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Abstract 

Background: Understanding biological mechanisms underlying the etiology of a 

disease is central to establishing new prevention and treatment strategies. 

Technological advances progressively enable identifying more biomolecules like 

metabolites and proteins in specific states and forms, referred to as proteoforms. These 

are however currently disregarded by computational methods and tools for data 

interpretation and analysis. 

Aims: Include proteoforms and small molecules in the representation of pathways as 

biological networks to enable their query, and study the structural changes induced 

compared to gene-centric networks. 

Materials and methods: Procedures for matching omics data to pathways based on 

proteoforms were designed with multiple levels of stringency using the Reactome 

knowledgebase. Rules were defined to construct interaction networks using 

proteoforms as elementary units, taking into consideration their topology using 

network metrics such as node degree, centrality and connectivity. Implementations 

were done in Java and Python. 

Results: We provide an analysis of the current knowledge of biochemical pathways, 

and how the structure of its representation as a network influences the interpretation of 

the results from biomedical studies. Subsequently, we enable the construction and 

query of biological networks at the level of proteoforms. Finally, we show how 

changing the representation of networks from gene- to proteoform-centric networks 

and including small molecules influence the global and local structure of the network. 

Conclusion: Providing a refined modeling of biochemical reactions, this thesis 

proposes the use of proteoforms as the fundamental elements when constructing 

biological networks. The consequences of this novel paradigm on the global structure 

of the network revealed implications for the interpretation of biomedical data sets. This 

thesis further highlights current limitations in the current knowledge on pathways, and 

the challenges posed by hyperconnected small molecules. 
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1. Introduction 

1.1 Systems medicine 

The aim of clinical research can be broadly defined as preventing, diagnosing, and 

handling human diseases. A disease condition is a phenotype, i.e., an observable trait 

of an organism. For example, the disease diabetes is defined by The Centers for Disease 

Control and Prevention as a chronic (long-lasting) health condition that affects how 

your body turns food into energy. Systems medicine considers the human body as a 

system where biochemical, physiological, and environmental factors interact and lead 

to diverging phenotypes. Understanding how these factors result in specific phenotypes 

is one of the major goals of modern medicine.  

1.1.1 From organisms to molecules 

When studying biological systems, researchers model the components of the system, 

how they function and interact, such that the whole system can in turn be better 

understood1. The human body consists of multiple organs performing various 

interconnected tasks. Organs are themselves composed of different types of cells, with 

distinct identities and roles. Cells are the basic units of biological function and 

structure. There are about 200 cell types2 and approximately 37 trillion cells in the 

human body3. As an example, the pancreas is an organ performing exocrine and 

endocrine functions. The exocrine part is composed of acinar cells producing digestive 

enzymes and ductal cells to form channels to the duodenum. The endocrine part of the 

pancreas is composed of alpha, beta, delta, pancreatic polypeptide, and epsilon cells at 

the islets of Langerhans. Beta cells produce insulin and alpha cells produce glucagon, 

both necessary for glucose processing and homeostasis4. 

Human cells are themselves organized in cellular compartments. Each compartment 

contains its own set of molecules accomplishing different tasks contributing to the 

function and survival of the cell. Molecules in living organisms are carbon-based and 

composed of sets of atoms linked by covalent bonds in specific configurations5. The 

main molecule categories are nucleotides, amino acids, sugars, and fatty acids. These 
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small molecules may bond with each other to form macromolecules. Both small and 

macromolecules are involved in metabolic processes as intermediate or end products. 

These processes compose the metabolism and make up the necessary biochemical 

reactions necessary to sustain life in an organism. 

1.1.2 From genes to proteins and proteoforms 

The observation that phenotypes show varying levels of heritability, i.e., correlation 

between generations, sparked the study of the mode of inheritance6. Identifying the 

molecular mechanisms sustaining the inheritance of a trait holds the promise for better 

diagnostic, and possibly explaining the pathogenesis of diseases7-9. The essential 

information passed from parents to offspring is contained in their genetic material, 

composed of deoxyribonucleic acid (DNA). DNA is a polymer macromolecule 

composed of four nucleotide bases: adenine, cytosine, guanine, and thymine. 

Nucleotides are chained together by deoxyribose molecules in a specific order. The 

entire genetic material of an organism is referred to as its genome, forming a three 

billion base long code for humans10. Normally, the human genome is organized in 23 

pairs of chromosomes, each pair being constituted by one maternal and one paternal 

chromosome. As opposed to a phenotype, the entire genetic makeup of an individual 

is called its genotype. 

The DNA sequence contains discrete units of inheritance called genes7. Genes have 

specific start and end points, marked by sequence patterns called promoters and 

terminators (Figure 1). The region comprised between a promoter and a terminator is 

composed of an open reading frame (ORF) flanked by untranslated regions (UTR). 

Genes are used as a reference to synthesize other molecules and notably the proteins. 

For this, the DNA of a gene is first transcribed as a ribonucleic acid (RNA), a process 

named transcription. The RNA sequence is also called a transcript, and as for the 

genome, the entire set of transcripts in an organism or a sample is called the 

transcriptome. 
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Figure 1: General structure of a human gene. Composed in general by regulatory and protein coding regions. Regulatory 

regions contain specific starting and ending sequences: promoters, 5’ UTR initiation sequence, and 3’ UTR termination 

sequence. The protein coding region, also called open reading section, codes for mRNA transcripts that will be used to 

encode proteins. Formed by introns and exons used for alternative splicing. 

During transcription, the bases of DNA are coded in a new chain of bases replacing 

thymine for uracil – the other three bases remain the same and are simply copied into 

the new strand. DNA hence stays untouched inside the nucleus of the cell at all times, 

and the transcripts exit the nucleus and serve as messengers for the information 

contained in the DNA. The newly made transcript is called precursor messenger RNA 

and is processed into a mature molecule by removing the non-coding parts of the 

sequence referred to as introns. The remaining parts are bound together and referred to 

as exons. This process, called splicing, results in that different mature RNA sequences 

can be obtained from the same gene. Such alternative splicing will eventually lead to 

different protein sequences called isoforms (Figure 2). 

 

Figure 2: Multiple sources of variation can result in multiple proteoforms. Genetic sequence variation can lead to difference 

in gene sequences. Alternative splicing can lead to multiple transcripts and then protein isoforms. They in turn may be 

altered via  post-translational modifications, yielding different proteoforms. 
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The information contained in the mature mRNA is subsequently translated into a chain 

of amino acids by ribosomes. Three nucleic acids, a codon, encode one amino acid. 

Translation starts and stops at so-called start and stop codons, and the sequence 

comprised between these two codons is called the coding sequence. Each amino acid, 

also called a residue, has a specific chemical composition and structure giving them 

unique properties with regards to polarity, size, pH, molecular weight, and 

hydrophobicity. When connecting multiple amino acids, the differences in their 

properties make the proteins adopt specific three-dimensional conformations.  

Proteins have a very dynamic nature, in the sense that their sequence and shape can be 

tuned to achieve specific functions. Such structural changes of a protein are called post-

translational modifications (PTMs)11. PTMs include proteolytic cleavages or addition 

of a chemical group to an amino acid residue, and cross-linking of the polypeptide 

chain12. In the case of the addition of a chemical group, it can be a single and simple 

group, like phosphorylation13 or acetylation, or more complex structural modifications 

like polyubiquitinylation or glycosylation, where complex glycan groups are attached 

to the nitrogen atom side chain of the asparagine residue following specific sequence 

motifs14. PTMs regulate the function of proteins by activating or deactivating them, by 

changing their properties, structure, or binding to other molecules. Taking into account 

isoforms and PTMs, a protein can thus come in many forms, referred to as 

proteoforms15,16. PTMs produce an exponential growth in the diversity of proteoforms, 

and producing these proteoforms requires a maturation process where they are 

translated, modified, and conformed into their functional form11. 

Let us take the maturation process of insulin as example; first a preproinsulin protein 

molecule is produced consisting of 110 amino acids. It is then transported outside the 

endoplasmic reticulum where a subsequence of amino acids at the beginning of the 

protein called the signal peptide is removed enzymatically to form proinsulin. The 

protein then folds into its 3D structure, such that two of its ends, called the A-chain and 

B-chain, are bound together with disulfide bonds, stabilizing the molecule. This 

molecule is then processed at the Golgi apparatus, cleaving of a subsequence of amino 
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acids called the C-peptide. Finally, the C-terminus of the protein sequence is removed 

to produce mature insulin17.  

 

Figure 3: Insulin maturation process. From the INS gene on Chromosome 11 translated into 
preproinsulin, an amino acid chain cleaved into proinsulin and then further processed into 
insulin. 

Proteins are the major functional constituents of cells (Figure 4), making up about half 

of the total dry mass of the cell with a total concentration of two to four million proteins 

per cubic micrometer (100 – 300 mg per ml)18. Like for the genome or the 

transcriptome, the entire set of proteins in a given organism or sample is called the 

proteome. To date, it is not possible to determine with certainty the number of 

participants in the proteome, but current estimates indicate potentially up to ~6 million 

proteoforms can be obtained19 from the around 19,700 human protein coding genes20. 
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Figure 4: Molecular composition of an animal cell. The distribution is approximate by weight. H2O accounts for most of the 

total cell mass. Macromolecules make up for more than half of the total dry mass of the cell. 

1.1.3 Other molecules 

In addition to DNA-encoded participants of biological systems, many other types of 

molecules are necessary for the function of cells and organisms. Small molecules of a 

weight of 9 kDa or less are referred to as metabolites, and broadly cover organic 

compounds as well as circulating amino acids and short peptides. For example, 

adenosine triphosphate (ATP) is the most abundant energy carrier molecule in the cells. 

ATP hydrolysis releases energy to perform many metabolic processes such as synthesis 

of new molecules5. ATP also participates in phosphorylation reactions, as well as 

modification of amino acids during protein synthesis13. 

Two additional broad classes of molecules of biological origin are lipids and sugars. 

Lipids are essential components of membranes and can also be involved in biochemical 

reactions. A well-known example of lipids is cholesterol, which helps increase the 

order and stability of cell membranes while keeping fluidity and diffusion rates through 

membranes21,22. Sugars are essential for the metabolism and a major source of energy; 

the most common sugar is glucose, which contributes in the production of ATP, 

synthesis of neurotransmitters and neuromodulators, among others functions23.  
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Finally, an often-overlooked class of participants of biological systems is inorganic 

elements, and notably metallic ions, which are essential to many biological reactions 

and represent a valuable source of information about living organisms24. Like for the 

genome, transcriptome, and proteome, the study of the entire compendium of 

metabolites, lipids, sugars, and metallic ions in a biological system is called the 

metabolome25,26, lipidome27, glycome28,29, and metallome24, respectively, and their 

mapping is a very active field of research. 

1.1.4 Molecular variation between and within individuals 

A fundamental source of molecular variation between individuals lies in differences in 

the genomic sequence. While the genome is very stable between cells from the same 

organism, a variety of differences can be observed between individuals30. Genomic 

variation can be broadly classified by their size: (i) chromosomal abnormalities concern 

changes involving entire chromosomes31; (ii) structural variation involves intra-

chromosome changes that are large enough to alter the structure of a chromosome, 

typically over 1 kb and below 3 Mb, and include sequence deletions, duplications, 

insertions, inversions and translocations; (iii) single-nucleotide variant (SNV) or 

single-nucleotide polymorphism (SNP) involving the substitution of single 

nucleotides.  

Another source of molecular variation lies in the regulation of gene expression, which 

can differ between individuals but also between the cells of the same individual. The 

most common modulators of gene expression are DNA methylation, which can turn 

the expression of a gene ‘on’ or ‘off’; and histone modifications, which alter the 

accessibility of genetic material. When such variation yields to an inheritable trait that 

does not involve changes in the DNA sequence, it is referred to as epigenetic32,33. 

As detailed above, gene transcription and translation can yield different isoforms of the 

same protein, and these isoforms can in turn be matured into different proteoforms. The 

nature of the proteoforms present in a cell differ greatly between cell types34. Beyond 

their nature, proteins also span a vast range of abundances, ranging from a few copies 

to about hundreds of millions of copies per gene in a single mammalian cell7. The 
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relative levels of a protein differ between organs35,36, cell types11,37, vary over time, and 

the difference is even more pronounced at the level of proteoforms11. 

1.1.5 Linking molecular changes to phenotypes 

Linking a biological entity to a phenotype enables its use as a diagnostic or prognostic 

marker. Such a marker is also called a biomarker, which can either be used alone or 

combined as panel38. For example, the C-peptide is a by-product of insulin production 

(Figure 3) that can be used to monitor insulin secretion in patients, and is therefore 

used as a marker to diagnose different types of diabetes39. Moreover, identifying the 

molecular mechanisms underlying a disease paves the way for better prevention, 

diagnosis, and therapy. Linking molecular variation (e.g., genetic, epigenetic, or 

proteomics) to disease states (phenotypes) has therefore sparked a lot of interest in the 

research community6 and constitutes a major goal in clinical research7. For example, 

in the case of diabetes, the regulation of glucose levels is impaired by the inability of 

the pancreas to produce insulin, or by insulin-sensitive tissues to consume glucose40. 

Clinical research has demonstrated that diabetes is associated with an array of 

environmental, metabolic, and genetic factors41. However, the complexity of 

biomedical systems, comprised of thousands of different molecules, changing, and 

interacting over time, spanning several orders of magnitudes of abundance levels, 

distributed across different tissues and organs, makes the linking of molecular changes 

to phenotypes overwhelmingly challenging.  

Modern data interpretation approaches enabling the integration of large and 

heterogeneous data are seen as a promising way to better capture this complexity42. An 

objective of such approaches is to provide a representation of biomedical systems that 

can be interpreted mathematically and computationally across scales, from molecules 

to organisms, and from genotypes to phenotypes. A major challenge is then to model 

the biochemical reactions that cause or sustain a given phenotype5. Examples of such 

reactions include assembling or breaking up of compounds into smaller molecules that 

that serve as usable sources of energy (e.g. glycogen breakdown) or provide the cell 

with elementary building blocks (e.g. amino acids)5. Another important example is the 
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attachment of reactive groups, e.g., a phosphorylation group, so that proteins have 

specific biochemical properties43. 

In order to better describe biological systems, an important endeavor has been to chart 

all biochemical reactions and their participants. As early as 1965, a consolidated list of 

all known proteins was made publicly available by pioneer Prof. Margaret Dayhoff –

regarded as one of the founding text for bioinformatics44. Subsequently, the sequencing 

of the human genome, i.e., all genetic information contained in a human cell, through 

the human genome project10 launched the systematic mapping of all human genes. Yet, 

sequencing the human genome revealed that the number of genes was dramatically 

lower than estimated45, and while it is known that proteoforms are key to achieving 

specific functions, molecular functions are generally constructed in a one-gene-one-

protein paradigm15,16. Charting the number and identities of proteoforms in a biological 

system, and their function, is still a very active research field11.  

For example, in the case of diabetes, the regulation of glucose levels is impaired by the 

inability of the pancreas to produce insulin, or by insulin-sensitive tissues to consume 

glucose40. Research has demonstrated that diabetes is associated with an array of 

environmental, metabolic, and genetic factors41. 

1.1.6 From molecular interactions to pathways 

The participants of biological systems can interact in many ways. The term interactome 

refers to the complete set of interactions among molecules that occur in cells and are 

necessary to perform the processes essential to sustain life46. For example, molecules 

may form larger complex molecules binding to each other. Such complexes are formed 

by multiple copies of the same molecule or by diverse molecules. Hemoglobin is an 

example of a complex protein molecule that transports oxygen from the lungs to the 

rest of the body through the blood47. It is composed by four subunits, heme molecules 

bound to iron. In the complex form, when oxygen binds to one of the subunits there is 

a change in shape of the molecule, inducing a higher binding affinity to oxygen in the 

other subunits5. Such reactions require participants to be present in a specific form, 

e.g., proteoforms for proteins, and in a given stoichiometry.  
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Another important class of reactions relates to the passing of a signal, e.g., a 

phosphorylation group. Such reactions often occur in chains, allowing the passing of 

information between members of a biological system. Such a series of biochemical 

events leading to a particular biological function are called pathways5. In the context 

of a pathway, reactions take reactants (inputs) to synthesize products (output), activated 

by catalyzers, and regulated or inhibited by other molecules. Macromolecules or small 

molecules can both be input or output of reactions. For example, the assembly of the 

Origin recognition complex (ORC) can be modeled as a pathway. It consists of 

reactions that attach subunits to the complex, where the inputs are ORC proteins and 

ATP, and the outcome is the complex ORC(1-6), which binds in an ATP-dependent 

manner to sequence in a genome at which replication is initiated, also called the origin 

of replication48. Pathways that define general molecular process are referred to as 

canonical pathways, e.g., the Wnt canonical pathway49,50, but there is no formal 

definition on what distinguishes canonical and non-canonical pathways. The main 

types of well-characterized pathways are metabolic, signal transmission, and regulatory 

pathways.  

Metabolic pathways involve the production or change of components of the biological 

systems that are essential to preserve life. Typical examples are decomposition of 

compounds into simpler molecules or the construction of new molecules such as 

complexes. They are often a sequence of reactions catalyzed by proteins called 

enzymes and may achieve the transformation of one molecule to another through a 

series of intermediate steps, each catalyzed by an enzyme. For example, Glycolysis is 

a metabolic pathway which breaks down glucose by enzymes producing energy for the 

cell as ATP and pyruvic acid23,51. 

Signal transmission or signal transduction pathways are the means for the cell to react 

to events and stimuli happening both inside and outside the cell5. This mechanism is 

used by biological systems to communicate. They heavily depend on receptor proteins, 

often located at the cell surface, and detect the presence of specific molecules nearby 

and transmit the signal via a biochemical reaction cascade, typically using protein 

phosphorylation, and resulting in a cellular response52. The proteins attaching 
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phosphate groups to other proteins to activate them or pass a signal are called kinases. 

Afterwards, other proteins called phosphatases can remove the attached phosphate 

group, hence reverting the modification. This enables the cell to activate or deactivate 

a protein without having to express a gene. For example, the PI-3-Kinase-Akt signaling 

pathway is activated by insulin, promoting the survival and growth of multiple cell 

types. They depend on the activation of Akt by phosphorylation5.  

Regulatory pathways regulate quantitative metrics of the cell, e.g., regulation of cell 

growth, proliferation, or regulation of gene expression. They commonly depend on 

extracellular factors which activate translation initiation. They also trigger the intake 

of nutrients and production of energy5. For example, the pathway involving mTOR 

regulates cell growth by means of an activated growth receptor and an activated Akt 

protein, phosphorylated by the PI-3 kinase5,53. 

In conclusion, phenotypes are influenced by biological mechanisms, themselves 

dependent on the molecules available at the cellular level. Knowledge of elucidated 

mechanisms may provide better understanding, diagnostic, and intervention. Using the 

pathways inherent to biological systems, clinical researchers aim at building models 

that can pinpoint a specific set of reactions key to a given pathology. The ability to 

predict outcomes of biological pathways holds the promise to modify or even repair 

the cause of diseases54, for example, in the context of gene therapy55. 

