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Abstract 

Background:  Excess adipose tissue is associated with increased cardiovascular and metabolic risk, but the volume 
of visceral and subcutaneous adipose tissue poses different metabolic risks. MRI with fat suppression can be used to 
accurately quantify adipose depots. We have developed a new semi-automatic method, RAdipoSeg, for MRI adipose 
tissue segmentation and quantification in the free and open source statistical software R.

Methods:  MRI images were obtained from wild-type mice on high- or low-fat diet, and from 20 human subjects 
without clinical signs of metabolic dysfunction. For each mouse and human subject, respectively, 10 images were 
segmented with RAdipoSeg and with the commercially available software SliceOmatic. Jaccard difference, relative 
volume difference and Spearman’s rank correlation coefficients were calculated for each group. Agreement between 
the two methods were analysed with Bland–Altman plots.

Results:  RAdipoSeg performed similarly to the commercial software. The mean Jaccard differences were 10–29% and 
the relative volume differences were below ( ±) 20%. Spearman’s rank correlation coefficient gave p-values below 0.05 
for both mouse and human images. The Bland–Altman plots indicated some systematic and proporitional bias, which 
can be countered by the flexible nature of the method.

Conclusion:  RAdipoSeg is a reliable and low cost method for fat segmentation in studies of mice and humans.
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Background
The study of different adipose tissue depots has become 
highly important with the mounting evidence that vis-
ceral adipose tissue (VAT) contributes to metabolic syn-
drome and type 2 diabetes, while a high proportion of 
subcutaneous adipose tissue (SAT) is associated with a 
better metabolic profile [1–4]. Several methods exist for 
analysing the volumes of VAT, such as ultrasound [5], 
bioelectrical impedance analysis [6], and dual energy 
X-ray absorptiometry [7]. However these methods only 

give an indirect assessment of volume and often with 
poor accuracy. Computed tomography (CT) and mag-
netic resonance imaging (MRI) give a direct measure of 
VAT with high accuracy. Furthermore, these modalities 
enable volume analysis of other fat depots including SAT. 
Due to ionizing radiation exposure, CT may not always 
be an option in research studies. MRI does not involve 
ionizing radiation but has the drawback that, unlike CT, 
there are no fixed units. Instead, each image shows a rela-
tive difference in signal intensity between different tis-
sues. In spite of this, MRI has shown to be as reliable as 
CT for fat segmentation [8].

Over the last decade, different manual, semiautomatic 
and automatic tools and software for fat segmentation of 
MRI images have been developed [9–13]. Concomitantly, 
the use and popularity of R [14] has increased greatly. R 
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is a free and open-source software for statistical analysis 
and graphics. The ever-expanding library of R packages, 
as well as the high compatibility with other programming 
languages and software, makes R a highly flexible and 
practical tool for a wide range of tasks, including data 
management, statistical modelling, and visualisation. 
There are several packages for image manipulation and 
handling of medical images. However, no R protocols or 
packages for adipose tissue segmentation of MRI images 
exist.

We have integrated available packages to create a semi-
automatic method for fat segmentation of MRI images 
in R. To test the new method, RAdipoSeg, we performed 
segmentation of SAT and VAT on images from lean and 
obese mice and humans, and compared with results 
from manual segmentation of the same images with the 
commercially available and frequently used SliceOmatic 
software (Tomovision, Montreal, Canada). Compared 
to SliceOmatic, RAdipoSeg allows for fat segmentation 
of MRI images with minimal cost and high flexibility 
regarding organisms, scanning techniques, and type of 
fat depots.

Methods
Tissue imaging and clinical data sampling
Images were taken from wild-type control mice in 2 dif-
ferent diet studies on genetically modified male mice 
[15, 16]. The mice were fed either a control (low-fat, LF, 
3.8 kcal/g) or high-fat (HF, 4.7 kcal/g) diet for 10 weeks. 
Further details are presented in Additional file  3. MRI 
was performed in the kidney area with a 7 T small animal 
magnetic resonance tomograph with ParaVision 5.1 soft-
ware (Bruker Biospin MRI Gmbh, Billerica, Massachu-
setts, USA). A series of axial base images (“base image”) 
were acquired with T1-weighted Rapid Acquisition with 
Relaxation Enhancement (RARE), and fat suppressed 
images (“water image”) were acquired in the same spa-
tial domain with Chemical Shift-selective Fat Suppres-
sion (CHESS). Water suppressed images (“fat image”) 
were acquired by subtracting the water images from the 
base images. The image size was 256 × 256 voxels, with 
each voxel measuring 0.156 × 0.156 × 1  mm. Both MRI 
and glucose tolerance tests were performed in the last 
3 weeks of the diet period. For the CD1 mice, glucose tol-
erance tests were performed by feeding the mice 2 mg/g 
glucose orally via tube. Blood glucose was measured at 
0, 15, 30, 60, 120 and 240 min. The C57BL/6 J mice had 
glucose injected intraperitoneally, and blood glucose was 
measured at 0, 15, 30, 60, 120 and 180 min.

