi and another one is in Vj . That is, Ei,j = {xy ∈ E | x ∈ Vi ∧ y ∈ Vj }.

3.1 Construction

Given an instance (G, k) of the MULTI-COLORED CLIQUE problem, we construct an
instance (H, w, p, k′, t ′) of the EXPECTED COVERAGE problem where k′ = k + (

k
2

)
,

t ′ = k4 + k3 − k2 + k and pw(H) is O(k2). Now we describe the construction of
the graph H , the function w : V (H) → Q and the probability function p : E(H) →
Q[0,1].

For each i ∈ [k], we construct a vertex-partition gadget Hi corresponding to the
vertex partition Vi as follows. For each vertex u ∈ Vi , add a vertex au with w(au) = 0
in the gadget Hi . Add two more vertices ti with w(ti) = k2, and qi with w(qi) = k2

to the gadget Hi . For each vertex u ∈ Vi , the vertex au is made adjacent to the vertices
ti and qi . For each edge e ∈ E(Hi), we define the survival probability p(e) = 1.
Thus, the gadget Hi has |Vi | + 2 vertices and 2|Vi | edges.

For each 1 ≤ i < j ≤ k, we construct an edge-partition gadget Hi,j corre-
sponding to the edge partition Ei,j as follows. For each edge e ∈ Ei,j , add a vertex
ae with w(ae) = 0 in the gadget Hi,j . Add two more vertices ti,j and qi,j with
w(ti,j ) = k2 = w(qi,j ) = k2 to the gadget Hi,j . For each edge e ∈ Ei,j , the ver-
tex ae is made adjacent to the vertices ti,j and qi,j . For each edge e ∈ E(Hi,j ), we
define the survival probability p(e) = 1. Thus, the gadget Hi has |Ei,j | + 2 vertices
and 2|Ei,j | edges.
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Next, we introduce connector vertices to connect the edge-partition gadgets and
vertex-partition gadgets. Let R = {si

i,j , s
j
i,j , r

i
i,j , r

j
i,j | 1 ≤ i < j ≤ k} be the

connector vertices. For each vertex x ∈ R, we define w(x) = −1. To establish
the edges between the gadgets and the connector vertices, we define a probability
function z : V → Q[0,1] such that for any two vertices x, y ∈ V with x �= y,
z(x) �= z(y). For each i ∈ [k], the gadget Hi is connected to the set R as follows. For
each vertex u ∈ Vi and for each j ∈ [k] with j �= i,

– if i < j then the vertex au ∈ Hi is made adjacent to the vertices si
i,j and ri

i,j with
survival probabilities z(u) and 1 − z(u), respectively, and

– if j < i then the vertex au ∈ Hi is made adjacent to the vertices si
j,i and ri

j,i with
survival probabilities z(u) and 1 − z(u), respectively.

For 1 ≤ i < j ≤ k, the gadget Hi,j is connected to the set R as follows. For each
edge e = xy ∈ Ei,j with x ∈ Vi and y ∈ Vj , the vertex ae is made adjacent

to the vertices si
i,j , r

i
i,j , s

j
i,j and r

j
i,j with survival probabilities z(x), 1 − z(x), z(y)

and 1 − z(y), respectively. An illustration of a vertex-partition gadget and an edge-
partition gadget connected to the connector vertices is given in Fig. 1. For clarity,
we denote the vertices au and ae in V (H) for each u ∈ V and e ∈ E, as selection
vertices. Thus, the graph H is constructed with N = n + m + 3k2 − k vertices and
M = 2kn + 6m edges.

Lemma 1 For each i ∈ k, the pathwidth of the gadget Hi is two.

Proof We observe that the removal of the vertex ti from Hi results a star tree. It is
known that the pathwidth of a star tree is one. Let (T,X ) be a path decomposition of

Fig. 1 Gadgets for a partition Vi and Ei,j for some i �= j are given. Star shaped vertices are connector
vertices. The selection vertices are represented by circle shape. Let ae ∈ V (Hi,j ) be the vertex illustrated
for some edge e = xy ∈ Ei,j such that x ∈ Vi and y ∈ Vj
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the graph Hi −{ti}. Thus, adding ti into all bags of (T,X ) gives a path decomposition
of hi with pathwidth two.

Similarly, for each 1 ≤ i < j ≤ k, pw(Hi,j ) = 2. We bound some structural
properties of the graph H in the following lemma.

Lemma 2 Some structural properties of the graph H are as follows:

(a) pw(H) ≤ 4
(
k
2

) + 2,
(b) vc(H) ≤ 3k2 − k,
(c) fvs(H) ≤ 5

(
k
2

) + k, and
(d) dsf(H) ≤ 3k2 − k.

Proof Consider the following two sets T = ⋃k
i=1{ti} ∪ ⋃

1≤i<j≤k{ti,j } and Q =
⋃k

i=1{qi} ∪ ⋃
1≤i<j≤k{qi,j }. Recall that R = {si

i,j , s
j
i,j , r

i
i,j , r

j
i,j | 1 ≤ i < j ≤ k}

denotes the connector vertices. We prove each of the structural parameters mentioned
above as follows.