1.2 Omics data 

In an attempt to characterize the different omes (genome, metabolome, proteome, etc.) 

in biological samples, various omics (genomics, metabolomics, proteomics, etc.) were 

established7,56,57. Strong research efforts are also invested in the combination of 

multiple omics to benefit from their complementarity and expand the capacity to 

understand biological systems. While omics data acquisition is not the primary focus 

of this thesis, the meaning, representation, and limitations of the data sets provided 

have a strong influence on functional analysis, notably impacting Paper I and Paper 

II, and will thus be introduced in the context of their use in downstream integrative 
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analyses. It is important to note that the omics technologies, whether they probe the 

genome, transcriptome, proteome, or metabolome, require reference knowledge to 

consolidate the result set, e.g., a reference genome, proteome, or set of metabolites. 

The availability and quality of this reference knowledge varies over time and between 

species, and is continuously improved58,59. Missingness or errors in the reference can 

greatly influence the outcome of an analysis, and the results must be interpreted with 

this limitation in mind46,59. Note that this thesis focuses solely on the analysis of human 

samples and can thus take advantage of extensive amounts of reference knowledge. 

1.2.1 Genomics and transcriptomics 

The comprehensive analysis of the genome has been enabled by the discovery of 

polymerase chain reaction (PCR), which enables the amplification of the signal 

encoded in DNA60. Genomic results can present themselves in very different forms 

based on the type of analysis conducted. If the genome was sequenced, information 

will be available on nearly all the available DNA of the individual61. However, in most 

cases, sequencing the entire genome is expensive and not necessary. An alternative 

consists of sequencing only the protein-coding regions of the genome, referred to as 

the exome. Another solution to probe the genome at lower cost is genotyping, where 

specific sequence variants are targeted by specialized assays. In this approach, data is 

only obtainable for the variants available in the assay. For common variants, it is 

however possible to impute the most likely alleles present in the sample due to linkage 

disequilibrium62. This technique is notably very popular in genome-wide association 

studies63 (GWAS). GWAS leverage large cohorts in order to study the association of 

sequence variation with phenotypic traits, e.g., variants within introns of the FTO gene 

are associated with the body mass index (BMI) in humans64. Note that genotyping data 

can also be used to study structural variation65. 

For genomic methods, the results are summarized in terms of sequence or structural 

variation, e.g. the set of common and rare SNPs found to be associated with a trait63. 

Functional analyses then summarize the data per pathway or gene cluster to provide 

biological context to the genomic variation66. Analysis methods rely on the current 

knowledge of genome structure, largely based on the international collaborative efforts 
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like the HapMap Project67 and the Human Genome Project68. However, when using 

genome-wide data covering non-coding regions, linking variation to the actual effector 

gene(s) is a major challenge, making it difficult to explain why there is an association 

between a variant and a phenotype69. While in the majority of cases, the effector gene 

is the nearest gene70, the functional mode of action of variants can be much more 

complicated, and hence taking the nearest gene can lead to erroneous conclusions71. In 

the example of FTO, it has taken many years of research to uncover that the effect of 

the variants on BMI was most likely mediated through Iroquois-class homeodomain 

protein IRX-3 and IRX-5. 

As for DNA, RNA can be analyzed from low sample amounts with high sequence 

coverage72. In biomedical sciences, transcriptomic analyses generally aim at inferring 

the abundance of transcripts in samples73, and the transcript abundance is in turn used 

as a proxy for gene expression. The transcriptomic data processed in functional 

analyses thus present themselves as a list of abundance estimates summarized per gene 

or transcript74.  

1.2.2 Proteomics, metabolomics, and lipidomics 

Unlike for DNA, protein sequences cannot be amplified, and the large-scale analysis 

of proteins is therefore dependent on the sensitivity of the protocols and 

instrumentation. One way to detect a protein is to use antibodies that bind to the protein 

of interest which can then be detected and quantified with specialist assays. Antibody 

assays have been developed that can monitor a large number of proteins in biomedical 

samples75. Over the past decade, aptamers have been introduced as an alternative 

allowing the screening of thousands of proteins76. Both technologies provide protein 

abundances summarized per protein, in a one-gene-one-protein paradigm. Therefore, 

while they allow the screening of large numbers of samples at a moderate price, they 

do not allow distinguishing different proteoforms. Which proteoform is detected is in 

fact unclear based on the specificity of the antibodies used in this method, therefore 

concerns have been raised regarding the specificity of these techniques77,78. 
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An alternative that has lower sensitivity and is less scalable but allows the 

characterization of different proteoforms to the level of isoforms, sequence variants, 

and PTMs, is mass spectrometry18 coupled to liquid chromatography (LC-MS)79. In 

LC-MS-based proteomics, biomolecules are ionized, and their mass-to-charge ratios 

measured as they fly through an electromagnetic field. The biomolecules can be 

measured in both targeted and untargeted manners, the latter attempting to cover the 

proteome as widely as possible.  

Mass spectrometry-based proteomic approaches are generally categorized as either top-

down, where entire proteins and proteoforms are analyzed, or bottom-up, where the 

proteins are first enzymatically digested into peptides, and the presence of a given 

protein or proteoform is inferred from the detected peptides80. Top-down approaches 

have the advantage that one can analyze entire intact proteins and proteoforms, but 

suffer from low proteome coverage, while bottom-up strategies enable detecting the 

product of thousands of different genes, but there is often ambiguity regarding the 

protein or proteoform that led to the detection of a given peptide81. Overall, bottom-up 

proteomics techniques help get a wider coverage of the proteome while top-down 

focuses on detailed characterization of the proteome as it can identify complex 

molecules and their components82. 

Similar to transcriptomics, proteomics results are generally summarized per protein on 

a one-gene-one-protein basis. This presents the disadvantage that proteoform-level 

information is not available for functional analysis. This is further discussed in 

Paper II, and a standard to encode the information at the proteoform level was 

established as part of Additional Paper I83. 

Metabolites and lipids27 can also not be amplified, and the breadth and depth of the 

analysis therefore relies purely on analytical performance84. The two most widely 

encountered technologies to analyze these molecules in biomedical samples are LC-

MS84 and nuclear magnetic resonance (NMR)85,86. For LC-MS analyses, the analytes 

are processed in a similar way as in top-down proteomics. In NMR, the samples are 

inserted into a strong magnetic field and the frequency of resonance of their nuclear 
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spin enables distinguishing the different molecules in the samples. For both techniques, 

a list of quantified biomolecules is obtained, along with their abundance estimates. 

1.2.3 Omics integration 

To take advantage of the complementarity of the information provided by the different 

omics technologies, recent research has focused on the acquisition and integration of 

multiple omics data sets from the same sample56. For example, the large-scale 

combination of genomic and transcriptomic data has enabled the computation of 

genome-wide quantitative trait loci (QTL), highly valuable for the interpretation of 

GWAS association signals87. Similarly, combining genomics and metabolomics can 

shed light on the genetic influence on metabolisms and pathways88, while the 

integration of genomics and proteomics has been very valuable in multiple fields, 

providing a new layer of knowledge to medical and population genetic studies89-91. 

Altogether, integrating multiple omics data is a promising avenue to better understand 

biological systems. To achieve this, the ability to exchange data in the same or 

compatible formats is essential. 

The combination of protein assays with genomic analyses can be particularly valuable 

given that proteins can in turn be used as biomarkers and are prime candidates for drug 

targets92. At the same time, integrating genomics and proteomics, often termed 

proteogenomics, has been central to recent advances in cancer research. For example, 

tracking how genomic structural and sequence variation is affecting gene expression, 

proteins, and modified protein levels provided an unprecedented view at the 

mechanisms sustaining cancer cell survival and proliferation90,93. Furthermore, the 

detection of peptides and proteins produced only by cancer cells holds the promise to 

design better immunotherapies and maybe even vaccines against cancer94. 

Two proteins physically involved in a reaction are said to be interacting, and the central 

role of protein-protein interactions in biological processes have yielded great interest 

in the study of protein-protein interactions95. There are various experimental 

approaches for elucidating binary interactions among proteins. Some techniques devise 

large-scale assays to test interactions for hundreds or thousands of proteins at once, 
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while others test specific pairs of proteins in small-scale assays95. Results of both 

techniques can be aggregated and contribute drafting the complete interaction map with 

all proven interactions referred to as the interactome. Yeast-two-hybrid (Y2H)96 is one 

of the most reliable and common techniques for detecting direct interactions among 

two proteins97. Other techniques use affinity purification coupled with mass 

spectrometry (AP-MS)98, which enable the characterization of protein complexes in 

multiple subcellular locations using the affinity of a bait protein to pull down direct 

and indirect interaction partners.95 Protein-protein interactions can be aggregated in an 

interaction network for a more comprehensive view of the interactome. Networks can 

be studied programmatically using methods from graph theory and network science, 

facilitating the understanding of complex mechanisms by their network properties95. 

1.3 Functional knowledge: modelling and access 

The study of biological systems produces vast amounts of knowledge on their 

molecular entities and processes. Historically, researchers would consult textbooks, 

scientific papers, and domain experts to find the function of a biomolecule. The vast 

number of biological processes and their participants, as well as the ever-increasing 

technological and scientific throughput, especially with the advent of integrative omics 

approaches, made manual mining of functional knowledge rapidly intractable. New 

solutions are therefore constantly needed to aggregate previous and new knowledge on 

biological systems. Large databases were established as a solution to consolidate vast 

amounts of knowledge on biological functions. They respond to current challenges 

with the help of modern computational methods and technologies.  

Often called knowledgebases, they focus on different objectives and data, and may 

focus on the entities themselves, or their relationships. Examples of databases focused 

on concrete types of entities are UniProt99 which contains a comprehensive curated 

compendium of protein sequences; RefSeq100 which contains a collection of sequences 

including genomic DNA, transcripts and proteins; Ensembl101 which annotates 

genomes and provides multiple tools for genome browsing. Functional 

knowledgebases consolidate information on biological entities and the functions that 
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can be performed by those entities. Examples are WikiPathways58 and Reactome59 for 

pathways, BioGRID102 for molecular interactions102, and OMIM103 for a catalogue of 

human genes and their associated genetic disorders103.  

These databases gather knowledge either by a manual effort to annotate the knowledge 

contained in the literature, also named curation, or with automatic mining and 

annotation. Manual curation is commonly done by expert curators and is by no means 

exhaustive. It may suffer from selection biases104, a problem that is further explored in 

Paper I. Automated annotation can be done through text mining of the literature105, or 

via reprocessing of public experimental data106.  

In order to enable the computational query of data, biological entities and functions 

must be represented in standardized computer-readable formats. Depending on the 

omics field, there are multiple international organizations who manage standards for 

data representation. One example in proteomics is the Human Proteome Organization 

Proteomics Standards Initiative (HUPO-PSI), providing standards for proteomics-

related formats. HUPO-PSI defines standards that facilitate data comparison, 

exchange, and verification. There are similar organizations for other omics such as the 

Global Alliance for Genomics and Health. Multiple factors need to be taken into 

account when designing standards, including storage space, access speed, or human 

readability. While this is achievable for simple entities, some biologically relevant 

details, e.g., regarding isoforms or PTMs is often not available, not encoded, or cannot 

be queried, a problem central to Paper II. The representation of biological functions, 

which involve multiple entities with different roles is even more complex and 

designing a one-size-fits-all representation is very challenging – a problem discussed 

in all papers of the thesis. 

1.3.1 Naming conventions for participants of biological systems 

In order to enable the naming of the same entity across resources and experiments, 

different nomenclatures, identifiers, controlled vocabularies, and ontologies have been 

developed. A nomenclature is a system for naming certain types of objects. One very 

common example is the HUGO Gene nomenclature107, which assigns unique character 
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strings as identifiers for genes discovered to contribute to a phenotype or function. 

They consist typically of 3 to 6 uppercase Latin letters and Arabic numbers, e.g., INS 

for the gene encoding insulin. It is often used to encode and compare omics results to 

the level of genes. Even though the scientific community is putting tremendous efforts 

in the development and adoption of standards, different definition, standards, and 

naming schemes for the same molecules persist, and are challenging to harmonize108. 

Comparing data sets using HUGO gene names is for example challenging as there is 

not a one-to-one mapping between gene names and proteins or genes in 

knowledgebases. 

An example of gene variant identifier system is the rsID defined by dbSNP109, a 

database for single nucleotide variants. It assigns an identifier composed of letters and 

numbers starting with the letters “rs” to genetic variation at a specific locus of the 

genome. For example, rs689 is a single nucleotide variant changing nucleotide A to G 

or T at an intron of the insulin gene, located at chromosome 11 locus 2160994. For 

protein sequences the most adopted identifier system is the UniProt99 accession 

number. UniProt  accession numbers are stable identifiers composed of six to ten letters 

and numbers. For example, P01308 is the accession number for insulin. 

Multiple controlled vocabularies were established to standardize the representation of 

PTMs so that they are shareable and compatible across databases. Examples include 

the UniProt controlled vocabulary for post-translational modifications110, Unimod111, 

PSI-MOD112, and the RESID Database of Protein Modifications113. Of special interest 

is PSI-MOD as it is a community standard for representation of protein modification 

data maintained by the HUPO-PSI and used in Reactome pathway annotations. It is 

defined as an ontology for protein chemical modifications organized as a hierarchy of 

modification types, where there are 45 top categories and a total of 2,098 types, with a 

maximum of nine levels of depth in the hierarchy. Modifications contained in PSI-

MOD are defined as covalent modifications, or changes that alter the measured 

molecular mass, of a peptide or protein amino acid residue.  
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The definitions of PTMs in one controlled vocabulary are often poorly translatable to 

another, and here again, one-to-one mappings do not exist, greatly challenging the 

representation of modified proteins. The increasing ability to detect and study specific 

proteoforms sparked the development of standards for the representation of 

proteoforms114. Recently, two standards have been established, Proforma115 and PEFF 

(Additional Paper I)83. Due to the lack of available format at time of writing, we 

established our own representation of proteoforms as a string for Paper II.  

1.3.2 Representing and querying biological functions 

Multiple dedicated databases provide associations between biological entities and 

functions. Common examples of databases of this type associate genetic variants with 

phenotypes or diseases, like OMIM103, ClinVar116 and PheGenI117. There are also 

databases with associations between genes or proteins such as BioGRID102 or IntAct118. 

In an attempt to represent the entire interactome, these databases link all entities 

possibly interacting, with very limited biological context. Conversely, pathway 

knowledgebases base their representation of biological functions to the level of 

biological processes, with rich context and details on the biological function. Prominent 

examples are KEGG119, WikiPathways58 and Reactome59. They contain rich 

information on consensual textbook biological pathways.  

Some resources like WikiPathways rely on crowdsourcing, while KEGG and Reactome 

are manually curated by experts. The manual curation process in Reactome stores 

pathway data into a relational database where reactions and pathways are then 

modelled by making participating molecules instances of entity classes, and their 

interactions are modelled as relationships part of biochemical reactions. Pathway 

knowledge in Reactome is also accessible as a graph database based on Neo4j120, where 

access to data is much faster than with a relational database and complex queries can 

be formulated using Cypher, a language to query graph data.  

Once biological functional knowledge is stored in an organized and standardized data 

model, it is necessary to provide user interfaces for manual or programmatic access, 

i.e., a guided user interface (GUI) or an application programming interface (API)120,121. 
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APIs make it possible to programmatically query functions of thousands of entities at 

a time, study their interactions, and link to the relevant literature. Examples of modern 

knowledge REST-based APIs are the KEGG API and the Reactome Content Service 

API for direct data model queries to the Reactome graph database59. These interfaces 

allow querying knowledgebases, e.g., returning the information relevant to a given set 

of entities. Depending on the limitations of the GUI or API, or internal representation, 

the data must be converted into a specific format before being queried. Often, these 

require representing the data as a list of gene or protein names or identifiers, which 

dramatically limits the representation of complex omics data. 

Once requests are sent to the knowledgebase it is necessary to map the content of the 

query to the reference data contained in the system. This might involve conversion of 

identifiers of different naming conventions. It must also be decided which entities are 

considered equivalent, which can become challenging when mapping, e.g., gene names 

to protein identifiers. This process of data mapping may be conducted internally, and 

is not always well documented, and can yield ambiguity in the results. This is 

particularly the case for proteoforms, which can suffer from missing isoform or PTM 

annotation, or ambiguity in the PTM localization – a problem for which we propose 

solutions in Paper II. 

1.3.3 The Reactome knowledgebase 

The Reactome knowledgebase is central to the work conducted in this thesis. Reactome 

contains biomolecular pathways with details on the steps and molecules performing 

them. Pathways annotated are related to signaling and metabolic cellular processes, as 

well as hereditary and acquired disease processes59. Reactome is free to access and use 

for research purposes. It has a manual curation process by experts who annotate data 

from peer-reviewed literature. There is a strong focus on human data, but it also 

features annotations for other species. The database is made available through a web 

user interface and programmatic tools which are free and open-source, meaning that 

the code executing operations to read from the database and analyze the data can be 

transparently inspected122. These bioinformatic tools make it possible to search, 

visualize, and perform over-representation analysis of sample data in the pathways. 
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Analysis results are visualized with a color scheme in the pathway explorer visual 

interface and also displayed as a table of numerical results, which can be used to 

interpret the biological state of a sample123. 

Reactome also provides an open REST-based API called Content Service which allows 

programmatic access of the knowledgebase. Pathway knowledge in Reactome is stored 

as a relational database populated by the curators. To facilitate and speed up access to 

knowledge, a graph-based database version built on Neo4j is also available120. The 

complete database content can be downloaded and queried locally via Neo4j using the 

Cypher query language. This results in a very convenient way to explore the content of 

Reactome, relying on the expressive and intuitive characteristics of Cypher for writing 

complex graph traversing queries. 

Biomolecular processes are represented by a large network of molecular 

transformations organized in a hierarchy of pathways. Each pathway encompasses a 

set of ordered events where molecules participate, leading towards molecular 

transformations of chemical compounds necessary for achieving biological goals. 

Molecular events are mostly reactions which have participant physical entity molecules 

performing the roles of reactants (input), products (outputs), catalyzers and regulators. 

Another type of events, named ReactionLikeEvents, are molecular transformations that 

are not necessarily a proper chemical reaction, such as polymerization, 

depolymerization, or failed reactions122. The majority of event participants are human 

proteins, which means Reactome effectively contains a systematic description of 

protein functions. The reactions between participants describe functional relationships 

among molecules, including both protein-protein and protein-metabolite. 

As of Reactome version 78, there are annotations for 10,726 human proteins, covering 

about 52.5% of the predicted human protein-coding genes of Ensembl (release 104), 

participating in 13,890 reactions curated from more than 34,000 scientific 

publications59. Reactome contains functional annotation on 29,466 proteoforms 

combining all species. In comparison, the Proteoform Atlas34 contains 5,705,254 

proteoforms deriving from 100,687 proteins at time of writing. The large difference in 
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proteoform numbers shows that the vast majority of proteoforms do not have curated 

functional annotation as of now.  