Human images were acquired from healthy subjects by 
a 2-point Dixon sequence performed on a 1.5 T Siemens 
Avanto running Syngo MR B17 (Syngo, Siemens, Erlan-
gen, Germany), giving two groups of images in the same 

spatial domain; with the water and fat spins in-phase or 
out-of-phase, which is used to generate water and fat 
images [17]. The image size was 320 × 240 voxels, with 
each voxel measuring 1.234 × 1.234 × 2.5 mm.

For each mouse and each human subject, respectively, 
10 sequential images in the kidney area were selected for 
segmentation. The kidney is located in approximately 
the same area in all subjects within each species, and is 
therefore well suited as an anchor point when compar-
ing adipose tissue volumes. An approximate midpoint of 
the kidneys was found where there was an equal number 
of images on each side with at least 1 kidney visible. The 
10 sequential images selected for volume quantification 
were the 5 closest images on each side of this midpoint.

R packages
This protocol was developed with R 3.6.3 in RStudio 
1.2.5033 (RStudio, PBC, Boston, Massachusetts, USA). 
Functions are shown in cursive, and the package given 
in parentheses when not a basic R function. The package 
oro.dicom [18] was used for loading dicom files into R. 
Most of the functions used here are from EBImage [19] 
and imager [20]. The tidyverse [21] collection of pack-
ages were used for data handling and output formatting. 
A short description of fat segmentation is presented in 
Fig.  1. For a detailed protocol and further information 
about the packages, see Additional files 1, 2.

Find background noise and threshold offset value

Threshold image and remove background noise

Remove voxels if necessary

Select objects into separate fat depots

Calculate volume of each depot

Fig. 1  Overview of the workflow of fat segmentation of MRI images 
with RAdipoSeg. The procedure begin by finding and removing 
background noise, and thresholding the image. Removal of some 
voxels may be necessary to divide SAT from VAT, if the depots lie so 
close together that there is no line of black voxels between them in 
the image. Finally the objects are selected to the different depots and 
volume is calculated
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Background noise and thresholding
The margins of each image were divided into 8 fields and 
the background noise calculated from randomly selected 
voxels from these fields. If some fields had high signal 
objects, e.g., arms, they were removed and the voxels 
were randomly selected from the remaining fields. The 
background noise (BG) was calculated as the sum of the 
mean and standard deviation (sd) of the voxel intensities. 
If objects with high signal intensity were not removed, 
the background noise was too high for use in further 
calculations.

Thresholding was used to separate objects representing 
adipose tissue from the rest of the image. Thresholding 
works by setting all voxels above or equal to a set signal 
intensity (the threshold) to 1 and all voxels below the 
threshold to 0. The threshold value was calculated from 
the voxel intensities along the contour of the body. The 
contour is the line of voxels which separates the body 
from the background in an MRI image. In an axial water 
suppressed image (fat image), a large portion of the vox-
els along the contour represent SAT. To find the contour, 
we used the base images for the mice and the in-phase 
images for the humans, which were thresholded using a 
modified version of Otsu’s method [22]. Then a contour 
finding algorithm was applied using ocontour (EBImage). 
The adipose tissue threshold for the fat images was found 
by subtracting sd from the mean of the intensities. When 
this value was below the calculated background noise, 
the threshold was recalculated as TC = BG + 0.1 × sd, 
where TC is the threshold, BG is the background noise 
and sd is the standard deviation of the voxel intensi-
ties, as described previously [10]. The fat images were 
then thresholded using thresh (EBImage). This function 
performs local thresholding using a moving rectangular 
window and TC as the offset value. The size of the rec-
tangular window was optimized as 15 × 15 voxels for 
mouse images and 50 × 50 for human images.