(a) If we remove R from the graph H , then the resulting graph is a collection of
disjoint vertex-partition gadgets and edge-partition gadgets. From Lemma 1,
the pathwidth of a gadget is two. Let (T,X ) be a path decomposition of the
graph H − R with pathwidth two. Thus, adding the vertex set R to all bags
of (T,X ) gives a path decomposition for the graph H with pathwidth at most
|R| + 2 = 4

(
k
2

) + 2.
(b) If we remove the set T ∪ Q ∪ R from the graph H , then the resulting graph is

edgeless. Thus, the set T ∪ Q ∪ R is a vertex cover for H . Therefore, vc(H) ≤
|T | + |Q| + |R| = 3k2 − k.

(c) If we remove the set T ∪ R from the graph H , then the resulting graph is a
forest. Thus, the set T ∪ R is a feedback vertex set for H . Therefore, fvs(H) ≤
|T | + |R| = 5

(
k
2

) + k.
(d) If we remove the set T ∪R from the graph H , then the resulting graph is a forest

that consists of only star trees. Therefore, dsf(H) ≤ |T | + |R| = 5
(
k
2

) + k.

3.2 Properties of a feasible solution for the instance (H, w, p, k ′, t ′) of the
EXPECTED COVERAGE problem

Let S ⊆ V (H) be a feasible solution to the instance (H, w, p, k′, t ′) of the
EXPECTED COVERAGE problem. That is, |S| = k′ and C(V (H), S) ≥ t ′ =
k4 + k3 − k2 + k. Observe that any vertex in H can achieve an expected coverage
of value at most 2k2. In particular, for each u ∈ V (or e ∈ E), the selection ver-
tex au (or ae) can achieve an expected coverage of value at most 2k2. If a vertex
u ∈ V (H) is not a selection vertex, then u can achieve an expected coverage of value
at most k2. In the following lemma, we show that the set S consists of only selection
vertices.
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Lemma 3 Every vertex in the set S is a selection vertex.

Proof We prove this by contradiction. Assume that there exists a vertex u ∈ S where
u is not a selection vertex. We know that C(V (H), u) ≤ k2. Then, the expected
coverage by the set S is given as follows:

C(V (H), S) ≤ C(V (H), S \ {u}) + C(V (H), u) ≤ (k′ − 1)(2k2) + k2

= (k2 + k − 2)(k2) + k2 = k4 + k3 − 2k2 + k2

= k4 + k3 − k2 < t ′ = k4 + k3 − k2 + k.

This contradicts the feasibility of the set S. Therefore, every vertex in the set S is a
selection vertex.

Then, we show that the set S has a non-empty intersection with each gadget in the
graph H .

Lemma 4 For each i ∈ [k], |S ∩ V (Hi)| = 1 and, for each 1 ≤ i < j ≤ k,
|S ∩ V (Hi,j )| = 1.

Proof By construction of the graph H , the vertex-partition gadgets and edge-
partition gadgets are disjoint and connected through connector vertices. By contra-
diction, assume that there exists a gadget with no vertex from the gadget is in S. Since
there are

(
k
2

) + k gadgets, at least one gadget should have two vertices from the set
S. For any gadget, the expected coverage contribution by the vertices in the gadget
is at most 2k2 even if the gadget has more than one vertex from S. Then we have the
following:

C(V (H), S) ≤ C(V (H) \ R, S) ≤ (k′ − 1)(2k2) = (k2 + k)(k2) − 2k2

= k4 + k3 − 2k2 < t ′.
This contradicts the feasibility of the set S. Therefore, the set S has one selection
vertex in each gadget.

The Lemmas 3 and 4 together state that for each i ∈ [k], there exists a vertex
v ∈ Vi such that av ∈ S, and for each 1 ≤ i < j ≤ k, there exists an edge e ∈ Ei,j

such that ae ∈ S.

Lemma 5 For each 1 ≤ i < j ≤ k, let au and axy be the selection vertices in the
set S for some u, x ∈ Vi and y ∈ Vj . Then, the expected coverage of the vertices
{si

i,j , r
i
i,j } by {au, axy} is given as follows.

1. C(si
i,j , {au, axy}) = −(max(z(v), z(x))).

2. C(ri
i,j , {au, axy}) = −(max(1 − z(v), 1 − z(x))).
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Fig. 2 The expected coverage of the vertices si
i,j and ri

i,j due to selection of ṽ for some v ∈ Vi and ṽe for
some e = xy ∈ Ei,j

Proof Note that w(si
i,j ) = w(ri

i,j ) = −1 and the probabilities of the edges aus
i
i,j ,

aur
i
i,j , axys

i
i,j and axyr

i
i,j are z(v), 1 − z(v), z(x) and 1 − z(x), respectively. See

Fig. 2 for more clarity. Then, we have C(si
i,j , {au, axy}) = −1×(max(z(v), z(x))) =

−(max(z(v), z(x))), and C(ri
i,j , {au, axy}) = −(max(1 − z(v), 1 − z(x))).