One key aspect of Reactome is the fact that when proteins need to be in a specific state 

for reactions to happen, this information is annotated in the graph database. 

Annotations include the minimal requirements of sequence variant (protein isoform) 

and a set of PTMs that a protein needs to carry for a certain task, possibly with 

sequence-level information. With this fine level of detail, it is possible to infer 

proteoforms by placing together the protein isoform and set of PTMs necessary to 

participate in a reaction with the annotated role. These requirements are minimal – a 

protein may carry a larger set of modifications when performing a reaction. The 

curation process of Reactome does not focus on the full characterization of 

proteoforms, but attempts annotating the minimal set of conditions for a proteoform to 

participate in a given reaction.  

1.4 Functional analysis of omics data 

Mapping omics data to functional knowledgebases is seen as a promising way to go 

from a list of identifiers to biological knowledge. Using functional knowledgebases as 

a roadmap to navigate large omics data, statistical procedures are employed to extract 

a signal from the noise. This procedure, often called functional analysis of omics data, 

can result in the identification of genes and proteins key to a given process, or help find 

the biological functions most likely to be affected by a given set of genes, proteins, or 

proteoforms. Instead of a procedure resulting in a definitive answer on the biological 

function causing a disease, functional analyses should rather be considered as 

providing a guide for the interpretation of complex data, and help generating hypothesis 

for follow-up studies. 

By design, the performance of functional analyses strongly depends on the amount and 

quality of information consolidated in knowledgebases, which we analyzed in the case 

of Reactome in Paper I. Another important factor, the ability to match the experimental 

data to the knowledgebase, and the internal representation of the knowledgebase can 
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greatly influence the results of a database query, as we demonstrated in Paper II and 

Paper III. To extract relevant functional knowledge in relationship to a query, different 

statistical methods were developed, that allow answering different types of questions. 

 

1.4.1 Network analysis 

Network analyses model the interactome as a biological network, where participants of 

biological functions are represented as nodes, and nodes are connected when the 

participants can interact. The interactions used to build the network can be obtained 

from various sources: text mining, co-expression, inference from similar organisms, 

experimental interaction, or known biochemical pathways124. By using methods from 

the mathematical study of graphs, network-based functional analyses provide 

information that cannot be obtained without information on the connectedness of 

biological entities125.  

General topological properties measured in networks are network size and degree 

distribution. The network size corresponds to the number of nodes and connections in 

the network, while the degree of a node is the number of connections to other nodes, 

i.e., the number neighbor nodes directly connected. When a node has notably higher 

degree compared to the rest of the nodes of the network it may be referred as a hub 

node. Biological networks tend to follow a power-scale degree distribution meaning 

that most nodes have a low degree while a few nodes have very high degree95. Another 

property related to the connectivity in the network is clustering. It is a score measuring 

how often neighbors of a node are also neighbors with each other. Biological networks 

tend to have high clustering score, meaning that when two proteins interact, their 

neighbors tend to interact as well. This is due to the tendency of molecules to work 

together to achieve processes, for example, forming complexes.  

Networks are composed of connected components, which are sections of the network 

were each node can reach any other node in the same component by traversing 

connections either directly or through intermediate nodes. According to the hypothesis 

that molecules participating in the same function cluster together, molecules with 
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shared functions tend to be in the same connected component. Hence, when the 

function of a certain protein is not known, its functional profile can be inferred from 

its neighbors in the interactome. The interactome annotated in Reactome has grown so 

much that it has a become a single large entangled connected component, surrounded 

with many small, connected components of rare or novel proteins, as studied in Paper 

I126.  

The calculation of the distance between nodes, defined as the minimal number of 

connections needed to be traversed on average to go from one node of the network to 

any other node, provides a measure of the functional distance between proteins. 

Biological networks are referred to as scale-free and “small-world”, meaning that two 

proteins can be connected by a small number of connections, notably thanks to the 

presence of large hyperconnected hubs. Alternative distance metrics like diffusion state 

distance were established to provide meaningful measures of distance despite the 

presence of large hubs127. Distance measures have proven useful, e.g., partition the 

genes associated with a disease based on their mode of action, as done for type 2 

diabetes128 with a remarkable agreement with other independent approaches129.  

Distance metrics enable clustering procedures to decide which entities are related 

functionally to others. Once a cluster of interest is identified, a technique called guilty 

by association proposes to investigate the neighbors the molecules in this cluster for 

their association with the disease130. This rationale is for example used to conduct gene 

set enrichment analyses accounting for the connectedness of genes in the 

interactome131. On the other hand, there are known limitations to clustering techniques 

like ties in proximity problem132 when distances among many entities is the same. 

Proteoforms may help mitigate limitations by increasing the specificity of the nodes 

and changing the topology of the network as we studied in Paper III. 

A specific case of protein-protein interaction is the binding of proteins as part of 

complexes133, where larger structures are required to perform functional tasks. Protein 

complexes have gained particular interest due to their central role in molecular biology, 

and because they strongly impact the abundance of proteins, which can be used to 
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monitor the functional status of cells94,134. Specific databases135 and analysis tools are 

available to interpret data in terms of complexes136. 

Another strategy is guilty by profiling104 where it is assumed that molecules share 

function or properties when their expression or abundance is correlated. This can be 

used to enrich networks by accounting for co-expression137,138 or co-abundance139. 

Networks are also seen as powerful tools to combine multiple omics data, allowing the 

comparison of samples across multiple biological layers simultaneously140,141. Hybrid 

networks aggregating vast amounts of heterogeneous data have also been developed as 

a powerful way to combine experimental and literature knowledge142.  

Since the topological properties of biological networks greatly influence such analyses, 

they have been under constant study143. For example, on highly connected scale-free 

networks, estimating the distance between different points however becomes a 

challenge, and solutions have been proposed to reduce the influence of ubiquitously 

connected nodes127 or to reduce the density of connections144. Changing the underlying 

representation of the biological network, e.g., by accounting for isoform-specific 

interactions145, has also been shown to influence the architecture of biological 

networks. When the properties of the network change then functional results are 

influenced, this is further explored in Paper I and Paper III. 

1.4.2 Pathway analysis 

Pathway analysis aims at understanding the complex biological processes that underlie 

diseases. By mapping omics data to pathway knowledgebases, it can provide insights 

into the underlying causes of the disease and offer potential targets for therapy146. For 

this, statistical methods are required to identify key molecules or mechanisms driving 

the differences in expression or phenotype represented by data obtained from biological 

samples. An advantage over interaction network analyses is that pathway analyses can 

use the structure and rich annotation of pathway knowledgebases, but in turn suffer 

from limited coverage of nodes and interactions. 

In its most simple form, pathway analysis consists of using a pathway knowledgebase 

as a very detailed reference map for the interpretation of biomedical data. For example, 
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to display observed protein abundances linked by common biological processes and 

investigate whether the observed values agree with known regulatory processes. Such 

investigation also allows identifying other participants of the pathway of interest that 

are of value but were not detected or did not pass significance thresholds of a large-

scale analysis. The pathway participants can then be included in follow-up analyses, 

e.g., through a validation experiment. This was, for example, used to test the inhibition 

or activation of the Notch signaling pathway in breast cancer, highlighting the potential 

value of this target for therapeutic intervention147. 

Often, samples are analyzed against all known pathways in an agnostic fashion. The 

main method used is over-representation analysis, where the results of an experiment 

are queried against a pathway knowledgebase. Each pathway is then evaluated based 

on its coverage by the sets of molecules queried, and the statistical significance of this 

coverage is reflected as a p-value that evaluates the likelihood of matching this pathway 

by chance. Reactome calculates the statistical significance with a binomial test122. 

Pathways with the lowest likelihood to be covered by the queried molecules by chance 

have a very low p-value, meaning that the likelihood of finding a pathway with this 

many or more sample entities as participants by chance is very low. The p-value is then 

corrected for multiple hypothesis testing over all pathways using, for example, the 

Benjamini-Hochberg approach148, providing the user with a false discovery rate 

(FDR)122,146. The FDR provides an estimate of the share of random matches in the list 

of pathways of highest significance. The pathways passing a desired FDR threshold, 

typically 0.05, are deemed of particular interest for the analysis. 

Examples of pathway over-representation analyses are ubiquitous in the biomedical 

literature, e.g., to identify drug targets149 or key genes and the pathways sustaining 

disease progression150. Sample data used to perform this type of pathway analysis 

commonly consist of sets of gene or protein identifiers selected by a previous analysis. 

Such methods are thus restricted to a paradigm where pathway information is 

summarized at the gene level, hence ignoring proteoform-level annotation. 

Consequently, pathways involving specific protein isoforms or modified proteins can 
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appear as artifactually covered. In Paper II, we implemented a method that makes use 

of the proteoform-level annotation of Reactome to refine over-representation analyses.  

A major drawback of such analyses is that pathways are considered as independent 

units. Hence, they are scored separately, ignoring their hierarchical structure and the 

fact pathways form a complete interconnected network where they overlap, cross, and 

even cause each other151. Another drawback is that calculations give the same 

importance to all processes, ignoring rich information both in the input, e.g., abundance 

levels, and in the knowledgebase, e.g., types of interaction. Furthermore, the pathway 

topology is overlooked, and pathways will receive the same statistics independently of 

whether the matched entities belong to the same reaction or are completely 

disconnected. 

Recent research in systems biology aimed to provide a better integration of biomedical 

data in the complex network of interactions formed by pathways. Some approaches 

include not only significantly differentially abundant entities, but include also those 

which change little but may work together with other molecules, e.g., to study 

differential gene expression profiles152. Other approaches propose to consider 

relationships between entities, their abundances across time, cell types or subcellular 

localization, and network topology153. One example is NGSEA, which calculates the 

enrichment score of gene sets with the expression of both individual genes and their 

neighbors in the functional network131. 

Pathway analyses are highly dependent on the definition of pathways, which differ 

between knowledgebases and between versions. Some pathways have reached more 

consensus than others as a result of different curation guidelines and priorities. Curation 

introduces biases in the prioritization of pathways and participants to annotate and in 

their representation in the knowledgebase104. The manual curation and annotation of 

pathways also strongly limits the pace at which interactions can be annotated. As a 

result, pathway-derived interactomes are orders of magnitude smaller than networks 

obtained from high-throughput text mining or experimental procedures.  
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2. Objective of the study 

The purpose of this work is to contribute to the understanding of biochemical pathways 

by studying their representation in the Reactome knowledgebase and refining their 

representation and query using proteoforms.  

• Study I: Study the current state of pathway knowledge in Reactome and its 

representation as a network. 

 

• Study II: Enable the query of Reactome and the building of networks using 

different levels of granularity, notably using proteoform representation and 

matching. 

 

• Study III: Evaluate the effects of augmenting gene-centric biological 

networks using proteoform-specific information and small molecules. 

 

 



 40 

3. Materials and methods 

3.1 Navigating the Reactome pathway data model 

We used Reactome59 as reference database to get knowledge about pathways. 

Reactome was selected because it contains details on the pathway participant proteins 

which includes isoform and modification information. We used this to produce a 

representation of pathways at the level of proteoforms, perform pathway analysis using 

proteoforms, and also construct proteoform interaction networks. The large set of 

resources including the visual pathway browser, search web pages, and the wide 

programmatic access to Reactome made it best suited for this study. At the time of 

implementation, Reactome was the only knowledgebase which situated proteoforms in 

the context of their biological processes as pathways, in a form that can be queried 

computationally. 

One of the challenges when performing pathway analysis and network analysis was 

selecting the basic entity level: gene, protein, or proteoform. In some pathway 

databases participants are represented by gene names, while in others they are 

represented by protein identifiers. Reactome has a data model that attempts at 

modelling biological process at a finer level, featuring multiple identifiers and rich 

information on the participants of reactions. The data model employed consists of 

objects with relationships among them. Each object is an instance of an object class. 

The class hierarchy is defined in the database schema. One of the most central classes 

is the Physical Entity. It represents all types of molecules participating in the pathways 

and reactions. They can be sequence entities polymers, multi-molecular complexes, 

drugs or even sets of entities. Each of the individual physical entity objects comprises 

its chemical structure, including potential covalent modifications, and the subcellular 

location where it can be found.  

Subclasses of physical entities include entities with accessioned sequences (genes, 

RNA transcripts, proteins), simple entities (chemical elements, compounds, and small 

molecules like metabolites and molecular complexes. Each of these is an identified 
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molecule that has a reference to a specific external reference database. UniProtKB99 

accession numbers are used to identify proteins. Simple entities are referenced with 

ChEBI154 identifiers. For genes, there is less standardization in the naming conventions, 

thus a physical entity object might have multiple gene names as a list, where some of 

them follow the HUGO gene nomenclature107. For our study we focused on the more 

unique protein accessions when possible and use the first element in the list of genes. 

Only for the cases when we searched for pathways with a specific gene name, was the 

complete list of gene names considered.  

In order to perform pathway analysis with proteoforms we first had to identify which 

physical entities correspond to input entity set, whether they are genes, proteoforms, or 

something else. Then we investigated which pathways have them as participants. We 

call matching the process of saying that an input molecule in the sample corresponds 

to a particular entity in the database. Matching proteins was conducted using 

accessioned numbers. Accession numbers also allow aggregating all protein object 

instances independently of the subcellular location where the reaction is happening. 

Matching gene participants is done by gene name and may introduce errors since the 

naming is not standardized. Names may differ between databases and publications, so 

it may be necessary check all possible names to match them or even go around the 

name and check its protein products with their accession numbers to identify with 

certainty genes in the reference database. The lack of standardized gene names may 

lead into wrong matching or mismatching. Annotations of gene participants in 

Reactome may include a name list that tries to cover the most common ones.  

For the matching of proteoforms it is also necessary to consider the isoform number 

and post-translational modification associated with physical entity objects. To 

represent a specific isoform of a protein Reactome annotates a physical entity instance 

and connects it to a reference entity object of the UniProt database which has the 

isoform identifier as a property. It is very important to check the specific isoform of 

the protein because they can differ in length and amino acids at certain positions of the 

sequence, which may affect the correct identification of the location of modifications. 

Therefore, a different physical entity instance is used every time a specific proteoform 
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participates in a reaction to enable having different isoforms or combinations of 

modifications in each case.  

When a protein requires a modification at a specific amino acid of its sequence to 

perform a role in a reaction, Reactome annotates this by adding a relationship to a 

Translational Modification object with the coordinate (position) of the residue. The 

coordinate is a positive integer representing the index of the amino acid where the 

modification is located. In some cases, the coordinate is not annotated, which can 

indicate that the reference did not specify it or that the values were ambiguous. When 

the coordinate is missing it is set as “?” or simply blank. It is important to consider that 

protein modification localization is challenging, so tolerances are required when 

matching proteoforms.  

Modification instances are also connected in the database model to mod objects which 

contain more properties of the modifications such as its type. Modification types 

requires the use of standard names using controlled vocabularies, such as PSI-MOD112. 

Modification types can be very generic or very particular, notably regarding their 

function or target, e.g., Phosphorylation is very generic, while O-acetyl-L-serine 

(modification that effectively converts an L-serine residue to O-acetyl-L-serine) is very 

specific. Modification definitions follow a hierarchy with nested types and subtypes 

that must be considered to decide if a modification in the input proteoform set 

corresponds to the annotated modifications in the proteoforms of the database.  

When querying Reactome, we also included the possibility to use SNPs, which we had 

to also match to the physical entities of Reactome. We used the Ensembl Variant Effect 

Predictor9 (VEP) to connect SNPs with most likely affected proteins and used their 

accessions to search for pathways.  

3.2 Constructing the graph representation of a pathway 

A network consists of a set of nodes linked by connections. This is mathematically 

represented as a graph, composed of vertices connected by edges. In network science 

notation the graph is called network, vertices are nodes, and edges are connections or 
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links. In biological terms, connections are interactions between molecules which are 

the nodes. A pathway in the data model of Reactome is composed by a set of events, 

most of them are reaction events. Each event has participants that are molecules. 

Molecules can be proteins, metabolites, complexes, sets among others. Participants 

perform different roles in reactions such as input (reactant), output (product), regulator, 

and catalyzer. To build a graph representation of a pathway, we iterate its reactions, 

extract all participants with the role they perform, and connect the entities participating 

in the same reaction. 

The participants containing a sequence and having a standardized identifier are called 

EntityWithAccessionedSequence, e.g., genes formed by nucleotide bases or proteins 

formed by sequences of amino acids. Genes have names from the HUGO nomenclature 

and proteins have accessioned numbers from UniProt. Other types of smaller molecules 

which can be compounds or elements are identified by the ChEbI database, a dictionary 

of molecular entities focused on small chemical compounds.  

Other types of participants are complexes and entity set. Complexes are larger 

molecules composed of other small molecules or accessioned entities which come 

together to collectively perform a role in the reaction. They commonly do not have an 

external accession number, but they are identified with internal stable identifiers within 

Reactome.  

The participants of reactions hence become the nodes of the network. We take as nodes 

only basic molecules, such as accessioned entities or chemical compounds. In the 

process of construction of the network, the complexes are decomposed into their 

participants until obtaining simple molecules. The members of complexes are 

connected to each other to represent their collective involvement in the reaction.  

3.3 Network topology analysis  

We constructed interaction networks from pathways with an entity type as the node 

type. For the analysis in Paper III, we implemented analysis pipelines in Python 3.10.2, 

using Jupyter notebooks. We built interaction networks from Reactome version 80 
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using different types of molecules and yielding multiple network models. We compute 

multiple topological characteristics of the networks, to evaluate their topological 

properties. We conduct the same analysis locally, considering each pathway separately. 

Given the hypothesis that molecules related to a specific disease tend to interact with 

each other in biochemical reactions, it is assumed that they are located in the same 

region of the complete interactome network. Since the properties regarding the number 

of neighbors each entity has in the interaction network is highly used in network 

analyses, we studied how much the degree varies between the gene and proteoform 

interactome. Also, we investigate the prevalence of bottleneck nodes and links such as 

articulation points and bridges. The topological properties computed and how they are 

derived are detailed in Paper III. 

To evaluate the robustness of different network representations, we employed a 

percolation analysis, as introduced for the study of the incomplete interactome by 

Menche et al.46. Percolation analyses measure the robustness of a network or 

subnetwork by iteratively removing nodes or connections. In such a procedure, 

networks featuring few or poorly connected nodes will collapse faster than well 

populated and connected networks. One considers that such networks are not suited for 

systematic analyses like pathway analyses.  

In Paper III, we perform the percolation analysis of networks built from Reactome 

using different representations of pathways. With a repeated random sampling, we get 

an approximation to the subnetwork sizes that can be observed if a random number of 

connections is removed.  