The background noise was removed with a mask cre-
ated using fillHull and floodFill (EBImage), which set all 
voxels outside of the mask to 0.

Labelling image objects, manual editing, and volume 
estimation
Some images were edited manually for removal of areas 
(e.g., bone marrow) and then the images were labelled 
using bwlabel (EBImage). This function gives each piece 
of interconnected voxels a separate value, counting the 
objects. To distinguish SAT from VAT, it was neces-
sary to divide some objects by manually setting voxels 
to 0, and then relabel the image. These voxels were auto-
matically reinserted to the appropriate depot later to 
avoid loss of data. Voxels can also be manually added or 

deleted to correct for incomplete fat suppression caused 
by inhomogeneties in the magnetic field during scan-
ning. However, this was not performed on these images. 
The selection of objects was achieved by using grapPoint 
(imager). New images were made with all SAT having 
voxel value 1 and VAT value 2, and the volumes were cal-
culated by counting the voxels.

Method evaluation
To evaluate the method, fat segmentation was performed 
on the same images with SliceOmatic’s region growing 
mode. Selections of the segmented images from both 
methods were validated by a radiologist. The volumet-
ric overlap errors were calculated with the Jaccard dis-
tance [23], given as 100(1−  (|A ∩ B|/|A ∪ B|), where 0% 
is a perfect overlap between segmentation by RAdipoSeg 
and SliceOmatic. The relative volume differences (RVD) 
between RAdipoSeg (A) and SliceOmatic reference (B) 
were calculated as 100((|A|−  |B|)/|B|). Spearman’s rank 
correlation coefficients were calculated to test for linear 
correlation. Bland–Altman analyses were performed with 
differences between the methods on the y-axis and mean 
of the methods on the x-axis, and with 95% confidence 
intervals. Proportional bias was tested using Spear-
man’s rank correlation coefficients on the data from the 
Bland–Altman analyses. Normalcy was assessed by Shap-
iro–Wilk test. All statistical analyses and making of plots 
were conducted in R. The figures were created in Ink-
scape 1.0.0 (https://​inksc​ape.​org/), with text size being 
the only alteration made to the plots.

Results
Mouse images were pooled into two groups of lean and 
obese according to diet (an overview of the groups and 
clinical characteristics are shown in Additional file  3). 
The segmentation with RAdipoSeg took approximately 
the same time as with SliceOmatic, although images with 
medium high background noise took longer to segment 
with RAdipoSeg than images of good quality. Images 
with very high levels of background noise (9 mice) were 
difficult to segment by SliceOmatic and were excluded 
from the analysis. All the human images were of good 
quality and hence were included (clinical characteristics 
of the subjects are shown in Additional file  3). Repre-
sentative images for each group are shown in Fig. 2, and 
a summary of results and statistical analyses are pre-
sented in Table 1. The Jaccard differences were below 26% 
in all cases except for SAT in lean mice, and RVDs were 
below ( ±) 20%. Both of these measures were higher for 
the lean mice compared to obese mice, which is expected 
since the differences in a lower fat volume will influence 
a proportional measure more strongly than the differ-
ences in a high fat volume. The RAdipoSeg tended to give 

https://inkscape.org/
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a higher volume (positive RVD) for the lean mice and a 
lower volume (negative RVD) for humans compared with 
SliceOmatic. In general, Spearman statistics had a high 
linear correlation between the two methods for mice and 
humans (Table 1 and Fig. 3). The Bland–Altman analyses 
(Fig.  4) showed a systematic bias for the human images 
(p < 0.05), but not the mouse images. There was a pro-
portional bias of higher differences with higher volume 
of VAT for both humans and mice (p < 0.05). This bias 
persisted in Bland–Altman plots performed with propor-
tions (SliceOmatic—RAdipoSeg/means of both methods) 
on the y-axis (Additional file 4). Overall, RAdipoSeg gave 
a volume estimation similar to SliceOmatic, but with sig-
nificant systematic and proportional bias.

When the glucose area under the curve (AUC, blood 
glucose mmol/L x min) was plotted against the number 

of pixels representing VAT (Additional file 5), there was 
a slightly increasing trend for the C57BL/6 J mice, show-
ing a higher glucose AUC with higher number of VAT 
pixels. The CD1 mice showed no significant difference 
between the diet groups in body weight, fasting glucose 
and glucose AUC. However, it should be noted that the 
CD1 mouse strain is known to be more resistant to high-
fat diets than several other mice strains [24].