To maximize the expected coverage, we need the coverage of ri
i,j and si

i,j by the
pair of vertices au and axy is as maximum as possible. This implies the following
corollary from Lemma 5.

Corollary 1 The expected coverage of vertices {si
i,j , r

i
i,j } by {au, axy} is maximum

when u = x. In this case, C({si
i,j , r

i
i,j }, {au, axy}) = −1.

3.3 Equivalence

Now we show the equivalence of both the problems. More precisely, the graph G

has a k-clique if and only if H has a k′ sized vertex set that achieves the expected
coverage of value at least t ′.

Lemma 6 If (G, k) is a YES-instance of the MULTI-COLORED CLIQUE problem,
then (H, w, p, k′, t ′) is also a YES-instance of the EXPECTED COVERAGE problem.

Proof Let K = {u1, u2, . . . , uk} be a k-clique in G such that for i ∈ [k], ui ∈ Vi .
Now we construct a feasible solution S ⊆ V (H) for the instance (H, w, p, k′, t ′) of
the EXPECTED COVERAGE problem. Let S = {aui

| i ∈ [k]} ∪ {auiuj
| 1 ≤ i <

j ≤ k}. Note that the size of S is exactly the budget k′. For each i ∈ [k], the set S is
covering only the vertices ti , qi and aui

in Hi since S ∩V (Hi) = {aui
}. Similarly, for
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each 1 ≤ i < j ≤ k, the set S is covering only the vertices ti , qi and aui
in Hi since

S ∩ V (Hi) = {aui
}. The expected coverage by the set S is given as:

C(V (H), S) =
∑

i∈[k]

(
C({ti , aui

, qi}, aui
)
)

+
∑

1≤i<j≤k

(
C({ti,j , auiuj

, qi,j }, auiuj
)
)

+
∑

1≤i<j≤k,�∈{i,j}

(
C(s�

i,j , {au�
, auiuj

}) + C(r�
i,j , {au�

, auiuj
})

)

=
∑

i≤[k]
2k2 +

∑

1≤i<j≤k

2k2 +
∑

1≤i<j≤k

−2 =
(
k +

(
k

2

))
(2k2) − 2

(
k

2

)

= (k2 + k)k2 − (k2 − k) = k4 + k3 − k2 + k = t ′.
We apply the Corollary 1 in the second step to replace the exact value of expected
coverage. Thus, we showed that C(V (H), S) = k4 + k3 − k2 + k = t ′. Therefore,
the set S is a feasible solution to the instance (H, w, p, k′, t ′) of the EXPECTED

COVERAGE problem.

Now we prove the other direction of equivalence.

Lemma 7 If (H, w, p, k′, t ′) is a YES-instance of the EXPECTED COVERAGE

problem then (G, k) is a YES-instance of the MULTI-COLORED CLIQUE problem.

Proof Let S be a feasible solution to the instance (H, w, p, k′, t ′) of the EXPECTED

COVERAGE problem. The feasibility of S ensures that every gadget has a selection
vertex from the set S. More specifically, each gadget contributes an expected cov-
erage of 2k2. Then C(V (H) \ R, S) = k′(2k2) = k4 + k3 since S is a feasible
solution.

There are 2
(
k
2

)
pairs of si

i,j and ri
i,j connector vertices in H . By Lemma 5, each

pair can contribute at most −1. Then, the value k − k2 can be achieved only when
each pair is contributing exactly −1. From Corollary 1, for each 1 ≤ i < j ≤ k, the
pair ri

i,j and si
i,j together can contribute exactly −1 when au ∈ S and auy ∈ S for

some u ∈ Vi and y ∈ Vj . By construction of H , there is an edge between the vertices
u and y in G. Let K = {u ∈ Vi | au ∈ S} be a k sized vertex set from V . For every
pair of distinct vertices in K will have en edge between them in G and thus form a
k-clique in G.

Thus, we state the following theorem using the Lemmas 2, 6 and 7.

Theorem 2 The EXPECTED COVERAGE problem is W[1]-hard for the parameter
pathwidth.

Proof Given an instance (G, k) of the MULTI-COLORED CLIQUE problem, the
instance (H, w, p, k′, t ′) is constructed in polynomial time where k′ = k + (

k
2

)
and

t ′ = k4 + k3 − k2 + k. From Lemma 2, we know that pw(H) is quadratic func-
tion of k. Finally, Lemmas 6 and 7 it follows that the instance (H, w, p, k′, t ′) of the
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EXPECTED COVERAGE problem output by the reduction is equivalent to the instance
(G, k) of the MULTI-COLORED CLIQUE problem that was input to the reduction.
Since the MULTI-COLORED CLIQUE problem is W[1]-hard for the parameter k, it
follows that the EXPECTED COVERAGE problem is W[1]-hard for the parameter
pathwidth of the input graph.

Moreover, the parameterized reduction preserves the parameters k′, t ′ and path-
width of the constructed graph as a functions of k. That is, k′ = k + (

k
2

)
, t ′ =

k4 + k3 − k2 + k and pathwidth of the graph H is O(k2). Further, observe that the
number of negative demand vertices in the reduced graph is 4

(
k
2

) = O(k2). Thus, we
conclude the section with following corollary.