3.4 Software implementation 

For the analyses performed in Paper I and Paper II, we implemented a Java application, 

PathwayMatcher and an Extractor tool to obtain all proteoforms and interactions 

among the entities in Reactome. PathwayMatcher is an application that serves as a 

proof-of-concept showing that Reactome can be queried using proteoforms. 

PathwayMatcher can generate interaction networks from specific queries or of all 
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known interactions composing Reactome. The process to build networks from 

Reactome is detailed in more detail in Paper I. When PathwayMatcher is used to search 

for pathways using proteoforms a proteoform matching procedure is performed 

meaning that proteoforms in the input sample must be matched to proteoforms 

contained in the reference database. More details can be found in Paper II. To the best 

of our knowledge, there are no other public proteoform matching methods published, 

we thus established rules and guidelines for this procedure, especially with regards to 

partial and approximate matching.  

Further details for software implementation can be found on the wiki pages for the 

public repositories established as part of this thesis work: 

https://github.com/PathwayAnalysisPlatform/PathwayMatcher/wiki 

 

https://github.com/PathwayAnalysisPlatform/ProteoformNetworks/wiki 

https://github.com/PathwayAnalysisPlatform/Extractor 

 

All of the code is available in public repositories hosted in GitHub:  

https://github.com/PathwayAnalysisPlatform/PathwayMatcher 

https://github.com/PathwayAnalysisPlatform/Networks 

https://github.com/PathwayAnalysisPlatform/ProteoformNetworks 

https://github.com/PathwayAnalysisPlatform/ProteoformNetworks_resources 

https://github.com/PathwayAnalysisPlatform/MappingFiles 

https://github.com/PathwayAnalysisPlatform/Extractor 
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4. Results 

4.1 Paper I: Modelling pathways as a biological network 

In this paper, the current knowledge on pathways was modelled as a network, showing 

how decades of biomedical research has shaped a complex representation of 

interconnected processes. The properties of pathway participants with respect to how 

many processes they are involved in, how they interact with each other, and how biases 

and missing information can influence the interpretation of proteomics data sets was 

explored. These insights shed light on the information underlying pathway analyses 

and provide critical information for researchers when interpretating the results of 

pathway analyses. 

The current knowledge of Pathways can be modelled as a biological network where 

participants of the events composing the pathways are represented as nodes and their 

relationships are represented as connections. Representing pathways as biological 

networks enable their programmatic analysis. Pathway knowledge increased more 

rapidly as technologies improved (Figure 5). Protein networks are becoming larger and 

denser. This is due to the substantial increase of interactions among proteins rather than 

increase in proteins. There can be over a million interactions between only about ten 

thousand proteins. The result is a very densely connected network, with a slightly less 

connected periphery. The gain of additional data annotations comes at the price of 

increased complexity. 

We found that the nested structure and hierarchy of pathways is important when 

analyzing omics data. Higher level pathways may be understandable, but often too 

generic to reach a conclusion. While more specific pathways are very specialized and 

understanding of the context where they are located is important. We also observed 

that parts of some pathways are used in multiple contexts, therefore it is necessary to 

consider how ubiquitous a subprocess is, to consider how meaningful results are. 
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The selection of proteins to be studied has a great influence on the results. If proteins 

are very well studied, it might be possible to get very detailed insights. While if proteins 

are not very well studied, or even not known to interact with any other protein at all, 

then they appear as isolated entities of the network with a very limited potential for 

functional analysis. 

Another aspect of an entity is its ubiquity. Some proteins are very specific to certain 

processes, while others perform tasks related to a vast number of pathways. The 

selection of ubiquitous proteins as biomarkers may drastically reduce the potential to 

reach specific conclusions. Conversely, intersecting pathway and protein localization 

information might help identifying processes involved in diseases with shared etiology. 

 

 

Figure 5: Protein network evolution. For each year, only proteins participating in a reaction published in or before that year 

according to Reactome are included. A) 1934: only one reaction is documented, B) 1960: four connected components 

containing 15 proteins in total, C) 1970: larger, very dense components start to appear, D) 1985: several very densely 

connected components, connected to each other in various degrees, E) and F) 2000 and 2017: a single very densely 

connected component, with slightly less well-connected periphery and a number of smaller components. See main text for 

further details.  
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4.2 Paper II: Matching of omics data to pathways 

In Paper I, we underlined the lack of tools considering proteoforms when matching 

omics data to biological pathways. In Paper II, a novel bioinformatic tool called 

PathwayMatcher was implemented supporting the matching of omics data to the 

Reactome knowledgebase at three biological levels, namely for genes, proteins, or 

proteoforms. The results show how the use of detailed proteoform annotations 

improves the representation of biochemical reactions, how the connectivity of pathway 

participants is affected, and how the matching of omics data becomes more specific. 

By enabling the advanced matching of omics data to pathways, and connecting all 

pathway participants, PathwayMatcher provides the first proteoform-centric biological 

networks as an improved representation of biological pathways: 

PathwayMatcher is the first software tool capable of selecting pathways related to a set 

of defined proteoforms as well as genes, proteins, or genetic variants. It proposes the 

first implementation of pathway analysis with proteoforms in the form of an 

overrepresentation analysis. 

One of the main findings is that proteoforms participate in equal or fewer pathways and 

reactions than their protein or gene counterparts (Figure 6). This implies that 

proteoform searches are more specific when selecting candidate pathways for a set of 

sample entities. This is possible because the different isoform sequences and sets of 

post-translational modifications of proteoforms allow distinguishing between the 

instances where products of the same gene have different roles. As data becomes richer 

annotating more isoform and post-translational modification specific information, 

proteoform-based analysis will potentially be even more accurate and specific. 

We designed and implemented procedures to decide if proteoforms in the input sample 

should be matched to proteoforms annotated in the database. We called this process 

proteoform matching. This is a challenging problem that requires careful consideration 

and knowledge of both pathway data model and sample acquisition. Reactome 

annotates the minimal set of required modifications for the protein to participate in a 

biochemical reaction. On the other hand, input proteoforms, might contain more, the 



 49 

same, or less than the minimal set of annotations in Reactome. We defined different 

levels of stringency for the matching and allow the user to adjust to the level of 

stringency to the specificities of the analysis.  

There was also a need to define a simple format to represent and read sets of 

proteoforms in a text file. For that, we created a simple representation standard for 

proteoforms that includes the isoform number and set of modifications represented with 

identifiers from the controlled vocabulary of the Proteomics Standard Initiative. There 

were no commonly adopted formats for proteoforms at the time. Alternative formats 

were published since then, such as PEFF83 and Proforma115, but it is worth noting that 

they are more complex than necessary for the application of pathway matching, the 

relevance of their implementation in PathwayMatcher is therefore unclear.  

 

Figure 6: For all proteoform-specific participants, the number of pathways mapped using the proteoform versus gene is 

plotted in black. The density of the number of pathways mapped are indicated at the top (blue) and right (green) for gene 

and proteoform matching, respectively. The median number of pathways mapped is indicated with dashed lines. 
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4.3 Paper III: Extending protein interaction networks using 
proteoforms and small molecules 

In Paper II, we demonstrated that the modelling of pathways as biological networks 

can be changed by extending the elementary unit representing a gene or a protein using 

proteoform annotation. In Paper III, the consequences of extending the gene-centric 

paradigm to protein- and proteoform-centric networks was investigated. Furthermore, 

the implications of also including small molecules to such networks were explored. 

The results demonstrate how changing the representation of the networks induces 

changes in topology that can make certain nodes in the network essential for the 

interface between distinct biological processes, and thus potentially more clinically 

relevant. 

We noticed remarkable differences in network topology when creating interactome 

networks for all pathways in Reactome, and when constructing interaction networks 

for single pathways one at a time (Figure 7). Single proteoforms may be better 

understood in an isolated pathway by looking at the connections with other entities. 

But interpreting biochemical interactions in these arbitrarily defined subnetworks 

overlook many connections that can be of importance in biological samples. 

We propose including small molecules in certain types of studies when networks are 

sparse or lightly connected. Small molecules are not considered as the driving 

molecules achieving biological processes, but they are necessary in many reactions, 

and thus need to be considered as part of the connecting entities. They even help 

alleviate the disconnectedness, showing which possible inputs can be needed for the 

next reaction. 

We quantified the changes in connectivity of the networks when changing gene- or 

protein-centric networks into proteoform centric networks, with different 

representations of small molecules. The network structure was generally enriched, but 

in some cases proteoform annotation is so generic that all proteoforms resulting from 

a single gene are connected to each other, therefore creating an unnecessary 

complexity, and artificially increasing the degree of the resulting nodes.  
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Figure 7: Interaction networks for Pathway “Receptor Mediated Mitophagy” (R-HSA-8934903) represented as the level of 

gene (left), protein (center), and proteoform (right), when not including small molecules (top), including them (middle), and 

including them but restricting their connections to single reactions (bottom). 
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5. Discussion 

Proteoforms display strong potential to provide better understanding of molecular 

mechanisms given their wide variety and corresponding specificity. The most popular 

bottom-up proteomics methods, based on the digestion of protein molecules by 

proteolytic enzymes, suffer from the protein inference problem155,156. The issue is that 

identification of proteins with repetitive patterns cannot be done with certainty by 

assembling the identified peptide sequences. The problem becomes more acute for the 

identification of proteoforms with specific combinations of PTMs at specific 

locations11. Many molecular details are lost if the inference of the right location and 

combination of modifications cannot be done. Molecular details also very difficult to 

elucidate when sequences have crosstalk points34.  

There are attempts to increase the certainty of the candidate proteins suggested by the 

assembly of peptides found by bottom-up proteomics. One example suggests using 

multiple proteases157 to increase sequence coverage or get different combinations of 

peptides158, they expand the set of digestion protease enzymes to complement trypsin 

with LysC, ArgC, AspN, or GluC. Without the use of multiple enzymes, regions of the 

proteome are inaccessible for identification procedures. Other approaches propose the 

use of middle-down proteomics proteases which can yield on average larger peptides 

(> 6.3 kDa), such as the outer membrane protease T (OmpT) enabling the identification 

of isoforms and their respective post-translational modifications159. 

When we talk about proteoforms in a pathway database we may not necessarily be 

talking about intact molecules identified with a top-down proteomics approach, but by 

more prevalent methods of bottom-up proteomics. One may question how reliably we 

are inferring the right proteoform with a specific combination of PTMs when the 

protein inference problem is one pitfall of bottom-up approaches. To answer that we 

must remember that inference of proteins from peptides is not a problem affecting all 

proteins and it is possible and certain to infer certain proteins. It gets more complicated 

for molecular structures which have a lot of repetition or complex formations using 

cross links dependent on cleavage of peptides and assembly from multiple components. 
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There are proteins with unique peptides160 while other proteins result from the assembly 

of shared peptides, resulting in ambiguous protein of origin inferences.  

Proteoform inference further suffers from the difficulty of confidently asserting the 

isoform, PTMs, and their location. It is a gradient of certainty which goes from very 

certain to impossible to be sure. Once a researcher proves experimentally that the 

protein in question has certain identity and a set of modifications, that annotation is 

curated into the pathway database independently of the proteomics approach used. It is 

not restricted to certain techniques. Naturally, the more complex the molecule, the more 

accurate top-down techniques have potential, especially if technology developments 

allow its intact identification without previous fractionation as part of the sample 

preparation. Therefore, the minimal requirements of a molecule annotated to 

participate in a pathway, including the set of modifications, can help improve pathway 

analyses, but the current state of our knowledge does not provide comprehensive 

information on the proteoform state of pathway participants. An alternative when 

mapping partial omics data to pathway knowledgebases and improve pathway 

inference, would be to map the sequences directly to the knowledgebase. 

Current interactome and pathway knowledge is incomplete but sufficient to be used for 

functional analysis. There are efforts to study this incompleteness of the interactome46. 

Percolation analysis can be used to evaluate the robustness of the connections in the 

largest connected component of the interactome. This analysis translates into how 

robust the network is to the lack of knowledge of some nodes. If the network stays 

connected even without many nodes or links removed, then it means that we already 

have enough information about sufficient number of nodes to perform functional 

analysis on it, given that the network stays connected in the same way even with 

changes. We can build the interactome using genes, proteins, or proteoforms as nodes 

of the networks. As we have shown they show different structural properties. 

Percolation analysis can be done to interactomes of each type of entity and see which 

network is more vulnerable to the lack of knowledge. Given the distinct nature of the 

type of entities and the meaning of the links, different robustness is expected. 
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The definition of the interactome itself plays a key role in functional network analysis. 

In this work we considered a reference database which had multiple types of 

biomolecules – gene-derived but also small molecules. The protein annotation covered 

genes, proteins, isoform, and PTMs. Most commonly interaction networks focus on a 

single type of entities, typically proteins, e.g., phosphorylation mechanisms in 

signaling networks13 or protein-protein interactions using gene names or generic 

protein accession identifiers161. We advocate for the integration of multiple data 

sources to keep constructing rich interaction networks which include small molecules 

and proteoform knowledge but recommend that this integration is not done at the cost 

of information like PTMs, which are essential to the understanding of biological 

systems. Even though it is already challenging to integrate multiple sources of protein-

protein interaction networks for the construction of a unified interactome162, the effort 

is necessary to provide better overview of molecular mechanisms, compensate topic 

biases of databases, and deliver unbiased and rich systematic network functional 

analysis. 

There are already multiple interactome maps available, which try to systematically 

build the network based on experimental interactions163. Examples of available 

interactomes can be obtained from BioGrid, Intact, or from the Human Reference 

Protein Interactome Mapping Project164. They set great examples towards portraying 

the complete interactome, but much work remains until the complete map of the human 

biological system is defined165, for which extending the proteoform interactome is 

essential160. 
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6. Conclusion 

In this thesis we first investigated the inside of biological pathway databases, one of 

the richest sources of recorded biological processes. We shed light on the consequences 

of how knowledge was acquired and annotated (curation) and organized (data model). 

With this analysis, we identified strengths and limitations that must be considered when 

performing pathway analyses, and help researchers better take advantage of the rich 

knowledge aggregated by decades of scientific research. 

The thesis has also generated insights into what kind of molecular information is 

recorded in the Reactome pathway database, and based on this we propose the adoption 

of analysis methods that go beyond gene names and take advantage of the rich 

knowledge available. Proteoforms contain more biological details that enable specific 

matching of results to pathways and help conducting finer analyses. Proteoforms have 

the potential to narrow the number of hypothetically affected biological processes 

because they require the physical entity to have a specific set of modifications and 

sequence variations which the gene name or protein accession number cannot provide. 

Overall, there might be circumstances where certain types of molecules such as genes 

can be used for functional analysis and other circumstances where molecules such as 

proteoforms provide better insights at the cost of more data complexity. 

We provide a proof-of-concept implementation of a mapping tool which takes as input 

sample data and searches reference pathways. Among the sample data we included 

proteoforms, showing that such searches are possible and that results can be better if 

the biological database contains these kinds of annotations, but also revealing 

challenges in the matching of proteoforms. We therefore also developed methods for 

matching sample entities with reference entities in the pathway database by comparing 

the sets of PTMs and isoforms of proteins. Entity mapping can be done with a strict or 

flexible comparison. Stringency increases the confidence that we refer to the same 

entities, while flexibility increases the number of matched entities and, thereby, the 

number of selected pathways matched to the sample. Matching flexibility increases 

sensibility, while stringency increases specificity. We show that for different types of 
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omics data, different levels of stringency are helpful, and it is up to the researcher to 

define the level of analysis best suited to the data analyzed. 

We furthermore analyzed the topological properties of the interactome and other 

subnetworks with alternative network construction methods. The use of genes, 

proteins, and proteoforms as basic nodes of the network was considered and the 

consequences of including small molecules explored. The results clearly show that the 

topological characteristics of the networks are affected by the type of molecules 

modeled by the nodes, especially compared to the traditional approach of gene-centric 

interaction networks. These differences open the possibility to choose the most 

adequate type of network for different types of analysis. For example, when there are 

too many connections among nodes, proteoforms can help separate the connections 

across more nodes focused on more specific biological processes. Another situation is 

when the studied network is too sparse, having many nodes disconnected from each 

other, including small molecules can then help restore the connectivity of the network 

and see which molecules that are working with each other even if indirectly. 

Proteoform molecules describe in detail the participants of biological processes. 

Nevertheless, their identification is still a challenge, both because of the great variety 

and the very small difference between them that makes it very complicated to 

distinguish close yet different forms. Proteoforms can potentially have a combinatorial 

explosion of possibilities. There is currently a bloom in representation formats, and 

mapping, as well as analysis and interpretation methods. All can be improved to include 

proteoforms to improve our understanding of biological systems. Proteoform 

annotations will continue to grow, making their impact in functional analysis more 

significant, and allowing the design of novel and finer methods for pathway analysis. 

Such methods combined with data from different omics technologies will allow 

reaching conclusions with more certainty and accuracy such that diseases can be 

diagnosed, prognosed, and treated in a better way. 
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7. Outlook 

Proteomics technologies are improving considerably, resulting in the identification of 

more and more proteoforms81,166. This increase in proteoform data seems promising to 

build more specific interaction networks, where there are more connections among 

nodes that interact only when they have the right conformation or set of post-

translational modifications. Currently, redundant connections are added to the network 

because experiments or databases do not distinguish the proteoform participating in a 

specific reaction part of a pathway, leading to generic proteins highly connected where 

specific proteoforms would distribute the connections. Future research will tell how 

much of the pathway knowledge can be refined to the proteoform level, but our results 

and recent research suggest that proteoforms will enable more specific annotations167.  

Proteins are essential to understand the connection between genotype and phenotype, 

and proteoforms are the next step in elucidating the molecular details of the proteome. 

Not only identification of proteoforms is necessary, but also functional annotations 

must be included to depict functional associations between molecules and diseases. We 

heavily depend on databases being updated to contain proteoform data. In addition to 

new interactions, we need to improve the current annotation of reaction participants to 

include proteoform information. There are multiple efforts to annotate more 

proteoforms34 along with their functions like the Proteoform Atlas34 and the Human 

Proteoform Project160 which has the ambitious goal to draft a reference set of all 

proteoforms produced by the human genome. Another example is the neXtProt 

knowledgebase168 which is expanding the annotation of proteoforms, and is one of the 

early adopters of the proteoform format PEFF83, including their cellular localization, 

protein function, and expression by tissue. 

To expand the functional knowledge of molecules, there are approaches based on the 

known function of previously studied molecules. First case is when selecting more 

functional molecules by the guilty-by-association process, interacting partners are 

more specific, leading to a smaller more specific selection of candidate processes where 

those neighbors participate. On a second case, when comparing multiple disease 
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modules, it may happen that we assume that a set of entities shares biological function 

because they share some of the entities or connect to molecules in the other module, 

nevertheless, when adjusting the disease module networks to proteoforms, the nodes 

might not overlap anymore. As part of our study, we checked whether this happened 

using a set of disease modules and with the proteoform information in Reactome, but 

it was not clear that this happened already due to the lack of more specific proteoform 

annotation as well as lacking proteoform-disease annotations. Since no database 

associates sets of proteoforms to diseases, instead of gene or protein sets, we had to 

infer which proteoforms are equivalent to the set of genes associated to a disease 

through converting the identifiers and then discarding the proteoforms without a direct 

connection in the interaction. This leads to proteoform disease modules very similar in 

structure to the gene networks modules, but that potentially could differ if we knew the 

concrete proteoforms which really are associated to the disease. Therefore, better 

functional annotation of proteoforms could alleviate this type of network comparison, 

mitigating the proteoform network construction issue by using proteoform participants 

directly.  