Discussion
In any study where adipose tissue volume is of inter-
est, a reliable method for quantification is important. 
Equally important is the access to a flexible method 
that is available for researchers with limited funding 
studying any model organism. Here, we present a new 
method for adipose tissue segmentation and quantifi-
cation, RAdipoSeg, and compare this with a frequently 
used, commercially available method. The 2 methods 
correlate well, even though the background noise in 
many of the mouse images caused a greater variance in 
this group compared to the human images.

RAdipoSeg has 2 advantages over SliceOmatic. First, 
SliceOmatic is an expensive software with a large 
annual fee in addition to a costly licence, while R is 
completely free. Second, RAdipoSeg sets the thresh-
old by a standardised method, reducing subjectivity 
as a source of error, while the SliceOmatic threshold 
is set manually by the operator. This is especially 
important for the human images, which have a much 
lower range of signal intensities (below 500) com-
pared with the mice images (around 30,000). With a 
lower range, a small change in the threshold will have 
a much larger effect. This is likely to have caused the 
systematic bias observed in the Bland–Altman plots 
of the human images; however, the bias may also have 
been caused by the automatic threshold set by RAdi-
poSeg being too high, rather than the manual thresh-
old of SliceOmatic being set too low. A study with a 
larger sample size, which also looks into the inter- and 

Fig. 2  Comparison of fat segmentation by SliceOmatic and 
RAdipoSeg. One representative slice from each group of lean mice, 
obese mice and humans, shown from left to right as fat MRI image, 
SliceOmatic segmentation and RAdipoSeg segmentation. The grey 
background of the fat mouse MRI images show the high level of 
background noise

Table 1  Jaccard differences, relative volume differences and Spearman’s rank correlation coefficients

Jaccard differences and Relative Volume Differences are expressed as mean (standard deviation). Spearman’s rank correlation coefficients were calculated on the 
volume in cm3 for each subject.

SAT Subcutaneus adipose tissue, VAT Visceral adipose tissue, TAT​ Total adipose tissue

N Jaccard difference (sd) Relative volume difference (sd) Spearman ρ (p-value)

SAT VAT TAT​ SAT VAT TAT​ SAT VAT TAT​

Lean mice 9 28.9 (9.2) 21.2 (2.7) 23.0 (6.6) 12.5 (12.6) 7.4 (16.6) 8.6 (12.9) 0.88 (0.003) 0.75 (0.025) 0.97 (< 0.001)

Obese mice 11 23.6 (6.2) 16.8 (2.7) 18.2 (3.4) − 3.9 (17.2) − 2.9 (9.4) − 3.1 (10.7) 0.48 (0.13) 0.95 (< 0.001) 0.87 (< 0.001)

All mice 20 26.0 (8.0) 18.8 (4.5) 20.3 (5.5) 3.5 (17.1) 1.7 (13.8) 2.2 (12.9) 0.79 (< 0.001) 0.94 (< 0.001) 0.94 (< 0.001)

Humans 20 10.4 (3.6) 22.2 (6.4) 15.4 (4.2) − 8.2 (4.3) − 17.7 (11.9) − 12.9 (6.5) 0.98 (< 0.001) 0.97 (< 0.001) 0.99 (< 0.001)
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intra-reproducibility of both methods, may answer this 
question.

For VAT we observed a proportionial bias for both 
human and mouse images. With a larger tissue volume 
there is also a larger region of interest, which increases 
the number of voxels that can be mislabelled. We would 
therefore expect more differences the larger the volume. 
However, when plotting proportional differences against 
the means the bias did not disappear. We also observed 

a higher Jaccard difference and RVD for VAT compared 
with SAT in humans. This and the proportional bias may 
be caused by the offset value used for thresholding with 
RAdipoSeg being based on the signal intensity of SAT. 
When there is a higher variation in the signal intensity 
of VAT compared with SAT, the adipose voxels with low 
signal in VAT could be excluded from segmentation. The 
selection of human subjects in this study was limited and 
consisted of metabolically healthy controls. In a study 

Fig. 3  Test of linear correlation between the 2 methods for mice (n = 20) and humans (n = 20) using Spearman’s rank correlation coefficients. 
Volumes were calculated by summing the voxels from all images of each subject and multiplying with the voxel size. Data from the lean and obese 
mice were pooled together
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with more variation in visceral adipose tissue between 
the human subjects, the segmentation of individuals 
with a higher VAT volume may give an underestimated 
quantification of VAT. This could in turn underestimate 
the differences between the subjects in the study, and 
create a bias in the data towards a lower VAT volume. 
If the automatically generated threshold is seen as inad-
equate, only a minor alteration of RAdipoSeg is required 
for setting a manual threshold. This would prevent the 

underestimation of volume in subjects with a high level 
of adipose tissue, at the cost of an increase in subjectivity. 
In many studies, having a standardised method might be 
preferable to gaining a more exact adipose tissue volume 
estimation.