Corollary 2 The EXPECTED COVERAGE problem is W[1]-hard for any combination
of following parameters, (i) budget k, (ii) number of negative demand vertices, (iii)
pathwidth, (iv) vertex cover number, (v) feedback vertex set number and (vi) distance
to star forest number of the input graph.

4 FPT Algorithm for the EXPECTED COVERAGE problem Parameterized
by Treewidth on Bounded Degree Graphs

While, as we have seen, the EXPECTED COVERAGE problem is W[1]-hard for the
parameter pathwidth of the input graph, we complement the lower bound with an
FPT algorithm for the combined treewidth and maximum vertex degree parameters.

Let (G, w, p, k) be an input to the optimization version of the EXPECTED COV-
ERAGE problem. Let (T, X) be a nice tree decomposition of G with treewidth tw.
Narayanaswamy et al. [33] introduced the notion of best neighbor to solve the
EXPECTED COVERAGE problem with non-negative weights on bounded treewidth
graphs. Consider a set S ⊆ V of size k. In the LRO model, for each vertex u (with
u ∈ N[S]), there exists a unique vertex in S called best neighbor of u in S, denoted
by bn(u, S) such that C(u, S) = C(u, bn(u, S)).

Definition 1 (Narayanaswamy et al. [33]) Given a vertex u and a set S with u ∈
N[S], by bn(u, S) we denote the best neighbor of u in S defined as follows:

bn(u, S) =
{

u if u ∈ S,

v ifu /∈ S then v = arg maxv′∈(N(u)∩S) p(uv′).

If u /∈ N[S] then bn(u, S) is undefined. We use the fact that the graph G has
bounded maximum degree. We define a structural ordering called neighborhood
indexing on the neighborhood of each vertex. This LRO specific intuitions “best
neighbor” and “neighborhood indexing”, help us to solve the problem efficiently in
tree decomposition.

Neighborhood indexing We define an ordered indexing on the neighborhood of each
vertex v ∈ V . For each vertex v ∈ V, we order the vertices in N(v) based on the
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survival probability of the edge connected to v in non-increasing order. Let Dv =
{u1, u2, . . . , udeg(v)} be the ordering of the vertices as described above. Let Nv :
[deg(v)] → N(v) be a function on input a positive integer r ≤ deg(v) outputs the
rth-vertex u from the ordered set Dv .

4.1 Solution structure

For each node i in T, we compute two tables Soli and Vali. The rows of both
tables are indexed by 3-tuple which we refer to as states. Let Si denote the set of
all states associated with node i. For a state s ∈ Si, the DP formulation gives a
recursive definition of the values Soli[s] and Vali[s]. Soli[s] is a set S ⊆ Xi

+,
an optimal solution for the instance specified by the state s. Vali[s] is the value
C(Xi

+ \α−1(0),Soli[s]) where α is an element of the state s defined below. A state
s ∈ Si is a tuple (�, α, β), where

– 0 ≤ � ≤ k is an integer and specify the size of Soli[s],
– α : Xi → {0, 1} is an indicator function for the vertices in Xi. This specifies the

constraint that whether a vertex in Xi is considered for the coverage.
– β : Xi → {−1, 0, 1, . . . , Δ} is a function. This specifies the constraint that

Xi ∩ Soli[s] = β−1(0) and for each vertex u ∈ Xi with β(u) �= 0, (i) if
β(u) = −1 then N(u)∩Soli[s] = ∅, and (ii) if β(u) > 0 then bn(u,Soli[s]) =
Nu(β(u)).

An instance of the EXPECTED COVERAGE problem at the state s is (Gi, wi, pi, �)

where the functions wi and pi are obtained from w and p for the domain Xi
+ and

E(Gi), respectively. Additionally, the solution should satisfy the constraints specified
by the state s. A state s is said to be invalid if there is no feasible solution that satisfies
the constraints specified by s. We define one more notion of validity of the states
called “locally valid”. A state s is said to be locally valid if the following properties
are satisfied.

– � ≥ |β−1(0)|, and
– for each vertex u ∈ Xi, if β(u) = −1 then N(u) ∩ β−1(0) = ∅, and if β(u) > 0,

then Nu(β(u)) ∈ (
(Xi

+ \ Xi) ∪ β−1(0)
)
.

If a state s is not locally valid, then s is an invalid state.

State induced at a node in T For any set S ⊆ Xi
+ of size at most k and a function

α : Xi → {0, 1} with S ∩ Xi ⊆ α−1(1), we say that the pair (S, α) induces a state
s = (�, α, β) at the node i, and s is defined as follows:

– � = |D|.
– β : Xi → {−1, 0, 1, . . . , Δ} is defined as follows: for each u ∈ Xi ∩ D, β(u) =

0, for each u ∈ Xi∩N(D), β(u) = N−1
v (bn(u, D)), and for each u ∈ Xi\N[D],

β(u) = −1.
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4.2 Recursive definition of Soli and Vali

For each node i in T and a locally valid state s = (�, α, β) ∈ Si, we show how
to compute Soli[s] and Vali[s] from the tables at the children of i. Soli[s] and
Vali[s] are recursively defined below and we prove a statement on the structure of
an optimal solution based on the type of the node i in T. These statements are used in
Section 4.3 to prove the correctness of the bottom-up evaluation.