Regarding functional analysis of biological entities for understanding disease 

mechanisms, one can build gene network modules, i.e., subnetworks of the interactome 

made of entities known to be associated with a particular disease. A common source of 

the associations is results from GWAS. These modules allow the transfer of disease 

mechanisms knowledge from one disease to another, by mapping the function of the 

participants. When there are diseases sharing entity nodes, there might be a functional 

overlap. Larger versions of the interactomes163 become available as more molecular 

entities are identified, especially small molecules and proteoforms, and their functions 

are discovered166. An interesting challenge will be to adapt the functional analysis 

methods to include this new type of hybrid network, as we pioneered in the work of 

this thesis. 
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8. Future work 

8.1 Automatic annotation of pathways 

Interactome networks try to model the complex cellular processes where many types 

of molecules participate as nodes162. Proteins play an essential role given their large 

diversity and capacity to mediate biochemical reactions. Knowledge has grown to 

proteome level in recent years to include annotations of more than half of the proteins 

experimentally proven in UniProtKb99 for human. Nevertheless, our current knowledge 

of the interactome is incomplete, it is not possible to know how many interactions 

happen in reality as part of cellular processes46. Databases annotate interactions for 

only a part of existing proteins. Databases may only include experimentally proven or 

predicted interactions118. Functional network analysis studies then should keep in 

consideration that the interactome is an incomplete model of reality that keeps growing 

as more molecules and interactions are discovered. One problem that may arise is that 

a study wants to discover the function of a set of molecules, e.g., a protein set where 

some of them are not yet in the interactome.  

One way to tackle the problem of missing molecules is to aggregate multiple 

independent reference databases118,163. Databases use different curation methods and 

focus on different levels of detail, therefore some databases include many more 

proteins and interactions163. For example, a pathway database might grow slower 

because it tries to include many details of participants using a manual curation process, 

while an interaction database might include many more interacting molecules using 

programmatic automation tools which ignore the functional context and only focus on 

an unsupervised data aggregation process. For example, on one hand we can consider 

Reactome59 pathway database as a source of implicit interactions as part of reactions 

and on the other hand we can consider IntAct118, a database specialized on molecular 

interaction data curated from literature and direct user submissions. IntAct includes 

more than 1.18 million interactions between more than 118,000 molecules. This can 

mitigate the problem of missing proteins in Reactome. Although in practice, 

aggregating multiple database sources bears also the risk of combining data with 
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different levels of certainty, creating duplicate records of the same interaction, or 

adding errors by describing interactions in contradicting terminology leading to 

misunderstandings. 

Even when database integration problems are solved, it is necessary to place proteins 

and their interactions in their functional context; not only list the set of isolated 

interactions. One way to make use of the functional knowledge of currently annotated 

molecules in the interactome is to connect newer proteins to the rest of the network by 

defining paths with the set of interactions aggregated from multiple databases. These 

paths would be composed of interactions with different levels of certainty, and they 

may have an arbitrary length. It would be necessary to devise algorithms for 

constructing these paths, with the most basic case being a direct connection from a 

protein in the interactome to a disconnected protein, e.g., a path of length 1169. For 

proteins which cannot be connected directly there could be many possible paths, even 

with cycles and redundant ways to reach them. Furthermore, we highlight that adding 

small molecules can greatly alleviate the problem of disconnected entities. Given the 

complexity and number of interactions this process may not be performed manually. 

There is also no clear approach to define the new paths because they would be, in other 

terms, extensions of pathways or mechanisms to automatically annotate pathways. 

These methods would then be defining what makes a pathway a pathway.  

Automatic extension of pathways requires certain level of consensus among 

researchers, but it is not completely clear what characteristics are necessary to promote 

a sequence of interactions into a pathway. There are modern machine learning methods 

that attempt to discover patterns in sequential data170, they can later be used as a 

reference to predict sequences that conform to the learned pattern171. Recurrent neural 

networks are one of them172-174. Given a sequence of elements, we can try to predict 

what element will come next. Other machine learning methods receive a set of elements 

and decide what label fits to them. These methods can potentially decide which 

elements come next if we try to extend a pathway or certain unclassified regions of the 

interactome. Another possibility is that we arbitrarily construct paths from interactome 

proteins to disconnected proteins and then decide functional labels for each alternative 
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path built. Neural networks involving sequence patterns are promising candidates for 

such tasks. 

The advantage of these methods would be the faster automatic extension of pathways 

and construction of candidate new regions of the interactome which provide functional 

context for more recent proteins not yet manually annotated in databases. These 

methods require wide characterization of the proteins and their interactions. Their 

properties would help train the models and the more information can be condensed into 

the sequences the more elements the neural networks have to predict the new paths. 

Nevertheless, it remains challenging to decide which properties of the interactions and 

the molecules themselves can be useful to decide if a node will connect to others. It is 

necessary to make assumptions that characteristics inherent to the proteins can tell 

which are their binding partners before and after in the sequence. It is also needed to 

predict only from the interaction partners available in the same subcellular location and 

the correct abundance, which is often not available.  

Another challenge is providing certainty of how likely it is that a series of interactions 

could become a pathway. Even deciding what kind of score could project that certainty. 

In any case, a clear benefit would be an extended interactome which includes more of 

the interest entities and allow the identification of closest or most related pathways, by 

pointing out specific regions of the interactome. 

8.2 Multidimensional functional analysis 

Pathways consist of a sequence of reactions. Each reaction may take different time to 

happen. A first reaction could be the activation of a receptor, which happens 

instantaneously after binding to the ligand; followed by the receptor leading to the 

activation of an intracellular signaling cascade. The downstream event can remain 

active for some minutes such that it achieves cellular response. For example, they may 

induce or repress the expression of certain genes for a given time until the abundance 

of the protein desired products is adequately regulated.  
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There are rare situations where pathways are annotated with time or abundance 

information which is often necessary to understand biological processes. In some 

databases reactions have annotated the stoichiometry coefficients, like in Reactome, 

but such properties are rarely found to a level that allows including them pathway 

analyses. Functional analysis including these other dimensions and many more could 

lead to more accurate and sensible results when selecting biological processes. On the 

other hand, it requires much more extensive databases and experiments, and more 

complex computational models. With the massive increase in computing capacity and 

data interpretation, it may be possible to start tackling these complex problems that 

seemed like science fiction only a few decades ago.  
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Abstract

Background: Mapping biomedical data to functional knowledge is an essential task in bioinformatics and can be achieved
by querying identifiers (e.g., gene sets) in pathway knowledge bases. However, the isoform and posttranslational
modification states of proteins are lost when converting input and pathways into gene-centric lists. Findings: Based on the
Reactome knowledge base, we built a network of protein-protein interactions accounting for the documented isoform and
modification statuses of proteins. We then implemented a command line application called PathwayMatcher
(github.com/PathwayAnalysisPlatform/PathwayMatcher) to query this network. PathwayMatcher supports multiple types of
omics data as input and outputs the possibly affected biochemical reactions, subnetworks, and pathways. Conclusions:
PathwayMatcher enables refining the network representation of pathways by including proteoforms defined as protein
isoforms with posttranslational modifications. The specificity of pathway analyses is hence adapted to different levels of
granularity, and it becomes possible to distinguish interactions between different forms of the same protein.
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Findings

In biomedicine, molecular pathways are used to infer the mech-
anisms underlying disease conditions and identify potential
drug targets. Pathways are composed of series of biochemical
reactions, of which the main participants are proteins, that to-
gether form a complex biological network. Proteins can be found
in various forms, referred to as proteoforms [1]. The different
proteoforms that can be obtained from the same gene/protein
depend on the individual genetic profiles, on sequence cleavage
and folding, and on posttranslational modification (PTM) states
[2]. Proteoforms can carry PTMs at specific sites, conferring each
proteoform unique structure and properties [2]. Notably, many
pathway reactions can only occur if all or some of the proteins
involved are in specific posttranslational states.

However, when analyzing omics data, both input and path-
ways are summarized in a gene- or protein-centric manner,
meaning that the different proteoforms and their reactions are
grouped by gene name or protein accession number, and the
fine-grained structure of the pathways is lost. One can there-
fore anticipate that proteoform-centric networks provide a rich
new paradigm to study biological systems. But while gene net-
works have proven their ability to identify genes associated with
diseases [3], networks of finer granularity remain largely unex-
plored.

Here, we present PathwayMatcher, an open-source stan-
dalone application that considers the isoform and PTM status
when building protein networks and mapping omics data to
pathways from the Reactome database. Reactome [4] is an open-
source curated knowledge base consolidating documented bio-
chemical reactions categorized in hierarchical pathways and no-
tably includes isoformand PTM information for the proteins par-
ticipating in reactions and pathways.

As an example of the complexity of hierarchical pathway
information, we provide a graph representation of Signaling by
NOTCH2 from Reactome (Fig. 1). This pathway is a subpathway
of the pathways Signaling by NOTCH and Signal Transduction. It
is composed of two subpathways (NOTCH2 Intracellular Domain
Regulates Transcription and NOTCH2 Activation and Transmission
of Signal to the Nucleus), comprising 32 and 54 reactions, yield-
ing 28 and 141 edges, respectively. The 31 participants of the
Signaling by NOTCH2 pathway are also involved in reactions in
other pathways, between themselves and with 2,055 other pro-
teins, resulting in 6,525 external edges. Note that in this path-
way, Cyclic AMP-responsive element-binding protein 1 (coded
by CREB1) is phosphorylated at position 46 (labeled as CERB1 P
in Fig. 1) and Neurogenic locus notch homolog protein 2 (coded
byNOTCH2) is found in 3 forms (unmodified andwith two combi-
nations of glycosylation, labeled as NOTCH2, NOTCH2 Gly1, and
NOTCH2 Gly2, respectively).

The amount of information available on reactions involving
modified proteins has dramatically increased during the past
two decades (Fig. 2), with 3,947 and 5,631 publications indexed
in Reactome (version 64 at time of writing) describing at least
one reaction between modified proteins or between a modi-
fied and an unmodified protein, respectively. To harness this
vast amount of knowledge, we built a network representation
of pathways that we refer to as proteoform-centric, where protein
isoforms with different sets of PTMs are represented with differ-
ent nodes, in contrast to gene-centric networks, where one node
is used per gene name or protein accession. In this representa-
tion, two proteoforms are connected if they participate in the

same reaction. Note that proteoforms can participate in reac-
tions both individually and as part of a set or complex. Further-
more, they can have four different roles: input, output, catalyst,
or regulator.

The fundamental difference between gene- and proteoform-
centric networks is illustrated in Fig. 3, showing the graph rep-
resentation of interactions with the protein cellular tumor anti-
gen p53 (P04637) from the TP53 gene. In a gene-centric paradigm
(Fig. 3A), 221 nodes are connected to a single node, making 220
connections; while in a proteoform-centric network (Fig. 3B), 227
proteoforms connect to 23 proteoforms coded by TP53, mak-
ing 414 connections. Note that the proteoforms coded by TP53
are themselves involved in reactions, making 24 TP53-TP53 con-
nections. In this example, the proteoform-centric network thus
presents more nodes and connections than the gene-centric
network, with visible structural differences in the network orga-
nization. We hypothesize that the proteoform-centric network
paradigm depicted in Fig. 3B provides a rich map that will en-
able navigating biomedical knowledge to a higher level of detail,
to better assess the effect of perturbations and identify drug tar-
gets more specifically.

PathwayMatcher allows the user to tune the granularity of
the network representation of pathways by representing nodes
as (i) gene names, (ii) protein accession numbers, or (iii) prote-
oforms and supports the mapping of multiple types of omics
data: (i) genetic variants, (ii) genes, (iii) proteins, (iv) peptides,
and (v) proteoforms. Genetic variants are mapped to proteins
using the Ensembl Variant Effect Predictor [5], gene names are
mapped to proteins using the UniProt identifier mapping [6],
and peptides are mapped to proteins using PeptideMapper [7].
If a peptide maps to different proteins, all possible proteins are
considered for the search and protein inference must be con-
ducted a posteriori [8]. If peptides are modified, they are mapped
to the proteoforms presenting compatible PTM sets. Proteins are
mapped to the pathway network using their accession, while
proteoforms are mapped by comparing their protein accession,
isoform number, and PTM set. A schematic representation of
the PathwayMatcher matching procedure is shown in Fig. 4.
More details on the mapping procedure, formats, and settings
can be found in the Methods section and in the online doc-
umentation (github.com/PathwayAnalysisPlatform/PathwayMa
tcher/wiki). For more information on how the pathway repre-
sentation is constructed from the different external resources,
please consult the Methods section and the online documenta-
tion (github.com/pathwayanalysisplatform/pathwaymatcher/tr
ee/master/src/main/java/extractor).

PathwayMatcher produces three types of output: (i) the re-
sult of the matching, listing all possible reactions and pathways
linked to the input; (ii) the results of an overrepresentation anal-
ysis; and (iii) networks in relationship with the input. The over-
representation analysis is performed on the pathwaysmatching
and follows the first generation of pathway analysis methods
[9], i.e., a P-value for each pathway in the reference database is
calculated using a binomial distribution followed by Benjamini-
Hochberg correction [10] (in a similar way as performed by the
Reactome online analysis tool [4]). If the input can bemapped to
proteoforms, the overrepresentation analysis is conducted using
a proteoform-centric representation of pathways, using proteins
otherwise. The exported networks represent the internal and ex-
ternal connections that can be drawn from the input, where in-
ternal connections connect two nodes from the input list, and
external connections connect one node from the input list to any
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Figure 1. Graph representation of the Signaling by NOTCH2 pathway as extracted from the Reactome database. Participating proteins are displayed as large dark red

dots labeled with their canonical gene name. Posttranslational modifications (PTMs) are indicated with suffixes in the label. A connection between two dots indicates
a documented interaction between the two proteins in the given pathway. Connections belonging to the subpathways NOTCH2 intracellular domain regulate transcription

and NOTCH2 activation and transmission of signal to the nucleus are displayed in orange and yellow, respectively. The interactions involving these proteins in other
pathways are displayed with light gray connections in the background.

Figure 2. The cumulative number of publications indexed in Reactome documenting at least one reaction between two proteins with PTMs (solid dark green line),
between one protein with PTMs and one without (dashed light green line), and two proteins without PTMs (dotted blue line), counting all publications with a year
earlier than or equal to the x-axis value. The number of publications in each category at time of writing is indicated to the right.

node not in the input. The user can select to export these net-
works using nodes defined as genes, proteins, or proteoforms.
Connections between nodes in the network are annotated with
information on whether they participate as complex or set and
their role in the reaction.

As displayed in Fig. 5A, 68% of the pathways present at least
one proteoform-specific participant, i.e., with isoform or PTM
annotation. The number of pathways containing a given gene
product or proteoform is displayed in Fig. 5B, showing how using
proteoforms allows distinguishing pathways more specifically
than genes, with a median of 4 pathways matched per proteo-
form compared to 11 pathways per gene. When the input can be

mapped to proteoforms, PathwayMatcher can restrict the search
for reactions and pathways to those that specifically involve pro-
teins in the desired form, hence reducing the number of possi-
ble connections for a given node in the resulting network. Con-
versely, the proteoform-centric network representation allows
identifying interactions betweenmultiple proteoforms originat-
ing from the same gene or protein, resulting in new connections
compared to a gene-centric representation.

Figure 5C shows that the number of connections per proteo-
form is lower than the number of connections for the respective
gene for most proteoforms, varying from a 300-fold decrease to
a 10-fold increase. Interestingly, plotting the number of connec-
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Figure 3. Gene-centric versus proteoform-centric representation. (A) Graph representation of the genes involved in reactions (through their corresponding proteins)
with (the corresponding proteins of) TP53, with a single node per gene. TP53 is representedwith a red label at the center and genes coding proteins involved in reactions

with TP53 are represented with smaller blue dots at the periphery connected to the TP53 gene with blue lines. (B) Graph representation of the proteins involved in a
reaction with gene products of TP53, distinguishing isoforms and posttranslationally modified proteins as different proteoforms. The proteoforms coded by TP53 and
the proteoforms involved in a reaction with them are represented with large red and small green dots, respectively. The proteoforms coded by TP53 are numbered
according to Table 1. The connections between proteoforms coded by TP53 are displayed with thick red lines and connections with other proteoforms with thin green

lines.

tions of a proteoform in gene-centric or proteoform-centric net-
works shows that the largest gene-centric hubs, corresponding
to 5 genes, decompose into 127 proteoforms that do not outlie
the distribution of the number of connections in the proteoform
network (Fig. 5D). Conversely, a group of 484 densely connected
outliers emerges from 44 genes.

In order to fully benefit from the gain in specificity of the
proteoform-representation of pathways, it is necessary to ex-
actlymatch the representation of proteoforms in Reactome. Any
mismatch between the input data and the database would re-
sult in a loss of sensitivity. In practice, such mismatches can
result from an incomplete proteoform representation in Reac-
tome, where only the minimal set of modifications necessary
to perform a reaction is annotated. Conversely, input data can
present unresolved isoform, missing modifications, or inaccu-
rate localization, especially in the case of bottom-up proteomics
[11]. Since the size of the proteoform network is unknown to
date, the effect of missing annotations in the database is not
directly quantifiable.

To estimate the sensitivity of the matching, we mapped
the phosphoproteome from Ochoa et al. [12] to Reactome us-
ing PathwayMatcher: among the 10,588 accessions representing
phosphoproteins, 5,519 (52%) could be matched to an accession
in Reactome, while among the 116,258 phosphosites reported,
only 654 (<1%) could be matched exactly in Reactome. Acces-
sion matching is equivalent in terms of sensitivity and speci-
ficity to a gene-centric representation of pathways, while strict
proteoform matching, requiring exact isoform and modification
set, maximizes specificity at the cost of sensitivity.

In order to mitigate the sensitivity loss while maintaining
specificity, we implemented multiple types of matching that
present different levels of stringency, as detailed in the meth-
ods: (i) One, (ii) One without PTM types, (iii) Superset, (iv) Superset
without PTM types, (v) Subset, (vi) Subset without PTM types, and
(vii) Strict. Table 2 lists the share of phosphosites that can be

matched to a proteoform in Reactome when querying the ac-
cession with a phosphorylation at the given site, and only at this
site, with a tolerance of 5 amino acids. There, one can see that
increasing the stringency of the matching dramatically reduces
the sensitivity. Since both Reactome and the list of phosphosites
represent a minimal set of modifications, the Strict matching is
overly selective, while Accession and Superset include reactions
where the proteins are not modified.