Image quality was a factor in comparing the two meth-
ods. The CHESS technique of fat suppression is known 
to be sensitive to B0 and B1 heterogeneity, which may be 
the reason for the incomplete fat suppression observed 

Fig. 4  Bland–Altman plots of the volume in cm3 of VAT and SAT for mice (n = 20) and humans (n = 20), with 1.96 ×SD limits of agreement and 95% 
confidence interval. Volumes were calculated by adding the voxels from all images of each subject and multiplying with the voxel size. Data from 
the lean and obese mice were pooled together. Spearman’s rank correlation coefficients were calculated for estimation of proportional bias
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in many of the mouse images. It was difficult to segment 
images with high background noise using SliceOmatic. 
The threshold had to be set very low and the fat had to 
be subjectively separated from the background noise. 
RAdipoSeg gave good segmentation of these images, but 
lower image quality increased the duration of the proce-
dure by requiring more manual interference. RAdipoSeg 
uses a local threshold, which allows for better separa-
tion between signal and background noise than a global 
threshold. Each voxel is analysed based on the neigh-
bouring voxels, while global threshold is affected by arte-
facts in the entire image. Also, with RAdipoSeg, the noise 
outside of the region of interest is automatically deleted 
by the mask, which gives a clear boundary against the 
background. With SliceOmatic the boundary had to be 
decided manually during segmentation. In addition to 
the low sample size, this may be the reason for the poor 
Spearman’s correlation coefficient between the methods 
for SAT in obese mice. Image quality was not a factor for 
the human images, as they all had little background noise.

Only the region growing module of the SliceOmatic 
software could be used in this study, as the high level of 
background noise made the other modules impractical or 
impossible to use. For the human images, the other mod-
ules for fat segmentation offered by SliceOmatic were 
available and may have yielded a different result.

There are several automatic and deep learning software 
for fat segmentation of MRI images, such as FatSegNet 
[12] and an algorithm for MatLab (MathWorks, Natick, 
Massachusetts) [13]. However, most of these are special-
ized for human images and, in some cases, for specific 
human regions. Others require a high number of images 
for training. For smaller studies on images from rodents, 
an automatic method designed for human images may 
not be easily adapted. In comparison, RAdipoSeg is flex-
ible and can be used on any MRI images from any organ-
ism. By implementing other programming languages, 
e.g., Python, RAdipoSeg can be further automatised, 
thereby improving speed and usability of the procedure 
(Additional files 6 and 7).

There was a slightly increasing trend for the correla-
tion between VAT volume and blood glucose AUC for 
the C57BL/6 J mice. Since ectopic accumulation of lipids 
in the liver is an important predictor for glucose intoler-
ance [25], it should be noted that RAdipoSeg may also 
be adapted to measure liver adiposity. Liver percentage 
fat fraction can be measured using the method Iterative 
decomposition of water and fat with echo asymmetry 
and least squares estimation (IDEAL) [26]. RAdipoSeg 
may be able to pick out the geographical position of the 
liver from MRI images where the liver, or the imme-
diate surrounding tissues, have a high pixel intensity. 
The geographical location can then be used to measure 

percentage liver fat fraction from the corresponding 
IDEAL MRI images.

Conclusions
We present and validate a novel method for fat segmen-
tation of MRI images, RAdipoSeg, in the free and open-
source software R. A comparison with the SliceOmatic 
software shows that RAdipoSeg can be used to give a 
reliable and consistent volume estimate of fat in stud-
ies of mice and humans. Though a proportional bias was 
detected for images with a high adipose tissue volume, 
this can be countered by setting the threshold manually. 
Furthermore, though the fat suppression technique will 
affect the results to some degree, this new method can 
be used on images acquired either by the CHESS or the 
2-point Dixon technique. RAdipoSeg is therefore a suit-
able and reliable method for relative comparisons of fat 
depot images from studies with standardised imaging.
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