Leaf Node Let i be a leaf node with bag Xi = ∅. The state set Si is a singleton set
with a state s = (0, ∅ → {0, 1}, ∅ → {−1, 0, 1, . . . , Δ}). Therefore, Soli[s] = ∅
and Vali[s] = 0. This can be computed in constant time.

Lemma 8 The table entries for the state s at a leaf node are computed optimally.

Proof The correctness follows from the fact that the graph Gi is a null graph. Thus,
for a null graph a valid state s, empty set with coverage value zero is the only optimal
solution.

Introduce Node Let i be an introduce node with child j such that Xi = Xj ∪ {v} for
some v /∈ Xj. Since i is an introduce node, all the neighbors of v in Gi are in Xi. That
is, N(v)∩Xi

+ ⊆ Xi. We define the state sj, and define Soli[s] in terms of Solj[sj].
To define the state sj, we consider two cases depend on the value of β(v).

Case β(v) �= 0 In this case, the desired solution for the state s must not contain the
vertex v. We define the functions αj : Xj → {0, 1} and βj → {−1, 0, 1, . . . , Δ} from
α and β by excluding the vertex v in the domains of both functions, respectively. We
define sj = (�, αj, βj). If the state sj at the node j is invalid, then the state s at the
node i is invalid. Therefore, we consider that the sate sj is valid. Then, the solution
for the state s is defined as follows:

Soli[s] = Solj[sj], (1)

and

Vali[s] =
{
Valj[sj] + C(v, β−1(0)) if α(v) = 1,

Valj[sj] otherwise.
(2)

Case β(v) = 0 In this case, the desired solution for the state s must contain the
vertex v. We have α(v) = 1 since s is locally valid. The key idea is to figure out
the vertices those will have v as its best neighbor in the desired solution. Then, find
a suitable optimal state at node j and complete the bottom-up computation. Next we
find set of all vertices that will have v as its best neighbor in the desired solution. Let
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Dv = {u ∈ Xi | β(u) > 0 and Nu(β(u)) = v}. We enumerate all possible subsets of
Dv to find such a set. For each D ⊆ Dv , we define the following:

– FD = {f : D → {−1, 0, 1, . . . , Δ} | ∀v ∈ D, f (v) �= −1 ⇒ f (v) > β(v)}
– αD

j : Xj → {0, 1} such that for each u ∈ Xj αD
j (u) =

{
0 if u ∈ D,

α(u) otherwise.

For a set D ⊆ Dv and a function f ∈ FD , we define the following:

– β
D,f

j : Xj → {−1, 0, 1, . . . , Δ} such that for each u ∈ Xj,

β
D,f

j (u) =
{

f (u) if u ∈ D,

β(u) otherwise.

– s
D,f

j = (� − 1, αD
j , β

D,f

j ).

An optimal set D ⊂ Dv and f ∈ FD can be computed as follows:

D, f = arg max
D′⊆Dv,f ′∈F ′

D |sD′,f ′
j is valid

Valj[sD′,f ′
j ] + C(D′ ∪ {v}, v). (3)

If no such valid state found in j, then we mark s in i is also invalid.
Define sj = s

D,f

j = (�−1, αD
j , β

D,f

j ). Then, the solution for the state s is defined
as follows:

Soli[s] = Solj[sj] ∪ {v} (4)

and

Vali[s] = Valj[sj] + C(D, v) + w(v) (5)

The time to compute the state sj is depending on the size of F . Therefore, sj can
be computed in O∗(Δtw) time.

Lemma 9 Let i be an introduce node in T, and let s and sj be as defined above. If S
is an optimal solution for the state s, then there exists a state ŝ at the node j such that
the set S \ {v} is an optimal solution for the state ŝ, and Valj[sj] = Valj[ŝ].

Proof Since S is an optimal solution to the state s, the pair (S, α) induces the state s

at the node i. We consider two cases based on whether v ∈ S or not. First consider
the case v ∈ S. In this case, observe that β(v) = 0. Consider the set D = {u ∈
Xi | bn(u, S) = v} and the function αD

j as defined above for the case β(v) = 0.