Subset and One represent the coverage of the input by Reac-
tome. Here, Subset andOne are equivalent because the input con-
sists of single phosphosites. In a data set containing combina-
tions of phosphosites, Subset would match proteoforms taking
phosphosite combinations into account, while One would rep-
resent any proteoform with at least one matching phosphosite.
The increased number of matches without PTM type can be im-
puted to mismatching PTM identifiers or the presence of other
PTMs at the input sites or at neighboring positions.

To illustrate the difference induced by each matching type
on the proteoform matching, we calculated the percentage of
proteoforms matched with selected example proteoforms. In
Fig. 6, we present two example proteoforms, one from insulin
(P01308) and one from mitogen-activated protein kinase kinase
kinase 7 (MAP3K7). Insulin and MAP3K7 have five and seven dif-
ferent proteoforms annotated in Reactome, four and six of them
with PTMannotation, respectively. By design, the Strictmatching
type matches only the original proteoform while the accession
matchingmatches all proteoforms. The othermatching types al-
low balancing between the two stringencies and display varying
levels of specificity for those proteoforms. The results show that
relaxing the stringency of the matching rapidly induces a loss in
specificity due to the similarity of the different proteoforms of a
given gene or protein.

Furthermore, we randomly selected proteoforms in Reac-
tome and altered them by changing the type and localization
of the PTMs to simulate mismatching or missing information,
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Hernández Sánchez et al. 5

Figure 4. Schematic representation of the PathwayMatcher matching procedure. Input of various types is modelized as sets of proteins or proteoforms based on the
annotation of isoforms and PTMs. Proteins and proteoforms are then mapped to Reactome based on user settings. Matched reactions and pathways, the results of an

overrepresentation analysis, and subnetworks generated from the input are exported as text files.

and the altered proteoforms were matched to Reactome; see de-
tails in the Methods section. In this setup, the share of altered
proteoforms that can be recovered using the different match-
ing types, referred to as Original matches, provides an estimate
of the matching sensitivity in case of incomplete or mismatch-
ing proteoform definition. Conversely, the share of other prote-
oforms matching despite not being originally selected, referred
to as Other matches, provides an estimate of the error rate, the
complement of specificity.

Fig. 7shows the percentage of proteoforms that matched
at least one proteoform in the database separated on match-
ing type. As expected, accession matching displays the high-
est sensitivity at the lowest specificity, while the Strict and Sub-
set matching display the highest specificity at the lowest sensi-
tivity. The Superset matching presented low sensitivity and low
specificity, while the Onematching presented a balance between
specificity and sensitivity. Finally, the matching with no types
presented similar trends but with almost maximum sensitivity
and lower specificity. Together, these results show how relaxing
the matching stringency allows balancing between sensitivity
and specificity, and they demonstrate the importance of accu-
rate proteoform definition in both the input and the reference
knowledge base.

Through its paradigm shift, PathwayMatcher hence pro-
vides a fine-grained representation of pathways for the anal-
ysis of omics data. However, this comes at the cost of in-
creased complexity: gene-centric networks comprise a limited

number of nodes, approximately 20,000 for humans, whereas
in a proteoform-centric paradigm, the human network is ex-
pected to have several million nodes [13]. With the current ver-
sion of Reactome, building the gene- and proteoform-centric
networks results in 9,759 and 12,775 nodes with 443,229 and
672,047 connections, respectively. We classified the nodes into
two categories, canonical or specific gene products, depend-
ing on whether or not they represent the unmodified canoni-
cal isoform of a protein according to UniProt. Within the prote-
oform network, 432,169 connections between 9,694 nodes link
two canonical gene products, 95,539 connections between 7,734
nodes involved one canonical and one specific gene product, and
2,806 nodes with 144,339 connections involved two specific gene
products. More summary statistics on the underlying network
can be found in the wiki of the PathwayMatcher repository.

In addition to the increased size of the underlying network,
matching proteoforms requires comparing isoforms and sets
of modifications, possibly with tolerance and wildcards for the
modification definition and localization, which is computation-
ally much more intensive than simply comparing identifiers.
Fig. 8 shows the performance of PathwayMatcher benchmarked
against public data sets of (A) genetic variants, (B) proteins, (C)
peptides, and (D) proteoforms.

For the proteins and proteoforms, the processing time in-
creased linearly related to the query size with a small slope,
making it possible to search all available proteins within a few
seconds. As expected, protein identifiers provided the fastest re-
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Figure 5. Prevalence of proteoforms in pathways. (A) The share of proteoform-specific participants in a pathway (i.e., proteins that are annotated with isoform and/or

PTM information) is plotted against the cumulative share of pathways, going from the highest share of proteoforms to the lowest. The cumulative share of pathways
is displayed with a solid green line. The share of proteoform-specific participants in each pathway is plotted with a green dot with a jitter on the x-axis between zero
and the solid line. (B) For all proteoform-specific participants, the number of pathwaysmapped using the proteoform versus gene is plotted in black. The density of the

number of pathways mapped is indicated at the top (blue) and right (green) for gene and proteoformmatching, respectively. The median number of pathways mapped
is indicated with dashed lines. (C) The violin and box plots of the degree, i.e., number of connections, for the proteoform-specific participants in a gene-centric or
proteoform-centric network are plotted to the left (blue) and right (green), respectively. (D) The ratio of degrees, proteoform over gene, is plotted with a blue-gray-green
gradient with the box plot overlaid in black. (E) The degree of the proteoform-specific participants in the proteoform-centric network is plotted against the degree

in the gene-centric network. Dots are colored with a blue-gray-green gradient corresponding to the ratio in D. Outliers of high degree in the gene-centric but not in
the proteoform-centric network are indicated with blue dashes to the right. Outliers of high degree in the proteoform-centric but not in the gene-centric network are
indicated with green dashes to the top. Note that base 10 logarithmic scales are used for the axes in B, C, D, and E.

sponse time, while proteoforms were the second fastest. Map-
ping peptides took approximately 30 secondsmore, correspond-
ing to the indexing time of the protein sequences database by

PeptideMapper [7], after which the time increased linearly in a
similar fashion as for proteins. For the genetic variants, an ex-
tra mapping step is required to map possibly affected proteins,
adding additional computing time. The overall mapping time for
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Table 1. Proteoforms of Figure 3B

# Isoform Modifications

1 Canonical None
2 Canonical pS15
3 Canonical pS15 pS20 aceK120 aceK382
4 Canonical pS15 pS20 aceK382
5 Canonical pS15 pS20 aceK120
6 Canonical pS15 pS20
7 Canonical pS15 pS20 dimethR335 dimethR337

methR333
8 Canonical pS15 pS20 ubiK
9 Canonical pS15 pS33 pS46
10 Canonical pS15 pS20 pS269 pT284
11 Canonical pS15 pS20 methK370
12 Canonical pS15 pS20 methK372
13 Canonical pS15 pS20 methK382
14 Canonical ubiK
15 Canonical pS315
16 Canonical pT55
17 Canonical pS15 pS392
18 Canonical pS37
19 Canonical dimethK373
20 Canonical sumoK386
21 Canonical pS15 pS20 pS46
22 Canonical pS15 pS20 pS392
23 Canonical dimethK370 dimethK382

Only the canonical isoforms are annotated to date, as indicated in the sec-

ond column. The posttranslational modification status is indicated in the
third column with modification short name and modification site when an-
notated. Abbreviations: aceK, N6-acetyl-L-lysine; dimethK, N6, N6-dimethyl-L-
lysine; dimethR, symmetric dimethyl-L-arginine; methK, N6-methyl-L-lysine;

methR, omega-N-methyl-L-arginine; pS, O-phospho-L-serine; pT, O-phospho-L-
threonine; ubiK, ubiquitinylated lysine; sumoK, sumoylated lysine.

Table 2. Share of the phosphosites from Ochoa et al. [12] matching to
Reactome using different matching types

Matching Type
Share of Phosphosites

Matched

Accession 57.44%
Superset without PTM types 56.38%
Superset 56.33%
One without PTM types 6.01%
Subset without PTM types 6.01%
One 1.27%
Subset 1.27%
Strict 0.15%

Proteoformswere constructed by adding a phosphorylation at the given site, and
only at this site, and were queried against Reactome. The percentage of proteo-

forms matched is provided in the second column. A tolerance of 5 amino acids
was used on the modification site. More details on this analysis can be found in
the Methods section.

a million single-nucleotide polymorphisms (SNPs) was less than
a minute, which is acceptable compared to the other steps of
a variant analysis pipeline. Note that the processing time was
very reproducible across runs, where minor variation is only no-
ticeable using genetic variants, resulting in very thin ribbons in
Fig. 8B-D.

In conclusion, PathwayMatcher is a versatile application en-
abling the mapping of several types of omics data to pathways
in reasonable time and can readily be included in bioinformatic
workflows. It is important to underline that PathwayMatcher
maps experimental data to pathways in a systematic and unbi-

ased fashion, i.e., it collects all pathways containing at least one
of the participant proteins or proteoforms of the input data and
does not perform any filtering or biological inference. Through
this process, it attempts at minimizing the prevalence of false
negatives by considering all the possible pathways annotated in
the reference database. It can, however, not control for missing
annotation, i.e., what is not annotated in the knowledge base is
not considered.

Furthermore, although PathwayMatcher implements an
overrepresentation analysis module, we recommend that users
rather interpret the results of the matching and the resulting
networks using the systems biology method that best suits the
experiment and biomedical context. Based on generic pathways,
PathwayMatcher is not developed as a mechanism inference or
validation tool, but as a hypothesis generation tool, helping to
navigate large data sets and guide experiments to uncover bio-
logical processes relevant to specific research questions.

Thanks to the fine-grained information available in Reac-
tome, PathwayMatcher supports refining the pathway represen-
tation to the level of proteoforms. To date, only a fraction of the
several million expected proteoforms [13] has annotated inter-
actions, but as the understanding of protein interactions contin-
ues to increase and the ability to identify and characterize them
in samples progresses, proteoform-centric networks will surely
become of prime importance in biomedical studies. Notably, the
effect of genetic variation on genes, transcripts, and proteins is
currently only partially resolved for a fraction of the genome.
The rapid development of this field will make it possible to iden-
tify biological functions affected by variants within the human
network. Refining its representation to the level of proteoforms
will allow pinpointing more precisely reactions and pathways,
and hence increase our ability to understand biological mecha-
nisms and potentially identify druggable targets.

Methods
Implementation

PathwayMatcher is implemented in Java 8.0.

Availability

PathwayMatcher is freely available at github.com/PathwayAnal
ysisPlatform/PathwayMatcher under the permissive Apache 2.0
license. It is also possible to use PathwayMatcher as a Docker im-
age: hub.docker.com/r/lfhs/pathwaymatcher. PathwayMatcher
can be obtained from the Bioconda channel of the Conda [14]
package manager at bioconda.github.io/recipes/pathwaymatc
her/README.html. Finally, PathwayMatcher is available as a
Galaxy [15] tool in the Galaxy ToolShed [16] at toolshed.g2.bx.psu
.edu/view/galaxyp/reactome pathwaymatcher, where it can be
readily integrated into analysis workflows. PathwayMatcher has
also been installed into the public European Galaxy instance,
usegalaxy.eu, making it possible to use the application without
requiring any local configuration and just providing valid input
files and options. The complete URL for the online tool is listed
in reference [17].

Upon installation, PathwayMatcher can be used from the
command line to query Reactome using various types of omics
data. Either the “.jar” file is run directly using Java or the Docker
image is instantiated to a container. Detailed information on im-
plementation, installation, usage, and format specifications is
available in the online documentation at github.com/Pathway
AnalysisPlatform/PathwayMatcher/wiki.
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Figure 6. Two examples of proteoforms showing the proteoform matching results for each matching type. (A) Proteoform P01308;

MOD:00087:53;MOD:00798:31;MOD:00798:43, from insulin (P01308), is matched against all modified proteoforms of insulin in Reactome. (B) Proteoform
O43318;MOD:00047:184;MOD:00047:187, from “mitogen-activated protein kinase kinase kinase 7” (MAP3K7), is matched against all modified proteoforms of
MAP3K7 in Reactome.

Figure 7. Percentage of proteoforms with at least one proteoform match in the database with each matching criterion. The total candidate proteoforms available are
separated in two categories, Original and Others. Original is the proteoform in the database that was modified for the sampling, while Others are the proteoforms that

share the same protein accession.

Input and output

Detailed and updated documentation of the input and output
can be found in the online documentation at github.com/Pathw
ayAnalysisPlatform/PathwayMatcher/wiki.

As schematized in Fig. 9, a simple representation is used for
proteoforms: (i) the UniProt protein accession and (ii) the set of
PTMs separated by a semicolon “;”. The protein accession can
include the isoform number specified with a dash “-”. The PTM
set contains each PTM separated by a comma “,”. Each PTM is
specified using a modification identifier and a site, separated by
a colon “:”.

Note that the order of PTMs does not affect the search. The
PTM identifier is a 5-digit identifier from the PSI-MOD Protein
Modification [18]. The site is an integer specifying the 1-based

index of the modified amino acid on the sequence as defined by
UniProt. The modification site field is mandatory, and ? or null
indicates that the position is not known.

It is common to write the identifiers for the PTM types with
the prefix “MOD:” before the 5 digits of the ontology term. Path-
wayMatcher also allows the user to write the identifier without
the prefix. PathwayMatcher also allows querying all proteoforms
modified at a given site using the “00000” wildcard for modifica-
tion type combined with amatching type that does not consider
themodification types such as Onewithout types or Subsetwith-
out types. Formore details, see the ProteoformMatching subsec-
tion.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz088/5541632 by U

niversity of Bergen Library user on 19 Septem
ber 2022



Hernández Sánchez et al. 9

Figure 8. Performance of PathwayMatcher using (A) genetic variants as single-nucleotide polymorphisms (SNPs), (B) proteins, (C) peptides, and (D) proteoforms. Time
in minutes is plotted against input size. The mean is displayed as a solid line and the 95% range as a ribbon (only visible in (A) due to the high reproducibility in other
cases).

Figure 9. Example of proteoform notation, composed of a protein accession, an

isoform number, and a set of PTMs.

Posttranslational modifications in the Reactome data
model

The Reactome objectmodel specifies physical entities (e.g., com-
plexes, proteins, and small molecules) and proteins are anno-
tated using unique identifiers. These entities participate in re-
actions in specific cellular compartments. They can also be con-
nected to multiple instances of Translational Modification objects,
which contain a specific coordinate on the protein sequence and
an identifier following the PSI-MOD ontology [18]. The portion of
physical entities referring to proteins is associated with another
class of objects as reference entities, which contain protein an-
notations in external databases such as UniProt [19]. Therefore,

a proteoform is represented as a physical entity associated with
a set of modifications for specific processes at a specific subcel-
lular location. Eachmodification has a PSI-MOD ontology identi-
fier as type and an integer coordinate for the site in the peptide
sequence where the modification occurs. The coordinate can be
? or null when the site is not known. Reactome annotates 127
different protein modifications for humans, of which Fig.10 Ref-
erence source not found. displays the most frequent.

Proteoform matching

Searching pathways using gene names or protein accessions
solely requires mapping a string of characters between the in-
put and the knowledge base. In order to map the proteoforms to
reactions and pathways, it is necessary to decide if the proteo-
forms in the input are equivalent to the proteoforms annotated
in the reference database, Reactome, taking into account the
protein accession, isoform information, and the set of PTMs. Two
proteoforms can have all, some, or none of these elements in
common. We defined a set of criteria to match two proteoforms,
one from the input and another from the reference database.
First, identical protein accession and isoform numbers are re-
quired for a match: either both proteoforms are from the canon-
ical isoform (e.g., P31749) or from the same isoform (e.g., P31749–
3). Then, the PTMs carried by each proteoform are compared us-
ing the modification type and the modification site on the pro-
tein sequence. For 2 PTMs to match, their modification type as
defined by the PSI-MOD ontology [18] needs to be identical and
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Figure 10. Prevalence of the different PTM annotations in Reactome. PTM labels are extracted from the Reactome database and the number of proteins annotated with
the PTM is displayed for each label. If a protein is carrying multiple instances of the PTM, the PTM is counted only once.

Table 3. Posttranslational modification coordinates criteria for comparison

Input Reference Margin Matched Comment

17 17 0 Yes Equal
16 17 0 No Out of margin
7 13 5 No Out of margin
8 13 5 Yes In margin
19 13 5 No Out of margin
0 2 5 No Input in margin, but 0 is not a valid

coordinate
-1 2 5 No Input in margin but negative
?, empty, null c k Yes Input is less specific
c ?, empty, null, -1 k Yes Input is more specific
?, empty, null ?, empty, null, -1 k Yes Equally unspecific
Negative int, zero Any k No Negative or zero input are invalid

This table compares the value of a PTM coordinate of an input Proteoform with the value of a PTM coordinate in a reference proteoform. The letter k represents any
positive integer.

the distance between their sites must be below a user-provided
margin, as detailed in Table 3.

PTM
Different matching types are implemented in Pathway-

Matcher for the PTM sets:

� Strict: the input and reference proteoforms have the same
number of PTMs and every PTM of the input proteoform
matches a PTM in the reference proteoform.

� Superset: every PTM of the reference proteoform matches a
PTM of the input proteoform, but some PTMs in the input

proteoform may not match PTMs in the reference proteo-
form.

� Subset: every PTM of the input proteoform matches a PTM of
the reference proteoform, but some PTMs of the reference
proteoform may not match PTMs in the input proteoform.

� One: at least one PTM of the input proteoformmatches a PTM
of the reference proteoform.

In addition, Superset without PTM types, Subset without PTM
types, and One without PTM types are identical to Superset, Subset,
and One, respectively, but do not account for modification type
in PTM matching. Finally, note that for the Strict matching, the
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Figure 11. PathwayMatcher general overview. The program takes the user input in the form of omics data files and the reference pathways from the database as input.
It then executes the search and analysis algorithm to create a resulting list of output files.

PTMs match when their sites are exactly identical and no mar-
gin is allowed: either both are the same positive integer or both
are null or ?.

For details and examples to run PathwayMatcher with
the different matching criteria, see the online documen-
tation (github.com/PathwayAnalysisPlatform/PathwayMatcher/
wiki/Proteoform-matching).

Additional considerations:

� Negative, zero, or floating-point values are invalid as se-
quence coordinates in the input.

� The margin to compare the coordinates must be a positive
integer.

Sensitivity analysis

In order to estimate the prevalence of missing annotation in
Reactome, we evaluated the matching power of each matching
type of PathwayMatcher using a reference list of 116,258 phos-
phosites obtained from Ochoa et al. [12]. Each phosphosite was
transformed into a proteoform, which had the same protein ac-
cession and a single PTM at the given site. The PTM accession
number 00046, 00047, or 00048 was used if the phosphorylated
amino acid reported was a serine, a threonine, or a tyrosine,
respectively. Each of the proteoforms with a single phosphory-
lation was matched against all proteoforms available in Reac-
tome using PathwayMatcher. The share of phosphosites yielding
a match for each matching type is available in Table 2.