Since (S \ {v}) ∩ Xj ⊆ αD
j

−1
(1) by definition of αD

j , let ŝ = (� − 1, αD
j , β̂j) be

the state induced by the pair (S \ {v}, αD
j ) at the node j. Let us define the function

f : D → {−1, 0, 1, . . . , Δ} such that for each u ∈ D, f (u) = β̂j(u). Note that the

state ŝ and s
D,f

j are same. Observe that from (3) and optimality of S for the state s,
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Valj[ŝ] = Valj[sj]. Then, the expected coverage Ci(Xi
+ \α−1(0), S) can be written

as follows:

C(Xi
+ \ α−1(0), S) = C(Xi

+ \ (α−1(0) ∪ D ∪ v), S) + C(Dv, S) + C(v, S)

= C(Xi
+ \ (α−1(0) ∪ D ∪ v), S \ {v}) + C(D, v) + w(v)

= C(X+
j \ (α−1(0) ∪ D), S \ {v}) + C(D, v) + w(v)

= C(X+
j \ α−1

j (0), S \ {v}) + C(D, v) + w(v)

= Valj[ŝ] + C(D, v) + w(v)

= Valj[sj] + C(D, v) + w(v).

Note that the term C(D, v) + w(v) is independent of the set S. Thus, the set S \ {v}
is an optimal solution for the state ŝ at the node j.

Next we consider the case v /∈ S. In this case, observe that β(v) �= 0 and S \{v} =
S. Consider the αj as defined above for the case β(v) �= 0. Let ŝ = (�, αj, β̂j) ∈ Sj

be the state induced by the set S at the node j. Observe that the functions βj and β̂j
are same. Thus, ŝ and sj are same. Then, the expected coverage C(Xi

+ \ α−1(0), S)

can be written as follows:

C(Xi
+ \ α−1(0), S) =

{
Valj[ŝ] + C(v, S) if α(v) = 1,

Valj[ŝ] if α(v) = 0.

Thus, the set S is an optimal optimal solution for the state ŝ at the node j.

Forget Node Let i be a forget node with child j such that Xi = Xj \ {v} for some
v ∈ Xj. Since i is a forget node, N(v) ⊆ Xi

+. We define the state sj = (�, αj, βj)

and define Soli[s] in terms of Solj[sj]. The state s does not impose any constraint
on v since v /∈ Xi. So, we try all possible values of α and β for v, and find an optimal
one. We define αj : Xj → {0, 1} such that for each u ∈ Xj,

αj[u] =
{

1 if u = v,

α(u) otherwise.

Therefore, we consider all possible values of βj(v) to define the state sj. For each
z ∈ {0, 1, . . . , deg(v)}, we define βj

z : Xj → {−1, 0, 1, . . . , Δ} such that for each
u ∈ Xj,

βz
j (u) =

{
z if u = v,

β(u) otherwise.

For each z ∈ {0, 1, . . . , deg(v), we define sz
j = (�, αj, β

z
j ). If for each z ∈

{0, 1, . . . , deg(v)}, the state sz
j at the node j is invalid then the state s at the node i

is invalid. Therefore, we consider that there exists a z ∈ {0, 1, . . . , deg(v)} such that
the state sz

j at the node j is valid. Let

z′ = arg max
z∈{0,1,...,deg(v)}|sz

j is valid
Valj[sz

j ]. (6)
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Define sj = sz′
j = (�, αj, β

z′
j ). Then, the solution for the state s is defined as follows:

Soli[s] = Solj[sj], (7)

and

Vali[s] = Valj[sj]. (8)

The state sj can be computed in O(Δ) time.

Lemma 10 Let i be a forget node in T, and let s and sj be as defined above. If S is
an optimal solution for the state s, then there exists a state ŝ at the node j such that
the set S is an optimal solution for the state ŝ, and Valj[sj] = Valj[ŝ].

Proof Since S is an optimal solution for the state s, the pair (S, α) induces the state
s at the node i. Consider the function αj as defined above. Let ŝ = (�, αj, β̂j) be
the state induced by the pair (S, αj) at the node j. Let z = β̂j(v). Note that the
functions βz

j and β̂j are same, and thus the states ŝ and sz
j are same. From (6) and

the optimality of the set S for the state s, Valj[ŝ] = Valj[sj]. Then, the expected
coverage C(Xi

+ \ α−1(0), S) can be written as follows:

C(Xi
+ \ α−1(0), S) = C(X+

j \ α−1
j (0), S) = Valj[ŝ] = Valj[sj].

Thus, the set S is an optimal solution for the state ŝ at the node j.

Join Node Let i be a join node with children j and h such that Xi = Xj = Xh. We
define two states sj = (�j, αj, βj) and sh = (�h, αh, βh) at nodes j and h, respectively,
and define Soli[s] in terms of Solj[sj] and Solh[sh]. Among � vertices in the solu-
tion to be computed, |β−1(0)| many vertices are taken from Xi and �−|β−1(0)| many
vertices will be chosen from Xi

+ \ Xi. Since Xi
+ \ Xi is a disjoint union of the sets

X+
j \ Xj and X+

h \ Xh, we consider a parameter z to partition the value � − |β−1(0)|.
For each 0 ≤ z ≤ � − |β−1(0)|, let �z

j = |β−1(0)| + z and �z
h = b − z: we consider

the states at nodes j and h with budget �z
j and �z

h, respectively. Let

D = {u ∈ Xi | β(u) /∈ {−1, 0} and Nu(β(u)) ∈ Xi
+ \ Xi}.

For each u ∈ D, Nu(β(u)) is in either X+
j \ Xj and Xh

+ \ Xh. Let Dj = {u ∈ D |
Nu(β(u)) ∈ Xj

+ \ Xj} and Dh = {u ∈ D | Nu(β(u)) ∈ Xh
+ \ Xh}. Note that the

set D is partitioned into Dj and Dh. We define αj : Xj → {0, 1} such that for each
u ∈ Xj,

αj(u) =
{

0 if u ∈ Dh and α(u) = 1,

α(u) otherwise.

Similarly, we define αh : Xh → {0, 1} such that for each u ∈ Xh,

αh(u) =
{

0 if u ∈ Dj and α(u) = 1,

α(u) otherwise.
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Let A = {a : Dh → {−1, 0, 1, . . . , Δ} | ∀u ∈ Dh, if a(u) �= −1 then β(u)+1 ≤
a(u) ≤ deg(u)}. For each a ∈ A, let βa

j : Xj → {−1, 0, 1, . . . , Δ} such that for each
u ∈ Xj,

βa
j (u) =

{
a(u) if u ∈ Dh,

β(u) otherwise.

Let B = {b : Dj → {−1, 0, 1, . . . , Δ} | ∀u ∈ Dj, if b(u) �= −1 then β(u) + 1 ≤
b(u) ≤ deg(u)}. For each b ∈ B, let βb

h : Xj → {−1, 0, 1, . . . , Δ} such that for each
u ∈ Xj,

βb
h(u) =

{
b(u) if u ∈ Dj,

β(u) otherwise.

For each 0 ≤ z ≤ � − |β−1(0)|, a ∈ A and b ∈ B, let s
z,a
j = (�j

z, αj, βj
a) and

sh
z,b = (�h

z, αh, βh
b). If for each 0 ≤ z ≤ � − |β−1(0)|, a ∈ A and b ∈ B, either

s
z,a
j or sh

z,b is invalid, then s is invalid. Therefore, we consider that there exists a

0 ≤ z ≤ � − |β−1(0)|, a ∈ A and b ∈ B such that both s
z,a
j and sh

z,b are valid.
Further, we define the following tuple:

z′, a′, b′ = arg max
0≤z≤�−|β−1(0)|,

a∈A,b∈B|sz,a
j and s

z,b
h are valid

Solj[sz,a
j ] + Solh[sz,b

h ]. (9)

Define sj = s
z′,a′
j = (�z′

j , αj, β
a′
j ) and sh = s

z′,b′
h = (�z′

h , αh, β
b′
h ). Then, the solution

for the state s is defined as follows:

Soli[s] = Solj[sj] ∪ Solh[sh], (10)

and
Vali[s] = Valj[sj] + Valh[sh] − C(α−1(1) \ D, β−1(0)). (11)

The subtracted term in the (11) is the over-counting term of the combined solution
that is obtained from the states sj and sh. The time to compute the states sj and sh is
depending on the sizes of the functions A and B. Therefore, the states sj and sh can
be computed in |A| · |B| = O(Δtw) time.

Lemma 11 Let i be a join node in T, and let s, sj and sh be as defined above. Let S

be an optimal solution for the state s. Let Sj = S ∩X+
j and Sh = S ∩X+

h . Then, there
exists two states ŝ and s̃ at nodes j and h, respectively, such that the sets Sj and Sh
are optimal solutions for the states ŝ and s̃, respectively. Further, Valj[sj] = Valj[ŝ]
and Valh[sh] = Valh[s̃].

Proof Since S is an optimal solution for the state s, the pair (S, α) induces the state
s at the node i. Consider the set D = Dj ∪ Dh, and the functions αj and αh as
defined above. Let ŝ = (�̂j, α̂j, β̂j) be the state at the node j induced by the pair
(Sj, αj). Let s̃ = (�̃h, α̃h, β̃h) be the state at the node h induced by the pair (Sh, αh).
Let z = �̂j − |β−1(0)|. Define a : Dh → {−1, 0, 1, . . . , Δ} such that for each
u ∈ Dh, a(u) = β̂j(u). Then, define b : Dj → {−1, 0, 1, . . . , Δ} such that for

449Theory of Computing Systems  (2022) 66:432–453



each u ∈ Dj, a(u) = β̃h(u). Note that the functions β̂j and β̃h are same as βa
j

and βb
h , respectively. Thus, the states ŝ and s̃ are same as s

z,a
j and s

z,b
h , respectively.