Subsequently, we evaluated the robustness of eachmatching
type by selecting sets of proteoforms from Reactome, altering
them, and matching them back.

First, we selected the proteins that had multiple proteo-
forms with at least one PTM (1,364 proteins). Then, we gathered
all those posttranslationally modified proteoforms and altered
them: (1) for the proteoforms with one or more PTMs, the type
of the first PTM was replaced by “00000” and modification sites
were increased by 5 positions; (2) for the proteoforms with two
or more PTMs, the site of the second PTM was moved as well.

Then, we took ten samples of 300 altered proteoforms and
matched them to proteoforms in Reactome using Pathway-
Matcher. For each matching type, we calculated the percentage

proteoforms in the sample that matched any proteoform in the
database.

The results for all ten samples are shown in Fig. 7, where we
split the matching of the original sample proteoforms and other
candidate proteoforms.

Mapping omics data to pathways

The input is mapped to proteins or proteoforms to find the reac-
tionswhere the input entities are participants (Fig.11). The input
is mapped to proteins when data types without PTMs or specific
translation products are specified; otherwise, a mapping to pro-
teoforms is used. When one type of data yields multiple results
due to ambiguity (e.g., a SNP or peptide mapping multiple pro-
teins), all the possibilities are included in the search entities.

When a list of SNPs is provided, mapping from the Ensembl
Variant Effect Predictor [5] is used to find the possibly affected
proteins.When peptides are provided, their sequence ismapped
to UniProt protein identifiers [6] using PeptideMapper [7] and
possible proteoforms are constructed. When proteins or prote-
oforms are available, PathwayMatcher maps them to reactions
and pathways using data structures embedded in the Pathway-
Matcher jar file. These data structures are extracted from the
Reactome Neo4j graph database [19] and serialized. All mapping
files are available in a dedicated repository: github.com/Pathw
ayAnalysisPlatform/MappingFiles.

In addition, we made it possible for the user to generate
new mapping files as detailed in the PathwayMatcher reposi-
tory (github.com/PathwayAnalysisPlatform/PathwayMatcher/tr
ee/master/src/main/java/extractor). PathwayMatcher can then
be executed with the new set of mapping files as provided by
the user.

Overrepresentation analysis

The matching of each entity to a given pathway is modeled as
a Bernoulli trial with two possible outcomes: success or failure,
depending onwhether the protein or proteoform is a participant
of a reaction in the pathway. Trials are considered independent
from each other, meaning that the outcome of previous trials
does not affect the next. Finally, the probability of success is cal-
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culated by the proportion of choosing a protein in a pathway over
the total number of possible proteins, and therefore the proba-
bility is constant over all trials.

First, we search all the input entities (proteins or proteo-
forms) across all the pathways and count how many of them
were found in each pathway. The number of entities found in a
pathway is taken as the number of successful trials. Then, with
the binomial probability distribution, we calculate how likely it
would be to get a result equal to or more extreme than the cur-
rent result (the same number or more proteins or proteoforms
in the pathway), given that the input (proteins or proteoforms)
was randomly selected [9].

This is done using the cumulative distribution function for
the binomial distribution, which calculates the probability of
getting at most k successes out of n trials, with a probability p
∈ [0,1], where X is a random variable following the binomial dis-
tribution, as detailed in Equation 1.

F (k,n, p) = Pr (X ≤ k) =
k∑

i = 0

(
n
i

)
pi (1 − p)n−i (1)

For each pathway, p is set to the ratio between the number
of total proteins or proteoforms in the pathway and the total
possible entities in the database, n is the number of proteins or
proteoforms in the input sample, k is the number of proteins
successfully mapped in the pathway, and X is the number of en-
tities found in the current pathway after the search.

Finally, given that the P-value requires the calculation of the
probability of an equal or more extreme result, we use the com-
plement of Equation 1 to calculate the probability of getting at
least k successful trials out of n, as stated in Equation 2.

Pr (X ≥ k) = 1 − Pr (X ≤ k − 1) (2)

The calculations for proteins or proteoforms are similar but
are performed separately depending on the input. If the input
consists of protein accessions, the number of participants is cal-
culated by only considering proteins. On the other hand, for the
proteoform input, the number of entities in the pathways and
the database are the participant proteoforms.

Performance benchmark

The performance of PathwayMatcher was evaluated using data
sets of different sizes obtained from sampling publicly available
resources:

� Proteins: human complement of the UniProtKB/Swiss-Prot
database (release 2017 10)

� Peptides: ProteomeTools [20] as available in PRIDE [21], data
set PXD004732, release date January 23, 2017

� Genetic variants: variants from the human assembly
GRCh37.p13

� Proteoforms: annotated proteoforms in Reactome Graph
database version 62

Performance testing was done using a standard desktop
computer (Intel R© CoreTM i7–6600U CPU @ 2.60 GHz with 2 cores
using 64-bit Windows 10 with Java SE 1.8.0 144 on SSD). Details
and code are available at github.com/PathwayAnalysisPlatform
/PathwayMatcher/wiki/Performance.

Metrics and figures

The metrics presented in this article were obtained by querying
the Reactome graph database directly [22]. The queries used can
be found in the online documentation at github.com/Pathway
AnalysisPlatform/PathwayMatcher/wiki/queries.

The figures in this article were built in R version 3.4.1 (2017–
06-30)—“Single Candle” (r-project.org) using the following pack-
ages: ggplot2, ggrepel, igraph, scico, grid, purr, dplyr, graphlay-
outs, and gtable. The R scripts used to build the figures are avail-
able in the tool repository at github.com/PathwayAnalysisPlatfo
rm/PathwayMatcher Publication/tree/master/R.

Availability of supporting source code and
requirements

Project name: PathwayMatcher
Project home page: github.com/PathwayAnalysisPlatform/Pat
hwayMatcher
Operating system(s): Platform independent
Programming language: Java
Other requirements:
License: Apache 2.0
RRID: SCR 01 6759

Availability of Supporting Data

Snapshots of our code and other supporting data are available
in the GigaScience repository, GigaDB [23].
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Biological network analysis is used to interpret modern high-throughput biomedical data sets in terms of 

biological functions and pathways. However, the results greatly depend on the topological 

characteristics of the underlying network, commonly composed of nodes representing genes or proteins 

that are connected by edges when interacting. In this study, we build biological networks accounting for 

small molecules, protein isoforms and post-translational modifications. We highlight how these change 

the global structure of the network and how the connectedness of pathway-based networks is altered. 

Our findings highlight the importance of carefully crafting the networks for network analysis to better 

represent the reality of biological systems. 

 

Keywords: proteoforms, post-translational modification, biological networks, pathways, functional 

analysis 
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BACKGROUND 

Biological networks are a promising way to interpret modern biomedical data at scale1. They allow the 

study of molecular patterns at both local and global scale, and hence provide a systemic view on 

molecular processes. For example, by modeling the interactome — the entire collection of biological 

interactions — Menche et al. identified disease modules, and studied their topological properties and 

pairwise relationships2. An overlap between disease modules would then indicate a functional 

relationship, hinting at shared mechanisms and possible common drug targets. 

The fundamental building blocks of a biological network are the interactions between biological entities, 

with the entities themselves represented by nodes and their interactions by connections3. The entire 

collection of interactions in a biological system is called the interactome. The main participants of the 

interactome are proteins, represented in biological networks by the name of the gene encoding them. A 

relationship between proteins can be inferred from multiple sources: text mining, co-expression, 

physical interaction, or from literature knowledge on the functions  of proteins4. Such networks have 

proved to be very useful for understanding biological mechanisms5-7. For example, gene network 

approaches have been used for analyzing functions of genes associated to different types of cancer8,9. 

Based on a given interactome, network analyses attempt to extract knowledge concerning specific sets 

of proteins. For example, guilty by association procedures assume that proteins colocalizing in the 

network are functionally related8. Similarly, diffusion models estimate the effects of gene alterations 

towards their neighborhood10. By design, such network analysis methods rely heavily on network 

structural properties such as the number of neighbors per node or the number of connections between 

groups of nodes1. It is then vital to carefully choose what the nodes and connections represent, such 

that any inference from the network mirrors the reality of biological systems.  

In practice, as a result of genetic variation, RNA splicing, and post-translational modification (PTM), a 

gene can yield many distinct forms of a protein, called proteoforms11. For most proteins, the different 

isoforms of a gene share less than 50 % of interactions12. For example, Bcl-2 has two isoform products 

Bcl-xl and Bcl-xs resulting from alternative splicing. Bcl-xl, which contains the BH1 and BH2 domains, is 

responsible for programmed cell death, while Bcl-xs lacks both domains, therefore contributing to the 

opposite function13. One can legitimately anticipate an even higher specificity when including PTMs. 

However, this information is lost when creating biological networks using gene names as sole descriptor 

of the protein.  

Another source of information lost in the construction of gene-centric networks is the role of small 

molecules, which play essential roles in biological systems, e.g., metabolites participating as reactants, 

catalyzer, or inhibitor of reactions. For example, adenosine triphosphate (ATP) and guanosine 

triphosphate (GTP) are essential metabolites needed as energy sources. ATP hydrolysis provides the 

energy for protein transport in the mitochondria, for binding and releasing the newly synthesized 

polypeptide molecules from the hsp70 chaperone proteins14. 

Previously, we have demonstrated that it is possible to leverage the rich information contained in the 

Reactome pathway knowledgebase to refine the representation of biological networks by accounting for 

proteoform-specificity of biological reactions15. Here, we demonstrate how changing the type of node 

from gene to proteoform influences the structure of the obtained networks. In addition, we study how 
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the inclusion of small molecules affects the representation of the network. Together, our results show 

that changing the representation biological networks can help refine the modeling of biological 

processes, but that the limited information of proteoform-specific interaction still impairs the 

application of such approaches at scale. 

 

RESULTS 

INCREASED SIZE OF THE INTERACTOME 
A recent estimate for the human genome lists approximately 47,000 genes, of which approximately 

19,000 are coding for proteins16. The estimated number protein products resulting from alternative 

splicing is around 70,000 isoforms17. The total number of functional proteoforms remains unknown, but 

estimates are in the millions depending on how proteoforms are defined18. Changing the representation 

of a network from a gene-centric to a proteoform-centric paradigm should therefore result in a network 

several orders of magnitude larger. Based on isoform and post-translational modification information 

from the Reactome knowledgebase v80 for Homo Sapiens, we can represent 14,246 distinct 

proteoforms participating in 13,806 reactions (see methods for details). These 14,246 proteoforms 

represent 11,074 proteins linking to 10,976 gene names, making 1.3 proteoforms per gene on average. 

We constructed a network based on all pathways in Reactome by connecting entities when they 

participate in the same reaction. Building the network based on proteoforms instead of genes yields 

3,270 (+29.8 %) additional nodes and 224,207 (+61.2 %) additional connections. Thus, while the 

proteoform annotation provides enough information to substantially increase the size of the network, 

only few proteoforms are annotated functionally.  

The genes with the highest number of proteoforms annotated are UBC, H3C1, and H3C15, with 55, 52, 

and 48 proteoforms respectively, participating in diverse pathways and located in multiple subcellular 

compartments (Supplementary Table 1). UBC, for example, has products mostly ubiquitinylated or with 

crosslinks between L-lysine residues and glycine at multiple locations of the sequence, generating a high 

number of proteoforms representing different combinations of post-translational modifications. HLA-A 

and HLA-B are also genes with high numbers of proteoforms, not due to splicing variants or PTMs, but 

because there are multiple protein accessions linked to them, 36 and 21, respectively. For these 

examples, the proteoform representation of biological interactions will be completely different 

compared to a gene-centric network.  

Reactome contains also small molecules annotated as participants of human reactions. Extending the 

gene- and proteoform-centric networks with small molecules increases the number of nodes by 2,057, 

representing an increase of 18.7 % and 14.4 %, respectively (Supplementary Table 2). Adding small 

molecules creates 85,282 and 91,476 new connections, corresponding to an increase of 23.3 % and 

15.5 % for the gene- and proteoform-centric networks, respectively. However, this creates situations 

where small molecules ubiquitous in biochemical reactions, like H2O or ATP, connect most of the 

network. To take the influence of small molecules into account without distorting the network globally, 

we introduced the possibility for small molecules to connect pathway participants within but not 
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between reactions. The number of new connections then becomes 442,004 and 457,127, corresponding 

to an increase of 120.7 % and 77.4 %, for the gene- and proteoform-centric networks, respectively. 

INTERCONNECTED PROTEOFORMS ALTER THE DEGREE DISTRIBUTION 
The connectivity of a node in a network is measured by the number of connections, also called the 

degree. Without accounting for small molecules, 143,255 (24.3 %) of the connections in the proteoform-

centric network represent connections where proteoform-level information is available for both nodes, 

while 101,907 (17.3 %) and 345,253 (58.5 %) of the connections present no proteoform annotation for 

one or both nodes, respectively. Since proteoforms are specific forms of a protein11, changing a gene-

centric network into a proteoform-centric representation can be seen as distributing the protein-protein 

interactions between new, more specific, nodes. Thus, intuitively, proteoform nodes are expected to a 

have a smaller degree than the gene that encodes them. As we previously described15, the majority of 

proteoforms indeed present a degree lower than their genes in the gene-centric network. This picture is 

however complicated by proteoform-proteoform interactions and, as detailed in Figure 1 and 

Supplementary Table 3, at the scale of the entire network, the degree is increased when taking 

proteoforms into account.  

This is for example the case for collagen-related genes such as COL7A1, COL3A1, and COL6A3, which 

present a much higher degree in the proteoform-centric than in the gene-centric network: 606 vs. 121, 

547 vs. 67, and 546 vs. 66, respectively. These collagen nodes are expanded to a wide variety of 

proteoforms as they become multiply modified by sequential reactions. For example, in the pathway 

Collagen biosynthesis a reaction converts collagen lysines to 5-hydroxylysines, and diverse COL7A1 gene 

products are input and output of the reaction. In a gene-centric network, this reaction is modeled as a 

single COL7A1 gene node, while in the proteoform-centric network, the input nodes COL7A1, 3x4Hyp-

COL7A1, and 3x4Hyp-3Hyp-COL7A1 are connected to the output nodes 5Hyl-COL7A1, 3x4Hyp-5Hyl-

COL7A1, and 3x4Hyp-3Hyp-5Hyl-COL7A1, yielding nodes with higher detail of information but also with 

higher degree than in the gene-centric network. Other nodes that consequently have their degree 

increased do not necessarily have proteoform-level annotation, such as PLOD3, which has its degree 

increased by an order of magnitude (from 46 to 529), simply because it participates in reactions with 

multiple collagen gene products, therefore connecting to many proteoforms. The examples of genes 

with highest increase in degree between gene- and proteoform-centric networks are listed in 

Supplementary Table 4. 

To evaluate the local vs. global effect of introducing proteoforms in the network, we evaluated the 

degree of nodes per pathway (Supplementary Table 5). Then, the average degree per proteoform, 14.1, 

was slightly lower than per gene, 14.3 (-1.4 %). It therefore appears that the increase in degree observed 

for the whole network is not due to within-reaction or within-pathway connections, but rather between-

pathway connections between proteoforms and other proteins. This highlights the importance of 

between-pathway connections and how picturing canonical pathways as separate entities distorts the 

reality of the interactome. We further evaluated whether the robustness of the network was altered by 

introducing proteoforms using a percolation analysis2. Both gene- and proteoform-level interactomes 

showed similar percolation curves, with a slightly better robustness for the proteoform network Figure 

2.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2022. ; https://doi.org/10.1101/2022.09.06.506730doi: bioRxiv preprint 



 

5 
 

As detailed in Supplementary Table 3, when extending the gene- and proteoform-centric networks with 

small molecules, the average degree of accessioned entity nodes increased from 66.7 to 72.9 (+9.2 %) 

and from 82.9 to 88.1 (+6.2 %), respectively. As previously introduced, the ubiquitousness of small 

molecules however produces hyperconnected nodes with up to 3,473 and 4,141 connections in the 

gene-centric and proteoform-centric networks, respectively, while the most connected genes and 

proteoforms present 1,290 and 1,520 connections, respectively. Restricting small molecules to reaction-

specific relationships allows considering the local function of small molecules without creating such 

hyperconnected nodes: the average degree of nodes is increased to 99 and to 109 for the gene- and the 

proteoform-centric networks, respectively, while the maximal degree increases to 2,361 and 2,376, and 

the maximal degree of small molecules remains 304 in both networks. 

PROTEOFORMS MODIFY THE LAYOUT OF CONNECTED COMPONENTS   
Connected components are the maximal subnetworks in which all nodes of the component can reach 

each other through a path (Figure 3). The Largest Connected Component (LCC) of a network is the 

component with the highest number of nodes. In our analysis of Reactome, gene- and proteoform-

centric networks showed similar relative size of the LCC (Supplementary Table 6). Given the hypothesis 

that nodes involved in the same biological function are connected in the pathway network, one expects 

that they should belong to the same connected component. Connected components can further be 

separated into subnetwork modules based on the topology of the network or based on their association 

with specific functions or diseases. Functional studies comparing such modules study the overlap 

between diseases to identify common molecular mechanisms or drug targets, and transfer knowledge of 

one module to the other. Thereby, nodes shared between biological processes have been suggested to 

be of particular interest for the study of disease mechanisms and treatment2.  

The proteoform interactome extends gene nodes into multiple proteoform nodes. Proteoforms resulting 

from variation of a single gene, called a proteoform family, may participate in disjoint sets of reactions in 

the network. If gene nodes are represented by multiple proteoforms participating in separate reactions 

or pathways, the overlap will only be observable at the gene level and not at the proteoform level. In 

other words, proteoforms from a single gene may be split over different modules and even different 

connected components. In this case, modules would intersect in the gene-centric representation of the 

network, but not in the proteoform-centric representation, where the different modules would be 

disconnected.  

We found 497 proteins where at least one proteoform of the family participates in a biochemical 

reaction where the other members of the family are not involved. Identifying such a proteoform in a 

sample therefore provides pathway-specific information that is lost in a gene-centric representation, as 

in that case all reactions and pathways where any of the family members participate become 

indistinguishable. As an example, the human protein Peroxiredoxin-5 (P30044) has isoforms P30044-1 

located at the Mitochondrial Matrix, and P30044-2 in the Cytosol. They differ in sequence, the second 

one missing the first 52 amino acids, and participate in separate reactions in different subcellular 

locations: “PRDX5 reduces peroxynitrite to nitrite using TXN2” and “PRDX1,2,5 catalyzes TXN reduced + 

H2O2 => TXN oxidized + 2H2O” respectively. In this case, a proteoform-centric module representation 

would distinguish the mitochondrial from the cytosol reaction, connecting them through the 

translocation and processing of P30044 into P30044-1, while a gene-centric representation would make 

both reactions indistinguishable.  
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SMALL MOLECULES REDUCE THE PREVALENCE OF ISOLATED COMPONENTS AND NODES  

Adding nodes representing small molecules considerably increases the percentage of nodes part of the 

LCC, from 85% to 98% in proteoform interactomes. Conversely, adding reaction-unique nodes for small 

molecules, rather than once for the whole interactome, prevents merging connected components when 

small molecules are the only nodes shared between reactions. By design, the number of connected 

components using reaction-unique small molecules is then greater than or equal to the number of 

connected components obtained when using small molecules, as displayed in Table 6, and consequently 

the LCCs are smaller. At the other end of the scale, some pathways contain proteins performing multiple 

roles in a reaction but not connected to other proteins, leading to isolated nodes only connected to 

themselves in the network. This may happen when different isoforms or proteoforms of the same 

protein participate in the reaction with different roles, resulting in the gene centric representation being 

a single node interacting with itself while the proteoform-centric representation would show a module 

composed of multiple nodes. We found 1,665 and 1,696 isolated nodes for the gene- and proteoform-

centric networks, respectively, showing an overall stable number of isolated nodes. For example, the 

reactions sustaining Vitamin B1 (thiamin) metabolism (Figure 4) yield isolated nodes that stay isolated 

even in the proteoform-centric representation. 

Adding small molecules reduces the number of isolated nodes to 164 and 171, respectively. Among the 

10,976 accessioned entity nodes, 2,789 (25 %) are connected only through small molecules. When 

considering 1,119 pathways, 226 displayed less isolated nodes when considering small molecules. 

Conversely, for 39 pathways there were more isolated nodes when adding small molecules. When the 

studied network is sparse or with many disconnected nodes, it thus becomes useful to include small 

molecules. They show indirect ways to reach one gene from another through reactions, yet the 

relevance of connecting two distant proteins by a small molecule can be questioned. Reaction-unique 

small molecules provide a balance between reducing the number of isolated nodes while not connecting 

nodes across different pathways. They allow connecting otherwise isolated nodes through a path that 

alternates between accessioned entities and reaction-relevant small molecules, while preserving the 

disconnection of pathways and components. 

ARTICULATION POINTS AND BRIDGES 
Articulation points and bridges are respectively nodes and connections that, if removed, break one 

connected component into two or more components (Figure 3). They are thus important members of 

the network, maintaining the connection between otherwise disconnected clusters of nodes. The higher 

the prevalence of articulation points and bridges, the less robust the network. We therefore 

investigated whether the prevalence of bridges and articulation points changed from a gene-centric to a 

proteoform-centric representation. However, as detailed in Supplementary Table 8 and Supplementary 

Table 9 for articulation points and bridges, respectively, adding proteoform annotation does not 

substantially change the share of articulation points (from 2.43 % to 2.46 % of nodes). Articulation 

points in the gene-centric network either stay articulation points in the proteoform-centric network or 

become more connected due to the multiplicity of proteoform nodes in a proteoform family. Therefore, 

proteoforms do not yield to more isolated nodes but may create more connected components 

(Supplementary Table 6). This indicates that, although proteoform annotation increases the 

connectivity in the network, it is mainly through within-component connectivity. 
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Given the ubiquitous nature of some small molecules, which participate in many pathways across many 

contexts, and the increased connectivity that they induce, as observed in the previous sections, it can be 

anticipated that they create new connections between connected components. Indeed, adding small 

molecules reduced the prevalence of bridges and articulation points. In proteoform-centric networks 

they reduce from 351 (2,46 %) to 254 (1,56 %). In the network extended with small molecules, 40 % of 

articulation points were small molecules and 60 % accessioned entities (Supplementary Table 8). 

Conversely, when restricting the role of small molecules to single reactions, the number of bridges was 

tripled. Thus, adding reaction-specific single molecules improved the connectivity of the network 

through single reactions, that are biologically more specific, but less robust. Small molecules do not 

perform biological processes on their own, they need to interact with accessioned entities. Therefore, 

they are rarely the only shared node between steps of pathways, resulting in being articulation points 

less frequently. Adding reaction-specific small molecules also has the effect of increasing the percentage 

of proteoforms that are articulation points and increasing the percentage of bridges going out of small 

molecule nodes, from 3.55 % to 10.70 % (Supplementary Table 9). 

We investigated the changes in prevalence and nature of bridges and articulation points at the level of 

pathways. Supplementary Table 10 and Supplementary Table 11 detail the averaged values among all 

pathways in Reactome considered individually. The share of articulation points considering pathways 

one by one is slightly higher than when considering the complete interactome, highlighting how 

interactomes aggregate pathways, overlapping the connections of nodes in different contexts. Once 

again, accessioned entities are more often articulation points than small molecules, demonstrating their 

key role in biological processes. Nevertheless, small molecules still represent one third of articulation 

points. Even per pathway, the tendency of small molecules to reduce the percentage of bridge 

connections is clear, confirming the important role of small molecules for the connectivity of the 

network at both local and global levels. 

Bridges connect more than twice as often accessioned entities rather than small molecules, and the 

prevalence increases when studying per pathway than for the complete interactome. This increase can 

be interpreted as the connections of proteoforms conveying more unique information, whereas small 

molecules may connect more diverse types of other molecules. Reaction-unique small molecules are 

expected to be articulation points more frequently than regular small molecules, but no difference was 

found on average. Reaction-unique small molecules increase the total number of articulation points by 

increasing the percentage of accessioned entity nodes that are articulation points. This is due to the 

smaller average node degree of the reaction-unique small molecules, compared to the regular small 

molecules. Hence, when they connect to an accessioned entity, they may convert that accessioned 

entity into an articulation point.  

CONCLUSIONS 

Interaction networks are a useful representation of biological processes, e.g., to study if biological 

entities are functionally related. We demonstrate multiple ways to build interaction networks from the 

Reactome pathway knowledgebase, resulting in networks with very different general and local 

properties. Such differences in network topology are likely to influence the biological interpretation of 

experimental data. In particular, we explored the possibility of adding proteoforms and small molecules, 
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which are usually not considered when building interaction networks, despite playing essential roles in 

biological processes. 

We show that extending the representation of proteins using isoforms and post-translational 

modifications has an impact on the structure of biological networks, but that this information is only 

available for a subset of the proteins.  This results in highly connected interfaces between single proteins 

with no proteoform annotation and proteoforms from the same family. We also demonstrate how small 

molecules such as metabolites alter the structure of the networks. Including them can help connecting 

sparse areas of the network, but it can also result in highly connected nodes with little to no biological 

relevance. As a compromise, we propose to take advantage of the annotation of pathway databases to 

restrict the interactions of such molecules. 

With this study we further compared the results of topological analyses conducted to the level of the 

entire network and when considering one pathway at a time. Each approach yielded different results, 

showing how local and global properties of the network differ. This highlighted how the arbitrary 

representation of pathways may alter the perception of the connectedness of biological entities, hiding 

inter-pathway connections. Overall, our results point towards the importance of using the rich 

information contained in pathway databases to contextualize network analyses while also highlighting 

the difficulty to provide an unbiased representation of interaction networks, both locally and globally. 

DISCUSSION 

This study investigates the impact of changing the network representation through the inclusion of 

proteoforms and small molecules. We base these findings on the Reactome knowledgebase, which 

contains rich information on biological pathways. Due to the high level of detail on biochemical 

reactions required to build such networks, functional annotation on proteoforms and small molecules is 

still scarce. The rapid pace in increase of functional knowledge indicates that such analyses will become 

increasingly powerful. As the interactome becomes more connected, refining its representation using 

the rich information available in pathway knowledgebases represents a promising avenue to tease apart 

densely connected functional regions. 

Factors such as analytical challenges, research interest, and literature curation lead to some proteins or 

pathways to be better annotated than others. The better annotated pathways give a more detailed 

representation of the biological processes, while understudied proteins or pathways have a much less 

mature representation or even remain undiscovered. Such biases have a strong influence on the 

representation of the biological processes involved, and dramatically alter the ability to conduct refined 

studies such as proteoform-level network analyses. The disparity in biological functional knowledge is a 

strong limitation of the field, yielding to a network where some processes yield densely connected 

subnetworks of proteoforms and small molecules, while others are only represented by sparse 

disconnected gene names – when any information is available at all. 

Technologies to identify proteoforms and small molecules are improving constantly but integrating 

these biological entities in pathways at scale poses numerous challenges. It is therefore important to 

develop new biological network analysis approaches that can handle the heterogeneity in pathway 

annotation without losing the rich information gathered by the scientific community. One can envision 
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that such approaches will be generalizable to hybrid networks combining pathway knowledgebases with 

interaction networks derived from experiments or text mining. 

Constructing an interaction network using refined information like proteoforms or small molecules is 

even more challenging using multiple sources of data. Functional annotations often refer only to gene or 

protein accessions19, hence overlooking post-translational regulatory mechanisms central to many 

biological processes. The broad adoption of proteoforms in the representation of biological processes is 

essential to generalize the approaches presented in this study, and hence allow the refinement of the 

representation of biological processes, which will eventually provide biomedical researchers with more 

powerful tools to interpret their data. 
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METHODS 

Reference knowledge to conduct the analysis was obtained from the Reactome graph database (version 

80). The database dump file (reactome.org/download-data) was loaded and run using Neo4j Desktop 

1.4.2 to Neo4j Graph Database Manager 4.4.5. The analysis scripts were implemented using Python 

3.10.2 organized as Jupyter notebooks. They communicated with the database management system 

using the Neo4j Python Driver Manual version 4.4.2.  

All the code used to construct the networks and replicate the topological analysis is publicly available at 

the public repository: github.com/PathwayAnalysisPlatform/ProteoformNetworks 

The Reactome graph database data model is organized as nodes and relationships with properties and 

labels. The main nodes we used were Event nodes, which involve the transformation of input nodes to 

output nodes in one or multiple steps. We queried for two types of event nodes: Pathway and 

ReactionLikeEvents. ReactionLikeEvents convert input entities to output entities in one step, while 

Pathways group sets of ReactionsLikeEvents. Each event has participant molecules which perform roles 

of input (reactant), output (product), regulators and catalyzers (enzymes). The data model represents 

events occurring in sequence by annotating the output of the first event as input of the second event.  

Participants of reactions are physical entities, which typically are of two types: accessioned sequences 

entities (genes, transcripts, or proteins) or small molecules (metabolites, water, etc.). Accessioned 

sequences stand for those molecules which have a standard identifier for each sequence pattern, 
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typically nucleotide-based sequences (DNA pieces like genes) or amino acid-based sequences (proteins). 

Genes are annotated with HUGO gene nomenclature identifiers16, while proteins have UniProt20 

accession numbers. Small molecules also have unique identifiers from the Chemical Entities 

of Biological Interest (ChEBI) database21. These refer to the chemical element or compound rather than 

a sequence molecule.  

When this information is available, accessioned sequence participants are annotated with their isoform 

and the minimal set of post-translational modifications necessary to perform their role in the biological 

event. Combining the set of modifications and isoform sequence, we built a theoretical proteoform 

state in which the gene products need to be present to participate in a given reaction. Participants of 

events may also be entity sets or complexes. Entity sets stand for groups of entities which may be used 

almost interchangeably with the desired role in the biological event. For example, multiple proteins may 

interchangeably perform the same role in a reaction, e.g., catalyzing a reaction. Complexes are the 

conjunction of multiple molecules into a single unit. The members of the complex may be of all other 

types of participants, i.e., accessioned sequences, proteins, metabolites or even complexes. 

We constructed gene- and proteoform-centric interaction network representations of the Pathways in 

Reactome by taking participating entities of reactions as nodes of the network, as in previous studies3,15. 

For the gene-centric representation, all physical entities associated with a given gene and each of its 

associated UniProt protein accessions are represented by a single node, i.e., merging all protein 

products, isoforms and proteoforms into one node. For the proteoform-centric representation, we 

represent each proteoform with a separate node. We take the associated protein accession, the 

isoform, and set of post-translational modifications annotated to represent a single proteoform. Then, 

all physical entities yielding the same isoform with the same sequence modification combinations are 

represented by a single node. For both the gene- and proteoform-centric networks we constructed two 

alternative networks which additionally considered the small molecule participants of reactions; the first 

alternative adds a single node for each small molecule, the second alternative adds a node for each 

small molecule to every reaction in which the given small molecule participates. 

Once nodes are defined, we set a connection between two nodes when they perform a role in the same 

reaction, such as input and output. To construct a complete interactome we process all pathways with 

all their respective reactions to obtain their nodes and connections. We do not repeat nodes, but 

instead aggregate their connections obtained from each pathway. The resulting network contains all 

annotated genes or proteoforms for humans in the pathway database. 

Networks were represented using the Networkx library version 2.7.1 for Python. The library allowed the 

calculation of size, articulation points, bridges, and connected components. The robustness of the 

network was calculated through percolation analysis resulting in a percolation curve, which shows the 

average size of the LCC, called giant component, when random nodes or connections are removed. 

There is usually a point when the size of the LCC collapses rapidly, that represents the percolation 

threshold, indicating the average size of modules that can be observed in the network2. 
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FIGURES 

 

Figure 1 Node degree distribution in the different interactomes depending on how small molecules are considered. Left: only 
gene or proteoform nodes and not including small molecules as nodes. Center: small molecules included, one node for each. 
Right: “reaction-unique” small molecule nodes included, adding one separate node for each reaction where the small molecule 
participates (“reaction-unique”). 

 

Figure 2 Approximations of link percolation curves for gene, protein, and proteoform interactome networks without small 
molecules. Relative size of the LCC (y axis) is the number of nodes with relatively to the original number of nodes in the complete 
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network. Dots represent measures at each step of the percolation. Soft colored lines connect measures of each replicate, starting 
with completeness 1.0 (complete interactome) and iteratively removing connections until completeness is 0. Intense lines show 

average tendencies. Completeness (x axis) is the share of original connections kept after removing random connections. 

 

 

Figure 3 Illustration of graph theory concepts using hypothetical networks with proteoform nodes (green rectangles) and small 
molecule nodes (gray circles). A) Connected components of the network, each one surrounded with a dotted line. Largest 
connected component highlighted with red dotted line. B) Articulation points, nodes highlighted with a red border. C) Bridges, 
connections highlighted with red lines. 

 

 

Figure 4 Section of Reactome Pathway diagram of “Vitamin B1 (thiamin) metabolism” (R-HSA-196819). White squares represent 
reactions composing the pathway. Green ovals are small molecules. Green rectangles represent protein molecules. Blue 
rectangles with chopped corners are complex molecules. Dark blue arrows show relationship between reactants (inputs) and 
products (outputs) of the reactions following the direction of the arrow from input to output. Molecules connected with a white 
circle on the arrow represent catalyst molecules.  
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SUPPLEMENTARY TABLES 

 

 

Supplementary Table 1 Top 20 genes with most proteoforms products participating in Reactome pathways. For each gene the 
number of protein and proteoform products is shown, along with some protein and proteoform examples. Proteins are 
represented by their UniProt Accessions; Proteoforms by the protein isoform variant and a set of post translational 
modifications; and each modification as a PSIMOD identifier paired with an integer coordinate indicating its location on the 
protein sequence. If no localization information is known, “null” replaces the localization.  

 

Supplementary Table 2 Sizes of six alternative interactome networks resulting from combining entity level (genes, proteoforms) 
and three options to consider small molecule nodes. Sizes are shown as number of connections (interactions) and number of 
nodes. 

 

Supplementary Table 3 Descriptive summary statistics on the node degree for the different interactome networks resulting from 
combining entity level (genes, proteoforms) and three options to consider small molecule nodes. Degree values are shown in 
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separate columns for the two types of nodes: accessioned entities (AE) and small molecules (SM). Columns show quartiles of node 
degree values separating the lowest 25% as Q1, median at 50% as Q2, value setting the top 75% as Q3 and the maximum value as 
Q4.  

 

Supplementary Table 4 Degree comparison of nodes from the gene and proteoform interactomes. Each row shows a proteoform 
with its source gene, both with their respective degree.  

 

 

Supplementary Table 5 Descriptive summary statistics on the node degree per pathway. Values for each pathway are taken from 
six networks resulting from combining entity level (genes, proteoforms) and three options to consider small molecule nodes. 
Degree values are shown in separate columns for the two types of nodes: accessioned entities (AE) and small molecules (SM). 
Values refer only to pathways where proteoforms annotated with isoform or post-translational modifications participate. 
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Supplementary Table 6 Descriptive summary statistics on the connected components (CCs) for the interactome networks 
resulting from combining entity level (genes, proteoforms) and three options to consider small molecule nodes. Largest 
Connected Component (LCC) and Smallest Connected Component (SCC) sizes are evaluated using the number of nodes. Relative 
size of the LCC represents the fraction of nodes in the complete network that are also members of the LCC.  

 

Supplementary Table 7 Descriptive summary statistics on connected components (CCs) per pathway. Values for each pathway 
are taken from six alternative networks resulting from combining entity level (genes, proteoforms) and three options to consider 
small molecule nodes. Relative size refers to the fraction of nodes in the complete network that are also members of a connected 
component. Values are an average of the values per pathway, considering only pathways where proteoforms annotated with 
isoform or post-translational modifications participate. 

 

 

Supplementary Table 8 Descriptive summary statistics on the prevalence of articulation points for the networks resulting from 
combining entity level (genes, proteoforms) and three options to consider small molecule nodes. Columns show the total number 
of articulation points in each network, the percentage of nodes in the network that are articulation points, then by node type: 
accessioned entities (AE) and small molecules (SM). 
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Supplementary Table 9 Descriptive summary statistics on the prevalence of bridges for the networks resulting from combining 
entity level (genes, proteoforms) and three options to consider small molecule nodes. Columns show the total number of bridges, 
the percentage of connections in each network that are bridges, the percentage of connections of a node that are bridges, then 
by node type: accessioned entities (AE) and small molecules (SM). 

 

 

Supplementary Table 10 Descriptive summary statistics on the prevalence of articulation points per pathway. Values for each 
pathway are taken from six networks resulting from combining entity level (genes, proteoforms) and three options to consider 
small molecule nodes. Values are averaged per pathway, considering only pathways where proteoforms annotated with isoform 
or post-translational modifications participate. Columns show the total number of articulation points in each network, the 
percentage of nodes in the network that are articulation points, then by node type: accessioned entities (AE) and small molecules 
(SM). 

 

Supplementary Table 11 Descriptive summary statistics on the prevalence of bridges per pathway. Values of each pathway are 
taken from six networks resulting from combining entity level (genes, proteoforms) and three options to consider small molecule 
nodes. Values are averaged per pathway, considering only pathways where proteoforms annotated with isoform or post-
translational modifications participate. Columns show the total number of bridges, the percentage of connections in each network 
that are bridges, the percentage of connections of a node that are bridges, then by node type: accessioned entities (AE) and small 
molecules (SM). 
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