From (9) and the optimality of the set S for the state s, Valj[sj] = Valj[sj] and
Valh[sh] = Valh[sh]. Then, the expected coverage C(Xi

+ \ α−1(0)) can be written
as follows:

C(Xi
+ \ α−1(0), S) = C(Xi

+ \ Xi, S) + Ci(Xi \ α−1(0), S)

= C(X+
j \ Xj, S) + C(X+

h \ Xh, S) + C(α−1(1) \ D, S)

+C(D, S)

= C(X+
j \ Xj, Sj) + C(X+

h \ Xh, Sh) + C(Dj, S) + C(Dh, S)

+C(α−1(1) \ D, S) + C(α−1(1) \ D, S) − C(α−1(1) \ D, S)

= C(X+
j \ Xj, Sj) + C(X+

h \ Xh, Sh) + C(α−1(1) \ Dh, S)

+C(α−1(1) \ Dj, S) − C(α−1(1) \ D, S)

= C(X+
j \ Xj, Sj) + C(X+

h \ Xh, Sh) + C(α−1(1) \ Dh, Sj)

+C(α−1(1) \ Dj, Sh) − C(α−1(1) \ D, S)

= C(X+
j \ (α−1(0) ∪ Dh), Sj) + C(X+

h \ (α−1(0) ∪ Dj), Sh)

−C(α−1(1) \ D, β−1(0))

= C(X+
j \ α−1

j (0), Sj) + C(X+
h \ α−1

h (0), Sh)

−C(α−1(1) \ D, β−1(0))

= Valj[ŝ] + Valh[s̃] − C(α−1(1) \ D, β−1(0)).

If either Sj or Sh is not optimal to the state ŝ or s̃, then it contradicts the optimality
of the solution S for the state s. Thus, the sets Sj and Sh are optimal solutions for the
states ŝ and s̃, respectively.

4.3 Bottom-up evaluation: Correctness of the DP formulation

Correctness Invariant For a node i and a valid state s = (�, α, β) at i, the recursive
definition in Section 4.2 ensures that

Soli[s] = arg max
S⊆Xi

+\α−1(0),|S|=�,
(S,α) induces s

C(Xi
+ \ α−1(0), S)

Lemma 12 For each i ∈ V (T), and each valid state s ∈ Si, the correctness invariant
is maintained for Soli[s].

Proof The proof is by induction on the height of a node in T. The height of a node
i in a rooted tree T is the distance to the farthest leaf in the subtree rooted at i. The
base case is when i is a leaf node in T and height is zero, and the proof follows from
Lemma 8. Let us assume that the claim is true for all nodes in T of height at most
h − 1 ≥ 0. We now prove that if the claim is true for all nodes of height at most
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h − 1, then it is true for a node of height h. Let i be a node of height h ≥ 1. Since i is
not a leaf node, its children are of height at most h − 1. Therefore, by the induction
hypothesis, the correctness invariant is maintained at all children of i. We now prove
that the correctness invariant is maintained at the node i. Let S be an optimal solution
for the state s. Then, we show that Vali[s] = C(Xi \ α−1(0), S). If i is an introduce
node then from Lemma 9, we have that the set S \ {v} is an optimal solution for
the state ŝ ∈ Sj. Since j is at height at most h − 1 and by induction hypothesis, the
correctness invariant is maintained at state s of the node i. If i is a forget node then
from Lemma 10, we have that the set S is an optimal solution for the state ŝ ∈ Sj.
Since j is at height at most h−1 and by induction hypothesis, the correctness invariant
is maintained at state s of the node i. If i is a join node then from Lemma 11, we have
that the sets Sj and Sh (as defined in Lemma 11) are optimal solutions for the states
ŝ ∈ Sj and s̃ ∈ Sh, respectively. Since j and h are at height at most h − 1 and by
induction hypothesis, the correctness invariant is maintained at state s of the node i.
This completes the proof.

Thus we conclude the section with following theorem.

Theorem 3 The EXPECTED COVERAGE problem can be solved optimally in time
2O(tw log Δ)nO(1).

Proof An optimal solution can be obtained the state s = (k,∅ → {0, 1}, ∅ →
{−1, 0, 1, . . . , Δ}) at the node r. That is, the set Solr[s] is an optimal solution to
the input instance of the EXPECTED COVERAGE problem. The correctness of the
tables computation is proved in Lemma 12. Note that every node has a table of size
(k+1)(2Δ+4)tw and each entry can be updated in time O(Δtw). A nice tree decom-
position with width tw and O(n · tw) nodes can be computed in polynomial time [30]
on inputting a tree decomposition with width tw. Therefore, given a graph G and a
tree decomposition of G with width tw, the EXPECTED COVERAGE problem can be
solved in time 2O(tw log Δ)nO(1).

5 Conclusion

In this article, we considered the EXPECTED COVERAGE problem. We focus on
structural parameterization, due to the EXPECTED COVERAGE problem is W[2]-hard
for the solution size k. In particular, we show the parameterized complexity of the
EXPECTED COVERAGE problem with respect to the well-known graph parameters
treewidth tw, pathwidth pw, vertex cover vc, feedback vertex set fvs, and distance
to star forest dsf. Further, we observed from our reduction that the EXPECTED COV-
ERAGE problem with respect to number of negative demand vertices as parameter
is W[1]-hard. Finally, for the combined parameters treewidth and maximum degree
(tw + �), we give an FPT algorithm to the EXPECTED COVERAGE problem.

Remaining open questions on the structurally parameterized complexity of the
EXPECTED COVERAGE problem concern the tight fine-grained bounds. On the other
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hand, FPT approximation scheme for any of the above structural properties would
be a good way to complement the parameterized hardness result of the EXPECTED

COVERAGE problem.
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